Sample records for combustion engine powered

  1. 49 CFR 173.220 - Internal combustion engines, self-propelled vehicles, mechanical equipment containing internal...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vehicles, mechanical equipment containing internal combustion engines, and battery powered vehicles or... equipment containing internal combustion engines, and battery powered vehicles or equipment. (a... internal combustion engine, or a battery powered vehicle or equipment is subject to the requirements of...

  2. Two phase exhaust for internal combustion engine

    DOEpatents

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  3. Automotive Stirling engine system component review

    NASA Technical Reports Server (NTRS)

    Hindes, Chip; Stotts, Robert

    1987-01-01

    The design and testing of the power and combustion control system for the basic Stirling engine, Mod II, are examined. The power control system is concerned with transparent operation, and the Mod II uses engine working gas pressure variation to control the power output of the engine. The main components of the power control system, the power control valve, the pump-down system, and the hydrogen stable system, are described. The combustion control system consists of a combustion air supply system and an air/fuel ratio control system, and the system is to maintain constant heater head temperature, and to maximize combustion efficiency and to minimize exhaust emissions.

  4. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, J.; Blarigan, P. Van

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end themore » authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.« less

  5. Electric machine for hybrid motor vehicle

    DOEpatents

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  6. The scaling of performance and losses in miniature internal combustion engines

    NASA Astrophysics Data System (ADS)

    Menon, Shyam Kumar

    Miniature glow ignition internal combustion (IC) piston engines are an off--the--shelf technology that could dramatically increase the endurance of miniature electric power supplies and the range and endurance of small unmanned air vehicles provided their overall thermodynamic efficiencies can be increased to 15% or better. This thesis presents the first comprehensive analysis of small (<500 g) piston engine performance. A unique dynamometer system is developed that is capable of making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer, exhaust, mechanical, and combustion losses. These instruments and techniques are used to investigate the performance of seven single-cylinder, two-stroke, glow fueled engines ranging in size from 15 to 450 g (0.16 to 7.5 cm3 displacement). Scaling rules for power output, overall efficiency, and normalized power are developed from the data. These will be useful to developers of micro-air vehicles and miniature power systems. The data show that the minimum length scale of a thermodynamically viable piston engine based on present technology is approximately 3 mm. Incomplete combustion is the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer, sensible enthalpy, and friction. A net heat release analysis based on in-cylinder pressure measurements suggest that a two--stage combustion process occurs at low engine speeds and equivalence ratios close to 1. Different theories based on burning mode and reaction kinetics are proposed to explain the observed results. High speed imaging of the combustion chamber suggests that a turbulent premixed flame with its origin in the vicinity of the glow plug is the primary driver of combustion. Placing miniature IC engines on a turbulent combustion regime diagram shows that they operate in the 'flamelet in eddy' regime whereas conventional--scale engines operate mostly in the 'wrinkled laminar flame sheet' regime. Taken together, the results show that the combustion process is the key obstacle to realizing the potential of small IC engines. Overcoming this obstacle will require new diagnostic techniques, measurements, combustion models, and high temperature materials.

  7. Compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  8. Development of teaching material to integrate GT-POWER into combustion courses for IC engine simulations.

    DOT National Transportation Integrated Search

    2009-02-01

    The main objective of this project was to develop instructional engineering projects that utilize the newly-offered PACE software GT-POWER for engine simulations in combustion-related courses at the Missouri University of Science and Technology. Stud...

  9. Research on the influence of ozone dissolved in the fuel-water emulsion on the parameters of the CI engine

    NASA Astrophysics Data System (ADS)

    Wojs, M. K.; Orliński, P.; Kamela, W.; Kruczyński, P.

    2016-09-01

    The article presents the results of empirical research on the impact of ozone dissolved in fuel-water emulsion on combustion process and concentration of toxic substances in CI engine. The effect of ozone presence in the emulsion and its influence on main engine characteristics (power, torque, fuel consumption) and selected parameters that characterize combustion process (levels of pressures and temperatures in combustion chamber, period of combustion delay, heat release rate, fuel burnt rate) is shown. The change in concentration of toxic components in exhausts gases when engine is fueled with ozonized emulsion was also identified. The empirical research and their analysis showed significant differences in the combustion process when fuel-water emulsion containing ozone was used. These differences include: increased power and efficiency of the engine that are accompanied by reduction in time of combustion delay and beneficial effects of ozone on HC, PM, CO and NOX emissions.

  10. Technologies for Energy from Biomass by Direct Combustion, Gasification, and Liquefaction.

    DTIC Science & Technology

    1981-05-01

    1980 1982 1984 Development Alberta Industrial Dev. X American Fyr. Feeder X Andco, Inc. X Applied Engineering Co., Inc. X Biomass Corp. X Bio-Solar x...Feeder ANDCO, Inc. Applied Engineering Company Biomass Corporation Bio-Solar Research and Development Corporation Combustion Power Company, Inc. Davy...Andco. Inc. X Applied Engineering Co., Inc. X Biomass Corp. X , Big-Solar .X I Combustion Power .. XI Davy Powergas X j Dekalb Acresearch, Inc.- x Duvant

  11. Economics of electron beam and electrical discharge processing for post-combustion NO(x) control in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Penetrante, B. M.

    1993-08-01

    The physics and chemistry of non-thermal plasma processing for post-combustion NO(x) control in internal combustion engines are discussed. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO(x) removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.

  12. Low emission turbo compound engine system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuk,; Carl, T

    2011-05-31

    A diesel or HHCI engine has an air intake and an exhaust for products of combustion. A pair of turbochargers receive the products of combustion in a series relationship and an exhaust aftertreatment device receive the products of combustion from the downstream turbine. A power turbine receives the output from the exhaust aftertreatment device and an EGR system of the power turbine passes a selected portion of the output to a point upstream of the upstream turbocharger compressor. A device adds fuel to the aftertreatment device to regenerate the particulate filter and the power turbine recoups the additional energy. Themore » power turbine may be used to drive accessories or the prime output of the engine.« less

  13. Compact Hybrid Automotive Propulsion System

    NASA Technical Reports Server (NTRS)

    Lupo, G.

    1986-01-01

    Power train proposed for experimental vehicle powered by internal combustion engine and electric motor. Intended for front-wheel drive automobile, power train mass produced using existing technology. System includes internal-combustion engine, electric motor, continuously variable transmission, torque converter, differential, and control and adjustment systems for electric motor and transmission. Continuously variable transmission integrated into hydraulic system that also handles power steering and power brakes. Batteries for electric motor mounted elsewhere in vehicle.

  14. Engine Valve Actuation For Combustion Enhancement

    DOEpatents

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2004-05-18

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  15. Engine valve actuation for combustion enhancement

    DOEpatents

    Reitz, Rolf Deneys [Madison, WI; Rutland, Christopher J [Madison, WI; Jhavar, Rahul [Madison, WI

    2008-03-04

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  16. Combustion and operating characteristics of spark-ignition engines

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Keck, J. C.; Beretta, G. P.; Watts, P. A.

    1980-01-01

    The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined.

  17. Compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  18. Preliminary Results of an Altitude-Wind-Tunnel Investigation of a TG-100A Gas Turbine-Propeller Engine. V; Combustion-Chamber Characteristics

    NASA Technical Reports Server (NTRS)

    Gensenheyner, Robert M.; Berdysz, Joseph J.

    1947-01-01

    An investigation to determine the performance and operational characteristics of the TG-1OOA gas turbine-propeller engine was conducted in the Cleveland altitude wind tunnel. As part of this investigation, the combustion-chamber performance was determined at pressure altitudes from 5000 to 35,000 feet, compressor-inlet rm-pressure ratios of 1.00 and 1.09, and engine speeds from 8000 to 13,000 rpm. Combustion-chamber performance is presented as a function of corrected engine speed and.correcte& horsepower. For the range of corrected engine speeds investigated, over-all total-pressure-loss ratio, cycle efficiency, ana the frac%ional loss in cycle efficiency resulting from pressure losses in the combustion chambers were unaffected by a change in altitude or compressor-inlet ram-pressure ratio. The scatter of combustion- efficiency data tended to obscure any effect of altitude or ram-pressure ratio. For the range of corrected horse-powers investigated, the total-pressure-loss ratio an& the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers decreased with an increase in corrected horsepower at a constant corrected engine speed. The combustion efficiency remained constant for the range of corrected horse-powers investigated at all corrected engine speeds.

  19. Hydrogen combustion in tomorrow's energy technology

    NASA Astrophysics Data System (ADS)

    Peschka, W.

    The fundamental characteristics of hydrogen combustion and the current status of hydrogen energy applications technology are reviewed, with an emphasis on research being pursued at DFVLR. Topics addressed include reaction mechanisms and pollution, steady-combustion devices (catalytic heaters, H2/air combustors, H2/O2 rocket engines, H2-fueled jet engines, and gas and steam turbine processes), unsteady combustion (in internal-combustion engines with internal or external mixture formation), and feasibility studies of hydrogen-powered automobiles. Diagrams, drawings, graphs, and photographs are provided.

  20. Development and test of combustion chamber for Stirling engine heated by natural gas

    NASA Astrophysics Data System (ADS)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  1. Optimal design of a combustion chamber of gas turbine engine by a Combustion chamber 1D-2D computer program

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Y. B.; Mingazov, B. G.

    2017-09-01

    The paper shows a method of modeling and optimization of processes in combustion chambers of gas turbine engines using a computer program developed by a team at the Department of Jet Engines and Power Plants (DJEPP) of Technical University named after A N Tupolev KNRTU-KAI.

  2. Tripropellant engine study

    NASA Technical Reports Server (NTRS)

    Wheeler, D. B.

    1978-01-01

    Engine performance data, combustion gas thermodynamic properties, and turbine gas parameters were determined for various high power cycle engine configurations derived from the space shuttle main engine that will allow sequential burning of LOX/hydrocarbon and LOX/hydrogen fuels. Both stage combustion and gas generator pump power cycles were considered. Engine concepts were formulated for LOX/RP-1, LOX/CH4, and LOX/C3H8 propellants. Flowrates and operating conditions were established for this initial set of engine systems, and the adaptability of the major components of shuttle main engine was investigated.

  3. The Combination of Internal-Combustion Engine and Gas Turbine

    NASA Technical Reports Server (NTRS)

    Zinner, K.

    1947-01-01

    While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.

  4. 40 CFR 1074.5 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activity engaged in as a vocation. Construction equipment or vehicle means any internal combustion engine... vehicle means any internal combustion engine-powered machine primarily used in the commercial production... STATE STANDARDS AND PROCEDURES FOR WAIVER OF FEDERAL PREEMPTION FOR NONROAD ENGINES AND NONROAD VEHICLES...

  5. 40 CFR 1074.5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activity engaged in as a vocation. Construction equipment or vehicle means any internal combustion engine... vehicle means any internal combustion engine-powered machine primarily used in the commercial production... STATE STANDARDS AND PROCEDURES FOR WAIVER OF FEDERAL PREEMPTION FOR NONROAD ENGINES AND NONROAD VEHICLES...

  6. A predication model for combustion modes of the scramjet-powered aerospace vehicle based on the nonlinear features of the isolator flow field

    NASA Astrophysics Data System (ADS)

    Yang, Qingchun; Wang, Hongxin; Chetehouna, Khaled; Gascoin, Nicolas

    2017-01-01

    The supersonic combustion ramjet (scramjet) engine remains the most promising airbreathing engine cycle for hypersonic flight, particularly the high-performance dual-mode scramjet in the range of flight Mach number from 4 to 7, because it can operates under different combustion modes. Isolator is a very key component of the dual-mode scramjet engine. In this paper, nonlinear characteristics of combustion mode transition is theoretically analyzed. The discontinuous sudden changes of static pressure and Mach number are obtained as the mode transition occurs, which emphasizing the importance of predication and control of combustion modes. In this paper, a predication model of different combustion modes is developed based on these these nonlinear features in the isolator flow field. it can provide a valuable reference for control system design of the scramjet-powered aerospace vehicle.

  7. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOEpatents

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  8. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    NASA Astrophysics Data System (ADS)

    Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.

    2013-06-01

    Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  9. Analysis of Apex Seal Friction Power Loss in Rotary Engines

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Owen, A. Karl

    2010-01-01

    An analysis of the frictional losses from the apex seals in a rotary engine was developed. The modeling was initiated with a kinematic analysis of the rotary engine. Next a modern internal combustion engine analysis code was altered for use in a rotary engine to allow the calculation of the internal combustion pressure as a function of rotor rotation. Finally the forces from the spring, inertial, and combustion pressure on the seal were combined to provide the frictional horsepower assessment.

  10. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to a normally unstable high-power condition, thus enabling the high-power condition.

  11. Improved Stirling engine performance using jet impingement

    NASA Technical Reports Server (NTRS)

    Johnson, D. C.; Britt, E. J.; Thieme, L. G.

    1982-01-01

    Of the many factors influencing the performance of a Stirling engine, that of transferring the combustion gas heat into the working fluid is crucial. By utilizing the high heat transfer rates obtainable with a jet impingement heat transfer system, it is possible to reduce the flame temperature required for engine operation. Also, the required amount of heater tube surface area may be reduced, resulting in a decrease in the engine nonswept volume and a related increase in engine efficiency. A jet impingement heat transfer system was designed by Rasor Associates, Inc., and tested in the GPU-3 Stirling engine at the NASA Lewis Research Center. For a small penalty in pumping power (less than 0.5% of engine output) the jet impingement heat transfer system provided a higher combustion-gas-side heat transfer coefficient and a smoothing of heater temperature profiles resulting in lower combustion system temperatures and a 5 to 8% increase in engine power output and efficiency.

  12. 76 FR 31242 - Revisions to the California State Implementation Plan, Santa Barbara County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... BTU/hr and internal combustion engines with a rated brake horse power of 50 or greater. Under... Process Heaters. SBCAPCD 333 Control of Emissions 06/19/08 10/20/08 from Reciprocating Internal Combustion..., ``Control of Emissions from Reciprocating Internal Combustion Engines,'' adopted on June 19, 2008...

  13. Occupational health and safety assessment of exposure to jet fuel combustion products in air medical transport.

    PubMed

    MacDonald, Russell D; Thomas, Laura; Rusk, Frederick C; Marques, Shauna D; McGuire, Dan

    2010-01-01

    Transport medicine personnel are potentially exposed to jet fuel combustion products. Setting-specific data are required to determine whether this poses a risk. This study assessed exposure to jet fuel combustion products, compared various engine ignition scenarios, and determined methods to minimize exposure. The Beechcraft King Air B200 turboprop aircraft equipped with twin turbine engines, using a kerosene-based jet fuel (Jet A-1), was used to measure products of combustion during boarding, engine startup, and flight in three separate engine start scenarios ("shielded": internal engine start, door closed; "exposed": ground power unit start, door open; and "minimized": ground power unit right engine start, door open). Real-time continuous monitoring equipment was used for oxygen, carbon dioxide, carbon monoxide, nitrogen dioxide, hydrogen sulfide, sulfur dioxide, volatile organic compounds, and particulate matter. Integrated methods were used for aldehydes, polycyclic aromatic hydrocarbons, volatile organic compounds, and aliphatic hydrocarbons. Samples were taken in the paramedic breathing zone for approximately 60 minutes, starting just before the paramedics boarded the aircraft. Data were compared against regulated time-weighted exposure thresholds to determine the presence of potentially harmful products of combustion. Polycyclic aromatic hydrocarbons, aldehydes, volatile organic compounds, and aliphatic hydrocarbons were found at very low concentrations or beneath the limits of detection. There were significant differences in exposures to particulates, carbon monoxide, and total volatile organic compound between the "exposed" and "minimized" scenarios. Elevated concentrations of carbon monoxide and total volatile organic compounds were present during the ground power unit-assisted dual-engine start. There were no appreciable exposures during the "minimized" or "shielded" scenarios. Air medical personnel exposures to jet fuel combustion products were generally low and did not exceed established U.S. or Canadian health and safety exposure limits. Avoidance of ground power unit-assisted dual-engine starts and closing the hangar door prior to start minimize or eliminate the occupational exposure.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Blarigan, P.

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueledmore » operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.« less

  15. The Stirling Engine: A Wave of the Future

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This video describes the Stirling engine, an external combustion engine which creates heat energy to power the motor, and can use many types of fuel. It can be used for both stationary and propulsion purposes and has advantages of better fuel economy and cleaner exhaust than internal combustion engines. The engine is shown being road tested at Langley Air Force Base.

  16. 78 FR 3921 - Proposed Models for Plant-Specific Adoption of Technical Specifications Task Force Traveler TSTF...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... Specifications Combustion Engineering Plants.'' Specifically, the proposed change revises various TSs to add a... Technical Details TSTF-426, Revision 5, is applicable to all Combustion Engineering- designed nuclear power...

  17. Rotary engine performance limits predicted by a zero-dimensional model

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.; Willis, Edward A.

    1992-01-01

    A parametric study was performed to determine the performance limits of a rotary combustion engine. This study shows how well increasing the combustion rate, insulating, and turbocharging increase brake power and decrease fuel consumption. Several generalizations can be made from the findings. First, it was shown that the fastest combustion rate is not necessarily the best combustion rate. Second, several engine insulation schemes were employed for a turbocharged engine. Performance improved only for a highly insulated engine. Finally, the variability of turbocompounding and the influence of exhaust port shape were calculated. Rotary engines performance was predicted by an improved zero-dimensional computer model based on a model developed at the Massachusetts Institute of Technology in the 1980's. Independent variables in the study include turbocharging, manifold pressures, wall thermal properties, leakage area, and exhaust port geometry. Additions to the computer programs since its results were last published include turbocharging, manifold modeling, and improved friction power loss calculation. The baseline engine for this study is a single rotor 650 cc direct-injection stratified-charge engine with aluminum housings and a stainless steel rotor. Engine maps are provided for the baseline and turbocharged versions of the engine.

  18. Internal combustion engine system having a power turbine with a broad efficiency range

    DOEpatents

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  19. Using coal inside California for electric power

    NASA Technical Reports Server (NTRS)

    Moore, J. B.

    1978-01-01

    In a detailed analysis performed at Southern California Edison on a wide variety of technologies, the direct combustion of coal and medium BTU gas from coal were ranked just below nuclear power for future nonpetroleum based electric power generation. As a result, engineering studies were performed for demonstration projects for the direct combustion of coal and medium BTU gas from coal. Graphs are presented for power demand, and power cost. Direct coal combustion and coal gasification processes are presented.

  20. Coal-water slurry fuel internal combustion engine and method for operating same

    DOEpatents

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  1. Conflict between internal combustion engine and thermoelectric generator during waste heat recovery in cars

    NASA Astrophysics Data System (ADS)

    Korzhuev, M. A.

    2011-02-01

    It is shown that an internal combustion engine and a thermoelectric generator (TEG) arranged on the exhaust pipe of this engine come into the conflict of thermal machines that is related to using the same energy resource. The conflict grows with increasing useful electric power W e of the TEG, which leads to the limitation of both the maximum TEG output power ( W {e/max}) and the possibility of waste heat recovery in cars.

  2. The Reduction of NOx Using Pulsed Electron Beams

    DTIC Science & Technology

    2015-12-30

    flue gas (SFG) is described. The SFG is a simulant for exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed electron...a surrogate flue gas (SFG) is described. The SFG simulates exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed...temperature combustion in air-breathing engines and coal power plants. The gases are also produced in nature during thunderstorms by lightning

  3. A method and instruments to identify the torque, the power and the efficiency of an internal combustion engine of a wheeled vehicle

    NASA Astrophysics Data System (ADS)

    Egorov, A. V.; Kozlov, K. E.; Belogusev, V. N.

    2018-01-01

    In this paper, we propose a new method and instruments to identify the torque, the power, and the efficiency of internal combustion engines in transient conditions. This method, in contrast to the commonly used non-demounting methods based on inertia and strain gauge dynamometers, allows controlling the main performance parameters of internal combustion engines in transient conditions without inaccuracy connected with the torque loss due to its transfer to the driving wheels, on which the torque is measured with existing methods. In addition, the proposed method is easy to create, and it does not use strain measurement instruments, the application of which does not allow identifying the variable values of the measured parameters with high measurement rate; and therefore the use of them leads to the impossibility of taking into account the actual parameters when engineering the wheeled vehicles. Thus the use of this method can greatly improve the measurement accuracy and reduce costs and laboriousness during testing of internal combustion engines. The results of experiments showed the applicability of the proposed method for identification of the internal combustion engines performance parameters. In this paper, it was determined the most preferred transmission ratio when using the proposed method.

  4. Indirect combustion noise of auxiliary power units

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Parrish, Sarah A.; Xu, Jun; Schuster, Bill

    2013-08-01

    Recent advances in noise suppression technology have significantly reduced jet and fan noise from commercial jet engines. This leads many investigators in the aeroacoustics community to suggest that core noise could well be the next aircraft noise barrier. Core noise consists of turbine noise and combustion noise. There is direct combustion noise generated by the combustion processes, and there is indirect combustion noise generated by the passage of combustion hot spots, or entropy waves, through constrictions in an engine. The present work focuses on indirect combustion noise. Indirect combustion noise has now been found in laboratory experiments. The primary objective of this work is to investigate whether indirect combustion noise is also generated in jet and other engines. In a jet engine, there are numerous noise sources. This makes the identification of indirect combustion noise a formidable task. Here, our effort concentrates exclusively on auxiliary power units (APUs). This choice is motivated by the fact that APUs are relatively simple engines with only a few noise sources. It is, therefore, expected that the chance of success is higher. Accordingly, a theoretical model study of the generation of indirect combustion noise in an Auxiliary Power Unit (APU) is carried out. The cross-sectional areas of an APU from the combustor to the turbine exit are scaled off to form an equivalent nozzle. A principal function of a turbine in an APU is to extract mechanical energy from the flow stream through the exertion of a resistive force. Therefore, the turbine is modeled by adding a negative body force to the momentum equation. This model is used to predict the ranges of frequencies over which there is a high probability for indirect combustion noise generation. Experimental spectra of internal pressure fluctuations and far-field noise of an RE220 APU are examined to identify anomalous peaks. These peaks are possible indirection combustion noise. In the case of the APU RE220, such peaks are identified. The frequency ranges of these peaks are found to overlap those predicted by the model theory. Based on this agreement, a tentative conclusion is drawn that there is good reason to believe that APUs do generate measurable indirect combustion noise. This paper is dedicated to the memory of Prof. Phil Doak for his numerous contributions to Aeroacoustics and the Journal of Sound and Vibration.

  5. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will providemore » an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.« less

  6. External combustion engine having an asymmetrical CAM

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1994-11-01

    An external combustion engine having an asymmetrical cam is the focus of this patent. The engine includes a combustion chamber for generating a high-pressure, energized gas from a monopropellant fuel and an even number of cylinders for receiving sequentially the energized gas through the rotary valve, the gas performing work on a piston disposed within each cylinder. The pistons transfer energy to a drive shaft through a connection to the asymmetrically shaped cam. The cam is shaped having two identical halves, each half having a power and an exhaust stroke. The identical halves provide that opposing cylinders are in thermodynamic balance, thus reducing rocking vibrations and torque pulsations. Having opposing pistons within the same thermodynamic cycle allows piston stroke to be reduced while maintaining displacement comparable to an engine having individual cycle positions. The reduced stroke diminishes gas flow velocity thus reducing flow induced noise. The power and exhaust strokes within each identical half of the cam are asymmetrical in that the power stroke is of greater duration than the exhaust stroke. The shape and length of the power stroke is optimized for increased efficiency.

  7. Evaluation of Hydroprocessed Renewable Diesel (HRD) Fuel in a Caterpillar Engine Using the 210 Hour TWV Cycle

    DTIC Science & Technology

    2014-05-01

    TERMS Hydroprocessed Renewable Diesel , Reference Diesel Fuel, C7, emissions, power, performance, deposition, ambient, desert, synthetic fuel injector ...the engine run-in, the engine was disassembled to determine injector nozzle tip deposits, and the piston crowns and engine combustion chamber deposits...removed from the test cell and disassembled to determine injector nozzle tip and piston crown and engine combustion chamber deposits. Post- test

  8. Compression-ignition engine performance with undoped and doped fuel oils and alcohol mixtures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Foster, Hampton H

    1939-01-01

    Several fuel oils, doped fuel oils, and mixtures of alcohol and fuel oil were tested in a high-speed, single-cylinder, compression-ignition engine to determine power output, fuel consumption, and ignition and combustion characteristics. Fuel oils or doped fuel oils of high octane number had shorter ignition lags, lower rates of pressure rise, and gave smoother engine operation than fuel oils or doped fuel oils of low octane number. Higher engine rotative speeds and boost pressures resulted in smoother engine operation and permitted the use of fuel oils of relatively low octane number. Although the addition of a dope to a fuel oil decreased the ignition lag and the rate of pressure rise, the ensuing rate of combustion was somewhat slower than for the undoped fuel oil so that the effectiveness of combustion was practically unchanged. Alcohol used as an auxiliary fuel, either as a mixture or by separate injection, increased the rates of pressure rise and induced roughness. In general, the power output decreased as the proportion of alcohol increased and, below maximum power, varied with the heating value of the total fuel charge.

  9. Energetic Combustion Devices for Aerospace Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2000-01-01

    Chemical reactions have long been the mainstay thermal energy source for aerospace propulsion and power. Although it is widely recognized that the intrinsic energy density limitations of chemical bonds place severe constraints on maximum realizable performance, it will likely be several years before systems based on high energy density nuclear fuels can be placed into routine service. In the mean time, efforts to develop high energy density chemicals and advanced combustion devices which can utilize such energetic fuels may yield worthwhile returns in overall system performance and cost. Current efforts in this vein are being carried out at NASA MSFC under the direction of the author in the areas of pulse detonation engine technology development and light metals combustion devices. Pulse detonation engines are touted as a low cost alternative to gas turbine engines and to conventional rocket engines, but actual performance and cost benefits have yet to be convincingly demonstrated. Light metal fueled engines also offer potential benefits in certain niche applications such as aluminum/CO2 fueled engines for endo-atmospheric Martian propulsion. Light metal fueled MHD generators also present promising opportunities with respect to electric power generation for electromagnetic launch assist. This presentation will discuss the applications potential of these concepts with respect to aero ace propulsion and power and will review the current status of the development efforts.

  10. Engine Throat/Nozzle Optics for Plume Spectroscopy

    DTIC Science & Technology

    1991-02-01

    independent of the external plume characteristics so operation can be achieved on diffuser test stands and with the engine exhausting to a variable... combustion chamber operates at 205 atmospheres during 109% power conditions with a mixture ratio of 6:1. The engine is overexpanded at sea level and...LeRC/500-219. 16. Abstract The throat and combustion chamber of an operating rocket engine provide a preferred signal source for optical spectroscopy

  11. 30 CFR 7.82 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... apply in this subpart. Brake Power. The observed power measured at the crankshaft or its equivalent when... compression ignition internal combustion engine using the basic diesel cycle where combustion results from the... collected on a specified filter medium after diluting exhaust gases with clean, filtered air at a...

  12. Optical Power Source Derived from Engine Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    1999-01-01

    An optical power source is disclosed that collects the spectra of the light emissions created in a combustion chamber to provide its optical output signals that serve the needs of optical networks. The light spectra is collected by a collection ring serving as an optical waveguide.

  13. Development of natural gas rotary engines

    NASA Astrophysics Data System (ADS)

    Mack, J. R.

    1991-08-01

    Development of natural gas-fueled rotary engines was pursued on the parallel paths of converted Mazda automotive engines and of establishing technology and demonstration of a test model of a larger John Deer Technologies Incorporated (JDTI) rotary engine with power capability of 250 HP per power section for future production of multi-rotor engines with power ratings 250, 500, and 1000 HP and upward. Mazda engines were converted to natural gas and were characterized by a laboratory which was followed by nearly 12,000 hours of testing in three different field installations. To develop technology for the larger JDTI engine, laboratory and engine materials testing was accomplished. Extensive combustion analysis computer codes were modified, verified, and utilized to predict engine performance, to guide parameters for actual engine design, and to identify further improvements. A single rotor test engine of 5.8 liter displacement was designed for natural gas operation based on the JDTI 580 engine series. This engine was built and tested. It ran well and essentially achieved predicted performance. Lean combustion and low NOW emission were demonstrated.

  14. The causes of unstable engine idle speed and their solutions

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    2018-06-01

    There are many types of engines. The most commonly used engine for automobiles is the internal combustion engine. Internal combustion engines use a four-stroke combustion cycle to convert gasoline into motion. The four-stroke approach, also known as the "Ototo cycle," commemorates Nicklaus Otto, who invented it in 1867. The working cycle of a four-stroke engine consists of four piston strokes, ie, intake stroke, compression stroke, power stroke, and exhaust stroke. This article focuses on the cause of the instability of the four-stroke engine and its solution. There are many reasons for the instability of the engine, so this article will be divided into four areas: intake system, fuel system, ignition system and mechanical structure. Based on the above reasons, the corresponding solution is proposed.

  15. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Science.gov Websites

    alternative fuel in combination with an electric motor that uses energy stored in a battery. HEVs combine the combustion engine and an electric motor, which uses energy stored in batteries. The extra power provided by uses regenerative braking and the internal combustion engine to charge. The vehicle captures energy

  16. A Highly Efficient Six-Stroke Internal Combustion Engine Cycle with Water Injection for In-Cylinder Exhaust Heat Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conklin, Jim; Szybist, James P

    2010-01-01

    A concept is presented here that adds two additional strokes to the four-stroke Otto or Diesel cycle that has the potential to increase fuel efficiency of the basic cycle. The engine cycle can be thought of as a 4 stroke Otto or Diesel cycle followed by a 2-stroke heat recovery steam cycle. Early exhaust valve closing during the exhaust stroke coupled with water injection are employed to add an additional power stroke at the end of the conventional four-stroke Otto or Diesel cycle. An ideal thermodynamics model of the exhaust gas compression, water injection at top center, and expansion wasmore » used to investigate this modification that effectively recovers waste heat from both the engine coolant and combustion exhaust gas. Thus, this concept recovers energy from two waste heat sources of current engine designs and converts heat normally discarded to useable power and work. This concept has the potential of a substantial increase in fuel efficiency over existing conventional internal combustion engines, and under appropriate injected water conditions, increase the fuel efficiency without incurring a decrease in power density. By changing the exhaust valve closing angle during the exhaust stroke, the ideal amount of exhaust can be recompressed for the amount of water injected, thereby minimizing the work input and maximizing the mean effective pressure of the steam expansion stroke (MEPsteam). The value of this exhaust valve closing for maximum MEPsteam depends on the limiting conditions of either one bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens to discard the spent gas mixture in the sixth stroke. The range of MEPsteam calculated for the geometry of a conventional gasoline spark-ignited internal combustion engine and for plausible water injection parameters is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy while not resulting in a decrease in power density.« less

  17. Flame blowout and pollutant emissions in vitiated combustion of conventional and bio-derived fuels

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder

    The widening gap between the demand and supply of fossil fuels has catalyzed the exploration of alternative sources of energy. Interest in the power, water extraction and refrigeration (PoWER) cycle, proposed by the University of Florida, as well as the desirability of using biofuels in distributed generation systems, has motivated the exploration of biofuel vitiated combustion. The PoWER cycle is a novel engine cycle concept that utilizes vitiation of the air stream with externally-cooled recirculated exhaust gases at an intermediate pressure in a semi-closed cycle (SCC) loop, lowering the overall temperature of combustion. It has several advantages including fuel flexibility, reduced air flow, lower flame temperature, compactness, high efficiency at full and part load, and low emissions. Since the core engine air stream is vitiated with the externally cooled exhaust gas recirculation (EGR) stream, there is an inherent reduction in the combustion stability for a PoWER engine. The effect of EGR flow and temperature on combustion blowout stability and emissions during vitiated biofuel combustion has been characterized. The vitiated combustion performance of biofuels methyl butanoate, dimethyl ether, and ethanol have been compared with n-heptane, and varying compositions of syngas with methane fuel. In addition, at high levels of EGR a sharp reduction in the flame luminosity has been observed in our experimental tests, indicating the onset of flameless combustion. This drop in luminosity may be a result of inhibition of processes leading to the formation of radiative soot particles. One of the objectives of this study is finding the effect of EGR on soot formation, with the ultimate objective of being able to predict the boundaries of flameless combustion. Detailed chemical kinetic simulations were performed using a constant-pressure continuously stirred tank reactor (CSTR) network model developed using the Cantera combustion code, implemented in C++. Results have been presented showing comparative trends in pollutant emissions generation, flame blowout stability, and combustion efficiency. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  18. High efficiency stoichiometric internal combustion engine system

    DOEpatents

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  19. Development and integration of a scalable low NOx combustion chamber for a hydrogen-fueled aerogas turbine

    NASA Astrophysics Data System (ADS)

    Boerner, S.; Funke, H. H.-W.; Hendrick, P.; Recker, E.; Elsing, R.

    2013-03-01

    The usage of alternative fuels in aircraft industry plays an important role of current aero engine research and development processes. The micromix burning principle allows a secure and low NOx combustion of gaseous hydrogen. The combustion principle is based on the fluid phenomenon of jet in cross flow and achieves a significant lowering in NOx formation by using multiple miniaturized flames. The paper highlights the development and the integration of a combustion chamber, based on the micromix combustion principle, into an Auxiliary Power Unit (APU) GTCP 36-300 with regard to the necessary modifications on the gas turbine and on the engine controller.

  20. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1995-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  1. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1997-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  2. Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard

    2004-01-01

    A proposed hybrid (internal-combustion/ electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel. The original Miller-cycle engine, named after its inventor, was patented in the 1940s and is the basis of engines used in some modern automobiles, but is not widely known. In somewhat oversimplified terms, the main difference between a Miller-cycle engine and a common (Otto-cycle) automobile engine is that the Miller-cycle engine has a longer expansion stroke while retaining the shorter compression stroke. This is accomplished by leaving the intake valve open for part of the compression stroke, whereas in the Otto cycle engine, the intake valve is kept closed during the entire compression stroke. This greater expansion ratio makes it possible to extract more energy from the combustion process without expending more energy for compression. The net result is greater efficiency. In the proposed engine, the regenerative preheating would be effected by running the intake air through a heat exchanger connected to the engine block. The regenerative preheating would offer two advantages: It would ensure reliable autoignition during operation at low ambient temperature and would help to cool the engine, thereby reducing the remainder of the power needed for cooling and thereby further contributing to efficiency. An electrical resistance air preheater might be needed to ensure autoignition at startup and during a short warmup period. Because of the autoignition, the engine could operate without either spark plugs or glow plugs. Ethanol burns relatively cleanly and has been used as a motor fuel since the invention of internal-combustion engines. However, the energy content of ethanol per unit weight of ethanol is less than that of Diesel fuel or gasoline, and ethanol has a higher heat of vaporization. Because the Miller cycle offers an efficiency close to that of the Diesel cycle, burning ethanol in a Miller-cycle engine gives about as much usable output energy per unit volume of fuel as does burning gasoline in a conventional gasoline automotive engine. Because of the combination of preheating, running lean, and the use of ethyl alcohol, the proposed engine would generate less power per unit volume than does a conventional automotive gasoline engine. Consequently, for a given power level, the main body of the proposed engine would be bulkier. However, because little or no exhaust cleanup would be needed, the increase in bulk of the engine could be partially offset by the decrease in bulk of the exhaust system. The regenerative preheating also greatly reduces the external engine cooling requirement, and would translate to reduced engine bulk. It may even be possible to accomplish the remaining cooling of the engine by use of air only, eliminating the bulk and power consumption of a water cooling system. The combination of a Miller-cycle engine with regenerative air preheating, ethyl alcohol fuel, and hybrid operation could result in an automotive engine system that satisfies the need for a low pollution, high efficiency, and simple engine with a totally renewable fuel.

  3. A numerical study on combustion process in a small compression ignition engine run dual-fuel mode (diesel-biogas)

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Widodo, T. I.; Nasution, D. M.

    2017-01-01

    In order to reduce the consumption of fossil fuel of a compression ignition (CI) engines which is usually used in transportation and heavy machineries, it can be operated in dual-fuel mode (diesel-biogas). However, the literature reviews show that the thermal efficiency is lower due to incomplete combustion process. In order to increase the efficiency, the combustion process in the combustion chamber need to be explored. Here, a commercial CFD code is used to explore the combustion process of a small CI engine run on dual fuel mode (diesel-biogas). The turbulent governing equations are solved based on finite volume method. A simulation of compression and expansions strokes at an engine speed and load of 1000 rpm and 2500W, respectively has been carried out. The pressure and temperature distributions and streamlines are plotted. The simulation results show that at engine power of 732.27 Watt the thermal efficiency is 9.05%. The experiment and simulation results show a good agreement. The method developed in this study can be used to investigate the combustion process of CI engine run on dual-fuel mode.

  4. LPG gaseous phase electronic port injection on performance, emission and combustion characteristics of Lean Burn SI Engine

    NASA Astrophysics Data System (ADS)

    Bhasker J, Pradeep; E, Porpatham

    2016-08-01

    Gaseous fuels have always been established as an assuring way to lessen emissions in Spark Ignition engines. In particular, LPG resolved to be an affirmative fuel for SI engines because of their efficient combustion properties, lower emissions and higher knock resistance. This paper investigates performance, emission and combustion characteristics of a microcontroller based electronic LPG gaseous phase port injection system. Experiments were carried out in a single cylinder diesel engine altered to behave as SI engine with LPG as fuel at a compression ratio of 10.5:1. The engine was regulated at 1500 rpm at a throttle position of 20% at diverse equivalence ratios. The test results were compared with that of the carburetion system. The results showed that there was an increase in brake power output and brake thermal efficiency with LPG gas phase injection. There was an appreciable extension in the lean limit of operation and maximum brake power output under lean conditions. LPG injection technique significantly reduces hydrocarbon and carbon monoxide emissions. Also, it extremely enhances the rate of combustion and helps in extending the lean limit of LPG. There was a minimal increase of NOx emissions over the lean operating range due to higher temperature. On the whole it is concluded that port injection of LPG is best suitable in terms of performance and emission for LPG fuelled lean burn SI engine.

