PARTICULATE EMISSIONS AND CONTROL IN FLUIDIZED-BED COMBUSTION: MODELING AND PARAMETRIC PERFORMANCE
The report discusses a model, developed to describe the physical characteristics of the particulates emitted from fluidized-bed combustion (FBC) systems and to evaluate data on FBC particulate control systems. The model, which describes the particulate emissions profile from FBC,...
NASA Technical Reports Server (NTRS)
Horio, M.; Wen, C. Y.
1976-01-01
A chemical engineering analysis is made of fluidized-bed combustor (FBC) performance, with FBC models developed to aid estimation of combustion efficiency and axial temperature profiles. The FBC is intended for combustion of pulverized coal and a pressurized FBC version is intended for firing gas turbines by burning coal. Transport phenomena are analyzed at length: circulation, mixing models, drifting, bubble wake lift, heat transfer, division of the FB reactor into idealized mixing cells. Some disadvantages of a coal FBC are pointed out: erosion of immersed heat-transfer tubing, complex feed systems, carryover of unburned coal particles, high particulate emission in off-streams. The low-temperature bed (800-950 C) contains limestone, and flue-gas-entrained SO2 and NOx can be kept within acceptable limits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, P.A.; Patel, N.M.; Painter, A.
Energy recovery from municipal solid waste (MSW) is an important component of an integrated waste management strategy. Waste management programs which remove or recover materials for recycling are particularly suited for considering the option of energy recovery via fluidized bed combustion (FBC). The last few years have seen growing interest in the application of FBC technology to the MSW treatment/disposal problem. This paper reviews and reports on the world-wide experience in fluidized bed combustion of MSW focusing particularly on the types and scales of the systems in operation in Japan and Scandinavia. In addition the paper also reports on themore » development of an energy from waste project employing circulating fluidized bed technology that is proposed for a local municipality in the UK. Japan currently has over 100 bubbling bed units in operation firing on 100% MSW; the technology is firmly established at scales of operation up to 160,000t/y (the largest single unit operates at 6.25t/h). The bubbling bed units accept MSW which has undergone only minimal pre-processing -- the waste is shredded to a nominal 300mm size fraction before being introduced to the furnace. There are distinct (combustion control) advantages to further processing of the waste stream prior to combustion. The Scandinavian countries in particular have been the prime movers in pioneering this technology to work in combination with circulating fluidized bed systems. Currently 2 units are in operation cofiring pre-processed MSW with a range of other biofuels. A number of FBC units firing 100% MSW are currently in the planning or construction stage around the world; they seem set to secure an increased market share particularly at the smaller scale of operation (up to about 200,000t/y).« less
Mandal, A K; Paramkusam, Bala Ramudu; Sinha, O P
2018-04-01
Though the majority of research on fly ash has proved its worth as a construction material, the utility of bottom ash is yet questionable due to its generation during the pulverized combustion process. The bottom ash produced during the fluidized bed combustion (FBC) process is attracting more attention due to the novelty of coal combustion technology. But, to establish its suitability as construction material, it is necessary to characterize it thoroughly with respect to the geotechnical as well as mineralogical points of view. For fulfilling these objectives, the present study mainly aims at characterizing the FBC bottom ash and its comparison with pulverized coal combustion (PCC) bottom ash, collected from the same origin of coal. Suitability of FBC bottom ash as a dike filter material in contrast to PCC bottom ash in replacing traditional filter material such as sand was also studied. The suitability criteria for utilization of both bottom ash and river sand as filter material on pond ash as a base material were evaluated, and both river sand and FBC bottom ash were found to be satisfactory. The study shows that FBC bottom ash is a better geo-material than PCC bottom ash, and it could be highly recommended as an alternative suitable filter material for constructing ash dikes in place of conventional sand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chindaprasirt, Prinya; Rattanasak, Ubolluk, E-mail: ubolluk@buu.ac.t
2010-04-15
In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electronmore » microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malhotra, V.M.; Wright, M.A.
1995-12-31
The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and transmission-Fourier transform infrared (FTIR) were conducted on PCC fly ash (Baldwin), FBC fly ash (ADM unit1-6), FBC fly ash (S.I. coal), FBC spent bed ash (ADM unit1-6), bottom ash, and scrubber sludge (CWLP) residues to characterize their geometrical shapes, mineral phases, and thermal stability. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whosemore » lattice structure is different from the lattice structure of conventional gypsum, and sludge does not contain hannebachite (CaSO{sub 3}0.5H{sub 2}O) phase. In the second and third quarters the focus of research has been on developing protocols for the formation of advanced brake composites and structural composites. Our attempts to fabricate brake frictional shoes, in the form of 1.25 inch disks, from PCC fly ash, FBC spent bed ash, scrubber sludge, coal char, iron particles, and coal tar were successful. Based on the experience gained and microscopic analyses, we have now upscaled our procedures to fabricate 2.5 inch diameter disks from coal combustion residues. The SEM and Young`s modulus analyses of brake composites fabricated at 400 psi < Pressure < 2200 psi suggest pressure has a strong influence on the particle packing and the filling of interstices in our composites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malhotra, V.M.; Wright, M.A.
1995-12-31
The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. During the first two quarters of the project, the thrust of the work directed towards characterizing the various coal combustion residues and FGD residue, i.e., scrubber sludge. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and transmission-Fourier transform infrared (FTIR) were conducted on PCC fly ash (Baldwin), FBC fly ash (ADK unit l-6), FBC fly ash (S.I. coal), FBC spent bed ash (ADM, unit l-6), bottom ash, and scrubbermore » sludge (CWLP) residues to characterize their geometrical shapes, mineral phases, and thermal stability. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whose lattice structure is different from the lattice structure of conventional gypsum, and sludge does not contain hannebachite (CaSO{sub 3}.0.5H{sub 2}O) phase. Our attempts to fabricate brake frictional shoes, in the form of 1.25 inch disks, from PCC fly ash, FBC spent bed ash, scrubber sludge, coal char, iron particles, and coal tar were successful. Based on the experience gained and microscopic analyses, we have now upscaled our procedures to fabricate 2.5 inch diameter disk,- from coal combustion residues. This has been achieved. The SEM and Young`s modulus analyses of brake composites fabricated at 400 psi < Pressure < 2200 psi suggest pressure has a strong influence on the particle packing and the filling of interstices in our composites. Also, these results along with mechanical behavior of the fabricated disks lead us to believe that the combination of surface altered PCC fly ash and scrubber sludge particles, together ed ash particles are ideal for our composite materials.« less
Polycyclic aromatic hydrocarbon (PAH) emissions from a coal-fired pilot FBC system.
Liu, K; Han, W; Pan, W P; Riley, J T
2001-06-29
Due to the extensive amount of data suggesting the hazards of these compounds, 16 polycyclic aromatic hydrocarbons (PAHs) are on the Environmental Protection Agency (EPA) Priority Pollutant List. Emissions of these PAHs in the flue gas from the combustion of four coals were measured during four 1000h combustion runs using the 0.1MW heat-input (MWth) bench-scale fluidized bed combustor (FBC). An on-line sampling system was designed for the 16 PAHs, which consisted of a glass wool filter, condenser, glass fiber filter, Teflon filter, and a Tenax trap. The filters and Tenax were extracted by methylene chloride and hexane, respectively, followed by GC/MS analysis using the selective ion monitoring (SIM) mode. In this project, the effects of operating parameters, limestone addition, chlorine content in the coal, and Ca/S molar ratio on the emissions of PAHs were studied. The results indicated that the emissions of PAHs in an FBC system are primarily dependent on the combustion temperature and excess air ratio. The injection of secondary air with high velocity in the freeboard effectively reduces PAH emissions. The addition of extra limestone can promote the formation of PAHs in the FBC system. Chlorine in the coal can possibly lead to large benzene ring PAH formation during combustion. The total PAH emission increases with an increase in the sulfur content of coal. Incomplete combustion results in PAHs with four or more benzene rings. High efficiency combustion results in PAHs with two or three benzene rings.
Demir, I.; Hughes, R.E.; DeMaris, P.J.
2001-01-01
Coal, ash, and limestone samples from a fluidized bed combustion (FBC) plant, a pulverized coal combustion (PC) plant, and a cyclone (CYC) plant in Illinois were analyzed to determine the combustion behavior of mineral matter, and to propose beneficial uses for the power plant ashes. Pyrite and marcasite in coal were converted during combustion to glass, hematite and magnetite. Calcite was converted to lime and anhydrite. The clay minerals were altered to mullite and glass. Quartz was partially altered to glass. Trace elements in coal were partially mobilized during combustion and, as a result, emitted into the atmosphere or adsorbed on fly ash or on hardware on the cool side of the power plants. Overall, the mobilities of 15 trace elements investigated were lower at the FBC plant than at the other plants. Only F and Mn at the FBC plant, F, Hg, and Se at the PC plant and Be, F, Hg, and Se at the CYC plant had over 50% of their concentrations mobilized. Se and Ge could be commercially recovered from some of the combustion ashes. The FBC ashes could be used as acid neutralizing agents in agriculture and waste treatment, and to produce sulfate fertilizers, gypsum wall boards, concrete, and cement. The PC and CYC fly ashes can potentially be used in the production of cement, concrete, ceramics, and zeolites. The PC and CYC bottom ashes could be used in stabilized road bases, as frits in roof shingles, and perhaps in manufacturing amber glass. ?? 2001 Elsevier Science Ltd. All rights reserved.
Fluidized Bed Boiler Assessment for Navy Applications
1986-11-01
rather than removing it from the flue gas later with "scrubbing" devices. Intro- duction of limestone in the bed will reduce SO emissions; two...boiler in a satisfactory manner, the bed level, combustion temperature, and the flue gas composition and temperature should be continuously monitored...The flue gas composition should be c^-ɝely monitored for pollutants and combustion efficiency. EVOLUTION OF FBC BOILERS The performance of FBC
Simulation of fluidized bed coal combustors
NASA Technical Reports Server (NTRS)
Rajan, R.
1979-01-01
The many deficiencies of previous work on simulation of fluidized bed combustion (FBC) processes are presented. An attempt is made to reduce these deficiencies, and to formulate a comprehensive FBC model taking into account the following elements: (1) devolatilization of coal and the subsequent combustion of volatiles and residual char; (2) sulfur dioxide capture by limestone; (3) NOx release and reduction of NOx by char; (4) attrition and elutriation of char and limestone; (5) bubble hydrodynamics; (6) solids mixing; (7) heat transfer between gas and solid, and solid and heat exchange surfaces; and (8) freeboard reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutanen, K.I.
Development of fluidized bed combustion (FBC) was started both in North America and in Europe in the 1960`s. In Europe and especially in Scandinavia the major driving force behind the development was the need to find new more efficient technologies for utilization of low-grade fuels like different biomasses and wastes. Both bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) technologies were under intensive R&D,D efforts and have now advanced to dominating role in industrial and district heating power plant markets in Europe. New advanced CFB designs are now entering the markets. In North America and especially in the USmore » the driving force behind the FBC development was initially the need to utilize different types of coals in a more efficient and environmentally acceptable way. The present and future markets seem to be mainly in biomass and multifuel applications where there is benefit from high combustion efficiency, high fuel flexibility and low emissions such as in the pulp and paper industry. The choice between CFB technology and BFB technology is based on selected fuels, emission requirements, plant size and on technical and economic feasibility. Based on Scandinavian experience there is vast potential in the North American industry to retrofit existing oil fired, pulverized coal fired, chemical recovery or grate fired boilers with FBC systems or to build a new FBC based boiler plant. This paper will present the status of CFB technologies and will compare technical and economic feasibility of CFB technology to CFB technology to BFB and also to other combustion methods. Power plant projects that are using advanced CFB technology e.g. Ahlstrom Pyroflow Compact technology for biomass firing and co-firing of biomass with other fuels will also be introduced.« less
PEER REVIEW SUPPORTING THE STANDARDS FOR THE ...
EPA has been working on developing risk assessments to assist regulators, industry, and the public in evaluating the environmental risks associated with Fossil Fuel Combustion Waste(s) (FFCW) management/disposal in landfills, surface impoundments, other disposal procedures and beneficial uses. The U.S. Environmental Protection Agency (EPA) is evaluating management options for solid wastes from coal combustion (e.g., fly ash, bottom ash, slag). As part of this effort, EPA has prepared the Draft Human and Ecological Risk Assessment of Coal Combustion Wastes. The purpose of this draft risk assessment is to identify and quantify human health and ecological risks that may be associated with current disposal practices for high-volume coal combustion waste (CCW), including fly ash, bottom ash, boiler slag, flue gas desulfurization (FGD) sludge, coal refuse waste, and wastes from fluidized-bed combustion (FBC) units. These risk estimates will help inform EPA’s decisions about how to treat CCW under Subtitle D of the Resource Conservation and Recovery Act.
Retention of elemental mercury in fly ashes in different atmospheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.A. Lopez-Anton; M. Diaz-Somoano; M.R. Martinez-Tarazona
2007-01-15
Mercury is an extremely volatile element, which is emitted from coal combustion to the environment mostly in the vapor phase. To avoid the environmental problems that the toxic species of this element may cause, control technologies for the removal of mercury are necessary. Recent research has shown that certain fly ash materials have an affinity for mercury. Moreover, it has been observed that fly ashes may catalyze the oxidation of elemental mercury and facilitate its capture. However, the exact nature of Hg-fly ash interactions is still unknown, and mercury oxidation through fly ash needs to be investigated more thoroughly. Inmore » this work, the influence of a gas atmosphere on the retention of elemental mercury on fly ashes of different characteristics was evaluated. The retention capacity was estimated comparatively in inert and two gas atmospheres containing species present in coal gasification and coal combustion. Fly ashes produced in two pulverized coal combustion (PCC) plants, produced from coals of different rank (CTA and CTSR), and a fly ash (CTP) produced in a fluidized bed combustion (FBC) plant were used as raw materials. The mercury retention capacity of these fly ashes was compared to the retention obtained in different activated carbons. Although the capture of mercury is very similar in the gasification atmosphere and N{sub 2}, it is much more efficient in a coal combustion retention, being greater in fly ashes from PCC than those from FBC plants. 22 refs., 6 figs., 3 tabs.« less
Lime-Based Sorbents for High-Temperature CO2 Capture—A Review of Sorbent Modification Methods
Manovic, Vasilije; Anthony, Edward J.
2010-01-01
This paper presents a review of the research on CO2 capture by lime-based looping cycles undertaken at CanmetENERGY’s (Ottawa, Canada) research laboratories. This is a new and very promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as more cost-effective technologies for CO2 capture. This new technology is based on the use of lime-based sorbents in a dual fluidized bed combustion (FBC) reactor which contains a carbonator—a unit for CO2 capture, and a calciner—a unit for CaO regeneration. However, even though natural materials are cheap and abundant and very good candidates as solid CO2 carriers, their performance in a practical system still shows significant limitations. These limitations include rapid loss of activity during the capture cycles, which is a result of sintering, attrition, and consequent elutriation from FBC reactors. Therefore, research on sorbent performance is critical and this paper reviews some of the promising ways to overcome these shortcomings. It is shown that reactivation by steam/water, thermal pre-treatment, and doping simultaneously with sorbent reforming and pelletization are promising potential solutions to reduce the loss of activity of these sorbents over multiple cycles of use. PMID:20948952
Combustion of anaerobically digested humus as a fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayhanian, M.; Jenkins, B.M.; Baxter, L.L.
Two pilot scale combustion experiments were conducted to explore the application of an anaerobically digested humus as fuel for commercial boilers. The experiments were performed in a fluidized bed combustor (FBC) and a multifuel suspension combustor (MFC). The results obtained indicate that the humus, blended with another conventional fuel (e.g., wood), can be used as a fuel in commercial boilers. Preliminary results of ash deposit analyses from the MFC indicate that the rate of deposition was low compared to high fouling biomass fuels such as straws, and similar to deposits obtained from wood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svendsen, R.L.
1996-12-31
Information is outlined on the Council of Industrial Boiler Owners (CIBO) special project on non-utility fossil fuel ash classification. Data are presented on; current (1996) regulatory status of fossil-fuel combustion wastes; FBC technology identified for further study; CIBO special project methods; Bevill amendment study factors; data collection; and CIBO special project status.
[Profitability of the bronchoscopy in the diagnosis of focal pulmonary malignant lesions].
García Quero, C; García Luján, R; González Torralba, F; de Miguel Poch, E; Alfaro Abreu, J; Villena Garrido, V; López Ríos, F; López Encuentra, A
2008-12-01
We define focal pulmonary lesion (FPL) as an intra-parenchymatous pulmonary lesion that is well circumscribed and completely surrounded by healthy lung. It is considered that the profitability of the fine needle aspiration puncture (FNAP) in FPL < or = 2 cm is better than that of the fibrobronchoscopy (FBC). To analyze the diagnostic profitability of the FNAP in the malignant FPL and study if it varies according to site, size and histology. We analyzed all the FBCs of our Unit between 01/2000 and 12/2001 in patients with solitary FLP < or = 6 cm with a definitive diagnosis of malignancy. The diagnostic profitability by size, site and histology was analyzed with Pearson's chi(2) statistics. 124 patients. Mean FBC per patient was 1.3. A total of 101 cases (82%) were diagnosed with FBC, 15 by thoracotomy and 8 by FNAP. Global diagnostic profitability of the FBC was 0.82 and the transbronchial biopsy 0.76. There are no diagnostic profitability differences by size (< or = 2 cm vs > 2 cm) (0.81 vs 0.82 p = 0.96), site (peripheral vs central) (0.79 vs 0.85 p = 0.41) and histology (epidermoid vs adenocarcinoma) (0.89 vs 0.75 p = 0.21). Profitability of the FBC in malignant FPL in our hospital is elevated without differences by size, site or histology. In our site, the initial diagnostic approach of the FLP is done with FBC.
Karathanasis, A. D.; Murdock, L. W.; Matocha, C. J.; Grove, J.; Thompson, Y. L.
2014-01-01
Slaking experiments were conducted of fragipan clods immersed in solutions of poultry manure, aerobically digested biosolid waste (ADB), fluidized bed combustion byproduct (FBC), D-H2O, CaCO3, NaF, Na-hexa-metaphosphate, and ryegrass root biomass. The fragipan clods were sampled from the Btx horizon of an Oxyaquic Fragiudalf in Kentucky. Wet sieving aggregate analysis showed significantly better fragmentation in the NaF, Na-hexa-metaphosphate, and ryegrass root solutions with a mean weight diameter range of 15.5–18.8 mm compared to the 44.2–47.9 mm of the poultry manure, ADB, and FBC treatments. Dissolved Si, Al, Fe, and Mn levels released in solution were ambiguous. The poor efficiency of the poultry manure, ADB, and FBC treatments was attributed to their high ionic strength, while the high efficiency of the NaF, Na-hexa-metaphosphate, and rye grass root solutions to their high sodium soluble ratio (SSR). A slaking mechanism is proposed suggesting that aqueous solutions with high SSR penetrate faster into the fragipan capillaries and generate the critical swelling pressure and shearing stress required to rupture the fragipan into several fragments. Additional fragmentation occurs in a followup stage during which potential Si, Al, Fe, and Mn binding agents may be released into solution. Field experiments testing these findings are in progress. PMID:25254233
Comparing the greenhouse gas emissions from three alternative waste combustion concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi; Tsupari, Eemeli; Sipilae, Kai
2012-03-15
Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system.more » The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.« less
Nainggolan, Hamonangan; Gea, Saharman; Bilotti, Emiliano; Peijs, Ton; Hutagalung, Sabar D
2013-01-01
The effects of the addition of fibres of bacterial cellulose (FBC) to commercial starch of Mater-Bi(®) have been investigated. FBC produced by cultivating Acetobacter xylinum for 21 days in glucose-based medium were purified by sodium hydroxide 2.5 wt % and sodium hypochlorite 2.5 wt % overnight, consecutively. To obtain water-free BC nanofibres, the pellicles were freeze dried at a pressure of 130 mbar at a cooling rate of 10 °C min(-1). Both Mater-Bi and FBC were blended by using a mini twin-screw extruder at 160 °C for 10 min at a rotor speed of 50 rpm. Tensile tests were performed according to ASTM D638 to measure the Young's modulus, tensile strength and elongation at break. A field emission scanning electron microscope was used to observe the morphology at an accelerating voltage of 10 kV. The crystallinity (T c) and melting temperature (T m) were measured by DSC. Results showed a significant improvement in mechanical and thermal properties in accordance with the addition of FBC into Mater-Bi. FBC is easily incorporated in Mater-Bi matrix and produces homogeneous Mater-Bi/FBC composite. The crystallinity of the Mater-Bi/FBC composites decrease in relation to the increase in the volume fraction of FBC.
Men and women show similar survival outcome in stage IV breast cancer.
