Sample records for combustion facility evaluated

  1. TECHNOLOGY DEMONSTRATION SUMMARY: THE AMERICAN COMBUSTION PYRETRON THERMAL DESTRUCTION SYSTEM AT THE U.S. EPA'S COMBUSTION FACILITY

    EPA Science Inventory

    The American Combustion Pyretron Thermal Destruction System at the U.S. EPA's Combustion Research Facility. Under the auspices of the Superfund Innovative Technology Evaluation, or SITE, program, a critical assessment was made of the American Combustion Pyretron™ oxygen enha...

  2. NETL- High-Pressure Combustion Research Facility

    ScienceCinema

    None

    2018-02-14

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  3. SITE PROGRAM EVALUATION OF THE SONOTECH PULSE COMBUSTION BURNER TECHNOLOGY - TECHNICAL RESULTS

    EPA Science Inventory

    A series of demonstration tests was performed at the Environmental Protection Agency's (EPA's) Incineration Research Facility (IRF) under the Superfund Innovative Technology Evaluation (SITE) program. These tests, twelve in all, evaluated a pulse combustion burner technology dev...

  4. THE SITE DEMONSTRATION OF THE AMERICAN COMBUSTION PYRETRON OXYGEN-ENHANCED BURNER

    EPA Science Inventory

    A demonstration of the American Combustion PyretronTM oxygen-enhanced burner ws conducted under the Superfund Innovative Technology Evaluation (SITE) program. The Demonstration was conducted at the U.S. EPA's Combustion Research Facility (CRF) in Jefferson, Arkansas....

  5. Technology evaluation report: SITE (Superfund Innovative Technology Evaluation) program demonstration test. The American Combustion Pyretron Thermal Destruction System at the US EPA's (Environmental Protection Agency's) combustion research facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waterland, L.; Lee, J.W.

    1989-04-01

    A series of demonstration tests of the American Combustion, Inc., Thermal Destruction System was performed under the SITE program. This oxygen-enhanced combustion system was retrofit to the rotary-kiln incinerator at EPA's Combustion Research Facility. The system's performance was tested firing contaminated soil from the Stringfellow Superfund Site, both alone and mixed with a coal tar waste (KO87). Comparative performance with conventional incinerator operation was also tested. Compliance with the incinerator performance standards of 99.99% principal organic hazardous constituents (POHC) destruction and removal efficiency and particulate emissions of less than 180 mg/dscm at 7% O2 was measured for all tests. Themore » Pyretron system was capable of in-compliance performance at double the mixed waste feedrate and at a 60% increase in batch waste charge mass than possible with conventional incineration. Scrubber blowdown and kiln ash contained no detectable levels of any of the POHCs chosen.« less

  6. Lewis Pressurized, Fluidized-Bed Combustion Program. Data and Calculated Results

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.

    1982-01-01

    A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.

  7. Lewis pressurized, fluidized-bed combustion program. Data and calculated results

    NASA Astrophysics Data System (ADS)

    Rollbuhler, R. J.

    1982-03-01

    A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.

  8. Spacecraft fire-safety experiments for space station: Technology development mission

    NASA Technical Reports Server (NTRS)

    Youngblood, Wallace W.

    1988-01-01

    Three concept designs for low-gravity, fire-safety related experiments are presented, as selected for the purpose of addressing key issues of enhancing safety and yet encouraging access to long-duration, manned spacecraft such as the NASA space station. The selected low-gravity experiments are the following: (1) an investigation of the flame-spread rate and combustion-product evolution of the burning of typical thicknesses of spacecraft materials in very low-speed flows; (2) an evaluation of the interaction of fires and candidate extinguishers in various fire scenarios; and (3) an investigation of the persistence and propagation of smoldering and deep-seated combustion. Each experiment is expected to provide fundamental combustion-science data, as well as the fire-safety applications, and each requires the unique long-duration, low-gravity environment of the space station. Two generic test facilities, i.e., the Combustion Tunnel Facility and the Combustion Facility, are proposed for space station accommodation to support the selected experiments. In addition, three near-term, fire-safety related experiments are described along with other related precursor activities.

  9. Environmental review of Potomac Electric Power Company's proposed Station H Element I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-04-01

    The report has been conducted to evaluate the potential impacts to environmental and cultural resources from the proposed construction and operation of Element I (the combustion turbine portion) of the Station H power plant facility at Potomac Electric Power Company's Dickerson site. This review also presents an evaluation of air quality impacts of Elements I and II (combustion turbine and combined cycle components of the facility) and an assessment of compliance with state and Federal air quality regulations (primarily the ambient air quality standards and the air quality impact requirements of PSD regulations). Results of the Environmental Review analysis aremore » used as the basis for establishing preliminary recommended licensing conditions for operating the proposed facility. These recommendations are also included in the report.« less

  10. Conceptual design for the space station Freedom modular combustion facility

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A definition study and conceptual design for a combustion science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module is being performed. This modular, user-friendly facility, called the Modular Combustion Facility, will be available for use by industry, academic, and government research communities in the mid-1990's. The Facility will support research experiments dealing with the study of combustion and its byproducts. Because of the lack of gravity-induced convection, research into the mechanisms of combustion in the absence of gravity will help to provide a better understanding of the fundamentals of the combustion process. The background, current status, and future activities of the effort are covered.

  11. FEANICS: A Multi-User Facility For Conducting Solid Fuel Combustion Experiments On ISS

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Tofil, Todd A.

    2001-01-01

    The Destiny Module on the International Space Station (ISS) will soon be home for the Fluids and Combustion Facility's (FCF) Combustion Integrated Rack (CIR), which is being developed at the NASA Glenn Research Center in Cleveland, Ohio. The CIR will be the platform for future microgravity combustion experiments. A multi-user mini-facility called FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) will also be built at NASA Glenn. This mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct basic and applied scientific investigations in fire-safety to support NASA's Bioastronautics Initiative. The FEANICS project team will work in conjunction with the CIR project team to develop upgradeable and reusable hardware to meet the science requirements of current and future investigators. Currently, there are six experiments that are candidates to use the FEANICS mini-facility. This paper will describe the capabilities of this mini-facility and the type of solid combustion testing and diagnostics that can be performed.

  12. Combustion Integration Rack (CIR) Testing

    NASA Image and Video Library

    2015-02-18

    Fluids and Combustion Facility (FCF), Combustion Integration Rack (CIR) during testing in the Structural Dynamics Laboratory (SDL). The Fluids and Combustion Facility (FCF) is a set of two International Space Station (ISS) research facilities designed to support physical and biological experiments in support of technology development and validation in space. The FCF consists of two modular, reconfigurable racks called the Combustion Integration Rack (CIR) and the Fluids Integration Rack (FIR). The CIR and FIR were developed at NASAʼs Glenn Research Center.

  13. Conceptual design of the Space Station combustion module

    NASA Technical Reports Server (NTRS)

    Morilak, Daniel P.; Rohn, Dennis W.; Rhatigan, Jennifer L.

    1994-01-01

    The purpose of this paper is to describe the conceptual design of the Combustion Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and through the use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. The SS FCF is scheduled to become operational on-orbit in 1999. The Combustion Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 1999. The objectives of this paper are to describe the history of the Combustion Module concept, the types of combustion science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.

  14. Gas Sensor Evaluations in Polymer Combustion Product Atmospheres

    NASA Technical Reports Server (NTRS)

    Delgado, Rafael H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Toxic gases produced by the combustion or thermo-oxidative degradation of materials such as wire insulation, foam, plastics, or electronic circuit boards in space shuttle or space station crew cabins may pose a significant hazard to the flight crew. Toxic gas sensors are routinely evaluated in pure gas standard mixtures, but the possible interferences from polymer combustion products are not routinely evaluated. The NASA White Sands Test Facility (WSTF) has developed a test system that provides atmospheres containing predetermined quantities of target gases combined with the coincidental combustion products of common spacecraft materials. The target gases are quantitated in real time by infrared (IR) spectroscopy and verified by grab samples. The sensor responses are recorded in real time and are compared to the IR and validation analyses. Target gases such as carbon monoxide, hydrogen cyanide, hydrogen chloride, and hydrogen fluoride can be generated by the combustion of poly(vinyl chloride), polyimide-fluoropolymer wire insulation, polyurethane foam, or electronic circuit board materials. The kinetics and product identifications for the combustion of the various materials were determined by thermogravimetric-IR spectroscopic studies. These data were then scaled to provide the required levels of target gases in the sensor evaluation system. Multisensor toxic gas monitors from two manufacturers were evaluated using this system. In general, the sensor responses satisfactorily tracked the real-time concentrations of toxic gases in a dynamic mixture. Interferences from a number of organic combustion products including acetaldehyde and bisphenol-A were minimal. Hydrogen bromide in the products of circuit board combustion registered as hydrogen chloride. The use of actual polymer combustion atmospheres for the evaluation of sensors can provide additional confidence in the reliability of the sensor response.

  15. On the potential for BECCS efficiency improvement through heat recovery from both post-combustion and oxy-combustion facilities.

    PubMed

    Dowell, N Mac; Fajardy, M

    2016-10-20

    In order to mitigate climate change to no more than 2 °C, it is well understood that it will be necessary to directly remove significant quantities of CO 2 , with bioenergy CCS (BECCS) regarded as a promising technology. However, BECCS will likely be more costly and less efficient at power generation than conventional CCS. Thus, approaches to improve BECCS performance and reduce costs are of importance to facilitate the deployment of this key technology. In this study, the impact of biomass co-firing rate and biomass moisture content on BECCS efficiency with both post- and oxy-combustion CO 2 capture technologies was evaluated. It was found that post-combustion capture BECCS (PCC-BECCS) facilities will be appreciably less efficient than oxy-combustion capture BECCS (OCC-BECCS) facilities. Consequently, PCC-BECCS have the potential to be more carbon negative than OCC-BECCS per unit electricity generated. It was further observed that the biomass moisture content plays an important role in determining the BECCS facilities' efficiency. This will in turn affect the enthalpic content of the BECCS plant exhaust and implies that exhaust gas heat recovery may be an attractive option at higher rates of co-firing. It was found that there is the potential for the recovery of approximately 2.5 GJ heat per t CO 2 at a temperature of 100 °C from both PCC-BECCS and OCC-BECCS. On- and off-site applications for this recovered heat are discussed, considering boiler feedwater pre-heating, solvent regeneration and district heating cases.

  16. ISS Expedition 18 Fluids and Combustion Facility (FCF) Combustion Integration Rack (CIR) Passive Rack Isolation System (

    NASA Image and Video Library

    2009-01-05

    ISS018-E-017796 (5 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works on the Fluids and Combustion Facility (FCF) Combustion Integration Rack (CIR) Passive Rack Isolation System (PaRIS) in the Destiny laboratory of the International Space Station.

  17. NATIONAL INCINERATOR TESTING AND EVALUATION PROGRAM: THE ENVIRONMENTAL CHARACTERIZATION OF REFUSE-DERIVED FUEL (RDF) COMBUSTION TECHNOLOGY - MID-CONNECTICUT FACILITY,

    EPA Science Inventory

    The report gives results of an environmental characterization of refuse-derived, semi-suspension burning technology at a facility in Hartford, CT, that represents state-of-the-art technology, including a spray dryer/fabric filter flue gas cleaning (FGC) system for each unit. The ...

  18. 40 CFR 60.2030 - Who implements and enforces this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... qualifying small power production facility or cogeneration facility under § 60.2020(e) or (f) is combusting... qualifying small power production facility or cogeneration facility under § 60.2020(e) or (f) is combusting...

  19. Ames Hybrid Combustion Facility

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)

    2003-01-01

    The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.

  20. 40 CFR 60.43b - Standard for particulate matter (PM).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) heat input, (i) If the affected facility combusts only coal, or (ii) If the affected facility combusts.... (2) 43 ng/J (0.10 lb/MMBtu) heat input if the affected facility combusts coal and other fuels and has... greater than 10 percent (0.10) for fuels other than coal. (3) 86 ng/J (0.20 lb/MMBtu) heat input if the...

  1. MUNICIPAL WASTE COMBUSTION ASSESSMENT: MEDICAL WASTE COMBUSTION PRACTICES AT MUNICIPAL WASTE COMBUSTION FACILITIES

    EPA Science Inventory

    The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for mun...

  2. The Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Kundu, Sampa

    2004-01-01

    Microgravity is an environment with very weak gravitational effects. The Fluids and Combustion Facility (FCF) on the International Space Station (ISS) will support the study of fluid physics and combustion science in a long-duration microgravity environment. The Fluid Combustion Facility's design will permit both independent and remote control operations from the Telescience Support Center. The crew of the International Space Station will continue to insert and remove the experiment module, store and reload removable data storage and media data tapes, and reconfigure diagnostics on either side of the optics benches. Upon completion of the Fluids Combustion Facility, about ten experiments will be conducted within a ten-year period. Several different areas of fluid physics will be studied in the Fluids Combustion Facility. These areas include complex fluids, interfacial phenomena, dynamics and instabilities, and multiphase flows and phase change. Recently, emphasis has been placed in areas that relate directly to NASA missions including life support, power, propulsion, and thermal control systems. By 2006 or 2007, a Fluids Integrated Rack (FIR) and a Combustion Integrated Rack (CIR) will be installed inside the International Space Station. The Fluids Integrated Rack will contain all the hardware and software necessary to perform experiments in fluid physics. A wide range of experiments that meet the requirements of the international space station, including research from other specialties, will be considered. Experiments will be contained in subsystems such as the international standard payload rack, the active rack isolation system, the optics bench, environmental subsystem, electrical power control unit, the gas interface subsystem, and the command and data management subsystem. In conclusion, the Fluids and Combustion Facility will allow researchers to study fluid physics and combustion science in a long-duration microgravity environment. Additional information is included in the original extended abstract.

  3. Multi-User Hardware Solutions to Combustion Science ISS Research

    NASA Technical Reports Server (NTRS)

    Otero, Angel M.

    2001-01-01

    In response to the budget environment and to expand on the International Space Station (ISS) Fluids and Combustion Facility (FCF) Combustion Integrated Rack (CIR), common hardware approach, the NASA Combustion Science Program shifted focus in 1999 from single investigator PI (Principal Investigator)-specific hardware to multi-user 'Minifacilities'. These mini-facilities would take the CIR common hardware philosophy to the next level. The approach that was developed re-arranged all the investigations in the program into sub-fields of research. Then common requirements within these subfields were used to develop a common system that would then be complemented by a few PI-specific components. The sub-fields of research selected were droplet combustion, solids and fire safety, and gaseous fuels. From these research areas three mini-facilities have sprung: the Multi-user Droplet Combustion Apparatus (MDCA) for droplet research, Flow Enclosure for Novel Investigations in Combustion of Solids (FEANICS) for solids and fire safety, and the Multi-user Gaseous Fuels Apparatus (MGFA) for gaseous fuels. These mini-facilities will develop common Chamber Insert Assemblies (CIA) and diagnostics for the respective investigators complementing the capability provided by CIR. Presently there are four investigators for MDCA, six for FEANICS, and four for MGFA. The goal of these multi-user facilities is to drive the cost per PI down after the initial development investment is made. Each of these mini-facilities will become a fixture of future Combustion Science NASA Research Announcements (NRAs), enabling investigators to propose against an existing capability. Additionally, an investigation is provided the opportunity to enhance the existing capability to bridge the gap between the capability and their specific science requirements. This multi-user development approach will enable the Combustion Science Program to drive cost per investigation down while drastically reducing the time required to go from selection to space flight.

  4. Industrial Facility Combustion Energy Use

    DOE Data Explorer

    McMillan, Colin

    2016-08-01

    Facility-level industrial combustion energy use is calculated from greenhouse gas emissions data reported by large emitters (>25,000 metric tons CO2e per year) under the U.S. EPA's Greenhouse Gas Reporting Program (GHGRP, https://www.epa.gov/ghgreporting). The calculation applies EPA default emissions factors to reported fuel use by fuel type. Additional facility information is included with calculated combustion energy values, such as industry type (six-digit NAICS code), location (lat, long, zip code, county, and state), combustion unit type, and combustion unit name. Further identification of combustion energy use is provided by calculating energy end use (e.g., conventional boiler use, co-generation/CHP use, process heating, other facility support) by manufacturing NAICS code. Manufacturing facilities are matched by their NAICS code and reported fuel type with the proportion of combustion fuel energy for each end use category identified in the 2010 Energy Information Administration Manufacturing Energy Consumption Survey (MECS, http://www.eia.gov/consumption/manufacturing/data/2010/). MECS data are adjusted to account for data that were withheld or whose end use was unspecified following the procedure described in Fox, Don B., Daniel Sutter, and Jefferson W. Tester. 2011. The Thermal Spectrum of Low-Temperature Energy Use in the United States, NY: Cornell Energy Institute.

  5. OPERATIONS AND RESEARCH AT THE U.S. EPA INCINERATION RESEARCH FACILITY: ANNUAL REPORT FOR FY95

    EPA Science Inventory

    During fiscal year 1995 (FY95), the last few tests of the Superfund Innovative Technology Evaluation (SITE) demonstration of the pulse combustion burner technology developed by Sonotech, Inc. were completed, with subsequent data evaluation efforts carried through to test report s...

  6. The FCF Combustion Integrated Rack: Microgravity Combustion Science Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    OMalley, Terence F.; Weiland, Karen J.

    2002-01-01

    The Combustion Integrated Rack (CIR) is one of three facility payload racks being developed for the International Space Station (ISS) Fluids and Combustion Facility (FCF). Most microgravity combustion experiments will be performed onboard the Space Station in the Combustion Integrated Rack. Experiment-specific equipment will be installed on orbit in the CIR to customize it to perform many different scientific experiments during the ten or more years that it will operate on orbit. This paper provides an overview of the CIR, including a description of its preliminary design and planned accommodations for microgravity combustion science experiments, and descriptions of the combustion science experiments currently planned for the CIR.

  7. Metals combustion in normal gravity and microgravity

    NASA Technical Reports Server (NTRS)

    Steinberg, Theodore A.; Wilson, D. Bruce; Benz, Frank J.

    1993-01-01

    The study of the combustion characteristics of metallic materials has been an ongoing area of research at the NASA White Sands Test Facility (WSTF). This research has been in support of both government and industrial operations and deals not only with the combustion of specific metallic materials but also with the relative flammabilities of these materials under similar conditions. Since many of the metallic materials that are characterized at WSTF for aerospace applications are to be used in microgravity environments, it was apparent that the testing of these materials needed to proceed in a microgravity environment. It was believed that burning metallic materials in a microgravity environment would allow the evaluation of the validity of applying normal gravity combustion tests to characterize metallic materials to be used in microgravity environments. It was also anticipated that microgravity testing would provide insight into the general combustion process of metallic materials. The availability of the NASA Lewis Research Center's (LeRC) 2.2-second drop tower provided the necessary facility to accomplish the microgravity portion of the testing while the normal gravity testing was conducted at NASA WSTF. The tests, both at LeRC and WSTF, were conducted in the same instrumented system and utilized the standard metal flammability test of upward propagation burning of cylindrical rod samples.

  8. The Fluids And Combustion Facility Combustion Integrated Rack And The Multi-User Droplet Combustion Apparatus: Microgravity Combustion Science Using Modular Multi-User Hardware

    NASA Technical Reports Server (NTRS)

    OMalley, Terence F.; Myhre, Craig A.

    2000-01-01

    The Fluids and Combustion Facility (FCF) is a multi-rack payload planned for the International Space Station (ISS) that will enable the study of fluid physics and combustion science in a microgravity environment. The Combustion Integrated Rack (CIR) is one of two International Standard Payload Racks of the FCF and is being designed primarily to support combustion science experiments. The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user apparatus designed to accommodate four different droplet combustion science experiments and is the first payload for CIR. The CIR will function independently until the later launch of the Fluids Integrated Rack component of the FCF. This paper provides an overview of the capabilities and the development status of the CIR and MDCA.

  9. High Pressure Combustion Experimental Facility(HPCEF) for Studies on Combustion in Reactive Flows

    DTIC Science & Technology

    2017-12-13

    SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...Report: High Pressure Combustion Experimental Facility (HPCEF) for Studies on Combustion in Reactive Flows The views, opinions and/or findings... contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so

  10. International Space Station -- Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)

  11. 30 CFR 57.4430 - Surface storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface storage facilities. 57.4430 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4430 Surface storage facilities. The requirements of this standard apply to surface areas only. (a) Storage tanks for flammable or combustible...

  12. 30 CFR 57.4430 - Surface storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface storage facilities. 57.4430 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4430 Surface storage facilities. The requirements of this standard apply to surface areas only. (a) Storage tanks for flammable or combustible...

  13. Fluids and Combustion Facility-Combustion Integrated Rack

    NASA Technical Reports Server (NTRS)

    Francisco, David R.

    1998-01-01

    This paper describes in detail the concept of performing Combustion microgravity experiments in the Combustion Integrated Rack (CIR) of the Fluids and Combustion Facility (FCF) on the International Space Station (ISS). The extended duration microgravity environment of the ISS will enable microgravity research to enter into a new era of increased scientific and technological data return. The FCF is designed to increase the amount and quality of scientific and technological data and decrease the development cost of an individual experiment relative to the era of Space Shuttle experiments. This paper also describes how the FCF will cost effectively accommodate these experiments.

  14. Facilities for microgravity combustion research

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R.

    1988-01-01

    Combustion science and applications have benefited in unforeseen ways from experimental research performed in the low-gravity environment. The capability to control for the first time the influence of gravitational buoyancy has provided some insight into soot formation in droplet combustion, the nature of flammability limits in premixed gases, and the relationship between normal-gravity and low-gravity material flammability that may influence how materials are best selected for routine use in habitable spacecraft. The opportunity to learn about these complex phenomena is derived from the control of the ambient body-force field and, perhaps as importantly, the simplified boundary conditions that can be established in well designed low-gravity combustion experiments. A description of the test facilities and typical experimental apparatus are provided; and conceptual plans for a Space Station Freedom capability, the Modular Combustion Facility, are described.

  15. PILOT-SCALE INCINERATION TEST BURN OF TCDD-CONTAMINATED TRICHLOROPHENOL PRODUCTION WASTE

    EPA Science Inventory

    A series of three tests directed at evaluating the incinerability of the toluene stillbottoms waste from trichlorophenol production previously generated by the Vertac Chemical Company were performed in the Combustion Research Facility (CRF) rotary kiln incineration system. This w...

  16. Simulation of Combustion Systems with Realistic g-Jitter

    NASA Technical Reports Server (NTRS)

    Mell, W. E.; McGrattan, K. B.; Nakamura, Y.; Baum, H. R.

    2001-01-01

    A number of facilities are available for microgravity combustion experiments: aircraft, drop towers, sounding rockets, the space shuttle, and, in the future, the International Space Station (ISS). Acceleration disturbances or g-jitter about the background level of reduced gravity exist in all these microgravity facilities. While g-jitter is routinely measured, a quantitative comparison of the quality of g-jitter among the different microgravity facilities, in terms of its affects on combustion experiments, has not been compiled. Low frequency g-jitter (< 1 Hz) has been repeatedly observed to disturb a number of combustion systems. Guidelines regarding tolerable levels of acceleration disturbances for combustion experiments have been developed for use in the design of ISS experiments. The validity of these guidelines, however, remains unknown. In this project a transient, 3-D numerical model is under development to simulate the effects of realistic g-jitter on a number of combustion systems. The measured acceleration vector or some representation of it can be used as input to the simulation.

  17. Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.

    2000-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.

  18. Combustion characteristics of lodge pole pine wood chips. Technical progress report No. 15, September 16, 1978-September 15, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junge, D.C.

    1979-09-01

    Significant quantits of wood resiue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the combustion process in industrial boilersmore » serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. This report presents data on the combustion characteristics of lodge pole pine wood chips. The data were obtained in a pilot scale combustion test facility at Oregon State University.« less

  19. Combustion Research aboard the ISS Utilizing the Combustion Integrated Rack and Microgravity Science Glovebox

    NASA Astrophysics Data System (ADS)

    Sutliff, T. J.; Otero, A. M.; Urban, D. L.

    2002-01-01

    The Physical Sciences Research Program of NASA has chartered a broad suite of peer-reviewed research investigating both fundamental combustion phenomena and applied combustion research topics. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). The applied research benefit humans living and working in space through its fire safety program. The Combustion Science Discipline is implementing a structured flight research program utilizing the International Space Station (ISS) and two of its premier facilities, the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox to conduct this space-based research. This paper reviews the current vision of Combustion Science research planned for International Space Station implementation from 2003 through 2012. A variety of research efforts in droplets and sprays, solid-fuels combustion, and gaseous combustion have been independently selected and critiqued through a series of peer-review processes. During this period, while both the ISS carrier and its research facilities are under development, the Combustion Science Discipline has synergistically combined research efforts into sub-topical areas. To conduct this research aboard ISS in the most cost effective and resource efficient manner, the sub-topic research areas are implemented via a multi-user hardware approach. This paper also summarizes the multi-user hardware approach and recaps the progress made in developing these research hardware systems. A balanced program content has been developed to maximize the production of fundamental and applied combustion research results within the current budgetary and ISS operational resource constraints. Decisions on utilizing the Combustion Integrated Rack and the Microgravity Science Glovebox are made based on facility capabilities and research requirements. To maximize research potential, additional research objectives are specified as desires a priori during the research design phase. These expanded research goals, which are designed to be achievable even with late addition of operational resources, allow additional research of a known, peer-endorsed scope to be conducted at marginal cost. Additional operational resources such as upmass, crewtime, data downlink bandwidth, and stowage volume may be presented by the ISS planners late in the research mission planning process. The Combustion Discipline has put in place plans to be prepared to take full advantage of such opportunities.

  20. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....2 lb/MMBtu) heat input. If coal is combusted with other fuels, the affected facility shall neither... excess of 520 ng/J (1.2 lb/MMBtu) heat input. If coal is fired with coal refuse, the affected facility.../MMBtu) heat input. If coal is combusted with other fuels, the affected facility is subject to the 50...

  1. A User's Guide for the Spacecraft Fire Safety Facility

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey S.

    2000-01-01

    The Spacecraft Fire Safety Facility (SFSF) is a test facility that can be flown on NASA's reduced gravity aircraft to perform various types of combustion experiments under a variety of experimental conditions. To date, this facility has flown numerous times on the aircraft and has been used to perform experiments ranging from an examination of the effects transient depressurization on combustion, to ignition and flame spread. A list of pubfications/presentations based on experiments performed in the SFSF is included in the reference section. This facility consists of five main subsystems: combustion chamber, sample holders, gas flow system, imaging system, and the data acquisition/control system. Each of these subsystems will be reviewed in more detail. These subsystems provide the experiment operator with the ability to monitor and/or control numerous experimental parameters.

  2. NASA Microgravity Combustion Science Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    2003-01-01

    A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.

  3. Energy - Sandia National Laboratories

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  4. Earth Science - Sandia Energy

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  5. Stationary Power - Sandia Energy

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  6. Transportation Energy - Sandia Energy

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  7. Grid Modernization - Sandia Energy

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  8. COMBUSTION CONTROL OF TRACE ORGANIC AIR POLLUTANTS FROM MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) is considering the use of combustion techniques for controlling air emissions of chlorinated dioxins, chlorinated furans, and other trace organics from municipal waste combustion (MWC) facilities. Recommendations for good combustion pr...

  9. Energy Fact Sheets - Sandia Energy

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  10. Experimental Replication of an Aeroengine Combustion Instability

    NASA Technical Reports Server (NTRS)

    Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.

    2000-01-01

    Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the causal dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment was designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic and thermo-fluid features. The process increases the probability that results achieved in the single-nozzle experiment will be scalable to the engine.

  11. Microgravity Combustion Science and Fluid Physics Experiments and Facilities for the ISS

    NASA Technical Reports Server (NTRS)

    Lauver, Richard W.; Kohl, Fred J.; Weiland, Karen J.; Zurawski, Robert L.; Hill, Myron E.; Corban, Robert R.

    2001-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program supports both ground-based and flight experiment research in the disciplines of Combustion Science and Fluid Physics. Combustion Science research includes the areas of gas jet diffusion flames, laminar flames, burning of droplets and misting fuels, solids and materials flammability, fire and fire suppressants, turbulent combustion, reaction kinetics, materials synthesis, and other combustion systems. The Fluid Physics discipline includes the areas of complex fluids (colloids, gels, foams, magneto-rheological fluids, non-Newtonian fluids, suspensions, granular materials), dynamics and instabilities (bubble and drop dynamics, magneto/electrohydrodynamics, electrochemical transport, geophysical flows), interfacial phenomena (wetting, capillarity, contact line hydrodynamics), and multiphase flows and phase changes (boiling and condensation, heat transfer, flow instabilities). A specialized International Space Station (ISS) facility that provides sophisticated research capabilities for these disciplines is the Fluids and Combustion Facility (FCF). The FCF consists of the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) and the Shared Accommodations Rack and is designed to accomplish a large number of science investigations over the life of the ISS. The modular, multiuser facility is designed to optimize the science return within the available resources of on-orbit power, uplink/downlink capacity, crew time, upmass/downmass, volume, etc. A suite of diagnostics capabilities, with emphasis on optical techniques, will be provided to complement the capabilities of the subsystem multiuser or principal investigator-specific experiment modules. The paper will discuss the systems concept, technical capabilities, functionality, and the initial science investigations in each discipline.

  12. Combustion characteristics of Douglas Fir planer shavings. Technical progress report No. 4, September 16, 1977--September 15, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junge, D.C.

    1978-12-01

    Significant quantities of wood residue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the the combustion process in industrialmore » boilers serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. This report presents data on the combustion characteristics of Douglas Fir planer shavings. The data were obtained in a pilot scale combustion test facility at Oregon State Univerisity. Other technical reports present data on the combustion characteristics of: Douglas Fir bark, Red Alder sawdust, Red Alder bark, Ponderosa pine bark, Hemlock bark, and Eastern White Pine bark. An executive summary report is also available which compares the combustion characteristics of the various fuel species.« less

  13. Combustion toxicology of epoxy/carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.

    1981-01-01

    A combustion toxicology test was developed to screen materials for aerospace applications. The system is called the radiant panel test facility. A description of the facility and some preliminary results from tests on a Navy 3501-6AS composite, a typical composite for fighter aircraft, are presented.

  14. Commercial investments in Combustion research aboard ISS

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    2000-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is working with a number of companies planning commercial combustion research to be done aboard the International Space Station (ISS). This research will be conducted in two major ISS facilities, SpaceDRUMS™ and the Fluids and Combustion Facility. SpaceDRUMS™, under development by Guigne Technologies, Ltd., of St. John's Newfoundland, is a containerless processing facility employing active acoustic sample positioning. It is capable of processing the large samples needed in commercial research and development with virtually complete vibration isolation from the space station. The Fluids and Combustion Facility (FCF), being developed by NASA-Glenn Research Center in Cleveland, is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. SpaceDRUMS™ will be the first commercial hardware to be launched to ISS. Launch is currently scheduled for UF-1 in 2001. The CCACS research to be done in SpaceDRUMS™ includes combustion synthesis of glass-ceramics and porous materials. The FCF is currently scheduled to be launched to ISS aboard UF-3 in 2002. The CCACS research to be done in the FCF includes water mist fire suppression, catalytic combustion and flame synthesis of ceramic powders. The companies currently planning to be involved in the research include Guigne International, Ltd., Technology International, Inc., Coors Ceramics Company, TDA Research, Advanced Refractory Technologies, Inc., ADA Technologies, Inc., ITN Energy Systems, Inc., Innovative Scientific Solutions, Inc., Princeton Instruments, Inc., Environmental Engineering Concepts, Inc., and Solar Turbines, Inc. Together, these companies are currently investing almost $2 million in cash and in-kind annually toward the seven commercial projects within CCACS. Total private investment in CCACS research to date is over $7 million. .

  15. Fluids and Combustion Facility: Combustion Integrated Rack Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user, two-rack facility dedicated to combustion and fluids science in the US Laboratory Destiny on the International Space Station. FCF is a permanent facility that is capable of accommodating up to ten combustion and fluid science investigations per year. FCF research in combustion and fluid science supports NASA's Exploration of Space Initiative for on-orbit fire suppression, fire safety, and space system fluids management. The Combustion Integrated Rack (CIR) is one of two racks in the FCF. The CIR major structural elements include the International Standard Payload Rack (ISPR), Experiment Assembly (optics bench and combustion chamber), Air Thermal Control Unit (ATCU), Rack Door, and Lower Structure Assembly (Input/Output Processor and Electrical Power Control Unit). The load path through the rack structure is outlined. The CIR modal survey was conducted to validate the load path predicted by the CIR finite element model (FEM). The modal survey is done by experimentally measuring the CIR frequencies and mode shapes. The CIR model was test correlated by updating the model to represent the test mode shapes. The correlated CIR model delivery is required by NASA JSC at Launch-10.5 months. The test correlated CIR flight FEM is analytically integrated into the Shuttle for a coupled loads analysis of the launch configuration. The analysis frequency range of interest is 0-50 Hz. A coupled loads analysis is the analytical integration of the Shuttle with its cargo element, the Mini Payload Logistics Module (MPLM), in the Shuttle cargo bay. For each Shuttle launch configuration, a verification coupled loads analysis is performed to determine the loads in the cargo bay as part of the structural certification process.

  16. An evaluation of continuous emissions monitoring systems for improving industrial boiler efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckerlin, H.M.; Hall, R.C.

    1996-12-31

    An experimental evaluation of currently available continuous emissions monitoring systems has been conducted at an industrial boiler facility. The analyzers used in the study represented a range of sensors and sampling systems. The performance of three systems was monitored and compared over a six-month period. Careful records were also kept on installation, calibration and maintenance requirements. Research results suggest that (at present) the close-coupled extractive systems using a zirconium oxide sensor (for O{sub 2}) and a catalytic combustibles sensor (for CO/combustibles) offer the most reliable, trouble-free performance. The project also provided valuable insights on a variety of issues relating tomore » the continuous monitoring of emissions from industrial boilers.« less

  17. An evaluation of continuous emissions monitoring systems for improving industrial boiler efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckerlin, H.M.; Hall, R.C.

    1996-05-01

    An experimental evaluation of currently available continuous emissions monitoring systems has been conducted at an industrial boiler facility. The analyzers used in the study represented a range of sensors and sampling systems. The performance of three systems was monitored and compared over a six-month period. Careful records were also kept on installation, calibration and maintenance requirements. Research results suggest that (at present) the close-coupled extractive systems using a zirconium oxide sensor (for O{sub 2}) and a catalytic combustibles sensor (for CO/combustibles) offer the most reliable, trouble-free performance. The project also provided valuable insights on a variety of issues relating tomore » the continuous monitoring of emissions from industrial boilers.« less

  18. A Combustion Laboratory for Undergraduates.

    ERIC Educational Resources Information Center

    Peters, James E.

    1985-01-01

    Describes a combustion laboratory facility and experiments for a senior-level (undergraduate) course in mechanical engineering. The experiment reinforces basic thermodynamic concepts and provides many students with their first opportunity to work with a combustion system. (DH)

  19. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-10-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysis production was completed tomore » produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio-based fuels is scheduled to begin in October of 2001. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam.« less

  20. 40 CFR 62.15120 - What information must I include in the plant-specific operating manual?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... startup, shutdown, and malfunction of the municipal waste combustion unit. (e) Procedures for maintaining... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units... the basic combustion principles that apply to municipal waste combustion units. (c) Procedures for...

  1. Requirements for temperature and species concentration measurements in microgravity combustion experiments

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1988-01-01

    The requirements for a nonintrusive optical diagnostic facility for Space Station are assessed by examining the needs of current and future combustion experiments to be flown aboard the Space Station. Requirements for test section geometry and size, spatial and temporal resolution, species type and concentration range, and temperature range are reviewed. The feasibility of the development of this system is also addressed. The suitability of this facility to non-combustion experiments in gases and liquids is also considered.

  2. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  3. Experimental Supersonic Combustion Research at NASA Langley

    NASA Technical Reports Server (NTRS)

    Rogers, R. Clayton; Capriotti, Diego P.; Guy, R. Wayne

    1998-01-01

    Experimental supersonic combustion research related to hypersonic airbreathing propulsion has been actively underway at NASA Langley Research Center (LaRC) since the mid-1960's. This research involved experimental investigations of fuel injection, mixing, and combustion in supersonic flows and numerous tests of scramjet engine flowpaths in LaRC test facilities simulating flight from Mach 4 to 8. Out of this research effort has come scramjet combustor design methodologies, ground test techniques, and data analysis procedures. These technologies have progressed steadily in support of the National Aero-Space Plane (NASP) program and the current Hyper-X flight demonstration program. During NASP nearly 2500 tests of 15 scramjet engine models were conducted in LaRC facilities. In addition, research supporting the engine flowpath design investigated ways to enhance mixing, improve and apply nonintrusive diagnostics, and address facility operation. Tests of scramjet combustor operation at conditions simulating hypersonic flight at Mach numbers up to 17 also have been performed in an expansion tube pulse facility. This paper presents a review of the LaRC experimental supersonic combustion research efforts since the late 1980's, during the NASP program, and into the Hyper-X Program.

  4. Langley Mach 4 scramjet test facility

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Torrence, M. G.; Anderson, G. Y.; Northam, G. B.; Mackley, E. A.

    1985-01-01

    An engine test facility was constructed at the NASA Langley Research Center in support of a supersonic combustion ramjet (scramjet) technology development program. Hydrogen combustion in air with oxygen replenishment provides simulated air at Mach 4 flight velocity, pressure, and true total temperature for an altitude range from 57,000 to 86,000 feet. A facility nozzle with a 13 in square exit produces a Mach 3.5 free jet flow for engine propulsion tests. The facility is described and calibration results are presented which demonstrate the suitability of the test flow for conducting scramjet engine research.

  5. 40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...

  6. 40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...

  7. 40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...

  8. 40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...

  9. 40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...

  10. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...

  11. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...

  12. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...

  13. High-speed flight propulsion systems. Progress in Astronautics and Aeronautics. Vol. 137

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, S.N.B.; Curran, E.T.

    1991-01-01

    Various papers on high-speed flight propulsion systems are presented. The topics addressed are: propulsion systems from takeoff to high-speed flight, propulsion system performance and integration for high Mach air-breathing flight, energy analysis of high-speed flight systems, waves and thermodynamics in high Mach number propulsive ducts, turbulent free shear layer mixing and combustion, turbulent mixing in supersonic combustion systems, mixing and mixing enhancement in supersonic reacting flowfields, study of combustion and heat-exchange processes in high-enthalpy short-duration facilities, and facility requirements for hypersonic propulsion system testing.

  14. Microgravity

    NASA Image and Video Library

    2000-01-31

    The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)

  15. Conceptual Design of the Space Station Fluids Module

    NASA Technical Reports Server (NTRS)

    Rohn, Dennis W.; Morilak, Daniel P.; Rhatigan, Jennifer L.; Peterson, Todd T.

    1994-01-01

    The purpose of this paper is to describe the conceptual design of the Fluids Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. Portions of the SS FCF are scheduled to become operational on-orbit in 1999. The Fluids Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 2001. The objectives of this paper are to describe the history of the Fluids Module concept, the types of fluids science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.

  16. Evaluation of OH laser-induced fluorescence techniques for supersonic combustion diagnostics

    NASA Technical Reports Server (NTRS)

    Quagliaroli, T. M.; Laufer, G.; Krauss, R. H.; Mcdaniel, J. C., Jr.

    1992-01-01

    The limitations on application of dye laser and narrowband tunable KrF excimer laser systems to planar OH fluorescence measurements in supersonic combustion test facilities are examined. Included in the analysis are effects of collisional quenching, beam absorption, fluorescence trapping, and signal strengths on achievable measurement accuracy using several excitation and detection options for either of the two laser systems. Dye-based laser systems are found to be the method of choice for imaging OH concentrations less than 10 exp 15 per cu cm, while the KrF based systems provide significant reduction in measurement ambiguity for concentrations in excess of 10 exp 15 per cu cm.

  17. EPA ASSESSMENT OF TECHNOLOGIES FOR CONTROLLING EMISSIONS FROM MUNICIPAL WASTE COMBUSTION

    EPA Science Inventory

    The article examines EPA technical activities relating to the development of regulations pertaining to the control of both new and existing municipal waste combustion facilities (MWCs). The activities include: (1) assessing combustion and flue gas cleaning technologies, (2) colle...

  18. Low thrust rocket test facility

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Schneider, Steven J.

    1990-01-01

    A low thrust chemical rocket test facility has recently become operational at the NASA-Lewis. The new facility is used to conduct both long duration and performance tests at altitude over a thruster's operating envelope using hydrogen and oxygen gas for propellants. The facility provides experimental support for a broad range of objectives, including fundamental modeling of fluids and combustion phenomena, the evaluation of thruster components, and life testing of full rocket designs. The major mechanical and electrical systems are described along with aspects of the various optical diagnostics available in the test cell. The electrical and mechanical systems are designed for low down time between tests and low staffing requirements for test operations. Initial results are also presented which illustrate the various capabilities of the cell.

  19. Preliminary Concept, Specifications, and Requirements for a Zero-Gravity Combustion Facility for Spacelab

    NASA Technical Reports Server (NTRS)

    Dewitt, Richard L.