  5. Progress toward an optimized hydrogen series hybrid engine

    NASA Astrophysics Data System (ADS)

    Smith, J. Ray; Aceves, Salvador M.; Johnson, Norman L.; Amsden, Anthony A.

    1995-06-01

    The design considerations and computational fluid dynamics (CFD) modeling of a high efficiency, low emissions, hydrogen-fueled engine for use as the prime mover of a series hybrid automobile is described. The series hybrid automobile uses the engine to generate electrical energy via a lightweight generator, the electrical energy is stored in a power peaking device (like a flywheel or ultracapacitor) and used as required to meet the tractive drive requirements (plus accessory loads) through an electrical motor. The engine/generator is stopped whenever the energy storage device is fully charged. Engine power output required was determined with a vehicle simulation code to be 15 to 20 kW steady state with peak output of 40 to 45 kW for hill climb. Combustion chamber and engine geometry were determined from a critical review of the hydrogen engine experiments in the literature combined with a simplified global engine model. Two different engine models are employed to guide engine design. The models are a simplified global engine performance model that relies strongly on correlations with literature data for heat transfer and friction losses, and a state-of-the-art CFD combustion model, KIVA-3, to elucidate fluid mechanics and combustion details through full three-dimensional modeling. Both intake and exhaust processes as well as hydrogen combustion chemistry and thermal NO(sub x) production are simulated. Ultimately, a comparison between the simulation and experimental results will lead to improved modeling and will give guidance to changes required in the next generation engine to achieve the goal of 45% brake thermal efficiency.

  6. Traveling-Wave Thermoacoustic Engines With Internal Combustion

    DOEpatents

    Weiland, Nathan Thomas; Zinn, Ben T.; Swift, Gregory William

    2004-05-11

    Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

  7. Repurposing Mass-produced Internal Combustion Engines Quantifying the Value and Use of Low-cost Internal Combustion Piston Engines for Modular Applications in Energy and Chemical Engineering Industries

    NASA Astrophysics Data System (ADS)

    L'Heureux, Zara E.

    This thesis proposes that internal combustion piston engines can help clear the way for a transformation in the energy, chemical, and refining industries that is akin to the transition computer technology experienced with the shift from large mainframes to small personal computers and large farms of individually small, modular processing units. This thesis provides a mathematical foundation, multi-dimensional optimizations, experimental results, an engine model, and a techno-economic assessment, all working towards quantifying the value of repurposing internal combustion piston engines for new applications in modular, small-scale technologies, particularly for energy and chemical engineering systems. Many chemical engineering and power generation industries have focused on increasing individual unit sizes and centralizing production. This "bigger is better" concept makes it difficult to evolve and incorporate change. Large systems are often designed with long lifetimes, incorporate innovation slowly, and necessitate high upfront investment costs. Breaking away from this cycle is essential for promoting change, especially change happening quickly in the energy and chemical engineering industries. The ability to evolve during a system's lifetime provides a competitive advantage in a field dominated by large and often very old equipment that cannot respond to technology change. This thesis specifically highlights the value of small, mass-manufactured internal combustion piston engines retrofitted to participate in non-automotive system designs. The applications are unconventional and stem first from the observation that, when normalized by power output, internal combustion engines are one hundred times less expensive than conventional, large power plants. This cost disparity motivated a look at scaling laws to determine if scaling across both individual unit size and number of units produced would predict the two order of magnitude difference seen here. For the first time, this thesis provides a mathematical analysis of scaling with a combination of both changing individual unit size and varying the total number of units produced. Different paths to meet a particular cumulative capacity are analyzed and show that total costs are path dependent and vary as a function of the unit size and number of units produced. The path dependence identified is fairly weak, however, and for all practical applications, the underlying scaling laws seem unaffected. This analysis continues to support the interest in pursuing designs built around small, modular infrastructure. Building on the observation that internal combustion engines are an inexpensive power-producing unit, the first optimization in this thesis focuses on quantifying the value of engine capacity committing to deliver power in the day-ahead electricity and reserve markets, specifically based on pricing from the New York Independent System Operator (NYISO). An optimization was written in Python to determine, based on engine cost, fuel cost, engine wear, engine lifetime, and electricity prices, when and how much of an engine's power should be committed to a particular energy market. The optimization aimed to maximize profit for the engine and generator (engine genset) system acting as a price-taker. The result is an annual profit on the order of \\$30 per kilowatt. The most value in the engine genset is in its commitments to the spinning reserve market, where power is often committed but not always called on to deliver. This analysis highlights the benefits of modularity in energy generation and provides one example where the system is so inexpensive and short-lived, that the optimization views the engine replacement cost as a consumable operating expense rather than a capital cost. Having the opportunity to incorporate incremental technological improvements in a system's infrastructure throughout its lifetime allows introduction of new technology with higher efficiencies and better designs. An alternative to traditionally large infrastructure that locks in a design and today's state-of-the-art technology for the next 50 - 70 years, is a system designed to incorporate new technology in a modular fashion. The modular engine genset system used for power generation is one example of how this works in practice. The largest single component of this thesis is modeling, designing, retrofitting, and testing a reciprocating piston engine used as a compressor. Motivated again by the low cost of an internal combustion engine, this work looks at how an engine (which is, in its conventional form, essentially a reciprocating compressor) can be cost-effectively retrofitted to perform as a small-scale gas compressor. In the laboratory, an engine compressor was built by retrofitting a one-cylinder, 79 cc engine. Various retrofitting techniques were incorporated into the system design, and the engine compressor performance was quantified in each iteration. Because the retrofitted engine is now a power consumer rather than a power-producing unit, the engine compressor is driven in the laboratory with an electric motor. Experimentally, compressed air engine exhaust (starting at elevated inlet pressures) surpassed 650 psia (about 45 bar), which makes this system very attractive for many applications in chemical engineering and refining industries. A model of the engine compressor system was written in Python and incorporates experimentally-derived parameters to quantify gas leakage, engine friction, and flow (including backflow) through valves. The model as a whole was calibrated and verified with experimental data and is used to explore engine retrofits beyond what was tested in the laboratory. Along with the experimental and modeling work, a techno-economic assessment is included to compare the engine compressor system with state-of-the-art, commercially-available compressors. Included in the financial analysis is a case study where an engine compressor system is modeled to achieve specific compression needs. The result of the assessment is that, indeed, the low engine cost, even with the necessary retrofits, provides a cost advantage over incumbent compression technologies. Lastly, this thesis provides an algorithm and case study for another application of small-scale units in energy infrastructure, specifically in energy storage. This study focuses on quantifying the value of small-scale, onsite energy storage in shaving peak power demands. This case study focuses on university-level power demands. The analysis finds that, because peak power is so costly, even small amounts of energy storage, when dispatched optimally, can provide significant cost reductions. This provides another example of the value of small-scale implementations, particularly in energy infrastructure. While the study focuses on flywheels and batteries as the energy storage medium, engine gensets could also be used to deliver power and shave peak power demands. The overarching goal of this thesis is to introduce small-scale, modular infrastructure, with a particular focus on the opportunity to retrofit and repurpose inexpensive, mass-manufactured internal combustion engines in new and unconventional applications. The modeling and experimental work presented in this dissertation show very compelling results for engines incorporated into both energy generation infrastructure and chemical engineering industries via compression technologies. The low engine cost provides an opportunity to add retrofits whilst remaining cost competitive with the incumbent technology. This work supports the claim that modular infrastructure, built on the indivisible unit of an internal combustion engine, can revolutionize many industries by providing a low-cost mechanism for rapid change and promoting small-scale designs.

  8. Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1975-01-01

    Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.

  9. Preliminary results on performance testing of a turbocharged rotary combustion engine

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Rice, W. J.; Schock, H. J.; Pringle, D. P.

    1982-01-01

    The performance of a turbocharged rotary engine at power levels above 75 kW (100 hp) was studied. A twin rotor turbocharged Mazda engine was tested at speeds of 3000 to 6000 rpm and boost pressures to 7 psi. The NASA developed combustion diagnostic instrumentation was used to quantify indicated and pumping mean effect pressures, peak pressure, and face to face variability on a cycle by cycle basis. Results of this testing showed that a 5900 rpm a 36 percent increase in power was obtained by operating the engine in the turbocharged configuration. When operating with lean carburetor jets at 105 hp (78.3 kW) and 4000 rpm, a brake specific fuel consumption of 0.45 lbm/lb-hr was measured.

  10. Generator voltage stabilisation for series-hybrid electric vehicles.

    PubMed

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.

  11. Comparison of spectral analysis of vibration using commercial knock sensor and 3-axis acceleration sensor

    NASA Astrophysics Data System (ADS)

    Zieliński, Ł.; Walczak, D.; Szczurowski, K.; Radkowski, S.

    2016-09-01

    With the development of internal combustion engines, engineers attempt to reduce the noise and vibration generated. Due to the high cost of fuel, are increasingly looking for new sources of power in order to reduce costs. In diesel engines, an increasingly popular method is the admixture of propane-butane. This follows because of the price of the fuel as well as to improve the efficiency of combustion. With the development of this type of dual fuel power seems to be a reasonable study of the effects of LPG to generate noise and vibration, as well as an attempt to evaluate the combustion process. Unfortunately, too much addition of LPG causes a phenomenon called knock consisting in abnormal, uneven, explosive combustion of fuels in reciprocating engines. This phenomenon may lead to a reduction in engine performance and permanent damage. Control of the knock detection uses vibration acceleration sensors recording the high frequency ranges. Within the framework of the research conducted by the team of authors, an attempt was made to compare the vibroacoustic signals originating from the commercial knocking sensor with a three-axis acceleration sensor. These signals were subject to a quick Fourier transform in the purpose of analysing the amplitude spectra.

  12. Towards Integrated Pulse Detonation Propulsion and MHD Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.

    1999-01-01

    The interest in pulse detonation engines (PDE) arises primarily from the advantages that accrue from the significant combustion pressure rise that is developed in the detonation process. Conventional rocket engines, for example, must obtain all of their compression from the turbopumps, while the PDE provides additional compression in the combustor. Thus PDE's are expected to achieve higher I(sub sp) than conventional rocket engines and to require smaller turbopumps. The increase in I(sub sp) and the decrease in turbopump capacity must be traded off against each other. Additional advantages include the ability to vary thrust level by adjusting the firing rate rather than throttling the flow through injector elements. The common conclusion derived from these aggregated performance attributes is that PDEs should result in engines which are smaller, lower in cost, and lighter in weight than conventional engines. Unfortunately, the analysis of PDEs is highly complex due to their unsteady operation and non-ideal processes. Although the feasibility of the basic PDE concept has been proven in several experimental and theoretical efforts, the implied performance improvements have yet to be convincingly demonstrated. Also, there are certain developmental issues affecting the practical application of pulse detonation propulsion systems which are yet to be fully resolved. Practical detonation combustion engines, for example, require a repetitive cycle of charge induction, mixing, initiation/propagation of the detonation wave, and expulsion/scavenging of the combustion product gases. Clearly, the performance and power density of such a device depends upon the maximum rate at which this cycle can be successfully implemented. In addition, the electrical energy required for direct detonation initiation can be significant, and a means for direct electrical power production is needed to achieve self-sustained engine operation. This work addresses the technological issues associated with PDEs for integrated aerospace propulsion and MHD power. An effort is made to estimate the energy requirements for direct detonation initiation of potential fuel/oxidizer mixtures and to determine the electrical power requirements. This requirement is evaluated in terms of the possibility for MHD power generation using the combustion detonation wave. Small scale laboratory experiments were conducted using stoichiometric mixtures of acetylene and oxygen with an atomized spray of cesium hydroxide dissolved in alcohol as an ionization seed in the active MHD region. Time resolved thrust and MHD power generation measurements were performed. These results show that PDEs yield higher I(sub sp) levels than a comparable rocket engine and that MHD power generation is viable candidate for achieving self-excited engine operation.

  13. Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations

    NASA Technical Reports Server (NTRS)

    Somsel, James P.

    1998-01-01

    The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

  14. Commissioning and Performance Analysis of WhisperGen Stirling Engine

    NASA Astrophysics Data System (ADS)

    Pradip, Prashant Kaliram

    Stirling engine based cogeneration systems have potential to reduce energy consumption and greenhouse gas emission, due to their high cogeneration efficiency and emission control due to steady external combustion. To date, most studies on this unit have focused on performance based on both experimentation and computer models, and lack experimental data for diversified operating ranges. This thesis starts with the commissioning of a WhisperGen Stirling engine with components and instrumentation to evaluate power and thermal performance of the system. Next, a parametric study on primary engine variables, including air, diesel, and coolant flowrate and temperature were carried out to further understand their effect on engine power and efficiency. Then, this trend was validated with the thermodynamic model developed for the energy analysis of a Stirling cycle. Finally, the energy balance of the Stirling engine was compared without and with heat recovery from the engine block and the combustion chamber exhaust.

  15. Ultralean combustion in general aviation piston engines

    NASA Technical Reports Server (NTRS)

    Chirivella, J. E.

    1979-01-01

    The role of ultralean combustion in achieving fuel economy in general aviation piston engines was investigated. The aircraft internal combustion engine was reviewed with regard to general aviation requirements, engine thermodynamics and systems. Factors affecting fuel economy such as those connected with an ideal leanout to near the gasoline lean flammability limit (ultralean operation) were analyzed. A Lycoming T10-541E engine was tested in that program (both in the test cell and in flight). Test results indicate that hydrogen addition is not necessary to operate the engine ultralean. A 17 percent improvement in fuel economy was demonstrated in flight with the Beechcraft Duke B60 by simply leaning the engine at constant cruiser power and adjusting the ignition for best timing. No detonation was encountered, and a 25,000 ft ceiling was available. Engine roughness was shown to be the limiting factor in the leanout.

  16. Applications of aerospace technology in the electric power industry

    NASA Technical Reports Server (NTRS)

    Johnson, F. D.; Heins, C. F.

    1974-01-01

    Existing applications of NASA contributions to disciplines such as combustion engineering, mechanical engineering, materials science, quality assurance and computer control are outlined to illustrate how space technology is used in the electric power industry. Corporate strategies to acquire relevant space technology are described.

  17. Aircraft engine and auxiliary power unit emissions from combusting JP-8 fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimm, L.T.; Sylvia, D.A.; Gerstle, T.C.

    1997-12-31

    Due to safety considerations and in an effort to standardize Department of Defense fuels, the US Air Force (USAF) replaced the naptha-based JP-4, MIL-T-5624, with the kerosene-based JP-8, MIL-T-83133, as the standard turbine fuel. Although engine emissions from combustion of JP-4 are well documented for criteria pollutants, little information exists for criteria and hazardous air pollutants from combustion of JP-8 fuel. Due to intrinsic differences between these two raw fuels, their combustion products were expected to differ. As part of a broader engine testing program, the Air Force, through the Human Systems Center at Brooks AFB, TX, has contracted tomore » have the emissions characterized from aircraft engines and auxiliary power units (APUs). Criteria pollutant and targeted HAP emissions of selected USAF aircraft engines were quantified during the test program. Emission test results will be used to develop emission factors for the tested aircraft engines and APUs. The Air Force intends to develop a mathematical relationship, using the data collected during this series of tests and from previous tests, to extrapolate existing JP-4 emission factors to representative JP-8 emission factors for other engines. This paper reports sampling methodologies for the following aircraft engine emissions tests: F110-GE-100, F101-GE-102, TF33-P-102, F108-CF-100, T56-A-15, and T39-GE-1A/C. The UH-60A helicopter engine, T700-GE-700, and the C-5A/B and C-130H auxiliary power units (GTCP165-1 and GTCP85-180, respectively) were also tested. Testing was performed at various engine settings to determine emissions of particulate matter, carbon monoxide, nitrogen oxides, sulfur oxides, total hydrocarbon, and selected hazardous air pollutants. Ambient monitoring was conducted concurrently to establish background pollutant concentrations for data correction.« less

  18. Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles

    DOE PAGES

    Gao, Zhiming; Curran, Scott J.; Parks, James E.; ...

    2015-04-06

    We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxidemore » (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.« less

  19. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    NASA Astrophysics Data System (ADS)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time for current two-stroke swing engine is estimated as about 2.5 ms, which can be used in the prescribed burned mass fraction profile that follows the Wiebe's function. Finally, a 2D CFD code for compressible flow has been developed to study wave interactions in the engine and header system. It is found that with realistic working conditions, for a two-stroke swing engine, certain expansion waves can be created by the exhaust gas flows and the chamber pressure can reach as low as 5 psi below one atmosphere, which helps fill fresh reactant charge. The results also show that to obtain appropriate header tuning for the current two-stroke swing engine, the length of the header neck is about 40 cm.

  20. Combustion engine system

    NASA Technical Reports Server (NTRS)

    Houseman, John (Inventor); Voecks, Gerald E. (Inventor)

    1986-01-01

    A flow through catalytic reactor which selectively catalytically decomposes methanol into a soot free hydrogen rich product gas utilizing engine exhaust at temperatures of 200 to 650 C to provide the heat for vaporizing and decomposing the methanol is described. The reactor is combined with either a spark ignited or compression ignited internal combustion engine or a gas turbine to provide a combustion engine system. The system may be fueled entirely by the hydrogen rich gas produced in the methanol decomposition reactor or the system may be operated on mixed fuels for transient power gain and for cold start of the engine system. The reactor includes a decomposition zone formed by a plurality of elongated cylinders which contain a body of vapor permeable, methanol decomposition catalyst preferably a shift catalyst such as copper-zinc.

  1. Sound quality assessment of Diesel combustion noise using in-cylinder pressure components

    NASA Astrophysics Data System (ADS)

    Payri, F.; Broatch, A.; Margot, X.; Monelletta, L.

    2009-01-01

    The combustion process in direct injection (DI) Diesel engines is an important source of noise, and it is thus the main reason why end-users could be reluctant to drive vehicles powered with this type of engine. This means that the great potential of Diesel engines for environment preservation—due to their lower consumption and the subsequent reduction of CO2 emissions—may be lost. Moreover, the advanced combustion concepts—e.g. the HCCI (homogeneous charge compression ignition)—developed to comply with forthcoming emissions legislation, while maintaining the efficiency of current engines, are expected to be noisier because they are characterized by a higher amount of premixed combustion. For this reason many efforts have been dedicated by car manufacturers in recent years to reduce the overall level and improve the sound quality of engine noise. Evaluation procedures are required, both for noise levels and sound quality, that may be integrated in the global engine development process in a timely and cost-effective manner. In previous published work, the authors proposed a novel method for the assessment of engine noise level. A similar procedure is applied in this paper to demonstrate the suitability of combustion indicators for the evaluation of engine noise quality. These indicators, which are representative of the peak velocity of fuel burning and the resonance in the combustion chamber, are well correlated with the combustion noise mark obtained from jury testing. Quite good accuracy in the prediction of the engine noise quality has been obtained with the definition of a two-component regression, which also permits the identification of the combustion process features related to the resulting noise quality, so that corrective actions may be proposed.

  2. The Nutating Engine-Prototype Engine Progress Report and Test Results

    NASA Technical Reports Server (NTRS)

    Meitner, Peter L.; Boruta, Mike

    2006-01-01

    A prototype of a new, internal combustion (IC) engine concept has been completed. The Nutating Engine features an internal disk nutating (wobbling) on a Z-shaped power shaft. The engine is exceedingly compact, and several times more power dense than any conventional (reciprocating or rotary) IC engine. This paper discusses lessons learned during the prototype engine's development and provides details of its construction. In addition, results of the initial performance tests of the various components, as well as the complete engine, are summarized.

  3. Impact of the injection dose of exhaust gases, on work parameters of combustion engine

    NASA Astrophysics Data System (ADS)

    Marek, W.; Śliwiński, K.

    2016-09-01

    This article is another one from the series in which were presented research results indicated the possible areas of application of the pneumatic injection using hot combustion gases proposed by Professor Jarnuszkiewicz. This publication present the results of the control system of exhaust gas recirculation. The main aim of this research was to determine the effect of exhaust gas recirculation to the operating parameters of the internal combustion engine on the basis of laboratory measurements. All measurements were performed at a constant engine speed. These conditions correspond to the operation of the motor operating an electrical generator. The study was conducted on the four-stroke two-cylinder engine with spark ignition. The study were specifically tested on the air injection system and therefore the selection of the rotational speed was not bound, as in conventional versions of operating parameters of the electrical machine. During the measurement there were applied criterion which used power control corresponding to the requirements of load power, at minimal values of engine speed. Recirculation value determined by the following recurrent position control valve of the injection doses inflator gas for pneumatic injection system. They were studied and recorded, the impact of dose of gases recirculation to the operating and ecological engine parameters such as power, torque, specific fuel consumption, efficiency, air fuel ratio, exhaust gas temperature and nitrogen oxides and hydrocarbons.

  4. Supersonic combustion engine testbed, heat lightning

    NASA Technical Reports Server (NTRS)

    Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.

    1990-01-01

    The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.

  5. 40 CFR 60.4241 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... internal combustion engines with a maximum engine power greater than 19 KW (25 HP) that do not use gasoline... the D-1 cycle of International Organization of Standardization 8178-4: 1996(E) (incorporated by reference, see 40 CFR 60.17) or the test cycle requirements specified in Table 5 to 40 CFR 1048.505, except...

  6. Wave combustors for trans-atmospheric vehicles

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Bowles, Jeffrey V.; Adelman, Henry G.; Cambier, Jean-Luc

    1989-01-01

    A performance analysis is given of a conceptual transatmospheric vehicle (TAV). The TAV is powered by a an oblique detonation wave engine (ODWE). The ODWE is an airbreathing hypersonic propulsion system which utilizes shock and detonation waves to enhance fuel-air mixing and combustion in supersonic flow. In this wave combustor concept, an oblique shock wave in the combustor can act as a flameholder by increasing the pressure and temperature of the air-fuel mixture, thereby decreasing the ignition delay. If the oblique shock is sufficiently strong, then the combustion front and the shock wave can couple into a detonation wave. In this case, combustion occurs almost instantaneously in a thin zone behind the wave front. The result is a shorter lighter engine compared to the scramjet. The ODWE-powered hypersonic vehicle performance is compared to that of a scramjet-powered vehicle. Among the results outlined, it is found that the ODWE trades a better engine performance above Mach 15 for a lower performance below Mach 15. The overall higher performance of the ODWE results in a 51,000-lb weight savings and a higher payload weight fraction of approximately 12 percent.

  7. Suresh K. AggarwalQuantified Analysis of a Production Diesel Injector Using X-Ray Radiography and Engine Diagnostics

    NASA Astrophysics Data System (ADS)

    Ramirez, Anita I.

    The work presented in this thesis pursues further the understanding of fuel spray, combustion, performance, and emissions in an internal combustion engine. Various experimental techniques including x-ray radiography, injection rate measurement, and in-cylinder endoscopy are employed in this work to characterize the effects of various upstream conditions such as injection rate profile and fuel physical properties. A single non-evaporating spray from a 6-hole full-production Hydraulically Actuated Electronically Controlled Unit Injector (HEUI) nozzle is studied under engine-like ambient densities with x-ray radiography at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL). Two different injection pressures were investigated and parameters such as fuel mass distribution, spray penetration, cone angle, and spray velocity were obtained. The data acquired with x-ray radiography is used for the development and validation of improved Computational Fluid Dynamic (CFD) models. Rate of injection is studied using the same HEUI in a single cylinder Caterpillar test engine. The injection rate profile is altered to have three levels of initial injection pressure rise. Combustion behavior, engine performance, and emissions information was acquired for three rate profile variations. It is found that NOx emission reduction is achieved when the SOI timing is constant at the penalty of lower power generated in the cycle. However, if CA50 is aligned amongst the three profiles, the NOx emissions and power are constant with a slight penalty in CO emissions. The influence of physical and chemical parameters of fuel is examined in a study of the heavy alcohol, phytol (C20H40O), in internal combustion engine application. Phytol is blended with diesel in 5%, 10%, and 20% by volume. Combustion behavior is similar between pure diesel and the phytol/diesel blends with small differences noted in peak cylinder pressure, ignition delay, and heat release rate in the premix burn phase. Diesel/phytol blends yield marginally lower power values. In-cylinder soot radiation images show combustion instability at the start of the event for the 20% phytol/diesel blend. Overall, NOx emissions are comparable across the different fuels used and no discernible trend is found in CO emissions.

  8. Kerosene-base fuels in small gasoline engines. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Failla, C.C.; Pouring, A.A.

    1991-01-01

    This document presents the results of an engineering study to demonstrate the technology for converting small gasoline spark-ignited engines, to burn kerosene type fuels to power small generators (0.5 to 3.0 kw). Commercially available (plus those in the developmental stage), reciprocating, two-stroke, four stroke and rotary engines were evaluated for their conversion potential. Unique combustion systems were identified and trade-off studies conducted on engine type, combustion systems, and modification required to burn kerosene type fuels, with special emphasis given to minimizing life cycle cost. Recommendations for the most feasible system are given.

  9. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Directmore » Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.« less

  10. A simple performance calculation method for LH2/LOX engines with different power cycles

    NASA Technical Reports Server (NTRS)

    Schmucker, R. H.

    1973-01-01

    A simple method for the calculation of the specific impulse of an engine with a gas generator cycle is presented. The solution is obtained by a power balance between turbine and pump. Approximate equations for the performance of the combustion products of LH2/LOX are derived. Performance results are compared with solutions of different engine types.

  11. Aligned and Unaligned Coherence: A New Diagnostic Tool

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2006-01-01

    The study of combustion noise from turbofan engines has become important again as the noise from other sources like the fan and jet are reduced. A method has been developed to help identify combustion noise spectra using an aligned and unaligned coherence technique. When used with the well known three signal coherent power method and coherent power method it provides new information by separating tonal information from random process information. Examples are presented showing the underlying tonal structure which is buried under broadband noise and jet noise. The method is applied to data from a Pratt and Whitney PW4098 turbofan engine.

  12. Requirements for a Hydrogen Powered All-Electric Manned Helicopter

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav

    2012-01-01

    The objective of this paper is to set propulsion system targets for an all-electric manned helicopter of ultra-light utility class to achieve performance comparable to combustion engines. The approach is to begin with a current two-seat helicopter (Robinson R 22 Beta II-like), design an all-electric power plant as replacement for its existing piston engine, and study performance of the new all-electric aircraft. The new power plant consists of high-pressure Proton Exchange Membrane fuel cells, hydrogen stored in 700 bar type-4 tanks, lithium-ion batteries, and an AC synchronous permanent magnet motor. The aircraft and the transmission are assumed to remain the same. The paper surveys the state of the art in each of these areas, synthesizes a power plant using best available technologies in each, examines the performance achievable by such a power plant, identifies key barriers, and sets future technology targets to achieve performance at par with current internal combustion engines.

  13. Predictive GT-Power Simulation for VNT Matching on a 1.6 L Turbocharged GDI Engine

    EPA Science Inventory

    The thermal efficiency benefits of low-pressure (LP) exhaust gas recirculation (EGR) in spark-ignition engine combustion are well known. One of the greatest barriers facing adoption of LP-EGR for high power-density applications is the challenge of boosting. Variable nozzle turbin...

  14. Laser controlled flame stabilization

    DOEpatents

    Early, James W.; Thomas, Matthew E.

    2001-01-01

    A method and apparatus is provided for initiating and stabilizing fuel combustion in applications such as gas turbine electrical power generating engines and jet turbine engines where it is desired to burn lean fuel/air mixtures which produce lower amounts of NO.sub.x. A laser induced spark is propagated at a distance from the fuel nozzle with the laser ignitor being remotely located from the high temperature environment of the combustion chamber. A laser initiating spark generated by focusing high peak power laser light to a sufficiently tight laser spot within the fuel to cause the ionization of air and fuel into a plasma is unobtrusive to the flow dynamics of the combustion chamber of a fuel injector, thereby facilitating whatever advantage can be taken of flow dynamics in the design of the fuel injector.

  15. Engine combustion control at low loads via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2014-10-07

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  16. Design and Performance Evaluation of an Electro-Hydraulic Camless Engine Valve Actuator for Future Vehicle Applications

    PubMed Central

    Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B.

    2017-01-01

    This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench. PMID:29258270

  17. Design and Performance Evaluation of an Electro-Hydraulic Camless Engine Valve Actuator for Future Vehicle Applications.

    PubMed

    Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B

    2017-12-18

    This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench.

  18. Annual Report: DOE Advanced Combustion Systems & Fuels R&D; Light-Duty Diesel Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, Stephen

    Despite compliance issues in previous years, automakers have demonstrated that the newest generation of diesel power trains are capable of meeting all federal and state regulations (EPA, 2016). Diesels continue to be a cost-effective, efficient, powerful propulsion source for many light- and medium-duty vehicle applications (Martec, 2016). Even modest reductions in the fuel consumption of light- and medium duty diesel vehicles in the U.S. will eliminate millions of tons of CO2 emissions per year. Continued improvement of diesel combustion systems will play an important role in reducing fleet fuel consumption, but these improvements will require an unprecedented scientific understanding ofmore » how changes in engine design and calibration affect the mixture preparation, combustion, and pollutant formation processes that take place inside the cylinder. The focus of this year’s research is to provide insight into the physical mechanisms responsible for improved thermal efficiency observed with a stepped-lip piston. Understanding how piston design can influence efficiency will help engineers develop and optimize new diesel combustion systems.« less

  19. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  20. Combustion Characterization and Model Fuel Development for Micro-tubular Flame-assisted Fuel Cells.

    PubMed

    Milcarek, Ryan J; Garrett, Michael J; Baskaran, Amrish; Ahn, Jeongmin

    2016-10-02

    Combustion based power generation has been accomplished for many years through a number of heat engine systems. Recently, a move towards small scale power generation and micro combustion as well as development in fuel cell research has created new means of power generation that combine solid oxide fuel cells with open flames and combustion exhaust. Instead of relying upon the heat of combustion, these solid oxide fuel cell systems rely on reforming of the fuel via combustion to generate syngas for electrochemical power generation. Procedures were developed to assess the combustion by-products under a wide range of conditions. While theoretical and computational procedures have been developed for assessing fuel-rich combustion exhaust in these applications, experimental techniques have also emerged. The experimental procedures often rely upon a gas chromatograph or mass spectrometer analysis of the flame and exhaust to assess the combustion process as a fuel reformer and means of heat generation. The experimental techniques developed in these areas have been applied anew for the development of the micro-tubular flame-assisted fuel cell. The protocol discussed in this work builds on past techniques to specify a procedure for characterizing fuel-rich combustion exhaust and developing a model fuel-rich combustion exhaust for use in flame-assisted fuel cell testing. The development of the procedure and its applications and limitations are discussed.

  1. Nalco Fuel Tech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalak, S.

    1995-12-31

    The Nalco Fuel Tech with its seat at Naperville (near Chicago), Illinois, is an engineering company working in the field of technology and equipment for environmental protection. A major portion of NALCO products constitute chemical materials and additives used in environmental protection technologies (waste-water treatment plants, water treatment, fuel modifiers, etc.). Basing in part on the experience, laboratories and RD potential of the mother company, the Nalco Fuel Tech Company developed and implemented in the power industry a series of technologies aimed at the reduction of environment-polluting products of fuel combustion. The engineering solution of Nalco Fuel Tech belong tomore » a new generation of environmental protection techniques developed in the USA. They consist in actions focused on the sources of pollutants, i.e., in upgrading the combustion chambers of power engineering plants, e.g., boilers or communal and/or industrial waste combustion units. The Nalco Fuel Tech development and research group cooperates with leading US investigation and research institutes.« less

  2. Stratified charge rotary engine combustion studies

    NASA Technical Reports Server (NTRS)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-01-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  3. Stratified charge rotary engine combustion studies

    NASA Astrophysics Data System (ADS)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-07-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  4. Rotary vane type IC engine with built-in scavenging air blower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, V.

    This patent describes a rotary internal combustion engine. This engine consists of: a housing assembly including three sections and having a single common power shaft, the three sections being integrally connected together and operatively connected together into a unitary self-contained engine, air and fuel mixture intake conduit means communicatively connected to a first of the three sections, means in the first section to perform admission and compression of the air and fuel mixture admitted from the conduit means, means to convey the compressed air and fuel mixture to a second of the three sections. A single internal partition wall meansmore » between the first and second sections, and the air and fuel mixture conveys means consisting of a port formed in the partition wall means. In the second section the compressed air is ignited with a fuel mixture and to permit expansion of the ignited air and fuel mixture to thereby furnish power strokes to the power shaft. In the second section for exhausting the gaseous products of combustion, air blower in the third of the three sections driven by the power shaft.« less

  5. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  6. Wireless power-receiving assembly for a telemetry system in a high-temperature environment of a combustion turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevly, III, Alex J.; McConkey, Joshua S.

    In a telemetry system (100) in a high-temperature environment of a combustion turbine engine (10), a wireless power-receiving coil assembly (116) may be affixed to a movable component (104) of the turbine engine. Power-receiving coil assembly (116) may include a radio-frequency transparent housing (130) having an opening (132). A lid (134) may be provided to close the opening of the housing. Lid (134) may be positioned to provide support against a surface (120) of the movable component. An induction coil (133) is disposed in the housing distally away from the lid and encased between a first layer (136) and amore » last layer (140) of a potting adhesive. Lid (134) is arranged to provide vibrational buffering between the surface (120) of the movable component (104) and the layers encasing the induction coil.« less

  7. Flex Fuel Optimized SI and HCCI Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Guoming; Schock, Harold; Yang, Xiaojian

    The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight enginemore » cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combustion mode transition strategy using the hybrid combustion mode that starts with the SI combustion and ends with the HCCI combustion was experimentally validated on a metal engine. The proposed model-based control approach made it possible to complete the SI-HCCI combustion mode transition within eight engine cycles utilizing the well controlled hybrid combustion mode. Without intensive control-oriented engine modeling and HIL simulation study of using the hybrid combustion mode during the mode transition, it would be impossible to validate the proposed combustion mode transition strategy in a very short period.« less

  8. Design of Heat Exchanger for Ericsson-Brayton Piston Engine

    PubMed Central

    Durcansky, Peter; Papucik, Stefan; Jandacka, Jozef

    2014-01-01

    Combined power generation or cogeneration is a highly effective technology that produces heat and electricity in one device more efficiently than separate production. Overall effectiveness is growing by use of combined technologies of energy extraction, taking heat from flue gases and coolants of machines. Another problem is the dependence of such devices on fossil fuels as fuel. For the combustion turbine is mostly used as fuel natural gas, kerosene and as fuel for heating power plants is mostly used coal. It is therefore necessary to seek for compensation today, which confirms the assumption in the future. At first glance, the obvious efforts are to restrict the use of largely oil and change the type of energy used in transport. Another significant change is the increase in renewable energy—energy that is produced from renewable sources. Among machines gaining energy by unconventional way belong mainly the steam engine, Stirling engine, and Ericsson engine. In these machines, the energy is obtained by external combustion and engine performs work in a medium that receives and transmits energy from combustion or flue gases indirectly. The paper deals with the principle of hot-air engines, and their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. PMID:24977174

  9. Design of heat exchanger for Ericsson-Brayton piston engine.

    PubMed

    Durcansky, Peter; Papucik, Stefan; Jandacka, Jozef; Holubcik, Michal; Nosek, Radovan

    2014-01-01

    Combined power generation or cogeneration is a highly effective technology that produces heat and electricity in one device more efficiently than separate production. Overall effectiveness is growing by use of combined technologies of energy extraction, taking heat from flue gases and coolants of machines. Another problem is the dependence of such devices on fossil fuels as fuel. For the combustion turbine is mostly used as fuel natural gas, kerosene and as fuel for heating power plants is mostly used coal. It is therefore necessary to seek for compensation today, which confirms the assumption in the future. At first glance, the obvious efforts are to restrict the use of largely oil and change the type of energy used in transport. Another significant change is the increase in renewable energy--energy that is produced from renewable sources. Among machines gaining energy by unconventional way belong mainly the steam engine, Stirling engine, and Ericsson engine. In these machines, the energy is obtained by external combustion and engine performs work in a medium that receives and transmits energy from combustion or flue gases indirectly. The paper deals with the principle of hot-air engines, and their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element.

  10. Producer gas production of Indonesian biomass in fixed-bed downdraft gasifier as an alternative fuels for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Simanjuntak, J. P.; Lisyanto; Daryanto, E.; Tambunan, B. H.

    2018-03-01

    downdraft biomass gasification reactors, coupled with reciprocating internal combustion engines (ICE) are a viable technology for small scale heat and power generation. The direct use of producer gas as fuel subtitution in an ICE could be of great interest since Indonesia has significant land area in different forest types that could be used to produce bioenergy and convert forest materials to bioenergy for use in energy production and the versatility of this engine. This paper will look into the aspect of biomass energie as a contributor to energy mix in Indonesia. This work also contains information gathered from numerous previews study on the downdraft gasifier based on experimental or simulation study on the ability of producer gas as fuels for internal combustion engines aplication. All data will be used to complement the preliminary work on biomass gasification using downdraft to produce producer gas and its application to engines.

  11. Recent advances in large-eddy simulation of spray and coal combustion

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2013-07-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.