Wu, San-Gang; Zhang, Wen-Wen; Liao, Xu-Lin; Sun, Jia-Yuan; Li, Feng-Yan; Su, Jing-Jun; He, Zhen-Yu
2017-08-01
To evaluate the clinicopathological features, patterns of distant metastases, and survival outcome between stage IV male breast cancer (MBC) and female breast cancer (FBC). Patients diagnosed with stage IV MBC and FBC between 2010 and 2013 were included using the Surveillance, Epidemiology, and End Results program. Univariate and multivariate Cox regression analyses were used to analyze risk factors for overall survival (OS). A total of 4997 patients were identified, including 60 MBC and 4937 FBC. Compared with FBC, patients with MBC were associated with a significantly higher rate of estrogen receptor-positive, progesterone receptor-positive, unmarried, lung metastases, and a lower frequency of liver metastases. Univariate and multivariate analyses showed no significant difference in OS between MBC and FBC. In the propensity score-matched population, there was also no difference in survival between MBC and FBC. Multivariate analysis of MBC showed that OS was longer for patients aged 50-69 years and with estrogen receptor-positive disease. There was no significant difference in survival outcome between stage IV MBC and FBC, but significant differences in clinicopathological features and patterns of metastases between the genders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Allen G; Quinn, Matthew J; Siddiqui, Yasmin; Wood, Michael D; Federiuk, Isaac F; Duman, Heather M; Ward, W Kenneth
2007-08-01
Foreign body encapsulation represents a chronic fibrotic response and has been a major obstacle that reduces the useful life of implanted biomedical devices. The precise mechanism underlying such an encapsulation is still unknown. We hypothesized that, considering its central role in many other fibrotic conditions, transforming growth factor beta (TGFbeta) may play an important role during the formation of foreign body capsule (FBC). In the present study, we implanted mock sensors in rats subcutaneously and excised FBC samples at day 7, 21, and 48-55 postimplantation. The most abundant TGFbeta isoform in all tissues was TGFbeta1, which was expressed minimally in control tissue. The expression of both TGFbeta1 RNA and protein was significantly increased in FBC tissues at all time points, with the highest level in day 7 FBC. The number of cells stained for phosphorylated Smad2, an indication of activated TGFbeta signaling, paralleled the expression of TGFbeta. A similar dynamic change was also observed in the numbers of FBC myofibroblasts, which in response to TGFbeta, differentiate from quiescent fibroblasts and synthesize collagen. Type I collagen, the most prominent downstream target of TGFbeta in fibrosis, was found in abundance in the FBC, especially during the latter time periods. We suggest that TGFbeta plays an important role in the FBC formation. Inhibition of TGFbeta signaling could be a promising strategy in the prevention of FBC formation, thereby extending the useful life of subcutaneous implants.
Survival benefit of tamoxifen and aromatase inhibitor in male and female breast cancer.
Eggemann, Holm; Altmann, Udo; Costa, Serban-Dan; Ignatov, Atanas
2018-02-01
Our goal was to compare the survival advantage of tamoxifen (TAM) and aromatase inhibitor (AI) in female (FBC) and male breast cancer (MBC). We performed a retrospective study of 2785 FBC and 257 MBC patients treated with hormonal therapy. The median follow-up was 106 months (range 3-151 months) and 42 months (range 2-115 months) for FBC and MBC, respectively. The patients were divided into two groups according to the hormonal therapy used: TAM-treated and AI-treated. MBC was characterized by older age, advanced tumor stage, and higher rate of lymph node metastases, in comparison with FBC. Matching analysis was performed using six prognostic criteria: patient age, tumor stage, tumor grade, lymph node status, human epidermal growth factor receptor (HER2) status, and administration of chemotherapy. The female and male patients were matched 2:1. In this analysis, 316 women and 158 men treated with TAM, and 60 women and 30 men treated with AI, were included. The overall survival (OS) was estimated by the Kaplan-Meier method and was compared between FBC and MBC. TAM-treated FBC and MBC patients had similar 5-year OS, 85.1 and 89.2%, respectively (p = 0.972). Notably, FBC patients treated with AI had significantly greater 5-year OS (85.0%) in comparison with AI-treated MBC patients (5-year OS of 73.3%; p = 0.028). The OS of TAM-treated patients with MBC was similar to the OS of TAM-treated FBC patients, whereas AI treatment is associated with poorer survival of MBC patients.
Ono, Hiroko; Nakamura, Atsushi; Kanemasa, Toshiyuki; Sakaguchi, Gaku; Shinohara, Shunji
2016-02-15
Although estrous cycle has been reported to influence antiociceptive effect of morphine in several pain conditions, its effect on cancer pain is not well established. We investigated the effect of estrogen on morphine antinociception using a bone cancer pain model and compared its potency with that of oxycodone. Female mice were ovariectomized (OVX) for preparation of a femur bone cancer pain (FBC) model. β-estradiol was subcutaneously (s.c.) administered and antinociceptive effects of opioids was assessed using the von Frey monofilament test. Although morphine (5-20mg/kg, s.c.) did have significant antinociceptive effects in the FBC-OVX group, its effects in the FBC-OVX+β-estradiol (OVX+E) group was limited. Oxycodone (1-5mg/kg, s.c.) exhibited significant effects in both groups. Expression changes in opioid-related genes (μ-, κ-, δ-opioid receptors, prodynorphin, proenkephalin, proopiomelanocortin) in the spinal and supraspinal sites were examined among the sham-OVX, sham-OVX+E, FBC-OVX, and FBC-OVX+E groups by in situ hybridization. These studies detected a significant increase in prodynorphin in the spinal dorsal horn of the FBC-OVX+E group. Spinal injection of a dynorphin-A antibody to FBC-OVX+E mice restored antinociception of morphine. In conclusion, we detected a differential effect of estrogen on morphine- and oxycodone-induced antinociception in a female FBC model. The effect of morphine was limited with estrogen exposure, which may be due to estrogen- and pain-mediated spinal expression of dynorphin-A. Copyright © 2016 Elsevier B.V. All rights reserved.
Fluidized bed combustor modeling
NASA Technical Reports Server (NTRS)
Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.
1977-01-01
A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.
Babigumira, Joseph B; Sethi, Ajay K; Smyth, Kathleen A; Singer, Mendel E
2009-01-01
Stakeholders in HIV/AIDS care currently use different programmes for provision of antiretroviral therapy (ART) in Uganda. It is not known which of these represents the best value for money. To compare the cost effectiveness of home-based care (HBC), facility-based care (FBC) and mobile clinic care (MCC) for provision of ART in Uganda. Incremental cost-effectiveness analysis was performed using decision and Markov modeling of adult AIDS patients in WHO Clinical Stage 3 and 4 from the perspective of the Ugandan healthcare system. The main outcome measures were cost (year 2008 values), life expectancy in life-years (LY) and the incremental cost-effectiveness ratio (ICER) measured as cost per QALY or LY gained over 10 years. Ten-year mean undiscounted life expectancy was lowest for FBC (3.6 LY), followed by MCC (4.3 LY) and highest for HBC (5.3 LY), while the mean discounted QALYs were also lowest for FBC (2.3), followed by MCC (2.9) and highest for HBC (3.7). The 10-year mean costs per patient were lowest for FBC ($US3212), followed by MCC ($US4782) and highest for HBC ($US7033). The ICER was lower for MCC versus FBC ($US2241 per LY and $US2615 per QALY) than for HBC versus MCC ($US2251 per LY and $US2814 per QALY). FBC remained cost effective in univariate and probabilistic sensitivity analyses. FBC appears to be the most cost-effective programme for provision of ART in Uganda. This analysis supports the implementation of FBC for scale-up and sustainability of ART in Uganda. HBC and MCC would be competitive only if there is increased access, increased adherence or reduced cost.
Forward Bay Cover Separation Modeling and Testing for the Orion Multi-Purpose Crew Vehicle
NASA Technical Reports Server (NTRS)
Ali, Yasmin; Chuhta, Jesse D.; Hughes, Michael P.; Radke, Tara S.
2015-01-01
Spacecraft multi-body separation events during atmospheric descent require complex testing and analysis to validate the flight separation dynamics models used to verify no re-contact. The NASA Orion Multi-Purpose Crew Vehicle (MPCV) architecture includes a highly-integrated Forward Bay Cover (FBC) jettison assembly design that combines parachutes and piston thrusters to separate the FBC from the Crew Module (CM) and avoid re-contact. A multi-disciplinary team across numerous organizations examined key model parameters and risk areas to develop a robust but affordable test campaign in order to validate and verify the FBC separation event for Exploration Flight Test-1 (EFT-1). The FBC jettison simulation model is highly complex, consisting of dozens of parameters varied simultaneously, with numerous multi-parameter interactions (coupling and feedback) among the various model elements, and encompassing distinct near-field, mid-field, and far-field regimes. The test campaign was composed of component-level testing (for example gas-piston thrusters and parachute mortars), ground FBC jettison tests, and FBC jettison air-drop tests that were accomplished by a highly multi-disciplinary team. Three ground jettison tests isolated the testing of mechanisms and structures to anchor the simulation models excluding aerodynamic effects. Subsequently, two air-drop tests added aerodynamic and parachute elements, and served as integrated system demonstrations, which had been preliminarily explored during the Orion Pad Abort-1 (PA-1) flight test in May 2010. Both ground and drop tests provided extensive data to validate analytical models and to verify the FBC jettison event for EFT-1. Additional testing will be required to support human certification of this separation event, for which NASA and Lockheed Martin are applying knowledge from Apollo and EFT-1 testing and modeling to develop a robust human-rated FBC separation event.
Babigumira, Joseph B.; Sethi, Ajay K.; Smyth, Kathleen A.; Singer, Mendel E.
2012-01-01
Background Stakeholders in HIV/AIDS care currently use different programmes for provision of antiretroviral therapy (ART) in Uganda. It is not known which of these represents the best value for money. Objective To compare the cost effectiveness of home-based care (HBC), facility-based care (FBC) and mobile clinic care (MCC) for provision of ART in Uganda. Methods Incremental cost-effectiveness analysis was performed using decision and Markov modeling of adult AIDS patients in WHO Clinical Stage 3 and 4 from the perspective of the Ugandan healthcare system. The main outcome measures were cost (year 2008 values), life expectancy in life-years (LY) and the incremental cost-effectiveness ratio (ICER) measured as cost per QALY or LY gained over 10 years. Results Ten-year mean undiscounted life expectancy was lowest for FBC (3.6 LY), followed by MCC (4.3 LY) and highest for HBC (5.3 LY), while the mean discounted QALYs were also lowest for FBC (2.3), followed by MCC (2.9) and highest for HBC (3.7). The 10-year mean costs per patient were lowest for FBC ($US3212), followed by MCC ($US4782) and highest for HBC ($US7033). The ICER was lower for MCC versus FBC ($US2241 per LY and $US2615 per QALY) than for HBC versus MCC ($US2251 per LY and $US2814 per QALY). FBC remained cost effective in univariate and probabilistic sensitivity analyses. Conclusions FBC appears to be the most cost-effective programme for provision of ART in Uganda. This analysis supports the implementation of FBC for scale-up and sustainability of ART in Uganda. HBC and MCC would be competitive only if there is increased access, increased adherence or reduced cost. PMID:19888795
Examining the Associations among Fibrocystic Breast Change, Total Lean Mass, and Percent Body Fat.
Chen, Yuan-Yuei; Fang, Wen-Hui; Wang, Chung-Ching; Kao, Tung-Wei; Chang, Yaw-Wen; Yang, Hui-Fang; Wu, Chen-Jung; Sun, Yu-Shan; Chen, Wei-Liang
2018-06-15
Fibrocystic breast change (FBC) is extremely common and occurrs in 90% of women during their lives. The association between body composition and risk of breast cancer is well established. We hypothesized that the effect might exist during the development of FBC. Our aim was to examine the relationships of total lean mass (TLM) and percent body fat (PBF) with FBC in a general female population. In total, 8477 female subjects aged 20 years or older were enrolled in the study at the Tri-Service General Hospital in Taiwan from 2011 to 2016. Comprehensive examinations including biochemical data, measurements of body composition and breast ultrasound were performed. PBF was positively associated with the presence of FBC (OR = 1.039, 95%CI: 1.018-1.060), and TLM showed the opposite result (OR = 0.893, 95%CI: 0.861-0.926). Condition of metabolic syndrome (MetS), diabetes (DM) and fatty liver modified the association between PBF and FBC (P < 0.001, P = 0.032 and P = 0.007, respectively). Female subjects diagnosed with MetS, DM, and fatty liver had higher risk of developing FBC than control subjects (OR = 1.110, 95%CI: 1.052-1.171; OR = 1.144, 95%CI: 1.024-1.278; OR = 1.049, 95%CI: 1.019, 1.080). Those with higher PBF (for highest quartile versus lowest, OR = 2.451, 95%CI: 1.523-3.944) or lower TLM (for highest quartile versus lowest, OR = 0.279, 95%CI: 0.171-0.455) had increased risk of developing FBC. In conclusion, increased PBF and reduced TLM were likely to predict the risk of the presence of FBC in a general female population.
Meat and bone meal as secondary fuel in fluidized bed combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. Fryda; K. Panopoulos; P. Vourliotis
2007-07-01
Meat and Bone Meal (MBM) was co-fired in a laboratory scale fluidized bed combustion (FBC) apparatus with two coals. Several fuel blends were combusted under different conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidized bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions which are reduced by MBM derived volatiles. The MBM ash, mainly containingmore » bone material rich in Ca, did not create any noteworthy desulphurization effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of agglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus not problematic. 37 refs., 9 figs., 3 tabs.« less
Nomura, Sadahiro; Fujii, Masami; Inoue, Takao; He, Yeting; Maruta, Yuichi; Koizumi, Hiroyasu; Suehiro, Eiichi; Imoto, Hirochika; Ishihara, Hideyuki; Oka, Fumiaki; Matsumoto, Mishiya; Owada, Yuji; Yamakawa, Takeshi; Suzuki, Michiyasu
2014-05-01
Recently, focal brain cooling (FBC) was proposed as a method for treating refractory epilepsy. However, the precise influence of cooling on the molecular basis of epilepsy has not been elucidated. Thus the aim of this study was to assess the effect of FBC on glutamate (Glu) concentration, cerebral blood flow (CBF), and glucose metabolism in patients with intractable epilepsy. Nine patients underwent FBC at 15°C for 30 min prior to cortical resection (n = 6) or hippocampectomy (n = 3). Measurement of metabolites and CBF, as well as electrocorticography (ECoG), was performed. Epileptic discharge (ED), as observed by ECoG, disappeared in the cooling period and reappeared in the rewarming period. Glu concentrations were high during the precooling period and were reduced to 51.2% during the cooling period (p = 0.025). Glycerol levels showed a similar decrease (p = 0.028). Lactate concentration was high during the precooling period and was reduced during the cooling period (21.3% decrease; p = 0.005). Glucose and pyruvate levels were maintained throughout the procedure. Changes in CBF were parallel to those observed by ECoG. FBC reduced EDs and concentrations of Glu and glycerol. This demonstrates the neuroprotective effect of FBC. Our findings confirm that FBC is a reasonable and optimal treatment option for patients with intractable epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Emma C., E-mail: emma.fields@ucdenver.edu; DeWitt, Peter; Fisher, Christine M.
Purpose: To analyze the stage-specific management of male breast cancer (MBC) with surgery and radiation therapy (RT) and relate them to outcomes and to female breast cancer (FBC). Methods and Materials: The Surveillance, Epidemiology, and End Results database was queried for all primary invasive MBC and FBC diagnosed from 1973 to 2008. Analyzable data included age, race, registry, grade, stage, estrogen and progesterone receptor status, type of surgery, and use of RT. Stage was defined as localized (LocD): confined to the breast; regional (RegD): involving skin, chest wall, and/or regional lymph nodes; and distant: M1. The primary endpoint was cause-specificmore » survival (CSS). Results: A total of 4276 cases of MBC and 718,587 cases of FBC were identified. Male breast cancer constituted 0.6% of all breast cancer. Comparing MBC with FBC, mastectomy (M) was used in 87.4% versus 38.3%, and breast-conserving surgery in 12.6% versus 52.6% (P<10{sup −4}). For males with LocD, CSS was not significantly different for the 4.6% treated with lumpectomy/RT versus the 70% treated with M alone (hazard ratio [HR] 1.33; 95% confidence interval [CI] 0.49-3.61; P=.57). Postmastectomy RT was delivered in 33% of males with RegD and was not associated with an improvement in CSS (HR 1.11; 95% CI 0.88-1.41; P=.37). There was a significant increase in the use of postmastectomy RT in MBC over time: 24.3%, 27.2%, and 36.8% for 1973-1987, 1988-1997, and 1998-2008, respectively (P<.0001). Cause-specific survival for MBC has improved: the largest significant change was identified for men diagnosed in 1998-2008 compared with 1973-1987 (HR 0.73; 95% CI 0.60-0.88; P=.0004). Conclusions: Surgical management of MBC is dramatically different than for FBC. The majority of males with LocD receive M despite equivalent CSS with lumpectomy/RT. Postmastectomy RT is greatly underutilized in MBC with RegD, although a CSS benefit was not demonstrated. Outcomes for MBC are improving, attributable to improved therapy and its use in this unscreened population.« less
First birth cesarean proportion: A missed indicator in controlling policies
Safari-Faramani, Roya; Haghdoost, Ali Akbar; Nakhaei, Nouzar; Foroudnia, Shohreh; Mahmoodabadi, Zahra; Safizadeh, Mansooreh
2016-01-01
Background: Around one out of two mothers give births by cesarean section (CS) surgery in Iran and about half of this number is due to previous CS. Recently Health Sector Evolution (HSEP) program (started in April 2014) targets the high rate of CS in Iran. To assess the impact of the interventions, we emphasized that the First Birth Cesarean (FBC) proportion is one of the main indicators to assess the controlling programs. Methods: Data on the mode of delivery were collected in Kerman province between 21 March and 20 March 2015 classified by hospital ownership. FBC proportion is defined as the number of CS in the first pregnancies divided by the total number of first births. Chi-square test for trend was used to assess the trends. Results: Total number of births was around 34000. There were 8.9 and 13.1 percent reduction in CS and FBC proportion respectively. CS proportion was 54.5 at the end of the first quarter of the studied period and reached to 49.6 at the end of the period (p<0.0001). Also, FBC proportion was 54.1 percent at first and reached to 47 percent at the end of the study period. The main reason for CS was due to previous CS. At the hospital level, the highest reduction in CS and FBC proportion were in public hospitals. Conclusion: Results suggested more reduction in FBC proportion than the CS proportion, so this is a very good sign since more potential CS cases will be prevented. As repeated CS is one of the main indications for the operation, in the short term, even effective policies may change the overall proportion slightly, while the FBC proportion is more sensitive to reflect the impacts. Therefore, it is necessary to target the main fuel to reduce CS proportion effectively. PMID:27579285
Wang, Bih-Ru; Chang, Yuh-Lih; Chen, Tzeng-Ji; Chiu, Jen-Hwey; Wu, Jing Chong; Wu, Min-Shan; Chou, Chia-Lin; Chou, Yueh-Ching
2014-01-01
Many female breast cancer (FBC) patients take Chinese herbal medicine (CHM) and Western medication (WM) concurrently in Taiwan. Despite the possibility of interactions between the CHM and WM mentioned in previous studies, the pattern of these coprescriptions in FBC patients remains unclear. Hence, the aim of the present study is to investigate the utilization of coprescriptions of CHM and WM among the FBC patients in Taiwan. The study was a cross-sectional survey using the sampled cohort in 2009 obtained from the National Health Insurance Research Database in Taiwan. There were 3,507 FBC patients identified from the registry for catastrophic illness patients. Ambulatory visit records, corresponding prescriptions, and the data of beneficiaries belonging to the FBC patients were further extracted. A total of 1,086 FBC patients used CHM at least once. CHM and WM prescribed within any overlapping duration were defined as coprescriptions. There were 868 (80.0%) patients simultaneously receiving CHM and WM. A total of 4,927 CHM prescriptions and 6,358 WM prescriptions were prescribed concurrently. Among these coprescriptions, the most frequently used CHM was jia-wei-xiao-yao-san (21.2%), and the most frequently coprescribed WM was acetaminophen (38.9%), followed by tamoxifen (25.5%). There were 346 patients using systemic adjuvant therapy and CHM concurrently. The most commonly coprescribed CHM with chemotherapy, endocrine therapy, and trastuzumab was xiang-sha-liu-jun-zi-tang, jia-wei-xiao-yao-san, and zhi-gan-cao-tang, respectively. The combined use of CHM with WM is prevalent. The main purpose of combining CHM with systemic cancer treatment is to alleviate the treatment-related adverse effects. However, the combination may result in the potential risk of drug-herb interactions. Further clinical studies are needed to evaluate the efficacy and safety of the CHM and WM coprescriptions for FBC patients.