    1978-01-01

    The preliminary concept, specifications, and requirements of a reusable zero gravity combustion facility (0-GCF) for use by experimenters aboard the spacelab payload of the space transportation system (STS) orbiter are described. The facility will be amenable to any mission of the STS orbiter in which a spacelab habitable segment and pallet segment are integral and for which orbital mission plans specify induced accelerations of 0.0001 g or less for sufficiently long periods so as not to impact experiment performance.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. L. Abbott; K. N. Keck; R. E. Schindler

    This screening level risk assessment evaluates potential adverse human health and ecological impacts resulting from continued operations of the calciner at the New Waste Calcining Facility (NWCF) at the Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Engineering and Environmental Laboratory (INEEL). The assessment was conducted in accordance with the Environmental Protection Agency (EPA) report, Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Waste. This screening guidance is intended to give a conservative estimate of the potential risks to determine whether a more refined assessment is warranted. The NWCF uses a fluidized-bed combustor to solidifymore » (calcine) liquid radioactive mixed waste from the INTEC Tank Farm facility. Calciner off volatilized metal species, trace organic compounds, and low-levels of radionuclides. Conservative stack emission rates were calculated based on maximum waste solution feed samples, conservative assumptions for off gas partitioning of metals and organics, stack gas sampling for mercury, and conservative measurements of contaminant removal (decontamination factors) in the off gas treatment system. Stack emissions were modeled using the ISC3 air dispersion model to predict maximum particulate and vapor air concentrations and ground deposition rates. Results demonstrate that NWCF emissions calculated from best-available process knowledge would result in maximum onsite and offsite health and ecological impacts that are less then EPA-established criteria for operation of a combustion facility.« less

  1. Cleaner, More Efficient Diesel Engines

    ScienceCinema

    Musculus, Mark

    2018-01-16

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  2. 76 FR 70352 - Approval and Promulgation of Implementation Plans; Reasonably Available Control Technology for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... controlling oxides of nitrogen from the stationary reciprocating, diesel fuel fired, internal combustion... County. The facility contains two stationary reciprocating, diesel fuel fired, internal combustion... Conditions of Approval specify the NO X emissions limits, combustion process adjustments mentioned above...

  3. Systems Design and Experimental Evaluation of a High-Altitude Relight Test Facility

    NASA Astrophysics Data System (ADS)

    Paxton, Brendan

    Novel advances in gas turbine engine combustor technology, led by endeavors into fuel efficiency and demanding environmental regulations, have been fraught with performance and safety concerns. While the majority of low emissions gas turbine engine combustor technology has been necessary for power generation applications, the push for ultra-low NOx combustion in aircraft jet engines has been ever present. Recent state-of-the-art combustor designs notably tackle historic emissions challenges by operating at fuel-lean conditions, which are characterized by an increase in the amount of air flow sent to the primary combustion zone. While beneficial in reducing NOx emissions, the fuel-lean mechanisms that characterize these combustor designs rely heavily upon high-energy and high-velocity air flows to sufficiently mix and atomize fuel droplets, ultimately leading to flame stability concerns during low-power operation. When operating at high-altitude conditions, these issues are further exacerbated by the presence of low ambient air pressures and temperatures, which can lead to engine flame-out situations and hamper engine relight attempts. To aid academic and industrial research ventures into improving the high-altitude lean blow-out and relight performance of modern gas turbine engine combustor technologies, the High-Altitude Relight Test Facility (HARTF) was designed and constructed at the University of Cincinnati (UC) Combustion and Fire Research Laboratory (CFRL). Following its construction, an experimental evaluation of its abilities to facilitate optically-accessible ignition, combustion, and spray testing for gas turbine engine combustor hardware at simulated high-altitude conditions was performed. In its evaluation, performance limit references were established through testing of the HARTF vacuum and cryogenic air-chilling capabilities. These tests were conducted with regard to end-user control---the creation and the maintenance of a realistic high-altitude environment simulation. To evaluate future testing applications, as well as to understand the abilities of the HARTF to accommodate different sizes and configurations of industrial gas turbine engine combustor hardware, ignition testing was conducted at challenging high-altitude windmilling conditions with a linearly-arranged five-swirler array, replicating the implementation of a multi-cup combustor sector.

  4. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improvesmore » the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen carriers in the system by using the high-sulfur-laden asphalt fuels. In all, the scaled-up test in 10 kW CLC facility demonstrated that the preparation method of copper-based oxygen carrier not only help to maintain its good reactivity, also largely minimize its agglomeration tendency.« less

  5. The National Carbon Capture Center at the Power Systems Development Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-12-30

    The National Carbon Capture Center (NCCC) at the Power Systems Development Facility supports the Department of Energy (DOE) goal of promoting the United States’ energy security through reliable, clean, and affordable energy produced from coal. Work at the NCCC supports the development of new power technologies and the continued operation of conventional power plants under CO 2 emission constraints. The NCCC includes adaptable slipstreams that allow technology development of CO 2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research atmore » the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During its first contract period, from October 1, 2008, through December 30, 2014, the NCCC designed, constructed, and began operation of the Post-Combustion Carbon Capture Center (PC4). Testing of CO 2 capture technologies commenced in 2011, and through the end of the contract period, more than 25,000 hours of testing had been achieved, supporting a variety of technology developers. Technologies tested included advanced solvents, enzymes, membranes, sorbents, and associated systems. The NCCC continued operation of the existing gasification facilities, which have been in operation since 1996, to support the advancement of technologies for next-generation gasification processes and pre-combustion CO 2 capture. The gasification process operated for 13 test runs, supporting over 30,000 hours combined of both gasification and pre-combustion technology developer testing. Throughout the contract period, the NCCC incorporated numerous modifications to the facilities to accommodate technology developers and increase test capabilities. Preparations for further testing were ongoing to continue advancement of the most promising technologies for future power generation processes.« less

  6. CONCEPTUAL DESIGN ASSESSMENT FOR THE COFIRING OF BIOREFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David J. Webster; Jeffrey T. Ranney; Jacqueline G. Broder

    2002-07-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed. Processing of biosolids and pilot facility hydrolysis production have been completed to produce lignin for cofire testing. EERC had received all the biomass and baseline coal fuels for use in testing. All the combustion and fuel handling tests at EERC have been completed. During fuel preparation EERC reported no difficulties in fuel blending and handling. Preliminary cofire test results indicate that the blending of lignin and biosolids with the Colbert coal blendmore » generally reduces NOx emissions, increases the reactivity of the coal, and increases the ash deposition rate on superheater surfaces. Deposits produced from the fuel blends, however, are more friable and hence easier to remove from tube surfaces relative to those produced from the baseline Colbert coal blend. A draft of the final cofire technical report entitled ''Effects of Cofiring Lignin and Biosolids with Coal on Fireside Performance and Combustion Products'' has been prepared and is currently being reviewed by project team members. A final report is expected by mid-third quarter 2002. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The environmental review, preferred steam supply connection points and steam pipeline routing, and assessment of steam export impacts have been completed without major issue. A cost estimate for the steam supply system was also completed. TVA is further evaluating the impacts of adding lignin to the coal fuel blend and how the steam cost is impacted by proximity of the Masada biomass facility. TVA has provided a draft final report that is under review by team members.« less

  7. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...

  8. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...

  9. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...

  10. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...

  11. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...

  12. THE CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-07-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysismore » production was completed to produce lignin for co-fire testing. During this quarter, TVA completed the washing and dewatering of the lignin material produced from the MSW hydrolysis. Seven drums of lignin material were washed to recover the acid and sugar from the lignin and provide an improved fuel for steam generation. Samples of both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation. After sample evaluation, EERC approved sending the material and all of the necessary fuel for testing was shipped to EERC. EERC has requested and will receive coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio based fuels is scheduled to begin in August of 2001. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam. The preliminary steam price will be determined in the next quarter.« less

  13. Design and Development of a CPCI-Based Electronics Package for Space Station Experiments

    NASA Technical Reports Server (NTRS)

    Kolacz, John S.; Clapper, Randy S.; Wade, Raymond P.

    2006-01-01

    The NASA John H. Glenn Research Center is developing a Compact-PCI (CPCI) based electronics package for controlling space experiment hardware on the International Space Station. Goals of this effort include an easily modified, modular design that allows for changes in experiment requirements. Unique aspects of the experiment package include a flexible circuit used for internal interconnections and a separate enclosure (box in a box) for controlling 1 kW of power for experiment fuel heating requirements. This electronics package was developed as part of the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) mini-facility which is part of the Fluids and Combustion Facility s Combustion Integrated Rack (CIR). The CIR will be the platform for future microgravity combustion experiments and will reside on the Destiny Module of the International Space Station (ISS). The FEANICS mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct applied scientific investigations in fire-safety to support NASA s future space missions. A description of the electronics package and the results of functional testing are the subjects of this report. The report concludes that the use of innovative packaging methods combined with readily available COTS hardware can provide a modular electronics package which is easily modified for changing experiment requirements.

  14. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andy; Graham, Bart

    2016-01-01

    Dynetics has designed innovative structure assemblies; manufactured them using Friction Stir Welding (FSW) to leverage NASA investments in tools, facilities, and processes; conducted proof and burst testing, demonstrating viability of design/build processes Dynetics/AR has applied state-of-the-art manufacturing and processing techniques to the heritage F-1, reducing risk for engine development Dynetics/AR has also made progress on technology demonstrations for ORSC cycle engine, which offers affordability and performance for both NASA and other launch vehicles Full-scale integrated oxidizer-rich test article. Testing will evaluate performance and combustion stability characteristics. Contributes to technology maturation for ox-rich staged combustion engines.

  15. Experimental investigation on secondary combustion characteristics of airbreathing rockets

    NASA Astrophysics Data System (ADS)

    Mano, Takeshi; Eguchi, Akihiro; Shinohara, Suetsugu; Etou, Takao; Kaneko, Yutaka; Yamamoto, Youichi; Nakagawa, Ichirou

    Empirical correlations of the secondary combustion efficiency of the airbreathing rocket were derived. From the results of a series of experiments employing a connected pipe facility, the combustion efficiency was related to dominant parameters. The feasibility of the performance prediction by one-dimensional analysis was also discussed. The analysis was found to be applicable to the flow processes in the secondary combustor, which include two-stream mixing and combustion.

  16. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2002-04-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility hydrolysis production has been completed to produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material was used atmore » EERC as baseline material and for mixing with the bio-fuel for combustion testing. All the combustion and fuel handling tests at EERC have been completed. During fuel preparation EERC reported no difficulties in fuel blending and handling. Preliminary co-fire test results indicate that the blending of lignin and bio-solids with the Colbert coal blend generally reduces NO{sub x} emissions, increases the reactivity of the coal, and increases the ash deposition rate on superheater surfaces. Deposits produced from the fuel blends, however, are more friable and hence easier to remove from tube surfaces relative to those produced from the baseline Colbert coal blend. The final co-fire testing report is being prepared at EERC and will be completed by the end of the second quarter of 2002. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for the steam supply system was completed. The cost estimate and output and heat rate impacts have been used to determine a preliminary price for the exported steam. TVA is further evaluating the impacts of adding lignin to the coal fuel blend and how the steam cost is impacted by proximity of the Masada biomass facility.« less

  17. Residential proximity to industrial combustion facilities and risk of non-Hodgkin lymphoma: a case–control study

    PubMed Central

    2013-01-01

    Background Residence near municipal solid waste incinerators, a major historical source of dioxin emissions, has been associated with increased risk of non-Hodgkin lymphoma (NHL) in European studies. The aim of our study was to evaluate residence near industrial combustion facilities and estimates of dioxin emissions in relation to NHL risk in the United States. Methods We conducted a population-based case–control study of NHL (1998–2000) in four National Cancer Institute-Surveillance Epidemiology and End Results centers (Detroit, Iowa, Los Angeles, Seattle). Residential histories 15 years before diagnosis (similar date for controls) were linked to an Environmental Protection Agency database of dioxin-emitting facilities for 969 cases and 749 controls. We evaluated proximity (3 and 5 km) to 10 facility types that accounted for >85% of U.S. emissions and a distance-weighted average emission index (AEI [ng toxic equivalency quotient (TEQ)/year]). Results Proximity to any dioxin-emitting facility was not associated with NHL risk (3 km OR = 1.0, 95% CI 0.8-1.3). Risk was elevated for residence near cement kilns (5 km OR = 1.7, 95% CI 0.8-3.3; 3 km OR = 3.8, 95% CI 1.1-14.0) and reduced for residence near municipal solid waste incinerators (5 km OR = 0.5, 95% CI 0.3-0.9; 3 km OR = 0.3, 95% CI 0.1-1.4). The AEI was not associated with risk of NHL overall. Risk for marginal zone lymphoma was increased for the highest versus lowest quartile (5 km OR = 2.6, 95% CI 1.0-6.8; 3 km OR = 3.0, 95% CI 1.1-8.3). Conclusions Overall, we found no association with residential exposure to dioxins and NHL risk. However, findings for high emissions and marginal zone lymphoma and for specific facility types and all NHL provide some evidence of an association and deserve future study. PMID:23433489

  18. In-stream measurements of combustion during Mach 5 to 7 tests of the Hypersonic Research Engine (HRE)

    NASA Technical Reports Server (NTRS)

    Lezberg, Erwin A.; Metzler, Allen J.; Pack, William D.

    1993-01-01

    Results of in-stream combustion measurements taken during Mach 5 to 7 true simulation testing of the Hypersonic Research Engine/Aerothermodynamic Integration Model (HRE/AIM) are presented. These results, the instrumentation techniques, and configuration changes to the engine installation that were required to test this model are described. In test runs at facility Mach numbers of 5 to 7, an exhaust instrumentation ring which formed an extension of the engine exhaust nozzle shroud provided diagnostic measurements at 10 circumferential locations in the HRE combustor exit plane. The measurements included static and pitot pressures using conventional conical probes, combustion gas temperatures from cooled-gas pyrometer probes, and species concentration from analysis of combustion gas samples. Results showed considerable circumferential variation, indicating that efficiency losses were due to nonuniform fuel distribution or incomplete mixing. Results using the Mach 7 facility nozzle but with Mach 6 temperature simulation, 1590 to 1670 K, showed indications of incomplete combustion. Nitric oxide measurements at the combustor exit peaked at 2000 ppmv for stoichiometric combustion at Mach 6.

  19. Integration Process for Payloads in the Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Free, James M.; Nall, Marsha M.

    2001-01-01

    The Fluids and Combustion Facility (FCF) is an ISS research facility located in the United States Laboratory (US Lab), Destiny. The FCF is a multi-discipline facility that performs microgravity research primarily in fluids physics science and combustion science. This facility remains on-orbit and provides accommodations to multi-user and Principal investigator (PI) unique hardware. The FCF is designed to accommodate 15 PI's per year. In order to allow for this number of payloads per year, the FCF has developed an end-to-end analytical and physical integration process. The process includes provision of integration tools, products and interface management throughout the life of the payload. The payload is provided with a single point of contact from the facility and works with that interface from PI selection through post flight processing. The process utilizes electronic tools for creation of interface documents/agreements, storage of payload data and rollup for facility submittals to ISS. Additionally, the process provides integration to and testing with flight-like simulators prior to payload delivery to KSC. These simulators allow the payload to test in the flight configuration and perform final facility interface and science verifications. The process also provides for support to the payload from the FCF through the Payload Safety Review Panel (PSRP). Finally, the process includes support in the development of operational products and the operation of the payload on-orbit.

  20. Combustion Module-2 Preparations Completed for SPACEHAB Mission Including the Addition of a New Major Experiment

    NASA Technical Reports Server (NTRS)

    Over, Ann P.

    2001-01-01

    The Combustion Module-1 (CM-1) was a large, state-of-the-art space shuttle Spacelab facility that was designed, built, and operated on STS-83 and STS-94 by a team from the NASA Glenn Research Center composed of civil servants and local support contractors (Analex and Zin Technologies). CM-1 accomplished the incredible task of providing a safe environment to support flammable and toxic gases while providing a suite of diagnostics for science measurements more extensive than any prior shuttle experiment (or anything since). Finally, CM-1 proved that multiple science investigations can be accommodated in one facility, a crucial step for Glenn's Fluids and Combustion Facility developed for the International Space Station. However, the story does not end with CM-1. In 1998, CM-2 was authorized to take the CM-1 accomplishments a big step further by completing three major steps: Converting the entire experiment to operate in a SPACEHAB module. Conducting an extensive hardware refurbishment and upgrading diagnostics (e.g., cameras, gas chromatograph, and numerous sensors). Adding a new, completely different combustion experiment.

  1. Space Station Freedom: A foothold on the future

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An overview of the Space Station Freedom is given. Its modules are discussed and illustrated along with its microgravity research facilities. These facilities include the advanced protein crystal growth facility, the containerless processing facility, a furnace facility, a combustion facility, and a fluid physics/dynamics facility. The topic of living in space is also addressed.

  2. MWA in U.S. Lab

    NASA Image and Video Library

    2011-10-17

    ISS029-E-029756 (17 Oct. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, works on the Combustion Integrated Rack / Fluids & Combustion Facility (CIR FCF) in the Destiny laboratory of the International Space Station.

  3. iss028e026402

    NASA Image and Video Library

    2011-08-17

    ISS028-E-026402 (17 Aug. 2011) --- NASA astronaut Ron Garan, Expedition 28 flight engineer, works with the Combustion Integrated Rack (CIR) Fluids and Combustion Facility (FCF) in the Destiny laboratory of the International Space Station.

  4. iss028e026400

    NASA Image and Video Library

    2011-08-17

    ISS028-E-026400 (17 Aug. 2011) --- NASA astronaut Ron Garan, Expedition 28 flight engineer, works with the Combustion Integrated Rack (CIR) Fluids and Combustion Facility (FCF) in the Destiny laboratory of the International Space Station.

  5. Development of a New Hypersonic Shock Tunnel Facility to Investigate Electromagnetic Energy Addition for Flow Control and Basic Supersonic Combustion

    NASA Astrophysics Data System (ADS)

    Toro, P. G. P.; Minucci, M. A. S.; Chanes, J. B.; Pereira, A. L.; Nagamatsu, H. T.

    2006-05-01

    A new 0.6-m. diameter Hypersonic Shock Tunnel is been designed, fabricated and will be installed at the Laboratory of Aerothermodynamics and Hypersonics IEAv-CTA, Brazil. The brand new hypersonic facility, designated as T3, is primarily intended to be used as an important tool in the investigation of supersonic combustion management and of electromagnetic energy addition for flow control. The design of the runnel enables relatively long test times, 2-10 milliseconds, suitable for basic supersonic combustion and energy addition by laser experiments. Free stream Mach numbers ranging from 6 to 25 can be produced and stagnation pressures and temperatures of 200 atm. and 5,500 K, respectively, can be generated. Shadowgraph and schlieren optical techniques will be used for flow visualization and the new facility is expected to be commissioned by the end of 2006.

  6. Overpressure resulting from combustion of explosive gas in an unconfined geometry

    NASA Astrophysics Data System (ADS)

    Urtiew, P. A.

    1982-02-01

    In preparation for a series of large scale spill tests of liquefied gaseous fuels, the problem of designing safe storage facilities for the fuels as part of a proposed spill test facility arose. The design had to take into account the potential hazards associated with large quantities of fuel, including the hazard of overpressures which develop during various modes of combustion or explosion. The overpressure question, the results of which are presented, was studied. All the pertinent information on overpressure that is available in the open literature is summarized and is presented in a form that can be readily converted into design criteria for the fuel storage facility. Various modes of combustion are reviewed and categorized according to their capability of producing sizable overpressures, and some comments are made on how deviations from the ideal situations considered in analytical studies will affect the results.

  7. Kelly with CIR

    NASA Image and Video Library

    2010-10-26

    ISS025-E-009308 (26 Oct. 2010) --- NASA astronaut Scott Kelly, Expedition 25 flight engineer, works on the Combustion Integrated Rack (CIR) Multi-user Drop Combustion Apparatus (MDCA) in the Destiny laboratory of the International Space Station. Kelly set up an experiment run on the Fluids & Combustion Facility (FCF) with a new fuel reservoir, ground-assisted by Payload Operations Integration Center/Huntsville (POIC).

  8. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  9. Experimental Investigation of Magnesium Powder Combustion With C02 for Mars Ascent Applications

    NASA Technical Reports Server (NTRS)

    Foote, John P.; Litchford, Ronald J.

    2005-01-01

    Combustion of metals with CO2 has been identified as a possible propellant for Mars ascent applications. CO2 could be condensed from the Martian atmosphere, reducing the amount of propellant that must be transported from Earth. An attractive feature of this approach compared to other in situ propellant concepts is that no chemical processing on Mars is required. Magnesium has been identified as the most promising metal for this application because it ignites and burns easily in CO2. Preliminary systems studies indicate a 2 to 1 delivered mass advantage for Mg ascent propulsion using in situ C02, as compared to a conventional storable propellant system. The Propulsion Research Center at MSFC is undertaking an experimental investigation of magnesium powder combustion with CO2 in order to provide fundamental data on the combustion performance of Mg powder + CO2 mixtures needed to assess the feasibility of developing a practical Mg powder + CO2 rocket engine. Initial combustion experiments will be carried out in a small scale atmospheric pressure dump combustor. Effects of varying the Mg particle size, firing rate and O/F ratio on combustion stability and efficiency will be investigated. The combustion process will be characterized by optical flame measurements and extraction of combustion product samples. The experimental facility is currently being prepared and combustion experiments will begin during the first quarter of 2005. The final paper will describe the test facility and initial experimental results.

  10. Process Waste Assessment for the Diana Laser Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.M.

    1993-12-01

    This Process Waste Assessment was conducted to evaluate the Diana Laser Laboratory, located in the Combustion Research Facility. It documents the hazardous chemical waste streams generated by the laser process and establishes a baseline for future waste minimization efforts. This Process Waste Assessment will be reevaluated in approximately 18 to 24 months, after enough time has passed to implement recommendations and to compare results with the baseline established in this assessment.

  11. 40 CFR 98.52 - GHGs to report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emissions at the facility level. (b) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...

  12. 40 CFR 98.52 - GHGs to report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emissions at the facility level. (b) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...

  13. 40 CFR 98.52 - GHGs to report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emissions at the facility level. (b) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...

  14. 40 CFR 60.43Da - Standards for sulfur dioxide (SO2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... into the atmosphere from any affected facility which combusts solid solvent refined coal (SRC-I) any... (1.2 lb/MWh) net energy output; or (iii) 3 percent of the potential combustion concentration (97...

  15. 40 CFR 60.43Da - Standards for sulfur dioxide (SO2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... into the atmosphere from any affected facility which combusts solid solvent refined coal (SRC-I) any... (1.2 lb/MWh) net energy output; or (iii) 3 percent of the potential combustion concentration (97...

  16. Design and Testing of a Breadboard Electrical Power Control Unit for the Fluid Combustion Facility Experiment

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Lebron, Ramon C.

    1999-01-01

    The Fluid Combustion Facility (FCF) Project and the Power Technology Division at the NASA Glenn Research Center (GRC) at Lewis Field in Cleveland, OH along with the Sundstrand Corporation in Rockford, IL are jointly developing an Electrical Power Converter Unit (EPCU) for the Fluid Combustion Facility to be flown on the International Space Station (ISS). The FCF facility experiment contains three racks: A core rack, a combustion rack, and a fluids rack. The EPCU will be used as the power interface to the ISS 120V(sub dc) power distribution system by each FCF experiment rack which requires 28V(sub dc). The EPCU is a modular design which contains three 120V(sub dc)-to-28V(sub dc) full-bridge, power converters rated at 1 kW(sub e) each bus transferring input relays and solid-state, current-limiting input switches, 48 current-limiting, solid-state, output switches; and control and telemetry hardware. The EPCU has all controls required to autonomously share load demand between the power feeds and--if absolutely necessary--shed loads. The EPCU, which maximizes the usage of allocated ISS power and minimizes loss of power to loads, can be paralleled with other EPCUs. This paper overviews the electrical design and operating characteristics of the EPCU and presents test data from the breadboard design.

  17. 40 CFR 62.15030 - What are my obligations under this subpart if I reduce my small municipal waste combustion unit's...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND... submit a final control plan according to the schedule in table 1 of this subpart and comply with § 62...) Calculations of the current maximum combustion capacity and the planned maximum combustion capacity after the...

  18. Combustion Module-2 Achieved Scientific Success on Shuttle Mission STS-107

    NASA Technical Reports Server (NTRS)

    Over, Ann P.

    2004-01-01

    The familiar teardrop shape of a candle is caused by hot, spent air rising and cool fresh air flowing behind it. This type of airflow obscures many of the fundamental processes of combustion and is an impediment to our understanding and modeling of key combustion controls used for manufacturing, transportation, fire safety, and pollution. Conducting experiments in the microgravity environment onboard the space shuttles eliminates these impediments. NASA Glenn Research Center's Combustion Module-2 (CM-2) and its three experiments successfully flew on STS-107/Columbia in the SPACEHAB module and provided the answers for many research questions. However, this research also opened up new questions. The CM-2 facility was the largest and most complex pressurized system ever flown by NASA and was a precursor to the Glenn Fluids and Combustion Facility planned to fly on the International Space Station. CM-2 operated three combustion experiments: Laminar Soot Processes (LSP), Structure of Flame Balls at Low Lewis-Number (SOFBALL), and Water Mist Fire Suppression Experiment (Mist). Although Columbia's mission ended in tragedy with the loss of her crew and much data, most of the CM-2 results were sent to the ground team during the mission.

  19. Priorities for Microgravity Combustion Research and Goals for Workshop Discussions

    NASA Technical Reports Server (NTRS)

    Faeth, Gerard M.

    1993-01-01

    Several concerns motivate fundamental research: combustion-generated pollutants are re-emerging as a major problem, new combustion technologies are needed for effective energy utilization, municipal and hazardous waste incineration are needed to replace landfills and storage, new combustion technologies are needed for advanced aircraft and spacecraft propulsion systems, and current understanding of fires and explosion hazards is limited - particularly for space-craft environments. Thus, it is of interest to determine how experimentation using microgravity facilities can advance research relevant to these problems.

  20. CLEANING OF FLUE GASES FROM WASTE COMBUSTORS

    EPA Science Inventory

    The paper addresses flue gas cleaning processes currently used commercially in waste combustion facilities. It also discusses the operating concepts of dry, semi-dry, and wet processes and their effectiveness in controlling various pollutants. Air pollutants from the combustion o...

  1. Wet extraction of heavy metals and chloride from MSWI and straw combustion fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiar del Toro, M.; Calmano, W.; Ecke, H.

    2009-09-15

    Fly ash residues from combustion often do not meet the criteria neither for reuse as construction materials nor landfilling as non-hazardous waste, mainly because of the high concentration of heavy metals and chlorides. This work aimed to technically evaluate an innovative wet treatment process for the extraction of chloride (Cl{sup -}), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) from fly ashes from a municipal solid waste incineration (MSWI) plant and from a straw combustion (SC) facility. Factors investigated were liquid/solid (L/S) ratio, full carbonation (CO{sub 2} treatment), influence of pH and leaching time, using a two-level full factorialmore » design. The most significant factor for all responses was low pH, followed by L/S ratio. Multiple linear regression models describing the variation in extraction data had R{sup 2} values ranging from 58% to 98%. An optimization of the element extraction models was performed and a set of treatment conditions is suggested.« less

  2. Combustion Of Interacting Droplet Arrays In Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Struk, P. M.; Ikegami, M.; Xu, G.

    2003-01-01

    Theory and experiments involving single droplet combustion date back to 1953, with the first microgravity work appearing in 1956. The problem of a spherical droplet burning in an infinite, quiescent microgravity environment is a classical problem in combustion research with the classical solution appearing in nearly every textbook on combustion. The microgravity environment offered by ground-based facilities such as drop towers and space-based facilities is ideal for studying the problem experimentally. A recent review by Choi and Dryer shows significant advances in droplet combustion have been made by studying the problem experimentally in microgravity and comparing the results to one dimensional theoretical and numerical treatments of the problem. Studying small numbers of interacting droplets in a well-controlled geometry represents a logical step in extending single droplet investigations to more practical spray configurations. Studies of droplet interactions date back to Rex and co-workers, and were recently summarized by Annamalai and Ryan. All previous studies determined the change in the burning rate constant, k, or the flame characteristics as a result of interactions. There exists almost no information on how droplet interactions a effect extinction limits, and if the extinction limits change if the array is in the diffusive or the radiative extinction regime. Thus, this study examined experimentally the effect that droplet interactions have on the extinction process by investigating the simplest array configuration, a binary droplet array. The studies were both in normal gravity, reduced pressure ambients and microgravity facilities. The microgravity facilities were the 2.2 and 5.2 second drop towers at the NASA Glenn Research Center and the 10 second drop tower at the Japan Microgravity Center. The experimental apparatus and the data analysis techniques are discussed in detail elsewhere.

  3. An overview of NASA testing requirements for alternate cleaning solvents used in liquid and gaseous oxygen environments

    NASA Technical Reports Server (NTRS)

    Strickland, John W.; Davis, S. Eddie

    1995-01-01

    The elimination of CFC-containing cleaning solvents for oxygen systems has prompted the development of a number of alternative cleaning solvents that must now be evaluated not only for cleanability, but compatibility as well. NASA Handbook 8060.1(NHB 8060.1) establishes the requirements for evaluation, testing, and selection of materials for use in oxygen rich environments. Materials intended for use in space vehicles, specified test facilities, and ground support equipment must meet the requirements of this document. In addition to the requirements of NHB 8060.1 for oxygen service, alternative cleaning solvents must also be evaluated in other areas (such as corrosivity, non-metals compatibility, non-volatile residue contamination, etc.). This paper will discuss the testing requirements of NHB 8060.1 and present preliminary results from early screening tests performed at Marshall Space Flight Center's Materials Combustion Research Facility.

  4. Preliminary results in the NASA Lewis H2-O2 combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1979-01-01

    MHD (magnetohydrodynamic) power generation experiments were carried out in the NASA Lewis Research Center cesium-seeded H2-O2 combustion facility. This facility uses a neon-cooled cryomagnet capable of producing magnetic fields in excess of 5 tesla. The effects of power takeoff location, generator loading, B-field strength, and electrode breakdown on generator performance are discussed. The experimental data is compared to a theory based on one-dimensional flow with heat transfer, friction, and voltage drops.

  5. Laser systems for the combustion research facility - Diana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, C.K.; Lavasek, J.W.; Jones, E.D.

    1982-03-01

    A 5-Joule/pulse, 1.8-..mu..s-pulse-width, 10-ppS flashlamp-pumped tunable-dye-laser system, called Diana, has been built for use in experiments to be performed at the Combustion Research Facility, Sandia National Laboratories, Livermore. Design specifications for the system and details of construction are described, and it is noted that performance of the laser meets or exceeds all design criteria. Areas for further performance improvements are discussed, and updates are suggested to enhance system usefulness.

  6. Fluids and Combustion Facility: Fluids Integrated Rack Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.

    2005-01-01

    The Fluids Integrated Rack (FIR) is one of two racks in the Fluids and Combustion Facility on the International Space Station. The FIR is dedicated to the scientific investigation of space system fluids management supporting NASA s Exploration of Space Initiative. The FIR hardware was modal tested and FIR finite element model updated to satisfy the International Space Station model correlation criteria. The final cross-orthogonality results between the correlated model and test mode shapes was greater than 90 percent for all primary target modes.

  7. Time lapse of CIR rack rotate and R&R

    NASA Image and Video Library

    2014-07-21

    ISS040-E-071994 (21 July 2014) --- In the International Space Station’s Destiny laboratory, NASA astronaut Reid Wiseman, Expedition 40 flight engineer, sets up the Combustion Integrated Rack (CIR) for more ground-commanded tests. This facility, which includes an optics bench, combustion chamber, fuel and oxidizer control and five different cameras, allows a variety of combustion experiments to be performed safely aboard the station.

  8. Time lapse of CIR rack rotate and R&R

    NASA Image and Video Library

    2014-07-21

    ISS040-E-072156 (21 July 2014) --- In the International Space Station’s Destiny laboratory, NASA astronaut Reid Wiseman, Expedition 40 flight engineer, sets up the Combustion Integrated Rack (CIR) for more ground-commanded tests. This facility, which includes an optics bench, combustion chamber, fuel and oxidizer control and five different cameras, allows a variety of combustion experiments to be performed safely aboard the station.

  9. Time lapse of CIR rack rotate and R&R

    NASA Image and Video Library

    2014-07-21

    ISS040-E-072228 (21 July 2014) --- In the International Space Station’s Destiny laboratory, NASA astronaut Reid Wiseman, Expedition 40 flight engineer, sets up the Combustion Integrated Rack (CIR) for more ground-commanded tests. This facility, which includes an optics bench, combustion chamber, fuel and oxidizer control and five different cameras, allows a variety of combustion experiments to be performed safely aboard the station.

  10. 75 FR 45483 - Approval and Promulgation of Implementation Plans; Implementation Plan Revision; State of New Jersey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... amendments to Subchapter 4 ``Control and Prohibition of Particles from Combustion of Fuel,'' Subchapter 10... of Particles from Combustion of Fuel;'' Subchapter 8 ``Permits and Certificates for Minor Facilities... Prohibition [[Page 45485

  11. Mission Success for Combustion Science

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.

    2004-01-01

    This presentation describes how mission success for combustion experiments has been obtained in previous spaceflight experiments and how it will be obtained for future International Space Station (ISS) experiments. The fluids and combustion facility is a payload planned for the ISS. It is composed of two racks: the fluids Integrated rack and the Combustion INtegrated Rack (CIR). Requirements for the CIR were obtained from a set of combustion basis experiments that served as surrogates for later experiments. The process for experiments that fly on the ISS includes proposal selection, requirements and success criteria definition, science and engineering reviews, mission operations, and postflight operations. By following this process, the microgravity combustion science program has attained success in 41 out of 42 experiments.

  12. Shock Tunnel Studies of Scramjet Phenomena

    NASA Technical Reports Server (NTRS)

    Stalker, R. J.

    1996-01-01

    Work focussed on a large number of preliminary studies of supersonic combustion in a simple combustion duct - thrust nozzle combination, investigating effects of Mach number, equivalence ratio, combustor divergence, fuel injecting angle and other parameters with an influence on the combustion process. This phase lasted for some three or four years, during which strongest emphasis was placed on responding to the request for preliminary experimental information on high enthalpy effects, to support the technology maturation activities of the NASP program. As the need for preliminary data became less urgent, it was possible to conduct more systematic studies of high enthalpy combustion phenomena, and to initiate other projects aimed at improving the facilities and instrumentation used for studying scramjet phenomena at high enthalpies. The combustion studies were particularly directed towards hypersonic combustion, and to the effects of injecting fuel along the combustion chamber wall. A substantial effort was directed towards a study of the effect of scale on the supersonic combustion process. The influence of wave phenomena (both compression waves and expansion waves) on the realization of thrust from a supersonic combustion process was also investigated. The effect of chemical kinetics was looked into, particularly as it affected the composition of the test flow provided by a ground facility. The effect of injection of the fuel through wall orifices was compared with injection from a strut spanning the stream, and the effect of heating the fuel prior to injection was investigated. Studies of fuel-air mixing by shock impingement were also done, as well as mass spectrometer surveys of a combustion wake. The use of hypersonic nozzles with an expansion tube was investigated. A new method was developed for measuring the forces acting of a model in less than one millisecond. Also included in this report are listings of published journal papers and conference presentations.

  13. Combustion characteristics of eastern white pine bark and Douglas fir planer shavings. Technical Progress Report No. 5, September 16, 1977--September 15, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junge, D.C.

    1978-12-01

    Significant quantities of wood residue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the combustion process in industrial boilersmore » serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. Data are presented on the combustion characteristics of eastern white pine bark mixed with Douglas fir planer shavings.« less

  14. PROGRESS REPORT: COFIRING PROJECTS FOR WILLOW ISLAND AND ALBRIGHT GENERATING STATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period April 1, 2001--June 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) accelerated construction of the Willow Island cofiring project, completed the installation of foundations for the fuel storage facility, the fuel receiving facility, and the processing building. Allegheny received all processing equipment to be installed at Willow Island. Allegheny completed the combustion modeling for the Willow Island project. During this time period construction of the Albright Generating Station cofiring facility was completed, with few items left for final action. The facility was dedicated at a ceremony on June 29. Initial testing of cofiring at the facility commenced.more » This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.« less

  15. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Urban, David

    2012-01-01

    From the very early days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center for combustion, complex fluids, and fluid physics; GRC has led the successful implementation of the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion; fire detection; fire extinguishment; soot phenomena; flame liftoff and stability; and material flammability. The fluids experiments have studied capillary flow; magneto-rheological fluids; colloidal systems; extensional rheology; pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years.

  16. The Multi-User Droplet Combustion Apparatus: the Development and Integration Concept for Droplet Combustion Payloads in the Fluids and Combustion Facility Combustion Integrated Rack

    NASA Astrophysics Data System (ADS)

    Myhre, C. A.

    2002-01-01

    The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user facility designed to accommodate four different droplet combustion science experiments. The MDCA will conduct experiments using the Combustion Integrated Rack (CIR) of the NASA Glenn Research Center's Fluids and Combustion Facility (FCF). The payload is planned for the International Space Station. The MDCA, in conjunction with the CIR, will allow for cost effective extended access to the microgravity environment, not possible on previous space flights. It is currently in the Engineering Model build phase with a planned flight launch with CIR in 2004. This paper provides an overview of the capabilities and development status of the MDCA. The MDCA contains the hardware and software required to conduct unique droplet combustion experiments in space. It consists of a Chamber Insert Assembly, an Avionics Package, and a multiple array of diagnostics. Its modular approach permits on-orbit changes for accommodating different fuels, fuel flow rates, soot sampling mechanisms, and varying droplet support and translation mechanisms to accommodate multiple investigations. Unique diagnostic measurement capabilities for each investigation are also provided. Additional hardware provided by the CIR facility includes the structural support, a combustion chamber, utilities for the avionics and diagnostic packages, and the fuel mixing capability for PI specific combustion chamber environments. Common diagnostics provided by the CIR will also be utilized by the MDCA. Single combustible fuel droplets of varying sizes, freely deployed or supported by a tether are planned for study using the MDCA. Such research supports how liquid-fuel-droplets ignite, spread, and extinguish under quiescent microgravity conditions. This understanding will help us develop more efficient energy production and propulsion systems on Earth and in space, deal better with combustion generated pollution, and address fire hazards associated with using liquid combustibles on Earth and in space. As a result of the concurrent design process of MDCA and CIR, the MDCA team continues to work closely with the CIR team, developing Integration Agreements and an Interface Control Document during preliminary integration activities. Integrated testing of hardware and software systems will occur at the Engineering Model and Flight Model phases. Because the engineering model is a high fidelity unit, it will be upgraded to a flight equivalent Ground Integration Unit (GIU) when the engineering model phase is completed. The GIU will be available on the ground for troubleshooting of any on-orbit problems. Integrated verification testing will be conducted with the MDCA flight unit and the CIR flight unit. Upon successful testing, the MDCA will be shipped to the Kennedy Space Center for a post-shipment checkout and final turn-over to CIR for final processing and launch to the International Space Station. Once on-orbit, the MDCA is managed from the GRC Telescience Support Center (TSC). The MDCA operations team resides at the TSC. Data is transmitted to the PI's at their home sites by means of TREK workstations, allowing direct interaction between the PI and operations staff to maximum science. Upon completion of a PI's experiment, the MDCA is reconfigured for the next of the three follow-on experiments or ultimately removed from the CIR, placed into stowage, and returned to Earth.

  17. Technology for Sustained Supersonic Combustion Task Order 0006: Scramjet Research with Flight-Like Inflow Conditions

    DTIC Science & Technology

    2013-01-01

    flight vehicle . Many facilities are not large enough to perform free-jet testing of scramjet engines which include an inlet. Rather, testing is often...AFRL-RQ-WP-TR-2013-0029 TECHNOLOGY FOR SUSTAINED SUPERSONIC COMBUSTION Task Order 0006: Scramjet Research with Flight-Like Inflow...TITLE AND SUBTITLE TECHNOLOGY FOR SUSTAINED SUPERSONIC COMBUSTION Task Order 0006: Scramjet Research with Flight-Like Inflow Conditions 5a

  18. USAF Aircraft Engine Emission Goals: A Critical Review.

    DTIC Science & Technology

    1979-09-01

    21 June 1965 and Change 1; and the National Pollution Discharge Elimination System . it applies to all Air Force installations and facilities, the Air...the combustion problems in turbine engines from a more applied viewpoint. He states: "While the combustion system was the primary limitation in... microemulsions and to determine their capacity for reducing smoke emissions from an aviation gas turbine combustion system . (2) A secondary objective is

  19. Implementation of a Water Flow Control System into the ISS'S Planned Fluids & Combustion Facility

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2003-01-01

    The Fluids and Combustion Facility (FCF) will become an ISS facility capable of performing basic combustion and fluids research. The facility consists of two independent payload racks specifically configured to support multiple experiments over the life of the ISS. Both racks will depend upon the ISS's Moderate Temperature Loop (MTL) for removing waste heat generated by the avionics and experiments operating within the racks. By using the MTL, constraints are imposed by the ISS vehicle on how the coolant resource is used. On the other hand, the FCF depends upon effective thermal control for maximizing life of the hardware and for supplying proper boundary conditions for the experiments. In the implementation of a design solution, significant factors in the selection of the hardware included ability to measure and control relatively low flow rates, ability to throttle flow within the time constraints of the ISS MTL, conserve energy usage, observe low mass and small volume requirements. An additional factor in the final design solution selection was considering how the system would respond to a loss of power event. This paper describes the method selected to satisfy the FCF design requirements while maintaining the constraints applied by the ISS vehicle.

  20. International Space Station -- Combustion Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  1. International Space Station - Combustion Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown opened for installation of burn specimens. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  2. International Space Station -- Combustion Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown in its operational configuration. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  3. 40 CFR 240.200-2 - Recommended procedures: Design.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... processing. These include: Certain bulky wastes (e.g., combustible demolition and construction debris, tree... treatment facilities, raw sewage sludges, and septic tank pumpings. (b) If the facility is designed to...

  4. 40 CFR 240.200-2 - Recommended procedures: Design.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... processing. These include: Certain bulky wastes (e.g., combustible demolition and construction debris, tree... treatment facilities, raw sewage sludges, and septic tank pumpings. (b) If the facility is designed to...