  12. Increasing the Air Charge and Scavenging the Clearance Volume of a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Hicks, C W; Foster, H H

    1934-01-01

    The object of the investigation presented in this report was to determine the effects of increasing the air charge and scavenging the clearance volume of a 4-stroke-cycle compression-ignition engine having a vertical-disk form combustion chamber. Boosting the inlet-air pressure with normal valve timing increased the indicated engine power in proportion to the additional air inducted and resulted in smoother engine operation with less combustion shock. Scavenging the clearance volume by using a valve overlap of 145 degrees and an inlet-air boost pressure of approximately 2 1/2 inches of mercury produced a net increase in performance for clear exhaust operation of 33 percent over that obtained with normal valve timing and the same boost pressure. The improved combustion characteristics result in lower specific fuel consumption, and a clearer exhaust.

  13. Practical internal combustion engine laser spark plug development

    NASA Astrophysics Data System (ADS)

    Myers, Michael J.; Myers, John D.; Guo, Baoping; Yang, Chengxin; Hardy, Christopher R.

    2007-09-01

    Fundamental studies on laser ignition have been performed by the US Department of Energy under ARES (Advanced Reciprocating Engines Systems) and by the California Energy Commission under ARICE (Advanced Reciprocating Internal Combustion Engine). These and other works have reported considerable increases in fuel efficiencies along with substantial reductions in green-house gas emissions when employing laser spark ignition. Practical commercial applications of this technology require low cost high peak power lasers. The lasers must be small, rugged and able to provide stable laser beam output operation under adverse mechanical and environmental conditions. New DPSS (Diode Pumped Solid State) lasers appear to meet these requirements. In this work we provide an evaluation of HESP (High Efficiency Side Pumped) DPSS laser design and performance with regard to its application as a practical laser spark plug for use in internal combustion engines.

  14. 40 CFR 60.4230 - Am I subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (5) of... engine is ordered by the owner or operator. (1) Manufacturers of stationary SI ICE with a maximum engine... 1, 2008. (2) Manufacturers of stationary SI ICE with a maximum engine power greater than 19 KW (25...

  15. 40 CFR 60.4230 - Am I subject to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (6) of... engine is ordered by the owner or operator. (1) Manufacturers of stationary SI ICE with a maximum engine... 1, 2008. (2) Manufacturers of stationary SI ICE with a maximum engine power greater than 19 KW (25...

  16. 40 CFR 60.4230 - Am I subject to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (6) of... engine is ordered by the owner or operator. (1) Manufacturers of stationary SI ICE with a maximum engine... 1, 2008. (2) Manufacturers of stationary SI ICE with a maximum engine power greater than 19 KW (25...

  17. 40 CFR 60.4230 - Am I subject to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (5) of... engine is ordered by the owner or operator. (1) Manufacturers of stationary SI ICE with a maximum engine... 1, 2008. (2) Manufacturers of stationary SI ICE with a maximum engine power greater than 19 KW (25...

  18. 40 CFR 60.4230 - Am I subject to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (6) of... engine is ordered by the owner or operator. (1) Manufacturers of stationary SI ICE with a maximum engine... 1, 2008. (2) Manufacturers of stationary SI ICE with a maximum engine power greater than 19 KW (25...

  19. Combustion of diesel fuel from a toxicological perspective. I. Origin of incomplete combustion products.

    PubMed

    Scheepers, P T; Bos, R P

    1992-01-01

    Since the use of diesel engines is still increasing, the contribution of their incomplete combustion products to air pollution is becoming ever more important. The presence of irritating and genotoxic substances in both the gas phase and the particulate phase constituents is considered to have significant health implications. The quantity of soot particles and the particle-associated organics emitted from the tail pipe of a diesel-powered vehicle depend primarily on the engine type and combustion conditions but also on fuel properties. The quantity of soot particles in the emissions is determined by the balance between the rate of formation and subsequent oxidation. Organics are absorbed onto carbon cores in the cylinder, in the exhaust system, in the atmosphere and even on the filter during sample collection. Diesel fuel contains polycyclic aromatic hydrocarbons (PAHs) and some alkyl derivatives. Both groups of compounds may survive the combustion process. PAHs are formed by the combustion of crankcase oil or may be resuspended from engine and/or exhaust deposits. The conversion of parent PAHs to oxygenated and nitrated PAHs in the combustion chamber or in the exhaust system is related to the vast amount of excess combustion air that is supplied to the engine and the high combustion temperature. Whether the occurrence of these derivatives is characteristic for the composition of diesel engine exhaust remains to be ascertained. After the emission of the particles, their properties may change because of atmospheric processes such as aging and resuspension. The particle-associated organics may also be subject to (photo)chemical conversions or the components may change during sampling and analysis. Measurement of emissions of incomplete combustion products as determined on a chassis dynamometer provides knowledge of the chemical composition of the particle-associated organics. This knowledge is useful as a basis for a toxicological evaluation of the health hazards of diesel engine emissions.

  20. Modelling of diesel engine fuelled with biodiesel using engine simulation software

    NASA Astrophysics Data System (ADS)

    Said, Mohd Farid Muhamad; Said, Mazlan; Aziz, Azhar Abdul

    2012-06-01

    This paper is about modelling of a diesel engine that operates using biodiesel fuels. The model is used to simulate or predict the performance and combustion of the engine by simplified the geometry of engine component in the software. The model is produced using one-dimensional (1D) engine simulation software called GT-Power. The fuel properties library in the software is expanded to include palm oil based biodiesel fuels. Experimental works are performed to investigate the effect of biodiesel fuels on the heat release profiles and the engine performance curves. The model is validated with experimental data and good agreement is observed. The simulation results show that combustion characteristics and engine performances differ when biodiesel fuels are used instead of no. 2 diesel fuel.

  1. Symposium on Combustion /International/, 16th, Massachusetts Institute of Technology, Cambridge, Mass., August 15-20, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Aspects of combustion technology in power systems are considered, taking into account a combustion in large boilers, the control of over-all thermal efficiency of combustion heating systems, a comparison of mathematical models of the radiative behavior of a large-scale experimental furnace, a concentric multiannular swirl burner, and the effects of water introduction on diesel engine combustion and emissions. Attention is also given to combustion and related processes in energy production from coal, spray and droplet combustion, soot formation and growth, the kinetics of elementary reactions, flame structure and chemistry, propellant ignition and combustion, fire and explosion research, mathematical modeling, high output combustion systems, turbulent flames and combustion, and ignition, optical, and electrical properties.

  2. Electric Power Generation, Transmission and Distribution (NAICS 2211)

    EPA Pesticide Factsheets

    Find EPA regulatory information for electrical utilities, including coal-fired power plants. Includes links to NESHAPs for RICE, stationary combustion engines, fossil fuel waste, cooling water, effluent guidelines. Find information on the MATS rule.

  3. A Preliminary Study on Designing and Testing of an Absorption Refrigeration Cycle Powered by Exhaust Gas of Combustion Engine

    NASA Astrophysics Data System (ADS)

    Napitupulu, F. H.; Daulay, F. A.; Dedy, P. M.; Denis; Jecson

    2017-03-01

    In order to recover the waste heat from the exhaust gas of a combustion engine, an adsorption refrigeration cycle is proposed. This is a preliminary study on design and testing of a prototype of absorption refrigeration cycle powered by an internal combustion engine. The heat source of the cycle is a compression ignition engine which generates 122.36 W of heat in generator of the cycle. The pairs of absorbent and refrigerant are water and ammonia. Here the generator is made of a shell and tube heat exchanger with number of tube and its length are 20 and 0.69 m, respectively. In the experiments the exhaust gas, with a mass flow rate of 0.00016 kg/s, enters the generator at 110°C and leaves it at 72°C. Here, the solution is heated from 30°C to 90°C. In the evaporator, the lowest temperature can be reached is 17.9°C and COP of the system is 0.45. The main conclusion can be drawn here is that the proposed system can be used to recycle the waste heat and produced cooling. However, the COP is still low.

  4. Results from study of potential early commercial MHD power plants and from recent ETF design work. [Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1980-01-01

    The study deals with different 'moderate technology' entry-level commercial MHD power plants. Two of the reference plants are based on combustion of coal with air preheated in a high-temperature regenerative air heater separately fired with a low-BTU gas produced in a gasifier integrated with the power plant. The third reference plant design is based on the use of oxygen enriched combustion air. Performance calculations show that an overall power plant efficiency of the order of 44% can be reached with the use of oxygen enrichment.

  5. Integrated Model-Based Controls and PHM for Improving Turbine Engine Performance, Reliability, and Cost

    DTIC Science & Technology

    2009-09-01

    capable of surviving the high-temperature, high- vibration environment of a jet engine. Active control spans active surge/stall control and three...other closely related areas, viz., active combustion control (references 21-22), active noise control, and active vibration control. All of these are...self-powered sensors that harvest energy from engine heat or vibrations replace sensors that require power. The long-term vision is one of a

  6. First imaging Fourier-transform spectral measurements of detonation in an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Gross, Kevin C.; Borel, Chris; White, Allen; Sakai, Stephen; DeVasher, Rebecca; Perram, Glen P.

    2010-08-01

    The Telops Hyper-Cam midwave (InSb 1.5-5.5μm) imaging Fourier-transformspectrometer (IFTS) observed repeated detonations in an ethanol-powered internal combustion (IC) engine. The IC engine is aMegatech Corporation MEG 150 with a 1in. bore, 4in. stroke, and a compression ratio of 3 : 1. The IC combustion cylinder is made from sapphire permitting observation in the visible and infrared. From a distance of 3m, the IFTS imaged the combustion cylinder on a 64×32 pixel array with each pixel covering a 0.1×0.1cm2 area. More than 14,000 interferograms were collected at a rate of 16Hz. The maximum optical path difference of the interferograms was 0.017cm corresponding to an unapodized spectral resolution of 36cm-1. Engine speed was varied between 600-1200RPM to de-correlate the observation time scale from the occurrence of detonations. A method is devised to process the ensemble of interferograms which takes advantage of the DC component so that the time history of the combustion spectrum can be recovered at each pixel location. Preliminary results of this analysis will be presented.

  7. The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders

    NASA Technical Reports Server (NTRS)

    Rothrock, Addison M; Krsek, Alois, Jr; Jones, Anthony W

    1943-01-01

    Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.

  8. A Review of Heavy-Fueled Rotary Engine Combustion Technologies

    DTIC Science & Technology

    2011-05-01

    and Flame Quenching ...................................................................................56  4.6  Turbocharging and Supercharging... turbocharged engine). ...........................................................51  Figure 60. ISFC, exhaust temperature, power, and volumetric efficiency...OCR, CCR, and LCCR. ..............................................................61  Figure 70. Theoretical turbocharging effects on BSFC

  9. 49 CFR 579.21 - Reporting requirements for manufacturers of 5,000 or more light vehicles annually.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (compressed natural gas), CIF (compression ignition fuel), EBP (electric battery power), FCP (fuel-cell power... (electric battery power), FCP (fuel-cell power), HEV (hybrid electric vehicle), HCP (hydrogen combustion... and engine cooling system, 07 fuel system, 10 power train, 11 electrical system, 12 exterior lighting...

  10. New Turbo Compound Systems in Automotive Industry for Internal Combustion Engine to Recover Energy

    NASA Astrophysics Data System (ADS)

    Chiriac, R.; Chiru, A.; Condrea, O.

    2017-10-01

    The large amount of heat is scattered in the internal combustion engine through exhaust gas, coolant, convective and radiant heat transfer. Of all these residual heat sources, exhaust gases have the potential to recover using various modern heat recovery techniques. Waste heat recovery from an engine could directly reduce fuel consumption, increase available electrical power and improve overall system efficiency and if it would be used a turbochargers that can also produce energy. This solution is called turbo aggregation and has other ways to develop it in other areas of research like the electrical field. [1-3

  11. Effects of high combustion chamber pressure on rocket noise environment

    NASA Technical Reports Server (NTRS)

    Pao, S. P.

    1972-01-01

    The acoustical environment for a high combustion chamber pressure engine was examined in detail, using both conventional and advanced theoretical analysis. The influence of elevated chamber pressure on the rocket noise environment was established, based on increase in exit velocity and flame temperature, and changes in basic engine dimensions. Compared to large rocket engines, the overall sound power level is found to be 1.5 dB higher, if the thrust is the same. The peak Strouhal number shifted about one octave lower to a value near 0.01. Data on apparent sound source location and directivity patterns are also presented.

  12. Methodological specifics of the study of micro HPP based on internal combustion engines with air cooling and cogeneration

    NASA Astrophysics Data System (ADS)

    Shchinnikov, P. A.; Tomilov, V. G.; Sinelnikov, D. S.

    2017-01-01

    The article considers some aspects of the research methodology of micro heat power plants based on internal combustion engines with air cooling and cogeneration based on energy balance equations and the laws of heat transfer. The research is conducted for such a setup based on the Hitachi internal combustion engine with 2.4 kW capacity. It has shown the efficiency of cogeneration use in the form of useful heat flow from air, cooling the cylinder head, with its further heating by utilizing the heat of flue gases in an additional plate heat exchanger. It has been shown that the cogeneration can save fuel costs 3-10 times compared with heat guns, depending on the duration of the setup use.

  13. Modelling of evaporation of a dispersed liquid component in a chemically active gas flow

    NASA Astrophysics Data System (ADS)

    Kryukov, V. G.; Naumov, V. I.; Kotov, V. Yu.

    1994-01-01

    A model has been developed to investigate evaporation of dispersed liquids in chemically active gas flow. Major efforts have been directed at the development of algorithms for implementing this model. The numerical experiments demonstrate that, in the boundary layer, significant changes in the composition and temperature of combustion products take place. This gives the opportunity to more correctly model energy release processes in combustion chambers of liquid-propellant rocket engines, gas-turbine engines, and other power devices.

  14. The Production and Evolution of Atomic Oxygen in the Afterglow of Streamer Discharge in Atmospheric Pressure Fuel/Air Mixtures

    DTIC Science & Technology

    2013-07-02

    in streamer discharge afterglow in a variety of fueVair mixtures in order to account for the 0 reaction pathways in transient plasma ignition. It is... plasma ignition (TPI), the use of streamers for ignition in combustion engines, holds great promise for improving performance. TPI has been tested...standard spark gap or arc ignition methods [1-4]. These improvements to combustion allow increasing power and efficiency in existing engines such as

  15. Internal combustion engine run on biogas is a potential solution to meet Indonesia emission target

    NASA Astrophysics Data System (ADS)

    Ambarita, Himsar

    2017-09-01

    Indonesia has released two different Greenhouse Gas (GHG) emissions reduction targets. The first target, released in 2009, is reduction GHG emissions 26% from Business-as-Usual (BAU) level using own budget and up 41% if supported international aids by 2020. The second target is reduction 29% and 41% from BAU by 2030 using own budget and with international support, respectively. In this paper, the BAU emissions and emissions reduction target of these two targets are elaborated. In addition, the characteristics of emissions from transportation sector are discussed. One of the potential mitigation actions is switching fuel in transportation sector. The results the most promising mitigation action in the transportation is switching oil fuel with biofuel. The Government of Indonesia (GoI) focuses on using biodiesel and bioethanol to run internal combustion engine in transportation sector and biogas is aimed to fuel power plant unit. However, there is very limited of success stories on using biogas in the power plant. The barriers and challenges will be discussed here. It is suggested to run internal combustion engine with biogas.

  16. Correlation of combustor acoustic power levels inferred from internal fluctuating pressure measurements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.

    1978-01-01

    Combustion chamber acoustic power levels inferred from internal fluctuating pressure measurements are correlated with operating conditions and chamber geometries over a wide range. The variables include considerations of chamber design (can, annular, and reverse-flow annular) and size, number of fuel nozzles, burner staging and fuel split, airflow and heat release rates, and chamber inlet pressure and temperature levels. The correlated data include those obtained with combustion component development rigs as well as engines.

  17. Aircraft photovoltaic power-generating system

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet-engine design modifications incorporating this concept not only save weight (and thus fuel), but are - in themselves - favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project.

  18. Engine combustion control at low loads via fuel reactivity stratification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustionmore » chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.« less

  19. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  20. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2016-06-28

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  1. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  2. 46 CFR 193.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... combustion engine installations; (2) Gas turbine installations; (3) Enclosed spaces containing gasoline engines; (4) Chemical storerooms; (5) Any space containing auxiliaries with an aggregate power of 1,000...

  3. 46 CFR 193.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... combustion engine installations; (2) Gas turbine installations; (3) Enclosed spaces containing gasoline engines; (4) Chemical storerooms; (5) Any space containing auxiliaries with an aggregate power of 1,000...

  4. 46 CFR 193.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... combustion engine installations; (2) Gas turbine installations; (3) Enclosed spaces containing gasoline engines; (4) Chemical storerooms; (5) Any space containing auxiliaries with an aggregate power of 1,000...

  5. Application of controllable pulverized-coal rich/lean combustion technology at the Hebi Wanhe Power Generation Co. Ltd.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianzhong, L.; Xiang, Z.; Junhu, Z.

    1999-07-01

    The No.2 unit (670/H, 200MW) at Hebi Wanhe Power Generation C o. Ltd., was put into use in 1992. This is a coal-fired boiler with tangential fired method. The design coal is Hebi lean coal. To stabilize the combustion without oil at low load, eight original designed burners placed to No. 2 and 3 level on the No.2 boiler were replaced with the controllable pulverized rich/lean ones developed by the Institute for Thermal Power Engineering (ITPE) of Zhejiang University. The practice of successive operation shows that stable combustion can be achieved at 50% load without support oil, even at 45%more » load. The combustible matter in fly ash decreased to 1.12% and 1.17% from 1.83% and 1.32%, respectively at full load (200MW) and half load (100MW). The application has obvious economic benefits.« less

  6. Large eddy simulation modelling of combustion for propulsion applications.

    PubMed

    Fureby, C

    2009-07-28

    Predictive modelling of turbulent combustion is important for the development of air-breathing engines, internal combustion engines, furnaces and for power generation. Significant advances in modelling non-reactive turbulent flows are now possible with the development of large eddy simulation (LES), in which the large energetic scales of the flow are resolved on the grid while modelling the effects of the small scales. Here, we discuss the use of combustion LES in predictive modelling of propulsion applications such as gas turbine, ramjet and scramjet engines. The LES models used are described in some detail and are validated against laboratory data-of which results from two cases are presented. These validated LES models are then applied to an annular multi-burner gas turbine combustor and a simplified scramjet combustor, for which some additional experimental data are available. For these cases, good agreement with the available reference data is obtained, and the LES predictions are used to elucidate the flow physics in such devices to further enhance our knowledge of these propulsion systems. Particular attention is focused on the influence of the combustion chemistry, turbulence-chemistry interaction, self-ignition, flame holding burner-to-burner interactions and combustion oscillations.

  7. Portable Hydraulic Powerpack

    NASA Technical Reports Server (NTRS)

    Anderson, L. A.; Henry, R. L.; Fedor, O. H.; Owens, L. J.

    1986-01-01

    Rechargeable hydraulic powerpack functions as lightweight, compact source of mechanical energy. Self-contained hydraulic powerpack derives energy from solid chemical charge. Combustion of charge initiated by small hammer, and revolving feeder replaces charges expended. Combustion gases cool during expansion in turbine and not too hot for release to atmosphere. Unit has applications driving wheelchairs and operating drills, winches, and other equipment in remote areas. Also replaces electric motors and internal-combustion engines as source of power in explosive atmospheres.

  8. DCE - PS Linteris in front of rack

    NASA Image and Video Library

    2016-08-12

    STS083-312-017 (4-8 April 1997) --- Payload specialist Gregory T. Linteris sets up a 35mm camera, one of three photographic/recording systems on the Drop Combustion Experiment (DCE) Apparatus. DCE is an enclosed chamber in which Helium-Oxygen fuel mixtures are injected and burned as single droplets. Combustion of fuel droplets is an important part of many operations, home heating, power production by gas turbines and combustion of gasoline in an automobile engine.

  9. Evaluation of a staged fuel combustor for turboprop engines

    NASA Technical Reports Server (NTRS)

    Verdouw, A. J.

    1976-01-01

    Proposed EPA emission regulations require emission reduction by 1979 for various gas turbine engine classes. Extensive combustion technology advancements are required to meet the proposed regulations. The T56 turboprop engine requires CO, UHC, and smoke reduction. A staged fuel combustor design was tested on a combustion rig to evaluate emission reduction potential in turboprop engines from fuel zoning. The can-type combustor has separately fueled-pilot and main combustion zones in series. The main zone fueling system was arranged for potential incorporation into the T56 with minor or no modifications to the basic engine. Three combustor variable geometry systems were incorporated to evaluate various airflow distributions. Emission results with fixed geometry operation met all proposed EPA regulations over the EPA LTO cycle. CO reduction was 82 percent, UHC reduction was 96 percent, and smoke reduction was 84 percent. NOx increased 14 percent over the LTO cycle. At high power, NOx reduction was 40 to 55 percent. This NOx reduction has potential application to stationary gas turbine powerplants which have different EPA regulations.

  10. Modelling of flame propagation in the gasoline fuelled Wankel rotary engine with hydrogen additives

    NASA Astrophysics Data System (ADS)

    Fedyanov, E. A.; Zakharov, E. A.; Prikhodkov, K. V.; Levin, Y. V.

    2017-02-01

    Recently, hydrogen has been considered as an alternative fuel for a vehicles power unit. The Wankel engine is the most suitable to be adapted to hydrogen feeding. A hydrogen additive helps to decrease incompleteness of combustion in the volumes near the apex of the rotor. Results of theoretical researches of the hydrogen additives influence on the flame propagation in the combustion chamber of the Wankel rotary engine are presented. The theoretical research shows that the blend of 70% gasoline with 30% hydrogen could accomplish combustion near the T-apex in the stoichiometric mixture and in lean one. Maps of the flame front location versus the angle of rotor rotation and hydrogen fraction are obtained. Relations of a minimum required amount of hydrogen addition versus the engine speed are shown on the engine modes close to the average city driving cycle. The amount of hydrogen addition that could be injected by the nozzle with different flow sections is calculated in order to analyze the capacity of the feed system.

  11. 49 CFR 172.604 - Emergency response telephone number.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vehicle. Carbon dioxide, solid. Castor bean. Castor flake. Castor meal. Castor pomace. Consumer commodity. Dry ice. Engines, internal combustion. Fish meal, stabilized. Fish scrap, stabilized. Refrigerating machine. Vehicle, flammable gas powered. Vehicle, flammable liquid powered. Wheelchair, electric. (3...

  12. Monitoring means for combustion engine electric storage battery means

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, G. K.; Rautiola, R. E.; Taylor, R. E.

    Disclosed, in combination, are a combustion engine, an electric storage battery, an electrically powered starter motor for at times driving the engine in order to start the engine, and an electrical system monitor; the electrical system monitor has a first monitoring portion which senses the actual voltage across the battery and a second monitoring portion which monitors the current through the battery; an electrical switch controls associated circuitry and is actuatable into open or closed conditions; whenever the first monitoring portion senses a preselected magnitude of the actual voltage across the battery or the second monitoring portion senses a preselectedmore » magnitude of the current flow through the battery, the electrical switch is actuated.« less

  13. Multivariate statistical analysis strategy for multiple misfire detection in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Hu, Chongqing; Li, Aihua; Zhao, Xingyang

    2011-02-01

    This paper proposes a multivariate statistical analysis approach to processing the instantaneous engine speed signal for the purpose of locating multiple misfire events in internal combustion engines. The state of each cylinder is described with a characteristic vector extracted from the instantaneous engine speed signal following a three-step procedure. These characteristic vectors are considered as the values of various procedure parameters of an engine cycle. Therefore, determination of occurrence of misfire events and identification of misfiring cylinders can be accomplished by a principal component analysis (PCA) based pattern recognition methodology. The proposed algorithm can be implemented easily in practice because the threshold can be defined adaptively without the information of operating conditions. Besides, the effect of torsional vibration on the engine speed waveform is interpreted as the presence of super powerful cylinder, which is also isolated by the algorithm. The misfiring cylinder and the super powerful cylinder are often adjacent in the firing sequence, thus missing detections and false alarms can be avoided effectively by checking the relationship between the cylinders.

  14. Process and apparatus for afterburning of combustible pollutants from an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurent, P.A.

    1978-07-04

    In a process for the afterburning of the combustible pollutants from an internal combustion engine, in order to automatically reduce the secondary induction rate when power increases without using a controlling valve actuatd by the carburetor venturi depression, there is provided a volumetric efficiency of the secondary air pump linked to and activated by the engine and a volumetric efficiency which decreases when the ratio between its back pressure and suction pressure increases, this reduction being achieved through the proper selection of the pump volumetric compression ratio r: between 0.6 c and 1.3 c when a steeply decreasing trend ismore » required, and above 1.3 c if a slower and slower decreasing trend is required. To perform this process an afterburner apparatus has a nitrogen oxide reducing catalyst placed inside the afterburner reactor on the gas stream immediately at the outlet of a torus, in which the gases are homogenized and their reaction with preinjection air is terminated.« less

  15. Thermal design of a natural gas - diesel dual fuel turbocharged V18 engine for ship propulsion and power plant applications

    NASA Astrophysics Data System (ADS)

    Douvartzides, S.; Karmalis, I.

    2016-11-01

    A detailed method is presented on the thermal design of a natural gas - diesel dual fuel internal combustion engine. An 18 cylinder four stroke turbocharged engine is considered to operate at a maximum speed of 500 rpm for marine and power plant applications. Thermodynamic, heat transfer and fluid flow phenomena are mathematically analyzed to provide a real cycle analysis together with a complete set of calculated operation conditions, power characteristics and engine efficiencies. The method is found to provide results in close agreement to published data for the actual performance of similar engines such as V18 MAN 51/60DF.

  16. Interrelation of exhaust-gas constituents

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Voss, Fred

    1938-01-01

    This report presents the results of an investigation conducted to determine the interrelation of the constituents of the exhaust gases of internal-combustion engines and the effect of engine performance on these relations. Six single-cylinder, liquid-cooled tests engines and one 9-cylinder radial air-cooled engine were tested. Various types of combustion chambers were used and the engines were operated at compression ratios from 5.1 to 7.0 using spark ignition and from 13.5 to 15.6 using compression ignition. The investigation covered a range of engine speeds from 1,500 to 2,100 r.p.m. The fuels used were two grades of aviation gasoline, auto diesel fuel, and laboratory diesel fuel. Power, friction, and fuel-consumption data were obtained from the single-cylinder engines at the same time that the exhaust-gas samples were collected.

  17. Hybrid-Vehicle Transmission System

    NASA Technical Reports Server (NTRS)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  18. Monitoring of diesel engine combustions based on the acoustic source characterisation of the exhaust system

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gu, F.; Gennish, R.; Moore, D. J.; Harris, G.; Ball, A. D.

    2008-08-01

    Acoustic methods are among the most useful techniques for monitoring the condition of machines. However, the influence of background noise is a major issue in implementing this method. This paper introduces an effective monitoring approach to diesel engine combustion based on acoustic one-port source theory and exhaust acoustic measurements. It has been found that the strength, in terms of pressure, of the engine acoustic source is able to provide a more accurate representation of the engine combustion because it is obtained by minimising the reflection effects in the exhaust system. A multi-load acoustic method was then developed to determine the pressure signal when a four-cylinder diesel engine was tested with faults in the fuel injector and exhaust valve. From the experimental results, it is shown that a two-load acoustic method is sufficient to permit the detection and diagnosis of abnormalities in the pressure signal, caused by the faults. This then provides a novel and yet reliable method to achieve condition monitoring of diesel engines even if they operate in high noise environments such as standby power stations and vessel chambers.

  19. On the assessment of performance and emissions characteristics of a SI engine provided with a laser ignition system

    NASA Astrophysics Data System (ADS)

    Birtas, A.; Boicea, N.; Draghici, F.; Chiriac, R.; Croitoru, G.; Dinca, M.; Dascalu, T.; Pavel, N.

    2017-10-01

    Performance and exhaust emissions of spark ignition engines are strongly dependent on the development of the combustion process. Controlling this process in order to improve the performance and to reduce emissions by ensuring rapid and robust combustion depends on how ignition stage is achieved. An ignition system that seems to be able for providing such an enhanced combustion process is that based on plasma generation using a Q-switched solid state laser that delivers pulses with high peak power (of MW-order level). The laser-spark devices used in the present investigations were realized using compact diffusion-bonded Nd:YAG/Cr4+:YAG ceramic media. The laser igniter was designed, integrated and built to resemble a classical spark plug and therefore it could be mounted directly on the cylinder head of a passenger car engine. In this study are reported the results obtained using such ignition system provided for a K7M 710 engine currently produced by Renault-Dacia, where the standard calibrations were changed towards the lean mixtures combustion zone. Results regarding the performance, the exhaust emissions and the combustion characteristics in optimized spark timing conditions, which demonstrate the potential of such an innovative ignition system, are presented.

  20. Energy and transportation(*)

    NASA Astrophysics Data System (ADS)

    Hermans, J.

    2015-08-01

    Transportation takes a considerable and increasing fraction of the energy use worldwide, and more than half the oil consumption. By far the largest part is used by cars powered by internal combustion engines. The advantage of using internal combustion engines is that the energy density of liquid fuels is extremely high. The disadvantage is that gasoline and diesel engines have a poor performance: 20 to 25% only. How does this compare with electric cars? What are the alternative transportation systems and their efficiencies anyway? In this lecture we analyse the efficiency of various transport systems, using elementary physics principles. We will look at cars, buses, trains and TGVs, ships and aircraft. In addition, the efficiency of human powered vehicles will be considered. New and promising developments in the field of Intelligent Transportation Systems, like Cooperative Adaptive Cruise Control, are also discussed.

  1. Catalytic converters for exhaust emission control of commercial equipment powered by internal combustion engines.

    PubMed Central

    Cohn, J G

    1975-01-01

    The development of PTX, monolithic catalytic exhaust purifiers, is outlined, and their first use for exhaust emissions control of commercial equipment is described. The main use of PTX converters is on forklift trucks. The purification achievable with PTX-equipped fork-lift trucks under various operational conditions is discussed, and examples from the field are given. During more than ten years of operation, no adverse health effects have been reported, and PTX-equipped internal combustion engines appear safe for use in confined areas. PMID:50933

  2. Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines

    NASA Astrophysics Data System (ADS)

    Osipkov, Alexey; Poshekhonov, Roman; Arutyunyan, Georgy; Basov, Andrey; Safonov, Roman

    2017-10-01

    Thermoelectric generation in vehicles such as motorcycles, all-terrain vehicles, and snowmobiles opens the possibility of additional electrical energy generation by means of exhaust heat utilization. This is beneficial because replacing the mechanical generator used in such vehicles with a more powerful one in cases of electrical power deficiency is impossible. This paper proposes a calculation model for the thermoelectric generator (TEG) operational characteristics of the low-capacity internal combustion engines used in these vehicles. Two TEG structures are considered: (1) TEG with air cooling and (2) TEG with water cooling. Modeling consists of two calculation stages. In the first stage, the heat exchange coefficients of the hot and cold exchangers are determined using computational fluid dynamics. In the second stage, the TEG operational characteristics are modeled based on the nonlinear equations of the heat transfer and power balance. On the basis of the modeling results, the dependence of the TEG's major operating characteristics (such as the electrical power generated by the TEG and its efficiency and mass) on operating conditions or design parameters is determined. For example, the electrical power generated by a TEG for a Yamaha WR450F motorcycle engine with a volume of 0.449 × 10-3 m3 was calculated to be as much as 100 W. Use of the TEG arrangements proposed is justified by the additional electrical power generation for small capacity vehicles, without the need for internal combustion engine redesign.

  3. High-Temperature Alloys for Automotive Stirling Engines

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Titran, R. H.

    1986-01-01

    Stirling engine is external-combustion engine that offers fuel economy, low emissions, low noise, and low vibrations. One of most critical areas in engine development concerns material selection for component parts. Alloys CG-27 and XF-818 identified capable of withstanding rigorous requirements of automotive Stirling engine. Alloys chosen for availability, performance, and manufacturability. Advanced iron-base alloys have potential for variety of applications, including stationary solar-power systems.

  4. GENERIC VERIFICATION PROTOCOL: DISTRIBUTED GENERATION AND COMBINED HEAT AND POWER FIELD TESTING PROTOCOL

    EPA Science Inventory

    This report is a generic verification protocol by which EPA’s Environmental Technology Verification program tests newly developed equipment for distributed generation of electric power, usually micro-turbine generators and internal combustion engine generators. The protocol will ...

  5. Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

  6. Boston Community Energy Study - Zonal Analysis for Urban Microgrids

    DTIC Science & Technology

    2016-03-01

    ordinarily rural systems that have generation assets such as wind turbines (WTs) [14] or photovoltaic (PV) panels [15] that power loads such as lights and...movers powered by internal combustion engines, diesel engines, microturbines, geothermal systems, hydro systems, or wind turbines ; they also could include...can have on urban areas such as New York City. While flooding and wind damaged or destroyed some of the energy infrastructure, all installed

  7. CHP Technologies

    EPA Pesticide Factsheets

    Learn about CHP technologies, including reciprocating engines, combustion turbines, steam turbines, microturbines, fuel cells, and waste heat to power. Access the Catalog of CHP Technologies and the Biomass CHP Catalog of Technologies.

  8. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXVII, I--CATERPILLAR STARTING (PONEY) ENGINE (PART I), II--LEARNING ABOUT BRAKES (PART II).

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND OPERATION OF DIESEL ENGINE STARTING ENGINES AND BRAKE SYSTEMS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) GENERAL DESCRIPTION, (2) OPERATION, (3) COMBUSTION SPACE AND VALVE ARRANGEMENT (STARTING ENGINES), (4) TYPES OF BRAKES, AND (5) DOUBLE…

  9. Working fluid selection for the Organic Rankine Cycle (ORC) exhaust heat recovery of an internal combustion engine power plant

    NASA Astrophysics Data System (ADS)

    Douvartzides, S.; Karmalis, I.

    2016-11-01

    Organic Rankine cycle technology is capable to efficiently convert low-grade heat into useful mechanical power. In the present investigation such a cycle is used for the recovery of heat from the exhaust gases of a four stroke V18 MAN 51/60DF internal combustion engine power plant operating with natural gas. Design is focused on the selection of the appropriate working fluid of the Rankine cycle in terms of thermodynamic, environmental and safety criteria. 37 candidate fluids have been considered and all Rankine cycles examined were subcritical. The thermodynamic analysis of all fluids has been comparatively undertaken and the effect of key operation conditions such as the evaporation pressure and the superheating temperature was taken into account. By appropriately selecting the working fluid and the Rankine cycle operation conditions the overall plant efficiency was improved by 5.52% and fuel consumption was reduced by 12.69%.

  10. Direct Numerical Simulation of Turbulent Multi-Stage Autoignition Relevant to Engine Conditions

    NASA Astrophysics Data System (ADS)

    Chen, Jacqueline

    2017-11-01

    Due to the unrivaled energy density of liquid hydrocarbon fuels combustion will continue to provide over 80% of the world's energy for at least the next fifty years. Hence, combustion needs to be understood and controlled to optimize combustion systems for efficiency to prevent further climate change, to reduce emissions and to ensure U.S. energy security. In this talk I will discuss recent progress in direct numerical simulations of turbulent combustion focused on providing fundamental insights into key `turbulence-chemistry' interactions that underpin the development of next generation fuel efficient, fuel flexible engines for transportation and power generation. Petascale direct numerical simulation (DNS) of multi-stage mixed-mode turbulent combustion in canonical configurations have elucidated key physics that govern autoignition and flame stabilization in engines and provide benchmark data for combustion model development under the conditions of advanced engines which operate near combustion limits to maximize efficiency and minimize emissions. Mixed-mode combustion refers to premixed or partially-premixed flames propagating into stratified autoignitive mixtures. Multi-stage ignition refers to hydrocarbon fuels with negative temperature coefficient behavior that undergo sequential low- and high-temperature autoignition. Key issues that will be discussed include: 1) the role of mixing in shear driven turbulence on the dynamics of multi-stage autoignition and cool flame propagation in diesel environments, 2) the role of thermal and composition stratification on the evolution of the balance of mixed combustion modes - flame propagation versus spontaneous ignition - which determines the overall combustion rate in autoignition processes, and 3) the role of cool flames on lifted flame stabilization. Finally prospects for DNS of turbulent combustion at the exascale will be discussed in the context of anticipated heterogeneous machine architectures. sponsored by DOE Office of Basic Energy Sciences and computing resources provided by the Oakridge Leadership Computing Facility through the DOE INCITE Program.

  11. Time Delay Analysis of Turbofan Engine Direct and Indirect Combustion Noise Sources

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2008-01-01

    The core noise components of a dual spool turbofan engine were separated by the use of a coherence function. A source location technique based on adjusting the time delay between the combustor pressure sensor signal and the far-field microphone signal to maximize the coherence and remove as much variation of the phase angle with frequency as possible was used. The discovery was made that for the 130o microphone a 90.027 ms time shift worked best for the frequency band from 0 to 200 Hz while a 86.975 ms time shift worked best for the frequency band from 200 to 400 Hz. Hence, the 0 to 200 Hz band signal took more time than the 200 to 400 Hz band signal to travel the same distance. This suggests the 0 to 200 Hz coherent cross spectral density band is partly due to indirect combustion noise attributed to entropy fluctuations, which travel at the flow velocity, interacting with the turbine. The signal in the 200 to 400 Hz frequency band is attributed mostly to direct combustion noise. Results are presented herein for engine power settings of 48, 54, and 60 percent of the maximum power setting

  12. Development of Novel Fe-Based Coating Systems for Internal Combustion Engines

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Königstein, T.; Dröder, K.; Hoffmeister, H.-W.; Mahlfeld, G.; Schläfer, T.