Ward, W Kenneth; Slobodzian, Emily P; Tiekotter, Kenneth L; Wood, Michael D
2002-11-01
We addressed the effect of implant thickness, implant porosity, and polyurethane (PU) chemistry on angiogenesis and on the foreign body response in rats. The following materials were implanted subcutaneously for 7 weeks then excised for histologic analysis: a solid PU; a solid polyurethane with silicone and polyethylene oxide (PU-S-PEO); porous expanded polytetrafluoroethylene (ePTFE); and porous polyvinyl alcohol sponge (PVA). Two thicknesses of PU-S-PEO were compared: 300 microns (thin) and 2000 microns (thick). Foreign body capsule (FBC) thickness was much less in PU-S-PEO implants than in PU implants. In addition, FBC were thinner in thin implants than in thick implants. FBC was much more dense in solid implants than in porous implants. As compared with solid implants, porous implants (PVA and ePTFE) led to a marked increase in the number of microvessels that developed adjacent to the implant, as observed both with hematoxylin/eosin staining and with an immunohistochemical anti-endothelial stain. We conclude that the polyethylene oxide and silicone moieties in PU reduce the thickness of the subsequent FBC. In addition, thin implants lead to a thin FBC. Porous implants (PVA and ePTFE) cause more angiogenesis than solid implants. These results may have implications for the measurement of blood-derived analytes by biosensors.
van Erkelens, A; Sie, A S; Manders, P; Visser, A; Duijm, L E; Mann, R M; Ten Voorde, M; Kroeze, H; Prins, J B; Hoogerbrugge, N
2017-06-01
Identifying high familial breast cancer (FBC) risk improves detection of yet unknown BRCA1/2-mutation carriers, for whom BC risk is both highly likely and potentially preventable. We assessed whether a new online self-test could identify women at high FBC risk in population-based BC screening without inducing anxiety or distress. After their visit for screening mammography, women were invited by email to take an online self-test for identifying highly increased FBC risk-based on Dutch guidelines. Exclusion criteria were previously diagnosed as increased FBC risk or a personal history of BC. Anxiety (State-Trait Anxiety Inventory Dutch Version), distress (Hospital Anxiety Depression Scale) and BC risk perception were assessed using questionnaires, which were completed immediately before and after taking the online self-test and 2 weeks later. Of the 562 women invited by email, 406 (72%) completed the online self-test while 304 also completed questionnaires (response rate 54%). After exclusion criteria, 287 (51%) were included for data analysis. Median age was 56 years (range 50-74). A high or moderate FBC risk was identified in 12 (4%) and three (1%) women, respectively. After completion of the online self-test, anxiety and BC risk perception were decreased while distress scores remained unchanged. Levels were below clinical relevance. Most women (85%) would recommend the self-test; few (3%) would not. The online self-test identified previously unknown women at high FBC risk (4%), who may carry a BRCA1/2-mutation, without inducing anxiety or distress. We therefore recommend offering this self-test to women who attend population-based screening mammography for the first time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lacle, Miangela M; van Diest, Paul J; Goldschmeding, Roel; van der Wall, Elsken; Nguyen, Tri Q
2015-01-01
Connective tissue growth factor (CTGF/CCN2) is a member of the CCN family of secreted proteins that are believed to play an important role in the development of neoplasia. In particular, CTGF has been reported to play an important role in mammary tumorigenesis and to have prognostic value in female breast cancer (FBC). The aim of the present study was to investigate clinicopathologic correlations and prognostic value of CTGF in male breast cancer (MBC) and to compare these findings with FBC. For this, we studied CTGF protein expression by immunohistochemistry in 109 MBC cases and 75 FBC cases. In MBC, stromal CTGF expression was seen in the majority of the cases 78% (85/109) with high expression in 31/109 cases (28.4%), but expression in tumor cells was only seen in 9.2% (10/109) of cases. High stromal CTGF expression correlated with high grade and high proliferation index (>15%) assessed by MIB-1 immunohistochemical staining. CTGF expression in tumor epithelial cells did not correlate with any of the clinicopathologic features. In FBC, stromal CTGF expression positively correlated with mitotic count and tumor CTGF expression was associated with triple negative status of the tumor (p = 0.002). Neither stromal nor tumor epithelial cell CTGF expression had prognostic value in MBC and FBC. In conclusion, stromal CTGF expression was seen in a high percentage of MBC and was correlated with high grade and high proliferation index. In view of the important role of the microenvironment in cancer progression, this might suggest that stromal CTGF could be an interesting target for novel therapies and molecular imaging. However, the lack of association with prognosis warrants caution. The potential role of CTGF as a therapeutic target for triple negative FBC deserves to be further studied.
Sequential capture of CO2 and SO2 in a pressurized TGA simulating FBC conditions.
Sun, Ping; Grace, John R; Lim, C Jim; Anthony, Edward J
2007-04-15
Four FBC-based processes were investigated as possible means of sequentially capturing SO2 and CO2. Sorbent performance is the key to their technical feasibility. Two sorbents (a limestone and a dolomite) were tested in a pressurized thermogravimetric analyzer (PTGA). The sorbent behaviors were explained based on complex interaction between carbonation, sulfation, and direct sulfation. The best option involved using limestone or dolomite as a SO2-sorbent in a FBC combustor following cyclic CO2 capture. Highly sintered limestone is a good sorbent for SO2 because of the generation of macropores during calcination/carbonation cycling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Y.; Edwards, R.M.; Lee, K.Y.
1997-03-01
In this paper, a simplified model with a lower order is first developed for a nuclear steam generator system and verified against some realistic environments. Based on this simplified model, a hybrid multi-input and multi-out (MIMO) control system, consisting of feedforward control (FFC) and feedback control (FBC), is designed for wide range conditions by using the genetic algorithm (GA) technique. The FFC control, obtained by the GA optimization method, injects an a priori command input into the system to achieve an optimal performance for the designed system, while the GA-based FBC control provides the necessary compensation for any disturbances ormore » uncertainties in a real steam generator. The FBC control is an optimal design of a PI-based control system which would be more acceptable for industrial practices and power plant control system upgrades. The designed hybrid MIMO FFC/FBC control system is first applied to the simplified model and then to a more complicated model with a higher order which is used as a substitute of the real system to test the efficacy of the designed control system. Results from computer simulations show that the designed GA-based hybrid MIMO FFC/FBC control can achieve good responses and robust performances. Hence, it can be considered as a viable alternative to the current control system upgrade.« less
Khorshidi, Abdollah; Ashoor, Mansour
2014-05-01
This study investigates modulation transfer function (MTF) in parallel beam (PB) and fan beam (FB) collimators using the Monte Carlo method with full width at half maximum (FWHM), square and circular-shaped holes, and scatter and penetration (S + P) components. A regulation similar to the lead-to-air ratio was used for both collimators to estimate output data. The hole pattern was designed to compare FB by PB parameters. The radioactive source in air and in a water phantom placed in front of the collimators was simulated using MCNP5 code. The test results indicated that the square holes in PB (PBs) had better FWHM than did the cylindrical (PBc) holes. In contrast, the cylindrical holes in the FB (FBc) had better FWHM than the square holes. In general, the resolution of FBc was better than that of the PBc in air and scatter mediums. The S + P decreased for all collimators as the distance from the source to the collimator surface (z) increased. The FBc had a lower S + P than FBs, but PBc had a higher S + P than PBs. Of the FB and PB collimators with the identical hole shapes, PBs had a smaller S + P than FBs, and FBc had a smaller S + P than PBc. The MTF value for the FB was greater than for the PB and had increased spatial frequency; the FBc had higher MTF than the FBs and PB collimators. Estimating the FB using PB parameters and diverse hole shapes may be useful in collimator design to improve the resolution and efficiency of SPECT images.
Forward Bay Cover Separation Modeling and Testing for the Orion Multi-Purpose Crew Vehicle
NASA Technical Reports Server (NTRS)
Ali, Yasmin; Radke, Tara; Chuhta, Jesse; Hughes, Michael
2014-01-01
Spacecraft multi-body separation events during atmospheric descent require complex testing and analysis to validate the flight separation dynamics model and to verify no recontact. NASA Orion Multi-Purpose Crew Vehicle (MPCV) teams examined key model parameters and risk areas to develop a robust but affordable test campaign in order to validate and verify the Forward Bay Cover (FBC) separation event for Exploration Flight Test-1 (EFT-1). The FBC jettison simulation model is highly complex, consisting of dozens of parameters varied simultaneously, with numerous multi-parameter interactions (coupling and feedback) among the various model elements, and encompassing distinct near-field, mid-field, and far-field regimes. The test campaign was composed of component-level testing (for example gas-piston thrusters and parachute mortars), ground FBC jettison tests, and FBC jettison air-drop tests that were accomplished by a highly multi-disciplinary team. Three ground jettison tests isolated the testing of mechanisms and structures to anchor the simulation models excluding aerodynamic effects. Subsequently, two air-drop tests added aerodynamic and parachute parameters, and served as integrated system demonstrations, which had been preliminarily explored during the Orion Pad Abort-1 (PA-1) flight test in May 2010. Both ground and drop tests provided extensive data to validate analytical models and to verify the FBC jettison event for EFT-1, but more testing is required to support human certification, for which NASA and Lockheed Martin are applying knowledge from Apollo and EFT-1 testing and modeling to develop a robust but affordable human spacecraft capability.
Twelfth annual fluidized bed conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The Proceedings of the Twelfth Annual Fluidized Bed Conference held November 11-13, 1996 in Pittsburgh, PA are presented. Information is given on: owner`s discussions; new aspects and field upgrades in fluidized bed boilers; manufacturer`s perspectives; fuel considerations; FBC ash reclassification; and beneficial uses of FBC ash. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
Epele, María E
2011-01-01
Included within the field of research on changes in drug use patterns and vulnerability are conditions of emergency related to economic crisis, wars, and political conflict. This study addresses the complex connections between the rapid propagation of freebase cocaine (FBC)-locally known as "pasta base" or "Paco" in Argentina and the normalization of the consequences of Argentina's 2001-2002 political-economic crisis. On the basis of the results of an ethnographic study carried out in three neighborhoods of the Greater Buenos Aires area between 2001 and 2005, this article aims to analyze how changes in the material and social living conditions are interrelated with the high toxicity of FBC/Paco and engender the emerging compulsion of its consumption and deterioration to the bodies, subjectivities, and social activities of active drug users from these shantytowns. By analyzing the changes in transactions directly or indirectly involving drugs-specifically those ranging from cocaine to FBC/Paco-we can argue how structural poverty, "new poverty," is not only associated with the expansion of FBC/Paco but is also shaped by its use, modes of consumption, associated health problems, and sufferings.
Cost and performance of coal-based energy in Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temchin, J.; DeLallo, M.R.
1998-07-01
As part of the US Department of Energy's (DOE) efforts to establish the strategic benefits of Clean Coal Technologies (CCT), there is a need to evaluate the specific market potential where coal is a viable option. One such market is Brazil, where significant growth in economic development requires innovative and reliable technologies to support the use of domestic coal. While coal is Brazil's most abundant and economic fossil energy resource, it is presently under utilized in the production of electrical power. This report presents conceptual design for pulverized coal (PC) and circulating fluidized-bed combustion (CFBC) options with resulting capital, operatingmore » and financial parameters based on Brazil application conditions. Recent PC and CFBC plant capital costs have dropped with competition in the generation market and have established a competitive position in power generation. Key issues addressed in this study include: Application of market based design approach for FBC and PC, which is competitive within the current domestic, and international power generation markets. Design, fabrication, purchase, and construction methods which reduce capital investment while maintaining equipment quality and plant availability. Impact on coast and performance from application of Brazilian coals, foreign trade and tax policies, construction logistics, and labor requirements. Nominal production values of 200 MWe and 400 MWe were selected for the CFBC power plant and 400 MWe for the PC. The 400 MWe size was chosen to be consistent with the two largest Brazilian PC units. Fluidized bed technology, with limited experience in single units over 200 MW, would consist of two 200 MWe circulating fluidized bed boilers supplying steam to one steam turbine for the 400 MWe capacity. A 200 MWe capacity unit was also developed for CFBC option to support opportunities in re-powering and where specific site or other infrastructure constraints limit production.« less
Yu, Dapao; Wang, Xiaoyu; Yin, You; Zhan, Jinyu; Lewis, Bernard J.; Tian, Jie; Bao, Ye; Zhou, Wangming; Zhou, Li; Dai, Limin
2014-01-01
Accurate estimates of forest carbon storage and changes in storage capacity are critical for scientific assessment of the effects of forest management on the role of forests as carbon sinks. Up to now, several studies reported forest biomass carbon (FBC) in Liaoning Province based on data from China's Continuous Forest Inventory, however, their accuracy were still not known. This study compared estimates of FBC in Liaoning Province derived from different methods. We found substantial variation in estimates of FBC storage for young and middle-age forests. For provincial forests with high proportions in these age classes, the continuous biomass expansion factor method (CBM) by forest type with age class is more accurate and therefore more appropriate for estimating forest biomass. Based on the above approach designed for this study, forests in Liaoning Province were found to be a carbon sink, with carbon stocks increasing from 63.0 TgC in 1980 to 120.9 TgC in 2010, reflecting an annual increase of 1.9 TgC. The average carbon density of forest biomass in the province has increased from 26.2 Mg ha−1 in 1980 to 31.0 Mg ha−1 in 2010. While the largest FBC occurred in middle-age forests, the average carbon density decreased in this age class during these three decades. The increase in forest carbon density resulted primarily from the increased area and carbon storage of mature forests. The relatively long age interval in each age class for slow-growing forest types increased the uncertainty of FBC estimates by CBM-forest type with age class, and further studies should devote more attention to the time span of age classes in establishing biomass expansion factors for use in CBM calculations. PMID:24586881
Yu, Dapao; Wang, Xiaoyu; Yin, You; Zhan, Jinyu; Lewis, Bernard J; Tian, Jie; Bao, Ye; Zhou, Wangming; Zhou, Li; Dai, Limin
2014-01-01
Accurate estimates of forest carbon storage and changes in storage capacity are critical for scientific assessment of the effects of forest management on the role of forests as carbon sinks. Up to now, several studies reported forest biomass carbon (FBC) in Liaoning Province based on data from China's Continuous Forest Inventory, however, their accuracy were still not known. This study compared estimates of FBC in Liaoning Province derived from different methods. We found substantial variation in estimates of FBC storage for young and middle-age forests. For provincial forests with high proportions in these age classes, the continuous biomass expansion factor method (CBM) by forest type with age class is more accurate and therefore more appropriate for estimating forest biomass. Based on the above approach designed for this study, forests in Liaoning Province were found to be a carbon sink, with carbon stocks increasing from 63.0 TgC in 1980 to 120.9 TgC in 2010, reflecting an annual increase of 1.9 TgC. The average carbon density of forest biomass in the province has increased from 26.2 Mg ha(-1) in 1980 to 31.0 Mg ha(-1) in 2010. While the largest FBC occurred in middle-age forests, the average carbon density decreased in this age class during these three decades. The increase in forest carbon density resulted primarily from the increased area and carbon storage of mature forests. The relatively long age interval in each age class for slow-growing forest types increased the uncertainty of FBC estimates by CBM-forest type with age class, and further studies should devote more attention to the time span of age classes in establishing biomass expansion factors for use in CBM calculations.
Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Li, Lehua; Zhang, Zhikun; Chen, Huafu; Zhao, Jingping
2017-03-01
Abnormal regional activity and functional connectivity of the default-mode network (DMN) have been reported in schizophrenia. However, previous studies may have been biased by unmatched case-control design. To limit such bias, the present study used both the family-based case-control design and the traditional case-control design to investigate abnormal regional activity of the DMN in patients with schizophrenia at rest.Twenty-eight first-episode, drug-naive patients with schizophrenia, 28 age-, sex-matched unaffected siblings of the patients (family-based controls, FBC), and 40 healthy controls (HC) underwent resting-state functional magnetic resonance imaging (fMRI) scans. The group-independent component analysis and fractional amplitude of low-frequency fluctuation (fALFF) methods were used to analyze the data.Patients with schizophrenia show increased fALFF in an overlapped region of the right superior medial prefrontal cortex (MPFC) relative to the FBC and the HC. Compared with the HC, the patients and the FBC exhibit increased fALFF in an overlapped region of the left posterior cingulate cortex/precuneus (PCC/PCu). Furthermore, the z values of the 2 overlapped regions can separate the patients from the FBC/HC, and separate the patients/FBC from the HC with relatively high sensitivity and specificity.Both the family-based case-control and traditional case-control designs reveal hyperactivity of the DMN in first-episode, drug-naive patients with paranoid schizophrenia, which highlights the importance of the DMN in the neurobiology of schizophrenia. Family-based case-control design can limit the confounding effects of environmental factors in schizophrenia. Combination of the family-based case-control and traditional case-control designs may be a viable option for the neuroimaging studies.
NASA Technical Reports Server (NTRS)
Newsom, D. E.; Wolsko, T.
1980-01-01
A preliminary comparative assessment of land use for the satellite power system (SPS), other solar technologies, and alternative electric energy technologies was conducted. The alternative technologies are coal gasification/combined-cycle, coal fluidized-bed combustion (FBC), light water reactor (LWR), liquid metal fast breeder reactor (LMFBR), terrestrial photovoltaics (TPV), solar thermal electric (STE), and ocean thermal energy conversion (OTEC). The major issues of a land use assessment are the quantity, purpose, duration, location, and costs of the required land use. The phased methodology described treats the first four issues, but not the costs. Several past efforts are comparative or single technology assessment are reviewed briefly. The current state of knowledge about land use is described for each technology. Conclusions are drawn regarding deficiencies in the data on comparative land use and needs for further research.
NASA Astrophysics Data System (ADS)
Streletskiy, D. A.; Shiklomanov, N. I.; Efimov, S. V.; Shkolnik, I.
2012-12-01
The discoveries of mineral resources followed by an extensive economic development of the Russian North in 1960s led to a development of complex infrastructure on permafrost and urbanization of the Russian Arctic. Despite the mass migration from the northern regions, followed by the collapse of the Soviet Union and the diminishing government support, the Russian Arctic inherited massive infrastructure and remained predominantly urban. Currently, only in five districts bordering Arctic Ocean more than 1.4 million people live in urban-style buildings built on permafrost. Majority of the buildings are constructed assuming the equilibrium conditions of heat-exchange between atmosphere and permafrost underneath. This is usually achieved by construction on piles with ventilated cellars allowing ground cooling in a winter and shading in a summer. The ability of the foundations to carry structural load or foundation bearing capacity (FBC) depends on permafrost properties and changes according to permafrost temperature and active-layer depth. Climate warming observed in recent decades created conditions of diminishing FBC and resulted in deformations and failures of structures built on permafrost. This work is focused on quantitative assessment of these changes at a regional scale. In order to estimate the role of climate change on stability of structures build according to the passive principle, the permafrost-geotechnical model was developed. The historical changes were assessed by comparing model results for period associated with industrialization and construction boom in the Russian North (1965-1975) and present conditions (1995-2005) using NCEP climatic datasets. Projected changes in FBC according to A2 IPCC scenario for the mid-21st century (2041-2060) relative to baseline period (1981-2000) were assessed using output from the ensemble of MGO RCM climate change simulations. It has been found that substantial decrease in FBC will likely occur for the majority of structures built during the industrialization of the Russian North. The decrease of FBC is most pronounced in the regions of West Siberia and Chukotka. The geographic assessment shows that about 0.4 million people currently live in the areas where FBC already decreased by more than 15%. Projected changes of FBC are estimated to be even more significant by the mid 21st century considering 2-4 oC increase in mean annual air temperature in the permafrost regions of Russia. The permafrost temperature increase is modified by changes in snow cover accumulation and continentality and is less than that of the air. Despite that, the decreases in FBC are projected to be quite significant, if not catastrophic in the Russian European North and West Siberia, Western Taymyr and eastern Chukotka (40-50% and more). To mitigate the negative consequences of permafrost warming, the engineering solutions will have to adapt climate projections in construction design, introduce much higher safety coefficients and technological solutions (thermosyphons) to protect permafrost from warming. Failure to do so may result is severe economic and social consequences, as infrastructure in series of large urban settlements will be affected.
Economic Benefit of Coal Utilization/Conversion at Air Force Bases: Screening Study
1989-08-01
fire-tLbe) boilers that are small enough to be shipped by rail. The field-erected units are larger, water- tube boilers. The pulverized coal-fired and...circulating FBC boilers considered are field-erected, water- tube boilers. Pollution control technology costs were considered to a limited extent. All...Coal/H 0 mix (S/MBtu) = 3.00 OPTIONS Cal/oil mix (S/MBtu) 3.50 Soot blower multiplier = 0.0 Tube bank mod multiplier = 1.0 Primary fuel is 1 Bottom ash
Low-Cost Approach to the Design and Fabrication of a LOX/RP-1 Injector
NASA Technical Reports Server (NTRS)
Shadoan, Michael D.; Sparks, Dave L.; Turner, James E. (Technical Monitor)
2000-01-01
NASA Marshall Space Flight Center (MSFC) has designed, built, and is currently testing Fastrac, a liquid oxygen (LOX)/RP-1 fueled 60K-lb thrust class rocket engine. One facet of Fastrac, which makes it unique is that it is the first large-scale engine designed and developed in accordance with the Agency's mandated "faster, better, cheaper" (FBC) program policy. The engine was developed under the auspices of MSFC's Low Cost Boost Technology office. Development work for the main injector actually began in 1993 in subscale form. In 1996, work began on the full-scale unit approximately 1 year prior to initiation of the engine development program. In order to achieve the value goals established by the FBC policy, a review of traditional design practices was necessary. This internal reevaluation would ultimately challenge more conventional methods of material selection. design process, and fabrication techniques. The effort was highly successful. This "new way" of thinking has resulted in an innovative injector design, one with reduced complexity and significantly lower cost. Application of lessons learned during this effort to new or existing designs can have a similar effect on costs and future program successes.
Beyond BMI: Conceptual Issues Related to Overweight and Obese Patients
Müller, Manfred James; Braun, Wiebke; Enderle, Janna; Bosy-Westphal, Anja
2016-01-01
BMI is widely used as a measure of weight status and disease risks; it defines overweight and obesity based on statistical criteria. BMI is a score; neither is it biologically sound nor does it reflect a suitable phenotype worthwhile to study. Because of its limited value, BMI cannot provide profound insight into obesity biology and its co-morbidity. Alternative assessments of weight status include detailed phenotyping by body composition analysis (BCA). However, predicting disease risks, fat mass, and fat-free mass as assessed by validated techniques (i.e., densitometry, dual energy X ray absorptiometry, and bioelectrical impedance analysis) does not exceed the value of BMI. Going beyond BMI and descriptive BCA, the concept of functional body composition (FBC) integrates body components into regulatory systems. FBC refers to the masses of body components, organs, and tissues as well as to their inter-relationships within the context of endocrine, metabolic and immune functions. FBC can be used to define specific phenotypes of obesity, e.g. the sarcopenic-obese patient. Well-characterized obesity phenotypes are a precondition for targeted research (e.g., on the genomics of obesity) and patient-centered care (e.g., adequate treatment of individual obese phenotypes such as the sarcopenic-obese patient). FBC contributes to a future definition of overweight and obesity based on physiological criteria rather than on body weight alone. PMID:27286962
An overview of metals recovery from thermal power plant solid wastes.