  5. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device... regenerator under paragraph (b) of this section which commences construction, reconstruction, or modification...

  6. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device... regenerator under paragraph (b) of this section which commences construction, reconstruction, or modification...

  7. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Urban, David

    2012-01-01

    From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center both Combustion, Fluid Physics, and Acceleration Measurement GRC has led the successful implementation of an Acceleration Measurement systems, the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion fire detection fire extinguishment soot phenomena flame liftoff and stability and material flammability. The fluids experiments have studied capillary flow magneto-rheological fluids colloidal systems extensional rheology pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years. We also provide a look to the future development. Experiments presented in combustion include areas such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes. In fluid physics, experiments are discussed in multiphase flows, capillary phenomena, and heat pipes. Finally in complex fluids, experiments in rheology and soft condensed materials will be presented.

  8. Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Ladwig

    2005-12-31

    The overall objective of this project was to evaluate the impact of key constituents captured from power plant air streams (principally arsenic and selenium) on the disposal and utilization of coal combustion products (CCPs). Specific objectives of the project were: (1) to develop a comprehensive database of field leachate concentrations at a wide range of CCP management sites, including speciation of arsenic and selenium, and low-detection limit analyses for mercury; (2) to perform detailed evaluations of the release and attenuation of arsenic species at three CCP sites; and (3) to perform detailed evaluations of the release and attenuation of seleniummore » species at three CCP sites. Each of these objectives was accomplished using a combination of field sampling and laboratory analysis and experimentation. All of the methods used and results obtained are contained in this report. For ease of use, the report is subdivided into three parts. Volume 1 contains methods and results for the field leachate characterization. Volume 2 contains methods and results for arsenic adsorption. Volume 3 contains methods and results for selenium adsorption.« less

  9. Sandia and General Motors: Advancing Clean Combustion Engines with

    Science.gov Websites

    Quantitative Risk Assessment Technical Reference for Hydrogen Compatibility of Materials Hydrogen Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs ARPA-E Basic Energy Sciences Materials

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Mira supercomputer at the Argonne Leadership Computing Facility helped Argonne researchers model what happens inside an engine when you use gasoline in a diesel engine. Engineers are exploring this type of combustion as a sustainable transportation option because it may be more efficient than traditional gasoline combustion engines but produce less soot than diesel.

  11. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...

  12. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...

  13. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...

  14. Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooldridge, Margaret

    Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecularmore » structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.« less

  15. Emissions of PCDD and PCDF from combustion of forest fuels and sugarcane: a comparison between field measurements and simulations in a laboratory burn facility.

    PubMed

    Black, R R; Meyer, C P; Touati, A; Gullett, B K; Fiedler, H; Mueller, J F

    2011-05-01

    Release of PCDD and PCDF from biomass combustion such as forest and agricultural crop fires has been nominated as an important source for these chemicals despite minimal characterisation. Available emission factors that have been experimentally determined in laboratory and field experiments vary by several orders of magnitude from <0.5 μg TEQ (t fuel consumed)(-1) to >100 μg TEQ (t fuel consumed)(-1). The aim of this study was to evaluate the effect of experimental methods on the emission factor. A portable field sampler was used to measure PCDD/PCDF emissions from forest fires and the same fuel when burnt over a brick hearth to eliminate potential soil effects. A laboratory burn facility was used to sample emissions from the same fuels. There was very good agreement in emission factors to air (EF(Air)) for forest fuel (Duke Forest, NC) of 0.52 (range: 0.40-0.79), 0.59 (range: 0.18-1.2) and 0.75 (range: 0.27-1.2) μg TEQ(WHO2005) (t fuel consumed)(-1) for the in-field, over a brick hearth, and burn facility experiments, respectively. Similarly, experiments with sugarcane showed very good agreement with EF(Air) of 1.1 (range: 0.40-2.2), 1.5 (range: 0.84-2.2) and 1.7 (range: 0.34-4.4) μg TEQ (t fuel consumed)(-1) for in-field, over a brick hearth, open field and burn facility experiments respectively. Field sampling and laboratory simulations were in good agreement, and no significant changes in emissions of PCDD/PCDF could be attributed to fuel storage and transport to laboratory test facilities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. 30 CFR 56.4430 - Storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...

  17. 30 CFR 56.4430 - Storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...

  18. 30 CFR 56.4430 - Storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...

  19. 30 CFR 56.4430 - Storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...

  20. Dry sorbent injection of trona to control acid gases from a pilot-scale coal-fired combustion facility

    EPA Science Inventory

    Gaseous and particulate emissions from the combustion of coal have been associated with adverse effects on human and environmental health, and have for that reason been subject to regulation by federal and state governments. Recent regulations by the United States Environmental ...

  1. 30 CFR 56.4130 - Electric substations and liquid storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Unburied, flammable or combustible liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable or combustible liquids. (b) The area within the 25-foot perimeter... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric substations and liquid storage...

  2. 30 CFR 56.4130 - Electric substations and liquid storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Unburied, flammable or combustible liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable or combustible liquids. (b) The area within the 25-foot perimeter... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric substations and liquid storage...

  3. 30 CFR 56.4130 - Electric substations and liquid storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Unburied, flammable or combustible liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable or combustible liquids. (b) The area within the 25-foot perimeter... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric substations and liquid storage...

  4. 30 CFR 56.4130 - Electric substations and liquid storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Unburied, flammable or combustible liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable or combustible liquids. (b) The area within the 25-foot perimeter... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric substations and liquid storage...

  5. International Space Station -- Combustion Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing and with the optical bench rotated 90 degrees for access to the rear elements. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  6. Facile and rapid auto-combustion synthesis of nano-porous γ-Al2O3 by application of hexamethylenetetramine in fuel composition

    NASA Astrophysics Data System (ADS)

    Salem, Shiva; Salem, Amin; Parni, Mohammad Hosein; Jafarizad, Abbas

    2018-06-01

    In this article, urea, glycine and hexamethylenetetramine were blended in accordance with the mixture design algorithm to prepare γ-Al2O3 by auto-combustion technique. Aluminum nitrate was then mixed with the stoichiometric contents of prepared fuel solutions to obtain gel systems. The gels exhibited a typical self-propagating combustion behavior at low temperature, directly resulting amorphous materials. The precursors were calcined at various temperatures ranging from 700 to 900 °C. The treated powders were evaluated by determining the methylene blue (MB) adsorption efficiency. The production condition to obtain γ-Al2O3 with maximum surface area depends on fuel composition and calcination temperature. The alumina powder fabricated by this procedure was uniformly distributed and contains nano-sized secondary particles with diameter about 10-30 nm in which the average pore size is 3.2 nm induced large surface area, 240 m2g-1. The employment of hexamethylenetetramine provides a potential for synthesis of γ-Al2O3 at lower temperature, 700 °C, with maximum MB removal efficiency.

  7. Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Goldenstein, C. S.; Schultz, I. A.; Jeffries, J. B.; Hanson, R. K.

    2014-07-01

    A mid-infrared laser absorption sensor was developed for gas temperature and carbon oxide (CO, CO2) concentrations in high-enthalpy, hydrocarbon combustion flows. This diagnostic enables non-intrusive, in situ measurements in harsh environments produced by hypersonic propulsion ground test facilities. The sensing system utilizes tunable quantum cascade lasers capable of probing the fundamental mid-infrared absorption bands of CO and CO2 in the 4-5 µm wavelength domain. A scanned-wavelength direct absorption technique was employed with two lasers, one dedicated to each species, free-space fiber-coupled using a bifurcated hollow-core fiber for remote light delivery on a single line of sight. Scanned-wavelength modulation spectroscopy with second-harmonic detection was utilized to extend the dynamic range of the CO measurement. The diagnostic was field-tested on a direct-connect scramjet combustor for ethylene-air combustion. Simultaneous, laser-based measurements of carbon monoxide and carbon dioxide provide a basis for evaluating combustion completion or efficiency with temporal and spatial resolution in practical hydrocarbon-fueled engines.

  8. Facile combustion synthesis of ZnO nanoparticles using Cajanus cajan (L.) and its multidisciplinary applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjunath, K.; Ravishankar, T.N.; Kumar, Dhanith

    Graphical abstract: Facile combustion synthesis of ZnO nanoparticles using Cajanuscajan (L.) and its multidisciplinary applications.Zinc oxide nanoparticles were successfully synthesized by solution combustion method (SCM) using pigeon pea as a combustible fuel for the first time. The as-prepared product shows good photocatalytic, dielectric, antibacterial, electrochemical properties. - Highlights: • ZnO Nps were synthesized via combustion method using pigeon pea as a fuel. • The structure of the product was confirmed by XRD technique. • The morphology was confirmed by SEM and TEM images. • The as-prepared product shown good photocatalytic activity, dielectric property. • It has also shown good antibacterialmore » and electrochemical properties. - Abstract: Zinc oxide nanoparticles (ZnO Nps) were successfully synthesized by solution combustion method (SCM) using pigeon pea as a fuel for the first time. X-Ray diffraction pattern reveals that the product belongs to hexagonal system. FTIR spectrum of ZnO Nps shows the band at 420 cm{sup −1} associated with the characteristic vibration of Zn–O. TEM images show that the nanoparticles are found to be ∼40–80 nm. Furthermore, the as-prepared ZnO Nps exhibits good photocatalytic activity for the photodegradation of methylene blue (MB), indicating that they are indeed a promising photocatalytic semiconductor. The antibacterial properties of ZnO nanopowders were investigated by their bactericidal activity against four bacterial strains.« less

  9. Combustion performance characteristics of fine grind fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, O.K.; Levasseur, A.A.

    1996-12-31

    The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCFs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. To date, twelve beneficiated coal-based fuels have been acquired through PETC and tested at ABB Power Plant Laboratories Fireside Performance Test Facility (FPTF). The results from these fuels indicate that firing the BCFs improved furnace heat transfer andmore » fly ash erosion compared to their respective feed coals. This paper presents the results from a series of combustion test runs recently conducted in the FPTF to address the effect of fuel fineness on performance. A conventionally cleaned at the mine Pittsburgh No. 8 (Emerald mine, Green County, Pennsylvania, Cyprus Coal Company) was acquired and prepared at three grinds (standard, fine and ultra-fine grinds) to evaluate the effect of fuel fineness on combustion performance. The three fuels were tested at firing rates ranging from 3.0 {times} 10{sup 6} Btu/h to 4.0 {times} 10{sup 6} Btu/h, at standard (no staging) and two staged firing conditions.« less

  10. The ISS Fluids and Combustion Facility: Experiment Accommodations Summary

    NASA Technical Reports Server (NTRS)

    Corban, Robert R.; Simons, Stephen N. (Technical Monitor)

    2001-01-01

    The International Space Station's (ISS's) Fluids and Combustion Facility (FCF) is in the process of final design and development activities to accommodate a wide range of experiments in the fields of combustion science and fluid physics. The FCF is being designed to provide potential experiments with well defined interfaces that can meet the experimenters requirements, provide the flexibility for on-orbit reconfiguration, and provide the maximum capability within the ISS resources and constraints. As a multi-disciplined facility, the FCF supports various experiments and scientific objectives, which will be developed in the future and are not completely defined at this time. Since developing experiments to be performed within FCF is a continuous process throughout the FCF's operational lifetime, each individual experiment must determine the best configuration of utilizing facility capabilities and resources with augmentation of specific experiment hardware. Configurations of potential experiments in the FCF has been on-going to better define the FCF interfaces and provide assurances that the FCF design will meet its design requirements. This paper provides a summary of ISS resources and FCF capabilities, which are available for potential ISS FCF users. Also, to better understand the utilization of the FCF a description of a various experiment layouts and associated operations in the FCF are provided.

  11. Test and evaluation of the heat recovery incinerator system at Naval Station, Mayport, Florida

    NASA Astrophysics Data System (ADS)

    1981-05-01

    This report describes test and evaluation of the two-ton/hr heat recovery incinerator (HRI) facility located at Mayport Naval Station, Fla., carried out during November and December 1980. The tests included: (1) Solid Waste: characterization, heating value, and ultimate analysis, (2) Ash: moisture, combustibles, and heating values of both bottom and cyclone ashes; Extraction Procedure toxicity tests on leachates from both bottom and cyclone ashes; trace metals in cyclone particulates, (3) Stack Emissions: particulates (quantity and size distribution), chlorides, oxygen, carbon dioxide, carbon monoxide, and trace elements, and (4) Heat and Mass Balance: all measurements required to carry out complete heat and mass balance calculations over the test period. The overall thermal efficiency of the HRI facility while operating at approximately 1.0 ton/hr was found to be 49% when the primary Btu equivalent of the electrical energy consumed during the test program was included.

  12. Lump wood combustion process

    NASA Astrophysics Data System (ADS)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  13. Spontaneous Raman Scattering (SRS) System for Calibrating High-Pressure Flames Became Operational

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2003-01-01

    A high-performance spontaneous Raman scattering (SRS) system for measuring quantitative species concentration and temperature in high-pressure flames is now operational. The system is located in Glenn s Engine Research Building. Raman scattering is perhaps the only optical diagnostic technique that permits the simultaneous (single-shot) measurement of all major species (N2, O2, CO2, H2O, CO, H2, and CH4) as well as temperature in combustion systems. The preliminary data acquired with this new system in a 20-atm hydrogen-air (H2-air) flame show excellent spectral coverage, good resolution, and a signal-to-noise ratio high enough for the data to serve as a calibration standard. This new SRS diagnostic system is used in conjunction with the newly developed High- Pressure Gaseous Burner facility (ref. 1). The main purpose of this diagnostic system and the High-Pressure Gaseous Burner facility is to acquire and establish a comprehensive Raman-scattering spectral database calibration standard for the combustion diagnostic community. A secondary purpose of the system is to provide actual measurements in standardized flames to validate computational combustion models. The High-Pressure Gaseous Burner facility and its associated SRS system will provide researchers throughout the world with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow s advanced aircraft engines.

  14. MOBI and FEANICS Programming in Labview

    NASA Technical Reports Server (NTRS)

    Rios, Jeffrey N.

    2004-01-01

    The flight software engineering branch provides design and development of embedded real-time software applications for flight and supporting ground systems to support the NASA Aeronautics and Space Programs. In addition, this branch evaluates, develops and implements new technologies for embedded real-time systems, and maintains a laboratory for applications of embedded technology. This branch supports other divisions and is involved with many other projects. My mentor Rochelle and I are involved in the Fluids and Combustion Facility (FCF) project, the MOBI project, and the FEANICS project. The Fluids and Combustion Facility (FCF) will occupy two powered racks on the International Space Station (ISS). It will be a permanent modular, multiuser facility to accommodate microgravity science experiments onboard the ISS's U.S. Laboratory Module. FCF will support NASA Human Exploration and Development of Space program objectives requiring sustained, systematic research in the disciplines of fluid physics and combustion science. The fluids experiment is called FIR and the combustion experiment is called CIR. The MOBI Experiment is an experiment that is performed to understand the physics of bubble segregation and resuspension in an inertia, monodisperse gas-liquid suspension, and to understand how bubble pressure resists segregation in suspensions with continuous phase inertia. The main focus of FEANICS and the solid combustion experiments will be to conduct basic and applied scientific investigations in fire-safety to support NASA's Bioastronautics Initiative. Based on data obtained in microgravity and experience gained from the beginning of the U.S. manned space program, these normal gravity flammability assessments have been assumed to be conservative with respect to flammability in all environments. However, some of the complex interactions that govern ignition and flame growth can only be evaluated in the long durations of microgravity available on the ISS. Before any of these projects actually go to the ISS, they are going to be tested on NASA's KC-135 Low-G airplane, the KC-135 Low-G Flight Research aircraft (a predecessor of the Boeing 707) is used to fly parabolas to create 20-25 seconds of weightlessness so that the astronauts can experience and researchers can investigate the effects of zero gravity. My mentor and I have been working with Labview to write the programs that are going to acquire, analyze and present the data acquired from these Test flights on the KC-135. We have been working closely with electrical, and mechanical engineers to make sure the program and the hardware can communicate and perform the operations necessary for the flight test. LabVIEW delivers a powerful graphical development environment for signal acquisition, measurement analysis, and data presentation, giving you the flexibility of a programming language without the complexity of traditional development tools. The programming of the control panel and the code are both done in GUIs which allow for flexibility in the code and the program.

  15. Starting characteristics and combustion performance of magnesium slurry in 6.5-inch-diameter ram-jet engine mounted in connected-pipe facility

    NASA Technical Reports Server (NTRS)

    Gibbs, James B

    1954-01-01

    The starting characteristics and combustion performance of slurry type fuels, consisting of 50 percent magnesium powder in a hydrocarbon carrier, have been investigated in a flight-type, 6.5-inch-diameter ram-jet engine in a connected-pipe facility. Quick, dependable starting of the engine was obtained by the use of a disk which blocked part of the combustor area downstream of the flame holder. Acceptable performance was achieved with a short fuel-air mixing length by the development of a fuel-distribution control sleeve.

  16. Communal biofuel burning for district heating: Emissions and immissions from medium-sized (0.4 and 1.5 MW) facilities

    NASA Astrophysics Data System (ADS)

    Fachinger, Friederike; Drewnick, Frank; Gieré, Reto; Borrmann, Stephan

    2018-05-01

    Particulate and gaseous emissions of two medium-sized district heating facilities (400 kW, fueled with miscanthus, and 1.5 MW, fueled with wood chips) were characterized for different operational conditions, and compared to previously obtained results for household wood and pellet stoves. SO2 and NOx emission factors (reported in mg MJFuel-1) were found to not only depend on fuel sulfur/nitrogen content, but also on combustion appliance type and efficiency. Emission factors of SO2, NOx, and PM (particulate matter) increased with increasing load. Particle chemical composition did not primarily depend on operational conditions, but varied mostly with combustion appliances, fuel types, and flue gas cleaning technologies. Black carbon content was decreasing with increasing combustion efficiency; chloride content was strongly enhanced when burning miscanthus. Flue gas cleaning using an electrostatic precipitator caused strong reduction not only in total PM, but also in the fraction of refractory and semi-refractory material within emitted PM1. For the impact of facilities on their surroundings (immissions) not only their total emissions are decisive, but also their stack heights. In immission measurements downwind of the two facilities, a plume could only be observed for the 400 kW facility with low (11 m) stack height (1.5 MW facility: 30 m), and measured immissions agreed reasonably well with predicted ones. The impact of these immissions is non-negligible: At a distance of 50 m from the facility, apart from CO2, also plume contributions of NOx, ultrafine particles, PM1, PM10, poly-aromatic hydrocarbons, and sulfate were detected, with enhancements above background values of 2-130%.

  17. CRADA opportunities in pressurized combustion research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, D J; Norton, T S; Casleton, K H

    1995-06-01

    The Morgantown Energy Technology Center recently began operation of a Low Emissions Combustor Test and Research (LECTR) Facility. This facility was built to support the development of Advanced Gas Turbine Systems (ATS) by providing test facilities and engineering support to METC customers through the ATS University-Industry Consortium and through CRADA participation with industrial partners.

  18. Combustion dynamics in cryogenic rocket engines: Research programme at DLR Lampoldshausen

    NASA Astrophysics Data System (ADS)

    Hardi, Justin S.; Traudt, Tobias; Bombardieri, Cristiano; Börner, Michael; Beinke, Scott K.; Armbruster, Wolfgang; Nicolas Blanco, P.; Tonti, Federica; Suslov, Dmitry; Dally, Bassam; Oschwald, Michael

    2018-06-01

    The Combustion Dynamics group in the Rocket Propulsion Department at the German Aerospace Center (DLR), Lampoldshausen, strives to advance the understanding of dynamic processes in cryogenic rocket engines. Leveraging the test facilities and experimental expertise at DLR Lampoldshausen, the group has taken a primarily experimental approach to investigating transient flows, ignition, and combustion instabilities for over one and a half decades. This article provides a summary of recent achievements, and an overview of current and planned research activities.

  19. Microgravity

    NASA Image and Video Library

    2000-01-31

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  20. Microgravity

    NASA Image and Video Library

    2000-01-31

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown in its operational configuration. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  1. Space Station Freedom combustion research

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame spread of liquids, drop combustion, and quenching of panicle-air flames. Unfortunately, the same features that make microgravity attractive for fundamental combustion experiments, introduce new fire and explosion hazards that have no counterpart on earth. For example, microgravity can cause broader flammability limits, novel regimes of flame spread, enhanced effects of flame radiation, slower fire detector response, and enhanced combustion upon injecting fire extinguishing agents, among others. On the other hand, spacecraft provide an opportunity to use 'fire-safe' atmospheres due to their controlled environment. Investigation of these problems is just beginning, with specific fire safety experiments supplementing the space based fundamental experiments listed earlier; thus, much remains to be done to develop an adequate technology base for fire and explosion safety considerations for spacecraft.

  2. Basis for Interim Operation for Fuel Supply Shutdown Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENECKE, M.W.

    2003-02-03

    This document establishes the Basis for Interim Operation (BIO) for the Fuel Supply Shutdown Facility (FSS) as managed by the 300 Area Deactivation Project (300 ADP) organization in accordance with the requirements of the Project Hanford Management Contract procedure (PHMC) HNF-PRO-700, ''Safety Analysis and Technical Safety Requirements''. A hazard classification (Benecke 2003a) has been prepared for the facility in accordance with DOE-STD-1027-92 resulting in the assignment of Hazard Category 3 for FSS Facility buildings that store N Reactor fuel materials (303-B, 3712, and 3716). All others are designated Industrial buildings. It is concluded that the risks associated with the currentmore » and planned operational mode of the FSS Facility (uranium storage, uranium repackaging and shipment, cleanup, and transition activities, etc.) are acceptable. The potential radiological dose and toxicological consequences for a range of credible uranium storage building have been analyzed using Hanford accepted methods. Risk Class designations are summarized for representative events in Table 1.6-1. Mitigation was not considered for any event except the random fire event that exceeds predicted consequences based on existing source and combustible loading because of an inadvertent increase in combustible loading. For that event, a housekeeping program to manage transient combustibles is credited to reduce the probability. An additional administrative control is established to protect assumptions regarding source term by limiting inventories of fuel and combustible materials. Another is established to maintain the criticality safety program. Additional defense-in-depth controls are established to perform fire protection system testing, inspection, and maintenance to ensure predicted availability of those systems, and to maintain the radiological control program. It is also concluded that because an accidental nuclear criticality is not credible based on the low uranium enrichment, the form of the uranium, and the required controls, a Criticality Alarm System (CAS) is not required as allowed by DOE Order 420.1 (DOE 2000).« less

  3. Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Singh, Bhim S.; Kohl, Fred J.

    2007-01-01

    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanigan, Tom; Pybus, Craig; Roy, Sonya

    This report summarizes the results of the Pre-Front End Engineering Design (pre-FEED) phase of a proposed advanced oxy-combustion power generation plant to repower the existing 200 MWe Unit 4 at Ameren Energy Resources’ (AER) Meredosia Power Plant. AER has formed an alliance with Air Liquide Process and Construction, Inc. (ALPC) and Babcock & Wilcox Power Generation Group (B&W PGG) for the design, construction, and testing of the facility, and has contracted with URS Corporation (URS) for preliminary design and Owner’s engineering services. The Project employs oxy-combustion technology – combustion of coal with nearly pure oxygen and recycled flue gas (insteadmore » of air) – to capture approximately 90% of the flue gas CO2 for transport and sequestration by another Project. Plant capacity and configuration has been developed based on the B&W PGG-ALPC cool recycle process firing high-sulfur bituminous coal fuel, assuming baseload plant operation to maximize existing steam turbine capability, with limited consideration for plant redundancy and performance optimization in order to keep plant costs as low as practical. Activities and preliminary results from the pre-FEED phase addressed in this report include the following: Overall plant thermal performance; Equipment sizing and system configuration; Plant operation and control philosophy; Plant emissions and effluents; CO 2 production and recovery characteristics; Project cost estimate and economic evaluation; Integrated project engineering and construction schedule; Project risk and opportunity assessment; Development of Project permitting strategy and requirements During the Phase 2 of the Project, additional design details will be developed and the Phase 1 work products updated to support actual construction and operation of the facility in Phase 3. Additional information will be provided early in Phase 2 to support Ameren-Environmental in finalizing the appropriate permitting strategies and permit applications. Additional performance and reliability enhancements will also be evaluated in Phase 2 to try to improve overall project economics.« less

  5. Design of a high-temperature experiment for evaluating advanced structural materials

    NASA Technical Reports Server (NTRS)

    Mockler, Theodore T.; Castro-Cedeno, Mario; Gladden, Herbert J.; Kaufman, Albert

    1992-01-01

    This report describes the design of an experiment for evaluating monolithic and composite material specimens in a high-temperature environment and subject to big thermal gradients. The material specimens will be exposed to aerothermal loads that correspond to thermally similar engine operating conditions. Materials evaluated in this study were monolithic nickel alloys and silicon carbide. In addition, composites such as tungsten/copper were evaluated. A facility to provide the test environment has been assembled in the Engine Research Building at the Lewis Research Center. The test section of the facility will permit both regular and Schlieren photography, thermal imaging, and laser Doppler anemometry. The test environment will be products of hydrogen-air combustion at temperatures from about 1200 F to as high as 4000 F. The test chamber pressure will vary up to 60 psia, and the free-stream flow velocity can reach Mach 0.9. The data collected will be used to validate thermal and stress analysis models of the specimen. This process of modeling, testing, and validation is expected to yield enhancements to existing analysis tools and techniques.

  6. 40 CFR 98.322 - GHGs to report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Stationary Fuel Combustion Sources) the CO2, CH4, and N2O emissions from each stationary fuel combustion unit... emissions from ventilation and degasification systems. (d) You must report under this subpart the CO2 emissions from coal mine gas CH4 destruction occuring at the facility, where the gas is not a fuel input for...

  7. 40 CFR 98.322 - GHGs to report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Stationary Fuel Combustion Sources) the CO2, CH4, and N2O emissions from each stationary fuel combustion unit... emissions from ventilation and degasification systems. (d) You must report under this subpart the CO2 emissions from coal mine gas CH4 destruction occuring at the facility, where the gas is not a fuel input for...

  8. 40 CFR 98.322 - GHGs to report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Stationary Fuel Combustion Sources) the CO2, CH4, and N2O emissions from each stationary fuel combustion unit... emissions from ventilation and degasification systems. (d) You must report under this subpart the CO2 emissions from coal mine gas CH4 destruction occuring at the facility, where the gas is not a fuel input for...

  9. 40 CFR 62.15130 - What types of operator certification must the chief facility operator and shift supervisor obtain...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification § 62.15130 What types of operator certification must the chief....W. Alexander Drive, Room C521C, RTP, NC 27709 or at the National Archives and Records Administration...

  10. 40 CFR 62.15130 - What types of operator certification must the chief facility operator and shift supervisor obtain...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification § 62.15130 What types of operator certification must the chief....W. Alexander Drive, Room C521C, RTP, NC 27709 or at the National Archives and Records Administration...

  11. 40 CFR 62.15130 - What types of operator certification must the chief facility operator and shift supervisor obtain...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification § 62.15130 What types of operator certification must the chief....W. Alexander Drive, Room C521C, RTP, NC 27709 or at the National Archives and Records Administration...

  12. 40 CFR 62.15130 - What types of operator certification must the chief facility operator and shift supervisor obtain...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification § 62.15130 What types of operator certification must the chief....W. Alexander Drive, Room C521C, RTP, NC 27709 or at the National Archives and Records Administration...

  13. 40 CFR 62.15130 - What types of operator certification must the chief facility operator and shift supervisor obtain...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification § 62.15130 What types of operator certification must the chief....W. Alexander Drive, Room C521C, RTP, NC 27709 or at the National Archives and Records Administration...

  14. Ignition behavior of live California chaparral leaves

    Treesearch

    J.D. Engstrom; J.K Butler; S.G. Smith; L.L. Baxter; T.H. Fletcher; D.R. Weise

    2004-01-01

    Current forest fire models are largely empirical correlations based on data from beds of dead vegetation Improvement in model capabilities is sought by developing models of the combustion of live fuels. A facility was developed to determine the combustion behavior of small samples of live fuels, consisting of a flat-flame burner on a moveable platform Qualitative and...

  15. Efficiency of a hybrid-type plasma-assisted fuel reformation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matveev, I.B.; Serbin, S.I.; Lux, S.M.

    2008-12-15

    The major advantages of a new plasma-assisted fuel reformation system are its cost effectiveness and technical efficiency. Applied Plasma Technologies has proposed its new highly efficient hybrid-type plasma-assisted system for organic fuel combustion and gasification. The system operates as a multimode multipurpose reactor in a wide range of plasma feedstock gases and turndown ratios. This system also has convenient and simultaneous feeding of several reagents in the reaction zone such as liquid fuels, coal, steam, and air. A special methodology has been developed for such a system in terms of heat balance evaluation and optimization. This methodology considers all existingmore » and possible energy streams, which could influence the system's efficiency. The developed hybrid-type plasma system could be suitable for combustion applications, mobile and autonomous small- to mid-size liquid fuel and coal gasification modules, hydrogen-rich gas generators, waste-processing facilities, and plasma chemical reactors.« less

  16. 40 CFR 372.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (9) Methane reforming furnaces. (10) Pulping liquor recovery furnaces. (11) Combustion devices used... production of acid from halogenated hazardous waste generated by chemical production facilities where the furnace is located on the site of a chemical production facility, the acid product has a halogen acid...

  17. THE FLUIDS AND COMBUSTION FACILITY: ENABLING THE EXPLORATION OF SPACE

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.; Gati, Frank G.; Hill, Myron E.; OMalley, Terence; Zurawski, Robert L.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is an International Space Station facility designed to support physical and biological research as well as technology experiments in space. The FCF consists of two racks called the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR). The capabilities of the CIR and the FIR and plans for their utilization will support the President s vision for space exploration. The CIR will accommodate physical research and technology experiments that address needs in the areas of spacecraft fire prevention, detection and suppression, incineration of solid wastes, and power generation. Initial experiments will provide data to support design decisions for exploration spacecraft. The CIR provides a large sealed chamber in a near-weightless environment. The chamber supports many simulated atmospheres including lunar or Martian environments. The FIR will accommodate experiments that address needs for advanced life support, power, propulsion, and spacecraft thermal control systems. The FIR can also serve as a platform for experiments that address human health and performance, medical technologies, and biological sciences. The FIR provides a large volume for payload hardware, reconfigurable diagnostics, customizable software, active rack-level vibration isolation, and data acquisition and management in a nearly uniform temperature environment.

  18. The Fluids and Combustion Facility: Enabling the Exploration of Space

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.; Gati, Frank G.; Hill, Myron E.; O'Malley Terence F.; Zurawski, Robert L.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is an International Space Station facility designed to support physical and biological research as well as technology experiments in space. The FCF consists of two racks called the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR). The capabilities of the CIR and the FIR and plans for their utilization will support the President's vision for space exploration. The CIR will accommodate physical research and technology experiments that address needs in the areas of spacecraft fire prevention, detection and suppression, incineration of solid wastes, and power generation. Initial experiments will provide data to support design decisions for exploration spacecraft. The CIR provides a large sealed chamber in a near-weightless environment. The chamber supports many simulated atmospheres including lunar or Martian environments. The FIR will accommodate experiments that address needs for advanced life support, power, propulsion, and spacecraft thermal control systems. The FIR can also serve as a platform for experiments that address human health and performance, medical technologies, and biological sciences. The FIR provides a large volume for payload hardware, reconfigurable diagnostics, customizable software, active rack-level vibration isolation, and data acquisition and management in a nearly uniform temperature environment.

  19. One-Dimensional Spontaneous Raman Measurements of Temperature Made in a Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; DeGroot, Wilhelmus A.; Anderson, Robert C.

    2002-01-01

    The NASA Glenn Research Center is working with the aeronautics industry to develop highly fuel-efficient and environmentally friendly gas turbine combustor technology. This effort includes testing new hardware designs at conditions that simulate the high-temperature, high-pressure environment expected in the next-generation of high-performance engines. Glenn has the only facilities in which such tests can be performed. One aspect of these tests is the use of nonintrusive optical and laser diagnostics to measure combustion species concentration, fuel/air ratio, fuel drop size, and velocity, and to visualize the fuel injector spray pattern and some combustion species distributions. These data not only help designers to determine the efficacy of specific designs, but provide a database for computer modelers and enhance our understanding of the many processes that take place within a combustor. Until recently, we lacked one critical capability, the ability to measure temperature. This article summarizes our latest developments in that area. Recently, we demonstrated the first-ever use of spontaneous Raman scattering to measure combustion temperatures within the Advanced Subsonics Combustion Rig (ASCR) sector rig. We also established the highest rig pressure ever achieved for a continuous-flow combustor facility, 54.4 bar. The ASCR facility can provide operating pressures from 1 to 60 bar (60 atm). This photograph shows the Raman system setup next to the ASCR rig. The test was performed using a NASA-concept fuel injector and Jet-A fuel over a range of air inlet temperatures, pressures, and fuel/air ratios.

  20. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  1. Combustion Research Aboard the ISS Utilizing the Combustion Integrated Rack and Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Otero, Angel M.; Urban, David L.

    2002-01-01

    The Physical Sciences Research Program of NASA sponsors a broad suite of peer-reviewed research investigating fundamental combustion phenomena and applied combustion research topics. This research is performed through both ground-based and on-orbit research capabilities. The International Space Station (ISS) and two facilities, the Combustion Integrated Rack and the Microgravity Science Glovebox, are key elements in the execution of microgravity combustion flight research planned for the foreseeable future. This paper reviews the Microgravity Combustion Science research planned for the International Space Station implemented from 2003 through 2012. Examples of selected research topics, expected outcomes, and potential benefits will be provided. This paper also summarizes a multi-user hardware development approach, recapping the progress made in preparing these research hardware systems. Within the description of this approach, an operational strategy is presented that illustrates how utilization of constrained ISS resources may be maximized dynamically to increase science through design decisions made during hardware development.

  2. Advanced nozzle and engine components test facility

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben

    1992-01-01

    A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.

  3. Microgravity

    NASA Image and Video Library

    2000-01-31

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown opened for installation of burn specimens. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  4. Microgravity science and applications: Apparatus and facilities

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA support apparatus and facilities for microgravity research are summarized in fact sheets. The facilities are ground-based simulation environments for short-term experiments, and the shuttle orbiter environment for long duration experiments. The 17 items of the microgravitational experimental apparatus are described. Electronic materials, alloys, biotechnology, fluid dynamics and transport phenomena, glasses and ceramics, and combustion science are among the topics covered.

  5. The Langley thermal protection system test facility: A description including design operating boundaries

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    A description of the Langley thermal protection system test facility is presented. This facility was designed to provide realistic environments and times for testing thermal protection systems proposed for use on high speed vehicles such as the space shuttle. Products from the combustion of methane-air-oxygen mixtures, having a maximum total enthalpy of 10.3 MJ/kg, are used as a test medium. Test panels with maximum dimensions of 61 cm x 91.4 cm are mounted in the side wall of the test region. Static pressures in the test region can range from .005 to .1 atm and calculated equilibrium temperatures of test panels range from 700 K to 1700 K. Test times can be as long as 1800 sec. Some experimental data obtained while using combustion products of methane-air mixtures are compared with theory, and calibration of the facility is being continued to verify calculated values of parameters which are within the design operating boundaries.

  6. Laser Absorption Measurements of Equivalence Ratios Studied Along With Their Coupling to Pressure Fluctuations in Lean Premixed Prevaporized (LPP) Combustion

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2001-01-01

    Concerns about damaging the Earth's ozone layer as a result of high levels of nitrogen oxides (known collectively as NOx) from high-altitude, high-speed aircraft have prompted the study of lean premixed prevaporized (LPP) combustion in aircraft engines. LPP combustion reduces NOx emissions principally by reducing the peak flame temperatures inside an engine. Recent advances in LPP technologies have realized exceptional reductions in pollutant emissions (single-digit ppm NOx for example). However, LPP combustion also presents major challenges: combustion instability and dynamic coupling effects between fluctuations in heat-release rate, dynamic pressure, and fuel pressure. These challenges are formidable and can literally shake an engine apart if uncontrolled. To better understand this phenomenon so that it can be controlled, we obtained real-time laser absorption measurements of the fuel vapor concentration (and equivalence ratio) simultaneously with the dynamic pressure, flame luminosity, and time-averaged gaseous emissions measurements in a research-type jet-A-fueled LPP combustor. The measurements were obtained in NASA Glenn Research Center's CE-5B optically accessible flame tube facility. The CE-5B facility provides inlet air temperatures and pressures similar to the actual operating conditions of real aircraft engines. The laser absorption measurements were performed using an infrared 3.39 micron HeNe laser in conjunction with a visible HeNe laser for liquid droplet scattering compensation.

  7. Computational Analyses of Pressurization in Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Mattick, Stephen; Lee, Chun P.; Field, Robert E.; Ryan, Harry

    2008-01-01

    A) Advanced Gas/Liquid Framework with Real Fluids Property Routines: I. A multi-fluid formulation in the preconditioned CRUNCH CFD(Registered TradeMark) code developed where a mixture of liquid and gases can be specified: a) Various options for Equation of state specification available (from simplified ideal fluid mixtures, to real fluid EOS such as SRK or BWR models). b) Vaporization of liquids driven by pressure value relative to vapor pressure and combustion of vapors allowed. c) Extensive validation has been undertaken. II. Currently working on developing primary break-up models and surface tension effects for more rigorous phase-change modeling and interfacial dynamics B) Framework Applied to Run-time Tanks at Ground Test Facilities C) Framework Used For J-2 Upper Stage Tank Modeling: 1) NASA MSFC tank pressurization: a) Hydrogen and oxygen tank pre-press, repress and draining being modeled at NASA MSFC. 2) NASA AMES tank safety effort a) liquid hydrogen and oxygen are separated by a baffle in the J-2 tank. We are modeling pressure rise and possible combustion if a hole develops in the baffle and liquid hydrogen leaks into the oxygen tank. Tank pressure rise rates simulated and risk of combustion evaluated.

  8. Development of a Laminar Flame Test Facility for Bio-Diesel Characterization

    NASA Astrophysics Data System (ADS)

    Tan, Giam

    2009-11-01

    The relevance of applying testing standards established for diesel fuels to evaluate bio-diesel fuels motivates the design and fabrication of a vertical combustion chamber to be able to measure flame speeds of the varying strains of bio-diesel fuels and to attain more detailed kinetics information for biodiesel fuel. Extensive research is ongoing to understand the impact of fundamental combustion properties such as ignition characteristics, laminar flame speed, strain sensitivity and extinction strain rates on emission and stability characteristics of the combustor. It is envisioned that further flame studies will provide key kinetics validation data for biodiesel-like molecules -- the current test rig was developed with provisions for optical access and for future spectroscopic measurements. The current work focuses on laminar flame speeds since this important parameter contains fundamental information regarding reactivity, diffusivity, and exothermicity of the fuel mixture. It has a significant impact upon the propensity of a flame to flashback and blowoff and also serves as a key scaling parameter for other important combustion characteristics, such as the turbulent flame structure, turbulent flame speed and flame's spatial distribution etc. The flame experiments are challenging as the tested bio-fuel must be uniformly atomized and uniformly dispersed.

  9. Health and environmental effects of refuse derived fuel (RDF) production and RDF/coal co-firing technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Toole, J.J.; Wessels, T.E.; Lynch, J.F.

    1981-10-01

    Six facilities, representing the scope of different co-firing techniques with their associated RDF production systems were reviewed in detail for combustion equipment, firing modes, emission control systems, residue handling/disposal, and effluent wastewater treatment. These facilities encompass all currently operational or soon to be operational co-firing plants and associated RDF production systems. Occupational health and safety risks for these plants were evaluated on the basis of fatal and nonfatal accidents and disease arising from the respective fuel cycles, coal and RDF. Occupational risks include exposure to pathogenic organisms in the workplace. Unusual events that are life threatening in the RDF processingmore » industry (e.g., explosions) are also discussed and remedial and safety measures reviewed. 80 refs., 4 figs., 30 tabs.« less

  10. A method for aircraft afterburner combustion without flameholders

    NASA Astrophysics Data System (ADS)

    Birmaher, Shai

    2009-12-01

    State of the art aircraft afterburners employ spray bars to inject fuel and flameholders to stabilize the combustion process. Such afterburner designs significantly increase the length (and thus weight), pressure losses, and observability of the engine. This thesis presents a feasibility study of a compact 'prime and trigger' (PAT) afterburner concept that eliminates the fuel spray bars and flameholders and, thus, eliminates the above-mentioned problems. In this concept, afterburner fuel is injected just upstream or in between the turbine stages. As the fuel travels through the turbine stages, it evaporates, mixes with the bulk flow, and undergoes some chemical reactions without any significant heat release, a process referred to as 'priming'. Downstream of the turbine stages, combustion could take place through autoignition. However, if fuel autoignition does not occur or if autoignition does not produce a combustion zone that is stable and highly efficient, then a low power pilot, or 'trigger', can be used to control the combustion process. The envisioned trigger for the PAT concept is a jet of product gas from ultra-rich hydrocarbon/air combustion that is injected through the afterburner liner. This 'partial oxidation' (POx) gas, which consists mostly of H2, CO, and diluents, rapidly produces radicals and heat that accelerate the autoignition of the primed mixture and, thus, provide an anchor point for the afterburner combustion process. The objective of this research was to demonstrate the feasibility of the PAT concept by showing that (1) combustion of fuel injected within or upstream of turbine stages can occur only downstream of the turbine stages, and (2) the combustion zone is compact, stable and efficient. This was accomplished using two experimental facilities, a developed theoretical model, and Chemkin simulations. The first facility, termed the Afterburner Facility (AF), simulated the bulk flow temperature, velocity and O2 content through a turbojet combustor, turbine stage and afterburner. To model the PAT concept, Jet-A was injected upstream of the simulated turbine stage and a H2 jet was used to trigger the primed Jet-A combustion process downstream of the turbine stage. H2 was used because POx gas was not available for experiments. The second facility, termed the Propane Autoignition Combustor (PAC), was essentially a scaled-down, simplified version of the AF. The PAC experiments focused on the trigger stage of the PAT concept, using H 2 in lieu of POx gas and employing measurement techniques that were in some ways more detailed than in the AF experiments. The developed model simulated the physics of fuel priming in the AF and predicted the Jet-A autoignition location. It was used to predict and interpret the AF results and to study the feasibility of the PAT concept at pressures outside the AF operating range. Finally, the Chemkin simulations were used to examine the effect of several POx gas compositions on the Jet-A/vitiated-air autoignition process; to compare the POx and H2 triggers; and to explore several reasons for why POx gas and H2 are suitable trigger mechanisms. he experimental, theoretical, and numerical results obtained in this investigation indicated that the PAT concept provides a feasible approach to afterburner combustion. The experiments in the AF showed that the ignition delay of Jet-A is sufficiently long to allow fuel injection within turbine stages without significant heat release upstream of the afterburner. In the AF experiments without the H2 trigger, Jet-A combustion was achieved through autoignition; however, the autoignition combustion zone exhibited large axial fluctuations and low combustion efficiency. The H2 trigger was able to shift the combustion zone upstream, make it more compact, reduce fluctuations in its axial position, and raise the combustion efficiency to nearly 100%. The PAC experiments also showed that a H2 trigger can shift the combustion zone upstream, make it more compact, and increase the combustion efficiency. The PAC results were obtained with lower O 2 content and higher equivalence ratios than in the AF. Therefore, the combined AF and PAC results suggested that the PAT concept is feasible over a wide range of operating conditions. The developed model showed good agreement with the AF results. It also predicted that the PAT concept is feasible at bulk flow pressures outside the AF operating range. Finally, the Chemkin results showed that both the H2 and POx gas triggers can significantly reduce the ignition delay time of primed Jet-A/vitiated air mixtures. Thus, POx gas is a suitable trigger for the PAT concept and should be tested in future experimental investigations.