    2018-04-01

    Nowadays, combustion engines are the most common way to power vehicles. Thereby, losses occur due to cooling, exhaust gas and friction. With regard to frictional losses, highest potentials for optimization can be found in the tribological system of the inner surface of combustion chamber and piston ring. Besides friction, corrosive stress increases, e.g., due to utilization of exhaust gas recovery. In order to save energy, reduce emissions and enhance the life span of combustion engines, the demand for innovative coating material systems, especially for the inner surface of combustion chamber, increases. This study focuses on the development of innovative iron-based coating materials for the combustion chamber. As a first step, the plasma transferred wire arc and rotating single wire arc (RSW) technologies were compared using 0.8% C-steel as a reference. Subsequently, RSW was used for coating deposition using an innovative iron-based feedstock material. In order to improve wear and corrosion resistance, boron and chromium were added to the feedstock material. After deposition, different honing topographies were manufactured and compared under tribological load. Furthermore, electrochemical corrosion tests were conducted using an electrolyte simulating the exhaust gas concentrate. Especially with regard to corrosion, the novel coating system FeCrBMn showed promising results.

  13. An innovative system for supplying air and fuel mixture to a combustion chamber of an engine

    NASA Astrophysics Data System (ADS)

    Saikumar, G. R. Bharath

    2018-04-01

    Conventional carburetors are being used since decades to ensure that the desired ratio of air and fuel enters the combustion chamber for combustion for the purpose of generating power in an Spark Ignition(SI) internal combustion engine. However to increase the efficiency, the carburetor system is gradually being replaced by fuel injection systems. Fuel injection systems use injectors to supply pressurized fuel into the combustion chamber. Owing to the high initial and maintenance cost, carburetors are still ruling in the low cost vehicle domain. An innovative concept is conceived, which is an alternative method to the carburetor system to supply the air and fuel mixture to a combustion chamber of an engine. This system comprises of an inner hollow cylinder with minute holes drilled along its length with an outer cylinder capable of sliding along its length or its longitudinal axis. This system is placed in the venturi instead of the conventional carburetor system. Fuel enters from the bottom inlet of the inner cylinder and flows out through the holes provided along its length. The fuel flow from the inner cylinder is dependent on the size and the number of holes exposed at that instance by the sliding outer cylinder which in turn is connected to the throttle or accelerator.

  14. Turbo-generator control with variable valve actuation

    DOEpatents

    Vuk, Carl T [Denver, IA

    2011-02-22

    An internal combustion engine incorporating a turbo-generator and one or more variably activated exhaust valves. The exhaust valves are adapted to variably release exhaust gases from a combustion cylinder during a combustion cycle to an exhaust system. The turbo-generator is adapted to receive exhaust gases from the exhaust system and rotationally harness energy therefrom to produce electrical power. A controller is adapted to command the exhaust valve to variably open in response to a desired output for the turbo-generator.

  15. Wave combustors for trans-atmospheric vehicles

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc; Bowles, Jeffrey V.

    1989-01-01

    The Wave Combustor is an airbreathing hypersonic propulsion system which utilizes shock and detonation waves to enhance fuel-air mixing and combustion in supersonic flow. In this concept, an oblique shock wave in the combustor can act as a flameholder by increasing the pressure and temperature of the air-fuel mixture and thereby decreasing the ignition delay. If the oblique shock is sufficiently strong, then the combustion front and the shock wave can couple into a detonation wave. In this case, combustion occurs almost instantaneously in a thin zone behind the wave front. The result is a shorter, lighter engine compared to the scramjet. This engine, which is called the Oblique Detonation Wave Engine (ODWE), can then be utilized to provide a smaller, lighter vehicle or to provide a higher payload capability for a given vehicle weight. An analysis of the performance of a conceptual trans-atmospheric vehicle powered by an ODWE is given here.

  16. Space Shuttle Main Engine Off-Nominal Low Power Level Operation

    NASA Technical Reports Server (NTRS)

    Bradley, Michael

    1997-01-01

    This paper describes Rocketdyne's successful analysis and demonstration of the Space Shuttle Main Engine (SSME) operation at off-nominal power levels during Reusable Launch Vehicle (RLV) evaluation tests. The nominal power level range for the SSME is from 65% rated power level (RPL) to 109% RPL. Off-nominal power levels incrementally demonstrated were: 17% RPL, 22% RPL, 27% RPL, 40% RPL, 45% RPL, and 50% RPL. Additional achievements during low power operation included: use of a hydrostatic bearing High Pressure Oxidizer Turbopump (HPOTP), nominal High Pressure Fuel Turbopump (HPFTP) first rotor critical speed operation, combustion stability at low power levels, and refined definition of nozzle flow separation heat loads.

  17. The performance simulation of single cylinder electric power confined piston engine

    NASA Astrophysics Data System (ADS)

    Gou, Yanan

    2017-04-01

    A new type of power plant. i.e, Electric Power Confined Piston Engine, is invented by combining the free piston engine and the crank connecting rod mechanism of the traditional internal combustion engine. Directly using the reciprocating movement of the piston, this new engine converts the heat energy produced by fuel to electrical energy and output it. The paper expounds the working mechanism of ECPE and establishes the kinematics and dynamics equations. Furthermore, by using the analytic method, the ECPE electromagnetic force is solved at load cases. Finally, in the simulation environment of MARLAB, the universal characteristic curve is obtained in the condition of rotational speed n between 1000 r/min and 2400 r/min, throttle opening α between 30% and 100%.

  18. What`s available in industrial vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzhauer, R.

    A large assortment of material handling vehicles are available for transporting and lifting products. Equipment is offered with electric (battery) and internal combustion power, operator walking alongside or riding, and inside or outside applications. Factors such as load capacity, turning radius, aisle width, travel speed, lifting height, controls, and cost also enter the selection equation. The various types of vehicles serving the industrial truck market are broken into seven classes, according to guidelines established by the Industrial Truck Association (ITA). This association deals with issues of common interests to manufacturers of fork lifts, tow tractors, rough terrain vehicles, hand palletmore » trucks, automated guided vehicles, and their suppliers; develops voluntary engineering practices; and collects and disseminates statistical information relating to the industrial truck marketplace. The seven classes are: Electric Motor Rider Trucks; Electric Motor Narrow Aisle Trucks; Electric Motor Hand Trucks; Internal Combustion Engine Trucks, cushion tired; Internal Combustion Engine Trucks, pneumatic tired; Electric and Internal Combustion Engine Tractors; and Rough Terrain Fork Lift Trucks. The following pages present a descriptive and pictorial overview of the equipment available in the first five vehicle classes. The last two categories are not covered because of their limited industrial use.« less

  19. Economic analysis of biomass power generation schemes under renewable energy initiative with Renewable Portfolio Standards (RPS) in Korea.

    PubMed

    Moon, Ji-Hong; Lee, Jeung-Woo; Lee, Uen-Do

    2011-10-01

    An economic analysis of biomass power generation was conducted. Two key technologies--direct combustion with a steam turbine and gasification with a syngas engine--were mainly examined. In view of the present domestic biomass infrastructure of Korea, a small and distributed power generation system ranging from 0.5 to 5 MW(e) was considered. It was found that gasification with a syngas engine becomes more economically feasible as the plant size decreases. Changes in the economic feasibilities with and without RPS or heat sales were also investigated. A sensitivity analysis of each system was conducted for representative parameters. Regarding the cost of electricity generation, electrical efficiency and fuel cost significantly affect both direct combustion and gasification systems. Regarding the internal rate of return (IRR), the heat sales price becomes important for obtaining a higher IRR, followed by power generation capacity and electrical efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Combustion By-Products and their Health Effects--combustion engineering and global health in the 21st century: issues and challenges.

    PubMed

    Lomnicki, Slawo; Gullett, Brian; Stöger, Tobias; Kennedy, Ian; Diaz, Jim; Dugas, Tammy R; Varner, Kurt; Carlin, Danielle J; Dellinger, Barry; Cormier, Stephania A

    2014-01-01

    The 13th International Congress on Combustion By-Products and their Health Effects was held in New Orleans, Louisiana from May 15 to 18, 2013. The congress, sponsored by the Superfund Research Program, National Institute of Environmental Health Sciences, and National Science Foundation, brought together international academic and government researchers, engineers, scientists, and policymakers. With industrial growth, increased power needs and generation and coal consumption and their concomitant emissions, pernicious health effects associated with exposures to these emissions are on the rise. This congress provides a unique platform for interdisciplinary exchange and discussion of these topics. The formation, conversion, control, and health effects of combustion by-products, including particulate matter and associated heavy metals, persistent organic pollutants, and environmentally persistent free radicals, were discussed during the congress. This review will summarize and discuss the implications of the data presented.

  1. Combustion By-Products and their Health Effects - Combustion Engineering and Global Health in the 21st Century: Issues and Challenges

    PubMed Central

    Lomnicki, Slawo; Gullett, Brian; Stöger, Tobias; Kennedy, Ian; Diaz, Jim; Dugas, Tammy R.; Varner, Kurt; Carlin, Danielle; Dellinger, Barry; Cormier, Stephania A.

    2014-01-01

    The 13th International Congress on Combustion By-Products and their Health Effects was held in New Orleans, Louisiana from May 15–18, 2013. The congress, sponsored by the Superfund Research Program, National Institute of Environmental Health Sciences, and National Science Foundation, brought together international academic and government researchers, engineers, scientists and policymakers. With industrial growth, increased power needs and generation and coal consumption and their concomitant emissions, pernicious health effects associated with exposures to these emissions are on the rise. This congress provides a unique platform for interdisciplinary exchange and discussion of these topics. The formation, conversion, control and health effects of combustion by-products, including particulate matter and associated heavy metals, persistent organic pollutants and environmentally persistent free radicals, were discussed during the congress. This review will summarize and discuss the implications of the data presented. PMID:24434722

  2. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  3. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.

    PubMed

    Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin

    2016-01-01

    The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The impact of the weather conditions on the cooling performance of the heat pump driven by an internal natural gas combustion engine

    NASA Astrophysics Data System (ADS)

    Janovcová, Martina; Jandačka, Jozef; Malcho, Milan

    2015-05-01

    Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air - water, air is the primary low - energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.

  5. Formation and emission of nitrogen oxide in gas turbine engines: plume effluent characteristics of TF3O-P111+ and TF33-P9 engines. Final technical report, 1 November-17 December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dill, J.W.; Sowa, W.A.; Samuelsen, G.S.

    1996-06-30

    Phase I of this project focused on the creation of a spatial emissions map of the plume effluent in the exhaust stream directly behind the engine in a jet engine test cell (JETC). Both afterburning TF30-P111+ and non-after-burning TF33-P9 engines were tested. Measurements were taken in conjunction with actual engine tests for validity of the data. Temperature, oxides of nitrogen (NOx), carbon monoxide (CO) concentration, and velocity were among the characteristics measured radially and axially in the plume for each engine type. The main focus of this study was on NOx, consisting of nitric oxide (NO) and nitrogen dioxide (NO2).more » Measurements in the P111+ plume reveal levels of NOx above 300 ppm along the centerline of the effluent. A dip in the NOx emissions at afterburner shows signs of a reburning and/or dilution effect by the atmospheric combustion in the effluent. Significant amounts of NO2 are present in the effluent over the entire power range. Temperatures at military power reach 1100 deg F along the centerline, and CO values are below 80 ppm. Carbon monoxide concentrations decrease from idle to military power (full power, no afterburner), then rise sharply in afterburner. The CO peaks shift outward from centerline as do the temperatures due to the radial geometry of the afterburner combustion (over 10 percent CO at 2850 deg F).« less

  6. Stirling engine with air working fluid

    DOEpatents

    Corey, John A.

    1985-01-01

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  7. Pooled effect of injection pressure and turbulence inducer piston on performance, combustion, and emission characteristics of a DI diesel engine powered with biodiesel blend.

    PubMed

    Isaac JoshuaRamesh Lalvani, J; Parthasarathy, M; Dhinesh, B; Annamalai, K

    2016-12-01

    In this study, the effect of injection pressure on combustion, performance, and emission characteristics of a diesel engine powered with turbulence inducer piston was studied. Engine tests were executed using conventional diesel and 20% blend of adelfa biodiesel [A20]. The results acquired from renewable fuel A20 in the conventional engine showed reduction in brake thermal efficiency being the result of poor air fuel mixing characteristics and the higher viscosity of the tested fuel. This prompted further research aiming at the improvement of turbulence for better air fuel mixing by a novel turbulence inducer piston [TIP]. The investigation was carried out to study the combined effect of injection pressure and turbulence inducer piston. Considerable improvement in the emission characteristics like hydrocarbon, carbon monoxide, smoke was acheived as a result of optimised injection pressure. Nevertheless, the nitrogen oxide emissions were slightly higher than those of the conventional unmodified engine. The engine with turbulence inducer piston shows the scope for reducing the major pollution and thus ensures environmental safety. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Laser ignition - Spark plug development and application in reciprocating engines

    NASA Astrophysics Data System (ADS)

    Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria

    2018-03-01

    Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged solutions for positioning of the laser spark plug, i.e. placing it apart from or directly on the engine, are introduced. The path taken from the first solution proposed, to build a compact laser suitable for ignition, to the practical realization of a laser spark plug is described. Results obtained by ignition of automobile test engines, with laser devices that resemble classical spark plugs, are specifically discussed. It is emphasized that technological advances have brought this method of laser ignition close to the application and installation in automobiles powered by gasoline engines. Achievements made in the laser ignition of natural gas engines are outlined, as well as the utilization of laser ignition in other applications. Scientific and technical advances have allowed realization of laser devices with multiple (up to four) beam outputs, but many other important aspects (such as integration, thermal endurance or vibration strength) are still to be solved. Recent results of multi-beam ignition of a single-cylinder engine in a test bench set-up are encouraging and have led to increased research interest in this direction. A fundamental understanding of the processes involved in laser ignition is crucial in order to exploit the technology's full potential. Therefore, several measurement techniques, primarily optical types, used to characterize the laser ignition process are reviewed in this work.

  9. Environmental Technology Verification Report: Climate Energy freewatt™ Micro-Combined Heat and Power System

    EPA Science Inventory

    The EPA GHG Center collaborated with the New York State Energy Research and Development Authority (NYSERDA) to evaluate the performance of the Climate Energy freewatt Micro-Combined Heat and Power System. The system is a reciprocating internal combustion (IC) engine distributed e...

  10. 46 CFR 196.15-30 - Emergency lighting and power systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Emergency lighting and power systems. 196.15-30 Section 196.15-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... the system is in proper operating condition. (b) Internal combustion engine driven emergency...

  11. 46 CFR 196.15-30 - Emergency lighting and power systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Emergency lighting and power systems. 196.15-30 Section 196.15-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... the system is in proper operating condition. (b) Internal combustion engine driven emergency...

  12. 46 CFR 196.15-30 - Emergency lighting and power systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Emergency lighting and power systems. 196.15-30 Section 196.15-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... the system is in proper operating condition. (b) Internal combustion engine driven emergency...

  13. 46 CFR 196.15-30 - Emergency lighting and power systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Emergency lighting and power systems. 196.15-30 Section 196.15-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... the system is in proper operating condition. (b) Internal combustion engine driven emergency...

  14. A survey of future low-polluting vehicle power plants and their implication for the gasoline tax.

    DOT National Transportation Integrated Search

    1973-01-01

    Because the standards set for auto emissions are being strictly enforced by the Environmental Protection Agency, it is imminent that the conventional internal combustion engine will not be the only vehicular power plant in widespread use. Both Europe...

  15. Rotary internal combustion engine with integrated supercharged fuel-air induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southard, A.A.

    This patent describes an improved method of operating a rotary internal combustion engine of the type wherein a multicusped rotor rotatable upon a rotatable eccentric rotates within a cavity bounded by a wall of lobed trochoidal configuration. The rotor cusps have sealing engagement separating and defining operating chambers in the cavity about the rotor between adjacent pairs of cusps. Such chambers are angularly spaced about and orbit the center of the cavity as the rotor rotates while each chamber alternately expands and contracts in volume. The method comprises cylindrically operating each chamber through a sequence of six phases that aremore » synchronized with three successive increases and decreases in the volume of such chamber, with the first four phases being an internal combustion engine power cycle comprising an air intake phase, a compression phase, a combustion phase and an exhaust phase. The fifth phase comprises inducting air into the chamber, and the sixth phase comprises compressing the inducted air in such chamber and passing such inducted and compressed air through an elongated transfer zone.« less

  16. F1 style MGU-H applied to the turbocharger of a gasoline hybrid electric passenger car

    NASA Astrophysics Data System (ADS)

    Boretti, Albert

    2017-12-01

    We consider a turbocharged gasoline direct injection (DI) engine featuring a motor-generator-unit (MGU-H) fitted on the turbocharger shaft. The MGU-H receives or delivers energy to the same energy storage (ES) of the hybrid power unit that comprises a motor-generator unit on the driveline (MGU-K) in addition to the internal combustion engine (ICE). The energy supply from the ES is mostly needed during sharp accelerations to avoid turbo-lag, and to boost torque at low speeds. At low speeds, it also improves the ratio of engine crankshaft power to fuel flow power, as well as the ratio of engine crankshaft plus turbocharger shaft power to fuel flow power. The energy supply to the ES is possible at high speeds and loads, where otherwise the turbine could have been waste gated, and during decelerations. This improves the ratio of engine crankshaft plus turbocharger shaft power to fuel flow power.

  17. Calculations of the Performance of a Compression-Ignition Engine-Compressor Turbine Combination I : Performance of a Highly Supercharged Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Sanders, J. C.; Mendelson, Alexander

    1945-01-01

    Small high-speed single-cylinder compression-ignition engines were tested to determine their performance characteristics under high supercharging. Calculations were made on the energy available in the exhaust gas of the compression-ignition engines. The maximum power at any given maximum cylinder pressure was obtained when the compression pressure was equal to the maximum cylinder pressure. Constant-pressure combustion was found possible at an engine speed of 2200 rpm. Exhaust pressures and temperatures were determined from an analysis of indicator cards. The analysis showed that, at rich mixtures with the exhaust back pressure equal to the inlet-air pressure, there is excess energy available for driving a turbine over that required for supercharging. The presence of this excess energy indicates that a highly supercharged compression-ignition engine might be desirable as a compressor and combustion chamber for a turbine.

  18. Free piston variable-stroke linear-alternator generator

    DOEpatents

    Haaland, Carsten M.

    1998-01-01

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod.

  19. A thermodynamic analysis of the environmental indicators of natural gas combustion processes

    NASA Astrophysics Data System (ADS)

    Elsukov, V. K.

    2010-07-01

    Environmental indicators of the natural gas combustion process are studied using the model of extreme intermediate states developed at the Melent’ev Institute of Power Engineering Systems. Technological factors responsible for generation of polycyclic aromatic hydrocarbons and hydrogen cyanide are revealed. Measures for reducing the amounts of polycyclic aromatic hydrocarbons, hydrogen cyanide, nitrogen oxide, and other pollutants emitted from boilers are developed.

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, SWINE WASTE ELECTRIC POWER AND HEAT PRODUCTION--MARTIN MACHINERY INTERNAL COMBUSTION ENGINE

    EPA Science Inventory

    Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system designed by Martin Machinery was evaluated. This paper provides test result...

  1. Path planning during combustion mode switch

    DOEpatents

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  2. Recent GRC Aerospace Technologies Applicable to Terrestrial Energy Systems

    NASA Technical Reports Server (NTRS)

    Kankam, David; Lyons, Valerie J.; Hoberecht, Mark A.; Tacina, Robert R.; Hepp, Aloysius F.

    2000-01-01

    This paper is an overview of a wide range of recent aerospace technologies under development at the NASA Glenn Research Center, in collaboration with other NASA centers, government agencies, industry and academia. The focused areas are space solar power, advanced power management and distribution systems, Stirling cycle conversion systems, fuel cells, advanced thin film photovoltaics and batteries, and combustion technologies. The aerospace-related objectives of the technologies are generation of space power, development of cost-effective and reliable, high performance power systems, cryogenic applications, energy storage, and reduction in gas-turbine emissions, with attendant clean jet engines. The terrestrial energy applications of the technologies include augmentation of bulk power in ground power distribution systems, and generation of residential, commercial and remote power, as well as promotion of pollution-free environment via reduction in combustion emissions.

  3. Application of mixing-controlled combustion models to gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee

    1990-01-01

    Gas emissions were studied from a staged Rich Burn/Quick-Quench Mix/Lean Burn combustor were studied under test conditions encountered in High Speed Research engines. The combustor was modeled at conditions corresponding to different engine power settings, and the effect of primary dilution airflow split on emissions, flow field, flame size and shape, and combustion intensity, as well as mixing, was investigated. A mathematical model was developed from a two-equation model of turbulence, a quasi-global kinetics mechanism for the oxidation of propane, and the Zeldovich mechanism for nitric oxide formation. A mixing-controlled combustion model was used to account for turbulent mixing effects on the chemical reaction rate. This model assumes that the chemical reaction rate is much faster than the turbulent mixing rate.

  4. Combustion system processes leading to corrosive deposits

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Rosner, D. E.

    1981-01-01

    Degradation of turbine engine hot gas path components by high temperature corrosion can usually be associated with deposits even though other factors may also play a significant role. The origins of the corrosive deposits are traceable to chemical reactions which take place during the combustion process. In the case of hot corrosion/sulfidation, sodium sulfate was established as the deposited corrosive agent even when none of this salt enters the engine directly. The sodium sulfate is formed during the combustion and deposition processes from compounds of sulfur contained in the fuel as low level impurities and sodium compounds, such as sodium chloride, ingested with intake air. In other turbine and power generation situations, corrosive and/or fouling deposits can result from such metals as potassium, iron, calcium, vanadium, magnesium, and silicon.

  5. 49 CFR 176.905 - Stowage of motor vehicles or mechanical equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (a) A vehicle or any mechanical equipment powered by an internal combustion engine, a fuel cell... equipment and there are no signs of leakage from the battery, engine, fuel cell, compressed gas cylinder or... fuel leaks and identifiable faults in the electrical system that could result in short circuit or other...

  6. 49 CFR 176.905 - Stowage of motor vehicles or mechanical equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... powered by an internal combustion engine, a fuel cell, batteries or a combination thereof, is subject to... leakage from the battery, engine, fuel cell, compressed gas cylinder or accumulator, or fuel tank, as..., each vehicle or mechanical equipment must be inspected for fuel leaks and identifiable faults in the...

  7. 49 CFR 176.905 - Stowage of motor vehicles or mechanical equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (a) A vehicle or any mechanical equipment powered by an internal combustion engine, a fuel cell... equipment and there are no signs of leakage from the battery, engine, fuel cell, compressed gas cylinder or... fuel leaks and identifiable faults in the electrical system that could result in short circuit or other...

  8. Bagnulo Heavy Fuel Internal Combustion Engine and Its Employment in Aviation

    NASA Technical Reports Server (NTRS)

    Fiore, Amedeo

    1922-01-01

    We see with great satisfaction that Bagnulo's studies and experiments on his high-speed, heavy-fuel engines, promise to solve not only the general problem of economical power and hence of thermal efficiency, but also all other special problems, of weight and space, and, what is still more important, range of error.

  9. Miniature Internal Combustion Engine-Generator for High Energy Density Portable Power

    DTIC Science & Technology

    2008-12-01

    Operation on JP-8 from cold startup to steady operation has been demonstrated at the 300 W scale. Miniature engine/generators can be acoustically silenced...design that uses a spring for energy storage . MICE is a high Q system, operating at the resonant frequency of the spring-mass system with very low...development • Demonstrated 94% efficiency of 300 W linear alternator • Demonstrated full operation of MICE generator from cold startup to net power output

  10. Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.

  11. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  12. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  13. Control logic for exhaust gas driven turbocharger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeff, G.A.

    1991-12-31

    This patent describes a method of controlling an exhaust gas driven turbocharger supplying charge air for an internal combustion engine powering vehicle, the turbocharger being adjustable from a normal mode to a power mode in which the charge air available to the engine during vehicle acceleration is increased over that available when the turbocharger is in the normal mode, the vehicle including engine power control means switchable by the vehicle operator from a normal mode to a power mode so that the vehicle operator may selectively elect either the normal mode or the power mode, comprising the steps of measuringmore » the speed of the vehicle, permitting the vehicle operator to elect either the power mode or the normal mode for a subsequent vehicle acceleration, and then adjusting the turbocharger to the power mode when the speed of the vehicle is less than a predetermined reference speed and the vehicle operator has elected to power mode to increase the charge air available to the engine and thereby increasing engine power on a subsequent acceleration of the vehicle.« less

  14. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle thermal fatigue behavior has been investigated on a flat Haynes 188 alloy specimen, under the test condition of 30-Hz cycle frequency (33-msec pulse period and 10-msec pulse width including a 0.2-msec pulse spike; ref. 4). Temperature distributions were calculated with one-dimensional finite difference models. The calculations show that that the 0.2-msec pulse spike can cause an additional 40 C temperature fluctuation with an interaction depth of 0.08 mm near the specimen surface region. This temperature swing will be superimposed onto the temperature swing of 80 C that is induced by the 10-msec laser pulse near the 0.53-mm-deep surface interaction region.

  15. Waste to Energy Conversion by Stepwise Liquefaction, Gasification and "Clean" Combustion of Pelletized Waste Polyethylene for Electric Power Generation---in a Miniature Steam Engine

    NASA Astrophysics Data System (ADS)

    Talebi Anaraki, Saber

    The amounts of waste plastics discarded in developed countries are increasing drastically, and most are not recycled. The small fractions of the post-consumer plastics which are recycled find few new uses as their quality is degraded; they cannot be reused in their original applications. However, the high energy density of plastics, similar to that of premium fuels, combined with the dwindling reserves of fossil fuels make a compelling argument for releasing their internal energy through combustion, converting it to thermal energy and, eventually, to electricity through a heat engine. To minimize the emission of pollutants this energy conversion is done in two steps, first the solid waste plastics undergo pyrolytic gasification and, subsequently, the pyrolyzates (a mixture of hydrocarbons and hydrogen) are blended with air and are burned "cleanly" in a miniature power plant. This plant consists of a steam boiler, a steam engine and an electricity generator.

  16. Systems Design and Experimental Evaluation of a High-Altitude Relight Test Facility

    NASA Astrophysics Data System (ADS)

    Paxton, Brendan

    Novel advances in gas turbine engine combustor technology, led by endeavors into fuel efficiency and demanding environmental regulations, have been fraught with performance and safety concerns. While the majority of low emissions gas turbine engine combustor technology has been necessary for power generation applications, the push for ultra-low NOx combustion in aircraft jet engines has been ever present. Recent state-of-the-art combustor designs notably tackle historic emissions challenges by operating at fuel-lean conditions, which are characterized by an increase in the amount of air flow sent to the primary combustion zone. While beneficial in reducing NOx emissions, the fuel-lean mechanisms that characterize these combustor designs rely heavily upon high-energy and high-velocity air flows to sufficiently mix and atomize fuel droplets, ultimately leading to flame stability concerns during low-power operation. When operating at high-altitude conditions, these issues are further exacerbated by the presence of low ambient air pressures and temperatures, which can lead to engine flame-out situations and hamper engine relight attempts. To aid academic and industrial research ventures into improving the high-altitude lean blow-out and relight performance of modern gas turbine engine combustor technologies, the High-Altitude Relight Test Facility (HARTF) was designed and constructed at the University of Cincinnati (UC) Combustion and Fire Research Laboratory (CFRL). Following its construction, an experimental evaluation of its abilities to facilitate optically-accessible ignition, combustion, and spray testing for gas turbine engine combustor hardware at simulated high-altitude conditions was performed. In its evaluation, performance limit references were established through testing of the HARTF vacuum and cryogenic air-chilling capabilities. These tests were conducted with regard to end-user control---the creation and the maintenance of a realistic high-altitude environment simulation. To evaluate future testing applications, as well as to understand the abilities of the HARTF to accommodate different sizes and configurations of industrial gas turbine engine combustor hardware, ignition testing was conducted at challenging high-altitude windmilling conditions with a linearly-arranged five-swirler array, replicating the implementation of a multi-cup combustor sector.

  17. Linear aerospike engine. [for reusable single-stage-to-orbit vehicle

    NASA Technical Reports Server (NTRS)

    Kirby, F. M.; Martinez, A.

    1977-01-01

    A description is presented of a dual-fuel modular split-combustor linear aerospike engine concept. The considered engine represents an approach to an integrated engine for a reusable single-stage-to-orbit (SSTO) vehicle. The engine burns two fuels (hydrogen and a hydrocarbon) with oxygen in separate combustors. Combustion gases expand on a linear aerospike nozzle. An engine preliminary design is discussed. Attention is given to the evaluation process for selecting the optimum number of modules or divisions of the engine, aspects of cooling and power cycle balance, and details of engine operation.

  18. Research on coal-water fuel combustion in a circulating fluidized bed / Badanie spalania zawiesinowych paliw węglowo-wodnych w cyrkulacyjnej warstwie fluidalnej

    NASA Astrophysics Data System (ADS)

    Kijo-Kleczkowska, Agnieszka

    2012-10-01

    In the paper the problem of heavily-watered fuel combustion has been undertaken as the requirements of qualitative coals combusted in power stations have been growing. Coal mines that want to fulfill expectations of power engineers have been forced to extend and modernize the coal enrichment plants. This causes growing quantity of waste materials that arise during the process of wet coal enrichment containing smaller and smaller under-grains. In this situation the idea of combustion of transported waste materials, for example in a hydraulic way to the nearby power stations appears attractive because of a possible elimination of the necessary deep dehydration and drying as well as because of elimination of the finest coal fraction loss arising during discharging of silted water from coal wet cleaning plants. The paper presents experimental research results, analyzing the process of combustion of coal-water suspension depending on the process conditions. Combustion of coal-water suspensions in fluidized beds meets very well the difficult conditions, which should be obtained to use the examined fuel efficiently and ecologically. The suitable construction of the research stand enables recognition of the mechanism of coal-water suspension contact with the inert material, that affects the fluidized bed. The form of this contact determines conditions of heat and mass exchange, which influence the course of a combustion process. The specificity of coal-water fuel combustion in a fluidized bed changes mechanism and kinetics of the process.

  19. Free piston variable-stroke linear-alternator generator

    DOEpatents

    Haaland, C.M.

    1998-12-15

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine is described. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod. 8 figs.

  20. Compressed air production with waste heat utilization in industry

    NASA Astrophysics Data System (ADS)

    Nolting, E.

    1984-06-01

    The centralized power-heat coupling (PHC) technique using block heating power stations, is presented. Compressed air production in PHC technique with internal combustion engine drive achieves a high degree of primary energy utilization. Cost savings of 50% are reached compared to conventional production. The simultaneous utilization of compressed air and heat is especially interesting. A speed regulated drive via an internal combustion motor gives a further saving of 10% to 20% compared to intermittent operation. The high fuel utilization efficiency ( 80%) leads to a pay off after two years for operation times of 3000 hr.

  1. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    DOE PAGES

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NO X and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustionmore » when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less

  2. Experimental Evaluation of a Method for Turbocharging Four-Stroke, Single Cylinder, Internal Combustion Engines

    NASA Astrophysics Data System (ADS)

    Buchman, Michael; Winter, Amos

    2015-11-01

    Turbocharging an engine increases specific power, improves fuel economy, reduces emissions, and lowers cost compared to a naturally aspirated engine of the same power output. These advantages make turbocharging commonplace for multi-cylinder engines. Single cylinder engineers are not commonly turbocharged due to the phase lag between the exhaust stroke, which powers the turbocharger, and the intake stroke, when air is pumped into the engine. Our proposed method of turbocharging single cylinder engines is to add an ``air capacitor'' to the intake manifold, an additional volume that acts as a buffer to store compressed air between the exhaust and intake strokes, and smooth out the pressure pulses from the turbocharger. This talk presents experimental results from a single cylinder, turbocharged diesel engine fit with various sized air capacitors. Power output from the engine was measured using a dynamometer made from a generator, with the electrical power dissipated with resistive heating elements. We found that intake air density increases with capacitor size as theoretically predicted, ranging from 40 to 60 percent depending on heat transfer. Our experiment was able to produce 29 percent more power compared to using natural aspiration. These results validated that an air capacitor and turbocharger may be a simple, cost effective means of increasing the power density of single cylinder engines.

  3. Tripropellant engine study

    NASA Technical Reports Server (NTRS)

    Wheeler, D. B.; Kirby, F. M.

    1978-01-01

    The potential for converting the space shuttle main engine (SSME) to a dual-fuel, dual-mode engine using LOX/hydrocarbon propellants in mode 1 and LOX/H2 in mode 2 was examined. Various engine system concepts were formulated that included staged combustion and gas generator turbine power cycles, and LOX/RP-1, LOX/CH4, and LOX/C3H8 mode 1 propellants. Both oxidizer and fuel regenerative cooling were considered. All of the SSME major components were examined to determine their adaptability to the candidate dual-fuel engines.

  4. Aircraft Photovoltaic Power-Generating System.

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.

  5. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln.

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin

    2015-04-01

    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low-temperature (~300-800 °C) combustion conditions. Depending on burning sources, significantly different optical properties were observed; diesel combustion particles from automobile and ship showed wavelength independent absorbing properties whereas the particles from coal and charcoal kiln combustion showed the enhanced absorption at shorter wavelength which is a brown carbon characteristic. Our findings suggest that source dependent properties and distributions across the globe should be considered when their impacts on climate change and air qualities are discussed.

  6. Fuels for high-compression engines

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1926-01-01

    From theoretical considerations one would expect an increase in power and thermal efficiency to result from increasing the compression ratio of an internal combustion engine. In reality it is upon the expansion ratio that the power and thermal efficiency depend, but since in conventional engines this is equal to the compression ratio, it is generally understood that a change in one ratio is accompanied by an equal change in the other. Tests over a wide range of compression ratios (extending to ratios as high as 14.1) have shown that ordinarily an increase in power and thermal efficiency is obtained as expected provided serious detonation or preignition does not result from the increase in ratio.

  7. Simulation research on the effect of cooled EGR, supercharging and compression ratio on downsized SI engine knock

    NASA Astrophysics Data System (ADS)

    Shu, Gequn; Pan, Jiaying; Wei, Haiqiao; Shi, Ning

    2013-03-01

    Knock in spark-ignition(SI) engines severely limits engine performance and thermal efficiency. The researches on knock of downsized SI engine have mainly focused on structural design, performance optimization and advanced combustion modes, however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR) combined with downsizing technologies on SI engine performance. On the basis of mean pressure and oscillating pressure during combustion process, the effect of different levels of cooled EGR ratio, supercharging and compression ratio on engine dynamic and knock characteristic is researched with three-dimensional KIVA-3V program coupled with pressure wave equation. The cylinder pressure, combustion temperature, ignition delay timing, combustion duration, maximum mean pressure, and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output. The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure. Analysis of the synergistic effect of cooled EGR, supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio, several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively. The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic, analyzed from the aspects of mean pressure and oscillating pressure, is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.

  8. FY2011 Annual Progress Report for Propulsion Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Patrick B.; Schutte, Carol L.; Gibbs, Jerry L.

    Annual Progress Report for Propulsion Materials focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

  9. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am a stationary CI internal combustion engine manufacturer? 60.4210 Section 60.4210 Protection of... Combustion Engines Compliance Requirements § 60.4210 What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer? (a) Stationary CI internal combustion engine...

  10. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am a stationary CI internal combustion engine manufacturer? 60.4210 Section 60.4210 Protection of... Combustion Engines Compliance Requirements § 60.4210 What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer? (a) Stationary CI internal combustion engine...

  11. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I am a stationary CI internal combustion engine manufacturer? 60.4210 Section 60.4210 Protection of... Combustion Engines Compliance Requirements § 60.4210 What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer? (a) Stationary CI internal combustion engine...

  12. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am a stationary CI internal combustion engine manufacturer? 60.4210 Section 60.4210 Protection of... Combustion Engines Compliance Requirements § 60.4210 What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer? (a) Stationary CI internal combustion engine...

  13. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am a stationary CI internal combustion engine manufacturer? 60.4210 Section 60.4210 Protection of... Combustion Engines Compliance Requirements § 60.4210 What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer? (a) Stationary CI internal combustion engine...

  14. 40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Mechanical Engineers (ASME PTC 4.1—1964): Test Code for Steam Generating Units, Power Test Code 4.1-1964... of Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (4) Design, construct...

  15. 40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Mechanical Engineers (ASME PTC 4.1—1964): Test Code for Steam Generating Units, Power Test Code 4.1-1964... of Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (4) Design, construct...

  16. 40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mechanical Engineers (ASME PTC 4.1—1964): Test Code for Steam Generating Units, Power Test Code 4.1-1964... of Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (4) Design, construct...

  17. 40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mechanical Engineers (ASME PTC 4.1—1964): Test Code for Steam Generating Units, Power Test Code 4.1-1964... of Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (4) Design, construct...

  18. 40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mechanical Engineers (ASME PTC 4.1—1964): Test Code for Steam Generating Units, Power Test Code 4.1-1964... of Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (4) Design, construct...

  19. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    NASA Astrophysics Data System (ADS)

    Kim, Seonguk; Min, Kyoungdoug

    2008-08-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NOx emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion.