Meawad, Amr S; Bojinova, Darinka Y; Pelovski, Yoncho G
2010-12-01
Thermal power plants (TPPs) that burn fossil fuels emit several pollutants linked to the environmental problems of acid rain, urban ozone, and the possibility of global climate change. As coal is burned in a power plant, its noncombustible mineral content is partitioned into bottom ash, which remains in the furnace, and fly ash, which rises with flue gases. Two other by-products of coal combustion air-pollution control technologies are flue gas desulfurization (FGD) wastes and fluidized-bed combustion (FBC) wastes. This paper analyzed and summarized the generation, characteristics and application of TPP solid wastes and discussed the potential effects of such solid wastes on the environment. On this basis, a review of a number of methods for recovery of metals from TPP solid wastes was made. They usually contain a quantity of valuable metals and they are actually a secondary resource of metals. By applying mineral processing technologies and hydrometallurgical and biohydrometallurgical processes, it is possible to recover metals such as Al, Ga, Ge, Ca, Cd, Fe, Hg, Mg, Na, Ni, Pb, Ra, Th, V, Zn, etc., from TPP solid wastes. Recovery of metals from such wastes and its utilization are important not only for saving metal resources, but also for protecting the environment. Copyright © 2010 Elsevier Ltd. All rights reserved.
FBC: a flat binary code scheme for fast Manhattan hash retrieval
NASA Astrophysics Data System (ADS)
Kong, Yan; Wu, Fuzhang; Gao, Lifa; Wu, Yanjun
2018-04-01
Hash coding is a widely used technique in approximate nearest neighbor (ANN) search, especially in document search and multimedia (such as image and video) retrieval. Based on the difference of distance measurement, hash methods are generally classified into two categories: Hamming hashing and Manhattan hashing. Benefitting from better neighborhood structure preservation, Manhattan hashing methods outperform earlier methods in search effectiveness. However, due to using decimal arithmetic operations instead of bit operations, Manhattan hashing becomes a more time-consuming process, which significantly decreases the whole search efficiency. To solve this problem, we present an intuitive hash scheme which uses Flat Binary Code (FBC) to encode the data points. As a result, the decimal arithmetic used in previous Manhattan hashing can be replaced by more efficient XOR operator. The final experiments show that with a reasonable memory space growth, our FBC speeds up more than 80% averagely without any search accuracy loss when comparing to the state-of-art Manhattan hashing methods.
The Systems Biology Markup Language (SBML) Level 3 Package: Flux Balance Constraints.
Olivier, Brett G; Bergmann, Frank T
2015-09-04
Constraint-based modeling is a well established modelling methodology used to analyze and study biological networks on both a medium and genome scale. Due to their large size, genome scale models are typically analysed using constraint-based optimization techniques. One widely used method is Flux Balance Analysis (FBA) which, for example, requires a modelling description to include: the definition of a stoichiometric matrix, an objective function and bounds on the values that fluxes can obtain at steady state. The Flux Balance Constraints (FBC) Package extends SBML Level 3 and provides a standardized format for the encoding, exchange and annotation of constraint-based models. It includes support for modelling concepts such as objective functions, flux bounds and model component annotation that facilitates reaction balancing. The FBC package establishes a base level for the unambiguous exchange of genome-scale, constraint-based models, that can be built upon by the community to meet future needs (e. g. by extending it to cover dynamic FBC models).
The Systems Biology Markup Language (SBML) Level 3 Package: Flux Balance Constraints.
Olivier, Brett G; Bergmann, Frank T
2015-06-01
Constraint-based modeling is a well established modelling methodology used to analyze and study biological networks on both a medium and genome scale. Due to their large size, genome scale models are typically analysed using constraint-based optimization techniques. One widely used method is Flux Balance Analysis (FBA) which, for example, requires a modelling description to include: the definition of a stoichiometric matrix, an objective function and bounds on the values that fluxes can obtain at steady state. The Flux Balance Constraints (FBC) Package extends SBML Level 3 and provides a standardized format for the encoding, exchange and annotation of constraint-based models. It includes support for modelling concepts such as objective functions, flux bounds and model component annotation that facilitates reaction balancing. The FBC package establishes a base level for the unambiguous exchange of genome-scale, constraint-based models, that can be built upon by the community to meet future needs (e. g. by extending it to cover dynamic FBC models).
Efficacy of alum and coal combustion by-products in stabilizing manure phosphorus.
Dou, Z; Zhang, G Y; Stout, W L; Toth, J D; Ferguson, J D
2003-01-01
Animal manures contain large amounts of soluble phosphorus (P), which is prone to runoff losses when manure is surface-applied. Here we report the efficacy of alum and three coal combustion by-products in reducing P solubility when added to dairy, swine, or broiler litter manures in a laboratory incubation study. Compared with unamended controls, alum effectively reduced readily soluble P, determined in water extracts of moist manure samples with 1 h of shaking, for all three manures. The reduction ranged from 80 to 99% at treatment rates of 100 to 250 g alum kg(-1) manure dry matter. The fluidized bed combustion fly ash (FBC) reduced readily soluble P by 50 to 60% at a rate of 400 g kg(-1) for all three manures. Flue gas desulfurization by-product (FGD) reduced readily soluble P by nearly 80% when added to swine manure and broiler litter at 150 and 250 g kg(-1). Another by-product, anthracite refuse fly ash (ANT), was ineffective for all three manures. In all cases, reduction in readily soluble P is primarily associated with inorganic phosphorus (P(i)) with little change in organic phosphorus (P(o)). Sequential extraction results indicate that the by-product treatments shifted manure P from H2O-P into a less vulnerable fraction, NaHCO3 - P, while the alum treatment shifted the P into even more stable forms, mostly NaOH-P. Such shifts in P fractions would have little influence on P availability for crops over the long-term but would retard and reduce potential losses of P following manure applications.
Meijboom, Rosanne W; Grootens, Koen P
2017-11-01
The necessity of annual laboratory follow-up in patients treated with valproic acid (VPA) is controversial. We investigated the need for annual laboratory follow-up of liver enzymes, electrolytes, and full blood count (FBC) in patients treated with VPA. A systematic search in Evidence-Based Medicine Reviews (EBMR), MEDLINE, and EMBASE was undertaken in December 2016 to identify all published articles investigating or citing valproic acid, liver function disorders, electrolyte disorders, and FBC deviations. This review included 108 articles. As the number of participants and duration of the study was not adequate in most studies to detect rare adverse events, studies did not demonstrate a clear prevalence of hepatotoxicity. While a transient increase of transaminases is common and seldom harmful, severe hepatotoxicity is a rare phenomenon and is not prevented by routine laboratory monitoring. VPA had no relevant effect on serum calcium, sodium, potassium, and albumin. The prevalence of FBC varied from 0.6 to 27.8%, occurred mostly in the first 2 years of therapy, and was usually asymptomatic. Long-term monitoring in VPA treatment is only necessary when there have been dose adjustments, co-medication switches, or co-morbidity. In uncomplicated cases, annual laboratory follow-up may be discontinued after 2 years of VPA treatment. Encouraging patients to be vigilant is more effective in the detection of hepatotoxicity than laboratory testing. Follow-up of FBC at 3-6 months, 1 year, and 2 years after start or after a dose increase of VPA or interacting medication is sufficient.
Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA
2011-10-11
Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrifvars, B.J.; Blomquist, J.P.; Hupa, M.
1998-12-31
Previous work at Aabo Akademi University has focused on identification and quantification of various sintering mechanisms which are relevant for problematic ash behavior during biomass combustion in fluidized bed combustion conditions, and on multi-component multi-phase thermodynamic phase equilibrium calculations of ash chemistry in these conditions. In both areas new information has been developed and useful modeling capabilities have been created. Based on the previous work, the authors now present a novel approach of using a combination of an advanced fuel analysis method and thermodynamic phase equilibrium calculations to predict the chemical and thermal behavior of the ash when firing biomass.more » Four different fuels [coal, forest residues, wood chips, and a mixture of forest residue and wood chips] were analyzed using the chemical fractionation analysis technique. Based on the results from these analyses, the authors formed two different ash fractions, (1) one fine sized fraction consisting of those elements found in the water and weak acid leach, and (2) a coarse ash particle fraction consisting of those elements found in the strong acid leach and non-leachable rest. The small sized ash fraction was then assumed to be carried up with the flue gases and consequently formed the base for any ash related problems in the flue gas channel. This fraction was therefore analyzed on its chemical and thermal behavior using multi-component multi-phase equilibrium calculations, by which the composition and the melting behavior was estimated as a function of the temperature. The amount of melt, which has earlier been found to be strongly related to problematic ash behavior, was finally expressed as a function of the temperature for the fraction. The coarse fraction was treated separately. Here the authors estimate the composition only. The paper discusses the results and their relevance to full scale combustion.« less
40 CFR 60.1015 - What is a new municipal waste combustion unit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...
40 CFR 60.1015 - What is a new municipal waste combustion unit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...
40 CFR 60.1015 - What is a new municipal waste combustion unit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...
40 CFR 60.1015 - What is a new municipal waste combustion unit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...
40 CFR 60.1015 - What is a new municipal waste combustion unit?
Code of Federal Regulations, 2012 CFR
2012-07-01
... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...
Triantafyllidou, Olga; Vlachos, Ioannis S; Apostolou, Paraskevi; Konstantopoulou, Irene; Grivas, Anastasios; Panopoulos, Christos; Dimitrakakis, Constantine; Kassanos, Dimitrios; Loghis, Constantine; Bramis, Ioannis; Vlahos, Nikolaos; Yannoukakos, Drakoulis; Fostira, Florentia
2015-01-01
BRCA mutation carriers can benefit from targeted clinical interventions. On the other hand, families with evident aggregation of breast cancer (BC) cases and a BRCA-negative genetic test can still be considered as of elevated risk, since the underlying genetic factor remains unidentified. In the present study, we compared clinical and demographic characteristics between BRCA1 mutation carriers (BRCA1mut) and non-carriers (non-BRCA1) in a Greek group of BC patients (n=321). Data were collected and analyzed from 321 women with BC, with 131 patients screened for pathogenic mutations in the high-penetrant genes BRCA1 and BRCA2. Collected data included demographics, pedigrees, tumor histopathology and immunohistochemistry findings. In BRCA1mut patients, their mothers and grand- mothers were diagnosed at a younger age compared to non-BRCA1-carriers. Additionally, BRCA1mut patients were diagnosed with mainly estrogen receptor (ER) negative (p<0.001), Her-2 negative (p<0.05) and triple negative (p<0.01) tumors. The youngest generation was diagnosed with familial breast cancer (FBC) 9.7 years earlier than their mothers (p<0.001). Age at BC diagnosis negatively correlated with the nuclear grade of breast tumors (r=-0.3, p<0.05). Among parous individuals, the number of full-term pregnancies significantly correlated with the age at BC onset (r=0.19, p<0.05). Despite their similarities, FBC cases with identified BRCA1 mutations exhibit a clearly distinct profile. We have identified an anticipation effect in FBC patients, with significantly reduced age at diagnosis in younger generations. Increased parity seems to prevent early BC onset. This is the first study comparing clinical and demographic characteristics of FBC BRCA1mut and non-carriers in a Greek cohort.
Kiwanuka, S N; Astrøm, A N; Trovik, T A
2006-10-01
This study assessed the reproducibility and relative validity of an eight-item self-administered food frequency questionnaire (FFQ) on intake of sugared snacks in Ugandan schoolchildren. A 5-day precoded food behaviour checklist (FBC) was used as validation criteria. Sociodemographic correlates of a sum frequency sugar score were explored. The study was conducted in Kampala, Uganda, in 2004. Six hundred and fourteen schoolchildren (mean age 12.4 years) completed the FFQ on cakes/biscuits, chocolate, ice sticks, soft drinks, coffee, tea, sugared desserts and sweets/candies at school. They were examined clinically for dental caries. Forty students completed the FFQ twice, 1 week apart and 325 students completed the 5 day FBC at school. The mean decayed, missing and filled tooth index score was 0.98 (SD 1.6, range 0-15). Reproducibility scores (Cohen's kappa) for the sugar items ranged from 0.17 (ice sticks) to 0.55 (biscuits). No differences were seen between the average intakes at test and retest. Higher intake was reported in FFQ than in FBC across all sugar items. Crude agreement between students reporting intake at least 3-5 times a week/less than three times a week ranged from 50% to 55% (e.g. biscuits, chocolate) to 87% (tea). Spearman's correlation coefficients ranged from 0.14 (desserts) to 0.27 (sweets). anova revealed significant increase (P = 0.001) in the mean FBC sum scores by increasing quartiles of the FFQ sum scores. The average sum FFQ sugar scores were higher in girls than in boys and higher in older than in younger students. Fair reproducibility was established for the FFQ sugar items. The FFQ was acceptable in classifying individuals into broad categories of low and high sugar consumption.
Narihiro, Takashi; Kanosue, Yuji; Hiraishi, Akira
2016-06-25
This study was undertaken to examine the effects of water activity (aw) on the viability of actinobacterial isolates from a fed-batch composting (FBC) process by comparing culturability and stainability with 5-cyano-2,3-ditoryl tetrazolium chloride (CTC). The FBC reactor as the source of these bacteria was operated with the daily loading of household biowaste for 70 d. During this period of composting, aw in the reactor decreased linearly with time and reached approximately 0.95 at the end of operation. The plate counts of aerobic chemoorganotrophic bacteria were 3.2-fold higher than CTC-positive (CTC+) counts on average at the fully acclimated stage (after 7 weeks of operation), in which Actinobacteria predominated, as shown by lipoquinone profiling and cultivation methods. When the actinobacterial isolates from the FBC process were grown under aw stress, no significant differences were observed in culturability among the cultures, whereas CTC stainability decreased with reductions in aw levels. A cDNA microarray-based transcriptomic analysis of a representative isolate showed that many of the genes involved in cellular metabolism and genetic information processing were down-regulated by aw stress. This result was fully supported by a proteomic analysis. The results of the present study suggest that, in low aw mature compost, the metabolic activity of the community with Actinobacteria predominating is temporarily reduced to a level that hardly reacts with CTC; however, these bacteria are easily recoverable by exposure to a high aw culture medium. This may be a plausible reason why acclimated FBC reactors in which Actinobacteria predominate yields higher plate counts than CTC+ counts.
40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2012 CFR
2012-07-01
... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...
40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...
40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...
40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...
40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...
Code of Federal Regulations, 2011 CFR
2011-07-01
... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...
Code of Federal Regulations, 2010 CFR
2010-07-01
... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...
Code of Federal Regulations, 2013 CFR
2013-07-01
... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...
Code of Federal Regulations, 2012 CFR
2012-07-01
... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...
Code of Federal Regulations, 2014 CFR
2014-07-01
... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...
Code of Federal Regulations, 2010 CFR
2010-07-01
... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...
Bilateral first branchial cleft anomaly with evidence of a genetic aetiology.
Gonzalez-Perez, L M; Prats-Golczer, V E; Montes Carmona, J F; Heurtebise Saavedra, J M
2014-03-01
Anomalies of the first branchial cleft (FBC) are uncommon, and recognizing them can be difficult. Although present at birth, many cases do not become evident until later in childhood or adolescence, with an initial clinical presentation in adulthood being encountered only rarely. Typically, FBC anomalies present as a unilateral cyst, sinus, or fistula associated with the external auditory canal, or with swelling or an inflammatory opening in the peri-auricular/parotid area. They are commonly misdiagnosed and are often treated inadequately before being excised completely. A 40-year-old woman presented to the maxillofacial outpatient clinic with an episode of bilateral pre-auricular tumefaction, initially diagnosed as temporomandibular dysfunction syndrome. This was associated with bilateral pre-auricular pain that increased with mandibular movements. In relation to the patient's history, and given the bilateral presence of a pre-auricular pit, a diagnosis of FBC anomaly was made. Further investigation showed a related asymptomatic history in five other cases across four generations of the same family. The authors describe here the case, the diagnostic methodology, and the wide local excision technique used for removal of the branchial sinus. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...
Code of Federal Regulations, 2014 CFR
2014-07-01
... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...
Code of Federal Regulations, 2013 CFR
2013-07-01
... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...
Code of Federal Regulations, 2011 CFR
2011-07-01
... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...
Code of Federal Regulations, 2012 CFR
2012-07-01
... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...
40 CFR 60.1130 - How do I make my siting analysis available to the public?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30... area where you will construct your municipal waste combustion unit. (b) Publish a notice of a public... waste combustion unit. (2) The areas where the waste that your municipal waste combustion unit combusts...
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...
40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...
40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...
40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...
40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...
40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...
Doherty, Brian J.
1984-07-10
A burner system particularly useful for downhole deployment includes a tubular combustion chamber unit housed within a tubular coolant jacket assembly. The combustion chamber unit includes a monolithic tube of refractory material whose inner surface defines the combustion zone. A metal reinforcing sleeve surrounds and extends the length of the refractory tube. The inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another in standby condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression during combustion system start up and cool down sequences.
Strong, Amy L; Bennett, Danielle K; Spreen, Elizabeth B; Adhvaryu, Dhaval V; Littleton, Jeffrey C; Mencer, Ernest J
2016-01-01
The treatment of full thickness skin wounds commonly associated with large burns continues to represent a challenging clinical entity. The current treatment for large TBSA burns is split thickness autologous skin grafting; however, this treatment often results in poor textural durability, hypertrophic scarring, and fibrotic contractures. In this case report, we describe our experience and long-term follow-up results after the application of fetal bovine collagen (FBC) matrix (PriMatrix, TEI Biosciences, Boston, MA) to burn wounds clinically assessed as full thickness that healed without the need for subsequent skin grafting. The patient presented with 25% TBSA burns and was debrided and covered with FBC on postburn day 7. By postoperative day 12, the patient had large areas of reepithelialization distributed throughout the wound bed. By postoperative day 26, the patient had significantly more areas of wound closure and was discharged. Reepithelialization and repigmentation continued, and long-term follow-up after 26 months demonstrated complete reepithelialization and nearly complete repigmentation, without the appearance of contractures or hypertrophic scarring. This case report highlights the use of FBC as a scaffold capable of dermal regeneration and spontaneous reepithelialization with an excellent long-term functional and cosmetic outcome.
Strong, Amy L.; Bennett, Danielle K.; Spreen, Elizabeth B.; Adhvaryu, Dhaval V.; Littleton, Jeffrey C.
2016-01-01
The treatment of full thickness skin wounds commonly associated with large burns continues to represent a challenging clinical entity. The current treatment for large TBSA burns is split thickness autologous skin grafting; however, this treatment often results in poor textural durability, hypertrophic scarring, and fibrotic contractures. In this case report, we describe our experience and long-term follow-up results after the application of fetal bovine collagen (FBC) matrix (PriMatrix, TEI Biosciences, Boston, MA) to burn wounds clinically assessed as full thickness that healed without the need for subsequent skin grafting. The patient presented with 25% TBSA burns and was debrided and covered with FBC on postburn day 7. By postoperative day 12, the patient had large areas of reepithelialization distributed throughout the wound bed. By postoperative day 26, the patient had significantly more areas of wound closure and was discharged. Reepithelialization and repigmentation continued, and long-term follow-up after 26 months demonstrated complete reepithelialization and nearly complete repigmentation, without the appearance of contractures or hypertrophic scarring. This case report highlights the use of FBC as a scaffold capable of dermal regeneration and spontaneous reepithelialization with an excellent long-term functional and cosmetic outcome. PMID:25494213
40 CFR 60.1380 - What must I include in my notice of construction?
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...
40 CFR 60.1380 - What must I include in my notice of construction?
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...
40 CFR 60.1380 - What must I include in my notice of construction?
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...
40 CFR 60.1380 - What must I include in my notice of construction?
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...
40 CFR 60.1380 - What must I include in my notice of construction?
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Waste Combustion Units 1 Table 1 to Subpart AAAA of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... Combustion Units For the following pollutants You must meet thefollowing emission limits a Using the...
40 CFR 60.2020 - What combustion units are exempt from this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What combustion units are exempt from... combustion units are exempt from this subpart? This subpart exempts the types of units described in... and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic waste...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Waste Combustion Units 1 Table 1 to Subpart AAAA of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... Combustion Units For the following pollutants You must meet thefollowing emission limits a Using the...
40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...
40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...
40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Waste Combustion Units 1 Table 1 to Subpart AAAA of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... Combustion Units For the following pollutants You must meet thefollowing emission limits a Using the...
40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Waste Combustion Units 1 Table 1 to Subpart AAAA of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... Combustion Units For the following pollutants You must meet thefollowing emission limits a Using the...
40 CFR 60.2020 - What combustion units are exempt from this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What combustion units are exempt from... combustion units are exempt from this subpart? This subpart exempts the types of units described in... and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic waste...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Combustion Units 1 Table 1 to Subpart AAAA of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... Combustion Units For the following pollutants You must meet thefollowing emission limits a Using the...
40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2012 CFR
2012-07-01
... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...
40 CFR 60.2887 - What combustion units are excluded from this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What combustion units are excluded from... § 60.2887 What combustion units are excluded from this subpart? This subpart excludes the types of... municipal waste combustion unit, is excluded if it meets the five requirements specified in paragraphs (b)(1...
40 CFR 60.2993 - Are any combustion units excluded from my State plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Are any combustion units excluded from... December 9, 2004 Applicability of State Plans § 60.2993 Are any combustion units excluded from my State..., that would otherwise be considered a very small municipal waste combustion unit, is excluded if the...
40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...
40 CFR 60.2887 - What combustion units are excluded from this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What combustion units are excluded from... § 60.2887 What combustion units are excluded from this subpart? This subpart excludes the types of... municipal waste combustion unit, is excluded if it meets the five requirements specified in paragraphs (b)(1...