  11. An experimental study of combustion of the Shen-Mu CWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lifang, C.; Zhan Huanqing; Sun Wenchao

    1993-12-31

    Self-stabilized combustion for Shen-Mu CWS is provided by a combustion facility with outstanding characteristics. Experimental results show that the Shen-Mu CWS of about 65% concentrations possesses still a good flow property and it is easy to atomize. The atomized particles were measured by use of a Malvern setup. The Sauter mean diameters of the slurry spray are 56 {mu}m, while the air/fuel mass ratio is 0.21. It gives the evidence that the atomizer has excellent atomization performance. Self-stabilized combustion is preserved under the condition of unpreheated air and no say addition of auxiliary fuel is required. Experimental study of combustionmore » was carried out in the combustion chambers of 360mm {times} 540mm {times} 1400mm, the rates of CWS flow were 320kg/h.« less

  12. Tripropellant combustion process

    NASA Technical Reports Server (NTRS)

    Kmiec, T. D.; Carroll, R. G.

    1988-01-01

    The addition of small amounts of hydrogen to the combustion of LOX/hydrocarbon propellants in large rocket booster engines has the potential to enhance the system stability. Programs being conducted to evaluate the effects of hydrogen on the combustion of LOX/hydrocarbon propellants at supercritical pressures are described. Combustion instability has been a problem during the development of large hydrocarbon fueled rocket engines. At the higher combustion chamber pressures expected for the next generation of booster engines, the effect of unstable combustion could be even more destructive. The tripropellant engine cycle takes advantage of the superior cooling characteristics of hydrogen to cool the combustion chamber and a small amount of the hydrogen coolant can be used in the combustion process to enhance the system stability. Three aspects of work that will be accomplished to evaluate tripropellant combustion are described. The first is laboratory demonstration of the benefits through the evaluation of drop size, ignition delay and burning rate. The second is analytical modeling of the combustion process using the empirical relationship determined in the laboratory. The third is a subscale demonstration in which the system stability will be evaluated. The approach for each aspect is described and the analytical models that will be used are presented.

  13. West Virginia Geological Survey's role in siting fluidized bed combustion facilities

    USGS Publications Warehouse

    Smith, C.J.; King, Hobart M.; Ashton, K.C.; Kirstein, D.S.; McColloch, G.H.

    1989-01-01

    A project is presented which demonstrates the role of geology in planning and siting a fluidized bed combustion facility. Whenever a project includes natural resource utilization, cooperation between geologists and design engineers will provide an input that could and should save costs, similar to the one stated in our initial premise. Regardless of whether cost reductions stem from a better knowledge of fuel and sorbent availabilities, or a better understanding of the local hydrology, susceptibility to mine-subsidence, or other geologic hazards, the geological survey has a vital role in planning. Input to planning could help the fluidized-bed developer and design-engineer solve some economic questions and stretch the financial resources at their disposal.

  14. Bioenergy Potential from Food Waste in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breunig, Hanna M.; Jin, Ling; Robinson, Alastair

    This paper presents the first detailed analysis of monthly food waste generation in California at a county level, and its potential contribution to the state's energy production. Scenarios that rely on excess capacity at existing anaerobic digester (AD) and solid biomass combustion facilities, and alternatives that allow for new facility construction, are developed and modeled. Potential monthly electricity generation from the conversion of gross food waste using a combination of AD and combustion varies from 420 to 700 MW, averaging 530 MW. At least 66% of gross high moisture solids and 23% of gross low moisture solids can be treatedmore » using existing county infrastructure, and this fraction increases to 99% of high moisture solids and 55% of low moisture solids if waste can be shipped anywhere within the state. Biogas flaring practices at AD facilities can reduce potential energy production by 10 to 40%.« less

  15. Light Microscopy Module: An On-Orbit Microscope Planned for the Fluids and Combustion Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Griffin, DeVon W.

    2001-01-01

    The Light Microscopy Module (LMM) is planned as a fully remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and control of fluids and biology experiments within NASA Glenn Research Center's Fluids and Combustion Facility on the International Space Station. Within the Fluids and Combustion Facility, four fluids physics experiments will utilize an instrument built around a light microscope. These experiments are the Constrained Vapor Bubble experiment (Peter C. Wayner of Rensselaer Polytechnic Institute), the Physics of Hard Spheres Experiment-2 (Paul M. Chaikin of Princeton University), the Physics of Colloids in Space-2 experiment (David A. Weitz of Harvard University), and the Low Volume Fraction Colloidal Assembly experiment (Arjun G. Yodh of the University of Pennsylvania). The first experiment investigates heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties. Key diagnostic capabilities for meeting the science requirements of the four experiments include video microscopy to observe sample features including basic structures and dynamics, interferometry to measure vapor bubble thin film thickness, laser tweezers for colloidal particle manipulation and patterning, confocal microscopy to provide enhanced three-dimensional visualization of colloidal structures, and spectrophotometry to measure colloidal crystal photonic properties.

  16. Microgravity

    NASA Image and Video Library

    2000-01-31

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing and with the optical bench rotated 90 degrees for access to the rear elements. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  17. Performance analysis of single stage libr-water absorption machine operated by waste thermal energy of internal combustion engine: Case study

    NASA Astrophysics Data System (ADS)

    Sharif, Hafiz Zafar; Leman, A. M.; Muthuraman, S.; Salleh, Mohd Najib Mohd; Zakaria, Supaat

    2017-09-01

    Combined heating, cooling, and power is also known as Tri-generation. Tri-generation system can provide power, hot water, space heating and air -conditioning from single source of energy. The objective of this study is to propose a method to evaluate the characteristic and performance of a single stage lithium bromide-water (LiBr-H2O) absorption machine operated with waste thermal energy of internal combustion engine which is integral part of trigeneration system. Correlations for computer sensitivity analysis are developed in data fit software for (P-T-X), (H-T-X), saturated liquid (water), saturated vapor, saturation pressure and crystallization temperature curve of LiBr-H2O Solution. Number of equations were developed with data fit software and exported into excel work sheet for the evaluation of number of parameter concerned with the performance of vapor absorption machine such as co-efficient of performance, concentration of solution, mass flow rate, size of heat exchangers of the unit in relation to the generator, condenser, absorber and evaporator temperatures. Size of vapor absorption machine within its crystallization limits for cooling and heating by waste energy recovered from exhaust gas, and jacket water of internal combustion engine also presented in this study to save the time and cost for the facilities managers who are interested to utilize the waste thermal energy of their buildings or premises for heating and air conditioning applications.

  18. Test Capabilities and Recent Experiences in the NASA Langley 8-Foot High Temperature Tunnel

    NASA Technical Reports Server (NTRS)

    Hodge, Jeffrey S.; Harvin, Stephen F.

    2000-01-01

    The NASA Langley 8-Foot High Temperature Tunnel is a combustion-heated hypersonic blowdown-to-atmosphere wind tunnel that provides flight enthalpy simulation for Mach numbers of 4, 5, and 7 through an altitude range from 50,000 to 120,000 feet. The open-.jet test section is 8-ft. in diameter and 12-ft. long. The test section will accommodate large air-breathing hypersonic propulsion systems as well as structural and thermal protection system components. Stable wind tunnel test conditions can be provided for 60 seconds. Additional test capabilities are provided by a radiant heater system used to simulate ascent or entry heating profiles. The test medium is the combustion products of air and methane that are burned in a pressurized combustion chamber. Oxygen is added to the test medium for air-breathing propulsion tests so that the test gas contains 21 percent molar oxygen. The facility was modified extensively in the late 1980's to provide airbreathing propulsion testing capability. In this paper, a brief history and general description of the facility are presented along with a discussion of the types of supported testing. Recently completed tests are discussed to explain the capabilities this facility provides and to demonstrate the experience of the staff.

  19. APTI (Air Pollution Training Institute) Course 427: combustion evaluation, student manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beard, J.T.; Iachetta, F.A.; Lilleleht, L.U.

    1980-02-01

    This Student Manual is used in conjunction with Course No. 427, 'Combustion Evaluation' as applied to air pollution control situations. This manual was prepared by the EPA Air Pollution Training Institute (APTI) to supplement the course lecture materials and to present detailed reference information on the following topics: combustion fundamentals, fuel properties, combustion system design, pollutant emission evaluations, combustion control, gas, oil, and coal burning, solid waste and wood burning, incineration of wastes, sewage sludge incineration, waste gas flares, hazardous waste combustion, NOx control, and improved combustion systems. Note: There is also an Instructor's Guide to be used in conductingmore » the training course - (EPA-450/2-80-065) and a Student Workbook to be used for homework and in-class problem solving - (EPA-450/2-80-64).« less

  20. A combustion driven shock tunnel to complement the free piston shock tunnel T5 at GALCIT

    NASA Technical Reports Server (NTRS)

    Belanger, Jacques; Hornung, Hans G.

    1992-01-01

    A combustion driven shock tunnel was designed and built at GALCIT to supply the hypersonic facility T5 with 'hot' hydrogen for mixing and combustion experiments. This system was chosen over other options for better flexibility and for safety reasons. The shock tunnel is described and the overall efficiency of the system is discussed. The biggest challenge in the design was to synchronize the combustion driven shock tunnel with T5. To do so, the main diaphragm of the combustion driven shock tunnel is locally melted by an electrical discharge. This local melting is rapidly followed by the complete collapse of the diaphragm in a very repeatable way. A first set of experiments on supersonic hydrogen transverse jets over a flat plate have just been completed with the system and some of the preliminary results are presented.

  1. Microgravity combustion science: A program overview

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The promise of microgravity combustion research is introduced by way of a brief survey of results, the available set of reduced gravity facilities, and plans for experimental capabilities in the Space Station era. The study of fundamental combustion processes in a microgravity environment is a relatively new scientific endeavor. A few simple, precursor experiments were conducted in the early 1970's. Today the advent of the U.S. space shuttle and the anticipation of the Space Station Freedom provide for scientists and engineers a special opportunity, in the form of long duration microgravity laboratories, and need, in the form of spacecraft fire safety and a variety of terrestrial applications, to pursue fresh insight into the basic physics of combustion. The microgravity environment enables a new range of experiments to be performed since buoyancy-induced flows are nearly eliminated, normally obscured forces and flows may be isolated, gravitational settling or sedimentation is nearly eliminated, and larger time or length scales in experiments become permissible. The range of experiments completed to date was not broad, but is growing. Unexpected phenomena have been observed often in microgravity combustion experiments, raising questions about the degree of accuracy and completion of our classical understanding and our ability to estimate spacecraft fire hazards. Because of the field's relative immaturity, instrumentation has been restricted primarily to high-speed photography. To better explain these findings, more sophisticated diagnostic instrumentation, similar to that evolving in terrestrial laboratories, is being developed for use on Space Station Freedom and, along the way, in existing microgravity facilities.

  2. Focusing-schlieren visualization in a dual-mode scramjet

    NASA Astrophysics Data System (ADS)

    Kouchi, Toshinori; Goyne, Christopher P.; Rockwell, Robert D.; McDaniel, James C.

    2015-12-01

    Schlieren imaging is particularly suited to measuring density gradients in compressible flowfields and can be used to capture shock waves and expansion fans, as well as the turbulent structures of mixing and wake flows. Conventional schlieren imaging, however, has difficulty clearly capturing such structures in long-duration supersonic combustion test facilities. This is because the severe flow temperatures locally change the refractive index of the window glass that is being used to provide optical access. On the other hand, focusing-schlieren imaging presents the potential of reduced sensitivity to thermal distortion of the windows and to clearly capture the flow structures even during a combustion test. This reduced sensitivity is due the technique's ability to achieve a narrow depth of focus. As part of this study, a focusing-schlieren system was developed with a depth of focus near ±5 mm and was applied to a direct-connect, continuous-flow type, supersonic combustion test facility with a stagnation temperature near 1200 K. The present system was used to successfully visualize the flowfield inside a dual-mode scramjet. The imaging system captured combustion-induced volumetric expansion of the fuel jet and an anchored bifurcated shock wave at the trailing edge of the ramp fuel injector. This is the first time successful focusing-schlieren measurements have been reported for a dual-mode scramjet.

  3. A Unique, Optically Accessible Flame Tube Facility for Lean Combustor Studies

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; Wey, Chowen C.; Bianco, Jean

    1995-01-01

    A facility that allows interrogation of combusting flows by advanced diagnostic methods and instrumentation has been developed at the NASA Lewis Research Center. An optically accessible flame tube combustor is described which has high temperature, pressure, and air flow capabilities. The windows in the combustor measure 3.8 cm axially by 5.1 cm radially, providing 67% optical access to the 7.6 cm x 7.6 cm cross section flow chamber. Advanced gas analysis instrumentation is available through a gas chromatography/mass spectrometer system (GC/MS), which has on-line capability for heavy hydrocarbon measurement with resolution to the parts per billion level. The instrumentation allows one to study combusting flows and combustor subcomponents, such as fuel injectors and air swirlers. Planar Laser Induced Fluorescence (PLIF) can measure unstable combustion species, which cannot be obtained with traditional gas sampling. This type of data is especially useful to combustion modellers. The optical access allows measurements to have high spatial and temporal resolution. GC/MS data and PLIF images of OH- are presented from experiments using a lean direct injection (LDI) combustor burning Jet-A fuel at inlet temperatures ranging from 810 K to 866 K, combustor pressures up to 1380 kPa, and equivalence ratios from 0.41 to 0.59.

  4. Demonstration of An Integrated Approach to Mercury Control at Lee Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitali Lissianski; Pete Maly

    2007-12-31

    General Electric (GE) has developed an approach whereby native mercury reduction on fly ash can be improved by optimizing the combustion system. This approach eliminates carbon-rich areas in the combustion zone, making the combustion process more uniform, and allows increasing carbon content in fly ash without significant increase in CO emissions. Since boiler excess O{sub 2} can be also reduced as a result of optimized combustion, this process reduces NO{sub x} emissions. Because combustion optimization improves native mercury reduction on fly ash, it can reduce requirements for activated carbon injection (ACI) when integrated with sorbent injection for more efficient mercurymore » control. The approach can be tailored to specific unit configurations and coal types for optimal performance. This report describes results of a U.S. DOE sponsored project designed to evaluate the effect of combustion conditions on 'native' mercury capture on fly ash and integrate combustion optimization for improved mercury and NO{sub x} reduction with ACI. The technology evaluation took place in Lee Station Unit 3 located in Goldsboro, NC and operated by Progress Energy. Unit 3 burns a low-sulfur Eastern bituminous coal and is a 250 MW opposed-wall fired unit equipped with an ESP with a specific collection area of 249 ft{sup 2}/kacfm. Unit 3 is equipped with SO{sub 3} injection for ESP conditioning. The technical goal of the project was to evaluate the technology's ability to achieve 70% mercury reduction below the baseline emission value of 2.9 lb/TBtu, which was equivalent to 80% mercury reduction relative to the mercury concentration in the coal. The strategy to achieve the 70% incremental improvement in mercury removal in Unit 3 was (1) to enhance 'naturally' occurring fly ash mercury capture by optimizing the combustion process and using duct humidification to reduce flue gas temperatures at the ESP inlet, and (2) to use ACI in front of the ESP to further reduce mercury emissions. The program was comprised of field and pilot-scale tests, engineering studies and consisted of eight tasks. As part of the program, GE conducted pilot-scale evaluation of sorbent effect on mercury reduction, supplied and installed adjustable riffle boxes to assist in combustion optimization, performed combustion optimization, supplied mobile sorbent injection and flue gas humidification systems, conducted CFD modeling of sorbent injection and flue gas humidification, and performed mercury testing including a continuous 30-day sorbent injection trial. Combustion optimization was the first step in reduction of mercury emissions. Goals of combustion optimization activities were to improve 'native' mercury capture on fly ash and reduce NO{sub x}. Combustion optimization included balancing of coal flow through individual burners to eliminate zones of carbon-rich combustion, air flow balancing, and burner adjustments. As part of the project, the original riffle boxes were replaced with Foster-Wheeler's adjustable riffle boxes to allow for biasing the coal flow between the coal pipes. A 10-point CO/O{sub 2}/NO{sub x} grid was installed in the primary superheater region of the back pass to assist in these activities. Testing of mercury emissions before and after combustion optimization demonstrated that mercury emissions were reduced from 2.9 lb/TBtu to 1.8 lb/TBtu due to boiler operation differences in conjunction with combustion optimization, a 38% improvement in 'native' mercury capture on fly ash. Native mercury reduction from coal was {approx}42% at baseline conditions and 64% at optimized combustion conditions. As a result of combustion optimization NO{sub x} emissions were reduced by 18%. A three-dimensional CFD model was developed to study the flow distribution and sorbent injection in the post air heater duct in Lee Station Unit 3. Modeling of the flow pattern exiting the air pre-heater demonstrated that because of the duct transition from a circular opening at the exit of air-pre-heater to a rectangular ESP inlet duct, flow separation occurred at the corners after the transition. Modeling also demonstrated that the flow was severely biased from the South side to the North side due to the bend of the duct. Results of CFD modeling were used to design lances for better sorbent distribution across the ESP inlet duct. Modeling of water injection demonstrated that because of flue gas temperature biasing, the droplet evaporation rate was slower on the North side than that on the South side of the duct. Modeling suggested that an improvement of water droplet evaporation could be achieved by closing the lance on the North side where flue gas temperatures were lower. Preliminary evaluation of the effect of carbon-based sorbents on mercury reduction took place in a 1 MBtu/hr (300 kW) Boiler Simulator Facility using the same coal as fired at Lee Station.« less

  5. 33 CFR 6.12-3 - Approval of facility for dangerous cargo.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dangerous cargo. 6.12-3 Section 6.12-3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Control of Explosives or Other Dangerous Cargo § 6.12-3 Approval of facility for dangerous cargo. The... discharging, explosives, inflammable or combustible liquids in bulk, or other dangerous articles or cargo...

  6. 33 CFR 6.12-3 - Approval of facility for dangerous cargo.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dangerous cargo. 6.12-3 Section 6.12-3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Control of Explosives or Other Dangerous Cargo § 6.12-3 Approval of facility for dangerous cargo. The... discharging, explosives, inflammable or combustible liquids in bulk, or other dangerous articles or cargo...

  7. 33 CFR 6.12-3 - Approval of facility for dangerous cargo.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dangerous cargo. 6.12-3 Section 6.12-3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Control of Explosives or Other Dangerous Cargo § 6.12-3 Approval of facility for dangerous cargo. The... discharging, explosives, inflammable or combustible liquids in bulk, or other dangerous articles or cargo...

  8. 33 CFR 6.12-3 - Approval of facility for dangerous cargo.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dangerous cargo. 6.12-3 Section 6.12-3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Control of Explosives or Other Dangerous Cargo § 6.12-3 Approval of facility for dangerous cargo. The... discharging, explosives, inflammable or combustible liquids in bulk, or other dangerous articles or cargo...

  9. 33 CFR 6.12-3 - Approval of facility for dangerous cargo.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dangerous cargo. 6.12-3 Section 6.12-3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Control of Explosives or Other Dangerous Cargo § 6.12-3 Approval of facility for dangerous cargo. The... discharging, explosives, inflammable or combustible liquids in bulk, or other dangerous articles or cargo...

  10. 75 FR 82370 - Approval and Promulgation of State Plans for Designated Facilities and Pollutants; State of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ... Guidelines (EGs) applicable to existing Large Municipal Waste Combustors (LMWCs). These EGs apply to municipal waste combustors with a capacity to combust more than 250 tons per day of municipal solid waste... Municipal Waste Combustor (LMWC) Emissions From Existing Facilities AGENCY: Environmental Protection Agency...

  11. 75 FR 1362 - Medical Area Total Energy Plant, Inc., New MATEP Inc.; Notice of Application for Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... cogeneration and combined cycle modes, currently comprised of combustion turbine, diesel and steam turbine... natural gas and oil based fuels. The facility is interconnected with NSTAR Electric Company, and sells excess electric power output that is not consumed by the facility's institutional and commercial...

  12. Combustion and Ignition Studies of Nanocomposite Energetic Materials

    DTIC Science & Technology

    2010-12-14

    Characterization of a gas burner to simulate a propellant flame and evaluate aluminum particle combustion,” M. Jackson, M. L. Pantoya and W. Gill, Combustion...of a gas burner to simulate a propellant flame and evaluate aluminum particle combustion,” M. Jackson, M. L. Pantoya and W. Gill, Combustion and...changes in parameters such as particle size. The LFA measures these properties for bulk powders, consolidated pellets or even liquid mediums and is

  13. Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.

    2007-01-01

    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).

  14. Facile synthesis of highly active reduced graphene oxide-CuI catalyst through a simple combustion method for photocatalytic reduction of CO2 to methanol

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjun; Li, Yingjie; Zhang, Xiaoxiong; Li, Cuiluo

    2017-09-01

    We report a facile combustion method synthesis of reduced graphene oxide/CuI composites as a photocatalyst, in which CuI nanoparticles were homogeneously distributed on the surface of reduced graphene oxide (rGO), showing a good visible light response. The rGO-supported and unsupported CuI hybrids were tested over the photocatalytic reduction of CO2 for methanol evolution in visible light. In the current study rGO-CuI composites have shown excellent yields (19.91 μmol g-cat-1). rGO provides a light-weight, charge complementary and two-dimensional material that interacts effectively with the CuI nanoparticles.

  15. A Dual-Plane PIV Study of Turbulent Heat Transfer Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Wroblewski, Adam C.; Locke, Randy J.

    2016-01-01

    Thin film cooling is a widely used technique in turbomachinery and rocket propulsion applications, where cool injection air protects a surface from hot combustion gases. The injected air typically has a different velocity and temperature from the free stream combustion flow, yielding a flow field with high turbulence and large temperature differences. These thin film cooling flows provide a good test case for evaluating computational model prediction capabilities. The goal of this work is to provide a database of flow field measurements for validating computational flow prediction models applied to turbulent heat transfer flows. In this work we describe the application of a Dual-Plane Particle Image Velocimetry (PIV) technique in a thin film cooling wind tunnel facility where the injection air stream velocity and temperatures are varied in order to provide benchmark turbulent heat transfer flow field measurements. The Dual-Plane PIV data collected include all three components of velocity and all three components of vorticity, spanning the width of the tunnel at multiple axial measurement planes.

  16. Test Results of the Modified Space Shuttle Main Engine at the Marshall Space Flight Center Technology Test Bed Facility

    NASA Technical Reports Server (NTRS)

    Cook, J.; Dumbacher, D.; Ise, M.; Singer, C.

    1990-01-01

    A modified space shuttle main engine (SSME), which primarily includes an enlarged throat main combustion chamber with the acoustic cavities removed and a main injector with the stability control baffles removed, was tested. This one-of-a-kind engine's design changes are being evaluated for potential incorporation in the shuttle flight program in the mid-1990's. Engine testing was initiated on September 15, 1988 and has accumulated 1,915 seconds and 19 starts. Testing is being conducted to characterize the engine system performance, combustion stability with the baffle-less injector, and both low pressure oxidizer turbopump (LPOTP) and high pressure oxidizer turbopump (HPOTP) for suction performance. These test results are summarized and compared with the SSME flight configuration data base. Testing of this new generation SSME is the first product from the technology test bed (TTB). Figure test plans for the TTB include the highly instrumented flight configuration SSME and advanced liquid propulsion technology items.

  17. A Pilot-Scale Evaluation of a New Technology to Control NO(x) Emissions from Boilers at KSC: Hydrogen Peroxide Injection into Boiler Flue Gases Followed by Wet Scrubbing of Acid Gases

    NASA Technical Reports Server (NTRS)

    Cooper, C. David

    1997-01-01

    Emissions of nitrogen oxides NO(x) are a significant problem in the United States. NO(x) are formed in any combustion process, therefore it is not surprising that NO(x) are emitted from the boilers at KSC. Research at UCF has shown (in the laboratory) that injecting H2O2 into hot simulated flue gases can oxidize the NO and NO2 to their acid gas forms, HNO2 and HNO3, respectively. These acid gases are much more water soluble than their counterparts, and theoretically can be removed easily by wet scrubbing. This technology was of interest to NASA, both for their boilers at KSC, and for their combustion sources elsewhere. However, it was necessary to field test the technology and to provide pilot-scale data to aid in design of full-scale facilities. Hence this project was initiated in May of 1996.

  18. Injector element characterization methodology

    NASA Technical Reports Server (NTRS)

    Cox, George B., Jr.

    1988-01-01

    Characterization of liquid rocket engine injector elements is an important part of the development process for rocket engine combustion devices. Modern nonintrusive instrumentation for flow velocity and spray droplet size measurement, and automated, computer-controlled test facilities allow rapid, low-cost evaluation of injector element performance and behavior. Application of these methods in rocket engine development, paralleling their use in gas turbine engine development, will reduce rocket engine development cost and risk. The Alternate Turbopump (ATP) Hot Gas Systems (HGS) preburner injector elements were characterized using such methods, and the methodology and some of the results obtained will be shown.

  19. Dual phase high-temperature membranes for CO2 separation - performance assessment in post- and pre-combustion processes.

    PubMed

    Anantharaman, Rahul; Peters, Thijs; Xing, Wen; Fontaine, Marie-Laure; Bredesen, Rune

    2016-10-20

    Dual phase membranes are highly CO 2 -selective membranes with an operating temperature above 400 °C. The focus of this work is to quantify the potential of dual phase membranes in pre- and post-combustion CO 2 capture processes. The process evaluations show that the dual phase membranes integrated with an NGCC power plant for CO 2 capture are not competitive with the MEA process for post-combustion capture. However, dual phase membrane concepts outperform the reference Selexol technology for pre-combustion CO 2 capture in an IGCC process. The two processes evaluated in this work, post-combustion NGCC and pre-combustion IGCC, represent extremes in CO 2 partial pressure fed to the separation unit. Based on the evaluations it is expected that dual phase membranes could be competitive for post-combustion capture from a pulverized coal fired power plant (PCC) and pre-combustion capture from an Integrated Reforming Cycle (IRCC).

  20. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.

    PubMed

    Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua

    2015-12-01

    Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Type II Forward Storage Site Facilities: POMCUS System. Volume 2.

    DTIC Science & Technology

    1980-09-01

    shall be PROVIDED. (2) b. 4.14.2 Gas-tight,solid, non- combustible partitions will be used to separate oxygen and other combustion supporting gases from...buildings responsive to POMCUS activities; especially, 1) adequate insulation for temperature controlled buildings, 2) structural adequacy for lift...4.6.1 A building for storage of rations will be PROVIDED for a secured ready supply of meals for combat ( MCI ). This allows MCI replenishment as needed

  2. Analytical evaluation of effect of equivalence ratio inlet-air temperature and combustion pressure on performance of several possible ram-jet fuels

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Gammon, Benson E

    1953-01-01

    The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.

  3. Microgravity Science Glovebox (MSG)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Microgravity Science Glovebox is a facility for performing microgravity research in the areas of materials, combustion, fluids and biotechnology science. The facility occupies a full ISPR, consisting of: the ISPR rack and infrastructure for the rack, the glovebox core facility, data handling, rack stowage, outfitting equipment, and a video subsystem. MSG core facility provides the experiment developers a chamber with air filtering and recycling, up to two levels of containment, an airlock for transfer of payload equipment to/from the main volume, interface resources for the payload inside the core facility, resources inside the airlock, and storage drawers for MSG support equipment and consumables.

  4. Microgravity

    NASA Image and Video Library

    1998-05-01

    The Microgravity Science Glovebox is a facility for performing microgravity research in the areas of materials, combustion, fluids and biotechnology science. The facility occupies a full ISPR, consisting of: the ISPR rack and infrastructure for the rack, the glovebox core facility, data handling, rack stowage, outfitting equipment, and a video subsystem. MSG core facility provides the experiment developers a chamber with air filtering and recycling, up to two levels of containment, an airlock for transfer of payload equipment to/from the main volume, interface resources for the payload inside the core facility, resources inside the airlock, and storage drawers for MSG support equipment and consumables.

  5. A SCREENING LEVEL RISK ASSESSMENT OF THE INDIRECT IMPACTS FROM THE COLUMBUS WASTE TO ENERGY FACILITY IN COLUMBUS, OHIO

    EPA Science Inventory

    Testing for emissions of dioxins from the stack of the Columbus, Ohio Waste to Energy (WTE) municipal solid waste combustion facility in 1992 implied that dioxin concentrations in stack gas averaged 328 ng TEQ/m3. The incinerator had been in operation since the early 1980s. In ...

  6. NETL- Severe Environment Corrosion Erosion Facility

    ScienceCinema

    None

    2018-01-16

    NETL's Severe Environment Corrosion Erosion Facility in Albany studies how new and old materials will stand up to new operating conditions. Work done in the lab supports NETL's oxy-fuel combustion oxidation work, refractory materials stability work, and the fuels program, in particular the hydrogen membrane materials stability work, to determine how best to upgrade existing power plants.

  7. Shock tunnel studies of scramjet phenomena, supplement 5

    NASA Technical Reports Server (NTRS)

    Casey, R.; Stalker, R. J.; Brescianini, C. P.; Morgan, R. G.; Jacobs, P. A.; Wendt, M.; Ward, N. R.; Akman, N.; Allen, G. A.; Skinner, K.

    1990-01-01

    A series of reports are presented on SCRAMjet studies, shock tunnel studies, and expansion tube studies. The SCRAMjet studies include: (1) Investigation of a Supersonic Combustion Layer; (2) Wall Injected SCRAMjet Experiments; (3) Supersonic Combustion with Transvers, Circular, Wall Jets; (4) Dissociated Test Gas Effects on SCRAMjet Combustors; (5) Use of Silane as a Fuel Additive for Hypersonic Thrust Production, (6) Pressure-length Correlations in Supersonic Combustion; (7) Hot Hydrogen Injection Technique for Shock Tunnels; (8) Heat Release - Wave Interaction Phenomena in Hypersonic Flows; (9) A Study of the Wave Drag in Hypersonic SCRAMjets; (10) Parametric Study of Thrust Production in the Two Dimensional SCRAMjet; (11) The Design of a Mass Spectrometer for use in Hypersonic Impulse Facilities; and (12) Development of a Skin Friction Gauge for use in an Impulse Facility. The shock tunnel studies include: (1) Hypervelocity flow in Axisymmetric Nozzles; (2) Shock Tunnel Development; and (3) Real Gas Efects in Hypervelocity Flows over an Inclined Cone. The expansion tube studies include: (1) Investigation of Flow Characteristics in TQ Expansion Tube; and (2) Disturbances in the Driver Gas of a Shock Tube.

  8. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk; Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk; Coleman, Terry, E-mail: terry.coleman@erm.com

    2011-09-15

    Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energymore » balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.« less

  9. Stability analysis of a liquid fuel annular combustion chamber. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. H.

    1979-01-01

    The problems of combustion instability in an annular combustion chamber are investigated. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations. By evaluating these effects, parameters which cause instabilities to occur in the combustion chamber can be ascertained. It is assumed that in the annular combustion chamber, the liquid propellants are injected uniformly across the injector face, the combustion processes are distributed throughout the combustion chamber, and that no time delay occurs in the combustion processes.

  10. NASA Lewis Research Center's Preheated Combustor and Materials Test Facility

    NASA Technical Reports Server (NTRS)

    Nemets, Steve A.; Ehlers, Robert C.; Parrott, Edith

    1995-01-01

    The Preheated Combustor and Materials Test Facility (PCMTF) in the Engine Research Building (ERB) at the NASA Lewis Research Center is one of two unique combustor facilities that provide a nonvitiated air supply to two test stands, where the air can be used for research combustor testing and high-temperature materials testing. Stand A is used as a research combustor stand, whereas stand B is used for cyclic and survivability tests of aerospace materials at high temperatures. Both stands can accommodate in-house and private industry research programs. The PCMTF is capable of providing up to 30 lb/s (pps) of nonvitiated, 450 psig combustion air at temperatures ranging from 850 to 1150 g F. A 5000 gal tank located outdoors adjacent to the test facility can provide jet fuel at a pressure of 900 psig and a flow rate of 11 gal/min (gpm). Gaseous hydrogen from a 70,000 cu ft (CF) tuber is also available as a fuel. Approximately 500 gpm of cooling water cools the research hardware and exhaust gases. Such cooling is necessary because the air stream reaches temperatures as high as 3000 deg F. The PCMTF provides industry and Government with a facility for studying the combustion process and for obtaining valuable test information on advanced materials. This report describes the facility's support systems and unique capabilities.

  11. Differential partitioning and speciation of Hg in wet FGD facilities of two Spanish PCC power plants.

    PubMed

    Ochoa-González, R; Córdoba, P; Díaz-Somoano, M; Font, O; López-Antón, M A; Leiva, C; Martínez-Tarazona, M R; Querol, X; Pereira, C Fernández; Tomás, A; Gómez, P; Mesado, P

    2011-10-01

    This paper evaluates the speciation and partitioning of mercury in two Spanish pulverised coal combustion power plants (PP1 and PP2), equipped with wet limestone-based flue gas desulphurisation facilities (FGD) operating with forced oxidation and re-circulation of FGD water streams. These plants are fed with coal (PP1) and coal/pet-coke blends (PP2) with different mercury contents. The behaviour, partitioning and speciation of Hg were found to be similar during the combustion processes but different in the FGD systems of the two power plants. A high proportion (86-88%) of Hg escaped the electrostatic precipitator in gaseous form, Hg2+ being the predominant mercury species (68-86%) to enter the FGD. At this point, a relatively high total Hg retention (72% and 65%) was achieved in the PP1 and PP2 (2007) FGD facilities respectively. However, during the second sampling campaign for PP2 (2008), the mercury removal achieved by the FGD was much lower (26%). Lab-scale tests point to liquid/gas ratio as the main parameter affecting oxidised mercury capture in the scrubber. The partitioning of the gaseous mercury reaching the FGD system in the wastes and by-products differed. In the low mercury input power plant (PP1) most of the mercury (67%) was associated with the FGD gypsum. Moreover in PP2 a significant proportion of the gaseous mercury reaching the FGD system remained in the aqueous phase (45%) in the 2007 sampling campaign while most of it escaped in 2008 (74%). This may be attributed to the scrubber operating conditions and the different composition and chemistry of the scrubber solution probably due to the use of an additive. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Thermal Model of the Promoted Combustion Test

    NASA Technical Reports Server (NTRS)

    Jones, Peter D.

    1996-01-01

    Flammability of metals in high pressure, pure oxygen environments, such as rocket engine turbopumps, is commonly evaluated using the Promoted Combustion Test (PCT). The PCT emphasizes the ability of an ignited material to sustain combustion, as opposed to evaluating the sample's propensity to ignite in the first place. A common arrangement is a rod of the sample material hanging in a chamber in which a high pressure, pure oxygen environment is maintained. An igniter of some energetically combusting material is fixed to the bottom of the rod and fired. This initiates combustion, and the sample burns and melts at its bottom tip. A ball of molten material forms, and this ball detaches when it grows too large to be supported by surface tension with the rod. In materials which do not sustain combustion, the combustion then extinguishes. In materials which do sustain combustion, combustion re-initiates from molten residue left on the bottom of the rod, and the melt ball burns and grows until it detaches again. The purpose of this work is development of a PCT thermal simulation model, detailing phase change, melt detachment, and the several heat transfer modes. Combustion is modeled by a summary rate equation, whose parameters are identified by comparison to PCT results. The sensitivity of PCT results to various physical and geometrical parameters is evaluated. The identified combustion parameters may be used in design of new PCT arrangements, as might be used for flammability assessment in flow-dominated environments. The Haynes 214 nickel-based superalloy, whose PCT results are applied here, burns heterogeneously (fuel and oxidizer are of different phases; combustion takes place on the fuel surface). Heterogeneous combustion is not well understood. (In homogeneous combustion, the metal vaporizes, and combustion takes place in an analytically treatable cloud above the surface). Thermal modeling in heterogeneous combustion settings provides a means for linking test results more directly to detailed combustion mechanics, leading to improved data analysis, and improved understanding of heterogeneous combustion phenomena.

  13. The E-3 Test Facility at Stennis Space Center: Research and Development Testing for Cryogenic and Storable Propellant Combustion Systems

    NASA Technical Reports Server (NTRS)

    Pazos, John T.; Chandler, Craig A.; Raines, Nickey G.

    2009-01-01

    This paper will provide the reader a broad overview of the current upgraded capabilities of NASA's John C. Stennis Space Center E-3 Test Facility to perform testing for rocket engine combustion systems and components using liquid and gaseous oxygen, gaseous and liquid methane, gaseous hydrogen, hydrocarbon based fuels, hydrogen peroxide, high pressure water and various inert fluids. Details of propellant system capabilities will be highlighted as well as their application to recent test programs and accomplishments. Data acquisition and control, test monitoring, systems engineering and test processes will be discussed as part of the total capability of E-3 to provide affordable alternatives for subscale to full scale testing for many different requirements in the propulsion community.

  14. Microgravity Combustion Science: 1995 Program Update

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Editor); Gokoglu, Suleyman A. (Editor); Friedman, Robert (Editor)

    1995-01-01

    Microgravity greatly benefits the study of fundamental combustion processes. In this environment, buoyancy-induced flow is nearly eliminated, weak or normally obscured forces and flows can be isolated, gravitational settling or sedimentation is nearly eliminated, and temporal and spatial scales can be expanded. This document reviews the state of knowledge in microgravity combustion science with the emphasis on NASA-sponsored developments in the current period of 1992 to early 1995. The subjects cover basic research in gaseous premixed and diffusion-flame systems, flame structure and sooting, liquid droplets and pools, and solid-surface ignition and flame spread. They also cover applied research in combustion synthesis of ceramic-metal composites, advanced diagnostic instrumentation, and on-orbit fire safety. The review promotes continuing research by describing the opportunities for Principal Investigator participation through the NASA Research Announcement program and the available NASA Lewis Research Center ground-based facilities and spaceflight accommodations. This review is compiled by the members and associates of the NASA Lewis Microgravity Combustion Branch, and it serves as an update of two previous overview reports.

  15. Enhanced Combustion Low NOx Pulverized Coal Burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Towle; Richard Donais; Todd Hellewell

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, withmore » typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to behave in-between the subbituminous coal and the Midwest bituminous coal. CFD modeling was used to gain insight into the mechanisms governing nozzle tip performance with respect to NOx emissions. The CFD simulations were run as steady state, turbulent, non-reacting flow with heat transfer and focused on predicting the near field mixing and particle dispersion rates. CFD results were used to refine the proposed tip concepts before they were built, as well as to help identify and evaluate possible improvements to the tips for subsequent test weeks.« less

  16. Validation of High-Fidelity CFD Simulations for Rocket Injector Design

    NASA Technical Reports Server (NTRS)

    Tucker, P. Kevin; Menon, Suresh; Merkle, Charles L.; Oefelein, Joseph C.; Yang, Vigor

    2008-01-01

    Computational fluid dynamics (CFD) has the potential to improve the historical rocket injector design process by evaluating the sensitivity of performance and injector-driven thermal environments to the details of the injector geometry and key operational parameters. Methodical verification and validation efforts on a range of coaxial injector elements have shown the current production CFD capability must be improved in order to quantitatively impact the injector design process. This paper documents the status of a focused effort to compare and understand the predictive capabilities and computational requirements of a range of CFD methodologies on a set of single element injector model problems. The steady Reynolds-Average Navier-Stokes (RANS), unsteady Reynolds-Average Navier-Stokes (URANS) and three different approaches using the Large Eddy Simulation (LES) technique were used to simulate the initial model problem, a single element coaxial injector using gaseous oxygen and gaseous hydrogen propellants. While one high-fidelity LES result matches the experimental combustion chamber wall heat flux very well, there is no monotonic convergence to the data with increasing computational tool fidelity. Systematic evaluation of key flow field regions such as the flame zone, the head end recirculation zone and the downstream near wall zone has shed significant, though as of yet incomplete, light on the complex, underlying causes for the performance level of each technique. 1 Aerospace Engineer and Combustion CFD Team Leader, MS ER42, NASA MSFC, AL 35812, Senior Member, AIAA. 2 Professor and Director, Computational Combustion Laboratory, School of Aerospace Engineering, 270 Ferst Dr., Atlanta, GA 30332, Associate Fellow, AIAA. 3 Reilly Professor of Engineering, School of Mechanical Engineering, 585 Purdue Mall, West Lafayette, IN 47907, Fellow, AIAA. 4 Principal Member of Technical Staff, Combustion Research Facility, 7011 East Avenue, MS9051, Livermore, CA 94550, Associate Fellow, AIAA. 5 J. L. and G. H. McCain Endowed Chair, Mechanical Engineering, 104 Research Building East, University Park, PA 16802, Fellow, AIAA. American Institute of Aeronautics and Astronautics 1

  17. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galowitz, Stephen

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven andmore » reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh's of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.« less

  18. Multiuser Droplet Combustion Apparatus Developed to Conduct Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Myhre, Craig A.