  20. Single-Lever Power Control for General Aviation Aircraft Promises Improved Efficiency and Simplified Pilot Controls

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1997-01-01

    General aviation research is leading to major advances in internal combustion engine control systems for single-engine, single-pilot aircraft. These advances promise to increase engine performance and fuel efficiency while substantially reducing pilot workload and increasing flight safety. One such advance is a single-lever power control (SLPC) system, a welcome departure from older, less user-friendly, multilever engine control systems. The benefits of using single-lever power controls for general aviation aircraft are improved flight safety through advanced engine diagnostics, simplified powerplant operations, increased time between overhauls, and cost-effective technology (extends fuel burn and reduces overhaul costs). The single-lever concept has proven to be so effective in preliminary studies that general aviation manufacturers are making plans to retrofit current aircraft with the technology and are incorporating it in designs for future aircraft.

  1. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  2. Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCluskey, F. P.

    Hybrid electric vehicles were re-introduced in the late 1990s after a century dominated by purely internal combustion powered engines[1]. Automotive players, such as GM, Ford, DaimlerChrysler, Honda, and Toyota, together with major energy producers, such as BPAmoco, were the major force in the development of hybrid electric vehicles. Most notable was the development by Toyota of its Prius, which was launched in Japan in 1997 and worldwide in 2001. The shift to hybrids was driven by the fact that the sheer volume of vehicles on the road had begun to tax the ability of the environment to withstand the pollutionmore » of the internal combustion engine and the ability of the fossil fuel industry to produce a sufficient amount of refined gasoline. In addition, the number of vehicles was anticipated to rise exponentially with the increasing affluence of China and India. Over the last fifteen years, major advances have been made in all the technologies essential to hybrid vehicle success, including batteries, motors, power control and conditioning electronics, regenerative braking, and power sources, including fuel cells. Current hybrid electric vehicles are gasoline internal combustion--electric motor hybrids. These hybrid electric vehicles range from micro-hybrids, where a stop/start system cuts the engine while the vehicle is stopped, and mild hybrids where the stop/start system is supplemented by regenerative braking and power assist, to full hybrids where the combustion motor is optimized for electric power production, and there is full electric drive and full regenerative braking. PSA Peugeot Citroen estimates the increased energy efficiency will range from 3-6% for the micro-hybrids to 15-25% for the full hybrids.[2] Gasoline-electric hybrids are preferred in US because they permit long distance travel with low emissions and high gasoline mileage, while still using the existing refueling infrastructure. One of the most critical areas in which technology has been advancing has been the development of electronics that can operate in the high temperature environments present in hybrid vehicles. The temperatures under the hood for a gasoline-electric hybrid vehicle are comparable to those for traditional internal combustion engines. This is known to be a difficult environment with respect to commercial-grade electronics, as there are surface and ambient temperatures ranging from 125 C to 175 C. In addition, some hybrid drive electronics are placed in even harsher environments, such as on or near the brakes, where temperatures can reach 250 C. Furthermore, number of temperature cycles experienced by electronics in a hybrid vehicle is different from that experienced in a traditional vehicle. A traditional internal combustion vehicle will have the engine running for longer periods, whereas a mild or micro-hybrid engine will experience many more starts and stops.[3] This means that hybrid automotive electronics will undergo more cycles of a potential wider temperature cycle than standard automotive electronics, which in turn see temperature cycles of 2 to 3 times the magnitude of the {Delta}T = 50 C-75 C experienced by commercial-grade electronics. This study will discuss the effects of these harsh environments on the failure mechanisms and ultimate reliability of electronic systems developed for gasoline-electric hybrid vehicles. In addition, it will suggest technologies and components that can reasonably be expected to perform well in these environments. Finally, it will suggest areas where further research is needed or desirable. Areas for further research will be highlighted in bold, italic type. It should be noted that the first area where further research is desirable is in developing a clearer understanding of the actual hybrid automotive electronics environment and how to simulate it through accelerated testing, thus: Developing specific mission profiles and accelerated testing protocols for the underhood environment for hybrid cars, as has previously been done for gasoline-powered vehicles, is an important area for further study.« less

  3. An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Bossard, J. A.; Peck, R. E.; Schmidt, D. K.

    1993-01-01

    The development of an advanced dynamic model for aeroelastic hypersonic vehicles powered by air breathing engines requires an adequate engine model. This report provides a discussion of some of the more important features of supersonic combustion and their relevance to the analysis and design of supersonic ramjet engines. Of particular interest are those aspects of combustion that impact the control of the process. Furthermore, the report summarizes efforts to enhance the aeropropulsive/aeroelastic dynamic model developed at the Aerospace Research Center of Arizona State University by focusing on combustion and improved modeling of this flow. The expanded supersonic combustor model described here has the capability to model the effects of friction, area change, and mass addition, in addition to the heat addition process. A comparison is made of the results from four cases: (1) heat addition only; (2) heat addition plus friction; (3) heat addition, friction, and area reduction, and (4) heat addition, friction, area reduction, and mass addition. The relative impact of these effects on the Mach number, static temperature, and static pressure distributions within the combustor are then shown. Finally, the effects of frozen versus equilibrium flow conditions within the exhaust plume is discussed.

  4. Ultra-lean combustion at high inlet temperatures

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1981-01-01

    Combustion at inlet air temperatures of 1100 to 1250 K was studied for application to advanced automotive gas turbine engines. Combustion was initiated by the hot environment, and therefore no external ignition source was used. Combustion was stabilized without a flameholder. The tests were performed in a 12 cm diameter test section at a pressure of 2.5 x 10 to the 5th power Pa, with reference velocities of 32 to 60 m/sec and at maximum combustion temperatures of 1350 to 1850 K. Number 2 diesel fuel was injected by means of a multiple source fuel injector. Unburned hydrocarbons emissions were negligible for all test conditions. Nitrogen oxides emissions were less than 1.9 g NO2/kg fuel for combustion temperatures below 1680 K. Carbon monoxide emissions were less than 16 g CO/kg fuel for combustion temperatures greater than 1600 K, inlet air temperatures higher than 1150 K, and residence times greater than 4.3 microseconds.

  5. 78 FR 54606 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY... hazardous air pollutants for stationary reciprocating internal combustion engines and the standards of performance for stationary internal combustion engines. Subsequently, the EPA received three petitions for...

  6. Non-Catalytic Reforming with Applications to Portable Power

    DTIC Science & Technology

    2013-10-01

    and J.J. Beaman, Jr., “Freeform Fabrication of Non-Metallic Objects by Selective Laser Sintering and Infiltration”, Materials Science Forum, 561-565...for syngas production from jet fuel using various methods including catalysts [4, 47-54] and plasmas [55]. Investigations of noncatalytic reforming...Combustion of n-butanol in a spark -ignition IC engine. Fuel. 89(7): p. 1573-1582. 32. Behrens, D.A., I.C. Lee, and C.M. Waits, Catalytic combustion of

  7. Modeling and control of fuel distribution in a dual-fuel internal combustion engine leveraging late intake valve closings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassa, Mateos; Hall, Carrie; Ickes, Andrew

    Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process encountered across cylinders and between cycles. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with exhaust gas recirculation (EGR), a variable geometry turbocharger, and a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production and the underlying uneven fuel distribution that causes these variations. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode in which a high reactivity fuelmore » is directly injected into the cylinders and a low reactivity fuel is port injected into the cylinders. Both dual fuel implementation and late intake valve closing (IVC) timings have been shown to improve thermal efficiency. However, experimental data from this study reveal that when late IVC timings are used on a multi-cylinder dual fuel engine a significant variation in IMEP across cylinders results and as such, leads to efficiency losses. The difference in IMEP between the different cylinders ranges from 9% at an IVC of 570°ATDC to 38% at an IVC of 610°ATDC and indicates an increasingly uneven fuel distribution. These experimental observations along with engine simulation models developed using GT-Power have been used to better understand the distribution of the port injected fuel across cylinders under various operating conditions on such dual fuel engines. This study revealed that the fuel distribution across cylinders in this dual fuel application is significantly affected by changes in the effective compression ratio as determined by the intake valve close timing as well as the design of the intake system (specifically the length of the intake runners). Late intake valve closures allow a portion of the trapped air and port injected fuel to flow back out of the cylinders into the intake manifold. The fuel that is pushed back in the intake manifold is then unevenly redistributed across the cylinders largely due to the dominating direction of the flow in the intake manifold. The effects of IVC as well as the impact of intake runner length on fuel distribution were quantitatively analyzed and a model was developed that can be used to accurately predict the fuel distribution of the port injected fuel at different operating conditions with an average estimation error of 1.5% in cylinder-specific fuel flow.« less

  8. Combustion-chamber Performance Characteristics of a Python Turbine-propeller Engine Investigated in Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Campbell, Carl E

    1951-01-01

    Combustion-chamber performance characteristics of a Python turbine-propeller engine were determined from investigation of a complete engine over a range of engine speeds and shaft horsepowers at simulated altitudes. Results indicated the effect of engine operating conditions and altitude on combustion efficiency and combustion-chamber total pressure losses. Performance of this vaporizing type combustion chamber was also compared with several atomizing type combustion chambers. Over the range of test conditions investigated, combustion efficiency varied from approximately 0.95 to 0.99.

  9. Study of Jet-Propulsion System Comprising Blower, Burner, and Nozzle

    NASA Technical Reports Server (NTRS)

    Hall, Eldon W

    1944-01-01

    A study was made of the performance of a jet-propulsion system composed of an engine-driven blower, a combustion chamber, and a discharge nozzle. A simplified analysis is made of this system for the purpose of showing in concise form the effect of the important design variables and operating conditions on jet thrust, thrust horsepower, and fuel consumption. Curves are presented that permit a rapid evaluation of the performance of this system for a range of operating conditions. The performance for an illustrative case of a power plant of the type under consideration id discussed in detail. It is shown that for a given airplane velocity the jet thrust horsepower depends mainly on the blower power and the amount of fuel burned in the jet; the higher the thrust horsepower is for a given blower power, the higher the fuel consumption per thrust horsepower. Within limits the amount of air pumped has only a secondary effect on the thrust horsepower and efficiency. A lower limit on air flow for a given fuel flow occurs where the combustion-chamber temperature becomes excessive on the basis of the strength of the structure. As the air-flow rate is increased, an upper limit is reached where, for a given blower power, fuel-flow rate, and combustion-chamber size, further increase in air flow causes a decrease in power and efficiency. This decrease in power is caused by excessive velocity through the combustion chamber, attended by an excessive pressure drop caused by momentum changes occurring during combustion.

  10. Heat regenerative external combustion engine

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1993-03-01

    It is an object of the invention to provide an external combustion expander-type engine having improved efficiency. It is another object of the invention to provide an external combustion engine in which afterburning in the exhaust channel is substantially prevented. Yet another object of the invention is to provide an external combustion engine which is less noisy than an external combustion engine of conventional design. These and other objects of the invention will become more apparent from the following description. The above objects of the invention are realized by providing a heat regenerative external combustion engine. The heat regenerative external combustion engine of the invention comprises a combustion chamber for combusting a monopropellant fuel in order to form an energized gas. The energized gas is then passed through a rotary valve to a cylinder having a reciprocating piston disposed therein. The gas is spent in moving the piston, thereby driving a drive shaft.

  11. Greener, meaner diesels sport thermal barrier coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, M.F.; Parker, D.W.

    1992-05-01

    The highly reliable diesel engine has long been the workhorse of the transportation, industrial power, utility, and marine industries. Demand for diesels is expected to accelerate well into the next century, driven by the engine's ability to economically produce power in almost any environment. Increasingly stringent environmental, efficiency, and durability requirements, however, present new challenges to diesel engine manufacturers and operators. This paper reports that many of these challenges can be met entirely, or in part, by thermal barrier coatings (TBCs). Diesel engine TBCs are plasma-spray-applied ceramics, which insulate combustion system components, such as pistons, valves, and piston fire decks,more » from heat and thermal shock.« less

  12. Experimental investigation on the availability, performance, combustion and emission distinctiveness of bael oil/ diesel/ diethyl ether blends powered in a variable compression ratio diesel engine

    NASA Astrophysics Data System (ADS)

    Krishnamoorthi, M.; Malayalamurthi, R.

    2018-02-01

    The present work aims at experimental investigation on the combined effect of injection timing (IT) and injection pressure (IP) on the performance and emissions characteristics, and exergy analysis of a compression-ignition (CI) engine powered with bael oil blends. The tests were conducted using ternary blends of bael oil, diethyl ether (DEE) and neat diesel (D) at various engine loads at a constant engine speed (1500 rpm). With B2 (60%D + 30%bael oil+10%DEE) fuel, the brake thermal efficiency (BTE) of the engine is augmented by 3.5%, reduction of 4.7% of oxides of nitrogen (NOx) emission has been observed at 100% engine load with 250 bar IP. B2 fuel exhibits 7% lower scale of HC emissions compared to that of diesel fuel at 100% engine load in 23 °bTDC IT. The increment in both cooling water and exhaust gas availabilities lead to increasing exergy efficiency with increasing load. The exergy efficiency of about 62.17% has been recorded by B2 fuel at an injection pressure of 230 IP bar with 100% load. On the whole, B2 fuel displays the best performance and combustion characteristics. It also exhibits better characteristics of emissions level in terms of lower HC, smoke opacity and NOx.

  13. The Use of an Ultra-Compact Combustor as an Inter-Turbine Burner for Improved Engine Performance

    DTIC Science & Technology

    2014-03-27

    27 25 NPSS Mixed Flow Turbofan Model - Element and Link Names . . . . . . . . . 30 26 VCE with Variable Components Labeled...the power generation, Vogeler proposed the Sequential Combustion Cycle (SCC) for use in aircraft engines [13]. For a conventional turbofan with a...single combustor, thrust is a function of bypass ratio and maximum pressure and temperature in the cycle. Considering a twin spool turbofan engine as

  14. The influence of the biofuel blends on the energetic and ecological performances of the Diesel engine

    NASA Astrophysics Data System (ADS)

    Benea, B. C.

    2016-08-01

    This study presents the influence of the diesel fuel blended with biodiesel fuel obtained from sunflower oil, corn oil and peanut oil on the energetic performances, combustion process and pollutant emissions. This research was done virtually and experimentally. In this study pure diesel fuel and two concentrations (6% and 10%) of blends with biofuels were used for experimentally tests on a Renault K9K diesel engine. Five parameters were observed during experimental tests: engine power, fuel consumption, cylinder pressure, and the amount of CO and NOx emissions. The same five parameters were simulated using AVL Boost program. The variations of effective power and maximal cylinder pressure are caused due to the lower calorific value of the tested fuels. Better oxidation of the biofuels induces a better combustion in cylinder and less CO and NOx emissions. The CO emissions are either influence by the lower carbon content of biofuels. The results of this study sustain that using 6% and 10% of blended biofuels with diesel fuel decrease the pollutant emissions of the diesel engine. Deviations between experimental and the simulation results confirm the validity of the mathematical model adopted for the simulation.

  15. 36th International Symposium on Combustion (ISOC2016)

    DTIC Science & Technology

    2016-12-01

    GREENHOUSE GASES / IC ENGINE COMBUSTION I GAS TURBINE COMBUSTION I NOVEL COMBUSTION CONCEPTS, TECHNOLOGIES AND SYSTEMS 15. SUBJECT TERMS Reaction...pollutants and greenhouse gases; IC engine combustion; Gas turbine combustion; Novel combustion concepts, technologies and systems 16. SECURITY...PLENARY LECTURE TRANSFER (15 min) am Turbulent Flames IC Engines Laminar Flames Reaction Kinetics Gas Turbines Soot Solid Fuels/Pollutants

  16. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.

  17. 49 CFR 176.905 - Motor vehicles or mechanical equipment powered by internal combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of ignition. A motor vehicle or mechanical equipment showing any signs of leakage or electrical fault... smoke or fire detection system capable of alerting personnel on the bridge. (h) All electrical equipment...

  18. The Next Generation of leaching Tests

    EPA Science Inventory

    Coal ash and other industrial by-products are used in building, construction, engineering and even agricultural applications. Changes in multi-pollutant control technology at coal-fired power plants and other combustion sources are shifting mercury (Hg) and other constituents of...

  19. Dynamic estimator for determining operating conditions in an internal combustion engine

    DOEpatents

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  20. Optical diagnostics in gas turbine combustors

    NASA Astrophysics Data System (ADS)

    Woodruff, Steven D.

    1999-01-01

    Deregulation of the power industry and increasingly tight emission controls are pushing gas turbine manufacturers to develop engines operating at high pressure for efficiency and lean fuel mixtures to control NOx. This combination also gives rise to combustion instabilities which threaten engine integrity through acoustic pressure oscillations and flashback. High speed imaging and OH emission sensors have been demonstrated to be invaluable tools in characterizing and monitoring unstable combustion processes. Asynchronous imaging technique permit detailed viewing of cyclic flame structure in an acoustic environment which may be modeled or utilized in burner design . The response of the flame front to the acoustic pressure cycle may be tracked with an OH emission monitor using a sapphire light pipe for optical access. The OH optical emission can be correlated to pressure sensor data for better understanding of the acoustical coupling of the flame. Active control f the combustion cycle can be implemented using an OH emission sensor for feedback.

  1. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    DOEpatents

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  2. Laser spark distribution and ignition system

    DOEpatents

    Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  3. Engine and method for operating an engine

    DOEpatents

    Lauper, Jr., John Christian; Willi, Martin Leo [Dunlap, IL; Thirunavukarasu, Balamurugesh [Peoria, IL; Gong, Weidong [Dunlap, IL

    2008-12-23

    A method of operating an engine is provided. The method may include supplying a combustible combination of reactants to a combustion chamber of the engine, which may include supplying a first hydrocarbon fuel, hydrogen fuel, and a second hydrocarbon fuel to the combustion chamber. Supplying the second hydrocarbon fuel to the combustion chamber may include at least one of supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into an intake system of the engine and supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into the combustion chamber. Additionally, the method may include combusting the combustible combination of reactants in the combustion chamber.

  4. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a stationary CI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission standards if I am a stationary CI internal combustion engine manufacturer? 60.4203 Section 60.4203... Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a stationary CI internal combustion engine manufacturer? Engines manufactured by...

  5. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a stationary CI internal combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission standards if I am a stationary CI internal combustion engine manufacturer? 60.4203 Section 60.4203... Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a stationary CI internal combustion engine manufacturer? Engines manufactured by...

  6. Load-Dependent Emission Factors and Chemical Characteristics of IVOCs from a Medium-Duty Diesel Engine.

    PubMed

    Cross, Eben S; Sappok, Alexander G; Wong, Victor W; Kroll, Jesse H

    2015-11-17

    A detailed understanding of the climate and air quality impacts of mobile-source emissions requires the characterization of intermediate-volatility organic compounds (IVOCs), relatively-low-vapor-pressure gas-phase species that may generate secondary organic aerosol with high yields. Due to challenges associated with IVOC detection and quantification, IVOC emissions remain poorly understood at present. Here, we describe measurements of the magnitude and composition of IVOC emissions from a medium-duty diesel engine. Measurements are made on an engine dynamometer and utilize a new mass-spectrometric instrument to characterize the load dependence of the emissions in near-real-time. Results from steady-state engine operation indicate that IVOC emissions are highly dependent on engine power, with highest emissions at engine idle and low-load operation (≤25% maximum rated power) with a chemical composition dominated by saturated hydrocarbon species. Results suggest that unburned fuel components are the dominant IVOCs emitted at low loads. As engine load increases, IVOC emissions decline rapidly and become increasingly characterized by unsaturated hydrocarbons and oxygenated organics, newly formed from incomplete combustion processes at elevated engine temperatures and pressures. Engine transients, including a cold-start ignition and engine acceleration, show IVOC emission profiles that are different in amount or composition compared to steady-state combustion, underscoring the utility of characterizing IVOC emissions with high time resolution across realistic engine operating conditions. We find possible evidence for IVOC losses on unheated dilution and sampling surfaces, which need to be carefully accounted for in IVOC emission studies.

  7. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, II, James E; Storey, John Morse; Theiss, Timothy J

    Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance ismore » straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation, reformer, and lean NOx trap catalysts. The initial work on NOx reduction efficiency demonstrated that NOx emissions <0.1 g/bhp-hr (the ARES goal) can be achieved with the lean NOx trap catalyst technology. Subsequent work focused on cost and size optimization and durability issues which addressed two specific ARES areas of interest to industry ('Cost of Power' and 'Availability, Reliability, and Maintainability', respectively). Thus, the research addressed the approach of the lean NOx trap catalyst technology toward the ARES goals as shown in Table 1-1.« less

  8. A Completely New Type of Actuator -or- This Ain't Your Grandfather's Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Gore, Brian W.; Hawkins, Gary F.; Hess, Peter A.; Moore, Teresa A.; Fournier, Eric W.

    2010-01-01

    A completely new type of actuator - one that is proposed for use in a variety of environments from sea to land to air to space - has been designed, patented, built, and tested. The actuator is loosely based on the principle of the internal combustion engine, except that it is a completely closed system, only requiring electrical input, and the working fuel is water. This paper outlines the theory behind the electrolysis- and ignition-based cycle upon which the actuator operates and describes the performance capability test apparatus and results for the actuator. A mechanism application that harnessed the unit s power to twist a scaled rotor blade is also highlighted.

  9. Jet impingement heat transfer enhancement for the GPU-3 Stirling engine

    NASA Technical Reports Server (NTRS)

    Johnson, D. C.; Congdon, C. W.; Begg, L. L.; Britt, E. J.; Thieme, L. G.

    1981-01-01

    A computer model of the combustion-gas-side heat transfer was developed to predict the effects of a jet impingement system and the possible range of improvements available. Using low temperature (315 C (600 F)) pretest data in an updated model, a high temperature silicon carbide jet impingement heat transfer system was designed and fabricated. The system model predicted that at the theoretical maximum limit, jet impingement enhanced heat transfer can: (1) reduce the flame temperature by 275 C (500 F); (2) reduce the exhaust temperature by 110 C (200 F); and (3) increase the overall heat into the working fluid by 10%, all for an increase in required pumping power of less than 0.5% of the engine power output. Initial tests on the GPU-3 Stirling engine at NASA-Lewis demonstrated that the jet impingement system increased the engine output power and efficiency by 5% - 8% with no measurable increase in pumping power. The overall heat transfer coefficient was increased by 65% for the maximum power point of the tests.

  10. Overcoming Present-Day Powerplant Limitations Via Unconventional Engine Configurations

    NASA Technical Reports Server (NTRS)

    Meitner, Peter L.

    2006-01-01

    The Army Research Laboratory s Vehicle Technology Directorate is sponsoring the prototype development of three unconventional engine concepts - two intermittent combustion (IC) engines and one turbine engine (via SBIR (Small Business Innovative Research) contracts). The IC concepts are the Nutating Engine and the Bonner Engine, and the turbine concept is the POWER Engine. Each of the three engines offers unique and greatly improved capabilities (which cannot be achieved by present-day powerplants), while offering significant reductions in size and weight. This paper presents brief descriptions of the physical characteristics of the three engines, and discusses their performance potentials, as well as their development status.

  11. High-speed Oil Engines for Vehicles. Part II

    NASA Technical Reports Server (NTRS)

    Hausfelder, Ludwig

    1927-01-01

    Further progress toward the satisfactory solution of the difficult problem of the distribution and atomization of the injected fuel was made by extensive experimentation with various fuel valves, nozzles, and atomizing devices. Valuable information was also obtained through numerous experimental researches on the combustion of oils and the manner of introducing the combustion air into the cylinder, as well as on the physical processes of atomization, the determination of the size of drops, etc. These researches led to the conclusion that it is possible, even without producing great turbulence in the combustion chamber and at moderate pump pressure, if the degree of atomization and the penetrative power of the fuel jet are adapted to the shape of the combustion chamber and to the dimensions of the cylinder.

  12. Cost effective simulation-based multiobjective optimization in the performance of an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Aittokoski, Timo; Miettinen, Kaisa

    2008-07-01

    Solving real-life engineering problems can be difficult because they often have multiple conflicting objectives, the objective functions involved are highly nonlinear and they contain multiple local minima. Furthermore, function values are often produced via a time-consuming simulation process. These facts suggest the need for an automated optimization tool that is efficient (in terms of number of objective function evaluations) and capable of solving global and multiobjective optimization problems. In this article, the requirements on a general simulation-based optimization system are discussed and such a system is applied to optimize the performance of a two-stroke combustion engine. In the example of a simulation-based optimization problem, the dimensions and shape of the exhaust pipe of a two-stroke engine are altered, and values of three conflicting objective functions are optimized. These values are derived from power output characteristics of the engine. The optimization approach involves interactive multiobjective optimization and provides a convenient tool to balance between conflicting objectives and to find good solutions.

  13. Overview of Necessary Modifications for Commercial Diesel Engines in Military Vehicles

    DTIC Science & Technology

    2012-01-20

    TURBOCHARGING If the EGR system is removed from a COTS engine, changes to the turbocharger mostly likely will need to be made. Typically, EGR makes up...the compressor needs to compensate by drawing more fresh air. For optimum power and response, the turbocharger needs to be resized to handle the...7. Heywood, J, Internal Combustion Engine Fundamentals . New York : McGraw-Hill, 1988. 8. Brandt, A, Muzzell, P, Sattler, E, Likos, W, Military fuel

  14. Report on Hydrogen Bus Demonstrations Worldwide, 2002-2007.

    DOT National Transportation Integrated Search

    2009-03-01

    Between 2002 and 2007 more than 20 cities in the United States, Europe, China, Japan and Australia have demonstrated buses powered by fuel cells or hydrogen-fueled internal combustion engines, as well as a variety of fueling and related technologies....

  15. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  16. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  17. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion engines...

  18. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  19. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  20. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion engines...

  1. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion engines...

  2. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  3. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  4. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion engines...

  5. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  6. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  7. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion engines...

  8. Thermal Analysis of Solid Fuels in an Inert Atmosphere

    NASA Astrophysics Data System (ADS)

    Kijo-Kleczkowska, Agnieszka; Szumera, Magdalena; Środa, Katarzyna

    2017-12-01

    The paper takes the analysis of thermal studies of different types of fuels. It allowed diversification of fuels depending on their composition and origin. Consideration of coal, biomass and waste (coal mule, sewage sludge) as fuel is nowadays an important aspect of energy in our country. It should be emphasized that Poland power engineering is based up to 95% on coal - the primary fuel. Mining industry, forced to deliver power engineering more and better fuel, must however, use a deeper cleaning of coal. This results in a continuous increase waste in the form of mule flotation. The best method of disposing these mule is combustion and co-combustion with other fuels. On the other hand, commonly increasing awareness state of the environment and the need to reduce CO2 emissions energy industry have committed to implement alternative solutions in order to gain power, through, i.a.: development technologies use of biomass, which is one of the most promising renewable energy sources in Poland. The paper presents the results of research TG-DTA fuels made in an inert atmosphere.

  9. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li-Ping, E-mail: yangliping302@hrbeu.edu.cn; Ding, Shun-Liang; Song, En-Zhe

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrencemore » plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.« less

  10. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine.

    PubMed

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  11. Thermoelectric power generator for variable thermal power source

    DOEpatents

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  12. Combustion Stability Characteristics of the Project Morpheus Liquid Oxygen / Liquid Methane Main Engine

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Morehead, Robert L.

    2014-01-01

    The project Morpheus liquid oxygen (LOX) / liquid methane (LCH4) main engine is a Johnson Space Center (JSC) designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. The engine met or exceeded all performance requirements without experiencing any in- ight failures, but the engine exhibited acoustic-coupled combustion instabilities during sea-level ground-based testing. First tangential (1T), rst radial (1R), 1T1R, and higher order modes were triggered by conditions during the Morpheus vehicle derived low chamber pressure startup sequence. The instability was never observed to initiate during mainstage, even at low power levels. Ground-interaction acoustics aggravated the instability in vehicle tests. Analysis of more than 200 hot re tests on the Morpheus vehicle and Stennis Space Center (SSC) test stand showed a relationship between ignition stability and injector/chamber pressure. The instability had the distinct characteristic of initiating at high relative injection pressure drop at low chamber pressure during the start sequence. Data analysis suggests that the two-phase density during engine start results in a high injection velocity, possibly triggering the instabilities predicted by the Hewitt stability curves. Engine ignition instability was successfully mitigated via a higher-chamber pressure start sequence (e.g., 50% power level vs 30%) and operational propellant start temperature limits that maintained \\cold LOX" and \\warm methane" at the engine inlet. The main engine successfully demonstrated 4:1 throttling without chugging during mainstage, but chug instabilities were observed during some engine shutdown sequences at low injector pressure drop, especially during vehicle landing.

  13. Evaluation of peanut fatty acid methyl ester sprays, combustion, and emissions, for use in an indirect injection diesel engine

    USDA-ARS?s Scientific Manuscript database

    The paper provides an analysis of 100% peanut fatty acid methyl esters (FAMEs) and peanut FAME/ULSD#2 blends (P20, P35, and P50) in an indirect injection (IDI) diesel engine (for auxiliary power unit applications) in comparison to ultralow sulfur diesel no. 2 (ULSD#2) at various speeds and 100% load...

  14. 40 CFR 90.903 - Exclusions, application of section 216 (10) and (11) of the Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... section 216(10) of the Act, an internal combustion engine (including the fuel system) that is not used in a motor vehicle is deemed a nonroad engine, if it meets the definition in subpart A of this part. For the purpose of determining the applicability of section 216(11) of the Act, a vehicle powered by a...

  15. 40 CFR 90.903 - Exclusions, application of section 216 (10) and (11) of the Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section 216(10) of the Act, an internal combustion engine (including the fuel system) that is not used in a motor vehicle is deemed a nonroad engine, if it meets the definition in subpart A of this part. For the purpose of determining the applicability of section 216(11) of the Act, a vehicle powered by a...

  16. 76 FR 17757 - Airworthiness Directives; Thielert Aircraft Engines GmbH Models TAE 125-01, TAE 125-02-99, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ...: Service experience has shown that a case of FADEC channel B manifold air pressure (MAP) sensor hose... combustion chamber and thus the available power of the engine. A change in FADEC software version 2.91 will..., previous software versions allow--under certain conditions and on DA 42 aircraft only--the initiation of a...

  17. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below decks...

  18. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below decks...

  19. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below decks...

  20. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below decks...

  1. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below decks...

  2. Ether oxygenate additives in gasoline reduce toxicity of exhausts.

    PubMed

    Westphal, G A; Krahl, J; Brüning, T; Hallier, E; Bünger, J

    2010-02-09

    Fuel additives can improve combustion and knock resistance of gasoline engines. Common additives in commercial fuels are "short-chain, oxygen containing hydrocarbons" such as methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE). Since these additives change the combustion characteristics, this may as well influence toxic effects of the resulting emissions. Therefore we compared toxicity and BTEX emissions of gasoline engine exhaust regarding addition of MTBE or ETBE. Non-reformulated gasoline served as basic fuel. This fuel was supplemented with 10%, 20%, 25% and 30% ETBE or 15% MTBE. The fuels were combusted in a gasoline engine at idling, part load and rated power. Condensates and particulate matter (PM) were collected and PM samples extracted with dichloromethane. Cytotoxic effects were investigated in murine fibroblasts (L929) using the neutral red uptake assay and mutagenicity using the bacterial reverse mutation assay. BTEX emissions were analyzed by gas chromatography. PM-extracts showed mutagenicity with and without metabolic activation. Mutagenicity was reduced by the addition of MTBE and ETBE, 10% ETBE being most effective. The condensates produced no significant mutagenic response. The cytotoxicity of the condensates from ETBE- and MTBE-reformulated fuels was reduced as well. The BTEX content in the exhaust was lowered by the addition of MTBE and ETBE. This effect was significantly related to the ETBE content at rated power and part load. Addition of MTBE and ETBE to fuels can improve combustion and leads to decreased toxicity and BTEX content of the exhaust. Reduction of mutagenicity in the PM-extracts is most probably caused by a lower content of polycyclic aromatic hydrocarbons. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  3. The effect of insulated combustion chamber surfaces on direct-injected diesel engine performance, emissions, and combustion

    NASA Technical Reports Server (NTRS)

    Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat

    1988-01-01

    The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.

  4. The position of gas turbine power plants with respect to the emission of nitrogen oxides by fossil-fueled energy installations

    NASA Technical Reports Server (NTRS)

    Kaiser, E.

    1977-01-01

    The amount of nitrogen oxides introduced into the atmosphere by gas turbines is very significant in relation to the total amount of nitrogen oxide emissions produced by chemical installations and combustion engines. Turbine manufacturers are therefore working to develop combustion chambers with sufficiently low nitrogen oxide emission concentrations. Attention is given to aspects of nitrogen oxide formation in gas turbines, the parameters which determine this formation, and suitable approaches to reducing nitrogen oxide emissions.

  5. Investigation of ecological parameters of four-stroke SI engine, with pneumatic fuel injection system

    NASA Astrophysics Data System (ADS)

    Marek, W.; Śliwiński, K.

    2016-09-01

    The publication presents the results of tests to determine the impact of using waste fuels, alcohol, to power the engine, on the ecological parameters of the combustion engine. Alternatively fuelled with a mixture of iso- and n-butanol, indicated with "X" and "END, and gasoline and a mixture of fuel and alcohol. The object of the study was a four-stroke engine with spark ignition designed to work with a generator. Motor power was held by the modified system of pneumatic injection using hot exhaust gases developed by Prof. Stanislaw Jarnuszkiewicz, controlled by modern mechatronic systems. Tests were conducted at a constant speed for the intended use of the engine. The subject of the research was to determine the control parameters such as ignition timing, mixture composition and the degree of exhaust gas recirculation on the ecological parameters of the engine. Tests were carried out using partially quality power control. In summary we present the findings of this phase of the study.

  6. Turbocharging of Small Internal Combustion Engines as a Means of Improving Engine/Application System Fuel Economy.

    DTIC Science & Technology

    1979-01-01

    OF SMALL INTERNAL COMBUSTION ENGINES AS A MEANS 0-.ETC(U) 1979 DAAK7O-78-C-O031 .hhuuufBuhhhh...Aerodyne Dallas th W__tIP FINAL REPORT CONTRACT* DAAK7-78-C-0031 FTURBOCHARGING OF SMALL INTERNAL COMBUSTION ENGINE AS A MEANS OF IMPROVING ENGINE ...DAAK70-78-C0031 TURBOCHARGING OF SMALL INTERNAL COMBUSTION ENGINES AS A MEANS OF IMPROVING ENGINE /APPLICATION SYSTEM FUEL ECONOMY Prepared by

  7. 3. Credit BG. Interior view looks northeast (46°) at fire ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Credit BG. Interior view looks northeast (46°) at fire pumps, valves, and emergency generator (powered by an internal combustion engine). - Edwards Air Force Base, North Base, Deluge Water Pumping Station, Near Second & D Streets, Boron, Kern County, CA

  8. 30 CFR 36.6 - Application procedures and requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diesel engine, including joints and gaskets; the turbulence or precombustion chamber, if applicable; injector assembly and nozzle details; and any surfaces that form the combustion chamber or part thereof..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED...

  9. Novel biofuel formulations for enhanced vehicle performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Dennis; Narayan, Ramani; Berglund, Kris

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbonmore » sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion engine under highly instrumented conditions. Simulation of and experimentation on combustion in single and multicylinder engines was carried out in detail throughout the project. The combustion behavior of biofuel blends neat and in petroleum were characterized in the MSU optical engine, in part to validate results obtained in the RCM and to provide data for comparison with simulations. Simulation of in- cylinder, low-temperature combustion included development of an extensive fuel injection model that included fuel spray breakup, evaporation, and ignition, along with prediction of cylinder temperature, pressure, and work produced. Single cylinder and multicylinder engine tests under advanced low-temperature combustion conditions conducted at Ford Motor Company validated experimental and simulation results obtained in the MSU engine and in MSU simulations. Single cylinder engine tests of an advanced biofuel containing biodiesel and dibutyl succinate, carried out under low-temperature combustion conditions, showed similar power generation and gas-phase emissions (CO, HC, NOx), but a reduction in particulates of as much as 60% relative to neat biodiesel and 95% relative to petroleum diesel at the same operating conditions. This remarkable finding suggests that biofuels may be able to play a role in eliminating the need for particulate removal systems in diesel vehicles. The multicylinder engine tests at Ford, carried out using butyl nonanoate as an advanced biofuel, also gave promising results, showing a strong decline in particulate emissions and simultaneously a modest decrease in NOx emissions relative to standard petroleum diesel at the same conditions. In summary, this project has shown that advanced biofuels and their blends are capable of maintaining performance while reducing emissions, particularly particulates (soot), in 3 compression ignition engines. The interdisciplinary nature of biofuel production and testing has identified fuel properties that are capable of producing such performance, thus providing direction for the implementation of renewable fuels for U.S. transportation. The testing and simulation studies have deepened our understanding of combustion 1) by advancing the rigor with which simulations can be carried out and 2) by illustrating that differences in biofuel and petroleum fuel properties can be used to predict differences in combustion behavior in engines. The future viability of biofuels for compression ignition (diesel) engines is now subject to economic (cost) uncertainty more so than to technical barriers, as the advanced biofuel blends developed here can improve cold-weather fuel properties, provide similar engine performance, and reduce emissions.« less

  10. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines? 60.4242... Ignition Internal Combustion Engines Compliance Requirements for Manufacturers § 60.4242 What other...

  11. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines? 60.4242... Ignition Internal Combustion Engines Compliance Requirements for Manufacturers § 60.4242 What other...

  12. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines? 60.4242... Ignition Internal Combustion Engines Compliance Requirements for Manufacturers § 60.4242 What other...

  13. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines? 60.4242... Ignition Internal Combustion Engines Compliance Requirements for Manufacturers § 60.4242 What other...