40 CFR 60.2993 - Are any combustion units excluded from my State plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Are any combustion units excluded from... December 9, 2004 Applicability of State Plans § 60.2993 Are any combustion units excluded from my State..., that would otherwise be considered a very small municipal waste combustion unit, is excluded if the...
40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...
40 CFR 60.2993 - Are any combustion units excluded from my State plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Are any combustion units excluded from... December 9, 2004 Applicability of State Plans § 60.2993 Are any combustion units excluded from my State..., that would otherwise be considered a very small municipal waste combustion unit, is excluded if the...
40 CFR 60.2993 - Are any combustion units excluded from my State plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Are any combustion units excluded from... December 9, 2004 Applicability of State Plans § 60.2993 Are any combustion units excluded from my State..., that would otherwise be considered a very small municipal waste combustion unit, is excluded if the...
40 CFR 60.2887 - What combustion units are excluded from this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What combustion units are excluded from... § 60.2887 What combustion units are excluded from this subpart? This subpart excludes the types of... municipal waste combustion unit, is excluded if it meets the five requirements specified in paragraphs (b)(1...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...
40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...
40 CFR 60.2887 - What combustion units are excluded from this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What combustion units are excluded from... § 60.2887 What combustion units are excluded from this subpart? This subpart excludes the types of... municipal waste combustion unit, is excluded if it meets the five requirements specified in paragraphs (b)(1...
40 CFR 60.2993 - Are any combustion units excluded from my State plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Are any combustion units excluded from... December 9, 2004 Applicability of State Plans § 60.2993 Are any combustion units excluded from my State..., that would otherwise be considered a very small municipal waste combustion unit, is excluded if the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...
40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...
40 CFR 60.2887 - What combustion units are excluded from this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What combustion units are excluded from... § 60.2887 What combustion units are excluded from this subpart? This subpart excludes the types of... municipal waste combustion unit, is excluded if it meets the five requirements specified in paragraphs (b)(1...
40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...
40 CFR 60.1175 - What information must I include in the plant-specific operating manual?
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion unit. (e) Procedures for maintaining a proper level of combustion air supply. (f... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... municipal waste combustion units. (c) Procedures for receiving, handling, and feeding municipal solid waste...
40 CFR 60.1665 - What information must I include in the plant-specific operating manual?
Code of Federal Regulations, 2010 CFR
2010-07-01
... startup, shutdown, and malfunction of the municipal waste combustion unit. (e) Procedures for maintaining... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or... the basic combustion principles that apply to municipal waste combustion units. (c) Procedures for...
40 CFR 62.15120 - What information must I include in the plant-specific operating manual?
Code of Federal Regulations, 2013 CFR
2013-07-01
... startup, shutdown, and malfunction of the municipal waste combustion unit. (e) Procedures for maintaining... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units... the basic combustion principles that apply to municipal waste combustion units. (c) Procedures for...
Code of Federal Regulations, 2014 CFR
2014-07-01
... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...
Code of Federal Regulations, 2012 CFR
2012-07-01
... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...
Code of Federal Regulations, 2014 CFR
2014-07-01
... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...
Code of Federal Regulations, 2010 CFR
2010-07-01
... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...
Code of Federal Regulations, 2014 CFR
2014-07-01
... for Existing Small Municipal Waste Combustion Units a b c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Units a b c ER31JA03.008 ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...
Code of Federal Regulations, 2011 CFR
2011-07-01
... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...
Code of Federal Regulations, 2013 CFR
2013-07-01
... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...
Code of Federal Regulations, 2012 CFR
2012-07-01
... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...
Code of Federal Regulations, 2013 CFR
2013-07-01
... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...
Code of Federal Regulations, 2011 CFR
2011-07-01
... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Emission Limits for Existing Small Municipal Waste Combustion Units a b c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Units a b c Municipal waste combustion technology Limits for class I municipal...
40 CFR 60.2020 - What combustion units are exempt from this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What combustion units are exempt from..., 2001 Applicability § 60.2020 What combustion units are exempt from this subpart? This subpart exempts... excluding the weight of auxiliary fuel and combustion air) of pathological waste, low-level radioactive...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...
40 CFR 62.14525 - Can my combustion unit be exempt from this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Can my combustion unit be exempt from... Commenced Construction On or Before November 30, 1999 Applicability § 62.14525 Can my combustion unit be... fuel and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic...
40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...
40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...
Code of Federal Regulations, 2014 CFR
2014-07-01
... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...
40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...
Code of Federal Regulations, 2012 CFR
2012-07-01
... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...
Code of Federal Regulations, 2013 CFR
2013-07-01
... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...
40 CFR 60.2020 - What combustion units are exempt from this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What combustion units are exempt from..., 2001 Applicability § 60.2020 What combustion units are exempt from this subpart? This subpart exempts... excluding the weight of auxiliary fuel and combustion air) of pathological waste, low-level radioactive...
40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...
40 CFR 62.14525 - Can my combustion unit be exempt from this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Can my combustion unit be exempt from... Commenced Construction On or Before November 30, 1999 Applicability § 62.14525 Can my combustion unit be... fuel and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic...
Code of Federal Regulations, 2011 CFR
2011-07-01
... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...
40 CFR 62.14525 - Can my combustion unit be exempt from this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Can my combustion unit be exempt from... Commenced Construction On or Before November 30, 1999 Applicability § 62.14525 Can my combustion unit be... fuel and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...
40 CFR 62.14525 - Can my combustion unit be exempt from this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Can my combustion unit be exempt from... Commenced Construction On or Before November 30, 1999 Applicability § 62.14525 Can my combustion unit be... fuel and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic...
40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...
40 CFR 60.2020 - What combustion units are exempt from this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What combustion units are exempt from..., 2001 Applicability § 60.2020 What combustion units are exempt from this subpart? This subpart exempts... excluding the weight of auxiliary fuel and combustion air) of pathological waste, low-level radioactive...
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...
40 CFR 62.14525 - Can my combustion unit be exempt from this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Can my combustion unit be exempt from... Commenced Construction On or Before November 30, 1999 Applicability § 62.14525 Can my combustion unit be... fuel and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic...
40 CFR 60.1555 - Are any small municipal waste combustion units exempt from my State plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
.../rubber recycling units. Units are exempt from your State plan if four requirements are met: (1) The pyrolysis/combustion unit is an integrated part of a plastics/rubber recycling unit as defined under... that combust fuels made from products of plastics/rubber recycling plants. Units are exempt from your...
40 CFR 62.15020 - Can my small municipal waste combustion unit be exempt from this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Plastics/rubber recycling units. Your unit is exempt from this subpart if four requirements are met: (1) Your pyrolysis/combustion unit is an integrated part of a plastics/rubber recycling unit as defined... the feed stocks. (i) Units that combust fuels made from products of plastics/rubber recycling plants...
40 CFR 62.15020 - Can my small municipal waste combustion unit be exempt from this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Plastics/rubber recycling units. Your unit is exempt from this subpart if four requirements are met: (1) Your pyrolysis/combustion unit is an integrated part of a plastics/rubber recycling unit as defined... the feed stocks. (i) Units that combust fuels made from products of plastics/rubber recycling plants...
40 CFR 62.15020 - Can my small municipal waste combustion unit be exempt from this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Plastics/rubber recycling units. Your unit is exempt from this subpart if four requirements are met: (1) Your pyrolysis/combustion unit is an integrated part of a plastics/rubber recycling unit as defined... the feed stocks. (i) Units that combust fuels made from products of plastics/rubber recycling plants...
40 CFR 60.1555 - Are any small municipal waste combustion units exempt from my State plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
.../rubber recycling units. Units are exempt from your State plan if four requirements are met: (1) The pyrolysis/combustion unit is an integrated part of a plastics/rubber recycling unit as defined under... that combust fuels made from products of plastics/rubber recycling plants. Units are exempt from your...
40 CFR 60.1555 - Are any small municipal waste combustion units exempt from my State plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
.../rubber recycling units. Units are exempt from your State plan if four requirements are met: (1) The pyrolysis/combustion unit is an integrated part of a plastics/rubber recycling unit as defined under... that combust fuels made from products of plastics/rubber recycling plants. Units are exempt from your...
40 CFR 60.1555 - Are any small municipal waste combustion units exempt from my State plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
.../rubber recycling units. Units are exempt from your State plan if four requirements are met: (1) The pyrolysis/combustion unit is an integrated part of a plastics/rubber recycling unit as defined under... that combust fuels made from products of plastics/rubber recycling plants. Units are exempt from your...
40 CFR 60.1555 - Are any small municipal waste combustion units exempt from my State plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
.../rubber recycling units. Units are exempt from your State plan if four requirements are met: (1) The pyrolysis/combustion unit is an integrated part of a plastics/rubber recycling unit as defined under... that combust fuels made from products of plastics/rubber recycling plants. Units are exempt from your...
40 CFR 62.15020 - Can my small municipal waste combustion unit be exempt from this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Plastics/rubber recycling units. Your unit is exempt from this subpart if four requirements are met: (1) Your pyrolysis/combustion unit is an integrated part of a plastics/rubber recycling unit as defined... the feed stocks. (i) Units that combust fuels made from products of plastics/rubber recycling plants...
40 CFR 62.15020 - Can my small municipal waste combustion unit be exempt from this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Plastics/rubber recycling units. Your unit is exempt from this subpart if four requirements are met: (1) Your pyrolysis/combustion unit is an integrated part of a plastics/rubber recycling unit as defined... the feed stocks. (i) Units that combust fuels made from products of plastics/rubber recycling plants...
Influence of final baking technologies in partially baked frozen gluten-free bread quality.
Aguilar, Núria; Albanell, Elena; Miñarro, Begoña; Gallardo, Joan; Capellas, Marta
2015-03-01
The effect of final baking in convection oven (FBC), microwave oven (FBM), and microwave oven with susceptor packaging material (FBMS) on partially baked (PB) frozen gluten-free bread characteristics was investigated. Specific volume and crust color of loaves were measured at day 0. Bread moisture, water activity, and crumb and crust texture (at 15, 45, and 90 min after baking) were analyzed at day 0 and after 28 d of frozen storage (-18 °C). Volatile compounds from breads baked in convection oven or microwave oven with susceptor packaging material were also evaluated. Bread finally baked in convection oven or in microwave oven with susceptor packaging increased crust browning. Crumb and roll hardness increased with time after final baking (measured at 15, 45, 90 min) and after 28 d of frozen storage. Bread finally baked in microwave oven was the hardest, due to high water losses. At day 0, bread finally baked in convection oven had softer crumb than bread finally baked in microwave oven with susceptor packaging but, after 28 d of frozen storage, there were no differences between them. Moreover, FBC and FBMS rendered gluten-free breads that could not be distinguished in a triangular test and had the same volatile compounds profile. In conclusion, FBMS could be an alternative to FBC. © 2015 Institute of Food Technologists®
FIRST BEAM TESTS OF THE APS MBA UPGRADE ORBIT FEEDBACK CONTROLLER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sereno, N. S.; Arnold, N.; Brill, A.
The new orbit feedback system required for the APS multi-bend acromat (MBA) ring must meet challenging beam stability requirements. The AC stability requirement is to correct rms beam motion to 10 % the rms beam size at the insertion device source points from 0.01 to 1000 Hz. The vertical plane represents the biggest challenge for AC stability which is required to be 400 nm rms for a 4 micron vertical beam size. In addition long term drift over a period of 7 days is required to be 1 micron or less at insertion de- vice BPMs and 2 microns formore » arc bpms. We present test re- sults of theMBA prototype orbit feedback controller (FBC) in the APS storage ring. In this test, four insertion device BPMs were configured to send data to the FBC for process- ing into four fast corrector setpoints. The configuration of four bpms and four fast correctors creates a 4-bump and the configuration of fast correctors is similar to what will be implemented in the MBA ring. We report on performance benefits of increasing the sampling rate by a factor of 15 to 22.6 kHz over the existing APS orbit feedback system, lim- itations due to existing storage ring hardware and extrapo- lation to theMBA orbit feedback design. FBC architecture, signal flow and processing design will also be discussed.« less
Bed material agglomeration during fluidized bed combustion. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.C.; Dawson, M.R.; Smeenk, J.L.
The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion of coal and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed combustors (FBCs) indicate that at least five boilers were experiencing some form of bed material agglomeration. Deposit formation was reported at nine sites with deposits most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Three general types of mineralogic reactions were observed to occurmore » in the agglomerates and deposits. Although alkalies may play a role with some {open_quotes}high alkali{close_quotes} lignites, we found agglomeration was initiated due to fluxing reactions between iron (II) from pyrites and aluminosilicates from clays. This is indicated by the high amounts of iron, silica, and alumina in the agglomerates and the mineralogy of the agglomerates. Agglomeration likely originated in the dense phase of the FBC bed within the volatile plume which forms when coal is introduced to the boiler. Secondary mineral reactions appear to occur after the agglomerates have formed and tend to strengthen the agglomerates. When calcium is present in high amounts, most of the minerals in the resulting deposits are in the melilite group (gehlenite, melilite, and akermanite) and pyroxene group (diopside and augite). During these solid-phase reactions, the temperature of formation of the melilite minerals can be lowered by a reduction of the partial pressure of CO{sub 2} (Diopside + Calcite {r_arrow}Akermanite).« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... close my municipal waste combustion unit and not restart it? 62.15095 Section 62.15095 Protection of... Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15095 What must I do if I plan to permanently close my municipal waste combustion unit and not restart...
Code of Federal Regulations, 2012 CFR
2012-07-01
... close my municipal waste combustion unit and not restart it? 62.15095 Section 62.15095 Protection of... Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15095 What must I do if I plan to permanently close my municipal waste combustion unit and not restart...
Code of Federal Regulations, 2010 CFR
2010-07-01
... close my municipal waste combustion unit and not restart it? 62.15095 Section 62.15095 Protection of... Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15095 What must I do if I plan to permanently close my municipal waste combustion unit and not restart...
Code of Federal Regulations, 2011 CFR
2011-07-01
... close my municipal waste combustion unit and not restart it? 62.15095 Section 62.15095 Protection of... Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15095 What must I do if I plan to permanently close my municipal waste combustion unit and not restart...
Code of Federal Regulations, 2014 CFR
2014-07-01
... close my municipal waste combustion unit and not restart it? 62.15095 Section 62.15095 Protection of... Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15095 What must I do if I plan to permanently close my municipal waste combustion unit and not restart...
Code of Federal Regulations, 2013 CFR
2013-07-01
... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...
Code of Federal Regulations, 2014 CFR
2014-07-01
... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...
40 CFR 60.2555 - What combustion units are exempt from my State plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What combustion units are exempt from... State Plans § 60.2555 What combustion units are exempt from my State plan? This subpart exempts fifteen... excluding the weight of auxiliary fuel and combustion air) of pathological waste, low-level radioactive...
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...
40 CFR 60.2555 - What combustion units are exempt from my State plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What combustion units are exempt from... Construction On or Before November 30, 1999 Applicability of State Plans § 60.2555 What combustion units are... combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic waste as defined...
Code of Federal Regulations, 2011 CFR
2011-07-01
... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...
Code of Federal Regulations, 2012 CFR
2012-07-01
... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...
Code of Federal Regulations, 2010 CFR
2010-07-01
... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...
40 CFR 60.2555 - What combustion units are exempt from my State plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What combustion units are exempt from... State Plans § 60.2555 What combustion units are exempt from my State plan? This subpart exempts the... excluding the weight of auxiliary fuel and combustion air) of pathological waste, low-level radioactive...
40 CFR 60.2555 - What combustion units are exempt from my State plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What combustion units are exempt from... State Plans § 60.2555 What combustion units are exempt from my State plan? This subpart exempts the... excluding the weight of auxiliary fuel and combustion air) of pathological waste, low-level radioactive...
40 CFR 60.2555 - What combustion units are exempt from my State plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What combustion units are exempt from... Construction On or Before November 30, 1999 Applicability of State Plans § 60.2555 What combustion units are... combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic waste as defined...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...
Code of Federal Regulations, 2013 CFR
2013-07-01
... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...
Code of Federal Regulations, 2012 CFR
2012-07-01
... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...
Code of Federal Regulations, 2014 CFR
2014-07-01
... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...
Code of Federal Regulations, 2010 CFR
2010-07-01
... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...
Code of Federal Regulations, 2011 CFR
2011-07-01
... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...
Assessing Face Validity of a Food Behavior Checklist for Limited-resource Filipinos
Buchthal, Opal Vanessa; Tauyan, Socorro
2015-01-01
Abstract Diet-related chronic health conditions are prevalent in the Filipino American community; however, there is a lack of rigorously validated nutrition education evaluation tools in Tagalog for use in this population. This study aimed to develop and evaluate the face validity of a Tagalog-language food behavior checklist (FBC). A multi-step method was used, involving translation of questionnaire text from English to Tagalog by a team of professionals, creation of accompanying color photographs, cognitive testing with the target population, final review by the team of professionals, and assessment of readability. Subjects for cognitive testing were men (n=6) and women (n=14) 18 years or older in Hawai‘i who received or were eligible to receive Supplemental Nutrition Assistance Program (SNAP) benefits, self-identified as Filipino, and preferred Tagalog rather than English. Participants were recruited from churches, the Filipino Center, and other community sites. Cognitive interviews revealed several issues with text and photographs, such as preferences for specific terms, and images that did not adequately illustrate the text. Image changes were made to reflect items most commonly consumed. The team of professionals agreed with participant suggestions. Assessment of readability revealed a reading level appropriate for a low-literacy population of grade 5.9. The multi-step process, which allowed members of the target audience to reveal the appropriateness of the questionnaire, yielded a Tagalog-language FBC found to have adequate face validity. After further evaluation of validity and reliability, this tool may be used to evaluate behavior change resulting from the United States Department of Agriculture's (USDA) nutrition education programs. PMID:26535163
Automatic calibration and control system for a combined oxygen and combustibles analyzer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolbert, G.D.; Jewett, S.Y.; Robertson, J.W. Jr.
1989-08-01
This patent describes an automatic, periodically calibrating system for continuous output of calibrated signals from a combined oxygen and combustibles analyzer. It comprises: a combined oxygen and combustibles analyzer for sensing a level of oxygen and a level of combustibles in a volatile atmosphere and for producing a first sample signal indicative of the oxygen level and a second sample signal indicative of the combustibles level; means for introducing zero and span calibration test gases into the analyzer; means for periodically calibrating the analyzer. This including: a data control unit; a timer unit; a mechanical unit, means for calculating zeromore » and span values for oxygen and combustibles, means for comparing the calculated zero and span values for oxygen and combustibles to the preset alarm limits for oxygen and combustibles, means for activating an operator alarm, means for calculating oxygen and combustibles drift adjustments, a memory unit; and means for applying the oxygen and combustibles drift adjustments concurrently to the first and second sample signals, according to predetermined mathematical relationship, to obtain calibrated output signals indicative of the oxygen and combustibles level in the volatile atmosphere.« less
Yang, Yao Bin; Sharifi, Vida; Swithenbank, Jim
2008-11-01
Fluidised bed combustor (FBC) is one of the key technologies for sewage sludge incineration. In this paper, a mathematical model is developed for the simulation of a large-scale sewage sludge incineration plant. The model assumes the bed consisting of a fast-gas phase, an emulsion phase and a fuel particle phase with specific consideration for thermally-thick fuel particles. The model further improves over previous works by taking into account throughflow inside the bubbles as well as the floating and random movement of the fuel particles inside the bed. Validation against both previous lab-scale experiments and operational data of a large-scale industrial plant was made. Calculation results indicate that combustion split between the bed and the freeboard can range from 60/40 to 90/10 depending on the fuel particle distribution across the bed height under the specific conditions. The bed performance is heavily affected by the variation in sludge moisture level. The response time to variation in feeding rate is different for different parameters, from 6 min for outlet H2O, 10 min for O2, to 34 min for bed temperature.
Code of Federal Regulations, 2013 CFR
2013-07-01
... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...
Code of Federal Regulations, 2012 CFR
2012-07-01
... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...
Code of Federal Regulations, 2014 CFR
2014-07-01
... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...
Code of Federal Regulations, 2011 CFR
2011-07-01
... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...
Code of Federal Regulations, 2010 CFR
2010-07-01
... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...