    2001-01-01

    A major portion of the energy produced in the world today comes from the combustion or burning of liquid hydrocarbon fuels in the form of droplets. However, despite vigorous scientific examinations for over a century, researchers still lack a full understanding of many fundamental combustion processes of liquid fuels. Understanding how these fuel droplets ignite, spread, and extinguish themselves will help us develop more efficient ways of energy production and propulsion, as well as help us deal better with the problems of combustion-generated pollution and fire hazards associated with liquid combustibles. The ability to conduct more controlled experiments in space, without the complication of gravity, provides scientists with an opportunity to examine these complicated processes closely. The Multiuser Droplet Combustion Apparatus (MDCA) supports this continued research under microgravity conditions. The objectives are to improve understanding of fundamental droplet phenomena affected by gravity, to use research results to advance droplet combustion science and technology on Earth, and to address issues of fire hazards associated with liquid combustibles on Earth and in space. MDCA is a multiuser facility designed to accommodate different combustion science experiments. The modular approach permits the on-orbit replacement of droplet combustion principal investigator experiments such as different fuels, droplet-dispensing needles, and droplet-tethering mechanisms. Large components such as the avionics, diagnostics, and base-plate remain on the International Space Station to reduce the launch mass of new experiments. MDCA is also designed to operate in concert with ground systems on Earth to minimize the involvement of the crew during orbit.

  19. Evaluation of candidate working fluid formulations for the electrothermal-chemical wind tunnel

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Jale F.; Akyurtlu, Ates

    1993-01-01

    A new hypersonic test facility which can simulate conditions typical of atmospheric flight at Mach numbers up to 20 is currently under study at the NASA/LaRC Hypersonic Propulsion Branch. In the proposed research, it was suggested that a combustion augmented electrothermal wind tunnel concept may be applied to the planned hypersonic testing facility. The purpose of the current investigation is to evaluate some candidate working fluid formulations which may be used in the chemical-electrothermal wind. The efforts in the initial phase of this research were concentrated on acquiring the code used by GASL to model the electrothermal wind tunnel and testing it using the conditions of GASL simulation. The early version of the general chemical kinetics code (GCKP84) was obtained from NASA and the latest updated version of the code (LSENS) was obtained from the author Dr. Bittker. Both codes are installed on a personal computer with a 486 25 MHz processor and 16 Mbyte RAM. Since the available memory was not sufficient to debug LSENS, for the current work GCKP84 was used.

  20. Combustion

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.

  1. 40 CFR 60.1675 - What types of operator certification must the chief facility operator and shift supervisor obtain...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... after they are hired to work at the municipal waste combustion unit. (c) Each chief facility operator... certification exam with the American Society of Mechanical Engineers (QRO-1-1994) (incorporated by reference in § 60.17(h)(1)). (3) Schedule a full certification exam with your State certification program. (d) The...

  2. Droplet Combustion and Non-Reactive Shear-Coaxial Jets with Transverse Acoustic Excitation

    DTIC Science & Technology

    2012-06-01

    Shear-Coaxial Jets Experimental Facility: Piping and Instrumentation Diagram . . . . . . . . . . . . . . . . . . . . . . 196 B Shear-Coaxial Jets...facility piping and instrumentation diagram. . . . . . . . . 197 A.2 Expanded view of section A in Figure A.1. . . . . . . . . . . . . . . . . . 198 A.3...certified to be used in flexible fuel vehicles (FFVs) with engines specifically designed for this fuel. As for possible aviation fuel replacements

  3. 40 CFR 60.1185 - What types of operator certification must the chief facility operator and shift supervisor obtain...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What types of operator certification... Certification § 60.1185 What types of operator certification must the chief facility operator and shift... combustion unit initial startup. (2) December 6, 2001. (3) Six months after they transfer to the municipal...

  4. 40 CFR 60.1185 - What types of operator certification must the chief facility operator and shift supervisor obtain...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What types of operator certification... Certification § 60.1185 What types of operator certification must the chief facility operator and shift... combustion unit initial startup. (2) December 6, 2001. (3) Six months after they transfer to the municipal...

  5. 40 CFR 60.1185 - What types of operator certification must the chief facility operator and shift supervisor obtain...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What types of operator certification... Certification § 60.1185 What types of operator certification must the chief facility operator and shift... combustion unit initial startup. (2) December 6, 2001. (3) Six months after they transfer to the municipal...

  6. 40 CFR 60.1185 - What types of operator certification must the chief facility operator and shift supervisor obtain...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What types of operator certification... Certification § 60.1185 What types of operator certification must the chief facility operator and shift... combustion unit initial startup. (2) December 6, 2001. (3) Six months after they transfer to the municipal...

  7. The Light Microscopy Module: An On-Orbit Multi-User Microscope Facility

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Snead, John H.

    2002-01-01

    The Light Microscopy Module (LMM) is planned as a remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and operation of fluids and biology experiments within the Fluids and Combustion Facility (FCF) Fluids Integrated Rack (FIR) on the International Space Station (ISS). The LMM will be the first integrated payload with the FIR to conduct four fluid physics experiments. A description of the LMM diagnostic capabilities, including video microscopy, interferometry, laser tweezers, confocal, and spectrophotometry, will be provided.

  8. Energy Efficient Engine (E3) combustion system component technology performance report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.

  9. 40 CFR 63.866 - Recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; (3) Records of parameter monitoring data required under § 63.864, including any period when the... existing semichemical combustion units at their Big Island, VA facility. [66 FR 3193, Jan. 12, 2001, as...

  10. 40 CFR 63.866 - Recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; (3) Records of parameter monitoring data required under § 63.864, including any period when the... existing semichemical combustion units at their Big Island, VA facility. [66 FR 3193, Jan. 12, 2001, as...

  11. 40 CFR 63.866 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; (3) Records of parameter monitoring data required under § 63.864, including any period when the... existing semichemical combustion units at their Big Island, VA facility. [66 FR 3193, Jan. 12, 2001, as...

  12. 40 CFR 63.866 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; (3) Records of parameter monitoring data required under § 63.864, including any period when the... existing semichemical combustion units at their Big Island, VA facility. [66 FR 3193, Jan. 12, 2001, as...

  13. 40 CFR 63.866 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; (3) Records of parameter monitoring data required under § 63.864, including any period when the... existing semichemical combustion units at their Big Island, VA facility. [66 FR 3193, Jan. 12, 2001, as...

  14. Definition of smolder experiments for Spacelab

    NASA Technical Reports Server (NTRS)

    Summerfield, M.; Messina, N. A.; Ingram, L. S.

    1979-01-01

    The feasibility of conducting experiments in space on smoldering combustion was studied to conceptually design specific smoldering experiments to be conducted in the Shuttle/Spacelab System. Design information for identified experiment critical components is provided. The analytical and experimental basis for conducting research on smoldering phenomena in space was established. Physical descriptions of the various competing processes pertaining to smoldering combustion were identified. The need for space research was defined based on limitations of existing knowledge and limitations of ground-based reduced-gravity experimental facilities.

  15. Development of Predictive Models of Advanced Propulsion Concepts for Low Cost Space Transportation

    NASA Technical Reports Server (NTRS)

    Morrell, Michael Randy

    2002-01-01

    This final report presents the Graduate Student Research Program (GSRP) work Mr. Morrell was able to complete as a summer intern at NASA MSFS during the summer of 2001, and represents work completed from inception through project termination. The topics include: 1) NASA TD40 Organization; 2) Combustion Physics Lab; 3) Advanced Hydrocarbon Fuels; 4) GSRP Summer Tasks; 5) High Pressure Facility Installation; 6) High Pressure Combustion Issues; 7) High Energy Density Matter (HEDM) Hydrocarbons; and 8) GSRP Summer Intern Summary.

  16. Dual-Pump CARS Development and Application to Supersonic Combustion

    NASA Technical Reports Server (NTRS)

    Magnotti, Gaetano; Cutler, Andrew D.

    2012-01-01

    A dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS) instrument has been developed to obtain simultaneous measurements of temperature and absolute mole fractions of N2, O2 and H2 in supersonic combustion and generate databases for validation and development of CFD codes. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. Approximately one million dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  17. Dual-Pump CARS Development and Application to Supersonic Combustion

    NASA Astrophysics Data System (ADS)

    Magnotti, Gaetano

    Successful design of hypersonic air-breathing engines requires new computational fluid dynamics (CFD) models for turbulence and turbulence-chemistry interaction in supersonic combustion. Unfortunately, not enough data are available to the modelers to develop and validate their codes, due to difficulties in taking measurements in such a harsh environment. Dual-pump coherent anti-Stokes Raman spectroscopy (CARS) is a non-intrusive, non-linear, laser-based technique that provides temporally and spatially resolved measurements of temperature and absolute mole fractions of N2, O2 and H2 in H2-air flames. A dual-pump CARS instrument has been developed to obtain measurements in supersonic combustion and generate databases for the CFD community. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. The facility provides a central jet of hot "vitiated air" simulating the hot air entering the engine of a hypersonic vehicle flying at Mach numbers between 5 and 7. Three different silicon carbide nozzles, with exit Mach number 1, 1.6 and 2, are used to provide flows with the effects of varying compressibility. H2 co-flow is available in order to generate a supersonic combusting free jet. Dual-pump CARS measurements have been obtained for varying values of flight and exit Mach numbers at several locations. Approximately one million Dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N 2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  18. Zero-Gravity Research Facility Drop Test (2/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physcis, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 2 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  19. Zero-Gravity Research Facility Drop Test (1/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No.1 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  20. Zero-Gravity Research Facility Drop Test (3/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one-meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 3 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  1. Zero-Gravity Research Facility Drop Test (4/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 4 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  2. 33 CFR 127.1605 - Other sources of ignition.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sources of ignition. Each operator of a waterfront facility handling LHG shall ensure that in the marine... is located where sparks may ignite combustible material; and (d) All rubbish, debris, and waste go...

  3. Combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility [On the combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraza-Botet, Cesar L.; Wagnon, Scott W.; Wooldridge, Margaret S.

    Here, ethanol remains the most important alternative fuel for the transportation sector. This work presents new experimental data on ethanol ignition, including stable species measurements, obtained with the University of Michigan rapid compression facility. Ignition delay times were determined from pressure histories of ignition experiments with stoichiometric ethanol–air mixtures at pressures of ~3–10 atm. Temperatures (880–1150 K) were controlled by varying buffer gas composition (Ar, N 2, CO 2). High-speed imaging was used to record chemiluminescence during the experiments, which showed homogeneous ignition events. The results for ignition delay time agreed well with trends on the basis of previous experimentalmore » measurements. Speciation experiments were performed using fast gas sampling and gas chromatography to identify and quantify ethanol and 11 stable intermediate species formed during the ignition delay period. Simulations were carried out using a chemical kinetic mechanism available in the literature, and the agreement with the experimental results for ignition delay time and the intermediate species measured was excellent for the majority of the conditions studied. From the simulation results, ethanol + HO 2 was identified as an important reaction at the experimental conditions for both the ignition delay time and intermediate species measurements. Further studies to improve the accuracy of the rate coefficient for ethanol + HO 2 would improve the predictive understanding of intermediate and low-temperature ethanol combustion.« less

  4. Combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility [On the combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility

    DOE PAGES

    Barraza-Botet, Cesar L.; Wagnon, Scott W.; Wooldridge, Margaret S.

    2016-08-31

    Here, ethanol remains the most important alternative fuel for the transportation sector. This work presents new experimental data on ethanol ignition, including stable species measurements, obtained with the University of Michigan rapid compression facility. Ignition delay times were determined from pressure histories of ignition experiments with stoichiometric ethanol–air mixtures at pressures of ~3–10 atm. Temperatures (880–1150 K) were controlled by varying buffer gas composition (Ar, N 2, CO 2). High-speed imaging was used to record chemiluminescence during the experiments, which showed homogeneous ignition events. The results for ignition delay time agreed well with trends on the basis of previous experimentalmore » measurements. Speciation experiments were performed using fast gas sampling and gas chromatography to identify and quantify ethanol and 11 stable intermediate species formed during the ignition delay period. Simulations were carried out using a chemical kinetic mechanism available in the literature, and the agreement with the experimental results for ignition delay time and the intermediate species measured was excellent for the majority of the conditions studied. From the simulation results, ethanol + HO 2 was identified as an important reaction at the experimental conditions for both the ignition delay time and intermediate species measurements. Further studies to improve the accuracy of the rate coefficient for ethanol + HO 2 would improve the predictive understanding of intermediate and low-temperature ethanol combustion.« less

  5. Numerical Study of Contaminant Effects on Combustion of Hydrogen, Ethane, and Methane in Air

    NASA Technical Reports Server (NTRS)

    Lai, H. T.; Thomas, S. R.

    1995-01-01

    A numerical study was performed to assess the effects of vitiated air on the chemical kinetics of hydrogen, ethane, and methane combustion with air. A series of calculations in static reacting systems was performed, where the initial temperature was specified and reactions occurred at constant pressure. Three different types of test flow contaminants were considered: NP, H2O, and a combustion of H2O and CO2. These contaminants are present in the test flows of facilities used for hypersonic propulsion testing. The results were computed using a detailed reaction mechanism and are presented in terms of ignition and reaction times. Calculations were made for a wide range of contaminant concentrations, temperatures and pressures. The results indicate a pronounced kinetic effect over a range of temperatures, especially with NO contamination and, to a lesser degree, with H2O contamination. In all cases studied, CO2 remained kinetically inert, but had a thermodynamic effect on results by acting as a third body. The largest effect is observed with combustion using hydrogen fuel, less effect is seen with combustion of ethane, and little effect of contaminants is shown with methane combustion.

  6. Atomization and combustion performance of antimisting kerosene and jet fuel

    NASA Technical Reports Server (NTRS)

    Fleeter, R.; Parikh, P.; Sarohia, V.

    1983-01-01

    Combustion performance of antimisting kerosene (AMK) containing FM-9 polymer was investigated at various levels of degradation (restoration of AMK for normal use in a gas turbine engine). To establish the relationship of degradation and atomization to performance in an aircraft gas turbine combustor, sprays formed by the nozzle of a JT8-D combustor with Jet A and AMK at 1 atmosphere (atm) (14.1 lb/square in absolute) pressure and 22 C at several degradation levels were analyzed. A new spray characterization technique based on digital image analysis of high resolution, wide field spray images formed under pulsed ruby laser sheet illumination was developed. Combustion tests were performed for these fuels in a JT8-D single can combustor facility to measure combustion efficiency and the lean extinction limit. Correlation of combustion performance under simulated engine operating conditions with nozzle spray Sauter mean diameter (SMD) measured at 1 atm and 22 C were observed. Fuel spray SMD and hence the combustion efficiency are strongly influenced by fuel degradation level. Use of even the most highly degraded AMK tested (filter ratio = 1.2) resulted in an increase in fuel consumption of 0.08% to 0.20% at engine cruise conditions.

  7. APTI (Air Pollution Training Institute) course 427: combustion evaluation, instructor's guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beard, J.T.; Iachetta, F.A.; Lilleleht, L.U.

    1980-02-01

    This Instructor's Guide is used in conjunction with Course No. 427, 'Combustion Evaluation' as applied to air pollution control situations. The teaching guide was prepared by the EPA Air Pollution Training Institute (APTI) to assist instructors in presenting course No. 427. The guide contains sections on the following topics: combustion fundamentals, fuel properties, combustion system design, pollutant emission calculations, combustion control, gas, oil, and burning, solid waste and wood burning, incineration of wastes, sewage sludge incineration, flame and catalytic incineration, waste gas flares, hazardous waste combustion, NOx control, improved combustion systems. Note: There is also a Student Workbook to bemore » used for homework and in-class problem solving (EPA-450/2-80-064) and a Student Manual for reference and additional subject material (EPA-450/2-80-063).« less

  8. 78 FR 28501 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota; Flint Hills Resources...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ..., refinery fuel gas is generated by the facility's processes and collected into two fuel gas mix drums, designated 41V-33 and 45V-39. The gases are then distributed from these mix drums to combustion units at the facility, such as boilers and heaters. FHR Pine Bend operates H 2 S CEMs on the mix drums to satisfy the...

  9. Droplet Combustion and Non-Reactive Shear-Coaxial Jets with and without Transverse Acoustic Excitation

    DTIC Science & Technology

    2012-01-01

    186 6.2 Non-Reactive Shear-Coaxial Jets . . . . . . . . . . . . . . . . . . . . . . 188 A Shear-Coaxial Jets Experimental Facility: Piping and...185 A.1 Experimental facility piping and instrumentation diagram. . . . . . . . . 194 A.2 Expanded view of section A in Figure...modification, whereas a blend of gasoline and 85% ethanol (E85) is only certified to be used in flexible fuel vehicles (FFVs) with engines specifically

  10. The extraction of bitumen from western oil sands: Volume 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery andmore » upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.« less

  11. Coal Combustion Residual Beneficial Use Evaluation: Fly Ash Concrete and FGD Gypsum Wallboard

    EPA Pesticide Factsheets

    This page contains documents related to the evaluation of coal combustion residual beneficial use of fly ash concrete and FGD gypsum wallboard including the evaluation itself and the accompanying appendices

  12. Development of Supersonic Combustion Experiments for CFD Modeling

    NASA Technical Reports Server (NTRS)

    Baurle, Robert; Bivolaru, Daniel; Tedder, Sarah; Danehy, Paul M.; Cutler, Andrew D.; Magnotti, Gaetano

    2007-01-01

    This paper describes the development of an experiment to acquire data for developing and validating computational fluid dynamics (CFD) models for turbulence in supersonic combusting flows. The intent is that the flow field would be simple yet relevant to flows within hypersonic air-breathing engine combustors undergoing testing in vitiated-air ground-testing facilities. Specifically, it describes development of laboratory-scale hardware to produce a supersonic combusting coaxial jet, discusses design calculations, operability and types of flames observed. These flames are studied using the dual-pump coherent anti- Stokes Raman spectroscopy (CARS) - interferometric Rayleigh scattering (IRS) technique. This technique simultaneously and instantaneously measures temperature, composition, and velocity in the flow, from which many of the important turbulence statistics can be found. Some preliminary CARS data are presented.

  13. Numerical Investigation of the Performance of a Supersonic Combustion Chamber and Comparison with Experiments

    NASA Astrophysics Data System (ADS)

    Banica, M. C.; Chun, J.; Scheuermann, T.; Weigand, B.; Wolfersdorf, J. v.

    2009-01-01

    Scramjet powered vehicles can decrease costs for access to space but substantial obstacles still exist in their realization. For example, experiments in the relevant Mach number regime are difficult to perform and flight testing is expensive. Therefore, numerical methods are often employed for system layout but they require validation against experimental data. Here, we validate the commercial code CFD++ against experimental results for hydrogen combustion in the supersonic combustion facility of the Institute of Aerospace Thermodynamics (ITLR) at the Universität Stuttgart. Fuel is injected through a lobed a strut injector, which provides rapid mixing. Our numerical data shows reasonable agreement with experiments. We further investigate effects of varying equivalence ratios on several important performance parameters.

  14. Microgravity Combustion Research: 1999 Program and Results

    NASA Technical Reports Server (NTRS)

    Friedman, Robert (Editor); Gokoglu, Suleyman A. (Editor); Urban, David L. (Editor)

    1999-01-01

    The use of the microgravity environment of space to expand scientific knowledge and to enable the commercial development of space for enhancing the quality of life on Earth is particularly suitable to the field of combustion. This document reviews the current status of microgravity combustion research and derived information. It is the fourth in a series of timely surveys, all published as NASA Technical Memoranda, and it covers largely the period from 1995 to early 1999. The scope of the review covers three program areas: fundamental studies, applications to fire safety and other fields. and general measurements and diagnostics. The document also describes the opportunities for Principal Investigator participation through the NASA Research Announcement program and the NASA Glenn Research Center low-gravity facilities available to researchers.

  15. Design study of superconducting magnets for a combustion magnetohydrodynamic /MHD/ generator

    NASA Technical Reports Server (NTRS)

    Thome, R. J.; Ayers, J. W.; Hrycaj, T. M.; Burkhart, J. A.

    1978-01-01

    Results are presented for a trade-off and preliminary design study on concepts of a superconducting magnet system for a combustion MHD generator test facility. The main objective is to gain insight into the magnitude of the project in terms of physical characteristics and cost. The net result of a first-phase evaluation of attractive design alternatives is to concentrate subsequent efforts on (1) a racetrack coil geometry with an operating temperature of 4.2 K, (2) a racetrack coil geometry with an operating temperature of 2.0 K, and (3) a rectangular saddle coil geometry with an operating temperature of 4.2 K. All three systems are to produce 8 T, and use NbTi superconductor and iron for field enhancement. Design characteristics of the three systems are described. It is shown that the racetrack and rectangular saddle coil geometries seem most suitable for this application, the former because of its simplicity and the latter because of its efficient use of material. Advantages of the rectangular saddle over the two other systems are stressed.

  16. A life cycle assessment and economic analysis of the Scum-to-Biodiesel technology in wastewater treatment plants.

    PubMed

    Mu, Dongyan; Addy, Min; Anderson, Erik; Chen, Paul; Ruan, Roger

    2016-03-01

    This study used life cycle assessment and technical economic analysis tools in evaluating a novel Scum-to-Biodiesel technology and compares the technology with scum digestion and combustion processes. The key variables that control environmental and economic performance are identified and discussed. The results show that all impacts examined for the Scum-to-Biodiesel technology are below zero indicating significant environmental benefits could be drawn from it. Of the three technologies examined, the Scum-to-Biodiesel technology has the best environmental performance in fossil fuel depletion, GHG emissions, and eutrophication, whereas combustion has the best performance on acidification. Of all process inputs assessed, process heat, glycerol, and methanol uses had the highest impacts, much more than any other inputs considered. The Scum-to-Biodiesel technology also makes higher revenue than other technologies. The diesel price is a key variable for its economic performance. The research demonstrates the feasibility and benefits in developing Scum-to-Biodiesel technology in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. MUNICIPAL WASTE COMBUSTION ASSESSMENT ...

    EPA Pesticide Factsheets

    The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for municipal waste combustors (MWCs) that reportedly accept medical waste in the U.S., Europe, and Canada. nly very limited data are available on the emission impacts associated with the combustion of medical waste in MWGs. Especially lacking is information needed to fully evaluate the impacts on acid gas, dioxin, and metals emissions, as well as the design and operating requirements for complete destruction of solvents, cytotoxic chemicals, and pathogens. The EPA's Office of Air Quatity Planning and Standards is developing emission standards and guidelines for new and existing MWCs under Sections 111(b) and 111(d) of the Clean Air Act. In support of these regulatory development efforts, the Air and Energy Engineering Research Laboratory in EPA's Office of Research and Development has conducted an assessment to examine the incineration of medical waste in MWGs from an emission standpoint. Potential worker safety and health problems associated with handling of medical wastes and residues were also identified. information

  18. Bioenergy Potential from Food Waste in California.

    PubMed

    Breunig, Hanna M; Jin, Ling; Robinson, Alastair; Scown, Corinne D

    2017-02-07

    Food waste makes up approximately 15% of municipal solid waste generated in the United States, and 95% of food waste is ultimately landfilled. Its bioavailable carbon and nutrient content makes it a major contributor to landfill methane emissions, but also presents an important opportunity for energy recovery. This paper presents the first detailed analysis of monthly food waste generation in California at a county level, and its potential contribution to the state's energy production. Scenarios that rely on excess capacity at existing anaerobic digester (AD) and solid biomass combustion facilities, and alternatives that allow for new facility construction, are developed and modeled. Potential monthly electricity generation from the conversion of gross food waste using a combination of AD and combustion varies from 420 to 700 MW, averaging 530 MW. At least 66% of gross high moisture solids and 23% of gross low moisture solids can be treated using existing county infrastructure, and this fraction increases to 99% of high moisture solids and 55% of low moisture solids if waste can be shipped anywhere within the state. Biogas flaring practices at AD facilities can reduce potential energy production by 10 to 40%.

  19. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    PubMed Central

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-01-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures. PMID:26902260

  20. National Coal Utilization Assessment. a preliminary assessment of the health and environmental effects of coal utilization in the Midwest. Volume I. Energy scenarios, technology characterizations, air and water resource impacts, and health effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    This report presents an initial evaluation of the major health and environmental issues associated with increased coal use in the six midwestern states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin. Using an integrated assessment approach, the evaluation proceeds from a base-line scenario of energy demand and facility siting for 1975-2020. Emphasis is placed on impacts from coal extraction, land reclamation, coal combustion for electrical generation, and coal gasification. The range of potential impacts and constraints is illustrated by a second scenario that represents an expected upper limit for coal utilization in Illinois. The following are among the more significantmore » issues identified and evaluated in this study: If environmental and related issues can be resolved, coal will continue to be a major source of energy for the Midwest; existing sulfur emission constraints will increase use of western coal; the resource requirements and environmental impacts of coal utilization will require major significant environmental and economic tradeoffs in site selection; short-term (24-hr) ambient standards for sulfur dioxide will limit the sizes of coal facilities or require advanced control technologies; an impact on public health may result from long-range transport of airborne sulfur emissions from coal facilities in the Midwest; inadequately controlled effluents from coal gasification may cause violations of water-quality standards; the major ecological effects of coal extraction are from pre-mining and post-reclamation land use; and sulfur dioxide is the major potential contributor to effects on vegetation of atmospheric emissions from coal facilities.« less

  1. Ignition of metals in high pressure oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.

    1985-01-01

    A description of an experimental facility used to determine the ignition and combustion characteristics of metallic materials is given. The results obtained for aluminum 6061, 302 stainless steel, and the nickel alloy - N06625 are presented.

  2. Results of industrial tests of carbonate additive to fuel oil

    NASA Astrophysics Data System (ADS)

    Zvereva, E. R.; Dmitriev, A. V.; Shageev, M. F.; Akhmetvalieva, G. R.

    2017-08-01

    Fuel oil plays an important role in the energy balance of our country. The quality of fuel oil significantly affects the conditions of its transport, storage, and combustion; release of contaminants to atmosphere; and the operation of main and auxiliary facilities of HPPs. According to the Energy Strategy of Russia for the Period until 2030, the oil-refining ratio gradually increases; as a result, the fraction of straight-run fuel oil in heavy fuel oils consistently decreases, which leads to the worsening of performance characteristics of fuel oil. Consequently, the problem of the increase in the quality of residual fuel oil is quite topical. In this paper, it is suggested to treat fuel oil by additives during its combustion, which would provide the improvement of ecological and economic indicators of oil-fired HPPs. Advantages of this method include simplicity of implementation, low energy and capital expenses, and the possibility to use production waste as additives. In the paper, the results are presented of industrial tests of the combustion of fuel oil with the additive of dewatered carbonate sludge, which is formed during coagulation and lime treatment of environmental waters on HPPs. The design of a volume delivery device is developed for the steady additive input to the boiler air duct. The values are given for the main parameters of the condition of a TGM-84B boiler plant. The mechanism of action of dewatered carbonate sludge on sulfur oxides, which are formed during fuel oil combustion, is considered. Results of industrial tests indicate the decrease in the mass fraction of discharged sulfur oxides by 36.5%. Evaluation of the prevented damage from sulfur oxide discharged into atmospheric air shows that the combustion of the fuel oil of 100 brand using carbonate sludge as an additive (0.1 wt %) saves nearly 6 million rubles a year during environmental actions at the consumption of fuel oil of 138240 t/year.

  3. Evolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion Process.

    PubMed

    Zhou, Wei; Jiang, Jingkun; Duan, Lei; Hao, Jiming

    2016-07-19

    In the absence of particulate matter (PM) control devices, residential coal combustion contributes significantly to ambient PM pollution. Characterizing PM emissions from residential coal combustion with high time resolution is beneficial for developing control policies and evaluating the environmental impact of PM. This study reports the evolution of submicrometer organic aerosols (OA) during a complete residential coal combustion process, that is, from fire start to fire extinction. Three commonly used coal types (bituminous, anthracite, and semicoke coals) were evaluated in a typical residential stove in China. For all three types of coal, the OA emission exhibited distinct characteristics in the four stages, that is, ignition, fierce combustion, relatively stable combustion, and ember combustion. OA emissions during the ignition stage accounted for 58.2-85.4% of the total OA emission of a complete combustion process. The OA concentration decreased rapidly during the fierce combustion stage and remained low during the relatively stable combustion stage. During these two stages, a significant ion peak of m/z 73 from organic acids were observed. The degree of oxidation of the OA increased from the first stage to the last stage. Implications for ambient OA source-apportionment and residential PM emission characterization and control are discussed.

  4. APTI Course 427, Combustion Evaluation. Student Workbook.

    ERIC Educational Resources Information Center

    Beard, J. Taylor; And Others

    Presented are exercises intended to supplement course work in air pollution control, specifically as they relate to combustion. Chapters offered in this workbook include: (1) Combustion Calculations, (2) Combustion System Design Problems, (3) Emission Calculations I, (4) Emission Calculations II, (5) Afterburner Design Problems, and (6) Cumbustion…

  5. Microgravity

    NASA Image and Video Library

    1995-04-06

    An experiment vehicle plunges into the deceleration at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one-meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 3 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  6. Microgravity

    NASA Image and Video Library

    1995-04-06

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physcis, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 2 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  7. Microgravity

    NASA Image and Video Library

    1995-04-06

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 4 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  8. Microgravity

    NASA Image and Video Library

    1995-04-06

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No.1 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  9. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karmis, Michael; Luttrell, Gerald; Ripepi, Nino

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderlessmore » coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO x, CO 2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.« less

  10. Predictive Evaluations of Oxygen-Rich Hydrocarbon Combustion Gas-Centered Swirl Coaxial Injectors using a Flamelet-Based 3-D CFD Simulation Approach

    NASA Technical Reports Server (NTRS)

    Richardson, Brian R.; Braman, Kalem; West, Jeff

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has embarked upon a joint project with the Air Force to improve the state-of-the-art of space application combustion device design and operational understanding. One goal of the project is to design, build and hot-fire test a 40,000 pound-thrust Oxygen/Rocket Propellant-2 (RP-2) Oxygen-Rich staged engine at MSFC. The overall project goals afford the opportunity to test multiple different injector designs and experimentally evaluate the any effect on the engine performance and combustion dynamics. To maximize the available test resources and benefits, pre-test, combusting flow, Computational Fluid Dynamics (CFD) analysis was performed on the individual injectors to guide the design. The results of the CFD analysis were used to design the injectors for specific, targeted fluid dynamic features and the analysis results also provided some predictive input for acoustic and thermal analysis of the main Thrust Chamber Assembly (TCA). MSFC has developed and demonstrated the ability to utilize a computationally efficient, flamelet-based combustion model to guide the pre-test design of single-element Gas Centered Swirl Coaxial (GCSC) injectors. Previous, Oxygen/RP-2 simulation models utilizing the Loci-STREAM flow solver, were validated using single injector test data from the EC-1 Air Force test facility. The simulation effort herein is an extension of the validated, CFD driven, single-injector design approach applied to single injectors which will be part of a larger engine array. Time-accurate, Three-Dimensional, CFD simulations were performed for five different classes of injector geometries. Simulations were performed to guide the design of the injector to achieve a variety of intended performance goals. For example, two GCSC injectors were designed to achieve stable hydrodynamic behavior of the propellant circuits while providing the largest thermal margin possible within the design envelope. While another injector was designed to purposefully create a hydrodynamic instability in the fuel supply circuit as predicted by the CFD analysis. Future multi-injector analysis and testing will indicate what if any changes occur in the predicted behavior for the single-element injector when the same injector geometry is placed in a multi-element array.

  11. A Framework for Quantifying Measurement Uncertainties and Uncertainty Propagation in HCCI/LTGC Engine Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petitpas, Guillaume; McNenly, Matthew J.; Whitesides, Russell A.

    In this study, a framework for estimating experimental measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility is presented. Detailed uncertainty quantification is first carried out for the measurement of the in-cylinder pressure, whose variations during the cycle provide most of the information for performance evaluation. Standard uncertainties of other measured quantities, such as the engine geometry and speed, the air and fuel flow rate and the intake/exhaust dry molar fractions are also estimated. Propagating those uncertainties using a Monte Carlo simulation and Bayesian inference methods then allows for estimation of uncertainties of themore » mass-average temperature and composition at IVC and throughout the cycle; and also of the engine performances such as gross Integrated Mean Effective Pressure, Heat Release and Ringing Intensity. Throughout the analysis, nominal values for uncertainty inputs were taken from a well-characterized engine test facility. However, the analysis did not take into account the calibration practice of experiments run in that facility and the resulting uncertainty values are therefore not indicative of the expected accuracy of those experimental results. A future study will employ the methodology developed here to explore the effects of different calibration methods on the different uncertainty values in order to evaluate best practices for accurate engine measurements.« less

  12. A Framework for Quantifying Measurement Uncertainties and Uncertainty Propagation in HCCI/LTGC Engine Experiments

    DOE PAGES

    Petitpas, Guillaume; McNenly, Matthew J.; Whitesides, Russell A.

    2017-03-28

    In this study, a framework for estimating experimental measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility is presented. Detailed uncertainty quantification is first carried out for the measurement of the in-cylinder pressure, whose variations during the cycle provide most of the information for performance evaluation. Standard uncertainties of other measured quantities, such as the engine geometry and speed, the air and fuel flow rate and the intake/exhaust dry molar fractions are also estimated. Propagating those uncertainties using a Monte Carlo simulation and Bayesian inference methods then allows for estimation of uncertainties of themore » mass-average temperature and composition at IVC and throughout the cycle; and also of the engine performances such as gross Integrated Mean Effective Pressure, Heat Release and Ringing Intensity. Throughout the analysis, nominal values for uncertainty inputs were taken from a well-characterized engine test facility. However, the analysis did not take into account the calibration practice of experiments run in that facility and the resulting uncertainty values are therefore not indicative of the expected accuracy of those experimental results. A future study will employ the methodology developed here to explore the effects of different calibration methods on the different uncertainty values in order to evaluate best practices for accurate engine measurements.« less

  13. 40 CFR 62.14106 - Emission limits for municipal waste combustor fugitive ash emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the atmosphere from that affected facility visible emissions of combustion ash from an ash conveying... paragraph (a) of this section does cover visible emissions discharged to the atmosphere from buildings or...

  14. Use of an Expansion Tube to Examine Scramjet Combustion at Hypersonic Velocities

    NASA Technical Reports Server (NTRS)

    Rizkalla, Oussama; Bakos, Robert J.; Chinitz, Wallace; Pulsonetti, Maria V; Erdos, John I.

    1989-01-01

    Combustion testing at total enthalpy conditions corresponding to flight Math numbers in excess of 12 requires the use of impulse facilities. The expansion tube is the only operational facility of its size which can provide these conditions without excessive oxygen dissociation or driver gas contamination. Expansio tube operation is described herein and the operational parameters having the largest impact on its performance are determined. These are: driver-to-intermediate chamber pressure ratio, driver gas molecular weight and specific heat ratio, and driver gas temperature. Increases in the lase named parameter will markedly affect the test section static pressure. Preliminary calibration tests are discussed and test gas conditions which have been achieved are presented. Calculated and experimental test times are compared and the parameters affecting test time are discussed. The direction of future work using this important experimental tool is indicated.

  15. Use of an expansion tube to examine scramjet combustion at hypersonic velocities

    NASA Technical Reports Server (NTRS)

    Rizkalla, O.; Bakos, R. J.; Pulsonetti, M.; Chinitz, Wallace; Erdos, John I.

    1989-01-01

    Combustion testing at total enthalpy conditions corresponding to flight Mach numbers in excess of 12 requires the use of impulse facilities. The expansion tube is the only operational facility of its size which can provide these conditions without excessive oxygen dissociation or driver gas contamination. Expansion tube operation is described herein and the operational parameters having the largest impact on its performance are determined. These are: driver-to-intermediate chamber pressure ratio, driver gas molecular weight and specific heat ratio, and driver gas temperature. Increases in the last-named parameter will markedly affect the test section static pressure. Preliminary calibration tests are discussed and test gas conditions which have been achieved are presented. Calculated and experimental test times are compared and the parameters affecting test time are discussed. The direction of future work using this important experimental tool is indicated.

  16. Microgravity research in NASA ground-based facilities

    NASA Technical Reports Server (NTRS)

    Lekan, Jack

    1989-01-01

    An overview of reduced gravity research performed in NASA ground-based facilities sponsored by the Microgravity Science and Applications Program of the NASA Office of Space Science and Applications is presented. A brief description and summary of the operations and capabilities of each of these facilities along with an overview of the historical usage of them is included. The goals and program elements of the Microgravity Science and Applications programs are described and the specific programs that utilize the low gravity facilities are identified. Results from two particular investigations in combustion (flame spread over solid fuels) and fluid physics (gas-liquid flows at microgravity conditions) are presented.

  17. Critical evaluation of Jet-A spray combustion using propane chemical kinetics in gas turbine combustion simulated by KIVA-2

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Ying, S.-J.

    1990-01-01

    Jet-A spray combustion has been evaluated in gas turbine combustion with the use of propane chemical kinetics as the first approximation for the chemical reactions. Here, the numerical solutions are obtained by using the KIVA-2 computer code. The KIVA-2 code is the most developed of the available multidimensional combustion computer programs for application of the in-cylinder combustion dynamics of internal combustion engines. The released version of KIVA-2 assumes that 12 chemical species are present; the code uses an Arrhenius kinetic-controlled combustion model governed by a four-step global chemical reaction and six equilibrium reactions. Researchers efforts involve the addition of Jet-A thermophysical properties and the implementation of detailed reaction mechanisms for propane oxidation. Three different detailed reaction mechanism models are considered. The first model consists of 131 reactions and 45 species. This is considered as the full mechanism which is developed through the study of chemical kinetics of propane combustion in an enclosed chamber. The full mechanism is evaluated by comparing calculated ignition delay times with available shock tube data. However, these detailed reactions occupy too much computer memory and CPU time for the computation. Therefore, it only serves as a benchmark case by which to evaluate other simplified models. Two possible simplified models were tested in the existing computer code KIVA-2 for the same conditions as used with the full mechanism. One model is obtained through a sensitivity analysis using LSENS, the general kinetics and sensitivity analysis program code of D. A. Bittker and K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species. The other model is based on the work published by C. K. Westbrook and F. L. Dryer.

  18. Burbank works on the CIR in the U.S. Laboratory

    NASA Image and Video Library

    2012-04-10

    ISS030-E-234735 (10 April 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, works on the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station. Burbank disconnected the Moderate Temperature Loop (MTL), Vacuum Exhaust System (VES) and station nitrogen lines of the Optics Bench, translated and rotated it out of the way and replaced a Fluids and Combustion Facility / Diagnostic Control Module (FCF DCM) on its back. Afterwards, Burbank returned the Optics Bench to its nominal position and reconnected the MTL, VES and station nitrogen lines.

  19. General view looking down the approximate centerline of the expansion ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view looking down the approximate centerline of the expansion nozzle of a Space Shuttle Main Engine (SSME) mounted on a SSME Engine Handler in the SSME Processing Facility at Kennedy Space Center. This view shows the 1080 cooling tubes used to regeneratively cool the Nozzle and Combustion Chamber by circulating relatively low temperature fuel through the tubes and manifolds before being ignited in the Main Combustion Chamber. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Illinois Solid Waste Management Act, enacted in September 1986, established the State`s commitment to adress solid waste handling, based on a solid waste management hierarchy as folloew: (1) volume reduction at the source; (2) recycling and reuse; (3) combustion with energy recovery; (4) combustion for volume reduction; and (5) disposal in landfill facilities. Under this Act, the Illinois Environmental Protection Agency (IEPA) is required to publish an annual report `regarding the projected disposal capacity available for solid waste in sanitary landfills`. The information presented in this report reflects the reporting period January 1, 1994 - Decenber 31, 1994.

  1. NASA/General Electric broad-specification fuels combustion technology program - Phase I results and status

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Ekstedt, E. E.; Bahr, D. W.; Fear, J. S.

    1982-01-01

    A program is being conducted to develop the technology required to utilize fuels with broadened properties in aircraft gas turbine engines. The first phase of this program consisted of the experimental evaluation of three different combustor concepts to determine their potential for meeting several specific emissions and performance goals, when operated on broadened property fuels. The three concepts were a single annular combustor; a double annular combustor; and a short single annular combustor with variable geometry. All of these concepts were sized for the General Electric CF6-80 engine. A total of 24 different configurations of these concepts were evaluated in a high pressure test facility, using four test fuels having hydrogen contents between 11.8 and 14%. Fuel effects on combustor performance, durability and emissions, and combustor design features to offset these effects were demonstrated.