  14. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines? 60.4242... Ignition Internal Combustion Engines Compliance Requirements for Manufacturers § 60.4242 What other...

  15. External combustion engine having a combustion expansion chamber

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1993-03-01

    This patent application discloses an external combustion engine having a combustion expansion chamber. The engine includes a combustion chamber for generating a high-pressure, energized gas from a monopropellant fuel, and a cylinder for receiving the energized gas through a rotary valve to perform work on a cylinder disposed therein. A baffle plate is positioned between the combustion area and expansion area for reducing the pressure of the gas. The combustion area and expansion area are separated by a baffle plate having a flow area which is sufficiently large to eliminate the transmission of pressure pulsations from the combustion area to the expansion area while being small enough to provide for substantially complete combustion in the combustion area. The engine is particularly well suited for use in a torpedo.

  16. Analysis and experimental investigation of ceramic powder coating on aluminium piston

    NASA Astrophysics Data System (ADS)

    Pal, S.; Deore, A.; Choudhary, A.; Madhwani, V.; Vijapuri, D.

    2017-11-01

    Energy conservation and efficiency have always been the quest of engineers concerned with internal combustion engines. The diesel engine generally offers better fuel economy than its counterpart petrol engine. Even the diesel engine rejects about two thirds of the heat energy of the fuel, one-third to the coolant, and one third to the exhaust, leaving only about one-third as useful power output. Theoretically if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. Low Heat Rejection engines aim to do this by reducing the heat lost to the coolant. Thermal Barrier Coatings (TBCs) in diesel engines lead to advantages including higher power density, fuel efficiency, and multifuel capacity due to higher combustion chamber temperature. Using TBC can increase engine power by 8%, decrease the specific fuel consumption by 15-20% and increase the exhaust gas temperature by 200K. Although several systems have been used as TBC for different purposes, yttria stabilized zirconia with 7-8 wt.% yttria has received the most attention. Several factors playing important role in TBC life include thermal conductivity, thermo chemical stability at the service temperature, high thermo mechanical stability to the maximum service temperature and thermal expansion coefficient (TEC). This work mainly concentrates on the behaviour of three TBC powders under the same diesel engine conditions. This work finds out the best powder among yttria, alumina and zirconia to be used as a piston coating material i.e., the one resulting in lowest heat flux and low side skirt and bottom temperature has been chosen for the coating purpose. This work then analyses the coated sample for its surface properties such as hardness, roughness, corrosion resistance and microstructural study. This work aims at making it easier for the manufacturers choose the coating material for engine coating purposes and surface properties for operating them in their service period.

  17. Theoretical Investigation For The Effect of Fuel Quality on Gas Turbine Power Plants

    NASA Astrophysics Data System (ADS)

    AbdulRazzak khudair, Omar; Alwan Abass, Khetam; Saadi Abed, Noor; Hussain Ali, Khalid; AbdulAziz, Saad; Chlaib Shaboot, Ali

    2018-05-01

    Gas turbine engine power generation is declined dramatically because of the reduction in thermodynamic parameters as a work of turbine, compressor ratio, compressor work, and air mass flow rate and fuel consumption. There are two main objectives of this work, the first is related with the effect of fuel kinds and their quality on the operation of fuel flow divider and its performance specifically gear pump displacement and fuel flow rate to the combustion chambers of gas power plant. AL-DORA gas turbine power plant 35MW was chosen to predict these effects on its performance MATLAB Software program is used to perform thermodynamic calculations. Fuel distribution stage before the process of combustion and as a result of the kind and its quality, chemical reaction will occur between the fuel and the parts of the gear system of each pump of the flow divider, which causes the erosion of the internal pump wall and the teeth of the gear system, thus hampering the pump operation in terms of fuel discharge. The discharge of fuel form the eight external gates of flow divider is decreased and varied when going to the combustion chambers, so that, flow divider does not give reliable mass flow rate due to absence of accurate pressure in each of eight exit pipes. The second objective deals with the stage of fuel combustion process inside the combustion chamber. A comparative study based upon performance parameters, such as specific fuel consumption for gas and gasoil and power generation. Fuel poor quality causes incomplete combustion and increased its consumption, so that combustion products are interacted with the surface of the turbine blades, causing the erosion and create surface roughness of the blade and disruption of gas flow. As a result of this situation, turbulence flow of these gases will increase causing the separation of gas boundary layers over the suction surface of the blade. Therefore the amount of extracted gas will decrease causing retreat work done by turbine, as a result decline of power and gas turbine power plant efficiency causing the drop in the level of electric generation. The fuel quality is found to be a strong function of specific fuel consumption and its effects on the power generation and the efficiency of the gas turbine power plants and hence, the cycle performance shifts towards favorable conditions.

  18. Exhaust turbine and jet propulsion systems

    NASA Technical Reports Server (NTRS)

    Leist, Karl; Knornschild, Eugen

    1951-01-01

    DVL experimental and analytical work on the cooling of turbine blades by using ram air as the working fluid over a sector or sectors of the turbine annulus area is summarized. The subsonic performance of ram-jet, turbo-jet, and turbine-propeller engines with both constant pressure and pulsating-flow combustion is investigated. Comparison is made with the performance of a reciprocating engine and the advantages of the gas turbine and jet-propulsion engines are analyzed. Nacelle installation methods and power-level control are discussed.

  19. GEP 6.5LT Engine Cetane Window Evaluation for ATJ/JP-8 Fuel Blends

    DTIC Science & Technology

    2015-09-01

    matching pre- calibrated amplifier • BEI Shaft Encoder (0.2 CAD) • Wolff Instrumented Injector for needle lift The high speed data was recorded and post...14. ABSTRACT The European Stationary Cycle 13 Mode test and a power curve was performed on a 6.5L turbocharged V-8 diesel engine for three ATJ...15. SUBJECT TERMS ATJ, Alcohol to Jet, Cetane Number, Synthetic Fuel, JP-8, diesel engine, combustion 16. SECURITY CLASSIFICATION OF: 17

  20. Distinctive features of high-ash bituminuos coals combution with low milling fineness in furnace chambers with bottom blowing

    NASA Astrophysics Data System (ADS)

    Zroychikov, N. A.; Kaverin, A. A.; Biryukov, Ya A.

    2017-11-01

    Nowadays the problem of improvement of pulverized coal combustion schemes is an actual one for national power engineering, especially for combustion of coals with low milling fineness with significant portion of moisture or mineral impurities. In this case a big portion of inert material in the fuel may cause impairment of its ignition and combustion. In addition there are a lot of boiler installations on which nitrogen oxides emission exceeds standard values significantly. Decreasing of milling fineness is not without interest as a way of lowering an electric energy consumption for pulverization, which can reach 30% of power plant’s auxiliary consumption of electricity. Development of a combustion scheme meeting the requirements both for effective coal burning and environmental measures (related to NOx emission) is a complex task and demands compromising between these two factors, because implementation of NOx control by combustion very often leads to rising of carbon-in-ash loss. However widespread occurrence of such modern research technique as computer modeling allows to conduct big amount of variants calculations of combustion schemes with low cost and find an optimum. This paper presents results of numerical research of combined schemes of coal combustion with high portion of inert material based on straight-flow burners and nozzles. Several distinctive features of furnace aerodynamics, heat transfer and combustion has been found. The combined scheme of high-ash bituminouos coals combustion with low milling fineness, which allows effective combustion of pointed type of fuels with nitrogen oxides emission reduction has been proposed.

  1. Durability Evaluation of the Effects of Fischer-Tropsch Derived Synthetic Paraffinic Kerosene Blended up to 50% with Petroleum JP-8 on a Detroit Diesel/MTU 8V92TA Engine

    DTIC Science & Technology

    2011-12-01

    combustion is measured by the power output of the engine , the energy transferred to the coolant system, the energy transferred to the exhaust and energy...test equipment which affected the overall performance of the fuel blend engine . While JP-8/FT SPK fuel did not have a significant effect on engine ...components during this test, more testing is recommended to form a reliable conclusion on the effects of JP-8/FT-SPK blended fuel on the 8V92TA engine

  2. Predictive modeling and reducing cyclic variability in autoignition engines

    DOEpatents

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-08-30

    Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.

  3. Fuel governor for controlled autoignition engines

    DOEpatents

    Jade, Shyam; Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li

    2016-06-28

    Methods and systems for controlling combustion performance of an engine are provided. A desired fuel quantity for a first combustion cycle is determined. One or more engine actuator settings are identified that would be required during a subsequent combustion cycle to cause the engine to approach a target combustion phasing. If the identified actuator settings are within a defined acceptable operating range, the desired fuel quantity is injected during the first combustion cycle. If not, an attenuated fuel quantity is determined and the attenuated fuel quantity is injected during the first combustion cycle.

  4. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines...

  5. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines...

  6. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines...

  7. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines...

  8. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines...

  9. Use of Chemi-Ionization to Calculate Temperature of Hydrocarbon Flame

    NASA Astrophysics Data System (ADS)

    Shaikin, A. P.; Galiev, I. R.

    2018-04-01

    In the present paper, we have experimentally studied the dependences of the maximum temperature of the hydrocarbon flame on the electron current (due to the flame chemi-ionization), the width of the turbulent combustion zone, and the amount and composition of the air-fuel mixture in the combustion chamber of variable volume. Based on the proposed formula, we have been also able to estimate the temperature and compare with its experimental value showing that the convergence has been more than 85% at an excess air factor value ranging from 0.8 to 1.15. The obtained results can be used to predict and monitor the maximum flame temperature in the combustion chamber of an internal combustion engine and other power plants by using the ionization probe.

  10. Monitoring of sulfur dioxide emission resulting from biogas utilization on commercial pig farms in Taiwan.

    PubMed

    Su, Jung-Jeng; Chen, Yen-Jung

    2015-01-01

    The objective of this work tends to promote methane content in biogas and evaluate sulfur dioxide emission from direct biogas combustion without desulfurization. Analytical results of biogas combustion showed that combustion of un-desulfurized biogas exhausted more than 92% of SO₂ (P < 0.01). In the meantime, more than 90% of hydrogen sulfide was removed during the combustion process using un-desulfurized biogas (P < 0.01). Those disappeared hydrogen sulfide may deposit on the surfaces of power generator's engines or burner heads of boilers. Some of them (4.6-9.1% of H₂S) were converted to SO₂ in exhaust gas. Considering the impacts to human health and living environment, it is better to desulfurize biogas before any applications.

  11. Performance analysis of single stage libr-water absorption machine operated by waste thermal energy of internal combustion engine: Case study

    NASA Astrophysics Data System (ADS)

    Sharif, Hafiz Zafar; Leman, A. M.; Muthuraman, S.; Salleh, Mohd Najib Mohd; Zakaria, Supaat

    2017-09-01

    Combined heating, cooling, and power is also known as Tri-generation. Tri-generation system can provide power, hot water, space heating and air -conditioning from single source of energy. The objective of this study is to propose a method to evaluate the characteristic and performance of a single stage lithium bromide-water (LiBr-H2O) absorption machine operated with waste thermal energy of internal combustion engine which is integral part of trigeneration system. Correlations for computer sensitivity analysis are developed in data fit software for (P-T-X), (H-T-X), saturated liquid (water), saturated vapor, saturation pressure and crystallization temperature curve of LiBr-H2O Solution. Number of equations were developed with data fit software and exported into excel work sheet for the evaluation of number of parameter concerned with the performance of vapor absorption machine such as co-efficient of performance, concentration of solution, mass flow rate, size of heat exchangers of the unit in relation to the generator, condenser, absorber and evaporator temperatures. Size of vapor absorption machine within its crystallization limits for cooling and heating by waste energy recovered from exhaust gas, and jacket water of internal combustion engine also presented in this study to save the time and cost for the facilities managers who are interested to utilize the waste thermal energy of their buildings or premises for heating and air conditioning applications.

  12. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY: Environmental Protection... Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance...

  13. Supercharging an internal combustion engine by aid of a dual-rotor bi-flux axial compressor

    NASA Astrophysics Data System (ADS)

    Grǎdinariu, Andrei Cristian; Mihai, Ioan

    2016-12-01

    Internal combustion engines can be supercharged in order to enhance their performances [1-3]. Engine power is proportional to the quantity of fresh fluid introduced into the cylinder. At present, the general tendency is to try to obtain actual specific powers as high as possible, for as small as possible cylinder capacity, without increasing the generated pollution hazards. The present paper investigates the impact of replacing a centrifugal turbo-compressor with an axial double-rotor bi-flux one [4]. The proposed method allows that for the same number of cylinders, an increase in discharged airflow, accompanied by a decrease in fuel consumption. Using a program developed under the MathCad environment, the present work was aimed at studying the way temperature modifies at the end of isentropic compression under supercharging conditions. Taking into account a variation between extreme limits of the ambient temperature, its influence upon the evolution of thermal load coefficient was analyzed considering the air pressure at the compressor cooling system outlet. This analysis was completed by an exergetical study of the heat evacuated through cylinder walls in supercharged engine conditions. The conducted investigation allows verification of whether significant differences can be observed between an axial, dual-rotor, bi-flux compressor and centrifugal compressors.

  14. Mixed mode control method and engine using same

    DOEpatents

    Kesse, Mary L [Peoria, IL; Duffy, Kevin P [Metamora, IL

    2007-04-10

    A method of mixed mode operation of an internal combustion engine includes the steps of controlling a homogeneous charge combustion event timing in a given engine cycle, and controlling a conventional charge injection event to be at least a predetermined time after the homogeneous charge combustion event. An internal combustion engine is provided, including an electronic controller having a computer readable medium with a combustion timing control algorithm recorded thereon, the control algorithm including means for controlling a homogeneous charge combustion event timing and means for controlling a conventional injection event timing to be at least a predetermined time from the homogeneous charge combustion event.

  15. Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications

    NASA Technical Reports Server (NTRS)

    Barbi, E.; Mahan, J. R.; O'Brien, W. F.; Wagner, T. C.

    1989-01-01

    The residence time of the combustible mixture in the combustion chamber of a scramjet engine is much less than the time normally required for complete combustion. Hydrogen and hydrocarbon fuels require an ignition source under conditions typically found in a scramjet combustor. Analytical studies indicate that the presence of hydrogen atoms should greatly reduce the ignition delay in this environment. Because hydrogen plasmas are prolific sources of hydrogen atoms, a low-power, uncooled hydrogen plasma torch has been built and tested to evaluate its potential as a possible flame holder for supersonic combustion. The torch was found to be unstable when operated on pure hydrogen; however, stable operation could be obtained by using argon as a body gas and mixing in the desired amount of hydrogen. The stability limits of the torch are delineated and its electrical and thermal behavior documented. An average torch thermal efficiency of around 88 percent is demonstrated.

  16. Environmentally Powered Yarn Arrays that Sense, Actuate, Harvest, and Store Energy (NBIT III)

    DTIC Science & Technology

    2016-11-15

    than the gravimetric power generation capability of a cars combustion engine and (2) functioned as a torsional artificial muscle to rotate a heavy...rotor to over 90,000 rpm. By driving this torsional actuation using 19.6C fluctuations in air temperature, we obtained an average output electrical ...rpm. By driving this torsional actuation using 19.6°C fluctuations in air temperature, we obtained an average output electrical power of 124 W per

  17. The Use of Hydrogen as a Fuel for Engines in the Energy Cycle of Remote Production Facilities

    NASA Astrophysics Data System (ADS)

    Ivanov, M. F.; Kiverin, A. D.; Smygalina, A. E.; Zaichenko, V. M.

    2018-01-01

    The approach to using hydrogen as fuel, which ensures the smooth operation of autonomous power systems that use renewable energy sources (wind or solar power installations) with the stochastic mode of power generation, has been presented. The fundamental possibility of implementing the nondetonation combustion of hydrogen via the addition of ecologically clean components or a small percentage of methane has been demonstrated by methods of mathematical modeling.

  18. Automotive Stirling Engine Mod 1 Design Review, volume 2

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The auxiliaries and the control system for the ASE MOD I: (1) provide the required fuel and air flows for a well controlled combustion process, generating heat to the Stirling cycle; (2) provide a driver acceptable method for controlling the power output of the engine; (3) provide adequate lubrication and cooling water circulation; (4) generate the electric energy required for engine and vehicle operation; (5) provide a driver acceptable method for starting, stopping and monitoring the engine; and (6) provide a guard system, that protects the engine at component or system malfunction. The control principles and the way the different components and sub-systems interact are described as well as the different auxiliaries, the air fuel system, the power control systems and the electronics. The arrangement and location of auxiliaries and other major components are also examined.

  19. Performance and driveline analyses of engine capacity in range extender engine hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Praptijanto, Achmad; Santoso, Widodo Budi; Nur, Arifin; Wahono, Bambang; Putrasari, Yanuandri

    2017-01-01

    In this study, range extender engine designed should be able to meet the power needs of a power generator of hybrid electrical vehicle that has a minimum of 18 kW. Using this baseline model, the following range extenders will be compared between conventional SI piston engine (Baseline, BsL), engine capacity 1998 cm3, and efficiency-oriented SI piston with engine capacity 999 cm3 and 499 cm3 with 86 mm bore and stroke square gasoline engine in the performance, emission prediction of range extender engine, standard of charge by using engine and vehicle simulation software tools. In AVL Boost simulation software, range extender engine simulated from 1000 to 6000 rpm engine loads. The highest peak engine power brake reached up to 38 kW at 4500 rpm. On the other hand the highest torque achieved in 100 Nm at 3500 rpm. After that using AVL cruise simulation software, the model of range extended electric vehicle in series configuration with main components such as internal combustion engine, generator, electric motor, battery and the arthemis model rural road cycle was used to simulate the vehicle model. The simulation results show that engine with engine capacity 999 cm3 reported the economical performances of the engine and the emission and the control of engine cycle parameters.

  20. Dynamic Temperature and Pressure Measurements in the Core of a Propulsion Engine

    NASA Technical Reports Server (NTRS)

    Schuster, Bill; Gordon, Grant; Hultgren, Lennart S.

    2015-01-01

    Dynamic temperature and pressure measurements were made in the core of a TECH977 propulsion engine as part of a NASA funded investigation into indirect combustion noise. Dynamic temperature measurements were made in the combustor, the inter-turbine duct, and the mixer using ten two-wire thermocouple probes. Internal dynamic pressure measurements were made at the same locations using piezoresistive transducers installed in semi-infinite coils. Measurements were acquired at four steady state operating conditions covering the range of aircraft approach power settings. Fluctuating gas temperature spectra were computed from the thermocouple probe voltage measurements using a compensation procedure that was developed under previous NASA test programs. A database of simultaneously acquired dynamic temperature and dynamic pressure measurements was produced. Spectral and cross-spectral analyses were conducted to explore the characteristics of the temperature and pressure fluctuations inside the engine, with a particular focus on attempting to identify the presence of indirect combustion noise.

  1. Performance, emissions, and physical characteristics of a rotating combustion aircraft engine

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Hermes, W. L.; Mount, R. E.; Myers, D.

    1976-01-01

    The RC2-75, a liquid cooled two chamber rotary combustion engine (Wankel type), designed for aircraft use, was tested and representative baseline (212 KW, 285 BHP) performance and emissions characteristics established. The testing included running fuel/air mixture control curves and varied ignition timing to permit selection of desirable and practical settings for running wide open throttle curves, propeller load curves, variable manifold pressure curves covering cruise conditions, and EPA cycle operating points. Performance and emissions data were recorded for all of the points run. In addition to the test data, information required to characterize the engine and evaluate its performance in aircraft use is provided over a range from one half to twice its present power. The exhaust emissions results are compared to the 1980 EPA requirements. Standard day take-off brake specific fuel consumption is 356 g/KW-HR (.585 lb/BHP-HR) for the configuration tested.

  2. Control installation for the proportioning of a secondary air quantity for improvement of the combustion in internal combustion engines or the afterburning of the exhaust gases of internal combustion engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bockelmann, W.; Groezinger, H.; Woebky, P.U.

    1977-01-04

    A control installation is described for the dosing or proportioning of a secondary air quantity for the improvement of combustion in internal combustion engines, or the after-burning of the exhaust gases of internal combustion engines. An auxiliary arrangement is responsive to an emergency signal for effecting the prompt shutting-off of the secondary air. The emergency signal may be initiated in response to a failure in the ignition voltage of the internal combustion engine; an increase in the hydrocarbon content of the exhaust gases; a disparity between the position of the mixture dosing element and the engine rotational speed; the exceedingmore » of a limiting temperature in the exhaust gas manifold; or the exceeding of a limiting temperature in the afterburner.« less

  3. Adaptive individual-cylinder thermal state control using piston cooling for a GDCI engine

    DOEpatents

    Roth, Gregory T; Husted, Harry L; Sellnau, Mark C

    2015-04-07

    A system for a multi-cylinder compression ignition engine includes a plurality of nozzles, at least one nozzle per cylinder, with each nozzle configured to spray oil onto the bottom side of a piston of the engine to cool that piston. Independent control of the oil spray from the nozzles is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the oil spray onto the piston in that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder engine, including determining a combustion parameter for combustion taking place in in a cylinder of the engine and controlling an oil spray targeted onto the bottom of a piston disposed in that cylinder is also presented.

  4. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Gregory T.; Sellnau, Mark C.

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder ofmore » the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.« less

  5. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  6. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  7. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  8. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  9. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  10. Coolant Design System for Liquid Propellant Aerospike Engines

    NASA Astrophysics Data System (ADS)

    McConnell, Miranda; Branam, Richard

    2015-11-01

    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  11. Tripropellant engine study

    NASA Technical Reports Server (NTRS)

    Wheeler, D. B.

    1977-01-01

    Work conducted was devoted to three main tasks. Thermochemical equilibrium performance data were assembled to establish the expected performance calculations of the mode 1 engine propellant combinations and thermodynamic and transport data for the products of combustion. Turbine drive gas characteristics were also established. Thrust chamber and nozzle cooling studies were devoted to the evaluation of H2, C3H8, CH4, and RP-1 as coolants in the existing SSME cooling circuit geometry. It was found that all these candidate coolants are feasible without limiting the desired operating conditions with the exception of RP-1, which would limit the maximum P(c) to 2000 psia. RP-1 could be used, however, to cool the nozzle only without imposing the chamber pressure limit. A total of 15 candidate engine system cycles were selected and a preliminary engine system balance was conducted for 12 of these systems to establish component operating flowrates, pressures and temperatures. It was found that the staged combustion cycles employing fuel rich LOX/hydrocarbon turbine drive gases are power limited.

  12. Automotive Stirling engine development program

    NASA Technical Reports Server (NTRS)

    Ernst, W.; Richey, A.; Farrell, R.; Riecke, G.; Smith, G.; Howarth, R.; Cronin, M.; Simetkosky, M.; Meacher, J.

    1986-01-01

    The major accomplishments were the completion of the Basic Stirling Engine (BSE) and the Stirling Engine System (SES) designs on schedule, the approval and acceptance of those designs by NASA, and the initiation of manufacture of BSE components. The performance predictions indicate the Mod II engine design will meet or exceed the original program goals of 30% improvement in fuel economy over a conventional Internal Combustion (IC) powered vehicle, while providing acceptable emissions. This was accomplished while simultaneously reducing Mod II engine weight to a level comparable with IC engine power density, and packaging the Mod II in a 1985 Celebrity with no external sheet metal changes. The projected mileage of the Mod II Celebrity for the combined urban and highway CVS cycle is 40.9 mpg which is a 32% improvement over the IC Celebrity. If additional potential improvements are verified and incorporated in the Mod II, the mileage could increase to 42.7 mpg.

  13. Comparison of steady-state and transient CVS cycle emission of an automotive Stirling engine

    NASA Technical Reports Server (NTRS)

    Farrell, R. A.; Bolton, R. J.

    1983-01-01

    The Automotive Stirling Engine Development Program is to demonstrate a number of goals for a Stirling-powered vehicle. These goals are related to an achievement of specified maximum emission rates, a combined cycle fuel economy 30 percent better than a comparable internal-combustion engine-powered automobile, multifuel capability, competitive cost and reliability, and a meeting of Federal standards concerning noise and safety. The present investigation is concerned with efforts related to meeting the stringent emission goals. Attention is given to the initial development of a procedure for predicting transient CVS urban cycle gaseous emissions from steady-state engine data, taking into account the employment of the test data from the first-generation automotive Stirling engine. A large amount of steady-state data from three Mod I automotive Stirling engines were used to predict urban CVS cycle emissions for the Mod I Lerma vehicle.

  14. The problem of carrying out a diagnosis of an internal combustion engine by vibroacoustical parameters

    NASA Technical Reports Server (NTRS)

    Lukanin, V. N.; Sidorov, V. I.

    1973-01-01

    The physics of noise formation in an internal combustion engine is discussed. A dependence of the acoustical radiation on the engine operating process, its construction, and operational parameters, as well as on the degree of wear on its parts, has been established. An example of tests conducted on an internal combustion engine is provided. A system for cybernetic diagnostics for internal combustion engines by vibroacoustical parameters is diagrammed.

  15. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc.more » in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business« less

  16. ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1982-01-01

    A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This final safety evaluation report (FSER) documents the technical review of the System 80+ standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the System 80+ design was submitted by Combustion Engineering, Inc., now Asea Brown Boveri-Combustion Engineering (ABB-CE) as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. System 80+ is a pressurized water reactor with a rated power of 3914 megawatts thermal (MWt) and a design power of 3992 MWt at which accidents are analyzed. Many features of the System 80+ are similar to those of Abb-CE`s Systemmore » 80 design from which it evolved. Unique features of the System 80+ design included: a large spherical, steel containment; an in-containment refueling water storage tank; a reactor cavity flooding system, hydrogen ignitors, and a safety depressurization system for severe accident mitigation; a combustion gas turbine for an alternate ac source; and an advanced digitally based control room. On the basis of its evaluation and independent analyses, the NRC staff concludes that ABB-CE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the System 80+ standard design. This document, Volume 1, contains Chapters 1 through 14 of this report.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This final safety evaluation report (FSER) documents the technical review of the System 80+ standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the system 80+ design was submitted by Combustion Engineering, Inc., now Asea Brown Boveri-Combustion Engineering (ABB-CE) as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. System 80+ is a pressurized water reactor with a rated power of 3914 megawatts thermal (MWt) and a design power of 3992 MWt at which accidents are analyzed. Many features of the System 80+ are similar to those of ABB-CE`s Systemmore » 80 design from which it evolved. Unique features of the System 80+ design include: a large spherical, steel containment; an in-containment refueling water storage tank; a reactor cavity flooding system, hydrogen ignitors and a safety depressurization system for severe accident mitigation; a combustion gas turbine for an alternate ac source; and an advanced digitally based control room. On the basis of its evaluation and independent analyses, the NRC staff concludes that ABB-CE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the System 80+ standard design. This document, Volume 2, contains Chapters 15 through 22 and Appendices A through E.« less

  19. Energy Efficient Engine (E3) combustion system component technology performance report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.

  20. Investigation of an anti-knock index and hydrocarbon emissions of various natural gas blends.

    DOT National Transportation Integrated Search

    2016-04-01

    The North American rail industry is examining the use of natural gas to reduce fuel costs for locomotives that are powered by dual : fuel engines. This report evaluates the ability of an existing methane number algorithm to predict rapid combustion i...

  1. 40 CFR Table 1 to Subpart Ppppp of... - Emission Limitations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustion engines with rated power of 25 hp (19 kW) or more a. limit the concentration of CO or THC to 20 ppmvd or less (corrected to 15 percent O2 content); orb. achieve a reduction in CO or THC of 96 percent...

  2. 40 CFR Table 1 to Subpart Ppppp of... - Emission Limitations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustion engines with rated power of 25 hp (19 kW) or more a. limit the concentration of CO or THC to 20 ppmvd or less (corrected to 15 percent O2 content); orb. achieve a reduction in CO or THC of 96 percent...

  3. 40 CFR Table 1 to Subpart Ppppp of... - Emission Limitations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustion engines with rated power of 25 hp (19 kW) or more a. limit the concentration of CO or THC to 20 ppmvd or less (corrected to 15 percent O2 content); orb. achieve a reduction in CO or THC of 96 percent...

  4. 40 CFR Table 1 to Subpart Ppppp of... - Emission Limitations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustion engines with rated power of 25 hp (19 kW) or more a. limit the concentration of CO or THC to 20 ppmvd or less (corrected to 15 percent O2 content); orb. achieve a reduction in CO or THC of 96 percent...

  5. 40 CFR Table 1 to Subpart Ppppp of... - Emission Limitations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustion engines with rated power of 25 hp (19 kW) or more a. limit the concentration of CO or THC to 20 ppmvd or less (corrected to 15 percent O2 content); orb. achieve a reduction in CO or THC of 96 percent...

  6. 29 CFR 1926.1501 - Cranes and derricks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... internal combustion engine powered equipment exhausts in enclosed spaces, tests shall be made and recorded... transmitter shall be de-energized or tests shall be made to determine if electrical charge is induced on the..., or locomotive cranes in use shall meet the applicable requirements for design, inspection...

  7. Influence of the cooling degree upon performances of internal combustion engine

    NASA Astrophysics Data System (ADS)

    Grǎdinariu, Andrei Cristian; Mihai, Ioan

    2016-12-01

    Up to present, air cooling systems still raise several unsolved problems due to conditions imposed by the environment in terms of temperature and pollution levels. The present paper investigates the impact of the engine cooling degree upon its performances, as important specific power is desired for as low as possible fuel consumption. A technical solution advanced by the authors[1], consists of constructing a bi-flux compressor, which can enhance the engine's performances. The bi-flux axial compressor accomplishes two major functions, that is it cools down the engine and it also turbocharges it. The present paper investigates the temperature changes corresponding to the fresh load, during the use of a bi-flux axial compressor. This compressor is economically simple, compact, and offers an optimal response at low rotational speeds of the engine, when two compression steps are used. The influence of the relative coefficient of air temperature drop upon working agent temperature at the intercooler exit is also investigated in the present work. The variation of the thermal load coefficient by report to the working agent temperature is also investigated during engine cooling. The variation of the average combustion temperature is analyzed in correlation to the thermal load coefficient and the temperatures of the working fluid at its exit from the cooling system. An exergetic analysis was conducted upon the influence of the cooling degree on the motor fluid and the gases resulted from the combustion process.

  8. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOEpatents

    Janata, Jiri; McVay, Gary L.; Peden, Charles H.; Exarhos, Gregory J.

    1998-01-01

    A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

  9. Cavity Coupled Aeroramp Injector Combustion Study

    DTIC Science & Technology

    2009-08-01

    Lin 5 Taitech Inc., Beavercreek, OH, 45430 The difficulties with fueling of supersonic combustion ramjet engines with hydrocarbon based fuels...combustor to not force the pre- combustion shock train out of the isolator and, in a full engine with inlet, cause an inlet unstart and likely...metric used to quantify engine performance is the combustion efficiency. Figure 9 shows the comparison of the combustion efficiency as a function of

  10. The Design, Construction, and Experimental Evaluation of a Compact Thermoacoustic-Stirling Engine Generator for Use in a micro-CHP Appliance

    NASA Astrophysics Data System (ADS)

    Wilcox, Douglas A., Jr.

    Micro combined heat and power or micro-CHP is the simultaneous generation of useful heat and electricity on a residential scale. The heat and electricity are produced at the point of use, avoiding the distribution losses associated with a centralized power plant. These appliances combine a conventional gas-fired condensing boiler with an electric power module capable of generating electricity from the heat of combustion. Currently, the leading power modules for micro-CHP appliances are free-piston Stirling engines (FPSEs) which can generate 1050 watts of electricity at a thermal-to-electric efficiency of 26%.[1] These external combustion engines have been under development for the last 25 years, with FPSE micro-CHP appliances only recently being introduced to the commercial market. Publications by developers assert unlimited service life and high efficiency, with low noise and emissions; but despite these claims, the actual reliability and cost of manufacturing has prevented their successful mass-market adoption. A Thermoacoustic-Stirling Engine Generator or TaSEG is one possible alternative to FPSE's. A TaSEG uses a thermoacoustic engine, or acoustic heat engine, which can efficiently convert high temperature heat into acoustic power while maintaining a simple design with fewer moving parts than traditional FPSE's. This simpler engine is coupled to an electrodynamic alternator capable of converting acoustic power into electricity. This thesis outlines the design, construction, and experimental evaluation of a TaSEG which is appropriate for integration with a gas burner inside of a residential micro- CHP appliance. The design methodology is discussed, focusing on how changes in the geometry affected the predicted performance. Details of its construction are given and the performance of the TaSEG is then outlined. The TaSEG can deliver 132 watts of electrical output power to an electric load with an overall measured thermal-to-electric (first law) efficiency of eta T-E=8.32%, corresponding to 14% of Carnot etac. The volumetric power density of this TaSEG is 8.9 kW/m3. While the demonstrated overall efficiency is modest (for reasons that are largely understood), this TaSEG has moved the technology away from laboratory prototypes toward a commercially viable power module having a design configuration suitable for implementation in a micro-CHP appliance. Based on the TaSEG's measured experimental performance results, recommendations for future work that might improve the overall efficiency of the TaSEG are also presented.

  11. Design and experimental investigation of an oxy-fuel combustion system for magnetohydrodynamic power extraction

    NASA Astrophysics Data System (ADS)

    Hernandez, Manuel Johannes

    A general consensus in the scientific and research community is the need to restrict carbon emissions in energy systems. Therefore, extensive research efforts are underway to develop the next generation of energy systems. In the field of power generation, researchers are actively investigating novel methods to produce electricity in a cleaner, efficient form. Recently, Oxy-Combustion for magnetohydrodynamic power extraction has generated significant interest, since the idea was proposed as a method for clean power generation in coal and natural gas power plants. Oxy-combustion technologies have been proposed to provide high enthalpy, electrically conductive flows for direct conversion of electricity. Direct power extraction via magnetohydrodynamics (MHD) can occur as a consequence of the motion of "seeded" combustion products in the presence of magnetic fields. However, oxy-combustion technologies for MHD power extraction has not been demonstrated in the available literature. Furthermore, there are still fundamental unexplored questions remaining, associated with this technology, for MHD power extraction. In this present study, previous magnetohydrodynamic combustion technologies and technical issues in this field were assessed to develop a new combustion system for electrically conductive flows. The research aims were to fully understand the current-state-of-the-art of open-cycle magnetohydrodynamic technologies and present new future directions and concepts. The design criteria, methodology, and technical specifications of an advanced cooled oxy-combustion technology are presented in this dissertation. The design was based on a combined analytical, empirical, and numerical approach. Analytical one-dimensional (1D) design tools initiated design construction. Design variants were analyzed and vetted against performance criteria through the application of computational fluid dynamics modeling. CFD-generated flow fields permitted insightful visualization of the design concepts. Therefore, numerical computational fluid dynamics (CFD) models were developed to design and optimize the combustion flow fields of oxy-fuel combustion systems. These models were analyzed to understand the boundary layer and heat transfer profile and qualitative behaviors in the product designs. Advanced materials for high-temperature applications were assessed for their possible implementation in the product design. A trade-off analysis indicated that this scheme may incur elevated product cost and a difficulty in manufacturing. Active cooling strategies were considered for product development. A rocket-based cooling scheme, regenerative cooling, was implemented to provide active cooling. In the hot gas path (HGP) cooling design, CFD models were developed to predict the variation of heat removal along the oxy-combustion wall for various operating conditions. The oxy-combustion technology was manufactured using electrical discharge machining (EDM). The product development lifecycle in this dissertation encompassed preliminary design, detailed design, and demonstration and validation of the product. Towards the final stages of the product development, Fuel-rich oxy combustion experiments were carried out to demonstrate and observe flame characteristics from the designed technology and to predict heat transfer loads. The demonstration findings of oxy-combustion flames are presented in this work to contribute the developing field of MHD direct power extraction, which lacks oxy-combustion design data and qualitative combustion datasets. The findings show that this oxy-combustion concept is capable of providing a high-enthalpy MHD environment for seeding, in order to render the flow to be conductive. Based on previous findings, temperatures in the range of 2800-3000 K may enable magnetohydrodynamic power extraction. The combustor hardware design was developed to contribute to engineered systems rated less than 100 kW for demonstration. The product hardware was designed to produce gas velocities of 2000 m/s gas and temperatures within the following range of 2800-3000 K. In the injection system, the momentum flux ratio (MFR) was estimated to be 16. The heat loss fraction in this oxy-combustion system, based on CFD and analytical calculations, at optimal operating conditions, was estimated to be less than 10 percent. Furthermore, the heat transfer design removed approximately 7 MW/m2. The experimental performance of oxy-combustion systems demonstrates promise for advanced power generation applications.

  12. Controls and measurements of KU engine test cells for biodiesel, SynGas, and assisted biodiesel combustion

    NASA Astrophysics Data System (ADS)

    Cecrle, Eric Daniel

    This thesis is comprised of three unique data acquisition and controls (CDAQ) projects. Each of these projects differs from each other; however, they all include the concept of testing renewable or future fuel sources. The projects were the following: University of Kansas's Feedstock-to-Tailpipe Initiative's Synthesis Gas Reforming rig, Feedstock-to-Tailpipe Initiative's Biodiesel Single Cylinder Test Stand, and a unique Reformate Assisted Biodiesel Combustion architecture. The main responsibility of the author was to implement, develop and test CDAQ systems for the projects. For the Synthesis Gas Reforming rig, this thesis includes a report that summarizes the analysis and solution of building a controls and data acquisition system for this setup. It describes the purpose of the sensors selected along with their placement throughout the system. Moreover, it includes an explanation of the planned data collection system, along with two models describing the reforming process useful for system control. For the Biodiesel Single Cylinder Test Stand, the responsibility was to implement the CDAQ system for data collection. This project comprised a variety of different sensors that are being used collect the combustion characteristics of different biodiesel formulations. This project is currently being used by other graduates in order to complete their projects for subsequent publication. For the Reformate Assisted Biodiesel Combustion architecture, the author developed a reformate injection system to test different hydrogen and carbon monoxide mixtures as combustion augmentation. Hydrogen combustion has certain limiting factors, such as pre-ignition in spark ignition engines and inability to work as a singular fuel in compression ignition engines. To offset these issues, a dual-fuel methodology is utilized by injecting a hydrogen/carbon monoxide mixture into the intake stream of a diesel engine operating on biodiesel. While carbon monoxide does degrade some of the desirable properties of hydrogen, it acts partially like a diluent in order to prevent pre-ignition from occurring. The result of this mixture addition allows the engine to maintain power while reducing biodiesel fuel consumption with a minimal NOx emissions increase.