Papageorgiou, Elpiniki I; Jayashree Subramanian; Karmegam, Akila; Papandrianos, Nikolaos
2015-11-01
Breast cancer is the most deadly disease affecting women and thus it is natural for women aged 40-49 years (who have a family history of breast cancer or other related cancers) to assess their personal risk for developing familial breast cancer (FBC). Besides, as each individual woman possesses different levels of risk of developing breast cancer depending on their family history, genetic predispositions and personal medical history, individualized care setting mechanism needs to be identified so that appropriate risk assessment, counseling, screening, and prevention options can be determined by the health care professionals. The presented work aims at developing a soft computing based medical decision support system using Fuzzy Cognitive Map (FCM) that assists health care professionals in deciding the individualized care setting mechanisms based on the FBC risk level of the given women. The FCM based FBC risk management system uses NHL to learn causal weights from 40 patient records and achieves a 95% diagnostic accuracy. The results obtained from the proposed model are in concurrence with the comprehensive risk evaluation tool based on Tyrer-Cuzick model for 38/40 patient cases (95%). Besides, the proposed model identifies high risk women by calculating higher accuracy of prediction than the standard Gail and NSAPB models. The testing accuracy of the proposed model using 10-fold cross validation technique outperforms other standard machine learning based inference engines as well as previous FCM-based risk prediction methods for BC. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y.P. Chugh; D. Biswas; D. Deb
2002-06-01
This project has successfully demonstrated that the extraction ratio in a room-and-pillar panel at an Illinois mine can be increased from the current value of approximately 56% to about 64%, with backfilling done from the surface upon completion of all mining activities. This was achieved without significant ground control problems due to the increased extraction ratio. The mined-out areas were backfilled from the surface with gob, coal combustion by-products (CCBs), and fine coal processing waste (FCPW)-based paste backfill containing 65%-70% solids to minimize short-term and long-term surface deformations risk. This concept has the potential to increase mine productivity, reduce miningmore » costs, manage large volumes of CCBs beneficially, and improve the miner's health, safety, and environment. Two injection holes were drilled over the demonstration panel to inject the paste backfill. Backfilling was started on August 11, 1999 through the first borehole. About 9,293 tons of paste backfill were injected through this borehole with a maximum flow distance of 300-ft underground. On September 27, 2000, backfilling operation was resumed through the second borehole with a mixture of F ash and FBC ash. A high-speed auger mixer (new technology) was used to mix solids with water. About 6,000 tons of paste backfill were injected underground through this hole. Underground backfilling using the ''Groutnet'' flow model was simulated. Studies indicate that grout flow over 300-foot distance is possible. Approximately 13,000 tons of grout may be pumped through a single hole. The effect of backfilling on the stability of the mine workings was analyzed using SIUPANEL.3D computer program and further verified using finite element analysis techniques. Stiffness of the backfill mix is most critical for enhancing the stability of mine workings. Mine openings do not have to be completely backfilled to enhance their stability. Backfill height of about 50% of the seam height is adequate to minimize surface deformations. Freeman United Coal Company performed engineering economic evaluation studies for commercialization. They found that the costs for underground management at the Crown III mine would be slightly higher than surface management at this time. The developed technologies have commercial potential but each site must be analyzed on its merit. The Company maintains significant interest in commercializing the technology.« less
40 CFR 60.1110 - Who must submit a siting analysis?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... construction of a small municipal waste combustion unit after December 6, 2000. (b) If you commence construction on your municipal waste combustion unit after August 30, 1999, but before December 6, 2000, you...
40 CFR 60.1005 - When does this subpart become effective?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... to municipal waste combustion unit planning and must be completed before construction is commenced on the municipal waste combustion unit. In particular, the preconstruction requirements in §§ 60.1050...
40 CFR 60.1050 - Who must submit a materials separation plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... separation plan for your municipal waste combustion unit if you commence construction of a new small municipal waste combustion unit after December 6, 2000. (b) If you commence construction of your municipal...
40 CFR 60.1005 - When does this subpart become effective?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... to municipal waste combustion unit planning and must be completed before construction is commenced on the municipal waste combustion unit. In particular, the preconstruction requirements in §§ 60.1050...
40 CFR 60.1050 - Who must submit a materials separation plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... separation plan for your municipal waste combustion unit if you commence construction of a new small municipal waste combustion unit after December 6, 2000. (b) If you commence construction of your municipal...
40 CFR 60.1005 - When does this subpart become effective?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... to municipal waste combustion unit planning and must be completed before construction is commenced on the municipal waste combustion unit. In particular, the preconstruction requirements in §§ 60.1050...
Code of Federal Regulations, 2013 CFR
2013-07-01
... combustion units. 241.3 Section 241.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
Code of Federal Regulations, 2012 CFR
2012-07-01
... combustion units. 241.3 Section 241.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
Code of Federal Regulations, 2014 CFR
2014-07-01
... combustion units. 241.3 Section 241.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
Code of Federal Regulations, 2012 CFR
2012-07-01
... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is...? No, you must meet the preconstruction requirements before you commence construction of the municipal waste combustion unit. After the municipal waste combustion unit begins operation, you must meet all of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is...? No, you must meet the preconstruction requirements before you commence construction of the municipal waste combustion unit. After the municipal waste combustion unit begins operation, you must meet all of...
First branchial cleft anomalies: presentation, variability and safe surgical management.
Magdy, Emad A; Ashram, Yasmine A
2013-05-01
First branchial cleft (FBC) anomalies are uncommon. The aim of this retrospective clinical study is to describe our experience in dealing with these sporadically reported lesions. Eighteen cases presenting with various FBC anomalies managed surgically during an 8-year period at a tertiary referral medical institution were included. Ten were males (56 %) and eight females (44 %) with age range 3-18 years. Anomaly was right-sided in 12 cases (67 %). None were bilateral. Nine patients (50 %) had prior abscess incision and drainage procedures ranging from 1 to 9 times. Two also had previous unsuccessful surgical excisions. Clinical presentations included discharging tract openings in external auditory canal/conchal bowl (n = 9), periauricular (n = 6), or upper neck (n = 4); cystic postauricular, parotid or upper neck swellings (n = 5); and eczematous scars (n = 9). Three distinct anatomical types were encountered: sinuses (n = 7), fistulas (n = 6), and cysts (n = 5). Complete surgical excision required superficial parotidectomy in 11 patients (61 %). Anomaly was deep to facial nerve (FN) in three cases (17 %), in-between its branches in two (11 %) and superficial (but sometimes adherent to the nerve) in remaining cases (72 %). Continuous intraoperative electrophysiological FN monitoring was used in all cases. Two cases had postoperative temporary lower FN paresis that recovered within 2 months. No further anomaly manifestation was observed after 49.8 months' mean postoperative follow-up (range 10-107 months). This study has shown that awareness of different presentations and readiness to identify and protect FN during surgery is essential for successful management of FBC anomalies. Intraoperative electrophysiological FN monitoring can help in that respect.
Design assessment of a 150 kWt CFBC Test Unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batu, A.; Selcuk, N.; Kulah, G.
2010-04-15
For clean and efficient energy generation from coal, the most suitable technology known to date is 'Fluidized Bed Combustion' technology. Applications of circulating fluidized bed (CFB) combustion technology have been steadily increasing in both capacity and number over the past decade. Designs of these units have been based on the combustion tests carried out in pilot scale facilities to determine the combustion and desulfurization characteristics of coal and limestone reserves in CFB conditions. Similarly, utilization of Turkish lignites in CFB boilers necessitates adaptation of CFB combustion technology to these resources. However, the design of these test units are not basedmore » on firing coals with high ash, volatile matter and sulfur contents like Turkish lignites. For this purpose, a 150 kWt CFB combustor test unit is designed and constructed in Chemical Engineering Department of Middle East Technical University, based on the extensive experience acquired at the existing 0.3 MWt Bubbling Atmospheric Fluidized Bed Combustor (AFBC) Test Rig. Following the commissioning tests, a combustion test is carried out for investigation of combustion characteristics of Can lignite in CFB conditions and for assessment of the design of test unit. Comparison of the design outputs with experimental results reveals that most of the predictions and assumptions have acceptable agreement with the operating conditions. In conclusion, the performance of 150 kWt CFBC Test Unit is found to be satisfactory to be utilized for the long term research studies on combustion and desulfurization characteristics of indigenous lignite reserves in circulating fluidized bed combustors. (author)« less
Camerani, Maria Caterina; Somogyi, Andrea; Vekemans, Bart; Ansell, Stuart; Simionovici, Alexandre S; Steenari, Britt-Marie; Panas, Itai
2007-09-01
By using an excitation energy of 27.0 keV, synchrotron radiation-induced micro-X-ray fluorescence (SR-microXRF) is employed to extract information regarding the composition and distribution of Cd-bearing phases in municipal solid waste (MSW) and biomass fly ashes. Significance of observation is based on statistics of totally more than 100 individual MSW and biomass fly ash particles from a fluidized bed combustion (FBC) plant. Cd concentrations in the parts-per-million range are determined. In general, although previous leaching studies have indicated Cd to be predominant in the smaller-size ash particles, in the present study Cd is more evenly distributed throughout all the particle sizes. For MSW fly ashes, results indicate the presence of Cd mainly as CdBr2 hot-spots, whereas for biomass fly ashes, which exhibit lower CdX2 concentration, a thin Cd layer on/in the particles is reported. For both ashes, Ca-containing matrixes are found to be the main Cd-bearing phases. Support for this observation is found from independent first-principles periodic density functional theory calculations. The observations are condensed into a schematic mechanism for Cd adsorption on the fly ash particles.
40 CFR 97.504 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Ozone Season unit begins to combust fossil fuel or to... date on which it both combusts fossil fuel and serves such generator. (b) Any unit in a State (and...
40 CFR 97.504 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Ozone Season unit begins to combust fossil fuel or to... date on which it both combusts fossil fuel and serves such generator. (b) Any unit in a State (and...
40 CFR 97.404 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Annual unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.404 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Annual unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.404 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Annual unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.504 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Ozone Season unit begins to combust fossil fuel or to... date on which it both combusts fossil fuel and serves such generator. (b) Any unit in a State (and...
40 CFR 62.15410 - What definitions must I know?
Code of Federal Regulations, 2011 CFR
2011-07-01
... pyrolysis or combustion units located at a plastics or rubber recycling unit as specified under § 62.15020(h... furnace (for example, radiant heat transfer section) of the combustion unit. Yard waste means grass, grass...
40 CFR 62.15410 - What definitions must I know?
Code of Federal Regulations, 2010 CFR
2010-07-01
... pyrolysis or combustion units located at a plastics or rubber recycling unit as specified under § 62.15020(h... furnace (for example, radiant heat transfer section) of the combustion unit. Yard waste means grass, grass...
40 CFR 74.47 - Transfer of allowances from the replacement of thermal energy-combustion sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... replacement of thermal energy-combustion sources. 74.47 Section 74.47 Protection of Environment ENVIRONMENTAL...—combustion sources. (a) Thermal energy plan—(1) General provisions. The designated representative of an opt... quarter the replacement unit(s) will replace thermal energy of the opt-in source; (ii) The name...
40 CFR 97.604 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 1 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.604 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 1 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.604 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 1 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.704 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart: Any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 2 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.704 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart: Any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 2 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.704 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart: Any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 2 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
Code of Federal Regulations, 2012 CFR
2012-07-01
... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...
Code of Federal Regulations, 2011 CFR
2011-07-01
... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...
Code of Federal Regulations, 2013 CFR
2013-07-01
... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...
Code of Federal Regulations, 2014 CFR
2014-07-01
... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...
Code of Federal Regulations, 2011 CFR
2011-07-01
... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...
Code of Federal Regulations, 2013 CFR
2013-07-01
... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...
Code of Federal Regulations, 2014 CFR
2014-07-01
... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...
Code of Federal Regulations, 2012 CFR
2012-07-01
... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...
Oxy-fired boiler unit and method of operating the same
Lou, Xinsheng; Zhang, Jundong; Joshi, Abhinaya; McCombe, James A.; Levasseur, Armand A.
2016-12-06
An oxy-combustion boiler unit is disclosed which includes a furnace for combusting fuel and for emitting flue gas resulting from combustion. The furnace has first, second and third combustion zones, and an air separation unit for separating oxygen gas from air and providing a first portion of the separated oxygen to a first oxidant flow, a second portion to a second oxidant flow, and a third portion of the separated oxygen gas to the first, second, and third zones of the furnace. A controller can cause the separated oxygen gas to be distributed so that the first and second oxygen flows have a desired oxygen content, and so that the first, second, and third zones of the furnace receive a desired amount of oxygen based on a combustion zone stoichiometry control.
Combustion Power Unit--400: CPU-400.
ERIC Educational Resources Information Center
Combustion Power Co., Palo Alto, CA.
Aerospace technology may have led to a unique basic unit for processing solid wastes and controlling pollution. The Combustion Power Unit--400 (CPU-400) is designed as a turboelectric generator plant that will use municipal solid wastes as fuel. The baseline configuration is a modular unit that is designed to utilize 400 tons of refuse per day…
Fluidized bed combustion of pelletized biomass and waste-derived fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chirone, R.; Scala, F.; Solimene, R.
2008-10-15
The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away frommore » the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size distribution of primary ash particles liberated upon complete carbon burnoff largely reflected the combustion pattern of each fuel. Primary ash particles of size nearly equal to that of the parent fuel were generated upon complete burnoff of the pelletized sludge. Nonetheless, secondary attrition of primary ash from pelletized sludge is large, to the point where generation of fine ash would be extensive over the typical residence time of bed ash in fluidized bed combustors. Very few and relatively fine primary ash particles were released after complete burnoff of wood pellets. Primary ash particles remaining after complete burnoff of pelletized straw had sizes and shapes that were largely controlled by the occurrence of ash agglomeration phenomena. (author)« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to recirculating... the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming-cycle unit: (1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to recirculating... the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming-cycle unit: (1...
Code of Federal Regulations, 2013 CFR
2013-07-01
... fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to recirculating... the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming-cycle unit: (1...
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2011 CFR
2011-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2012 CFR
2012-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...
40 CFR 60.1105 - How do I submit my final materials separation plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... part of the notice of construction for the municipal waste combustion unit. Preconstruction...
NASA Astrophysics Data System (ADS)
Salomatov, V. V.; Kuznetsov, G. V.; Syrodoy, S. V.
2017-11-01
The results of the numerical simulation of heat transfer from the combustion products of coal and coal-water fuels (CWF) to the internal environment. The mathematical simulation has been carried out on the sample of the pipe surfaces of the combustion chamber of the boiler unit. The change in the characteristics of heat transfer (change of thermochemical characteristics) in the conditions of formation of the ash deposits have been taken into account. According to the results of the numerical simulation, the comparative analysis of the efficiency of heat transfer has been carried out from the furnace environment to the inside pipe coolant (water, air, or water vapor) from the combustion of coal and coal-water fuels. It has been established that, in the initial period of the boiler unit operation during coal fuel combustion the efficiency of heat transfer from the combustion products of the internal environment is higher than when using CWF. The efficiency of heat transfer in CWF combustion conditions is more at large times (τ≥1.5 hours) of the boiler unit. A significant decrease in heat flux from the combustion products to the inside pipe coolant in the case of coal combustion compared to CWF has been found. It has been proved that this is due primarily to the fact that massive and strong ash deposits are formed during coal combustion.
40 CFR 60.1155 - What types of training must I do?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... operators of municipal waste combustion units using the U.S. Environmental Protection Agency (EPA) or a...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... established standards in this final rule for the following four subcategories of CISWI units: Incinerators (i... incinerators; ERUs (i.e., units that would be boilers or process heaters if they did not combust solid waste); and waste burning kilns (i.e., units that would be cement kilns if they did not combust solid waste...
Process for Making Carbon-Carbon Turbocharger Housing Unit for Intermittent Combustion Engines
NASA Technical Reports Server (NTRS)
Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)
1999-01-01
An improved. lightweight, turbine housing unit for an intermittent combustion reciprocating internal combustion engine turbocharger is prepared from a lay-up or molding of carbon-carbon composite materials in a single-piece or two-piece process. When compared to conventional steel or cast iron, the use of carbon-carbon composite materials in a turbine housing unit reduces the overall weight of the engine and reduces the heat energy loss used in the turbo-charging process. This reduction in heat energy loss and weight reduction provides for more efficient engine operation.
Carbon-Carbon Turbocharger Housing Unit for Intermittent Combustion Engines
NASA Technical Reports Server (NTRS)
Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)
1998-01-01
An improved, lightweight, turbine housing unit for an intermittent combustion reciprocating internal combustion engine turbocharger is prepared from a lay-up or molding of carbon-carbon composite materials in a single-piece or two-piece process. When compared to conventional steel or cast iron, the use of carbon-carbon composite materials in a turbine housing unit reduces the overall weight of the engine and reduces the heat energy loss used in the turbocharging process. This reduction in heat energy loss and weight reduction provides for more efficient engine operation.
76 FR 15455 - Identification of Non-Hazardous Secondary Materials That Are Solid Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-21
... waste incineration units. Preamble Outline I. Statutory Authority II. List of Abbreviations and Acronyms... Programs Are Not Solid Waste When Used in Combustion Units Under this provision--40 CFR 241.3(b)(2)(i)--EPA... combustion units, are ``solid wastes'' under the Resource Conservation and Recovery Act (RCRA). This RCRA...
Facilitating Students' Conceptual Change and Scientific Reasoning Involving the Unit of Combustion
ERIC Educational Resources Information Center
Lee, Chin-Quen; She, Hsiao-Ching
2010-01-01
This article reports research from a 3 year digital learning project to unite conceptual change and scientific reasoning in the learning unit of combustion. One group of students had completed the course combining conceptual change and scientific reasoning. The other group of students received conventional instruction. In addition to the…
40 CFR 60.1020 - Does this subpart allow any exemptions?
Code of Federal Regulations, 2013 CFR
2013-07-01
... other fuels combusted. (h) Plastics/rubber recycling units. You are exempt from this subpart if you meet... recycling unit as defined under “Definitions” (§ 60.1465). (2) You record the weights, each quarter, of... recycling plants. You are exempt from this subpart if you meet two requirements: (1) Your unit combusts...
40 CFR 60.1020 - Does this subpart allow any exemptions?
Code of Federal Regulations, 2010 CFR
2010-07-01
... other fuels combusted. (h) Plastics/rubber recycling units. You are exempt from this subpart if you meet... recycling unit as defined under “Definitions” (§ 60.1465). (2) You record the weights, each quarter, of... recycling plants. You are exempt from this subpart if you meet two requirements: (1) Your unit combusts...
40 CFR 60.1020 - Does this subpart allow any exemptions?
Code of Federal Regulations, 2012 CFR
2012-07-01
... other fuels combusted. (h) Plastics/rubber recycling units. You are exempt from this subpart if you meet... recycling unit as defined under “Definitions” (§ 60.1465). (2) You record the weights, each quarter, of... recycling plants. You are exempt from this subpart if you meet two requirements: (1) Your unit combusts...
40 CFR 60.1020 - Does this subpart allow any exemptions?
Code of Federal Regulations, 2011 CFR
2011-07-01
... other fuels combusted. (h) Plastics/rubber recycling units. You are exempt from this subpart if you meet... recycling unit as defined under “Definitions” (§ 60.1465). (2) You record the weights, each quarter, of... recycling plants. You are exempt from this subpart if you meet two requirements: (1) Your unit combusts...
40 CFR 60.1020 - Does this subpart allow any exemptions?
Code of Federal Regulations, 2014 CFR
2014-07-01
... other fuels combusted. (h) Plastics/rubber recycling units. You are exempt from this subpart if you meet... recycling unit as defined under “Definitions” (§ 60.1465). (2) You record the weights, each quarter, of... recycling plants. You are exempt from this subpart if you meet two requirements: (1) Your unit combusts...
Losurdo, Agnese; Rota, Selene; Gullo, Giuseppe; Masci, Giovanna; Torrisi, Rosalba; Bottai, Giulia; Zuradelli, Monica; Gatzemeier, Wolfgang; Santoro, Armando
2017-05-01
Male breast cancer (MaBC) is a rare disease, accounting for less than 1% of malignancies in men. For this reason, literature data on its clinicopathological characteristics are very heterogeneous and treatment strategies have mostly been extrapolated from the female counterpart. However, immunohistochemical peculiarities of MaBC have recently emerged, defining it as a distinct entity from female breast cancer (FBC), thus requiring a tailored clinical approach. MaBC appears to be more often hormone receptor positive than FBC, while data on HER2 status still remain inconclusive, indicating a possible higher incidence of HER2 alterations. Treatment strategies for MaBC have evolved and less invasive local treatments such as lumpectomy and sentinel lymph node biopsy have become part of everyday clinical practice, while there are still controversies on the indication of radiotherapy, especially after mastectomy. Similarly, differences between male and female hormonal status have raised some concerns in the use of aromatase inhibitors in male patients and the choice of best endocrine therapy is still controversial. Copyright © 2017 Elsevier B.V. All rights reserved.
Ahmed, Mohammad Boshir; Zhou, John L; Ngo, Huu Hao; Guo, Wenshan; Johir, Md Abu Hasan; Belhaj, Dalel
2017-08-01
Competitive sorption of sulfamethazine (SMT), sulfamethoxazole (SMX), sulfathiazole (STZ) and chloramphenicol (CP) toward functionalized biochar (fBC) was highly pH dependent with maximum sorption at pH ∼4.0-4.25. Equilibrium data were well represented by the Langmuir and Freundlich models in the order STZ>SMX>CP>SMT. Kinetics data were slightly better fitted by the pseudo second-order model than pseudo first-order and intra-particle-diffusion models. Maximum sorptive interactions occurred at pH 4.0-4.25 through H-bonds formations for neutral sulfonamides species and through negative charge assisted H-bond (CAHB) formation for CP, in addition to π-π electron-donor-acceptor (EDA) interactions. EDA was the main mechanism for the sorption of positive sulfonamides species and CP at pH<2.0. Sorption of negative sulfonamides species and CP at pH>7.0 was regulated by H-bond formation and proton exchange with water by forming CAHB, respectively. The results suggested fBC to be highly efficient in removing antibiotics mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-27
... Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 (Renewal... Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 (Renewal). ICR...
40 CFR 60.1140 - Where and when must I hold a public meeting on the siting analysis?
Code of Federal Regulations, 2012 CFR
2012-07-01
... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... will construct your municipal waste combustion unit. (c) You must schedule the public meeting to occur...
Research on optimization of combustion efficiency of thermal power unit based on genetic algorithm
NASA Astrophysics Data System (ADS)
Zhou, Qiongyang
2018-04-01
In order to improve the economic performance and reduce pollutant emissions of thermal power units, the characteristics of neural network in establishing boiler combustion model are analyzed based on the analysis of the main factors affecting boiler efficiency by using orthogonal method. In addition, on the basis of this model, the genetic algorithm is used to find the best control amount of the furnace combustion in a certain working condition. Through the genetic algorithm based on real number encoding and roulette selection is concluded: the best control quantity at a condition of furnace combustion can be combined with the boiler combustion system model for neural network training. The precision of the neural network model is further improved, and the basic work is laid for the research of the whole boiler combustion optimization system.