  2. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    NASA Technical Reports Server (NTRS)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  3. Dynamics of Water Absorption and Evaporation During Methanol Droplet Combustion in Microgravity

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Dietrich, Daniel L.; Nayagam, Vedha; Williams, Forman A.

    2012-01-01

    The combustion of methanol droplets is profoundly influenced by the absorption and evaporation of water, generated in the gas phase as a part of the combustion products. Initially there is a water-absorption period of combustion during which the latent heat of condensation of water vapor, released into the droplet, enhances its burning rate, whereas later there is a water-evaporation period, during which the water vapor reduces the flame temperature suffciently to extinguish the flame. Recent methanol droplet-combustion experiments in ambient environments diluted with carbon dioxide, conducted in the Combustion Integrated Rack on the International Space Station (ISS), as a part of the FLEX project, provided a method to delineate the water-absorption period from the water-evaporation period using video images of flame intensity. These were obtained using an ultra-violet camera that captures the OH* radical emission at 310 nm wavelength and a color camera that captures visible flame emission. These results are compared with results of ground-based tests in the Zero Gravity Facility at the NASA Glenn Research Center which employed smaller droplets in argon-diluted environments. A simplified theoretical model developed earlier correlates the transition time at which water absorption ends and evaporation starts. The model results are shown to agree reasonably well with experiment.

  4. Simulation of Combustion Systems with Realistic g-jitter

    NASA Technical Reports Server (NTRS)

    Mell, William E.; McGrattan, Kevin B.; Baum, Howard R.

    2003-01-01

    In this project a transient, fully three-dimensional computer simulation code was developed to simulate the effects of realistic g-jitter on a number of combustion systems. The simulation code is capable of simulating flame spread on a solid and nonpremixed or premixed gaseous combustion in nonturbulent flow with simple combustion models. Simple combustion models were used to preserve computational efficiency since this is meant to be an engineering code. Also, the use of sophisticated turbulence models was not pursued (a simple Smagorinsky type model can be implemented if deemed appropriate) because if flow velocities are large enough for turbulence to develop in a reduced gravity combustion scenario it is unlikely that g-jitter disturbances (in NASA's reduced gravity facilities) will play an important role in the flame dynamics. Acceleration disturbances of realistic orientation, magnitude, and time dependence can be easily included in the simulation. The simulation algorithm was based on techniques used in an existing large eddy simulation code which has successfully simulated fire dynamics in complex domains. A series of simulations with measured and predicted acceleration disturbances on the International Space Station (ISS) are presented. The results of this series of simulations suggested a passive isolation system and appropriate scheduling of crew activity would provide a sufficiently "quiet" acceleration environment for spherical diffusion flames.

  5. The NASA Energy Conservation Program

    NASA Technical Reports Server (NTRS)

    Gaffney, G. P.

    1977-01-01

    Large energy-intensive research and test equipment at NASA installations is identified, and methods for reducing energy consumption outlined. However, some of the research facilities are involved in developing more efficient, fuel-conserving aircraft, and tradeoffs between immediate and long-term conservation may be necessary. Major programs for conservation include: computer-based systems to automatically monitor and control utility consumption; a steam-producing solid waste incinerator; and a computer-based cost analysis technique to engineer more efficient heating and cooling of buildings. Alternate energy sources in operation or under evaluation include: solar collectors; electric vehicles; and ultrasonically emulsified fuel to attain higher combustion efficiency. Management support, cooperative participation by employees, and effective reporting systems for conservation programs, are also discussed.

  6. Elemental composition of airborne particulates and source identification - An extensive one year survey. [in Cleveland, OH

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.

    1976-01-01

    Concentrations of 60 chemical elements in the airborne particulate matter were measured at 16 sites in Cleveland, OH over a 1 year period during 1971 and 1972 (45 to 50 sampling days). Analytical methods used included instrumental neutron activation, emission spectroscopy, and combustion techniques. Uncertainties in the concentrations associated with the sampling procedures, the analytical methods, the use of several analytical facilities, and samples with concentrations below the detection limits are evaluated in detail. The data are discussed in relation to other studies and source origins. The trace constituent concentrations as a function of wind direction are used to suggest a practical method for air pollution source identification.

  7. Spaceflight Safety on the North Coast of America

    NASA Technical Reports Server (NTRS)

    Ciancone, Michael L.; Havenhill, Maria T.; Terlep, Judith A.

    1996-01-01

    Spaceflight Safety (SFS) engineers at NASA Lewis Research Center (LeRC) are responsible for evaluating the microgravity fluids and combustion experiments, payloads and facilities developed at NASA LeRC which are manifested for spaceflight on the Space Shuttle, the Russian space station Mir, and/or the International Space Station (ISS). An ongoing activity at NASA LeRC is the comprehensive training of its SFS engineers through the creation and use of safety tools and processes. Teams of SFS engineers worked on the development of an Internet website (containing a spaceflight safety knowledge database and electronic templates of safety products) and the establishment of a technical peer review process (known as the Safety Assurance for Lewis Spaceflight Activities (SALSA) review).

  8. High-Pressure Gaseous Burner (HPGB) Facility Completed for Quantitative Laser Diagnostics Calibration

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2002-01-01

    A gas-fueled high-pressure combustion facility with optical access, which was developed over the last 2 years, has just been completed. The High Pressure Gaseous Burner (HPGB) rig at the NASA Glenn Research Center can operate at sustained pressures up to 60 atm with a variety of gaseous fuels and liquid jet fuel. The facility is unique as it is the only continuous-flow, hydrogen-capable, 60-atm rig in the world with optical access. It will provide researchers with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow's advanced aircraft engines. The facility provides optical access to the flame zone, enabling the calibration of nonintrusive optical diagnostics to measure chemical species and temperature. The data from the HPGB rig enables the validation of numerical codes that simulate gas turbine combustors, such as the National Combustor Code (NCC). The validation of such numerical codes is often best achieved with nonintrusive optical diagnostic techniques that meet these goals: information-rich (multispecies) and quantitative while providing good spatial and time resolution. Achieving these goals is a challenge for most nonintrusive optical diagnostic techniques. Raman scattering is a technique that meets these challenges. Raman scattering occurs when intense laser light interacts with molecules to radiate light at a shifted wavelength (known as the Raman shift). This shift in wavelength is unique to each chemical species and provides a "fingerprint" of the different species present. The facility will first be used to gather a comprehensive data base of laser Raman spectra at high pressures. These calibration data will then be used to quantify future laser Raman measurements of chemical species concentration and temperature in this facility and other facilities that use Raman scattering.

  9. Light Microscopy Module Imaging Tested and Demonstrated

    NASA Technical Reports Server (NTRS)

    Gati, Frank

    2004-01-01

    The Fluids Integrated Rack (FIR), a facility-class payload, and the Light Microscopy Module (LMM), a subrack payload, are integrated research facilities that will fly in the U.S. Laboratory module, Destiny, aboard the International Space Station. Both facilities are being engineered, designed, and developed at the NASA Glenn Research Center by Northrop Grumman Information Technology. The FIR is a modular, multiuser scientific research facility that is one of two racks that make up the Fluids and Combustion Facility (the other being the Combustion Integrated Rack). The FIR has a large volume dedicated for experimental hardware; easily reconfigurable diagnostics, power, and data systems that allow for unique experiment configurations; and customizable software. The FIR will also provide imagers, light sources, power management and control, command and data handling for facility and experiment hardware, and data processing and storage. The first payload in the FIR will be the LMM. The LMM integrated with the FIR is a remotely controllable, automated, on-orbit microscope subrack facility, with key diagnostic capabilities for meeting science requirements--including video microscopy to observe microscopic phenonema and dynamic interactions, interferometry to make thin-film measurements with nanometer resolution, laser tweezers to manipulate micrometer-sized particles, confocal microscopy to provide enhanced three-dimensional visualization of structures, and spectrophotometry to measure the photonic properties of materials. Vibration disturbances were identified early in the LMM development phase as a high risk for contaminating the science microgravity environment. An integrated FIR-LMM test was conducted in Glenn's Acoustics Test Laboratory to assess mechanical sources of vibration and their impact to microscopic imaging. The primary purpose of the test was to characterize the LMM response at the sample location, the x-y stage within the microscope, to vibration emissions from the FIR and LMM support structures.

  10. Methodology for Evaluating Encapsulated Beneficial Uses of Coal Combustion Residuals

    EPA Pesticide Factsheets

    The primary purpose of this document is to present an evaluation methodology developed by the EPA for making determinations about environmental releases from encapsulated products containing coal combustion residuals.

  11. 40 CFR 60.54b - Standards for municipal waste combustor operator training and certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... owner or operator of an affected facility shall develop and update on a yearly basis a site-specific... under this subpart; (2) A description of basic combustion theory applicable to a municipal waste...

  12. 40 CFR 62.14105 - Requirements for municipal waste combustor operator training and certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operator of an affected facility must develop and update on a yearly basis a site-specific operating manual... subpart; (2) A description of basic combustion theory applicable to a municipal waste combustor unit; (3...

  13. Determining the Effects of Ethanol on Pump Station Facilities

    DOT National Transportation Integrated Search

    2010-04-23

    Ethanol has been used for the last several years as an environmentally friendly alternative to methyl tertbutyl ether (MTBE), which is an oxygenate additive to gasoline, to increase octane levels, and to facilitate the combustion process. However, th...

  14. 30 CFR 57.6101 - Areas around explosive material storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., dry grass, and trees for 25 feet in all directions, except that live trees 10 feet or taller need not be removed. (b) Other combustibles shall not be stored or allowed to accumulate within 50 feet of...

  15. 30 CFR 57.6101 - Areas around explosive material storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., dry grass, and trees for 25 feet in all directions, except that live trees 10 feet or taller need not be removed. (b) Other combustibles shall not be stored or allowed to accumulate within 50 feet of...

  16. 30 CFR 57.6101 - Areas around explosive material storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., dry grass, and trees for 25 feet in all directions, except that live trees 10 feet or taller need not be removed. (b) Other combustibles shall not be stored or allowed to accumulate within 50 feet of...

  17. 30 CFR 57.6101 - Areas around explosive material storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., dry grass, and trees for 25 feet in all directions, except that live trees 10 feet or taller need not be removed. (b) Other combustibles shall not be stored or allowed to accumulate within 50 feet of...

  18. 30 CFR 57.6101 - Areas around explosive material storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., dry grass, and trees for 25 feet in all directions, except that live trees 10 feet or taller need not be removed. (b) Other combustibles shall not be stored or allowed to accumulate within 50 feet of...

  19. Measurement of gas and aerosol agricultural emissions

    USDA-ARS?s Scientific Manuscript database

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Agriculture impacts can include primary dust emission, on-facility combustion from vehicles or seasonal field burning, and gaseous emissions from waste...

  20. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axelbaum, Richard; Kumfer, Benjamin; Gopan, Akshay

    The immediate need for a high efficiency, low cost carbon capture process has prompted the recent development of pressurized oxy-combustion. With a greater combustion pressure the dew point of the flue gas is increased, allowing for effective integration of the latent heat of flue gas moisture into the Rankine cycle. This increases the net plant efficiency and reduces costs. A novel, transformational process, named Staged, Pressurized Oxy-Combustion (SPOC), achieves additional step changes in efficiency and cost reduction by significantly reducing the recycle of flue gas. The research and development activities conducted under Phases I and II of this project (FE0009702)more » include: SPOC power plant cost and performance modeling, CFD-assisted design of pressurized SPOC boilers, theoretical analysis of radiant heat transfer and ash deposition, boiler materials corrosion testing, construction of a 100 kWth POC test facility, and experimental testing. The results of this project have advanced the technology readiness level (TRL) of the SPOC technology from 1 to 5.« less

  1. Alternative energy balances for Bulgaria to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Christov, Christo

    1996-01-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  2. Energy Efficient Engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.

  3. Korean Waste Management Law, Presidential Decree Number 13480, and Prime Minister Order Number 397

    DTIC Science & Technology

    1994-06-01

    radioactive waste or substances that are contaminated by radioactivity and medical waste (which is regulated by Medical Law), wastewater (which is regulated...be exceeded when the domestic waste is disposed a. In case where water polutant , pursuant to Table 1 of toe Enforcement Regulaton in the Water...combustion burner and extra burner * Normal operation of safety facilities • Normal operation of preventive facilities * Density of polutant out of

  4. Microgravity

    NASA Image and Video Library

    1999-01-01

    Line drawing depicts the location of one of three racks that will make up the Materials Science Research Facility in the U.S. Destiny laboratory module to be attached to the International Space Station (ISS). Other positions will be occupied by a variety of racks supporting research in combustion, fluids, biotechnology, and human physiology, and racks to support lab and station opertions. The Materials Science Research Facility is managed by NASA's Marshall Space Flight Center. Photo credit: NASA/Marshall Space Flight Center

  5. Glovebox in orbit - ESA/NASA Glovebox: A versatile USML-1 experiment facility

    NASA Technical Reports Server (NTRS)

    Sutherland, Ian A.; Wolff, Heinz; Helmke, Hartmut; Riesselmann, Werner; Nagy, Mike; Voeten, Eduard; Chassay, Roger

    1993-01-01

    The general purpose experiment facility flown aboard Space Shuttle USML-1 and known as the Glovebox is briefly discussed. Glovebox enabled scientists to perform materials science, fluids, and combustion experiments safely without contaminating the closed environment of Spacelab and endangering the crew. The evolution of Glovebox, its special features, and its hardware are described. The Glovebox experiments are summarized along with postmission and crew debriefing. Future uses of Glovebox are discussed.

  6. High Speed Optical Diagnostics in a High Pressure, GOx/RP 2 Combustor

    DTIC Science & Technology

    2017-07-10

    Similarly, the German Aerospace Center (DLR) at Lampoldshausen conducted research on LOX/LH2 propellants in the Combustion Chamber C experimental ...facility. This single element, optically accessible liquid rocket engine test article was designed to operate up to 1,450 psi, however most research was...significant result of this work was the acquisition of data at pressures up to 2400 psi. T 3 II. Experimental Facility This testing was

  7. Biomedically relevant chemical and physical properties of coal combustion products.

    PubMed Central

    Fisher, G L

    1983-01-01

    The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824

  8. A numerical study of mixing and combustion in hypervelocity flows through a scramjet combustor model

    NASA Technical Reports Server (NTRS)

    Krishamurthy, Ramesh

    1993-01-01

    Interest in high speed, air-breathing propulsion systems such as scramjets has revived in recent years fueled to a large extent by the National Aerospace Plane (NASP) program. These vehicles are expected to fly trans-atmospheric and as a consequence, the Mach number level within the engine/combustor would be rather high (M greater than 5). Ground based testing of such scramjet engines requires a facility that can not only achieve the right Mach number, but also have the proper pressures and temperatures to simulate the combustion processes. At present, only pulse type facilities can provide such high enthalpy flows. The newest of these is the free-piston shock tunnel, T5 located at GALCIT. Recently, a generic combustor model was tested in T5, and the experimental data from that study is analyzed in the present report. The available experimental data from T5 are essentially the static pressures on the injection wall and the one opposite to it. Thus, a principal aim of the present study was to validate the available experimental data by using a proven CFD tool and then investigate the performance characteristics of the combustor model, such as, the mixing efficiency and combustion efficiency. For this purpose, in this study, the code GASP has been used.

  9. A numerical study of mixing and combustion in hypervelocity flows through a scramjet combustor model

    NASA Astrophysics Data System (ADS)

    Krishamurthy, Ramesh

    1993-12-01

    Interest in high speed, air-breathing propulsion systems such as scramjets has revived in recent years fueled to a large extent by the National Aerospace Plane (NASP) program. These vehicles are expected to fly trans-atmospheric and as a consequence, the Mach number level within the engine/combustor would be rather high (M greater than 5). Ground based testing of such scramjet engines requires a facility that can not only achieve the right Mach number, but also have the proper pressures and temperatures to simulate the combustion processes. At present, only pulse type facilities can provide such high enthalpy flows. The newest of these is the free-piston shock tunnel, T5 located at GALCIT. Recently, a generic combustor model was tested in T5, and the experimental data from that study is analyzed in the present report. The available experimental data from T5 are essentially the static pressures on the injection wall and the one opposite to it. Thus, a principal aim of the present study was to validate the available experimental data by using a proven CFD tool and then investigate the performance characteristics of the combustor model, such as, the mixing efficiency and combustion efficiency. For this purpose, in this study, the code GASP has been used.

  10. Droplet Combustion in a Slow Convective Flow

    NASA Technical Reports Server (NTRS)

    Nayagam, V.; Hicks, M. C.; Kaib, N.; Ackerman, M.; Haggard, J. B., Jr.; Williams, F. A.

    2001-01-01

    The objective of the present flight experiment definition study is to investigate the effects of slow forced convective flows on the dynamics of isolated single droplet combustion and is designed to complement the quiescent, microgravity droplet combustion experiments (DCE-1 and DCE-2) of Williams and Dryer. The fuels selected for this study are the same as those of DCE, namely, a sooting alkane fuel (heptane) and a non-sooting alcohol (methanol), and imposed flow rates are chosen between 0 and 20 cm/s with varying ambient oxygen concentrations and pressures. Within this velocity range, both accelerating and decelerating flow effects will also be investigated. Two different approaches to generate the forced flow are currently under development in ground-based facilities; the first is a flow tunnel concept where the forced flow is imposed against a stationary droplet, and in the second a tethered droplet is translated at a specified velocity in a quiescent ambient medium. Depending upon the engineering feasibility a selection will be made between these two approaches so that the experiment can be accommodated in the Multiple Droplet Combustion Apparatus (MDCA) currently being designed for the International Space Station. Recently, we have finished designing and fabricating the experimental rigs using both the above mentioned concepts. The flow tunnel concept is implemented in a 2.2 second drop tower rig. Preliminary experiments have been carried out using heptane and methanol in air at atmospheric pressure. The translating droplet apparatus is scheduled to be tested in the 5 second drop facility in the near future. This report presents some of the experimental results obtained for heptane.

  11. Size distribution and concentration of soot generated in oil and gas-fired residential boilers under different combustion conditions

    NASA Astrophysics Data System (ADS)

    Jiménez, Santiago; Barroso, Jorge; Pina, Antonio; Ballester, Javier

    2016-05-01

    In spite of the relevance of residential heating burners in the global emission of soot particles to the atmosphere, relatively little information on their properties (concentration, size distribution) is available in the literature, and even less regarding the dependence of those properties on the operating conditions. Instead, the usual procedure to characterize those emissions is to measure the smoke opacity by several methods, among which the blackening of a paper after filtering a fixed amount of gas (Bacharach test) is predominant. In this work, the size distributions of the particles generated in the combustion of a variety of gaseous and liquid fuels in a laboratory facility equipped with commercial burners have been measured with a size classifier coupled to a particle counter in a broad range of operating conditions (air excesses), with simultaneous determination of the Bacharach index. The shape and evolution of the distribution with progressively smaller oxygen concentrations depends essentially on the state of the fuel: whereas the combustion of the gases results in monomodal distributions that 'shift' towards larger diameters, in the case of the gas-oils an ultrafine mode is always observed, and a secondary mode of coarse particle grows in relevance. In both cases, there is a strong, exponential correlation between the total mass concentration and the Bacharach opacity index, quite similar for both groups of fuels. The empirical expressions proposed may allow other researchers to at least estimate the emissions of numerous combustion facilities routinely characterized by their smoke opacities.

  12. Detailed model for practical pulverized coal furnaces and gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.J.; Smoot, L.D.

    1989-08-01

    This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report:more » (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.« less

  13. Characterization of flame stabilization technologies

    NASA Astrophysics Data System (ADS)

    Bush, Scott Matthew

    To experimentally explore and characterize a V-gutter stabilized flame, this research study developed a Combustion Wind Tunnel Test Facility capable of effectively simulating the freestream Mach #'s and temperatures achieved within the back end of a gas turbine jet engine. After validating this facility, it was then used to gain a better understanding of the flow dynamics and combustion dynamics associated with the V-gutter configuration. The motivation for studying the V-gutter stabilized flame is due to the concern in industry today with combustion instabilities that are encountered in military aircraft. To gain a better understanding of the complex flow field associated with the V-gutter stabilized flame, this research study utilized Particle Image Velocimetry to capture both non-reacting and reacting instantaneous and mean flow structures formed in the wake region of the three dimensional V-gutter bluff body. The results of this study showed significant differences between the non-reacting and reacting flow fields. The non-reacting case resulted in asymmetric shedding of large scale vortices from the V-gutter edges while the reacting case resulted in a combination of both symmetric and asymmetric shedding of smaller scale vortical structures. A comparison of the mean velocity components shows that the reacting case results in a larger region of reversed flow, experiences an acceleration of the freestream flow due to combustion, and results in a slower dissipation of the wake region. Simultaneous dynamic pressure and CH* chemiluminescence measurements were also recorded to determine the coupling between the flow dynamics and combustion dynamics. The results of this study showed that only low frequency combustion instabilities were encountered at various conditions within the envelope of stable operation because of the interaction between longitudinal acoustic waves and unsteady heat release. When approaching rich blow out, rms pressure amplitudes were as high as 2 psi, and approaching lean blow out lead to rms pressure amplitudes around 0.2 psi. These studies also showed the instability frequency increasing with increases in either inlet temperature or inlet Mach #. Additionally, increasing the inlet velocity or the DeZubay parameter reduced the stability limits of operation for the V-gutter stabilized flame.

  14. Thermal treatment of medical waste in a rotary kiln.

    PubMed

    Bujak, J

    2015-10-01

    This paper presents the results of a study of an experimental system with thermal treatment (incineration) of medical waste conducted at a large complex of hospital facilities. The studies were conducted for a period of one month. The processing system was analysed in terms of the energy, environmental and economic aspects. A rotary combustion chamber was designed and built with the strictly assumed length to inner diameter ratio of 4:1. In terms of energy, the temperature distribution was tested in the rotary kiln, secondary combustion (afterburner) chamber and heat recovery system. Calorific value of medical waste was 25.0 MJ/kg and the thermal efficiency of the entire system equalled 66.8%. Next, measurements of the pollutant emissions into the atmosphere were performed. Due to the nature of the disposed waste, particular attention was paid to the one-minute average values of carbon oxide and volatile organic compounds as well as hydrochloride, hydrogen fluoride, sulphur dioxide and total dust. Maximum content of non-oxidized organic compounds in slag and bottom ash were also verified during the analyses. The best rotary speed for the combustion chamber was selected to obtain proper afterburning of the bottom slag. Total organic carbon content was 2.9%. The test results were used to determine the basic economic indicators of the test system for evaluating the profitability of its construction. Simple payback time (SPB) for capital expenditures on the implementation of the project was 4 years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. On-line CO, CO2 emissions evaluation and (benzene, toluene, xylene) determination from experimental burn of tropical biomass.

    PubMed

    Tawfiq, Mohammed F; Aroua, Mohamed Kheireddine; Sulaiman, Nik Meriam Nik

    2015-07-01

    Atmospheric pollution and global warming issues are increasingly becoming major environmental concerns. Fire is one of the significant sources of pollutant gases released into the atmosphere; and tropical biomass fires, which are of particular interest in this study, contribute greatly to the global budget of CO and CO2. This pioneer research simulates the natural biomass burning strategy in Malaysia using an experimental burning facility. The investigation was conducted on the emissions (CO2, CO, and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)) from ten tropical biomass species. The selected species represent the major tropical forests that are frequently subjected to dry forest fire incidents. An experimental burning facility equipped with an on-line gas analyzer was employed to determine the burning emissions. The major emission factors were found to vary among the species, and the specific results were as follows. The moisture content of a particular biomass greatly influenced its emission pattern. The smoke analysis results revealed the existence of BTEX, which were sampled from a combustion chamber by enrichment traps aided with a universal gas sampler. The BTEX were determined by organic solvent extraction followed by GC/MS quantification, the results of which suggested that the biomass burning emission factor contributed significant amounts of benzene, toluene, and m,p-xylene. The modified combustion efficiency (MCE) changed in response to changes in the sample moisture content. Therefore, this study concluded that the emission of some pollutants mainly depends on the burning phase and sample moisture content of the biomass. Copyright © 2015. Published by Elsevier B.V.

  16. Direct Numerical Simulation of Turbulent Multi-Stage Autoignition Relevant to Engine Conditions

    NASA Astrophysics Data System (ADS)

    Chen, Jacqueline

    2017-11-01

    Due to the unrivaled energy density of liquid hydrocarbon fuels combustion will continue to provide over 80% of the world's energy for at least the next fifty years. Hence, combustion needs to be understood and controlled to optimize combustion systems for efficiency to prevent further climate change, to reduce emissions and to ensure U.S. energy security. In this talk I will discuss recent progress in direct numerical simulations of turbulent combustion focused on providing fundamental insights into key `turbulence-chemistry' interactions that underpin the development of next generation fuel efficient, fuel flexible engines for transportation and power generation. Petascale direct numerical simulation (DNS) of multi-stage mixed-mode turbulent combustion in canonical configurations have elucidated key physics that govern autoignition and flame stabilization in engines and provide benchmark data for combustion model development under the conditions of advanced engines which operate near combustion limits to maximize efficiency and minimize emissions. Mixed-mode combustion refers to premixed or partially-premixed flames propagating into stratified autoignitive mixtures. Multi-stage ignition refers to hydrocarbon fuels with negative temperature coefficient behavior that undergo sequential low- and high-temperature autoignition. Key issues that will be discussed include: 1) the role of mixing in shear driven turbulence on the dynamics of multi-stage autoignition and cool flame propagation in diesel environments, 2) the role of thermal and composition stratification on the evolution of the balance of mixed combustion modes - flame propagation versus spontaneous ignition - which determines the overall combustion rate in autoignition processes, and 3) the role of cool flames on lifted flame stabilization. Finally prospects for DNS of turbulent combustion at the exascale will be discussed in the context of anticipated heterogeneous machine architectures. sponsored by DOE Office of Basic Energy Sciences and computing resources provided by the Oakridge Leadership Computing Facility through the DOE INCITE Program.

  17. Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation.

    PubMed

    Clack, Herek L

    2009-03-01

    Efforts to reduce anthropogenic mercury emissions worldwide have recently focused on a variety of sources, including mercury emitted during coal combustion. Toward that end, much research has been ongoing seeking to develop new processes for reducing coal combustion mercury emissions. Among air pollution control processes that can be applied to coal-fired boilers, electrostatic precipitators (ESPs) are by far the most common, both on a global scale and among the principal countries of India, China, and the U.S. that burn coal for electric power generation. A previously reported theoretical model of in-flight mercury capture within ESPs is herein evaluated against data from a number of full-scale tests of activated carbon injection for mercury emissions control. By using the established particle size distribution of the activated carbon and actual or estimated values of its equilibrium mercury adsorption capacity, the incremental reduction in mercury concentration across each ESP can be predicted and compared to experimental results. Because the model does not incorporate kinetics associated with gas-phase mercury transformation or surface adsorption, the model predictions representthe mass-transfer-limited performance. Comparing field data to model results reveals many facilities performing at or near the predicted mass-transfer-limited maximum, particularly at low rates of sorbent injection. Where agreement is poor between field data and model predictions, additional chemical or physical phenomena may be responsible for reducing mercury removal efficiencies.

  18. Design assessment of a 150 kWt CFBC Test Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batu, A.; Selcuk, N.; Kulah, G.

    2010-04-15

    For clean and efficient energy generation from coal, the most suitable technology known to date is 'Fluidized Bed Combustion' technology. Applications of circulating fluidized bed (CFB) combustion technology have been steadily increasing in both capacity and number over the past decade. Designs of these units have been based on the combustion tests carried out in pilot scale facilities to determine the combustion and desulfurization characteristics of coal and limestone reserves in CFB conditions. Similarly, utilization of Turkish lignites in CFB boilers necessitates adaptation of CFB combustion technology to these resources. However, the design of these test units are not basedmore » on firing coals with high ash, volatile matter and sulfur contents like Turkish lignites. For this purpose, a 150 kWt CFB combustor test unit is designed and constructed in Chemical Engineering Department of Middle East Technical University, based on the extensive experience acquired at the existing 0.3 MWt Bubbling Atmospheric Fluidized Bed Combustor (AFBC) Test Rig. Following the commissioning tests, a combustion test is carried out for investigation of combustion characteristics of Can lignite in CFB conditions and for assessment of the design of test unit. Comparison of the design outputs with experimental results reveals that most of the predictions and assumptions have acceptable agreement with the operating conditions. In conclusion, the performance of 150 kWt CFBC Test Unit is found to be satisfactory to be utilized for the long term research studies on combustion and desulfurization characteristics of indigenous lignite reserves in circulating fluidized bed combustors. (author)« less

  19. Numerical study of contaminant effects on combustion of hydrogen, ethane, and methane in air

    NASA Technical Reports Server (NTRS)

    Lai, H. T.; Thomas, S. R.

    1995-01-01

    A numerical study was performed to assess the effects of vitiated air on the chemical kinetics of hydrogen, ethane, and methane combustion with air. A series of calculations in static reacting systems was performed, where the initial temperature was specified and reactions occurred at constant pressure. Three different types of test flow contaminants were considered: NO, H2O, and a combination of H2O and CO2. These contaminants are present in the test flows of facilities used for hypersonic propulsion testing. The results were computed using a detailed reaction mechanism and are presented in terms of ignition and reaction times. Calculations were made for a wide range of contaminant concentrations, temperatures and pressures. The results indicate a pronounced kinetic effect over a range of temperatures, especially with NO contamination and, to a lesser degree, with H2O contamination. In all cases studied, CO2 remained kinetically inert, but had a thermodynamically effect on results by acting as a third body. The largest effect is observed with combustion using hydrogen fuel, less effect is seen with combustion of ethane, and little effect of contaminants is shown with methane combustion.

  20. Effects of Gravity on Ignition and Combustion Characteristics of Externally Heated Polyethylene Film

    NASA Astrophysics Data System (ADS)

    Ikeda, Mitsumasa

    2018-04-01

    The objective of this research is to investigate the effects of gravity on the ignition and the combustion characteristics of the Polyethylene (PE) film by outer heating. Combustion experiments of PE film were carried out in a normal gravity field and the microgravity field. In the microgravity experiments, it was carried out in 50 m-class drop facility. Here it can be realized 10- 4G microgravity field in about 2.5-3.0 second. The PE film is heated by the inserted high-temperature chamber. In the experiments, the PE was used film type. The chamber temperature was fixed at 900 K and 1000 K. In the case of microgravity field, the ignition delay period has become about 50 percent shorter than that in the case of the normal gravitational field. In the normal gravity field, since the PE surface layer is cooled by natural convection, the ignition delay period is considered to be longer than that in the microgravity field. The combustion time in the normal gravity was about 0.8 sec. In the microgravity field, the combustion time was more than 2 sec, and it could not be measured during the free fall period.

  1. Shock tunnel studies of scramjet phenomena, supplement 6

    NASA Technical Reports Server (NTRS)

    Wendt, M.; Nettleton, M.; Morgan, R. G.; Skinner, K.; Casey, R.; Stalker, R.; Brescianini, C.; Paull, A.; Allen, G.; Smart, M.

    1993-01-01

    Reports by the staff of the University of Queensland on various research studies related to the advancement of scramjet technology are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation.

  2. A study of the current group evaporation/combustion theories

    NASA Technical Reports Server (NTRS)

    Shen, Hayley H.

    1990-01-01

    Liquid fuel combustion can be greatly enhanced by disintegrating the liquid fuel into droplets, an effect achieved by various configurations. A number of experiments carried out in the seventies showed that combustion of droplet arrays and sprays do not form individual flames. Moreover, the rate of burning in spray combustion greatly deviates from that of the single combustion rate. Such observations naturally challenge its applicability to spray combustion. A number of mathematical models were developed to evaluate 'group combustion' and the related 'group evaporation' phenomena. This study investigates the similarity and difference of these models and their applicability to spray combustion. Future work that should be carried out in this area is indicated.

  3. Environmental review of Potomac Electric Power Company's proposed Chalk Point combustion turbine facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mountain, D.; Peters, N.; Rafalko, L.

    1990-06-01

    The Potomac Electric Power Company (PEPCO) has submitted an application to the Maryland Public Service Commission (PSC) for a license to build four combustion turbines on the property of its Chalk Point Generating Station. Environmental impacts of the proposed project are expected to be minimal. The facility will be small relative to the existing Chalk Point station; further, the large size of the overall PEPCO property and the rural character of the vicinity will serve to buffer the effects of the facility. The report discusses PEPCO's requested appropriations for ground water to meet the water needs of the proposed plant,more » and recommends that limitations lower than those requested by the utility be placed on ground water withdrawals. It is recommended that PEPCO be required to create a 23-acre tree preservation zone, or alternatively undertake the reforestation of 23 acres of currently unforested land in the vicinity of the site. PEPCO should also be required to monitor ambient noise levels at the property boundary after construction of the new units is completed, and to coordinate efforts with Prince George's County to alleviate any traffic congestion that may result from construction activities at the plant site.« less

  4. Dual-Pump CARS Temperature and Species Concentration Measurements in a Supersonic Combustor

    NASA Technical Reports Server (NTRS)

    O'Byrne, S.; Danehy, P. M.; Tedder, S. A.; Cutler, A. D.

    2007-01-01

    The dual-pump coherent anti-Stokes Raman scattering (CARS) method was used to measure temperature and the mole fractions of N2 and O2 in a supersonic combustor. Experiments were conducted in NASA Langley Research Center s Direct Connect Supersonic Combustion Test Facility. In this facility, H2 and oxygen-enriched air burn to increase the enthalpy of the simulated air test gas. This gas is expanded through a Mach 2 nozzle and into a combustor model consisting of a short constant-area section followed by a small rearward-facing step and another constant-area section. At the end of this straight section, H2 fuel is injected at Mach 2 and at a 30 angle with respect to the freestream. One wall of the duct then expands at a 3 angle for over 1 meter. The ensuing combustion is probed optically through ports in the side of the combustor. Dual-pump CARS measurements were performed at the facility nozzle exit and at four planes downstream of fuel injection. Maps are presented of the mean temperature, as well as N2 and O2 mean mole fraction fields. Correlations between fluctuations of the different measured parameters are also presented.

  5. Shock Tunnel Studies of Scramjet Phenomena 1993

    NASA Technical Reports Server (NTRS)

    Stalker, R. J.; Bakos, R. J.; Morgan, R. G.; Porter, L.; Mee, D.; Paull, A.; Tuttle, S.; Simmons, J. M.; Wendt, M.; Skinner, K.

    1995-01-01

    Reports by the staff of the University of Queensland on various research studies related to the advancement of scramjet technology and hypervelocity pulse test facilities are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation. This research activity is Supplement 10 under NASA Grant NAGw-674.

  6. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 3: Assessment Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, C.; Hughes, E. D.; Niederauer, G. F.

    1998-10-01

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best- estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the wallsmore » and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK« less

  7. KENNEDY SPACE CENTER, FLA. - The Microgravity Science Laboratory-1 (MSL-1) Spacelab module is installed into the payload bay of the Space Shuttle Orbiter Columbia in Orbiter Processing Facility 1. The Spacelab long crew transfer tunnel that leads from the orbiter's crew airlock to the module is also aboard, as well as the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia's payload bay. During the scheduled 16-day STS-83 mission, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments.

    NASA Image and Video Library

    1997-02-13

    KENNEDY SPACE CENTER, FLA. - The Microgravity Science Laboratory-1 (MSL-1) Spacelab module is installed into the payload bay of the Space Shuttle Orbiter Columbia in Orbiter Processing Facility 1. The Spacelab long crew transfer tunnel that leads from the orbiter's crew airlock to the module is also aboard, as well as the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia's payload bay. During the scheduled 16-day STS-83 mission, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments.

  8. Microgravity combustion science: Progress, plans, and opportunities

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An earlier overview is updated which introduced the promise of microgravity combustion research and provided a brief survey of results and then current research participants, the available set of reduced gravity facilities, and plans for experimental capabilities in the space station era. Since that time, several research studies have been completed in drop towers and aircraft, and the first space based combustion experiments since Skylab have been conducted on the Shuttle. The microgravity environment enables a new range of experiments to be performed since buoyancy induced flows are nearly eliminated, normally obscured forces and flows may be isolated, gravitational settling or sedimentation is nearly eliminated, and larger time or length scales in experiments are feasible. In addition to new examinations of classical problems, (e.g., droplet burning), current areas of interest include soot formation and weak turbulence, as influenced by gravity.

  9. Heat Transfer to a Thin Solid Combustible in Flame Spreading at Microgravity

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, S.; Altenkirch, R. A.; Olson, S. L.; Sotos, R. G.

    1991-01-01

    The heat transfer rate to a thin solid combustible from an attached diffusion flame, spreading across the surface of the combustible in a quiescent, microgravity environment, was determined from measurements made in the drop tower facility at NASA-Lewis Research Center. With first-order Arrhenius pyrolysis kinetics, the solid-phase mass and energy equations along with the measured spread rate and surface temperature profiles were used to calculate the net heat flux to the surface. Results of the measurements are compared to the numerical solution of the complete set of coupled differential equations that describes the temperature, species, and velocity fields in the gas and solid phases. The theory and experiment agree on the major qualitative features of the heat transfer. Some fundamental differences are attributed to the neglect of radiation in the theoretical model.

  10. Transpiration cooling in the locality of a transverse fuel jet for supersonic combustors

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton; Capriotti, Diego P.; Byington, Carl S.

    1990-01-01

    The objective of the current work was to determine the feasibility of transpiration cooling for the relief of the local heating rates in the region of a sonic, perpendicular, fuel jet of gaseous hydrogen. Experiments were conducted to determine the interaction between the cooling required and flameholding limits of a transverse jet in a high-enthalpy, Mach 3 flow in both open-jet and direct-connect test mode. Pulsed shadowgraphs were used to illustrate the flow field. Infrared thermal images indicated the surface temperatures, and the OH(-) emission of the flame was used to visualize the limits of combustion. Wall, static presures indicated the location of the combustion within the duct and were used to calculate the combustion efficiency. The results from both series of tests at facility total temperatures of 1700 K and 2000 K are presented.

  11. Results from study of potential early commercial MHD power plants and from recent ETF design work. [Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1980-01-01

    The study deals with different 'moderate technology' entry-level commercial MHD power plants. Two of the reference plants are based on combustion of coal with air preheated in a high-temperature regenerative air heater separately fired with a low-BTU gas produced in a gasifier integrated with the power plant. The third reference plant design is based on the use of oxygen enriched combustion air. Performance calculations show that an overall power plant efficiency of the order of 44% can be reached with the use of oxygen enrichment.

  12. Permitting Considerations for Installation of Inlet Air Foggers on Simple Cycle Combustion Turbines at the Duke Power Lincoln Combustion Turbine Facility

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  13. 77 FR 28376 - Agency Information Collection Activities; Proposed Collection; Comment Request; Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... products that will emit GHG when released, combusted, or oxidized, industrial gas suppliers, and... Activities; Proposed Collection; Comment Request; Information Collection Request for the Greenhouse Gas..., including aircraft engine manufacturers; facilities in certain industrial categories that emit greenhouse...

  14. 8. Front (east) side of incinerator and glove boxes. Ash ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Front (east) side of incinerator and glove boxes. Ash canning hood to the left, combustion chamber in the middle, incinerator hood to the right. Looking west. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  15. EPA's Air Quality Rules for Reciprocating Internal Combustion Engines (RICE) and their Application to CHP (Webinar) – June 24, 2014

    EPA Pesticide Factsheets

    This webinar discusses the effect of EPA's air quality regulations on CHP facilities and stationary RICE, and describes how CHP systems can comply with air quality regulations by using stationary RICE.

  16. Hopkins in U.S. Lab with FIR/FCF

    NASA Image and Video Library

    2013-10-15

    ISS037-E-013951 (14 Oct. 2013) --- NASA astronaut Michael Hopkins, Expedition 37 flight engineer, works at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF) located in the Destiny laboratory of the International Space Station.

  17. Chemical Pollution from Combustion of Modern Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.

    2013-01-01

    Fire is one of the most critical contingencies in spacecraft and any closed environment including submarines. Currently, NASA uses particle based technology to detect fires and hand-held combustion product monitors to track the clean-up and restoration of habitable cabin environment after the fire is extinguished. In the future, chemical detection could augment particle detection to eliminate frequent nuisance false alarms triggered by dust. In the interest of understanding combustion from both particulate and chemical generation, NASA Centers have been collaborating on combustion studies at White Sands Test Facility using modern spacecraft materials as fuels, and both old and new technology to measure the chemical and particulate products of combustion. The tests attempted to study smoldering pyrolysis at relatively low temperatures without ignition to flaming conditions. This paper will summarize the results of two 1-week long tests undertaken in 2012, focusing on the chemical products of combustion. The results confirm the key chemical products are carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen fluoride (HF) and hydrogen chloride (HCl), whose concentrations depend on the particular material and test conditions. For example, modern aerospace wire insulation produces significant concentration of HF, which persists in the test chamber longer than anticipated. These compounds are the analytical targets identified for the development of new tunable diode laser based hand-held monitors, to replace the aging electrochemical sensor based devices currently in use on the International Space Station.

  18. Evaluation of thermal loading on a methane injector at high pressure and temperature

    NASA Technical Reports Server (NTRS)

    Harvin, Stephen F.

    1990-01-01

    Experimental and numerical analyses are conducted to determine the surface temperature on a methane fuel injector used to produce a high enthalpy test stream for a combustion-fed subscale wind tunnel facility. It was found that the ratio of the methane fuel injection velocity to the air stream velocity is a significant factor in the production of high injector surface temperatures which lead to rapid deterioration of the fuel injector structure. The numerical code utilized for the computational analysis was found to be representative of the experimentally measured data since the experimental trends were reproduced by the numerical simulation. The quantitative accuracy of the numerical predictions could not be assessed from the data gathered because of the difficulty of making a noninterfering injector surface temperature measurement. The numerical code can be used for parametric evaluation of combustor parameters and thus will serve as an important tool in the design of such fuel injector systems.