  13. The Effects of Cylinder Head Gasket Opening on Engine Temperature Distribution for a Water-Cooled Engine

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Chi, G. X.

    2017-02-01

    In a liquid-cooled engine, coolant is pumped throughout the water jacket of the engine, drawing heat from the cylinder head, pistons, combustion chambers, cylinder walls, and valves, etc. If the engine temperature is too high or too low, various problems will occur. These include overheating of the lubricating oil and engine parts, excessive stresses between engine parts, loss of power, incomplete burning of fuel, etc. Thus, the engine should be maintained at the proper operating temperature. This study investigated the effects of different cylinder head gasket opening on the engine temperature distributions in a water-cooled motorcycle engine. The numerical predictions for the temperature distribution are in good agreement with the experimental data within 20%.

  14. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.

  15. Cleaner, More Efficient Diesel Engines

    ScienceCinema

    Musculus, Mark

    2018-01-16

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  16. 40 CFR 60.4232 - How long must my engines meet the emission standards if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...

  17. 40 CFR 60.4232 - How long must my engines meet the emission standards if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...

  18. 40 CFR 60.4232 - How long must my engines meet the emission standards if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...

  19. 40 CFR 60.4202 - What emission standards must I meet for emergency engines if I am a stationary CI internal...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emergency engines if I am a stationary CI internal combustion engine manufacturer? 60.4202 Section 60.4202... Combustion Engines Emission Standards for Manufacturers § 60.4202 What emission standards must I meet for emergency engines if I am a stationary CI internal combustion engine manufacturer? (a) Stationary CI...

  20. 40 CFR 60.4232 - How long must my engines meet the emission standards if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...

  1. 40 CFR 60.4232 - How long must my engines meet the emission standards if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...

  2. Performance and Thrust-to-Weight Optimization of the Dual-Expander Aerospike Nozzle Upper Stage Rocket Engine

    DTIC Science & Technology

    2012-06-01

    calculates a constant convection heat transfer coefficient on the hot and cold side of the cooling jacket wall. The calculated maximum wall temperature for...regeneratively cools the combustion chamber and nozzle. The heat transferred to the fuel from cooling provides enough power to the turbine to power both... heat transfer at the throat compared to a bell nozzle. This increase in heat transfer surface area means more power to the turbine, increased chamber

  3. Modern Weapon-Guided Missile (Xiandai Wugi-Daodan)

    DTIC Science & Technology

    1981-11-27

    mind - . . f b ... . " i• -- 4 a . f l - . a ..••’•’:,’ • ’ 2m • LIN The destructive power of a nucler payload comrea Crom the nuclear-energy...rest due of firework gradually descends as the power - is lost. This fact shows that the ascending firework is propelled by the " reaction of combustion...vehicle powered by thrust provided by a rocket engine. In different usage.’, a rocket can have different effective payloads. If a warhead is installed

  4. A Numerical Simulation of the Energy Conversion Process in Microwave Rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibata, Teppei; Oda, Yasuhisa; Komurasaki, Kimiya

    2008-04-28

    In Microwave Rocket, a high power microwave beam ionizes atmospheric air inside of the thruster and the ionization front drives a shock wave. In this paper, CFD simulation was conducted using measured propagation velocity of the ionization front to evaluate the engine performance. As a result, maximum cycle efficiency was obtained at the power density of about 200 kW/m{sup 2} which is the transitional beam power condition between Microwave Supported Combustion and Microwave Supported Detonation regimes.

  5. Prediction of high frequency combustion instability in liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Kim, Y. M.; Chen, C. P.; Ziebarth, J. P.; Chen, Y. S.

    1992-01-01

    The present use of a numerical model developed for the prediction of high-frequency combustion stabilities in liquid propellant rocket engines focuses on (1) the overall behavior of nonlinear combustion instabilities (2) the effects of acoustic oscillations on the fuel-droplet vaporization and combustion process in stable and unstable engine operating conditions, oscillating flowfields, and liquid-fuel trajectories during combustion instability, and (3) the effects of such design parameters as inlet boundary conditions, initial spray conditions, and baffle length. The numerical model has yielded predictions of the tangential-mode combustion instability; baffle length and droplet size variations are noted to have significant effects on engine stability.

  6. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Installation of internal combustion engines-TB/ALL. 32.35-5 Section 32.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL... combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...

  7. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Installation of internal combustion engines-TB/ALL. 32.35-5 Section 32.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL... combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...

  8. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Installation of internal combustion engines-TB/ALL. 32.35-5 Section 32.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL... combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...

  9. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Installation of internal combustion engines-TB/ALL. 32.35-5 Section 32.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL... combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...

  10. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Installation of internal combustion engines-TB/ALL. 32.35-5 Section 32.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL... combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...

  11. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOEpatents

    Janata, J.; McVay, G.L.; Peden, C.H.; Exarhos, G.J.

    1998-07-14

    A method and apparatus are disclosed for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO{sub 2} is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine. 4 figs.

  12. Study on the high speed scramjet characteristics at Mach 10 to 15 flight condition

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Itoh, K.; Tanno, H.; Komuro, T.; Sunami, T.; Sato, K.; Ueda, S.

    A scramjet engine model, designed to establish steady and strong combustion at free-stream conditions corresponding to Mach 12 flight, was tested in a large free-piston driven shock tunnel. Combustion tests of a previous engine model showed that combustion heat release obtained in the combustor was not sufficient to maintain strong combustion. For a new scramjet engine model, the inlet compression ratio was increased to raise the static temperature and density of the flow at the combustor entrance. As a result of the aerodynamic design change, the pressure rise due to combustion increased and the duration of strong combustion conditions in the combustor was extended. A hyper-mixer injector designed to enhance mixing and combustion by introducing streamwise vortices was applied to the new engine model. The results showed that the hyper mixer injector was very effective in promoting combustion heat release and establishing steady and strong combustion in the combustor.

  13. Alternative Fuels Data Center

    Science.gov Websites

    Experimental Vehicle Definition and Requirements A vehicle weighing 6,000 pounds or less that is primarily powered by a source other than a combustion engine may be considered an experimental vehicle. A driver may not operate an experimental vehicle unless it is registered as such with the North Dakota

  14. 46 CFR 169.607 - Keel cooler installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...

  15. 46 CFR 169.607 - Keel cooler installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...

  16. 46 CFR 169.607 - Keel cooler installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...

  17. 46 CFR 169.607 - Keel cooler installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...

  18. 46 CFR 169.607 - Keel cooler installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...

  19. Conventional engine technology. Volume 1: Status of OTTO cycle engine technology

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.

    1981-01-01

    Federally-mandated emissions standards have led to major changes in automotive technology during the last decade. Efforts to satisfy the new standards were directed more toward the use of add-on devices, such as catalytic converters, turbochargers, and improved fuel metering, than toward complete engine redesign. The resulting changes are described and the improvement brought about by them in fuel economy and emissions levels are fully documented. Four specific categories of gasoline-powered internal combustion engines are covered, including subsystem and total engine development. Also included are the results of fuel economy and exhaust emissions tests performed on representative vehicles from each category.

  20. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  1. Micro-cogen AMTEC systems for residential and transportation opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mital, R.; Rasmussen, J.R.; Hunt, T.

    1998-07-01

    This paper describes the design and anticipated performance of high efficiency AMTEC systems suitable for natural gas fired micro-cogeneration for residential and transportation applications. AMTEC systems have a relatively flat efficiency curve from a few tens of watts to several kilowatts. This unique quality of AMTEC makes it well suited for micro-cogen as opposed to other technologies, such as internal combustion (IC) engines, which lose efficiency at low power levels. AMTEC also offers additional advantages of high efficiency, high reliability, low noise and low emissions. Combustion heated AMTEC cogeneration systems can also be used in trucks and trailers to keepmore » the diesel engines and cabs warm, provide electrical power for charging the battery and maintain power to the electrical systems during stand down periods. A market study indicates that residential micro-cogen units should have a design generating capacity between 0.5--2 kW. AMTEC systems producing 500 W net electric power have been designed and are presently being built. A 350 W prototype unit is being manufactured for a European firm as a trial unit for central heat and power from a home furnace. Modular one kilowatt units are also being designed that will allow combination into multi-kilowatt systems. The results of feasibility studies focused on price/Watt, efficiency, noise, emission, vibrations, expected lifetime and maintenance cost are also presented in this paper.« less

  2. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  3. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  4. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  5. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  6. 76 FR 47092 - Approval and Promulgation of Implementation Plans; Reasonably Available Control Technology for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... oxides of nitrogen from the stationary reciprocating, diesel fuel fired, internal combustion engines..., diesel fuel fired, internal combustion engines--one existing and one new engine. B. Why is EPA proposing... both engines. In addition, the Conditions of Approval specify the NO X emissions limits, combustion...

  7. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  8. An Extended Combustion Model for the Aircraft Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Andres-Mihăilă, Mihai; Matei, Pericle Gabriel

    2014-08-01

    The paper consists in modelling and simulation of the combustion in a turbojet engine in order to find optimal characteristics of the burning process and the optimal shape of combustion chambers. The main focus of this paper is to find a new configuration of the aircraft engine combustion chambers, namely an engine with two main combustion chambers, one on the same position like in classical configuration, between compressor and turbine and the other, placed behind the turbine but not performing the role of the afterburning. This constructive solution could allow a lower engine rotational speed, a lower temperature in front of the first stage of the turbine and the possibility to increase the turbine pressure ratio by extracting the flow stream after turbine in the inner nozzle. Also, a higher thermodynamic cycle efficiency and thrust in comparison to traditional constant-pressure combustion gas turbine engines could be obtained.

  9. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing such... Stationary Spark Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or...

  10. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing such... Stationary Spark Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or...

  11. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing such... Stationary Spark Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or...

  12. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing such... Stationary Spark Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or...

  13. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing such... Stationary Spark Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or...

  14. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmapmore » for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features such as blade cooling. The overall technical readiness of the supercritical oxy-combustion cycle is TRL 2, Technology Concept, due to the maturity level of the supercritical oxy-combustor for solid fuels, and several critical supporting components, as identified in the Technical Gap Analysis. The supercritical oxycombustor for solid fuels operating at pressures near 100 atm is a unique component of the supercritical oxy-combustion cycle. In addition to the low TRL supercritical oxy-combustor, secondary systems were identified that would require adaptation for use with the supercritical oxycombustion cycle. These secondary systems include the high pressure pulverized coal feed, high temperature cyclone, removal of post-combustion particulates from the high pressure cyclone underflow stream, and micro-channel heat exchangers tolerant of particulate loading. Bench scale testing was utilized to measure coal combustion properties at elevated pressures in a CO{sub 2} environment. This testing included coal slurry preparation, visualization of coal injection into a high pressure fluid, and modification of existing test equipment to facilitate the combustion properties testing. Additional bench scale testing evaluated the effectiveness of a rotary atomizer for injecting a coal-water slurry into a fluid with similar densities, as opposed to the typical application where the high density fluid is injected into a low density fluid. The swirl type supercritical oxy-combustor was developed from initial concept to an advanced design stage through numerical simulation using FLUENT and Chemkin to model the flow through the combustor and provide initial assessment of the coal combustion reactions in the flow path. This effort enabled the initial combustor mechanical layout, initial pressure vessel design, and the conceptual layout of a pilot scale test loop. A pilot scale demonstration of the supercritical oxy-combustion cycle is proposed as the next step in the technology development. This demonstration would advance the supercritical oxy-combustion cycle and the supercritical oxy-combustor from a current TRL of 2, Technology Concept, to TRL 6, Pilot Scale System Demonstrated in a Relevant Environment, and enable the evaluation and continued refinement of the supercritical oxy-combustor and critical secondary systems.« less

  15. Control and protection system for an installation for the combined production of electrical and thermal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agazzone, U.; Ausiello, F.P.

    1981-06-23

    A power-generating installation comprises a plurality of modular power plants each comprised of an internal combustion engine connected to an electric machine. The electric machine is used to start the engine and thereafter operates as a generator supplying power to an electrical network common to all the modular plants. The installation has a control and protection system comprising a plurality of control modules each associated with a respective plant, and a central unit passing control signals to the modules to control starting and stopping of the individual power plants. Upon the detection of abnormal operation or failure of its associatedmore » power plant, each control module transmits an alarm signal back to the central unit which thereupon stops, or prevents the starting, of the corresponding power plant. Parameters monitored by each control module include generated current and inter-winding leakage current of the electric machine.« less

  16. Design of a micro-Wankel rotary engine for MEMS fabrication

    NASA Astrophysics Data System (ADS)

    Jiang, Kyle C.; Prewett, Philip D.; Ward, M. C. L.; Tian, Y.; Yang, H.

    2001-04-01

    This paper presents the design of a micro Wankel engine for deep etching micro fabrication. The micro engine design is part of a research program in progress to develop a micro actuator to supply torque for driving micro machines. To begin with, the research work concentrates on the micro Wankel engine powered by liquid CO2. Then, a Wankel internal combustion engines will be investigated. The Wankel engine is a planetary rotation engine. It is selected because of its largely 2D structure which is suitable for lithographic processes. The engine has been simplified and redesigned to suit the fabrication processes. In particular, the fuel inlet has been moved to the top cover of the housing from the side, and the outlet is made as a groove on the housing, so that the both parts can be etched. A synchronization valve is mounted on the engine to control the supply of CO2. One of advantages of the micro engines is their high energy density compared with batteries. A research study has been conducted in comparing energy densities of commonly used fuels. It shows that the energy densities of fuels for combustion engines are 10 - 30 times higher than that of batteries. The deigns of the micro Wankel engines have been tested for verification by finite element analysis, CAD assembly, and construction of a prototype, which proves the design is valid.

  17. Hot-Fire Test Results of Liquid Oxygen/RP-2 Multi-Element Oxidizer-Rich Preburners

    NASA Technical Reports Server (NTRS)

    Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.; Hulka, J. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. To supply the oxidizer-rich combustion products to the main injector of the integrated test article, existing subscale preburner injectors from a previous NASA-funded oxidizer-rich staged combustion engine development program were utilized. For the integrated test article, existing and newly designed and fabricated inter-connecting hot gas duct hardware were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. However, before one of the preburners was used in the integrated test article, it was first hot-fire tested at length to prove it could provide the hot exhaust gas mean temperature, thermal uniformity and combustion stability necessary to perform in the integrated test article experiment. This paper presents results from hot-fire testing of several preburner injectors in a representative combustion chamber with a sonic throat. Hydraulic, combustion performance, exhaust gas thermal uniformity, and combustion stability data are presented. Results from combustion stability modeling of these test results are described in a companion paper at this JANNAF conference, while hot-fire test results of the preburner injector in the integrated test article are described in another companion paper.

  18. Diesel engine experiments with oxygen enrichment, water addition and lower-grade fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekar, R.R.; Marr, W.W.; Cole, R.L.

    1990-01-01

    The concept of oxygen enriched air applied to reciprocating engines is getting renewed attention in the context of the progress made in the enrichment methods and the tougher emissions regulations imposed on diesel and gasoline engines. An experimental project was completed in which a direct injection diesel engine was tested with intake oxygen levels of 21% -- 35%. Since an earlier study indicated that it is necessary to use a cheaper fuel to make the concept economically attractive, a less refined fuel was included in the test series. Since a major objection to the use of oxygen enriched combustion airmore » had been the increase in NO{sub x} emissions, a method must be found to reduce NO{sub x}. Introduction of water into the engine combustion process was included in the tests for this purpose. Fuel emulsification with water was the means used here even though other methods could also be used. The teat data indicated a large increase in engine power density, slight improvement in thermal efficiency, significant reductions in smoke and particulate emissions and NO{sub x} emissions controllable with the addition of water. 15 refs., 10 figs., 2 tabs.« less

  19. Experimental Clean Combustor Program (ECCP), phase 3. [commercial aircraft turbofan engine tests with double annular combustor

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Bahr, D. W.

    1979-01-01

    A double annular advanced technology combustor with low pollutant emission levels was evaluated in a series of CF6-50 engine tests. Engine lightoff was readily obtained and no difficulties were encountered with combustor staging. Engine acceleration and deceleration were smooth, responsive and essentially the same as those obtainable with the CF6-50 combustor. The emission reductions obtained in carbon monoxide, hydrocarbons, and nitrogen oxide levels were 55, 95, and 30 percent, respectively, at an idle power setting of 3.3 percent of takeoff power on an EPA parameter basis. Acceptable smoke levels were also obtained. The exit temperature distribution of the combustor was found to be its major performance deficiency. In all other important combustion system performance aspects, the combustor was found to be generally satisfactory.

  20. University coal research/historically black colleges and universities and other minority institutions contractors review meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2006-07-01

    A variety of papers/posters were presented on topics concerning power generation, including solid oxide fuel cells, hydrogen production, mercury as a combustion product, carbon dioxide separation from flue gas. A total of 31 presentations in slide/overview/viewgraph form and with a separate abstract are available online (one in abstract form only) and 24 poster papers (text). In addition 41 abstracts only are available. Papers of particular interest include: Hydrogen production from hydrogen sulfide in IGCC power plants; Oxidation of mercury in products of coal combustion; Computer aided design of advanced turbine aerofoil alloys for industrial gas turbines in coal fired environments;more » Developing engineered fuel using flyash and biomass; Conversion of hydrogen sulfide in coal gases to elemental sulfur with monolithic catalysts; Intelligent control via wireless sensor networks for advanced coal combustion systems; and Investment of fly ash and activated carbon obtained from pulverized coal boilers (poster).« less

  1. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    PubMed

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  2. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a manufacturer of stationary CI...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission standards if I am a manufacturer of stationary CI internal combustion engines? 60.4203 Section 60... Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a manufacturer of stationary CI internal combustion engines...

  3. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a manufacturer of stationary CI...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission standards if I am a manufacturer of stationary CI internal combustion engines? 60.4203 Section 60... Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a manufacturer of stationary CI internal combustion engines...

  4. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a manufacturer of stationary CI...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission standards if I am a manufacturer of stationary CI internal combustion engines? 60.4203 Section 60... Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a manufacturer of stationary CI internal combustion engines...

  5. Diesel Engine With Air Boosted Turbocharger

    DTIC Science & Technology

    2010-05-26

    of the exhaust turbocharger over the entire RPM range of the internal combustion engine . To this end, the...Kriegler, discloses that in order to utilize recycling of exhaust gases at high engine loads in an internal- combustion engine with an exhaust gas...October 29, 2002) to Cook, discloses an apparatus for and method of exhaust gas recirculation in an internal combustion engine that operates

  6. Hydrogen powered sports car series (internal combustion engine and fuel cells)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotthold, J.P.

    The electric hybrid vehicle can solve the problems which today make the pure electric car limited in its acceptance. The primary limitations are excess weight and short range due to a heavy battery pack of limited energy density. Our basic vehicular design makes use of three power technologies in a balanced way. The chassis is the standard Volkswagen Beetle type which carried many millions of the {open_quotes}beetles{close_quotes} across all the Earth`s continents. The body is a fiberfab replica of a 1970s design sports car which provides three compartments from it`s original mid engine design and a classic aerodynamic shape.

  7. Economics of wind energy for irrigation pumping

    NASA Astrophysics Data System (ADS)

    Lansford, R. R.; Supalla, R. J.; Gilley, J. R.; Martin, D. L.

    1980-07-01

    The economic questions associated with wind power as an energy source for irrigation under different situations with seven regions of the nation were studied. Target investment costs for wind turbines used for irrigation pumping and policy makers with bases for adjusting taxes to make alternative sources of energy investments more attractive are analyzed. Three types of wind systems are considered for each of the seven regions. The three types of wind powered irrigation systems evaluated for each region are: (1) wind assist combustion engines (diesel, natural gas, propane panel); (2) wind assist electric engines, with or without sale of surplus electricity; and (3) stand alone reservoir systems with gravity flow reservoirs.

  8. Active Control of Unsteady Gasdynamics for Shock Compression and Turbulence Generation

    DTIC Science & Technology

    2012-09-13

    lens has a specified register, which is the distance from the mounting ring to the focal point of the lens. This value is extremely precise and must be...J., “Air Flow Modulation for Refined Control of the Combustion Dynamics Using a Novel Actuator,” Journal of Engineering for Gas Turbines and Power...Cycle (RBCC) system; if done with a turbine engine, a Turbine -Based Combined Cycle (TBCC) system. However, carrying two entire propulsion systems

  9. A thermodynamic study of the turbine-propeller engine

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Karp, Irvin M

    1953-01-01

    Equations and charts are presented for computing the thrust, the power output, the fuel consumption, and other performance parameters of a turbine-propeller engine for any given set of operating conditions and component efficiencies. Included are the effects of the pressure losses in the inlet duct and the combustion chamber, the variation of the physical properties of the gas as it passes through the system, and the change in mass flow of the gas by the addition of fuel.

  10. Detection of cylinder unbalance from Bayesian inference combining cylinder pressure and vibration block measurement in a Diesel engine

    NASA Astrophysics Data System (ADS)

    Nguyen, Emmanuel; Antoni, Jerome; Grondin, Olivier

    2009-12-01

    In the automotive industry, the necessary reduction of pollutant emission for new Diesel engines requires the control of combustion events. This control is efficient provided combustion parameters such as combustion occurrence and combustion energy are relevant. Combustion parameters are traditionally measured from cylinder pressure sensors. However this kind of sensor is expensive and has a limited lifetime. Thus this paper proposes to use only one cylinder pressure on a multi-cylinder engine and to extract combustion parameters from the other cylinders with low cost knock sensors. Knock sensors measure the vibration circulating on the engine block, hence they do not all contain the information on the combustion processes, but they are also contaminated by other mechanical noises that disorder the signal. The question is how to combine the information coming from one cylinder pressure and knock sensors to obtain the most relevant combustion parameters in all engine cylinders. In this paper, the issue is addressed trough the Bayesian inference formalism. In that cylinder where a cylinder pressure sensor is mounted, combustion parameters will be measured directly. In the other cylinders, they will be measured indirectly from Bayesian inference. Experimental results obtained on a four cylinder Diesel engine demonstrate the effectiveness of the proposed algorithm toward that purpose.

  11. Combustion Stability Verification for the Thrust Chamber Assembly of J-2X Developmental Engines 10001, 10002, and 10003

    NASA Technical Reports Server (NTRS)

    Morgan, C. J.; Hulka, J. R.; Casiano, M. J.; Kenny, R. J.; Hinerman, T. D.; Scholten, N.

    2015-01-01

    The J-2X engine, a liquid oxygen/liquid hydrogen propellant rocket engine available for future use on the upper stage of the Space Launch System vehicle, has completed testing of three developmental engines at NASA Stennis Space Center. Twenty-one tests of engine E10001 were conducted from June 2011 through September 2012, thirteen tests of the engine E10002 were conducted from February 2013 through September 2013, and twelve tests of engine E10003 were conducted from November 2013 to April 2014. Verification of combustion stability of the thrust chamber assembly was conducted by perturbing each of the three developmental engines. The primary mechanism for combustion stability verification was examining the response caused by an artificial perturbation (bomb) in the main combustion chamber, i.e., dynamic combustion stability rating. No dynamic instabilities were observed in the TCA, although a few conditions were not bombed. Additional requirements, included to guard against spontaneous instability or rough combustion, were also investigated. Under certain conditions, discrete responses were observed in the dynamic pressure data. The discrete responses were of low amplitude and posed minimal risk to safe engine operability. Rough combustion analyses showed that all three engines met requirements for broad-banded frequency oscillations. Start and shutdown transient chug oscillations were also examined to assess the overall stability characteristics, with no major issues observed.

  12. Enhanced air/fuel mixing for automotive stirling engine turbulator-type combustors

    DOEpatents

    Riecke, George T.; Stotts, Robert E.

    1992-01-01

    The invention relates to the improved combustion of fuel in a combustion chamber of a stirling engine and the like by dividing combustion into primary and secondary combustion zones through the use of a diverter plate.

  13. Combined effect of fuel-design and after-treatment system on reduction of local and global emissions from CI engine.

    PubMed

    Thiyagarajan, S; Geo, V Edwin; Martin, Leenus Jesu; Nagalingam, B

    2018-03-22

    This experimental study aims to mitigate harmful emissions from a CI engine using bio-energy with carbon capture and storage (BECCS) approach. The engine used for this experimental work is a single cylinder CI engine with a rated power of 5.2 kW at a constant speed of 1500 rpm. The BECCS approach is a combination of plant-based biofuels and carbon capture and storage (CCS) system. The whole investigation was done in four phases: (1) Substituting diesel with Karanja oil methyl ester (KOME) (2) Equal volume blending of Orange oil (ORG) with KOME (3) 20% blending of n-butanol (B) with KOME-ORG blend (4) CCS system with zeolite based non-selective catalytic reduction (NSCR) and mono ethanolamine (MEA) based selective non-catalytic reduction (SNCR) system with KOME-ORG + B20 blend. The experimental results show that substitution of diesel with KOME reduces smoke emission, but increases NO and CO 2 emission. KOME-ORG blend reduces CO 2 and smoke emissions with high NO emission due to combustion improvement. In comparison with the sole combustion of KOME at full load condition, the combination of KOME-ORG + B20 as bio-fuel with zeolite based post-combustion treatment system resulted in a maximum reduction of NO, smoke and CO 2 emission by 41%, 19% and 15% respectively.

  14. After 'dieselgate': Regulations or economic incentives for a successful environmental policy?

    NASA Astrophysics Data System (ADS)

    Zachariadis, Theodoros

    2016-08-01

    In September 2015 the U.S. Environmental Protection Agency announced that it started investigations against the automaker Volkswagen for illegally installing software that allowed some diesel-powered vehicle models to pass stringent emission tests for type-approval. Although generally prohibited, modern software makes it feasible for vehicles to detect an emission test and modulate engine operation or emission control accordingly. It has also been well known to experts worldwide - and readers of this Journal - that emission tests for motor vehicles are conducted with outdated test procedures which do not reflect today's actual driving conditions and enable automakers to exploit 'flexibilities' so as to yield artificially low emission results. For example, on-road carbon dioxide (CO2) emissions of cars that entered the European market in 2014 were reportedly 40% higher than their formal test emissions, while this gap was less than 10% in the early 2000s (Tietge et al., 2015). In the case of health-related pollutant nitrogen oxides (NOx), this gap seems to be markedly higher, in particular for diesel-powered cars (Weiss et al., 2012) - whereas this does not seem to be a serious problem for other air pollutants. In internal combustion engines of motor vehicles there is still a trade-off between NOx emissions and fuel efficiency (and hence CO2 emissions): a fast combustion with high temperatures is optimal for maximum fuel efficiency and minimum CO2 emissions, whereas these conditions give rise to higher NOx emissions. Conversely, NOx control techniques such as exhaust gas recirculation reduce combustion temperature and often lead to lower fuel efficiency. In short, it becomes ever more difficult for internal combustion engines to meet the increasingly stringent legislated standards for some air pollutants and carbon dioxide at the same time. This increases the probability of applying legal and illegal defeat strategies.

  15. Effect of Operating and Sampling Conditions on the Exhaust Gas Composition of Small-Scale Power Generators

    PubMed Central

    Smits, Marianne; Vanpachtenbeke, Floris; Horemans, Benjamin; De Wael, Karolien; Hauchecorne, Birger; Van Langenhove, Herman; Demeestere, Kristof; Lenaerts, Silvia

    2012-01-01

    Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results. PMID:22442670

  16. Injection system used into SI engines for complete combustion and reduction of exhaust emissions in the case of alcohol and petrol alcohol mixtures feed

    NASA Astrophysics Data System (ADS)

    Ispas, N.; Cofaru, C.; Aleonte, M.

    2017-10-01

    Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

  17. Some Effects of Injection Advance Angle, Engine-Jacket Temperature, and Speed on Combustion in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1936-01-01

    An optical indicator and a high-speed motion-picture camera capable of operating at the rate of 2,000 frames per second were used to record simultaneously the pressure development and the flame formation in the combustion chamber of the NACA combustion apparatus. Tests were made at engine speeds of 570 and 1,500 r.p.m. The engine-jacket temperature was varied from 100 degrees to 300 degrees F. And the injection advance angle from 13 degrees after top center to 120 degrees before top center. The results show that the course of the combustion is largely controlled by the temperature and pressure of the air in the chamber from the time the fuel is injected until the time at which combustion starts and by the ignition lag. The conclusion is presented that in a compression-ignition engine with a quiescent combustion chamber the ignition lag should be the longest that can be used without excessive rates of pressure rise; any further shortening of the ignition lag decreased the effective combustion of the engine.

  18. Low emissions compression ignited engine technology

    DOEpatents

    Coleman, Gerald N [Dunlap, IL; Kilkenny, Jonathan P [Peoria, IL; Fluga, Eric C [Dunlap, IL; Duffy, Kevin P [East Peoria, IL

    2007-04-03

    A method and apparatus for operating a compression ignition engine having a cylinder wall, a piston, and a head defining a combustion chamber. The method and apparatus includes delivering fuel substantially uniformly into the combustion chamber, the fuel being dispersed throughout the combustion chamber and spaced from the cylinder wall, delivering an oxidant into the combustion chamber sufficient to support combustion at a first predetermined combustion duration, and delivering a diluent into the combustion chamber sufficient to change the first predetermined combustion duration to a second predetermined combustion duration different from the first predetermined combustion duration.

  19. Supercomputer modeling of hydrogen combustion in rocket engines

    NASA Astrophysics Data System (ADS)

    Betelin, V. B.; Nikitin, V. F.; Altukhov, D. I.; Dushin, V. R.; Koo, Jaye

    2013-08-01

    Hydrogen being an ecological fuel is very attractive now for rocket engines designers. However, peculiarities of hydrogen combustion kinetics, the presence of zones of inverse dependence of reaction rate on pressure, etc. prevents from using hydrogen engines in all stages not being supported by other types of engines, which often brings the ecological gains back to zero from using hydrogen. Computer aided design of new effective and clean hydrogen engines needs mathematical tools for supercomputer modeling of hydrogen-oxygen components mixing and combustion in rocket engines. The paper presents the results of developing verification and validation of mathematical model making it possible to simulate unsteady processes of ignition and combustion in rocket engines.

  20. 40 CFR 60.4204 - What emission standards must I meet for non-emergency engines if I am an owner or operator of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...

  1. 40 CFR 60.4204 - What emission standards must I meet for non-emergency engines if I am an owner or operator of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...

  2. 40 CFR 60.4204 - What emission standards must I meet for non-emergency engines if I am an owner or operator of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...

  3. 40 CFR 60.4204 - What emission standards must I meet for non-emergency engines if I am an owner or operator of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...

  4. Distributed ignition method and apparatus for a combustion engine

    DOEpatents

    Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong

    2006-03-07

    A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.

  5. Energy Efficient Engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.

  6. Motorcycle Mechanic: Apprenticeship Course Outline. Apprenticeship and Industry Training. 4912

    ERIC Educational Resources Information Center

    Alberta Enterprise and Advanced Education, 2012

    2012-01-01

    The graduate of the Motorcycle Mechanic apprenticeship program is a certified journeyperson who will be able to: (1) repair and maintain motorcycles and ATVs which are powered with internal combustion engines; (2) comprehend work orders, technical bulletins and estimates, and relate the information to the job at hand; (3) interpret warranty policy…

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirske, R.D.; Hauck, P.C.; Kachmar, R.P.

    In 1990, the federal government enacted the Clean Air Amendment. This required many public power utilities across the country to make modifications to their fossil fueled power plants to comply with the mandated emission levels by May 1995. At Pennsylvania Electric Company`s (PENELEC) Shawville Station, Units 3 and 4, the mandates established maximum nitrogen oxides (NOx) emission levels at 0.45 lbs/MMBTU. In an effort to comply with the new reduced emission levels, PENELEC chose to implement the Asea Brown Boveri-Combustion Engineering`s (ABB-CE) Low NOx Concentric Firing System III (LNCFS-III). PENELEC also took this opportunity to replace other controls because theirmore » implementation would have relatively little impact on the overall cost of the project and would enhance the ability of the operators to better control NOx emissions. This paper discusses the implementation of the new controls in a distributed control system (DCS), interfacing the DCS with the existing pneumatic combustion controls, and maintaining the boiler control benchboard as the primary operator interface, thereby, reducing the impact of the changes to the MMI and the overall cost of the project.« less

  8. Report on Lincoln Electric System gas turbine inlet air cooling. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebeling, J.A.; Buecker, B.J.; Kitchen, B.J.

    1993-12-01

    As a result of increased electric power demand, the Lincoln Electric System (LES) of Lincoln, Nebraska (USA) decided to upgrade the generating capacity of their system. Based on capacity addition studies, the utility elected to improve performance of a GE MS7001B combustion turbine located at their Rokeby station. The turbine is used to meet summer-time peak loads, and as is common among combustion turbines, capacity declines as ambient air temperature rises. To improve the turbine capacity, LES decided to employ the proven technique of inlet air cooling, but with a novel approach: off-peak ice generation to be used for peak-loadmore » air cooling. EPRI contributed design concept definition and preliminary engineering. The American Public Power Association provided co-funding. Burns & McDonnell Engineering Company, under contract to Lincoln Electric System, provided detailed design and construction documents. LES managed the construction, start-up, and testing of the cooling system. This report describes the technical basis for the cooling system design, and it discusses combustion turbine performance, project economics, and potential system improvements. Control logic and P&ID drawings are also included. The inlet air cooling system has been available since the fall of 1991. When in use, the cooling system has increased turbine capacity by up to 17% at a cost of less than $200 per increased kilowatt of generation.« less

  9. Stationary Engineers Apprenticeship. Related Training Modules. 16.1-16.5 Combustion.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with combustion. Addressed in the individual instructional packages included in the module are the following topics: the combustion process, types of fuel, air and flue gases, heat transfer during combustion, and wood combustion. Each…

  10. Two-stage combustion for reducing pollutant emissions from gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.; Lewis, D. H.

    1981-01-01

    Combustion and emission results are presented for a premix combustor fueled with admixtures of JP5 with neat H2 and of JP5 with simulated partial-oxidation product gas. The combustor was operated with inlet-air state conditions typical of cruise power for high performance aviation engines. Ultralow NOx, CO and HC emissions and extended lean burning limits were achieved simultaneously. Laboratory scale studies of the non-catalyzed rich-burning characteristics of several paraffin-series hydrocarbon fuels and of JP5 showed sooting limits at equivalence ratios of about 2.0 and that in order to achieve very rich sootless burning it is necessary to premix the reactants thoroughly and to use high levels of air preheat. The application of two-stage combustion for the reduction of fuel NOx was reviewed. An experimental combustor designed and constructed for two-stage combustion experiments is described.

  11. Photographic Study of Combustion in a Rocket Engine I : Variation in Combustion of Liquid Oxygen and Gasoline with Seven Methods of Propellant Injection

    NASA Technical Reports Server (NTRS)

    Bellman, Donald R; Humphrey, Jack C

    1948-01-01

    Motion pictures at camera speeds up to 3000 frames per second were taken of the combustion of liquid oxygen and gasoline in a 100-pound-thrust rocket engine. The engine consisted of thin contour and injection plates clamped between two clear plastic sheets forming a two-dimensional engine with a view of the entire combustion chamber and nozzle. A photographic investigation was made of the effect of seven methods of propellant injection on the uniformity of combustion. From the photographs, it was found that the flame front extended almost to the faces of the injectors with most of the injection methods, all the injection systems resulted in a considerable nonuniformity of combustion, and luminosity rapidly decreased in the divergent part of the nozzle. Pressure vibration records indicated combustion vibrations that approximately corresponded to the resonant frequencies of the length and the thickness of the chamber. The combustion temperature divided by the molecular weight of the combustion gases as determined from the combustion photographs was about 50 to 70 percent of the theoretical value.

  12. Liquid rocket engine combustion stabilization devices

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Combustion instability, which results from a coupling of the combustion process and the fluid dynamics of the engine system, was investigated. The design of devices which reduce coupling (combustion chamber baffles) and devices which increase damping (acoustic absorbers) are described. Included in the discussion are design criteria and recommended practices, structural and mechanical design, thermal control, baffle geometry, baffle/engine interactions, acoustic damping analysis, and absorber configurations.

  13. Serial cooling of a combustor for a gas turbine engine

    DOEpatents

    Abreu, Mario E.; Kielczyk, Janusz J.

    2001-01-01

    A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

  14. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, Bertrand D.; Confer, Gregory L.; Shen, Zujing; Hapeman, Martin J.; Flynn, Paul L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  15. Application of neural network in the study of combustion rate of natural gas/diesel dual fuel engine.

    PubMed

    Yan, Zhao-Da; Zhou, Chong-Guang; Su, Shi-Chuan; Liu, Zhen-Tao; Wang, Xi-Zhen

    2003-01-01

    In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operating parameters on combustion rate was also studied by means of this model. The study showed that the predicted results were good agreement with the experimental data. It was proved that the developed combustion rate model could be used to successfully predict and optimize the combustion process of dual fuel engine.