40 CFR 62.15410 - What definitions must I know?
Code of Federal Regulations, 2014 CFR
2014-07-01
... period during which the municipal waste combustion unit combusts fossil fuel or other solid waste fuel... combusts municipal solid waste with nonmunicipal solid waste fuel (for example, coal, industrial process... permit that limits it to combusting a fuel feed stream which is 30 percent or less (by weight) municipal...
Industrial Facility Combustion Energy Use
McMillan, Colin
2016-08-01
Facility-level industrial combustion energy use is calculated from greenhouse gas emissions data reported by large emitters (>25,000 metric tons CO2e per year) under the U.S. EPA's Greenhouse Gas Reporting Program (GHGRP, https://www.epa.gov/ghgreporting). The calculation applies EPA default emissions factors to reported fuel use by fuel type. Additional facility information is included with calculated combustion energy values, such as industry type (six-digit NAICS code), location (lat, long, zip code, county, and state), combustion unit type, and combustion unit name. Further identification of combustion energy use is provided by calculating energy end use (e.g., conventional boiler use, co-generation/CHP use, process heating, other facility support) by manufacturing NAICS code. Manufacturing facilities are matched by their NAICS code and reported fuel type with the proportion of combustion fuel energy for each end use category identified in the 2010 Energy Information Administration Manufacturing Energy Consumption Survey (MECS, http://www.eia.gov/consumption/manufacturing/data/2010/). MECS data are adjusted to account for data that were withheld or whose end use was unspecified following the procedure described in Fox, Don B., Daniel Sutter, and Jefferson W. Tester. 2011. The Thermal Spectrum of Low-Temperature Energy Use in the United States, NY: Cornell Energy Institute.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...
40 CFR 98.342 - GHGs to report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... collection and combustion systems. (c) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...
40 CFR 98.342 - GHGs to report.
Code of Federal Regulations, 2010 CFR
2010-07-01
... collection and combustion systems. (c) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...
40 CFR 98.342 - GHGs to report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... collection and combustion systems. (c) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...
40 CFR 98.342 - GHGs to report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... collection and combustion systems. (c) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...
40 CFR 98.342 - GHGs to report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... collection and combustion systems. (c) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2013 CFR
2013-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device... regenerator under paragraph (b) of this section which commences construction, reconstruction, or modification...
40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device... regenerator under paragraph (b) of this section which commences construction, reconstruction, or modification...
An Evaluation of the Validity and Reliability of a Food Behavior Checklist Modified for Children
ERIC Educational Resources Information Center
Branscum, Paul; Sharma, Manoj; Kaye, Gail; Succop, Paul
2010-01-01
Objective: The objective of this study was to report the construct validity and internal consistency reliability of the Food Behavior Checklist modified for children (FBC-MC), with low-income, Youth Expanded Food and Nutrition Education Program (EFNEP)-eligible children. Methods: Using a cross-sectional research design, construct validity was…
EXPERIMENTAL STUDY OF HIGH LEVELS OF SO2 REMOVAL IN ATMOSPHERIC-PRESSURE FUIDIZED-BED COMBUSTORS
The report describes tests conducted in an atmospheric-pressure-fluidized-bed combustor (FBC) with a cross-section of 1 x 1.6 m) to demonstrate high levels of S02 removal when burning a high-sulfur coal and feeding limestone sorbent for S02 removal. The goal was to achieve 90-plu...
Code of Federal Regulations, 2014 CFR
2014-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
Code of Federal Regulations, 2012 CFR
2012-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
Code of Federal Regulations, 2014 CFR
2014-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
Code of Federal Regulations, 2012 CFR
2012-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
Code of Federal Regulations, 2013 CFR
2013-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
Code of Federal Regulations, 2013 CFR
2013-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
Liber, Alex C; Drope, Jeffrey M; Stoklosa, Michal
2017-03-01
Some scholars suggest that price differences between combustible cigarettes and e-cigarettes could be effective in moving current combustible smokers to e-cigarettes, which could reduce tobacco-related death and disease. Currently, in most jurisdictions, e-cigarettes are not subject to the same excise taxes as combustible cigarettes, potentially providing the category with a price advantage over combustible cigarettes. This paper tests whether e-cigarettes tax advantage has translated into a price advantage. In a sample of 45 countries, the price of combustible cigarettes, disposable e-cigarettes and rechargeable cigarettes were compared. Comparable units of combustible cigarettes cost less than disposable e-cigarettes in almost every country in the sample. While the e-liquids consumed in rechargeable e-cigarettes might cost less per comparable unit than combustible cigarettes, the initial cost to purchase a rechargeable e-cigarette presents a significant cost barrier to switching from smoking to vaping. Existing prices of e-cigarettes are generally much higher than of combustible cigarettes. If policymakers wish to tax e-cigarettes less than combustibles, forceful policy action-almost certainly through excise taxation-must raise the price of combustible cigarettes beyond the price of using e-cigarettes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
An extensive collection of speciated PM2.5 measurements including organic tracers permitted a detailed examination of the emissions from residential wood combustion (RWC) in the southeastern United States over an entire year (2007). The Community Multiscale Air Quality model-base...
40 CFR 60.1885 - What must I include in my annual report?
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring system (§ 60.1850(a)(1)). (d) For municipal waste combustion units that use activated carbon for controlling dioxins/furans or mercury emissions, include four records: (1) The average carbon feed rates... municipal waste combustion units only, nitrogen oxides emissions. (3) Carbon monoxide emissions. (4) Load...
40 CFR 60.1940 - What definitions must I know?
Code of Federal Regulations, 2014 CFR
2014-07-01
.../combustion unit means a unit that produces gases, liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced are combusted and the emissions vented to the atmosphere... arithmetic average flue gas temperature measured at the inlet of the particulate matter control device during...
40 CFR 60.1940 - What definitions must I know?
Code of Federal Regulations, 2013 CFR
2013-07-01
.../combustion unit means a unit that produces gases, liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced are combusted and the emissions vented to the atmosphere... arithmetic average flue gas temperature measured at the inlet of the particulate matter control device during...
40 CFR 60.1940 - What definitions must I know?
Code of Federal Regulations, 2012 CFR
2012-07-01
.../combustion unit means a unit that produces gases, liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced are combusted and the emissions vented to the atmosphere... arithmetic average flue gas temperature measured at the inlet of the particulate matter control device during...
Performance Charts for a Turbojet System
NASA Technical Reports Server (NTRS)
Karp, Irving M.
1947-01-01
Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...
Roy, Bithi; Chen, Luguang; Bhattacharya, Sankar
2014-12-16
This study investigates, for the first time, the NOx, N2O, SO3, and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOx emissions and higher N2O formation were observed in the oxy-fuel atmosphere. These NOx reduction and N2O formations were further enhanced with steam in the combustion environment. The NOx concentration level in the flue gas was within the permissible limit in coal-fired power plants in Victoria. Therefore, an additional NOx removal system will not be required using this coal. In contrast, both SO3 and gaseous mercury concentrations were considerably higher under oxy-fuel combustion compared to that in the air combustion. Around 83% of total gaseous mercury released was Hg(0), with the rest emitted as Hg(2+). Therefore, to control harmful Hg(0), a mercury removal system may need to be considered to avoid corrosion in the boiler and CO2 separation units during the oxy-fuel fluidized-bed combustion using this coal.
Design and process integration of organic Rankine cycle utilizing biomass for power generation
NASA Astrophysics Data System (ADS)
Ependi, S.; Nur, T. B.
2018-02-01
Indonesia has high potential biomass energy sources from palm oil mill industry activities. The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used for generating electricity from rejected waste heat to the environment in industrial processes. In this study, the potential of the palm oil empty fruit bunch, and wood chip have been used as fuel for biomass to generate electricity based ORC with combustion processes. The heat from combustion burner was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC unit. Appropriate designs integration from biomass combustion unit to ORC unit have been analyzed and proposed to generate expander shaft-work. Moreover, the effect of recuperator on the total system efficiency has also been investigated. It was observed that the fuel consumption was increased when the ORC unit equipped recuperator operated until certain pressure and decreased when operated at high pressure.
Inserting new technology into small missions
NASA Technical Reports Server (NTRS)
Deutsch, L. J.
2001-01-01
Part of what makes small missions small is that they have less money. Executing missions at low cost implies extensive use of cost sharing with other missions or use of existing solutions. However, in order to create many small missions, new technology must be developed, applied, and assimilated. Luckily, there are methods for creating new technology and inserting it into faster-better-cheaper (FBC) missions.
Ali, Usman; Mahmood, Adeel; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Katsoyiannis, Athanasios; Jones, Kevin C; Malik, Riffat Naseem
2015-06-01
Levels of polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DPs) were investigated in the Indus River Basin from Pakistan. Concentrations of ∑PBDEs and ∑DPs were ranged between 0.05 and 2.38 and 0.002-0.53 ng g(-1) in the surface soils while 1.43-22.1 and 0.19-7.59 pg m(-3) in the passive air samples, respectively. Black carbon (fBC) and total organic carbon (fTOC) fractions were also measured and ranged between 0.73 and 1.75 and 0.04-0.2%, respectively. The statistical analysis revealed strong influence of fBC than fTOC on the distribution of PBDEs and DPs in the Indus River Basin soils. BDE's congener profile suggested the input of penta-bromodiphenylether (DE-71) commercial formulation in the study area. Soil-air partitioning of PBDEs were investigated by employing octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC-A). The results of both models suggested the combined influence of total organic carbon (absorption) and black carbon (adsorption) in the studied area. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oxygen enhanced switching to combustion of lower rank fuels
Kobayashi, Hisashi; Bool, III, Lawrence E.; Wu, Kuang Tsai
2004-03-02
A furnace that combusts fuel, such as coal, of a given minimum energy content to obtain a stated minimum amount of energy per unit of time is enabled to combust fuel having a lower energy content, while still obtaining at least the stated minimum energy generation rate, by replacing a small amount of the combustion air fed to the furnace by oxygen. The replacement of oxygen for combustion air also provides reduction in the generation of NOx.
40 CFR 60.1835 - Where must I keep my records and for how long?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model... in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records available for...
40 CFR 62.15290 - Where must I keep my records and for how long?
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... records onsite in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records...
40 CFR 60.1835 - Where must I keep my records and for how long?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model... in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records available for...
40 CFR 62.15290 - Where must I keep my records and for how long?
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... records onsite in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records...
40 CFR 60.1835 - Where must I keep my records and for how long?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model... in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records available for...
40 CFR 60.1835 - Where must I keep my records and for how long?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model... in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records available for...
40 CFR 62.15290 - Where must I keep my records and for how long?
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... records onsite in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records...
40 CFR 62.15290 - Where must I keep my records and for how long?
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... records onsite in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records...
40 CFR 62.15290 - Where must I keep my records and for how long?
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... records onsite in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records...
40 CFR 60.1835 - Where must I keep my records and for how long?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model... in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records available for...
40 CFR 63.9983 - Are any EGUs not subject to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., recirculated flue gases or exhaust gases from other sources (such as stationary gas turbines, internal... subject to this subpart. (a) Any unit designated as a stationary combustion turbine, other than an... utility steam generating unit that is not a coal- or oil-fired EGU and combusts natural gas for more than...
40 CFR 63.9983 - Are any EGUs not subject to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., recirculated flue gases or exhaust gases from other sources (such as stationary gas turbines, internal... subject to this subpart. (a) Any unit designated as a stationary combustion turbine, other than an... utility steam generating unit that is not a coal- or oil-fired EGU and combusts natural gas for more than...
40 CFR 63.9983 - Are any EGUs not subject to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., recirculated flue gases or exhaust gases from other sources (such as stationary gas turbines, internal... subject to this subpart. (a) Any unit designated as a stationary combustion turbine, other than an... utility steam generating unit that is not a coal- or oil-fired EGU and combusts natural gas for more than...
40 CFR 98.162 - GHGs to report.
Code of Federal Regulations, 2010 CFR
2010-07-01
... GREENHOUSE GAS REPORTING Hydrogen Production § 98.162 GHGs to report. You must report: (a) CO2 process emissions from each hydrogen production process unit. (b) CO2, CH4 and N2O combustion emissions from each hydrogen production process unit. You must calculate and report these combustion emissions under subpart C...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... controlled flame combustion and having the primary purpose of recovering thermal energy in the form of steam... on its floor. Electric utility steam generating unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that produces electricity for sale. A fossil fuel-fired...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... controlled flame combustion and having the primary purpose of recovering thermal energy in the form of steam... on its floor. Electric utility steam generating unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that produces electricity for sale. A fossil fuel-fired...
40 CFR 63.865 - Performance test requirements and test methods.
Code of Federal Regulations, 2013 CFR
2013-07-01
... follows: ER18FE03.012 Where: ERSCCU = THC emission rate reported as carbon from each semichemical combustion unit, kg/Mg (lb/ton) of black liquor solids fired; THCmeas = Measured THC mass emission rate... semichemical combustion unit has selected the percentage reduction standards for THC, under § 63.862(c)(2)(ii...
40 CFR 63.865 - Performance test requirements and test methods.
Code of Federal Regulations, 2012 CFR
2012-07-01
... follows: ER18FE03.012 Where: ERSCCU = THC emission rate reported as carbon from each semichemical combustion unit, kg/Mg (lb/ton) of black liquor solids fired; THCmeas = Measured THC mass emission rate... semichemical combustion unit has selected the percentage reduction standards for THC, under § 63.862(c)(2)(ii...
46 CFR 109.557 - Flammable and combustible liquids: Carriage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Flammable and combustible liquids: Carriage. 109.557 Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master...
46 CFR 109.557 - Flammable and combustible liquids: Carriage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Flammable and combustible liquids: Carriage. 109.557 Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master...
46 CFR 109.557 - Flammable and combustible liquids: Carriage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Flammable and combustible liquids: Carriage. 109.557 Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master...
46 CFR 109.557 - Flammable and combustible liquids: Carriage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Flammable and combustible liquids: Carriage. 109.557 Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master...
46 CFR 109.557 - Flammable and combustible liquids: Carriage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Flammable and combustible liquids: Carriage. 109.557 Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master...
VARIATION OF ELEMENT SPECIATION IN COAL COMBUSTION AEROSOLS WITH PARTICLE SIZE
The speciation of sulfur, iron and key trace elements (Cr, As, Se, Zn) in combustion ash aerosols has been examined as a function of size from experimental combustion units burning Utah and Illinois bituminous coals. Although predominantly present as sulfate, sulfur was also pre...
Indirect combustion noise of auxiliary power units
NASA Astrophysics Data System (ADS)
Tam, Christopher K. W.; Parrish, Sarah A.; Xu, Jun; Schuster, Bill
2013-08-01
Recent advances in noise suppression technology have significantly reduced jet and fan noise from commercial jet engines. This leads many investigators in the aeroacoustics community to suggest that core noise could well be the next aircraft noise barrier. Core noise consists of turbine noise and combustion noise. There is direct combustion noise generated by the combustion processes, and there is indirect combustion noise generated by the passage of combustion hot spots, or entropy waves, through constrictions in an engine. The present work focuses on indirect combustion noise. Indirect combustion noise has now been found in laboratory experiments. The primary objective of this work is to investigate whether indirect combustion noise is also generated in jet and other engines. In a jet engine, there are numerous noise sources. This makes the identification of indirect combustion noise a formidable task. Here, our effort concentrates exclusively on auxiliary power units (APUs). This choice is motivated by the fact that APUs are relatively simple engines with only a few noise sources. It is, therefore, expected that the chance of success is higher. Accordingly, a theoretical model study of the generation of indirect combustion noise in an Auxiliary Power Unit (APU) is carried out. The cross-sectional areas of an APU from the combustor to the turbine exit are scaled off to form an equivalent nozzle. A principal function of a turbine in an APU is to extract mechanical energy from the flow stream through the exertion of a resistive force. Therefore, the turbine is modeled by adding a negative body force to the momentum equation. This model is used to predict the ranges of frequencies over which there is a high probability for indirect combustion noise generation. Experimental spectra of internal pressure fluctuations and far-field noise of an RE220 APU are examined to identify anomalous peaks. These peaks are possible indirection combustion noise. In the case of the APU RE220, such peaks are identified. The frequency ranges of these peaks are found to overlap those predicted by the model theory. Based on this agreement, a tentative conclusion is drawn that there is good reason to believe that APUs do generate measurable indirect combustion noise. This paper is dedicated to the memory of Prof. Phil Doak for his numerous contributions to Aeroacoustics and the Journal of Sound and Vibration.
Brassard, Patrick; Palacios, Joahnn H; Godbout, Stéphane; Bussières, Denis; Lagacé, Robert; Larouche, Jean-Pierre; Pelletier, Frédéric
2014-03-01
The aim of this study was to compare gaseous and particulate matter (PM) emissions from the combustion of agricultural (switchgrass, fast-growing willow and the dried solid fraction of pig manure) and forest (wood mixture of Black Spruce and Jack Pine) biomasses in a small-scale unit (17.58kW). Concentrations of CO2, CO, CH4, NO2, NH3, N2O, SO2, HCl, and H2O were measured by Fourier transform infrared spectroscopy and converted into emission rates. Opacity was also evaluated and particulates were sampled. Results showed significantly higher emissions of SO2, NO2 and PM with the combustion of agricultural biomass compared to the forest biomass. However, further studies should be carried out so regulations can be adapted in order to permit the combustion of agricultural biomass in small-scale combustion units. Copyright © 2013 Elsevier Ltd. All rights reserved.
40 CFR 97.204 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
40 CFR 97.204 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
40 CFR 97.104 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
Code of Federal Regulations, 2012 CFR
2012-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
40 CFR 97.204 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
Code of Federal Regulations, 2010 CFR
2010-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
40 CFR 97.204 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
40 CFR 97.204 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
40 CFR 97.104 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
Code of Federal Regulations, 2011 CFR
2011-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
Code of Federal Regulations, 2011 CFR
2011-07-01
... identification of non-hazardous secondary materials that are solid wastes when used as fuels or ingredients in...) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...
FIST and the Analytical Hierarchy Process: Comparative Modeling
2013-03-01
one mission to the moon, three space telescopes, two comet and asteroid rendezvous, four Earth-orbiting satellites, and one ion propulsion test...vehicle” (Ward, 2010:50). One successful mission example from FBC is the Near Earth Asteroid Rendezvous (NEAR) project that launched in 1996. The...transportation, power, energy, community development, water, mining , and environment. Respondents from PB have managed such programs as the $2.5 billion
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
..., New York, New York 10045-0001: 1. Thomas H. Lee (Alternative) Fund VI, L.P., Thomas H. Lee (Alternative) Parallel Fund VI, L.P., Thomas H. Lee (Alternative) Parallel (DT) Fund VI, L.P., THL FBC Equity Investors, L.P., THL Advisors (Alternative) VI, L.P., Thomas H. Lee (Alternative) VI, Ltd., THL Managers VI...
Code of Federal Regulations, 2012 CFR
2012-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which Modification or Reconstruction is... your municipal waste combustion unit. You must distribute the document at least to the main public...
Consumption of Combustible and Smokeless Tobacco - United States, 2000-2015.
Wang, Teresa W; Kenemer, Brandon; Tynan, Michael A; Singh, Tushar; King, Brian
2016-12-09
Combustible and smokeless tobacco use causes adverse health outcomes, including cardiovascular disease and multiple types of cancer (1,2). Standard approaches for measuring tobacco use include self-reported surveys of use and consumption estimates based on tobacco excise tax data (3,4). To provide the most recently available tobacco consumption estimates in the United States, CDC used federal excise tax data to estimate total and per capita consumption during 2000-2015 for combustible tobacco (cigarettes, roll-your-own tobacco, pipe tobacco, small cigars, and large cigars) and smokeless tobacco (chewing tobacco and dry snuff). During this period, total combustible tobacco consumption decreased 33.5%, or 43.7% per capita. Although total cigarette consumption decreased 38.7%, cigarettes remained the most commonly used combustible tobacco product. Total noncigarette combustible tobacco (i.e., cigars, roll-your-own, and pipe tobacco) consumption increased 117.1%, or 83.8% per capita during 2000-2015. Total consumption of smokeless tobacco increased 23.1%, or 4.2% per capita. Notably, total cigarette consumption was 267.0 billion cigarettes in 2015 compared with 262.7 billion in 2014. These findings indicate that although cigarette smoking declined overall during 2000-2015, and each year from 2000 to 2014, the number of cigarettes consumed in 2015 was higher than in 2014, and the first time annual cigarette consumption was higher than the previous year since 1973. Moreover, the consumption of other combustible and smokeless tobacco products remains substantial. Implementation of proven tobacco prevention interventions (5) is warranted to further reduce tobacco use in the United States.
40 CFR 60.1000 - What does this subpart do?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which...? This subpart establishes new source performance standards for new small municipal waste combustion...
40 CFR 60.1000 - What does this subpart do?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which...? This subpart establishes new source performance standards for new small municipal waste combustion...