  19. Assessment of Literature Related to Combustion Appliance Venting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, V. H.; Less, B. D.; Singer, B. C.

    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents theirmore » technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.« less

  20. Droplet Vaporization In A Levitating Acoustic Field

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.; Ciobanescu, I.

    2003-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. While the low-gravity test facility is being completed, tests have been conducted in 1-g to characterize the effect of the acoustic field on the vaporization of single and multiple droplets. This is important because in the combustion experiment, the droplets will be formed and levitated prior to ignition. Therefore, the droplets will begin to vaporize in the acoustic field thus forming the "initial conditions" for the combustion process. Understanding droplet vaporization in the acoustic field of this levitator is a necessary step that will help to interpret the experimental results obtained in low-gravity.

  1. Characterization of Gas and Particle Emissions from Laboratory Burns of Peat

    EPA Science Inventory

    Peat cores collected from two locations in eastern North Carolina (NC, USA) were burned in a laboratory facility to characterize emissions during simulated field combustion. Particle and gas samples were analyzed to quantify emission factors for particulate matter (PM2.5), organi...

  2. 40 CFR 60.59b - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994 or for Which... the owner or operator plans to combust in the affected facility. (4) The municipal waste combustor..., municipal waste combustor unit load measurements, and particulate matter control device inlet temperatures...

  3. 40 CFR 60.59b - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994 or for Which... the owner or operator plans to combust in the affected facility. (4) The municipal waste combustor..., municipal waste combustor unit load measurements, and particulate matter control device inlet temperatures...

  4. 40 CFR 60.59b - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994 or for Which... the owner or operator plans to combust in the affected facility. (4) The municipal waste combustor..., municipal waste combustor unit load measurements, and particulate matter control device inlet temperatures...

  5. 10 CFR Appendix R to Part 50 - Fire Protection Program for Nuclear Power Facilities Operating Prior to January 1, 1979

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Emergency lighting. Emergency lighting units with at least an 8-hour battery power supply shall be provided..., combustible and flammable gases and liquids, high efficiency particulate air and charcoal filters, dry ion...

  6. 10 CFR Appendix R to Part 50 - Fire Protection Program for Nuclear Power Facilities Operating Prior to January 1, 1979

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Emergency lighting. Emergency lighting units with at least an 8-hour battery power supply shall be provided..., combustible and flammable gases and liquids, high efficiency particulate air and charcoal filters, dry ion...

  7. 10 CFR Appendix R to Part 50 - Fire Protection Program for Nuclear Power Facilities Operating Prior to January 1, 1979

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Emergency lighting. Emergency lighting units with at least an 8-hour battery power supply shall be provided..., combustible and flammable gases and liquids, high efficiency particulate air and charcoal filters, dry ion...

  8. 10 CFR Appendix R to Part 50 - Fire Protection Program for Nuclear Power Facilities Operating Prior to January 1, 1979

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Emergency lighting. Emergency lighting units with at least an 8-hour battery power supply shall be provided..., combustible and flammable gases and liquids, high efficiency particulate air and charcoal filters, dry ion...

  9. KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel

    NASA Technical Reports Server (NTRS)

    Quagliaroli, T. M.; Laufer, G.; Hollo, S. D.; Krauss, R. H.; Whitehurst, R. B., III; Mcdaniel, J. C., Jr.

    1992-01-01

    Planar fluorescence images of OH in a continuous-flow, electrical-resistively heated, high enthalpy, hydrogen-air combustion tunnel, induced by a tunable KrF laser, were recorded. These images were compared to previously recorded fluorescence images induced by a doubled-dye laser under similar conditions. Images induced by the doubled-dye laser system demonstrated a severe distortion caused by absorption and fluorescence trapping. By contrast, images of the fluorescence induced by the tunable KrF laser retained the symmetry properties of the flow. Based on signal-to-noise ratio measurements the yield of the fluorescence induced by the doubled-dye laser is larger than the fluorescence yield induced by the KrF laser. The measurements in the present facility of OH fluorescence induced by the KrF laser were limited by the photon-statistical noise. Based 2 on this result, doubled-dye laser systems are recommended for OH imaging in small and OH lean (less than 10 exp 15/cu cm) facilities. KrF lasers should be selected otherwise.

  10. Development of Detonation Modeling Capabilities for Rocket Test Facilities: Hydrogen-Oxygen-Nitrogen Mixtures

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.

    2016-01-01

    The objective of the presented work was to develop validated computational fluid dynamics (CFD) based methodologies for predicting propellant detonations and their associated blast environments. Applications of interest were scenarios relevant to rocket propulsion test and launch facilities. All model development was conducted within the framework of the Loci/CHEM CFD tool due to its reliability and robustness in predicting high-speed combusting flow-fields associated with rocket engines and plumes. During the course of the project, verification and validation studies were completed for hydrogen-fueled detonation phenomena such as shock-induced combustion, confined detonation waves, vapor cloud explosions, and deflagration-to-detonation transition (DDT) processes. The DDT validation cases included predicting flame acceleration mechanisms associated with turbulent flame-jets and flow-obstacles. Excellent comparison between test data and model predictions were observed. The proposed CFD methodology was then successfully applied to model a detonation event that occurred during liquid oxygen/gaseous hydrogen rocket diffuser testing at NASA Stennis Space Center.

  11. Flame Radiation, Structure, and Scalar Properties in Microgravity Laminar Fires

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas; Lim, Jongmook; Sivathanu, Yudaya

    2007-01-01

    Results from microgravity combustion experiments conducted in the Zero Gravity Research Facility (ZGF) 5.18 second drop facility are reported. The results quantify flame radiation, structure, and scalar properties during the early phase of a microgravity fire. Emission mid-infrared spectroscopy measurements have been completed to quantitatively determine the flame temperature, water and carbon dioxide vapor concentrations, radiative emissive power, and soot concentrations in microgravity laminar methane/air, ethylene/nitrogen/air and ethylene/air jet flames. The measured peak mole fractions for water vapor and carbon dioxide are found to be in agreement with state relationship predictions for hydrocarbon/air combustion. The ethylene/air laminar flame conditions are similar to previously reported results including those from the flight project, Laminar Soot Processes (LSP). Soot concentrations and gas temperatures are in reasonable agreement with similar results available in the literature. However, soot concentrations and flame structure dramatically change in long-duration microgravity laminar diffusion flames as demonstrated in this report.

  12. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    NASA Astrophysics Data System (ADS)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.

    1981-09-01

    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  13. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.

    1981-01-01

    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  14. Validation of High Aspect Ratio Cooling in a 89 kN (20,000 lb(sub f)) Thrust Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Wadel, Mary F.; Meyer, Michael L.

    1996-01-01

    In order to validate the benefits of high aspect ratio cooling channels in a large scale rocket combustion chamber, a high pressure, 89 kN (20,000 lbf) thrust, contoured combustion chamber was tested in the NASA Lewis Research Center Rocket Engine Test Facility. The combustion chamber was tested at chamber pressures from 5.5 to 11.0 MPa (800-1600 psia). The propellants were gaseous hydrogen and liquid oxygen at a nominal mixture ratio of six, and liquid hydrogen was used as the coolant. The combustion chamber was extensively instrumented with 30 backside skin thermocouples, 9 coolant channel rib thermocouples, and 10 coolant channel pressure taps. A total of 29 thermal cycles, each with one second of steady state combustion, were completed on the chamber. For 25 thermal cycles, the coolant mass flow rate was equal to the fuel mass flow rate. During the remaining four thermal cycles, the coolant mass flow rate was progressively reduced by 5, 6, 11, and 20 percent. Computer analysis agreed with coolant channel rib thermocouples within an average of 9 percent and with coolant channel pressure drops within an average of 20 percent. Hot-gas-side wall temperatures of the chamber showed up to 25 percent reduction, in the throat region, over that of a conventionally cooled combustion chamber. Reducing coolant mass flow yielded a reduction of up to 27 percent of the coolant pressure drop from that of a full flow case, while still maintaining up to a 13 percent reduction in a hot-gas-side wall temperature from that of a conventionally cooled combustion chamber.

  15. Environmentally Compliant Disposal Method for Heavy Metal Containing Propellants

    NASA Technical Reports Server (NTRS)

    Decker, M. W.; Erickson, E. D.; Byrd, E. R.; Crispin, K. W. R.; Ferguson, B. W.

    2000-01-01

    ABSTRACT An environmentally friendly, cost effective technology has been developed and demonstrated by a team of Naval Air Warfare Center and Lockheed Martin personnel to dispose of Shillelagh solid rocket motor propellants. The Shillelagh is a surface to surface anti-tank weapon approaching the end of its service life. The current demilitarization process employs open detonation, but the presence of lead stearate in the N5 propellant grain motivated the need for the development of an environmentally friendly disposal method. Contained burning of the propellant followed by propellant exhaust processing was chosen as the disposal methodology. The developmental test bed, completed in February 1998, is inexpensive and transportable. Contained burning of Shillelagh propellants posed two technical hurdles: 1) removal of the sub micron lead and cadmium particulate generated during combustion, and 2) secondary combustion of the significant quantifies of carbon monoxide and hydrogen. A firing chamber with a stepped nozzle, air injection, and active ignition was developed to combust the carbon monoxide and hydrogen in real time. The hot gases and particulates from the combustion process are completely contained within a gas holder. The gases are subsequently cooled and routed through a treatment facility to remove the heavy metal particulate. Results indicate that the lead and cadmium particulates are removed below their respective detection limits (2 micro-g/cu m & 0.2 micro-g/cu m) of the analytical procedures employed and that the carbon monoxide and hydrogen levels have been reduced well below the lower flammability limits. Organic concentrations, principally benzene, are I ppm or less. A semi-automated machine has been developed which can rapidly prepare Shillelagh missiles for the contained burn facility. This machine allows the contained burn technology to be more competitive with current open bum open detonation disposal rates.

  16. Electroforming of a throat nozzle for a combustion facility (NASA Langley Reimbursable Program)

    NASA Technical Reports Server (NTRS)

    Dini, J. W.; Johnson, H. R.

    1976-01-01

    Special procedures were developed and then utilized for plating nickel over channels of a throat nozzle section of a NASA Langley combustor facility. When tested hydrostatically, the part failed in the stainless-steel substrate and not at the interface between the plating and substrate. The procedures used for plating the part are detailed as are high-temperature property data which show that the part can withstand long-term, high-temperature exposure without suffering degradation of the plated bond.

  17. Influence of test configuration on the combustion characteristics of polymers as ignition sources

    NASA Technical Reports Server (NTRS)

    Julien, Howard L.

    1993-01-01

    The experimental evaluation of polymers as ignition sources for metals was accomplished at the NASA White Sands Test Facility (WSTF) using a standard promoted combustion test. These tests involve the transient burning of materials in high-pressure oxygen environments. They have provided data from which design decisions can be made; data include video recordings of ignition and non-ignition for specific combinations of metals and polymers. Other tests provide the measured compositions of combustion products for polymers at select burn times and an empirical basis for estimating burn rates. With the current test configuration, the detailed analysis of test results requires modeling a three-dimensional, transient convection process involving fluid motion, thermal conduction and convection, the diffusion of chemical species, and the erosion of sample surface. At the high pressure extremes, it even requires the analysis of turbulent, transient convection where the physics of the problem are not well known and the computation requirements are not practical at this time. An alternative test configuration that can be analyzed with a relatively-simple convection model was developed during the summer period. The principal change constitutes replacing a large-diameter polymer disk at the end of the metal test rod with coaxial polymer cylinders that have a diameter nearer to that of the metal rod. The experimental objective is to assess the importance of test geometries on the promotion of metal ignition by testing with different lengths of the polymer and, with an extended effort, to analyze the surface combustion in the redesigned promoted combustion tests through analytical modeling of the process. The analysis shall use the results of cone-calorimeter tests of the polymer material to model primary chemical reactions and, with proper design of the promoted combustion test, modeling of the convection process could be conveniently limited to a quasi-steady boundary layer analysis where the economical solution of parabolic equations is involved. The products for the summer period are: (1) a conceptual-level redesign of the test apparatus, and (2) the development and use of an approximate integral boundary layer analysis to demonstrate the influence of geometry changes prior to testing. A computer code STAN5, an accurate numerical boundary layer model whose earlier versions were developed for the NASA Lewis Research Center by the Fellow, also was installed and validated on the WSTF and New Mexico State University computer systems as a starting point in the development of a more detailed fluid mechanics and combustion model.

  18. Thermal behaviour and kinetics of coal/biomass blends during co-combustion.

    PubMed

    Gil, M V; Casal, D; Pevida, C; Pis, J J; Rubiera, F

    2010-07-01

    The thermal characteristics and kinetics of coal, biomass (pine sawdust) and their blends were evaluated under combustion conditions using a non-isothermal thermogravimetric method (TGA). Biomass was blended with coal in the range of 5-80 wt.% to evaluate their co-combustion behaviour. No significant interactions were detected between the coal and biomass, since no deviations from their expected behaviour were observed in these experiments. Biomass combustion takes place in two steps: between 200 and 360 degrees C the volatiles are released and burned, and at 360-490 degrees C char combustion takes place. In contrast, coal is characterized by only one combustion stage at 315-615 degrees C. The coal/biomass blends presented three combustion steps, corresponding to the sum of the biomass and coal individual stages. Several solid-state mechanisms were tested by the Coats-Redfern method in order to find out the mechanisms responsible for the oxidation of the samples. The kinetic parameters were determined assuming single separate reactions for each stage of thermal conversion. The combustion process of coal consists of one reaction, whereas, in the case of the biomass and coal/biomass blends, this process consists of two or three independent reactions, respectively. The results showed that the chemical first order reaction is the most effective mechanism for the first step of biomass oxidation and for coal combustion. However, diffusion mechanisms were found to be responsible for the second step of biomass combustion. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Emami, Saied

    2001-01-01

    Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.

  20. Dual-Pump CARS Measurements in the University of Virginia's Dual-Mode Scramjet: Configuration "C"

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Magnotti, Gaetano; Cantu, Luca; Gallo, Emanuela; Danehy, Paul M.; Rockwell, Robert; Goyne, Christopher; McDaniel, James

    2013-01-01

    Measurements have been conducted at the University of Virginia Supersonic Combustion Facility in configuration C of the dual-mode scramjet. This is a continuation of previously published works on configuration A. The scramjet is hydrogen fueled and operated at two equivalence ratios, one representative of the scram mode and the other of the ram mode. Dual-pump CARS was used to acquire the mole fractions of the major species as well as the rotational and vibrational temperatures of N2. Developments in methods and uncertainties in fitting CARS spectra for vibrational temperature are discussed. Mean quantities and the standard deviation of the turbulent fluctuations at multiple planes in the flow path are presented. In the scram case the combustion of fuel is completed before the end of the measurement domain, while for the ram case the measurement domain extends into the region where the flow is accelerating and combustion is almost completed. Higher vibrational than rotational temperature is observed in those parts of the hot combustion plume where there is substantial H2 (and hence chemical reaction) present.

  1. Experimental investigations on active cooling thermal protection structure of hydrocarbon-fueled scramjet combustor in arc heated facility

    NASA Astrophysics Data System (ADS)

    Jianqiang, Tu; Jinlong, Peng; Xianning, Yang; Lianzhong, Chen

    2016-10-01

    The active cooling thermal protection technology is the efficient method to resolve the long-duration work and reusable problems of hydrocarbon-fueled scramjet combustor, where worst thermo-mechanical loads occur. The fuel is passed through coolant channels adjacent to the heated surfaces to absorb heat from the heating exchanger panels, prior to injection into the combustor. The heating exchanger both cooled down the wall temperature of the combustor wall and heats and cracks the hydrocarbon fuel inside the panel to permit an easier combustion and satisfying combustion efficiency. The subscale active cooling metallic panels, with dimensions of 100×100 mm and different coolant channel sizes, have been tested under typical combustion thermal environment produced by arc heated Turbulent Flow Duct (TFD). The heat exchange ability of different coolant channel sizes has been obtained. The big-scale active cooling metallic panel, with dimensions of 100 × 750 mm and the coolant channel sizes of better heating exchange performance, has been made and tested in the big-scale arc heated TFD facility. The test results show that the local superheated ablation is easy to happen for the cooling fuel assigned asymmetrically in the bigscale active cooling metallic panel, and the cooling fuel rate can reduce 8%˜10% after spraying the Thermal Barrier Coating (TBC) in the heating surface.

  2. NACA Photographer Films a Ramjet Test

    NASA Image and Video Library

    1946-10-21

    A National Advisory Committee for Aeronautics (NACA) photographer films the test of a ramjet engine at the Lewis Flight Propulsion Laboratory. The laboratory had an arsenal of facilities to test the engines and their components, and immersed itself in the study of turbojet and ramjet engines during the mid-1940s. Combustion, fuel injection, flameouts, and performance at high altitudes were of particular interest to researchers. They devised elaborate schemes to instrument the engines in order to record temperature, pressure, and other data. Many of the tests were also filmed so Lewis researchers could visually review the combustion performance along with the data. The photographer in this image was using high-speed film to document a thrust augmentation study at Lewis’ Jet Static Propulsion Laboratory. The ramjet in this photograph was equipped with a special afterburner as part of a general effort to improve engine performance. Lewis’ Photo Lab was established in 1942. The staff was expanded over the next few years as more test facilities became operational. The Photo Lab’s staff and specialized equipment have been key research tools for decades. They accompany pilots on test flights, use high-speed cameras to capture fleeting processes like combustion, and work with technology, such as the Schlieren camera, to capture supersonic aerodynamics. In addition, the group has documented construction projects, performed publicity work, created images for reports, and photographed data recording equipment.

  3. Shock tunnel studies of scramjet phenomena, supplement 8

    NASA Technical Reports Server (NTRS)

    Stalker, R. J.; Hollis, P.; Allen, G. A.; Roberts, G. T.; Tuttle, S.; Bakos, R. J.; Morgan, R. G.; Pulsonetti, M. V.; Brescianini, C.; Buttsworth, D. R.

    1993-01-01

    Reports by the staff of the University of Oueensland on various research studies related to the advancement of scramjet technology are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation. This research activity is Supplement 8 under NASA Grant NAGW-674.

  4. Shock tunnel studies of scramjet phenomena, supplement 7

    NASA Technical Reports Server (NTRS)

    Bakos, R. J.; Morgan, R. G.; Tuttle, S. L.; Kelly, G. M.; Paull, A.; Simmons, J. M.; Stalker, R. J.; Pulsonetti, M. V.; Buttsworth, D.; Allen, G. A., Jr.

    1993-01-01

    Reports by the staff of the University of Queensland on various research studies related to the advancement of scramjet technology are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation. This research activity is Supplement 7 under NASA Grant NAGW-674.

  5. A Heated Tube Facility for Rocket Coolant Channel Research

    NASA Technical Reports Server (NTRS)

    Green, James M.; Pease, Gary M.; Meyer, Michael L.

    1995-01-01

    The capabilities of a heated tube facility used for testing rocket engine coolant channels at the NASA Lewis Research Center are presented. The facility uses high current, low voltage power supplies to resistively heat a test section to outer wall temperatures as high as 730 C (1350 F). Liquid or gaseous nitrogen, gaseous helium, or combustible liquids can be used as the test section coolant. The test section is enclosed in a vacuum chamber to minimize heat loss to the surrounding system. Test section geometry, size, and material; coolant properties; and heating levels can be varied to generate heat transfer and coolant performance data bases.

  6. Experimental and numerical investigation on the ignition and combustion stability in solid fuel ramjet with swirling flow

    NASA Astrophysics Data System (ADS)

    Musa, Omer; Xiong, Chen; Changsheng, Zhou

    2017-08-01

    The present article investigates experimentally and numerically the ignition and flame stability of high-density polyethylene solid fuel with incoming swirling air through a solid fuel ramjet (SFRJ). A new design of swirler is proposed and used in this work. Experiments on connected pipes test facility were performed for SFRJ with and without swirl. An in-house code has been developed to simulate unsteady, turbulent, reacting, swirling flow in the SFRJ. Four different swirl intensities are utilized to study experimentally and numerically the effect of swirl number on the transient regression, ignition of the solid fuel in a hot-oxidizing flow and combustion phenomenon in the SFRJ. The results showed that using swirl flow decreases the ignition time delay, recirculation zone length, and the distance between the flame and the wall, meanwhile, increases the residence time, heat transfer, regression rate and mixing degree, thus, improving the combustion efficiency and stability.

  7. Investigation of the feasibility of CARS measurements in scramjet combustion

    NASA Technical Reports Server (NTRS)

    Shirley, J. A.; Hall, R. J.; Eckbreth, A. C.

    1980-01-01

    Results are presented of analytical and experimental investigations to determine the feasibility of using coherent anti-Stokes Raman Spectroscopy (CARS) to measure temperature and species concentration in supersonic combustion experiments. The CARS spectra of H2O, O2 and H2 were measured in laboratory flames. Computer code calculated spectra agree very well with the measured spectra. Temperature, and O2 and H2 concentration profiles have been determined from CARS spectra in a laboratory H2 air flat diffusion flame. Temperature measurements agree with radiation corrected thermocouple measurements within 5 to 10 percent, depending on species concentration. The feasibility of measuring O2 concentrations up to 10 percent, from the spectral shape was demonstrated. H2 concentrations determined from CARS intensities agree with spontaneous Raman measurements within a factor of two. Finally, a conceptual design was formulated for diagnostics in the Langley Research Center scramjet combustion facility.

  8. Hydrocarbon-fuel/combustion-chamber-liner materials compatibility

    NASA Technical Reports Server (NTRS)

    Gage, Mark L.

    1990-01-01

    Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.

  9. Simultaneous high-speed schlieren and OH chemiluminescence imaging in a hybrid rocket combustor at elevated pressures

    NASA Astrophysics Data System (ADS)

    Miller, Victor; Jens, Elizabeth T.; Mechentel, Flora S.; Cantwell, Brian J.; Stanford Propulsion; Space Exploration Group Team

    2014-11-01

    In this work, we present observations of the overall features and dynamics of flow and combustion in a slab-type hybrid rocket combustor. Tests were conducted in the recently upgraded Stanford Combustion Visualization Facility, a hybrid rocket combustor test platform capable of generating constant mass-flux flows of oxygen. High-speed (3 kHz) schlieren and OH chemiluminescence imaging were used to visualize the flow. We present imaging results for the combustion of two different fuel grains, a classic, low regression rate polymethyl methacrylate (PMMA), and a high regression rate paraffin, and all tests were conducted in gaseous oxygen. Each fuel grain was tested at multiple free-stream pressures at constant oxidizer mass flux (40 kg/m2s). The resulting image sequences suggest that aspects of the dynamics and scaling of the system depend strongly on both pressure and type of fuel.

  10. Dual-Mode Combustion of Hydrogen in a Mach 5, Continuous-Flow Facility

    NASA Technical Reports Server (NTRS)

    Goyne, C. P.; McDaniel, J. C.; Quagliaroli, T. M.; Krauss, R. H.; Day, S. W.; Reubush, D. E. (Technical Monitor); McClinton, C. R. (Technical Monitor); Reubush, D. E.

    2001-01-01

    Results of an experimental and numerical study of a dual-mode scramjet combustor are reported. The experiment consisted of a direct-connect test of a Mach 2 hydrogen-air combustor with a single unswept-ramp fuel injector. The flow stagnation enthalpy simulated a flight Mach number of 5. Measurements were obtained using conventional wall instrumentation and a particle-imaging laser diagnostic technique. The particle imaging was enabled through the development of a new apparatus for seeding fine silicon dioxide particles into the combustor fuel stream. Numerical simulations of the combustor were performed using the GASP code. The modeling, and much of the experimental work, focused on the supersonic combustion mode. Reasonable agreement was observed between experimental and numerical wall pressure distributions. However, the numerical model was unable to predict accurately the effects of combustion on the fuel plume size, penetration, shape, and axial growth.

  11. Space shuttle orbital maneuvering engine platelet injector program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A platelet face injector for the Orbit Maneuvering Engine (OME) on the space shuttle was evaluated as a means of obtaining additional design margin and lower cost. The program was conducted in three phases. The first phase evaluated single injection elements, or unielements; it involved visual flow studies, mixing experiments using propellant simulants, and hot firings to assess combustion efficiency, chamber wall compatibility, and injector face temperatures. In the second phase, subscale units producing 600 lbf thrust were used to further evaluate the orifice patterns chosen on the basis of unielement testing. In addition to combustion efficiency, chamber and injector heat transfer, the subscale testing provided a preliminary indication of injector stability. Full scale testing of the selected patterns at 6,000 lbf thrust was performed in the third phase. Performance, heat transfer, and combustion stability were evaluated over the anticipated range of OMS operating conditions. The effects on combustion stability of acoustic cavity configuration, including cavity depth, open area, inlet contour, and other parameters, were investigated.

  12. 40 CFR 60.697 - Recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... shall maintain continuous records of the temperature of the gas stream in the combustion zone of the... of an affected facility that uses a catalytic incinerator shall maintain continuous records of the... continuous records of the VOC concentration level or reading of organics of the control device outlet gas...

  13. 40 CFR 60.697 - Recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shall maintain continuous records of the temperature of the gas stream in the combustion zone of the... of an affected facility that uses a catalytic incinerator shall maintain continuous records of the... continuous records of the VOC concentration level or reading of organics of the control device outlet gas...

  14. ARC-2006-ACD06-0177-011

    NASA Image and Video Library

    2006-10-18

    Ames Hypersonic Free Flight Aerodynamic Facility is used for research on gas dynamic problems of atmospheric entry. High relative speeds are achieved by launching models (in sabots if necessary) from high-speed guns into a countercurrent hypersonic air stream (14,000 ft/sec) driven by combustion-powered shock tube.

  15. 40 CFR 60.161 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...

  16. 40 CFR 60.161 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...

  17. 40 CFR 60.161 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...

  18. 40 CFR 60.161 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...

  19. 40 CFR 60.161 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...

  20. Development of a Laminar Flame Test Facility for Bio-Diesel Characterization

    DTIC Science & Technology

    2009-12-01

    heat from the fuel injector during operation. NPT Threaded Holes Bolts and Nuts Stainless Steel Pipes 17 Figure 3. Top Flange of the...3 2. Pre- Heat Temperature... Piping Systems........................... 37 2. Leak Test for Combustion Chamber .................................... 38 3. Calibration of High Speed

  1. 78 FR 34820 - Formaldehyde Emissions Standards for Composite Wood Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... and paper product coatings. It is a by-product of combustion and certain other natural processes..., dryers, formers, board coolers, and presses) at PCWP facilities. In 2004, EPA determined that unit risk... (e.g., vinyl, paper, melamine, polyethylene) and coatings (e.g., acrylate, acrylic, polyurethane...

  2. DEVELOPMENT OF REAL-TIME FLARE COMBUSTION EFFICIENCY MONITOR - PHASE I

    EPA Science Inventory

    There are approximately 7,000 flares in operation at industrial facilities across the United States. Flares are one of the largest Volatile Organic Compounds (VOCs) and air toxics emissions sources. Based on a special emission inventory required by the Texas Commission on E...

  3. Burbank works at the LMM in the FIR/FCF in the U.S. Laboratory

    NASA Image and Video Library

    2011-12-01

    ISS030-E-007428 (1 Dec. 2011) --- NASA astronaut Dan Burbank, Expedition 30 commander, works at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF) located in the Destiny laboratory of the International Space Station.

  4. Burbank works at the LMM in the FIR/FCF in the U.S. Laboratory

    NASA Image and Video Library

    2011-12-01

    ISS030-E-007426 (1 Dec. 2011) --- NASA astronaut Dan Burbank, Expedition 30 commander, works at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF) located in the Destiny laboratory of the International Space Station.

  5. Burbank works at the LMM in the FIR/FCF in the U.S. Laboratory

    NASA Image and Video Library

    2011-12-01

    ISS030-E-007429 (1 Dec. 2011) --- NASA astronaut Dan Burbank, Expedition 30 commander, works at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF) located in the Destiny laboratory of the International Space Station.

  6. Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor.

    PubMed

    Gotoda, Hiroshi; Amano, Masahito; Miyano, Takaya; Ikawa, Takuya; Maki, Koshiro; Tachibana, Shigeru

    2012-12-01

    We characterize complexities in combustion instability in a lean premixed gas-turbine model combustor by nonlinear time series analysis to evaluate permutation entropy, fractal dimensions, and short-term predictability. The dynamic behavior in combustion instability near lean blowout exhibits a self-affine structure and is ascribed to fractional Brownian motion. It undergoes chaos by the onset of combustion oscillations with slow amplitude modulation. Our results indicate that nonlinear time series analysis is capable of characterizing complexities in combustion instability close to lean blowout.

  7. Evaluation of self-combustion risk in tire derived aggregate fills.

    PubMed

    Arroyo, Marcos; San Martin, Ignacio; Olivella, Sebastian; Saaltink, Maarten W

    2011-01-01

    Lightweight tire derived aggregate (TDA) fills are a proven recycling outlet for waste tires, requiring relatively low cost waste processing and being competitively priced against other lightweight fill alternatives. However its value has been marred as several TDA fills have self-combusted during the early applications of this technique. An empirical review of these cases led to prescriptive guidelines from the ASTM aimed at avoiding this problem. This approach has been successful in avoiding further incidents of self-combustion. However, at present there remains no rational method available to quantify self-combustion risk in TDA fills. This means that it is not clear which aspects of the ASTM guidelines are essential and which are accessory. This hinders the practical use of TDA fills despite their inherent advantages as lightweight fill. Here a quantitative approach to self-combustion risk evaluation is developed and illustrated with a parametric analysis of an embankment case. This is later particularized to model a reported field self-combustion case. The approach is based on the available experimental observations and incorporates well-tested methodological (ISO corrosion evaluation) and theoretical tools (finite element analysis of coupled heat and mass flow). The results obtained offer clear insights into the critical aspects of the problem, allowing already some meaningful recommendations for guideline revision. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. SONOTECH, INC. FREQUENCY-TUNABLE PULSE COMBUSTION SYSTEM (CELLO PULSE BURNER) - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    Sonotech, Inc. (Sonotech) of Atlanta, Georgia, has developed a pulse combustion burner technology that claims to offer benefits when applied in a variety of combustion processes. The technology incorporates a combustor that can be tuned to induce large-amplitude acoustic or soni...

  9. APTI Course 427, Combustion Evaluation. Student Manual.

    ERIC Educational Resources Information Center

    Beard, J. Taylor; And Others

    This student manual supplements a course designed to present fundamental and applied aspects of combustion technology which influence air pollutant emissions. Emphasis is placed on process control of combustion rather than on gas cleaning. The course is intended to provide engineers, regulatory and technical personnel, and others with familiarity…

  10. Quantitative Measurement of Oxygen in Microgravity Combustion

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.

    1997-01-01

    A low-gravity environment, in space or in ground-based facilities such as drop towers, provides a unique setting for studying combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as for better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Due to restrictions associated with performing measurements in reduced gravity, diagnostic methods which have been applied to microgravity combustion studies have generally been limited to capture of flame emissions on film or video, laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated diagnostic methods are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the models. When the demands of space flight are considered, the need for improved diagnostic systems which are rugged, compact, reliable, and operate at low power becomes apparent. The objective of this research is twofold. First, we want to develop a better understanding of the relative roles of diffusion and reaction of oxygen in microgravity combustion. As the primary oxidizer species, oxygen plays a major role in controlling the observed properties of flames, including flame front speed (in solid or liquid flames), extinguishment characteristics, flame size and flame temperature. The second objective is to develop better diagnostics based on diode laser absorption which can be of real value in both microgravity combustion research and as a sensor on-board Spacelab as either an air quality monitor or as part of a fire detection system. In our prior microgravity work, an eight line-of-sight fiber optic system measured water vapor mole fractions in the NASA Lewis 2.2-sec Drop Tower. In that system, the laser and all electronics resided at the top of the drop tower and was connected via a fiber optic cable to the rig, on which a 'pitch and catch' set of fiber collimating lenses were used to transmit the laser beam across a jet diffusion flame. This system required eight independent detection/demodulation units and had poor spatial resolution. This research builds on this earlier work, resulting in an improved capability for quantitative, nonintrusive measurement of major combustion species. A vertical cavity surface-emitting diode laser (VCSEL) and a continuous spatial scanning method permit the measurement of temporal and spatial profiles of the concentrations and temperatures of molecular oxygen. High detection sensitivity is achieved with wavelength modulation spectroscopy (WMS). One-g experiments are performed using a slot diffusion flame. Microgravity measurements on a solid fuel (cellulose sheet) system are planned for the NASA Lewis 2.2-second Drop Tower Facility.

  11. Capturing Cyclic Variability in EGR Dilute SI Combustion using Multi-Cycle RANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarcelli, Riccardo; Sevik, James; Wallner, Thomas

    Dilute combustion is an effective approach to increase the thermal efficiency of spark-ignition (SI) internal combustion engines (ICEs). However, high dilution levels typically result in large cycle-to-cycle variations (CCV) and poor combustion stability, therefore limiting the efficiency improvement. In order to extend the dilution tolerance of SI engines, advanced ignition systems are the subject of extensive research. When simulating the effect of the ignition characteristics on CCV, providing a numerical result matching the measured average in-cylinder pressure trace does not deliver useful information regarding combustion stability. Typically Large Eddy Simulations (LES) are performed to simulate cyclic engine variations, since Reynold-Averagedmore » Navier-Stokes (RANS) modeling is expected to deliver an ensemble-averaged result. In this paper it is shown that, when using RANS, the cyclic perturbations coming from different initial conditions at each cycle are not damped out even after many simulated cycles. As a result, multi-cycle RANS results feature cyclic variability. This allows evaluating the effect of advanced ignition sources on combustion stability but requires validation against the entire cycle-resolved experimental dataset. A single-cylinder GDI research engine is simulated using RANS and the numerical results for 20 consecutive engine cycles are evaluated for several operating conditions, including stoichiometric as well as EGR dilute operation. The effect of the ignition characteristics on CCV is also evaluated. Results show not only that multi-cycle RANS simulations can capture cyclic variability and deliver similar trends as the experimental data, but more importantly that RANS might be an effective, lower-cost alternative to LES for the evaluation of ignition strategies for combustion systems that operate close to the stability limit.« less

  12. Materials Combustion Testing and Combustion Product Sensor Evaluations in FY12

    NASA Technical Reports Server (NTRS)

    Meyer, Marit Elisabeth; Mudgett, Paul D.; Hornung, Steven D.; McClure, Mark B.; Pilgrim, Jeffrey S.; Bryg, Victoria; Makel, Darby; Ruff, Gary A.; Hunter, Gary

    2013-01-01

    NASA Centers continue to collaborate to characterize the chemical species and smoke particles generated by the combustion of current space-rated non-metallic materials including fluoropolymers. This paper describes the results of tests conducted February through September 2012 to identify optimal chemical markers both for augmenting particle-based fire detection methods and for monitoring the post-fire cleanup phase in human spacecraft. These studies follow up on testing conducted in August 2010 and reported at ICES 2011. The tests were conducted at the NASA White Sands Test Facility in a custom glove box designed for burning fractional gram quantities of materials under varying heating profiles. The 623 L chamber was heavily instrumented to quantify organics (gas chromatography/mass spectrometry), inorganics by water extraction followed by ion chromatography, and select species by various individual commercially-available sensors. Evaluating new technologies for measuring carbon monoxide, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and other species of interest was a key objective of the test. Some of these sensors were located inside the glovebox near the fire source to avoid losses through the sampling lines; the rest were located just outside the glovebox. Instruments for smoke particle characterization included a Tapered Element Oscillating Microbalance Personal Dust Monitor (TEOM PDM) and a TSI Dust Trak DRX to measure particle mass concentration, a TSI PTrak for number concentration and a thermal precipitator for collection of particles for microscopic analysis. Materials studied included Nomex®, M22759 wire insulation, granulated circuit board, polyvinyl chloride (PVC), Polytetrafluoroethylene (PTFE), Kapton®, and mixtures of PTFE and Kapton®. Furnace temperatures ranged from 340o to 640o C, focusing on the smoldering regime. Of particular interest in these tests was confirming burn repeatability and production of acid gases with different fuel mixture compositions, as well as the dependence of aerosol concentrations on temperature.

  13. Materials Combustion Testing and Combustion Product Sensor Evaluations in FY12

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.; Hunter, Gary; Ruff, Gary; Mudgett, Paul D.; Hornung, Steven D.; McClure, Mark B.; Pilgrim, Jeffrey S.; Bryg, Victoria; Makel, Darby

    2013-01-01

    NASA Centers continue to collaborate to characterize the chemical species and smoke particles generated by the combustion of current space-rated non-metallic materials including fluoropolymers. This paper describes the results of tests conducted February through September 2012 to identify optimal chemical markers both for augmenting particle-based fire detection methods and for monitoring the post-fire cleanup phase in human spacecraft. These studies follow up on testing conducted in August 2010 and reported at ICES 2011. The tests were conducted at the NASA White Sands Test Facility in a custom glove box designed for burning fractional gram quantities of materials under varying heating profiles. The 623 L chamber was heavily instrumented to quantify organics (gas chromatography/mass spectrometry), inorganics by water extraction followed by ion chromatography, and select species by various individual commercially-available sensors. Evaluating new technologies for measuring carbon monoxide, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and other species of interest was a key objective of the test. Some of these sensors were located inside the glovebox near the fire source to avoid losses through the sampling lines; the rest were located just outside the glovebox. Instruments for smoke particle characterization included a Tapered Element Oscillating Microbalance Personal Dust Monitor (TEOM PDM) and a TSI Dust Trak DRX to measure particle mass concentration, a TSI PTrak for number concentration and a thermal precipitator for collection of particles for microscopic analysis. Materials studied included Nomex(R), M22759 wire insulation, granulated circuit board, polyvinyl chloride (PVC), Polytetrafluoroethylene (PTFE), Kapton(R), and mixtures of PTFE and Kapton(R). Furnace temperatures ranged from 340 to 640 C, focusing on the smoldering regime. Of particular interest in these tests was confirming burn repeatability and production of acid gases with different fuel mixture compositions, as well as the dependence of aerosol concentrations on temperature.

  14. CARS Temperature Measurements in Turbulent and Supersonic Facilities

    NASA Technical Reports Server (NTRS)

    Jarrett, O., Jr.; Antcliff, R. R.; Smith, M. W.; Cutler, A. D.; Diskin, G. S.; Northam, G. B.

    1991-01-01

    This paper documents the development of the National Aeronautics and Space Administration s (NASA) Langley Research Center ( LaRC) Coherent Antistokes Raman Spectroscopy (CARS) systems for measurements of temperature in a turbulent subsonic or supersonic reacting hydrogen-air environment. Spectra data provides temperature data when compared to a precalculated library of nitrogen CARS spectra. Library validity was confirmed by comparing CARS temperatures derived through the library with three different techniques for determination of the temperature in hydrogen-air combustion and an electrically heated furnace. The CARS system has been used to survey temperature profiles in the simulated flow of a supersonic combustion ramjet (scramjet) model. Measurement results will be discussed.

  15. Primer on spontaneous heating and pyrophoricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-12-01

    This primer was prepared as an information resource for personnel responsible for operation of DOE nuclear facilities. It has sections on combustion principles, spontaneous heating/ignition of hydrocarbons and organics, pyrophoric gases and liquids, pyrophoric nonmetallic solids, pyrophoric metals (including Pu and U), and accident case studies. Although the information in this primer is not all-encompassing, it should provide the reader with a fundamental knowledge level sufficient to recognize most spontaneous combustion hazards and how to prevent ignition and widespread fires. This primer is provided as an information resource only, and is not intended to replace any fire protection or hazardousmore » material training.« less

  16. Flow Friction or Spontaneous Ignition?

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Gallus, Timothy D.; Sparks, Kyle

    2012-01-01

    "Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system.

  17. Series hybrid vehicles and optimized hydrogen engine design

    NASA Astrophysics Data System (ADS)

    Smith, J. R.; Aceves, S.; Vanblarigan, P.

    1995-05-01

    Lawrence Livermore, Sandia Livermore and Los Alamos National Laboratories have a joint project to develop an optimized hydrogen fueled engine for series hybrid automobiles. The major divisions of responsibility are: system analysis, engine design and kinetics modeling by LLNL; performance and emission testing, and friction reduction by SNL; computational fluid mechanics and combustion modeling by LANL. This project is a component of the Department of Energy, Office of Utility Technology, National Hydrogen Program. We report here on the progress on system analysis and preliminary engine testing. We have done system studies of series hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. The impact of various on-board storage options on fuel economy are evaluated. Experiments with an available engine at the Sandia Combustion Research Facility demonstrated NO(x) emissions of 10 to 20 ppm at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid vehicle simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppm to meet the 0.2 g/mile California Air Resources Board ULEV or Federal Tier-2 emissions regulations. We have designed and fabricated a first generation optimized hydrogen engine head for use on an existing single cylinder Onan engine. This head currently features 14.8:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses.