  16. Methods of the working processes modelling of an internal combustion engine by an ANSYS IC Engine module

    NASA Astrophysics Data System (ADS)

    Kurchatkin, I. V.; Gorshkalev, A. A.; Blagin, E. V.

    2017-01-01

    This article deals with developed methods of the working processes modelling in the combustion chamber of an internal combustion engine (ICE). Methods includes description of the preparation of a combustion chamber 3-d model, setting of the finite-element mesh, boundary condition setting and solution customization. Aircraft radial engine M-14 was selected for modelling. The cycle of cold blowdown in the ANSYS IC Engine software was carried out. The obtained data were compared to results of known calculation methods. A method of engine’s induction port improvement was suggested.

  17. Signal Processing Methods for Liquid Rocket Engine Combustion Spontaneous Stability and Rough Combustion Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.

    2012-01-01

    Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.

  18. 77 FR 40879 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... Compression Ignition Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA....regulations.gov . Title: NSPS for Stationary Source Compression Ignition Internal Combustion Engines (Renewal... Performance Standards (NSPS) for Stationary Source Compression Ignition Internal Combustion Engines (40 CFR...

  19. 78 FR 77671 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request; NSPS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... for Stationary Spark Ignition Internal Combustion Engines (40 CFR Part 60, Subpart JJJJ) (Renewal... operators of stationary spark ignition internal combustion engines. Respondent's obligation to respond...

  20. Research of biofuels on performance, emission and noise of diesel engine under high-altitude area

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Huang, Hua

    2018-05-01

    At high altitudes and with no any adjustment for diesel engine, comparative experiments on a diesel engine about the engine's performance, emission and exhaust noise, are carried out by combusting different biofuels (pure diesel (D100), biodiesel (B100), and ethanol-biodiesel (E20)). The test results show that: compared with D100, the power performance of combusting B100 and E20 decreases, and the average drop of the torque at full-load are 4.5% and 5.7%. The equivalent fuel consumption is lower than that of diesel fuel, The decline of oil consumption rate 3˜10g/ (kW • h); At low load the emission of NOx decreases, Hat high loads, equal and higher than D100; the soot emissions decreases heavier, among them, E20 carbon dioxide emissions improved considerably; An full-load exhaust noise of B100 decreases average 3.6dB(A), E20 decreases average 4.8dB(A); In road simulation experiments exhaust noise max decreases 8.5dB(A).

  1. Development and Characterization of Laser-Induced Incandescence Towards Nanoparticle (Soot) Detection

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.

    2000-01-01

    The production of particulates, notably soot, during combustion has both positive and negative ramifications. Exhaust from diesel engines under load (for example, shifting gears), flickering candle flames and fireplaces all produce soot leaving a flame. From an efficiency standpoint, emission of soot from engines, furnaces or even a simple flickering candle flame represents a loss of useful energy. The emission of soot from diesel engines, furnaces, power generation facilities, incinerators and even simple flames poses a serious environmental problem and health risk. Yet some industries intentionally produce soot as carbon black for use in inks, copier toner, tires and as pigments. Similarly, the presence of soot within flames can act both positively and negatively. Energy transfer from a combustion process is greatly facilitated by the radiative heat transfer from soot yet radiative heat transfer also facilitates the spread of unwanted fires. To understand soot formation and develop control strategies for soot emission/formation, measurements of soot concentration in both practical devices such as engines and controlled laboratory flames are necessary. Laser-induced incandescence (LII) has been developed and characterized to address this need, as described here.

  2. Computer Program for the Design and Off-Design Performance of Turbojet and Turbofan Engine Cycles

    NASA Technical Reports Server (NTRS)

    Morris, S. J.

    1978-01-01

    The rapid computer program is designed to be run in a stand-alone mode or operated within a larger program. The computation is based on a simplified one-dimensional gas turbine cycle. Each component in the engine is modeled thermo-dynamically. The component efficiencies used in the thermodynamic modeling are scaled for the off-design conditions from input design point values using empirical trends which are included in the computer code. The engine cycle program is capable of producing reasonable engine performance prediction with a minimum of computer execute time. The current computer execute time on the IBM 360/67 for one Mach number, one altitude, and one power setting is about 0.1 seconds. about 0.1 seconds. The principal assumption used in the calculation is that the compressor is operated along a line of maximum adiabatic efficiency on the compressor map. The fluid properties are computed for the combustion mixture, but dissociation is not included. The procedure included in the program is only for the combustion of JP-4, methane, or hydrogen.

  3. Analysis of long-time operation of micro-cogeneration unit with fuel cell

    NASA Astrophysics Data System (ADS)

    Patsch, Marek; Čaja, Alexander

    2015-05-01

    Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.

  4. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    PubMed Central

    Karthikeya Sharma, T.

    2014-01-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918

  5. Emission characteristics of a premix combustor fueled with a simulated partial-oxidation product gas

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1979-01-01

    A two-stage gas turbine combustor concept employing a very fuel-rich partial oxidation stage is being explored for broadening the combustion margin between ultralow emissions and the lean stability limit. Combustion and emission results are presented for a series of experiments where a simulated partial oxidation product gas was used in a premix combustor operated with inlet air state conditions typical of cruise power for high-performance aviation engines (12 atm and 850 F). Ultralow NOx, CO, and HC emissions and an extended lean burning limit were achieved simultaneously.

  6. An interactive computer code for calculation of gas-phase chemical equilibrium (EQLBRM)

    NASA Technical Reports Server (NTRS)

    Pratt, B. S.; Pratt, D. T.

    1984-01-01

    A user friendly, menu driven, interactive computer program known as EQLBRM which calculates the adiabatic equilibrium temperature and product composition resulting from the combustion of hydrocarbon fuels with air, at specified constant pressure and enthalpy is discussed. The program is developed primarily as an instructional tool to be run on small computers to allow the user to economically and efficiency explore the effects of varying fuel type, air/fuel ratio, inlet air and/or fuel temperature, and operating pressure on the performance of continuous combustion devices such as gas turbine combustors, Stirling engine burners, and power generation furnaces.

  7. Estimation of velocity fluctuation in internal combustion engine exhaust systems through beamforming techniques

    NASA Astrophysics Data System (ADS)

    Piñero, G.; Vergara, L.; Desantes, J. M.; Broatch, A.

    2000-11-01

    The knowledge of the particle velocity fluctuations associated with acoustic pressure oscillation in the exhaust system of internal combustion engines may represent a powerful aid in the design of such systems, from the point of view of both engine performance improvement and exhaust noise abatement. However, usual velocity measurement techniques, even if applicable, are not well suited to the aggressive environment existing in exhaust systems. In this paper, a method to obtain a suitable estimate of velocity fluctuations is proposed, which is based on the application of spatial filtering (beamforming) techniques to instantaneous pressure measurements. Making use of simulated pressure-time histories, several algorithms have been checked by comparison between the simulated and the estimated velocity fluctuations. Then, problems related to the experimental procedure and associated with the proposed methodology are addressed, making application to measurements made in a real exhaust system. The results indicate that, if proper care is taken when performing the measurements, the application of beamforming techniques gives a reasonable estimate of the velocity fluctuations.

  8. Method of controlling cyclic variation in engine combustion

    DOEpatents

    Davis, L.I. Jr.; Daw, C.S.; Feldkamp, L.A.; Hoard, J.W.; Yuan, F.; Connolly, F.T.

    1999-07-13

    Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling. 27 figs.

  9. Method of controlling cyclic variation in engine combustion

    DOEpatents

    Davis, Jr., Leighton Ira; Daw, Charles Stuart; Feldkamp, Lee Albert; Hoard, John William; Yuan, Fumin; Connolly, Francis Thomas

    1999-01-01

    Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling.

  10. Advanced engine management of individual cylinders for control of exhaust species

    DOEpatents

    Graves, Ronald L [Knoxville, TN; West, Brian H [Knoxville, TN; Huff, Shean P [Knoxville, TN; Parks, II, James E

    2008-12-30

    A method and system controls engine-out exhaust species of a combustion engine having a plurality of cylinders. The method typically includes various combinations of steps such as controlling combustion parameters in individual cylinders, grouping the individual cylinders into a lean set and a rich set of one or more cylinders, combusting the lean set in a lean combustion parameter condition having a lean air:fuel equivalence ratio, combusting the rich set in a rich combustion parameter condition having a rich air:fuel equivalence ratio, and adjusting the lean set and the rich set of one or more cylinders to generate net-lean combustion. The exhaust species may have elevated concentrations of hydrogen and oxygen.

  11. FutureGen 2.0 Oxy-combustion Large Scale Test – Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenison, LaVesta; Flanigan, Thomas; Hagerty, Gregg

    The primary objectives of the FutureGen 2.0 CO 2 Oxy-Combustion Large Scale Test Project were to site, permit, design, construct, and commission, an oxy-combustion boiler, gas quality control system, air separation unit, and CO 2 compression and purification unit, together with the necessary supporting and interconnection utilities. The project was to demonstrate at commercial scale (168MWe gross) the capability to cleanly produce electricity through coal combustion at a retrofitted, existing coal-fired power plant; thereby, resulting in near-zeroemissions of all commonly regulated air emissions, as well as 90% CO 2 capture in steady-state operations. The project was to be fully integratedmore » in terms of project management, capacity, capabilities, technical scope, cost, and schedule with the companion FutureGen 2.0 CO 2 Pipeline and Storage Project, a separate but complementary project whose objective was to safely transport, permanently store and monitor the CO 2 captured by the Oxy-combustion Power Plant Project. The FutureGen 2.0 Oxy-Combustion Large Scale Test Project successfully achieved all technical objectives inclusive of front-end-engineering and design, and advanced design required to accurately estimate and contract for the construction, commissioning, and start-up of a commercial-scale "ready to build" power plant using oxy-combustion technology, including full integration with the companion CO 2 Pipeline and Storage project. Ultimately the project did not proceed to construction due to insufficient time to complete necessary EPC contract negotiations and commercial financing prior to expiration of federal co-funding, which triggered a DOE decision to closeout its participation in the project. Through the work that was completed, valuable technical, commercial, and programmatic lessons were learned. This project has significantly advanced the development of near-zero emission technology and will be helpful to plotting the course of, and successfully executing future large demonstration projects. This Final Scientific and Technical Report describes the technology and engineering basis of the project, inclusive of process systems, performance, effluents and emissions, and controls. Further, the project cost estimate, schedule, and permitting requirements are presented, along with a project risk and opportunity assessment. Lessons-learned related to these elements are summarized in this report. Companion reports Oxy-combustion further document the accomplishments and learnings of the project, including: A.01 Project Management Report which describes what was done to coordinate the various participants, and to track their performance with regard to schedule and budget B.02 Lessons Learned - Technology Integration, Value Improvements, and Program Management, which describes the innovations and conclusions that we arrived upon during the development of the project, and makes recommendations for improvement of future projects of a similar nature . B.03 Project Economics, which details the capital and operation costs and their basis, and also illustrates the cost of power produced by the plant with certain sensitivities. B.04 Power Plant, Pipeline, and Injection Site Interfaces, which details the interfaces between the two FutureGen projects B.05 Contractual Mechanisms for Design, Construction, and Operation, which describes the major EPC, and Operations Contracts required to execute the project.« less

  12. CFD flowfield simulation of Delta Launch Vehicles in a power-on configuration

    NASA Technical Reports Server (NTRS)

    Pavish, D. L.; Gielda, T. P.; Soni, B. K.; Deese, J. E.; Agarwal, R. K.

    1993-01-01

    This paper summarizes recent work at McDonnell Douglas Aerospace (MDA) to develop and validate computational fluid dynamic (CFD) simulations of under expanded rocket plume external flowfields for multibody expendable launch vehicles (ELVs). Multi engine reacting gas flowfield predictions of ELV base pressures are needed to define vehicle base drag and base heating rates for sizing external nozzle and base region insulation thicknesses. Previous ELV design programs used expensive multibody power-on wind tunnel tests that employed chamber/nozzle injected high pressure cold or hot-air. Base heating and pressure measurements were belatedly made during the first flights of past ELV's to correct estimates from semi-empirical engineering models or scale model tests. Presently, CFD methods for use in ELV design are being jointly developed at the Space Transportation Division (MDA-STD) and New Aircraft Missiles Division (MDA-NAMD). An explicit three dimensional, zonal, finite-volume, full Navier-Stokes (FNS) solver with finite rate hydrocarbon/air and aluminum combustion kinetics was developed to accurately compute ELV power-on flowfields. Mississippi State University's GENIE++ general purpose interactive grid generation code was chosen to create zonal, finite volume viscous grids. Axisymmetric, time dependent, turbulent CFD simulations of a Delta DSV-2A vehicle with a MB-3 liquid main engine burning RJ-1/LOX were first completed. Hydrocarbon chemical kinetics and a k-epsilon turbulence model were employed and predictions were validated with flight measurements of base pressure and temperature. Zonal internal/external grids were created for a Delta DSV-2C vehicle with a MB-3 and three Castor-1 solid motors burning and a Delta-2 with an RS-27 main engine (LOX/RP-1) and 9 GEM's attached/6 burning. Cold air, time dependent FNS calculations were performed for DSV-2C during 1992. Single phase simulations that employ finite rate hydrocarbon and aluminum (solid fuel) combustion chemistry are currently in progress. Reliable and efficient Eulerian algorithms are needed to model two phase (solid-gas) momentum and energy transfer mechanisms for solid motor fuel combustion products.

  13. CFD flowfield simulation of Delta Launch Vehicles in a power-on configuration

    NASA Astrophysics Data System (ADS)

    Pavish, D. L.; Gielda, T. P.; Soni, B. K.; Deese, J. E.; Agarwal, R. K.

    1993-07-01

    This paper summarizes recent work at McDonnell Douglas Aerospace (MDA) to develop and validate computational fluid dynamic (CFD) simulations of under expanded rocket plume external flowfields for multibody expendable launch vehicles (ELVs). Multi engine reacting gas flowfield predictions of ELV base pressures are needed to define vehicle base drag and base heating rates for sizing external nozzle and base region insulation thicknesses. Previous ELV design programs used expensive multibody power-on wind tunnel tests that employed chamber/nozzle injected high pressure cold or hot-air. Base heating and pressure measurements were belatedly made during the first flights of past ELV's to correct estimates from semi-empirical engineering models or scale model tests. Presently, CFD methods for use in ELV design are being jointly developed at the Space Transportation Division (MDA-STD) and New Aircraft Missiles Division (MDA-NAMD). An explicit three dimensional, zonal, finite-volume, full Navier-Stokes (FNS) solver with finite rate hydrocarbon/air and aluminum combustion kinetics was developed to accurately compute ELV power-on flowfields. Mississippi State University's GENIE++ general purpose interactive grid generation code was chosen to create zonal, finite volume viscous grids. Axisymmetric, time dependent, turbulent CFD simulations of a Delta DSV-2A vehicle with a MB-3 liquid main engine burning RJ-1/LOX were first completed. Hydrocarbon chemical kinetics and a k-epsilon turbulence model were employed and predictions were validated with flight measurements of base pressure and temperature. Zonal internal/external grids were created for a Delta DSV-2C vehicle with a MB-3 and three Castor-1 solid motors burning and a Delta-2 with an RS-27 main engine (LOX/RP-1) and 9 GEM's attached/6 burning. Cold air, time dependent FNS calculations were performed for DSV-2C during 1992. Single phase simulations that employ finite rate hydrocarbon and aluminum (solid fuel) combustion chemistry are currently in progress. Reliable and efficient Eulerian algorithms are needed to model two phase (solid-gas) momentum and energy transfer mechanisms for solid motor fuel combustion products.

  14. NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2010-11-01

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) accomplishments in showcasing a Ford hydrogen-powered internal combustion engine (H2ICE) bus at The Taste of Colorado festival in Denver. NREL started using its U.S. Department of Energy-funded H2ICE bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. In September 2010, NREL featured the bus at The Taste of Colorado. This was the first major outreach event for the bus. NREL's educational brochure, vehicle wrap designs, and outreach efforts serve as a model for other organizations with DOE-funded H2ICE buses. Workmore » was performed by the Hydrogen Education Group and Market Transformation Group in the Hydrogen Technologies and Systems Center.« less

  15. Optical Diagnosis of Gas Turbine Combustors Being Conducted

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; Anderson, Robert C.; DeGroot, Wilhelmus A.

    2001-01-01

    Researchers at the NASA Glenn Research Center, in collaboration with industry, are reducing gas turbine engine emissions by studying visually the air-fuel interactions and combustion processes in combustors. This is especially critical for next generation engines that, in order to be more fuel-efficient, operate at higher temperatures and pressures than the current fleet engines. Optically based experiments were conducted in support of the Ultra-Efficient Engine Technology program in Glenn's unique, world-class, advanced subsonic combustion rig (ASCR) facility. The ASCR can supply air and jet fuel at the flow rates, temperatures, and pressures that simulate the conditions expected in the combustors of high-performance, civilian aircraft engines. In addition, this facility is large enough to support true sectors ("pie" slices of a full annular combustor). Sectors enable one to test true shapes rather than rectangular approximations of the actual hardware. Therefore, there is no compromise to actual engine geometry. A schematic drawing of the sector test stand is shown. The test hardware is mounted just upstream of the instrumentation section. The test stand can accommodate hardware up to 0.76-m diameter by 1.2-m long; thus sectors or small full annular combustors can be examined in this facility. Planar (two-dimensional) imaging using laser-induced fluorescence and Mie scattering, chemiluminescence, and video imagery were obtained for a variety of engine cycle conditions. The hardware tested was a double annular sector (two adjacent fuel injectors aligned radially) representing approximately 15 of a full annular combustor. An example of the two-dimensional data obtained for this configuration is also shown. The fluorescence data show the location of fuel and hydroxyl radical (OH) along the centerline of the fuel injectors. The chemiluminescence data show C2 within the total observable volume. The top row of this figure shows images obtained at an engine low-power condition, and the bottom row shows data from a higher power operating point. The data show distinctly the differences in flame structure between low-power and high-power engine conditions, in both location and amount of species produced (OH, C2) or consumed (fuel). The unique capability of the facility coupled with its optical accessibility helps to eliminate the need for high-pressure performance extrapolations. Tests such as described here have been used successfully to assess the performance of fuel-injection concepts and to modify those designs, if needed.

  16. Status on the Verification of Combustion Stability for the J-2X Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Casiano, Matthew; Hinerman, Tim; Kenny, R. Jeremy; Hulka, Jim; Barnett, Greg; Dodd, Fred; Martin, Tom

    2013-01-01

    Development is underway of the J -2X engine, a liquid oxygen/liquid hydrogen rocket engine for use on the Space Launch System. The Engine E10001 began hot fire testing in June 2011 and testing will continue with subsequent engines. The J -2X engine main combustion chamber contains both acoustic cavities and baffles. These stability aids are intended to dampen the acoustics in the main combustion chamber. Verification of the engine thrust chamber stability is determined primarily by examining experimental data using a dynamic stability rating technique; however, additional requirements were included to guard against any spontaneous instability or rough combustion. Startup and shutdown chug oscillations are also characterized for this engine. This paper details the stability requirements and verification including low and high frequency dynamics, a discussion on sensor selection and sensor port dynamics, and the process developed to assess combustion stability. A status on the stability results is also provided and discussed.

  17. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion chamber liner. Properties of optimized NARloy-Z-D composite material will also be presented.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanigan, Tom; Pybus, Craig; Roy, Sonya

    This report summarizes the results of the Pre-Front End Engineering Design (pre-FEED) phase of a proposed advanced oxy-combustion power generation plant to repower the existing 200 MWe Unit 4 at Ameren Energy Resources’ (AER) Meredosia Power Plant. AER has formed an alliance with Air Liquide Process and Construction, Inc. (ALPC) and Babcock & Wilcox Power Generation Group (B&W PGG) for the design, construction, and testing of the facility, and has contracted with URS Corporation (URS) for preliminary design and Owner’s engineering services. The Project employs oxy-combustion technology – combustion of coal with nearly pure oxygen and recycled flue gas (insteadmore » of air) – to capture approximately 90% of the flue gas CO2 for transport and sequestration by another Project. Plant capacity and configuration has been developed based on the B&W PGG-ALPC cool recycle process firing high-sulfur bituminous coal fuel, assuming baseload plant operation to maximize existing steam turbine capability, with limited consideration for plant redundancy and performance optimization in order to keep plant costs as low as practical. Activities and preliminary results from the pre-FEED phase addressed in this report include the following: Overall plant thermal performance; Equipment sizing and system configuration; Plant operation and control philosophy; Plant emissions and effluents; CO 2 production and recovery characteristics; Project cost estimate and economic evaluation; Integrated project engineering and construction schedule; Project risk and opportunity assessment; Development of Project permitting strategy and requirements During the Phase 2 of the Project, additional design details will be developed and the Phase 1 work products updated to support actual construction and operation of the facility in Phase 3. Additional information will be provided early in Phase 2 to support Ameren-Environmental in finalizing the appropriate permitting strategies and permit applications. Additional performance and reliability enhancements will also be evaluated in Phase 2 to try to improve overall project economics.« less

  19. Simulations of NOx Emissions from Low Emissions Discrete Jet Injector Combustor Tests

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Breisacher, Kevin

    2014-01-01

    An experimental and computational study was conducted to evaluate the performance and emissions characteristics of a candidate Lean Direct Injection (LDI) combustor configuration with a mix of simplex and airblast injectors. The National Combustion Code (NCC) was used to predict the experimentally measured EINOx emissions for test conditions representing low power, medium power, and high-power engine cycle conditions. Of the six cases modeled with the NCC using a reduced-kinetics finite-rate mechanism and lagrangian spray modeling, reasonable predictions of combustor exit temperature and EINOx were obtained at two high-power cycle conditions.

  20. 75 FR 47520 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Ignition Internal Combustion Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Extension of... for stationary compression ignition and spark ignition internal combustion engines. In this [[Page... combustion engines. After publication of the proposed rule, EPA received requests from the American Petroleum...

  1. More on duel purpose solar-electric power plants

    NASA Astrophysics Data System (ADS)

    Hall, F. F.

    Rationale for such plants is reviewed and plant elements are listed. Dual purpose solar-electric plants would generate both electricity and hydrogen gas for conversion to ammonia or methanol or direct use as a fuel of unsurpassed specific power and cleanliness. By-product oxygen would also be sold to owners of hydrogen age equipment. Evolved gasses at high pressure could be fired in compressorless gas turbines, boilerless steam-turbines or fuel-cell-inverter hydrogen-electric power drives of high thermal efficiency as well as in conventional internal combustion engines.

  2. Mixing in Shear Coaxial Jets with and without Acoustics (Briefing Charts)

    DTIC Science & Technology

    2012-05-21

    and heat transfer fluctuations in a rocket engine – Irreparable damage can occur in əs • Combustion Instability caused a 4-yr delay in the...common choice for cryogenic liquid rocket engines • Interactions of transverse acoustics with injector’s own modes and mixing needs to be understood...Pr = 0.44 • LAR-thin , Pr = 0.44, J = 0.5 POM 2 POM 1 Average Snapshot Power Spectral Densities (PSD) of Temporal Coefficients of POMs 1 and 2

  3. The hard start phenomena in hypergolic engines. Volume 1: Bibliography

    NASA Technical Reports Server (NTRS)

    Miron, Y.; Perlee, H. E.

    1974-01-01

    A bibliography of reports pertaining to the hard start phenomenon in attitude control rocket engines on Apollo spacecraft is presented. Some of the subjects discussed are; (1) combustion of hydrazine, (2) one dimensional theory of liquid fuel rocket combustion, (3) preignition phenomena in small pulsed rocket engines, (4) experimental and theoretical investigation of the fluid dynamics of rocket combustion, and (5) nonequilibrium combustion and nozzle flow in propellant performance.

  4. Supplement B to compilation of air pollutant emission factors, volume 1. Stationary point and area sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document contains emission factors and process information for more than 200 air pollution source categories. This Supplement to AP-42 addresses pollutant-generating activity from Bituminous And Subbituminous Coal Combustion, Anthracite Coal Combustion, Fuel Oil Combustion, Natural Gas Combustion, Liquefied Petroleum Gas Combustion, Wood Waste Combustion In Boilers, Lignite Combustion, Bagasse Combustion In Sugar Mills, Residential Fireplaces, Residential Wood Stoves, Waste Oil Combustion, Stationary Gas Turbines For Electricity Generation, Heavy-duty Natural Gas-fired Pipeline Compressor Engines And Turbines, Gasoline and Diesel Industrial Engines, Large Stationary Diesel And All Stationary Dual-fuel Engines, Adipic Acid, Cotton Ginning, Alfafalfa Dehydrating, Malt Beverages, Ceramic Products Manufacturing,more » Electroplating, Wildfires And Prescribed Burning, Emissions From Soils-Greenhouse Gases, Termites-Greenhouse Gases, and Lightning Emissions-Greenhouse Gases.« less

  5. Compact nanosecond laser system for the ignition of aeronautic combustion engines

    NASA Astrophysics Data System (ADS)

    Amiard-Hudebine, G.; Tison, G.; Freysz, E.

    2016-12-01

    We have studied and developed a compact nanosecond laser system dedicated to the ignition of aeronautic combustion engines. This system is based on a nanosecond microchip laser delivering 6 μJ nanosecond pulses, which are amplified in two successive stages. The first stage is based on an Ytterbium doped fiber amplifier (YDFA) working in a quasi-continuous-wave (QCW) regime. Pumped at 1 kHz repetition rate, it delivers TEM00 and linearly polarized nanosecond pulses centered at 1064 nm with energies up to 350 μJ. These results are in very good agreement with the model we specially designed for a pulsed QCW pump regime. The second amplification stage is based on a compact Nd:YAG double-pass amplifier pumped by a 400 W peak power QCW diode centered at λ = 808 nm and coupled to a 800 μm core multimode fiber. At 10 Hz repetition rate, this system amplifies the pulse delivered by the YDFA up to 11 mJ while preserving its beam profile, polarization ratio, and pulse duration. Finally, we demonstrate that this compact nanosecond system can ignite an experimental combustion chamber.

  6. Transatmospheric vehicle research

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.; Cambier, Jean-Luc

    1990-01-01

    Research was conducted into the alternatives to the supersonic combustion ramjet (scramjet) engine for hypersonic flight. A new engine concept, the Oblique Detonation Wave Engine (ODWE) was proposed and explored analytically and experimentally. Codes were developed which can couple the fluid dynamics of supersonic flow with strong shock waves, with the finite rate chemistry necessary to model the detonation process. An additional study was conducted which compared the performance of a hypersonic vehicle powered by a scramjet or an ODWE. Engineering models of the overall performances of the two engines are included. This information was fed into a trajectory program which optimized the flight path to orbit. A third code calculated the vehicle size, weight, and aerodynamic characteristics. The experimental work was carried out in the Ames 20MW arc-jet wind tunnel, focusing on mixing and combustion of fuel injected into a supersonic airstream. Several injector designs were evaluated by sampling the stream behind the injectors and analyzing the mixture with an on-line mass spectrometer. In addition, an attempt was made to create a standing oblique detonation wave in the wind tunnel using hydrogen fuel. It appeared that the conditions in the test chamber were marginal for the generation of oblique detonation waves.

  7. A new unsteady mixing model to predict NO(x) production during rapid mixing in a dual-stage combustor

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1992-01-01

    An advanced gas turbine engine to power supersonic transport aircraft is currently under study. In addition to high combustion efficiency requirements, environmental concerns have placed stringent restrictions on the pollutant emissions from these engines. A combustor design with the potential for minimizing pollutants such as NO(x) emissions is undergoing experimental evaluation. A major technical issue in the design of this combustor is how to rapidly mix the hot, fuel-rich primary zone product with the secondary diluent air to obtain a fuel-lean mixture for combustion in the second stage. Numerical predictions using steady-state methods cannot account for the unsteady phenomena in the mixing region. Therefore, to evaluate the effect of unsteady mixing and combustion processes, a novel unsteady mixing model is demonstrated here. This model has been used to study multispecies mixing as well as propane-air and hydrogen-air jet nonpremixed flames, and has been used to predict NO(x) production in the mixing region. Comparison with available experimental data show good agreement, thereby providing validation of the mixing model. With this demonstration, this mixing model is ready to be implemented in conjunction with steady-state prediction methods and provide an improved engineering design analysis tool.

  8. Simulation of the Effects of Cooling Techniques on Turbine Blade Heat Transfer

    NASA Astrophysics Data System (ADS)

    Shaw, Vince; Fatuzzo, Marco

    Increases in the performance demands of turbo machinery has stimulated the development many new technologies over the last half century. With applications that spread beyond marine, aviation, and power generation, improvements in gas turbine technologies provide a vast impact. High temperatures within the combustion chamber of the gas turbine engine are known to cause an increase in thermal efficiency and power produced by the engine. However, since operating temperatures of these engines reach above 1000 K within the turbine section, the need for advances in material science and cooling techniques to produce functioning engines under these high thermal and dynamic stresses is crucial. As with all research and development, costs related to the production of prototypes can be reduced through the use of computational simulations. By making use of Ansys Simulation Software, the effects of turbine cooling techniques were analyzed. Simulation of the Effects of Cooling Techniques on Turbine Blade Heat Transfer.

  9. Optimizing power cylinder lubrication on a large bore natural gas engine

    NASA Astrophysics Data System (ADS)

    Luedeman, Matthew R.

    More than 6000 integral compressors, located along America's natural gas pipelines, pump natural gas across the United States. These compressors are powered by 2-stroke, large bore natural gas burning engines. Lowering the operating costs, reducing the emissions, and ensuring that these engines remain compliant with future emission regulations are the drivers for this study. Substantial research has focused on optimizing efficiency and reducing the fuel derived emissions on this class of engine. However, significantly less research has focused on the effect and reduction of lubricating oil derived emissions. This study evaluates the impact of power cylinder lubricating oil on overall engine emissions with an emphasis on reducing oxidation catalyst poisoning. A traditional power cylinder lubricator was analyzed; power cylinder lubricating oil was found to significantly impact exhaust emissions. Lubricating oil was identified as the primary contributor of particulate matter production in a large bore natural gas engine. The particulate matter was determined to be primarily organic carbon, and most likely direct oil carryover of small oil droplets. The particulate matter production equated to 25% of the injected oil at a nominal power cylinder lubrication rate. In addition, power cylinder friction is considered the primary contributor to friction loss in the internal combustion engine. This study investigates the potential for optimizing power cylinder lubrication by controlling power cylinder injection to occur at the optimal time in the piston cycle. By injecting oil directly into the ring pack, it is believed that emissions, catalyst poisoning, friction, and wear can all be reduced. This report outlines the design and theory of two electronically controlled lubrication systems. Experimental results and evaluation of one of the systems is included.

  10. A numerical study on the effect of various combustion bowl parameters on the performance, combustion, and emission behavior on a single cylinder diesel engine.

    PubMed

    Balasubramanian, Dhinesh; Sokkalingam Arumugam, Sabari Rajan; Subramani, Lingesan; Joshua Stephen Chellakumar, Isaac JoshuaRamesh Lalvani; Mani, Annamalai

    2018-01-01

    A numerical study was carried out to study the effect of various combustion bowl parameters on the performance behavior, combustion characteristics, and emission magnitude on a single cylinder diesel engine. A base combustion bowl and 11 different combustion bowls were created by varying the aspect ratio, reentrancy ratio, and bore to bowl ratio. The study was carried out at engine rated speed and a full throttle performance condition, without altering the compression ratio. The results revealed that the combustion bowl parameters could have a huge impact on the performance behavior, combustion characteristics, and emission magnitude of the engine. The bowl parameters, namely throat diameter and toroidal radius, played a crucial role in determining the performance behavior of the combustion bowls. It was observed that the combustion bowl parameters, namely central pip distance, throat diameter, and bowl depth, also could have an impact on the combustion characteristics. And throat diameter and toroidal radius, central pip distance, and toroidal corner radius could have a consequent effect on the emission magnitude of the engine. Of the different combustion bowls tested, combustion bowl 4 was preferable to others owing to the superior performance of 3% of higher indicated mean effective pressure and lower fuel consumption. Interestingly, trade-off for NO x emission was higher only by 2.85% compared with the base bowl. The sensitivity analysis proved that bowl depth, bowl diameter, toroidal radius, and throat diameter played a vital role in the fuel consumption parameter and emission characteristics even at the manufacturing tolerance variations.

  11. Synchronizing Photography For High-Speed-Engine Research

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1989-01-01

    Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.

  12. Investigation of Ignition and Combustion Processes of Diesel Engines Operating with Turbulence and Air-storage Chambers

    NASA Technical Reports Server (NTRS)

    Petersen, Hans

    1938-01-01

    The flame photographs obtained with combustion-chamber models of engines operating respectively, with turbulence chamber and air-storage chambers or cells, provide an insight into the air and fuel movements that take place before and during combustion in the combustion chamber. The relation between air velocity, start of injection, and time of combustion was determined for the combustion process employing a turbulence chamber.

  13. FY2016 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  14. FY2014 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  15. 76 FR 7191 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... Combustion Engines (Renewal) ICR Numbers: EPA ICR Number 2227.03, OMB Control Number 2060-0610. ICR Status... internal combustion engines. Estimated Number of Respondents: 17,052. Frequency of Response: Initially and...

  16. 78 FR 63181 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request; NESHAP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice...), ``NESHAP for Stationary Reciprocating Internal Combustion Engines (Renewal)'' (EPA ICR No. 1975.09, OMB... combustion engines (RICE) have been regulated under previous actions. Thus, this final action fulfills the...

  17. FY2015 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Gurpreet; Gravel, Roland M.; Howden, Kenneth C.

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  18. Impacts of biodiesel on pollutant emissions of a JP-8-fueled turbine engine.

    PubMed

    Corporan, Edwin; Reich, Richard; Monroig, Orvin; DeWitt, Matthew J; Larson, Venus; Aulich, Ted; Mann, Michael; Seames, Wayne

    2005-07-01

    The impacts of biodiesel on gaseous and particulate matter (PM) emissions of a JP-8-fueled T63 engine were investigated. Jet fuel was blended with the soybean oil-derived methyl ester biofuel at various concentrations and combusted in the turbine engine. The engine was operated at three power settings, namely ground idle, cruise, and takeoff power, to study the impact of the biodiesel at significantly different pressure and temperature conditions. Particulate emissions were characterized by measuring the particle number density (PND; particulate concentration), the particle size distribution, and the total particulate mass. PM samples were collected for offline analysis to obtain information about the effect of the biodiesel on the polycyclic aromatic hydrocarbon (PAH) content. In addition, temperature-programmed oxidation was performed on the collected soot samples to obtain information about the carbonaceous content (elemental or organic). Major and minor gaseous emissions were quantified using a total hydrocarbon analyzer, an oxygen analyzer, and a Fourier Transform IR analyzer. Test results showed the potential of biodiesel to reduce soot emissions in the jet-fueled turbine engine without negatively impacting the engine performance. These reductions, however, were observed only at the higher power settings with relatively high concentrations of biodiesel. Specifically, reductions of approximately 15% in the PND were observed at cruise and takeoff conditions with 20% biodiesel in the jet fuel. At the idle condition, slight increases in PND were observed; however, evidence shows this increase to be the result of condensed uncombusted biodiesel. Most of the gaseous emissions were unaffected under all of the conditions. The biodiesel was observed to have minimal effect on the formation of polycyclic aromatic hydrocarbons during this study. In addition to the combustion results, discussion of the physical and chemical characteristics of the blended fuels obtained using standard American Society for Testing and Materials (ASTM) fuel specifications methods are presented.

  19. Fabrication of Composite Combustion Chamber/Nozzle for Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Lawerence, T.; Beshears, R.; Burlingame, S.; Peters, W.; Prince, M.; Suits, M.; Tillery, S.; Burns, L.; Kovach, M.; Roberts, K.; hide

    2000-01-01

    The Fastrac Engine developed by the Marshall Space Flight Center for the X-34 vehicle began as a low cost engine development program for a small booster system. One of the key components to reducing the engine cost was the development of an inexpensive combustion chamber/nozzle. Fabrication of a regeneratively cooled thrust chamber and nozzle was considered too expensive and time consuming. In looking for an alternate design concept, the Space Shuttle's Reusable Solid Rocket Motor Project provided an extensive background with ablative composite materials in a combustion environment. An integral combustion chamber/nozzle was designed and fabricated with a silica/phenolic ablative liner and a carbon/epoxy structural overwrap. This paper describes the fabrication process and developmental hurdles overcome for the Fastrac engine one-piece composite combustion chamber/nozzle.

  20. Fabrication of Composite Combustion Chamber/Nozzle for Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Lawrence, T.; Beshears, R.; Burlingame, S.; Peters, W.; Prince, M.; Suits, M.; Tillery, S.; Burns, L.; Kovach, M.; Roberts, K.

    2001-01-01

    The Fastrac Engine developed by the Marshall Space Flight Center for the X-34 vehicle began as a low cost engine development program for a small booster system. One of the key components to reducing the engine cost was the development of an inexpensive combustion chamber/nozzle. Fabrication of a regeneratively cooled thrust chamber and nozzle was considered too expensive and time consuming. In looking for an alternate design concept, the Space Shuttle's Reusable Solid Rocket Motor Project provided an extensive background with ablative composite materials in a combustion environment. An integral combustion chamber/nozzle was designed and fabricated with a silica/phenolic ablative liner and a carbon/epoxy structural overwrap. This paper describes the fabrication process and developmental hurdles overcome for the Fastrac engine one-piece composite combustion chamber/nozzle.

Top