  18. Spacelab

    NASA Image and Video Library

    1992-06-01

    The first United States Microgravity Laboratory (USML-1) provided scientific research in materials science, fluid dynamics, biotechnology, and combustion science in a weightless environment inside the Spacelab module. This photograph is a close-up view of the Glovebox in operation during the mission. The Spacelab Glovebox, provided by the European Space Agency, offers experimenters new capabilities to test and develop science procedures and technologies in microgravity. It enables crewmembers to handle, transfer, and otherwise manipulate materials in ways that are impractical in the open Spacelab. The facility is equipped with three doors: a central port through which experiments are placed in the Glovebox and two glovedoors on both sides with an attachment for gloves or adjustable cuffs and adapters for cameras. The Glovebox has an enclosed compartment that offers a clean working space and minimizes the contamination risks to both Spacelab and experiment samples. Although fluid containment and ease of cleanup are major benefits provided by the facility, it can also contain powders and bioparticles; toxic, irritating, or potentially infectious materials; and other debris produced during experiment operations. The facility is equipped with photographic/video capabilities and permits mounting a microscope. For the USML-1 mission, the Glovebox experiments fell into four basic categories: fluid dynamics, combustion science, crystal growth, and technology demonstration. The USML-1 flew aboard the STS-50 mission in June 1992.

  19. The oxycoal process with cryogenic oxygen supply.

    PubMed

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly ash or the deposits that form. In particular, detailed nitrogen and sulphur chemistry was investigated by combustion tests in a laboratory-scale facility. Oxidant staging, in order to reduce NO formation, turned out to work with similar effectiveness as for conventional air combustion. With regard to sulphur, a considerable increase in the SO2 concentration was found, as expected. However, the H2S concentration in the combustion atmosphere increased as well. Further results were achieved with a pilot-scale test facility, where acid dew points were measured and deposition probes were exposed to the combustion environment. Besides CO2 and water vapour, the flue gas contains impurities like sulphur species, nitrogen oxides, argon, nitrogen, and oxygen. The CO2 liquefaction is strongly affected by these impurities in terms of the auxiliary power requirement and the CO2 capture rate. Furthermore, the impurity of the liquefied CO2 is affected as well. Since the requirements on the liquid CO2 with regard to geological storage or enhanced oil recovery are currently undefined, the effects of possible flue gas treatment and the design of the liquefaction plant are studied over a wide range.

  20. The oxycoal process with cryogenic oxygen supply

    NASA Astrophysics Data System (ADS)

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly ash or the deposits that form. In particular, detailed nitrogen and sulphur chemistry was investigated by combustion tests in a laboratory-scale facility. Oxidant staging, in order to reduce NO formation, turned out to work with similar effectiveness as for conventional air combustion. With regard to sulphur, a considerable increase in the SO2 concentration was found, as expected. However, the H2S concentration in the combustion atmosphere increased as well. Further results were achieved with a pilot-scale test facility, where acid dew points were measured and deposition probes were exposed to the combustion environment. Besides CO2 and water vapour, the flue gas contains impurities like sulphur species, nitrogen oxides, argon, nitrogen, and oxygen. The CO2 liquefaction is strongly affected by these impurities in terms of the auxiliary power requirement and the CO2 capture rate. Furthermore, the impurity of the liquefied CO2 is affected as well. Since the requirements on the liquid CO2 with regard to geological storage or enhanced oil recovery are currently undefined, the effects of possible flue gas treatment and the design of the liquefaction plant are studied over a wide range.

  1. Fiber-Supported Droplet Combustion Experiment-2

    NASA Technical Reports Server (NTRS)

    Colantonio, Renato O.

    1998-01-01

    A major portion of the energy produced in the world today comes from the burning of liquid hydrocarbon fuels in the form of droplets. Understanding the fundamental physical processes involved in droplet combustion is not only important in energy production but also in propulsion, in the mitigation of combustion-generated pollution, and in the control of the fire hazards associated with handling liquid combustibles. Microgravity makes spherically symmetric combustion possible, allowing investigators to easily validate their droplet models without the complicating effects of gravity. The Fiber-Supported Droplet Combustion (FSDC-2) investigation was conducted in the Microgravity Glovebox facility of the shuttles' Spacelab during the reflight of the Microgravity Science Laboratory (MSL- 1R) on STS-94 in July 1997. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and duo droplets with and without forced air convection. FSDC-2 is sponsored by the NASA Lewis Research Center, whose researchers are working in cooperation with several investigators from industry and academia. The rate at which a droplet burns is important in many commercial applications. The classical theory of droplet burning assumes that, for an isolated, spherically symmetric, single-fuel droplet, the gas-phase combustion processes are much faster than the droplet surface regression rate and that the liquid phase is at a uniform temperature equal to the boiling point. Recent, more advanced models predict that both the liquid and gas phases are unsteady during a substantial portion of the droplet's burning history, thus affecting the instantaneous and average burning rates, and that flame radiation is a dominant mechanism that can extinguish flames in a microgravity environment. FSDC-2 has provided well-defined, symmetric droplet burning data including radiative emissions to validate these theoretical models for heptane, decane, ethanol, and methanol fuels. Since most commercial combustion systems burn droplets in a convective environment, data were obtained without and with convective flow over the burning droplet (see the following photos).

  2. Flue gas desulfurization gypsum and fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority`s newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned formore » all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective.« less

  3. International Utilization at the Threshold of "Assembly Complete"- Science Returns from the International Space Station

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2009-01-01

    The European Columbus and Japanese Kibo laboratories are now fully operational on the International Space Station (ISS), bringing decades of international planning to fruition. NASA is now completing launch and activation of major research facilities that will be housed in the Destiny U.S. Laboratory, Columbus, and Kibo. These facilities include major physical sciences capabilities for combustion, fluid physics, and materials science, as well as additional multipurpose and supporting infrastructure. Expansion of the laboratory space and expansion to a 6-person crew (planned for May 2009), is already leading to significant increases in research throughput even before assembly is completed. International research on the ISS includes exchanges of results, sharing of facilities, collaboration on experiments, and joint publication and communication of accomplishments. Significant and ongoing increases in research activity on ISS have occurred over the past year. Although research results lag behind on-orbit operations by 2-5 years, the surge of early research activities following Space Shuttle return to flight in 2005 is now producing an accompanying surge in scientific publications. Evidence of scientific productivity from early utilization opportunities combined with the current pace of research activity in orbit are both important parts of the evidence base for evaluating the potential future achievements of a complete and active ISS.

  4. Emissions from prescribed burning of agricultural fields in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Holder, A. L.; Gullett, B. K.; Urbanski, S. P.; Elleman, R.; O'Neill, S.; Tabor, D.; Mitchell, W.; Baker, K. R.

    2017-10-01

    Prescribed burns of winter wheat stubble and Kentucky bluegrass fields in northern Idaho and eastern Washington states (U.S.A.) were sampled using ground-, aerostat-, airplane-, and laboratory-based measurement platforms to determine emission factors, compare methods, and provide a current and comprehensive set of emissions data for air quality models, climate models, and emission inventories. Batch measurements of PM2.5, volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs), and continuous measurements of black carbon (BC), particle mass by size, CO, CO2, CH4, and aerosol characteristics were taken at ground level, on an aerostat-lofted instrument package, and from an airplane. Biomass samples gathered from the field were burned in a laboratory combustion facility for comparison with these ground and aerial field measurements. Emission factors for PM2.5, organic carbon (OC), CH4, and CO measured in the field study platforms were typically higher than those measured in the laboratory combustion facility. Field data for Kentucky bluegrass suggest that biomass residue loading is directly proportional to the PM2.5 emission factor; no such relationship was found with the limited wheat data. CO2 and BC emissions were higher in laboratory burn tests than in the field, reflecting greater carbon oxidation and flaming combustion conditions. These distinctions between field and laboratory results can be explained by measurements of the modified combustion efficiency (MCE). Higher MCEs were recorded in the laboratory burns than from the airplane platform. These MCE/emission factor trends are supported by 1-2 min grab samples from the ground and aerostat platforms. Emission factors measured here are similar to other studies measuring comparable fuels, pollutants, and combustion conditions. The size distribution of refractory BC (rBC) was single modal with a log-normal shape, which was consistent among fuel types when normalized by total rBC mass. The field and laboratory measurements of the Angstrom exponent (α) and single scattering albedo (ω) exhibit a strong decreasing trend with increasing MCEs in the range of 0.9-0.99. Field measurements of α and ω were consistently higher than laboratory burns, which is likely due to less complete combustion. When VOC emissions are compared with MCE, the results are consistent for both fuel types: emission factors increase as MCE decreases.

  5. CHARACTERISTICS OF ORGANIC EMISSIONS FROM HAZARDOUS WASTE INCINERATION PROCESSES UNDER THE NEW EPA DRAFT RISK BURN GUIDANCE: MEASUREMENT ISSUES

    EPA Science Inventory

    EPA's recently published draft Risk Burn Guidance recommends that hazardous waste combustion facilities complete a mass balance of the total organics (TOs) that may be emitted from the combustor. TOs, consisting of three distinct fractions (volatile, semivolatile, and nonvolatile...

  6. CHARACTERIZATION OF ORGANIC EMISSIONS FROM HAZARDOUS WASTE INCINERATION PROCESSES UNDER THE NEW EPA DRAFT RISK BURN GUIDANCE: MEASUREMENT ISSUES

    EPA Science Inventory

    The paper discusses measurement issues relating to the characterization of organic emissions from hazardous waste incineration processes under EPA's new risk burn guidance. The recently published draft quidance recommends that hazardous waste combustion facilities complete a mass...

  7. Investigation on Novel Methods to Increase Specific Thrust in Pulse Detonation Engines via Imploding Detonations

    DTIC Science & Technology

    2009-12-01

    Malliakos. Detonation cell size measurements in high-temperature hydrogen- air-steam mixtures at the bnl high-temperature combustion facility. Technical...Report NUREG/CR-6391, BNL -NUREG-52482, Brookhaven National Laboratory, 1997. [13] W.B. Benedick, R. Knystautas, and J.H.S. Lee. Large-scale

  8. 40 CFR 98.85 - Procedures for estimating missing data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to determine combined process and combustion CO2 emissions, the missing data procedures in § 98.35 apply. (b) For CO2 process emissions from cement manufacturing facilities calculated according to § 98... best available estimate of the monthly clinker production based on information used for accounting...

  9. 40 CFR 63.8698 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... means an enclosed combustion device that primarily transfers heat liberated by burning fuel directly to process streams or to heat transfer liquids other than water. Research and development equipment means any... facility used to transfer oxidized asphalt from a storage tank into a tank truck, rail car, or barge...

  10. Sandia National Laboratories: Livermore Valley Open Campus (LVOC)

    Science.gov Websites

    Visiting the LVOC Locations Livermore Valley Open Campus (LVOC) Open engagement Expanding opportunities for open engagement of the broader scientific community. Building on success Sandia's Combustion Research Facility pioneered open collaboration over 30 years ago. Access to DOE-funded capabilities Expanding access

  11. FIR sample change

    NASA Image and Video Library

    2011-10-11

    ISS029-E-025108 (11 Oct. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, works on the Fluids Integrated Rack/Fluids and Combustion Facility (FIR/FCF), conducting another session with the Preliminary Advanced Colloids Experiment (PACE). Fossum is working at the Light Microscopy Module (LMM) in the Destiny laboratory of the International Space Station.

  12. 40 CFR 98.144 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calibrated scales or weigh hoppers. Total annual mass charged to glass melting furnaces at the facility shall... mineral mass fractions at least annually to verify the mass fraction data provided by the supplier of the... (Reapproved 2006) Standard Test Method for Major and Minor Elements in Combustion Residues from Coal...

  13. REVIEW AND EVALUATION OF CURRENT METHODS AND USER NEEDS FOR OTHER STATIONARY COMBUSTION SOURCES

    EPA Science Inventory

    The report gives results of Phase 1 of an effort to develop improved methodologies for estimating area source emissions of air pollutants from stationary combustion sources. The report (1) evaluates Area and Mobile Source (AMS) subsystem methodologies; (2) compares AMS results w...

  14. CHARACTERIZATION OF MERCURY-ENRICHED COAL COMBUSTION RESIDUES FROM ELECTRIC UTILITIES USING ENHANCED SORBENTS FOR MERCURY CONTROL

    EPA Science Inventory

    Leaching of mercury and other constituents of potential concern during land disposal or beneficial use of coal combustion residues (CCRs) is the environmental impact pathway evaluated in this report. The specific objectives of the research was to: (1) evaluate mercury, arsenic an...

  15. 40 CFR 63.1365 - Test methods and initial compliance procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature of 760 °C, the design evaluation must document that these conditions exist. (ii) For a combustion... autoignition temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B...

  16. 40 CFR 63.1365 - Test methods and initial compliance procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature of 760 °C, the design evaluation must document that these conditions exist. (ii) For a combustion... autoignition temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B...

  17. 40 CFR 63.1365 - Test methods and initial compliance procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperature of 760 °C, the design evaluation must document that these conditions exist. (ii) For a combustion... autoignition temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B...

  18. 40 CFR 63.1365 - Test methods and initial compliance procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... temperature of 760 °C, the design evaluation must document that these conditions exist. (ii) For a combustion... autoignition temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B...

  19. Comparative evaluation of thermal oxidative decomposition for oil-plant residues via thermogravimetric analysis: Thermal conversion characteristics, kinetics, and thermodynamics.

    PubMed

    Chen, Jianbiao; Wang, Yanhong; Lang, Xuemei; Ren, Xiu'e; Fan, Shuanshi

    2017-11-01

    Thermal oxidative decomposition characteristics, kinetics, and thermodynamics of rape straw (RS), rapeseed meal (RM), camellia seed shell (CS), and camellia seed meal (CM) were evaluated via thermogravimetric analysis (TGA). TG-DTG-DSC curves demonstrated that the combustion of oil-plant residues proceeded in three stages, including dehydration, release and combustion of organic volatiles, and chars oxidation. As revealed by combustion characteristic parameters, the ignition, burnout, and comprehensive combustion performance of residues were quite distinct from each other, and were improved by increasing heating rate. The kinetic parameters were determined by Coats-Redfern approach. The results showed that the most possible combustion mechanisms were order reaction models. The existence of kinetic compensation effect was clearly observed. The thermodynamic parameters (ΔH, ΔG, ΔS) at peak temperatures were calculated through the activated complex theory. With the combustion proceeding, the variation trends of ΔH, ΔG, and ΔS for RS (RM) similar to those for CS (CM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Evaluation of a bulk calorimeter and heat balance for determination of supersonic combustor efficiency

    NASA Technical Reports Server (NTRS)

    Mcclinton, C. R.; Anderson, G. Y.

    1980-01-01

    Results are presented from the shakedown and evaluation test of a bulk calorimeter. The calorimeter is designed to quench the combustion at the exit of a direct-connect, hydrogen fueled, scramjet combustor model, and to provide the measurements necessary to perform an analysis of combustion efficiency. Results indicate that the calorimeter quenches reaction, that reasonable response times are obtained, and that the calculated combustion efficiency is repeatable within + or -3 percent and varies in a regular way with combustor model parameters such as injected fuel equivalence ratio.

  1. Burning Characteristics and Flammability of PVC Cables in Groups

    NASA Technical Reports Server (NTRS)

    Mikado, T.; Akita, K.

    1988-01-01

    Because burning cables represent a danger of increasing secondary damage it is of utmost importance for disaster prevention to correctly evaluate the combustion characteristics of cable. However, in many cases cable is laid out in bundles complicating the combustion characteristics. A situation has developed where group cable characteristics are not completely understood. A new method is developed for testing the combustion of high polymer type cable and earlier reports gave comparative combustion measurement results. It was learned that there is considerable difference between the combustion characteristics of the grouped cables and those of single cables. This study is supplemental research concerning the special behavior of group PVC cables, throwing some light on their combustion characteristics.

  2. Preliminary assessment of combustion modes for internal combustion wave rotors

    NASA Technical Reports Server (NTRS)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  3. Evaluation of Liquid Fuel Field Space Heaters: Standard Military, Developmental and Foreign

    DTIC Science & Technology

    1978-10-01

    least 15 kg/kg, (2) to react as much fuel as possible by the flameless combustion reaction, and (3) to maintain gas temperatures not higher than 1000...as there is enough oxygen there to support combustion . As the fuel flow increases, the flames move up until at maximum flow only flameless ...HEATING FIELD HEATING COMBUSTION COMBUSTION (LIQUID FUELS) HEATERS TENT HEATERS LIQUID FUELS FUELS LIQUIDS OXYGEN tS»TRACT rCoaltnu* an rmrormm

  4. Analysis of Absorption Spectra of Polycyclic Aromatic Hydrocarbons in Gaseous- and Particle- Phase Emissions from Peat Fuel Combustion Under Controlled Conditions

    NASA Astrophysics Data System (ADS)

    Connolly, J. I.; Samburova, V.; Moosmüller, H.; Khlystov, A.

    2015-12-01

    Biomass and fossil fuel burning processes emit important organic pollutants called polycyclic aromatic hydrocarbons (PAHs) into the atmosphere. Smoldering combustion of peat is one of the largest contributors (up to 70%) of carbonaceous species and, therefore, it may be one of the main sources of these PAHs. PAHs can be detrimental to health, they are known to be potent mutagens and suspected carcinogens. They may also contribute to solar light absorption as the particles absorb in the blue and near ultraviolet (UV) region of the solar spectrum ("brown carbon" species). There is very little knowledge and large ambiguity regarding the contribution of PAHs to optical properties of organic carbon (OC) emitted from smoldering biomass combustion. This study focuses on quantifying and analyzing PAHs emitted from peat smoldering combustion to gain more knowledge on their optical properties. Five peat fuels collected in different regions of the world (Russia, USA) were burned under controlled conditions (e.g., relative humidity, combustion efficiency, fuel-moisture content) at the Desert Research Institute Biomass Burning facility (Reno, NV, USA). Combustion aerosols collected on TIGF filters followed by XAD resin cartridges were extracted and analyzed for gas-phase (semi-volatile) and particle-phase PAHs. Filter and XAD samples were extracted separately with dichloromethane followed by acetone using Accelerated Solvent Extractor (ACE 300, Dionex). To determine absorption properties, absorption spectra of extracts and standard PAHs were recorded between 190 and 900 nm with a UV/VIS spectrophotometer (PerkinElmer, Lambda 650). This poster will discuss the potential contribution of PAHs to brown carbon emitted from peat combustion and give a brief comparison with absorption spectra from biomass burning aerosols.

  5. Culturability of Bacillus spores on aerosol collection filters exposed to airborne combustion products of Al, Mg, and B·Ti.

    PubMed

    Adhikari, Atin; Yermakov, Michael; Indugula, Reshmi; Reponen, Tiina; Driks, Adam; Grinshpun, Sergey A

    2016-05-01

    Destruction of bioweapon facilities due to explosion or fire could aerosolize highly pathogenic microorganisms. The post-event air quality assessment is conducted through air sampling. A bioaerosol sample (often collected on a filter for further culture-based analysis) also contains combustion products, which may influence the microbial culturability and, thus, impact the outcome. We have examined the interaction between spores deposited on collection filters using two simulants of Bacillus anthracis [B. thuringiensis (Bt) and B. atrophaeus (referred to as BG)] and incoming combustion products of Al as well as Mg and B·Ti (common ingredient of metalized explosives). Spores extracted from Teflon, polycarbonate, mixed cellulose ester (MCE), and gelatin filters (most common filter media for bioaerosol sampling), which were exposed to combustion products during a short-term sampling, were analyzed by cultivation. Surprisingly, we observed that aluminum combustion products enhanced the culturability of Bt (but not BG) spores on Teflon filters increasing the culturable count by more than an order of magnitude. Testing polycarbonate and MCE filter materials also revealed a moderate increase of culturability although gelatin did not. No effect was observed with either of the two species interacting on either filter media with products originated by combustion of Mg and B·Ti. Sample contamination, spore agglomeration, effect of a filter material on the spore survival, changes in the spore wall ultrastructure and germination, as well as other factors were explored to interpret the findings. The study raises a question about the reliability of certain filter materials for collecting airborne bio-threat agents in combustion environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. CFD Simulation on the J-2X Engine Exhaust in the Center-Body Diffuser and Spray Chamber at the B-2 Facility

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Wey, Thomas; Buehrle, Robert

    2009-01-01

    A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.

  7. An experimental study of the effects of bodyside compression on forward swept sidewall compression inlets ingesting a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Rodi, Patrick E.

    1993-01-01

    Forward swept sidewall compression inlets have been tested in the Mach 4 Blowdown Facility at the NASA Langley Research Center to study the effects of bodyside compression surfaces on inlet performance in the presence of an incoming turbulent boundary layer. The measurements include mass flow capture and mean surface pressure distributions obtained during simulated combustion pressure increases downstream of the inlet. The kerosene-lampblack surface tracer technique has been used to obtain patterns of the local wall shear stress direction. Inlet performance is evaluated using starting and unstarting characteristics, mass capture, mean surface pressure distributions and permissible back pressure limits. The results indicate that inlet performance can be improved with selected bodyside compression surfaces placed between the inlet sidewalls.

  8. Evaluation of three flame retardant (FR) grey cotton blend nonwoven fabrics using micro-scale combustion calorimetry

    USDA-ARS?s Scientific Manuscript database

    Unbleached (grey or greige) cotton nonwoven (NW) fabrics (with 12.5% polypropylene scrim) were treated with three phosphate-nitrogen based FR formulations and evaluated with micro-scale combustion calorimetry (MCC). Heat release rate (HRR), Peak heat rate (PHRR), temperature at peak heat release ra...

  9. The combustion of sound and rotten coarse woody debris: a review

    Treesearch

    Joshua C. Hyde; Alistair M.S. Smith; Roger D. Ottmar; Ernesto C. Alvarado; Penelope Morgan

    2011-01-01

    Coarse woody debris serves many functions in forest ecosystem processes and has important implications for fire management as it affects air quality, soil heating and carbon budgets when it combusts. There is relatively little research evaluating the physical properties relating to the combustion of this coarse woody debris with even less specifically addressing...

  10. Comparative evaluation of gas-turbine engine combustion chamber starting and stalling characteristics for mechanical and air-injection

    NASA Technical Reports Server (NTRS)

    Dyatlov, I. N.

    1983-01-01

    The effectiveness of propellant atomization with and without air injection in the combustion chamber nozzle of a gas turbine engine is studied. Test show that the startup and burning performance of these combustion chambers can be improved by using an injection during the mechanical propellant atomization process. It is shown that the operational range of combustion chambers can be extended to poorer propellant mixtures by combined air injection mechanical atomization of the propellant.

  11. Advanced methods for processing ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, W.B.

    1997-04-01

    Combustion chemical vapor deposition (combustion CVD) is being developed for the deposition of high temperature oxide coatings. The process is being evaluated as an alternative to more capital intensive conventional coating processes. The thrusts during this reporting period were the development of the combustion CVD process for depositing lanthanum monazite, the determination of the influence of aerosol size on coating morphology, the incorporation of combustion CVD coatings into thermal barrier coatings (TBCs) and related oxidation research, and continued work on the deposition of zirconia-yttria coatings.

  12. Controlled synthesis of α-MnO{sub 2} nanowires and their catalytic performance for toluene combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Gao; Yu, Lin, E-mail: gych@gdut.edu.cn; Lan, Bang

    Highlights: • One-dimensional α-MnO{sub 2} nanowires were prepared by a facile hydrothermal route. • Shape and crystal phase of the products were controlled by tuning reaction conditions. • A possible formation mechanism of the α-MnO{sub 2} nanowires was discussed. • The α-MnO{sub 2} nanowires showed great catalytic activity for toluene combustion. - Abstract: α-MnO{sub 2} nanowires with a length about 6–10 μm and an average diameter of 20 nm were synthesized through a facile hydrothermal process without any templates or surfactants. The products were characterized by X-ray powder diffraction, Raman spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, hydrogenmore » temperature-programmed reduction techniques, X-ray photoelectron spectroscopy and surface area analysis. The effects of the hydrothermal temperature and the concentration of CH{sub 3}COOH on the crystal phase and morphology of the final products were studied in detail. The hydrothermal temperature and the concentration of CH{sub 3}COOH play crucial roles in determining the crystal phase and morphology of the products. The possible formation mechanism of the α-MnO{sub 2} nanowires was investigated and discussed. Additionally, the as-prepared α-MnO{sub 2} nanowires showed higher catalytic activity for toluene combustion than the commercial MnO{sub 2}, suggesting their potential applications in the elimination of volatile organic compounds.« less

  13. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2016-11-01

    Coal burning in power plants and industrial boilers is the largest combustion source of mercury emissions in China. Together, power plants and industrial boilers emit around 250 tonnes of mercury each year, or around half of atmospheric mercury emissions from anthropogenic sources in the country. Power plants in China are generally equipped with multi-pollutant control technologies, which offer the co-benefit of mercury removal, while mercury-specific control technologies have been installed in some facilities. In contrast, most industrial boilers have only basic or no flue gas cleaning. A combination of measures, including energy conservation, coal switching and blending, reducing the mercury contents of coals through washing, combustion controls, and flue gas cleaning, can be used to reduce mercury emissions from these stationary combustion sources. More stringent emission standards for the major air pollutants from coal-fired power plants and industrial boiler, along with standards for the previously unregulated mercury, were implemented recently, which is expected to bring significant reduction in their mercury emissions through the necessary upgrades of multi-pollutant and mercury-specific control technologies. Meanwhile, strong monitoring capacity and strict enforcement are necessary to ensure that the combustion sources operate in compliance with the new emission standards and achieve significant reduction in the emissions of mercury and other air pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Characterization of Diesel and Gasoline Compression Ignition Combustion in a Rapid Compression-Expansion Machine using OH* Chemiluminescence Imaging

    NASA Astrophysics Data System (ADS)

    Krishnan, Sundar Rajan; Srinivasan, Kalyan Kumar; Stegmeir, Matthew

    2015-11-01

    Direct-injection compression ignition combustion of diesel and gasoline were studied in a rapid compression-expansion machine (RCEM) using high-speed OH* chemiluminescence imaging. The RCEM (bore = 84 mm, stroke = 110-250 mm) was used to simulate engine-like operating conditions at the start of fuel injection. The fuels were supplied by a high-pressure fuel cart with an air-over-fuel pressure amplification system capable of providing fuel injection pressures up to 2000 bar. A production diesel fuel injector was modified to provide a single fuel spray for both diesel and gasoline operation. Time-resolved combustion pressure in the RCEM was measured using a Kistler piezoelectric pressure transducer mounted on the cylinder head and the instantaneous piston displacement was measured using an inductive linear displacement sensor (0.05 mm resolution). Time-resolved, line-of-sight OH* chemiluminescence images were obtained using a Phantom V611 CMOS camera (20.9 kHz @ 512 x 512 pixel resolution, ~ 48 μs time resolution) coupled with a short wave pass filter (cut-off ~ 348 nm). The instantaneous OH* distributions, which indicate high temperature flame regions within the combustion chamber, were used to discern the characteristic differences between diesel and gasoline compression ignition combustion. The authors gratefully acknowledge facilities support for the present work from the Energy Institute at Mississippi State University.

  15. Liquid Methane/Liquid Oxygen Propellant Conditioning Feed System (PCFS) Test Rigs

    NASA Technical Reports Server (NTRS)

    Skaff, A.; Grasl, S.; Nguyen, C.; Hockenberry S.; Schubert, J.; Arrington, L.; Vasek, T.

    2008-01-01

    As part of their Propulsion and Cryogenic Advanced Development (PCAD) program, NASA has embarked upon an effort to develop chemical rocket engines which utilize non-toxic, cryogenic propellants such as liquid oxygen (LO2) and liquid methane (LCH4). This effort includes the development and testing of a 100 lbf Reaction Control Engine (RCE) that will be used to evaluate the performance of a LO2/LCH4 rocket engine over a broad range of propellant temperatures and pressures. This testing will take place at NASA-Glenn Research Center's (GRC) Research Combustion Laboratory (RCL) test facility in Cleveland, OH, and is currently scheduled to begin in late 2008. While the initial tests will be performed at sea level, follow-on testing will be performed at NASA-GRC's Altitude Combustion Stand (ACS) for altitude testing. In support of these tests, Sierra Lobo, Inc. (SLI) has designed, developed, and fabricated two separate portable propellant feed systems under the Propellant Conditioning and Feed System (PCFS) task: one system for LCH4, and one for LO2. These systems will be capable of supplying propellants over a large range of conditions from highly densified to several hundred pounds per square inch (psi) saturated. This paper presents the details of the PCFS design and explores the full capability of these propellant feed systems.

  16. CFD analysis of municipal solid waste combustion using detailed chemical kinetic modelling.

    PubMed

    Frank, Alex; Castaldi, Marco J

    2014-08-01

    Nitrogen oxides (NO x ) emissions from the combustion of municipal solid waste (MSW) in waste-to-energy (WtE) facilities are receiving renewed attention to reduce their output further. While NO x emissions are currently 60% below allowed limits, further reductions will decrease the air pollution control (APC) system burden and reduce consumption of NH3. This work combines the incorporation of the GRI 3.0 mechanism as a detailed chemical kinetic model (DCKM) into a custom three-dimensional (3D) computational fluid dynamics (CFD) model fully to understand the NO x chemistry in the above-bed burnout zones. Specifically, thermal, prompt and fuel NO formation mechanisms were evaluated for the system and a parametric study was utilized to determine the effect of varying fuel nitrogen conversion intermediates between HCN, NH3 and NO directly. Simulation results indicate that the fuel nitrogen mechanism accounts for 92% of the total NO produced in the system with thermal and prompt mechanisms accounting for the remaining 8%. Results also show a 5% variation in final NO concentration between HCN and NH3 inlet conditions, demonstrating that the fuel nitrogen intermediate assumed is not significant. Furthermore, the conversion ratio of fuel nitrogen to NO was 0.33, revealing that the majority of fuel nitrogen forms N2. © The Author(s) 2014.

  17. PEER REVIEW SUPPORTING THE STANDARDS FOR THE ...

    EPA Pesticide Factsheets

    EPA has been working on developing risk assessments to assist regulators, industry, and the public in evaluating the environmental risks associated with Fossil Fuel Combustion Waste(s) (FFCW) management/disposal in landfills, surface impoundments, other disposal procedures and beneficial uses. The U.S. Environmental Protection Agency (EPA) is evaluating management options for solid wastes from coal combustion (e.g., fly ash, bottom ash, slag). As part of this effort, EPA has prepared the Draft Human and Ecological Risk Assessment of Coal Combustion Wastes. The purpose of this draft risk assessment is to identify and quantify human health and ecological risks that may be associated with current disposal practices for high-volume coal combustion waste (CCW), including fly ash, bottom ash, boiler slag, flue gas desulfurization (FGD) sludge, coal refuse waste, and wastes from fluidized-bed combustion (FBC) units. These risk estimates will help inform EPA’s decisions about how to treat CCW under Subtitle D of the Resource Conservation and Recovery Act.

  18. Advanced catalytic combustors for low pollutant emissions, phase 1

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.

    1979-01-01

    The feasibility of employing the known attractive and distinguishing features of catalytic combustion technology to reduce nitric oxide emissions from gas turbine engines during subsonic, stratospheric cruise operation was investigated. Six conceptual combustor designs employing catalytic combustion were defined and evaluated for their potential to meet specific emissions and performance goals. Based on these evaluations, two parallel-staged, fixed-geometry designs were identified as the most promising concepts. Additional design studies were conducted to produce detailed preliminary designs of these two combustors. Results indicate that cruise nitric oxide emissions can be reduced by an order of magnitude relative to current technology levels by the use of catalytic combustion. Also, these combustors have the potential for operating over the EPA landing-takeoff cycle and at cruise with a low pressure drop, high combustion efficiency and with a very low overall level of emission pollutants. The use of catalytic combustion, however, requires advanced technology generation in order to obtain the time-temperature catalytic reactor performance and durability required for practical aircraft engine combustors.

  19. Analysis of Self-Excited Combustion Instabilities Using Decomposition Techniques

    DTIC Science & Technology

    2016-07-05

    are evaluated for the study of self-excited longitudinal combustion instabilities in laboratory-scaled single-element gas turbine and rocket...Air Force Base, California 93524 DOI: 10.2514/1.J054557 Proper orthogonal decomposition and dynamic mode decomposition are evaluated for the study of...instabilities. In addition, we also evaluate the capabilities of the methods to deal with data sets of different spatial extents and temporal resolution

  20. 40 CFR 60.42 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fossil-Fuel-Fired Steam Generators § 60.42 Standard for particulate matter (PM). (a) Except as provided... fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one... owner or operator of an affected facility that combusts only gaseous or liquid fossil fuel (excluding...

  1. 40 CFR 60.42 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fossil-Fuel-Fired Steam Generators § 60.42 Standard for particulate matter (PM). (a) Except as provided... fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one... owner or operator of an affected facility that combusts only gaseous or liquid fossil fuel (excluding...

  2. 40 CFR 60.42 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fossil-Fuel-Fired Steam Generators § 60.42 Standard for particulate matter (PM). (a) Except as provided... fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one... owner or operator of an affected facility that combusts only gaseous or liquid fossil fuel (excluding...

  3. Assessment of Pneumatic Controller Emission Measurements using a High Volume Sampler at the Oil and Natural Gas Production Pads in Utah

    EPA Science Inventory

    Oil and Natural Gas (ONG) production facilities have the potential to emit greenhouse gases such as methane (CH4) and other hydrocarbons (HCs) to the atmosphere. ONG production sites have multiple emission sources including storage tank venting, enclosed combustion devices, engin...

  4. A PILOT-SCALE STUDY ON THE COMBUSTION OF WASTE ...

    EPA Pesticide Factsheets

    Symposium Paper Post-consumer carpet is a potential substitute fuel for high temperature thermal processes such as cement kilns and boilers.This paper reports on results examining emissions of PCDDs/Fs from a series of pilot-scale experiments performed on the EPA's rotary kiln incinerator simulator facility in Research triangle Park, NC.

  5. 40 CFR 60.58a - Compliance and performance testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... period when the affected facility is combusting only a fossil fuel or other non-MSW fuel and no MSW is... to the atmosphere and record the output of the system. (7) Following the date of the initial..., and operate a CEMS for measuring nitrogen oxides discharged to the atmosphere and record the output of...

  6. 40 CFR 60.58a - Compliance and performance testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... period when the affected facility is combusting only a fossil fuel or other non-MSW fuel and no MSW is... to the atmosphere and record the output of the system. (7) Following the date of the initial..., and operate a CEMS for measuring nitrogen oxides discharged to the atmosphere and record the output of...

  7. 40 CFR 60.58a - Compliance and performance testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... period when the affected facility is combusting only a fossil fuel or other non-MSW fuel and no MSW is... to the atmosphere and record the output of the system. (7) Following the date of the initial..., and operate a CEMS for measuring nitrogen oxides discharged to the atmosphere and record the output of...

  8. 40 CFR 60.58a - Compliance and performance testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... period when the affected facility is combusting only a fossil fuel or other non-MSW fuel and no MSW is... to the atmosphere and record the output of the system. (7) Following the date of the initial..., and operate a CEMS for measuring nitrogen oxides discharged to the atmosphere and record the output of...

  9. 40 CFR 60.58a - Compliance and performance testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... period when the affected facility is combusting only a fossil fuel or other non-MSW fuel and no MSW is... to the atmosphere and record the output of the system. (7) Following the date of the initial..., and operate a CEMS for measuring nitrogen oxides discharged to the atmosphere and record the output of...

  10. 40 CFR 60.50b - Applicability and delegation of authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... changes made to an existing municipal waste combustor unit primarily for the purpose of complying with... purposes, is not subject to this subpart if the owner or operator of the facility notifies EPA of this... primary or secondary smelters) that combusts waste for the primary purpose of recovering metals is not...

  11. 40 CFR 60.50b - Applicability and delegation of authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... changes made to an existing municipal waste combustor unit primarily for the purpose of complying with... purposes, is not subject to this subpart if the owner or operator of the facility notifies EPA of this... primary or secondary smelters) that combusts waste for the primary purpose of recovering metals is not...

  12. 40 CFR 60.50b - Applicability and delegation of authority.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... changes made to an existing municipal waste combustor unit primarily for the purpose of complying with... purposes, is not subject to this subpart if the owner or operator of the facility notifies EPA of this... primary or secondary smelters) that combusts waste for the primary purpose of recovering metals is not...

  13. 40 CFR 60.50b - Applicability and delegation of authority.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... changes made to an existing municipal waste combustor unit primarily for the purpose of complying with... purposes, is not subject to this subpart if the owner or operator of the facility notifies EPA of this... primary or secondary smelters) that combusts waste for the primary purpose of recovering metals is not...

  14. 40 CFR 60.50b - Applicability and delegation of authority.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... changes made to an existing municipal waste combustor unit primarily for the purpose of complying with... purposes, is not subject to this subpart if the owner or operator of the facility notifies EPA of this... primary or secondary smelters) that combusts waste for the primary purpose of recovering metals is not...

  15. 40 CFR 98.277 - Records that must be retained.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CO2) for each emissions source listed under § 98.270(b). (b) Annual analyses of spent pulping liquor HHV for each chemical recovery furnace at kraft and soda facilities. (c) Annual analyses of spent pulping liquor carbon content for each chemical recovery combustion unit at a sulfite or semichemical pulp...

  16. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom.

    PubMed

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-01-01

    Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. The Evaluation of High Temperature Adhesive Bonding Processes for Rocket Engine Combustion Chamber Applications

    NASA Technical Reports Server (NTRS)

    McCray, Daniel; Smith, Jeffrey; Rice, Brian; Blohowiak, Kay; Anderson, Robert; Shin, E. Eugene; McCorkle, Linda; Sutter, James

    2003-01-01

    NASA Glenn Research Center is currently evaluating the possibility of using high- temperature polymer matrix composites to reinforce the combustion chamber of a rocket engine. One potential design utilizes a honeycomb structure composed of a PMR-II- 50/M40J 4HS composite facesheet and titanium honeycomb core to reinforce a stainless steel shell. In order to properly fabricate this structure, adhesive bond PMR-II-50 composite. Proper prebond surface preparation is critical in order to obtain an acceptable adhesive bond. Improperly treated surfaces will exhibit decreased bond strength and durability, especially in metallic bonds where interface are susceptible to degradation due to heat and moisture. Most treatments for titanium and stainless steel alloys require the use of strong chemicals to etch and clean the surface. This processes are difficult to perform due to limited processing facilities as well as safety and environmental risks and they do not consistently yield optimum bond durability. Boeing Phantom Works previously developed sol-gel surface preparations for titanium alloys using a PETI-5 based polyimide adhesive. In support of part of NASA Glenn Research Center, UDRI and Boeing Phantom Works evaluated variations of this high temperature sol-gel surface preparation, primer type, and primer cure conditions on the adhesion performance of titanium and stainless steel using Cytec FM 680-1 polyimide adhesive. It was also found that a modified cure cycle of the FM 680-1 adhesive, i.e., 4 hrs at 370 F in vacuum + post cure, significantly increased the adhesion strength compared to the manufacturer's suggested cure cycle. In addition, the surface preparation of the PMR-II-50 composite was evaluated in terms of surface cleanness and roughness. This presentation will discuss the results of strength and durability testing conducted on titanium, stainless steel, and PMR-II-50 composite adherends to evaluate possible bonding processes.

  18. Robust, Reliable Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooldridge, Margaret Stacy; Im, Hong Geum

    2016-12-16

    The effects of high hydrogen content fuels were studied using experimental, computational and theoretical approaches to understand the effects of mixture and state conditions on the ignition behavior of the fuels. A rapid compression facility (RCF) was used to measure the ignition delay time of hydrogen and carbon monoxide mixtures. The data were combined with results of previous studies to develop ignition regime criteria. Analytical theory and direct numerical simulation were used to validate and interpret the RCF ignition data. Based on the integrated information the ignition regime criteria were extended to non-dimensional metrics which enable application of the resultsmore » to practical gas turbine combustion systems.« less

  19. Effects of fuel nozzle design on performance of an experimental annular combustor using natural gas fuel

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Schultz, D. F.

    1972-01-01

    Tests of various fuel nozzles were conducted with natural gas fuel in a full-annulus combustor. The nozzles were designed to provide either axial, angled, or radial fuel injection. Each fuel nozzle was evaluated by measuring combustion efficiency at relatively severe combustor operating conditions. Combustor blowout and altitude ignition tests were also used to evaluate nozzle designs. Results indicate that angled injection gave higher combustion efficiency, less tendency toward combustion instability, and altitude relight characteristics equal to or superior to those of the other fuel nozzles that were tested.

  20. Evaluating the acute effects of oral, non-combustible potential reduced exposure products marketed to smokers.

    PubMed

    Cobb, C O; Weaver, M F; Eissenberg, T

    2010-10-01

    Non-combustible potential reduced exposure products (PREPs; eg, Star Scientific's Ariva; a variety of other smokeless tobacco products) are marketed to reduce the harm associated with smoking. This marketing occurs despite an absence of objective data concerning the toxicant exposure and effects of these PREPs. Methods used to examine combustible PREPs were adapted to assess the acute effects of non-combustible PREPs for smokers. 28 overnight abstinent cigarette smokers (17 men, 14 non-white) each completed seven, Latin-squared ordered, approximately 2.5 h laboratory sessions that differed by product administered: Ariva, Marlboro Snus (Philip Morris, USA), Camel Snus (RJ Reynolds, Winston-Salem, North Carolina, USA), Commit nicotine lozenge (GlaxoSmithKline; 2 mg), own brand cigarettes, Quest cigarettes (Vector Tobacco; delivers very low levels of nicotine) and sham smoking (ie, puffing on an unlit cigarette). In each session, the product was administered twice (separated by 60 min), and plasma nicotine levels, expired air CO and subjective effects were assessed regularly. Non-combustible products delivered less nicotine than own brand cigarettes, did not expose smokers to CO and failed to suppress tobacco abstinence symptoms as effectively as combustible products. While decreased toxicant exposure is a potential indicator of harm reduction potential, a failure to suppress abstinence symptoms suggests that currently marketed non-combustible PREPs may not be a viable harm reduction strategy for US smokers. This study demonstrates how clinical laboratory methods can be used to evaluate the short-term effects of non-combustible PREPs for smokers.

Top