Shaaban, A F
2007-06-25
Management of medical wastes generated at different hospitals in Egypt is considered a highly serious problem. The sources and quantities of regulated medical wastes have been thoroughly surveyed and estimated (75t/day from governmental hospitals in Cairo). From the collected data it was concluded that the most appropriate incinerator capacity is 150kg/h. The objective of this work is to develop the process engineering design of an integrated unit, which is technically and economically capable for incinerating medical wastes and treatment of combustion gases. Such unit consists of (i) an incineration unit (INC-1) having an operating temperature of 1100 degrees C at 300% excess air, (ii) combustion-gases cooler (HE-1) generating 35m(3)/h hot water at 75 degrees C, (iii) dust filter (DF-1) capable of reducing particulates to 10-20mg/Nm(3), (iv) gas scrubbers (GS-1,2) for removing acidic gases, (v) a multi-tube fixed bed catalytic converter (CC-1) to maintain the level of dioxins and furans below 0.1ng/Nm(3), and (vi) an induced-draft suction fan system (SF-1) that can handle 6500Nm(3)/h at 250 degrees C. The residence time of combustion gases in the ignition, mixing and combustion chambers was found to be 2s, 0.25s and 0.75s, respectively. This will ensure both thorough homogenization of combustion gases and complete destruction of harmful constituents of the refuse. The adequate engineering design of individual process equipment results in competitive fixed and operating investments. The incineration unit has proved its high operating efficiency through the measurements of different pollutant-levels vented to the open atmosphere, which was found to be in conformity with the maximum allowable limits as specified in the law number 4/1994 issued by the Egyptian Environmental Affairs Agency (EEAA) and the European standards.
Experimental gas-fired pulse-combustion studies
NASA Technical Reports Server (NTRS)
Blomquist, C. A.
1982-01-01
Experimental studies conducted at Argonne National Laboratory on a gas-fired, water-cooled, Helmholtz-type pulse combustion burner are discussed. In addition to the experimental work, information is presented on the evolution of pulse combustion, the types of pulse combustion burners and their applications, and the types of fuels used. Also included is a survey of other pertinent studies of gas-fired pulse combustion. The burner used in the Argonne research effort was equipped with adjustable air and gas flapper valves and was operated stably over a heat-input range of 30,000 to 200,000 Btu/h. The burner's overall heat transfer in the pulsating mode was 22 to 31% higher than when the unit was operated in the steady mode. Important phenomena discussed include (1) effects on performance produced by inserting a corebustor to change tailpipe diameter, (2) effects observed following addition of an air-inlet decoupling chamber to the unit, and (3) occurrence of carbon monoxide in the exhaust gas.
Kumari, Suneeta; Kumar Annamareddy, Sri Hari; Abanti, Sahoo; Kumar Rath, Pradip
2017-11-01
Chitosan is derived from different starting materials such as fish scales, shrimp and crab shells by the process of deacetylation of chitin, which is carried out using 40% KOH at 90°C for 6h. Prepared chitosan was characterized by Fourier transforms infrared spectroscopy, X-ray powder diffraction, Scanning electron microscope and Thermogravimetric analysis. Futher the physicochemical properties of chitosan like Fat binding capacity (FBC), water binding capacity (WBC), solubility, average molecular weight, ash content, moisture and degree of deacetylation of chitosan were also studied. Crystalline index (%) values of commercial, shrimp, crab and fish chitosan were found to be 96, 82, 88 and 84% respectively. The presence of amino group was confirmed from the FTIR spectra of chitosan synthesized. TGA results demonstrated the lower thermal stability of chitosan. Relatively smother surface and nano-fiber structures were observed from SEM analysis. The degree of deacetylation of chitosan from different sources such as shells of fish, shrimp and crab were found to be 75%, 78%, and 70% respectively. In a similar way the WBC and FBC of fish, shrimp and crab shells were found to be 492, 358 and 138% and 226, 246 and 138% respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
40 CFR 98.36 - Data reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... measured by the CEMS consists entirely of non-biogenic CO2 (i.e., CO2 from fossil fuel combustion plus, if... tons of CO2e. If any of the units burn both fossil fuels and biomass, report also the annual CO2 emissions from combustion of all fossil fuels combined and annual CO2 emissions from combustion of all...
CIBO special project study: Fluidized bed combustion by-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soyka, P.A.
1996-12-31
Information is outlined on a Council of Industrial Boiler Owners (CIBO) Special Project Study on fluidized bed combustion by-products. Data are presented on a fossil fuel combustion by-products (FFCB) Survey; study population and response pattern; survey respondent characteristics; FFCB characterization; productive use and impacts; on-site FFCB disposal; and environmental characteristics of FFCB disposal units.
NASA Astrophysics Data System (ADS)
Xue, Xiaochun; Yu, Yonggang
2017-04-01
Numerical analyses have been performed to study the influence of fast depressurization on the wake flow field of the base-bleed unit (BBU) with a secondary combustion when the base-bleed projectile is propelled out of the muzzle. Two-dimensional axisymmetric Navier-Stokes equations for a multi-component chemically reactive system is solved by Fortran program to calculate the couplings of the internal flow field and wake flow field with consideration of the combustion of the base-bleed propellant and secondary combustion effect. Based on the comparison with the experiments, the unsteady variation mechanism and secondary combustion characteristic of wake flow field under fast depressurization process is obtained numerically. The results show that in the fast depressurization process, the variation extent of the base pressure of the BBU is larger in first 0.9 ms and then decreases gradually and after 1.5 ms, it remains basically stable. The pressure and temperature of the base-bleed combustion chamber experience the decrease and pickup process. Moreover, after the pressure and temperature decrease to the lowest point, the phenomenon that the external gases are flowing back into the base-bleed combustion chamber appears. Also, with the decrease of the initial pressure, the unsteady process becomes shorter and the temperature gradient in the base-bleed combustion chamber declines under the fast depressurization process, which benefits the combustion of the base-bleed propellant.
Exergy analysis of biomass organic Rankine cycle for power generation
NASA Astrophysics Data System (ADS)
Nur, T. B.; Sunoto
2018-02-01
The study examines proposed small biomass-fed Organic Rankine Cycle (ORC) power plant through exergy analysis. The system consists of combustion burner unit to utilize biomass as fuel, and organic Rankine cycle unit to produce power from the expander. The heat from combustion burner was transfered by thermal oil heater to evaporate ORC working fluid in the evaporator part. The effects of adding recuperator into exergy destruction were investigated. Furthermore, the results of the variations of system configurations with different operating parameters, such as the evaporating pressures, ambient temperatures, and expander pressures were analyzed. It was found that the largest exergy destruction occurs during processes are at combustion part, followed by evaporator, condenser, expander, and pump. The ORC system equipped with a recuperator unit exhibited good operational characteristics under wide range conditions compared to the one without recuperator.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND... submit a final control plan according to the schedule in table 1 of this subpart and comply with § 62...) Calculations of the current maximum combustion capacity and the planned maximum combustion capacity after the...
40 CFR 98.32 - GHGs to report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... GREENHOUSE GAS REPORTING General Stationary Fuel Combustion Sources § 98.32 GHGs to report. You must report CO2, CH4, and N2O mass emissions from each stationary fuel combustion unit, except as otherwise...
40 CFR 98.32 - GHGs to report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... GREENHOUSE GAS REPORTING General Stationary Fuel Combustion Sources § 98.32 GHGs to report. You must report CO2, CH4, and N2O mass emissions from each stationary fuel combustion unit, except as otherwise...
40 CFR 98.32 - GHGs to report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... GREENHOUSE GAS REPORTING General Stationary Fuel Combustion Sources § 98.32 GHGs to report. You must report CO2, CH4, and N2O mass emissions from each stationary fuel combustion unit, except as otherwise...
40 CFR 98.32 - GHGs to report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... GREENHOUSE GAS REPORTING General Stationary Fuel Combustion Sources § 98.32 GHGs to report. You must report CO2, CH4, and N2O mass emissions from each stationary fuel combustion unit, except as otherwise...
40 CFR 98.452 - GHGs to report.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (b) You must report CO2, N2O and CH4 emissions from each stationary combustion unit. You must calculate and report these emissions under subpart C of this part (General Stationary Fuel Combustion...
40 CFR 60.1055 - What is a materials separation plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... separating certain components of municipal solid waste for a given service area prior to waste combustion and...
40 CFR 60.1055 - What is a materials separation plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... separating certain components of municipal solid waste for a given service area prior to waste combustion and...
Demonstration of An Integrated Approach to Mercury Control at Lee Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitali Lissianski; Pete Maly
2007-12-31
General Electric (GE) has developed an approach whereby native mercury reduction on fly ash can be improved by optimizing the combustion system. This approach eliminates carbon-rich areas in the combustion zone, making the combustion process more uniform, and allows increasing carbon content in fly ash without significant increase in CO emissions. Since boiler excess O{sub 2} can be also reduced as a result of optimized combustion, this process reduces NO{sub x} emissions. Because combustion optimization improves native mercury reduction on fly ash, it can reduce requirements for activated carbon injection (ACI) when integrated with sorbent injection for more efficient mercurymore » control. The approach can be tailored to specific unit configurations and coal types for optimal performance. This report describes results of a U.S. DOE sponsored project designed to evaluate the effect of combustion conditions on 'native' mercury capture on fly ash and integrate combustion optimization for improved mercury and NO{sub x} reduction with ACI. The technology evaluation took place in Lee Station Unit 3 located in Goldsboro, NC and operated by Progress Energy. Unit 3 burns a low-sulfur Eastern bituminous coal and is a 250 MW opposed-wall fired unit equipped with an ESP with a specific collection area of 249 ft{sup 2}/kacfm. Unit 3 is equipped with SO{sub 3} injection for ESP conditioning. The technical goal of the project was to evaluate the technology's ability to achieve 70% mercury reduction below the baseline emission value of 2.9 lb/TBtu, which was equivalent to 80% mercury reduction relative to the mercury concentration in the coal. The strategy to achieve the 70% incremental improvement in mercury removal in Unit 3 was (1) to enhance 'naturally' occurring fly ash mercury capture by optimizing the combustion process and using duct humidification to reduce flue gas temperatures at the ESP inlet, and (2) to use ACI in front of the ESP to further reduce mercury emissions. The program was comprised of field and pilot-scale tests, engineering studies and consisted of eight tasks. As part of the program, GE conducted pilot-scale evaluation of sorbent effect on mercury reduction, supplied and installed adjustable riffle boxes to assist in combustion optimization, performed combustion optimization, supplied mobile sorbent injection and flue gas humidification systems, conducted CFD modeling of sorbent injection and flue gas humidification, and performed mercury testing including a continuous 30-day sorbent injection trial. Combustion optimization was the first step in reduction of mercury emissions. Goals of combustion optimization activities were to improve 'native' mercury capture on fly ash and reduce NO{sub x}. Combustion optimization included balancing of coal flow through individual burners to eliminate zones of carbon-rich combustion, air flow balancing, and burner adjustments. As part of the project, the original riffle boxes were replaced with Foster-Wheeler's adjustable riffle boxes to allow for biasing the coal flow between the coal pipes. A 10-point CO/O{sub 2}/NO{sub x} grid was installed in the primary superheater region of the back pass to assist in these activities. Testing of mercury emissions before and after combustion optimization demonstrated that mercury emissions were reduced from 2.9 lb/TBtu to 1.8 lb/TBtu due to boiler operation differences in conjunction with combustion optimization, a 38% improvement in 'native' mercury capture on fly ash. Native mercury reduction from coal was {approx}42% at baseline conditions and 64% at optimized combustion conditions. As a result of combustion optimization NO{sub x} emissions were reduced by 18%. A three-dimensional CFD model was developed to study the flow distribution and sorbent injection in the post air heater duct in Lee Station Unit 3. Modeling of the flow pattern exiting the air pre-heater demonstrated that because of the duct transition from a circular opening at the exit of air-pre-heater to a rectangular ESP inlet duct, flow separation occurred at the corners after the transition. Modeling also demonstrated that the flow was severely biased from the South side to the North side due to the bend of the duct. Results of CFD modeling were used to design lances for better sorbent distribution across the ESP inlet duct. Modeling of water injection demonstrated that because of flue gas temperature biasing, the droplet evaporation rate was slower on the North side than that on the South side of the duct. Modeling suggested that an improvement of water droplet evaporation could be achieved by closing the lance on the North side where flue gas temperatures were lower. Preliminary evaluation of the effect of carbon-based sorbents on mercury reduction took place in a 1 MBtu/hr (300 kW) Boiler Simulator Facility using the same coal as fired at Lee Station.« less
Penn, Stefani L; Arunachalam, Saravanan; Woody, Matthew; Heiger-Bernays, Wendy; Tripodis, Yorghos; Levy, Jonathan I
2017-03-01
Residential combustion (RC) and electricity generating unit (EGU) emissions adversely impact air quality and human health by increasing ambient concentrations of fine particulate matter (PM 2.5 ) and ozone (O 3 ). Studies to date have not isolated contributing emissions by state of origin (source-state), which is necessary for policy makers to determine efficient strategies to decrease health impacts. In this study, we aimed to estimate health impacts (premature mortalities) attributable to PM 2.5 and O 3 from RC and EGU emissions by precursor species, source sector, and source-state in the continental United States for 2005. We used the Community Multiscale Air Quality model employing the decoupled direct method to quantify changes in air quality and epidemiological evidence to determine concentration-response functions to calculate associated health impacts. We estimated 21,000 premature mortalities per year from EGU emissions, driven by sulfur dioxide emissions forming PM 2.5 . More than half of EGU health impacts are attributable to emissions from eight states with significant coal combustion and large downwind populations. We estimate 10,000 premature mortalities per year from RC emissions, driven by primary PM 2.5 emissions. States with large populations and significant residential wood combustion dominate RC health impacts. Annual mortality risk per thousand tons of precursor emissions (health damage functions) varied significantly across source-states for both source sectors and all precursor pollutants. Our findings reinforce the importance of pollutant-specific, location-specific, and source-specific models of health impacts in design of health-risk minimizing emissions control policies. Citation: Penn SL, Arunachalam S, Woody M, Heiger-Bernays W, Tripodis Y, Levy JI. 2017. Estimating state-specific contributions to PM 2.5 - and O 3 -related health burden from residential combustion and electricity generating unit emissions in the United States. Environ Health Perspect 125:324-332; http://dx.doi.org/10.1289/EHP550.
40 CFR 98.52 - GHGs to report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... emissions at the facility level. (b) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...
40 CFR 98.52 - GHGs to report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... emissions at the facility level. (b) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...
40 CFR 98.52 - GHGs to report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... emissions at the facility level. (b) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, D.Y.; Hughes, R.W.; Anthony, E.J.
Sintering during calcination/carbonation may introduce substantial economic penalties for a CO{sub 2} looping cycle using limestone/dolomite-derived sorbents. Cyclic carbonation and calcination reactions were investigated for CO{sub 2} capture under fluidized bed combustion (FBC) conditions. The cyclic carbonation characteristics of CaCO{sub 3}-derived sorbents were compared at various calcination temperatures (700-925{sup o} C) and different gas stream compositions: pure -2 and a realistic calciner environment where high concentrations of CO{sub 2}>80-90% are expected. The conditions during carbonation were 700 {sup o}C and 15% CO{sub 2} in N{sub 2} and 0.18% or 0.50% SO{sub 2} in selected tests. Up to 20 calcination/carbonation cyclesmore » were conducted using a thermogravimetric analyzer (TGA) apparatus. Three Canadian limestones were tested: Kelly Rock, Havelock, and Cadomin, using a prescreened particle size range of 400-650 {mu} m. Calcined Kelly Rock and Cadomin samples were hydrated by steam and examined. Sorbent reactivity was reduced whenever SO{sub 2} was introduced to either the calcining or carbonation streams. The multicyclic capture capacity of CaO for CO{sub 2} was substantially reduced at high concentrations of CO{sub 2} during the sorbent regeneration process and carbonation conversion of the Kelly Rock sample obtained after 20 cycles was only 10.5%. Hydrated sorbents performed better for CO{sub 2} capture but showed deterioration following calcination in high CO{sub 2} gas streams indicating that high CO{sub 2} and SO{sub 2} levels in the gas stream lead to lower CaO conversion because of enhanced sintering and irreversible formation of CaSO{sub 4}.« less
Fluidized bed coal combustion reactor
NASA Technical Reports Server (NTRS)
Moynihan, P. I.; Young, D. L. (Inventor)
1981-01-01
A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.
Ceramic Matrix Characterization Under a Gas Turbine Combustion and Loading Environment
2014-03-17
carrier gas is injected into the jet and melts the powder to create a coating on the material. Figure 11 shows the nozzle of the HVOF spray gun when used...CERAMIC MATRIX COMPOSITE CHARACTERIZATION UNDER A GAS TURBINE COMBUSTION AND LOADING ENVIRONMENT...the United States. AFIT-ENY-14-M-08 CERAMIC MATRIX COMPOSITE CHARACTERIZATION UNDER A GAS TURBINE COMBUSTION AND LOADING ENVIRONMENT
Thermodynamic analysis of in situ gasification-chemical looping combustion (iG-CLC) of Indian coal.
Suresh, P V; Menon, Kavitha G; Prakash, K S; Prudhvi, S; Anudeep, A
2016-10-01
Chemical looping combustion (CLC) is an inherent CO 2 capture technology. It is gaining much interest in recent years mainly because of its potential in addressing climate change problems associated with CO 2 emissions from power plants. A typical chemical looping combustion unit consists of two reactors-fuel reactor, where oxidation of fuel occurs with the help of oxygen available in the form of metal oxides and, air reactor, where the reduced metal oxides are regenerated by the inflow of air. These oxides are then sent back to the fuel reactor and the cycle continues. The product gas from the fuel reactor contains a concentrated stream of CO 2 which can be readily stored in various forms or used for any other applications. This unique feature of inherent CO 2 capture makes the technology more promising to combat the global climate changes. Various types of CLC units have been discussed in literature depending on the type of fuel burnt. For solid fuel combustion three main varieties of CLC units exist namely: syngas CLC, in situ gasification-CLC (iG-CLC) and chemical looping with oxygen uncoupling (CLOU). In this paper, theoretical studies on the iG-CLC unit burning Indian coal are presented. Gibbs free energy minimization technique is employed to determine the composition of flue gas and oxygen carrier of an iG-CLC unit using Fe 2 O 3 , CuO, and mixed carrier-Fe 2 O 3 and CuO as oxygen carriers. The effect of temperature, suitability of oxygen carriers, and oxygen carrier circulation rate on the performance of a CLC unit for Indian coal are studied and presented. These results are analyzed in order to foresee the operating conditions at which economic and smooth operation of the unit is expected.
NASA Astrophysics Data System (ADS)
Boerner, S.; Funke, H. H.-W.; Hendrick, P.; Recker, E.; Elsing, R.
2013-03-01
The usage of alternative fuels in aircraft industry plays an important role of current aero engine research and development processes. The micromix burning principle allows a secure and low NOx combustion of gaseous hydrogen. The combustion principle is based on the fluid phenomenon of jet in cross flow and achieves a significant lowering in NOx formation by using multiple miniaturized flames. The paper highlights the development and the integration of a combustion chamber, based on the micromix combustion principle, into an Auxiliary Power Unit (APU) GTCP 36-300 with regard to the necessary modifications on the gas turbine and on the engine controller.
Partitioning factor of mercury during coal combustion in low capacity domestic heating units.
Hlawiczka, Stanislaw; Kubica, Krystyna; Zielonka, Urszula
2003-08-01
Data from an experiment concerning Hg emission from coal combustion in a furnace of 5.6 kW capacity are presented. The goal of the experiment was to define how much of the mercury in coal combusted in the stove was emitted to the atmosphere in gaseous form because vapors contribute mainly to human intake of the metal from ambient air. The partitioning factor kappa, defined as the ratio of gaseous mercury mass emitted to the air and mercury mass contained in the unit coal mass before combustion was evaluated. The mean value of the kappa factors determined in the study was 0.52 indicating that on average only 52% of the mercury was emitted to the air in gaseous form during coal combustion in an apparatus similar to a domestic furnace. The kappa value determined seems relatively low indicating that besides mercury emitted to the atmosphere in gaseous form, a large portion of the mercury is present in particulate matter trapped in the chimney duct and emitted to the air.
Application of Multivariable Model Predictive Advanced Control for a 2×310T/H CFB Boiler Unit
NASA Astrophysics Data System (ADS)
Weijie, Zhao; Zongllao, Dai; Rong, Gou; Wengan, Gong
When a CFB boiler is in automatic control, there are strong interactions between various process variables and inverse response characteristics of bed temperature control target. Conventional Pill control strategy cannot deliver satisfactory control demand. Kalman wave filter technology is used to establish a non-linear combustion model, based on the CFB combustion characteristics of bed fuel inventory, heating values, bed lime inventory and consumption. CFB advanced combustion control utilizes multivariable model predictive control technology to optimize primary and secondary air flow, bed temperature, air flow, fuel flow and heat flux. In addition to providing advanced combustion control to 2×310t/h CFB+1×100MW extraction condensing turbine generator unit, the control also provides load allocation optimization and advanced control for main steam pressure, combustion and temperature. After the successful implementation, under 10% load change, main steam pressure varied less than ±0.07MPa, temperature less than ±1°C, bed temperature less than ±4°C, and air flow (O2) less than ±0.4%.
Chemistry and the Internal Combustion Engine II: Pollution Problems.
ERIC Educational Resources Information Center
Hunt, C. B.
1979-01-01
Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)
Burning To Learn: An Introduction to Flame Retardants.
ERIC Educational Resources Information Center
Journal of Chemical Education, 2001
2001-01-01
Presents an activity that demonstrates the effectiveness of flame retardants--substances added to combustible materials to slow down or hinder burning--that can be introduced when discussing combustion reactions or during a practical or everyday chemistry unit. (ASK)
NASA Astrophysics Data System (ADS)
Myhre, C. A.
2002-01-01
The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user facility designed to accommodate four different droplet combustion science experiments. The MDCA will conduct experiments using the Combustion Integrated Rack (CIR) of the NASA Glenn Research Center's Fluids and Combustion Facility (FCF). The payload is planned for the International Space Station. The MDCA, in conjunction with the CIR, will allow for cost effective extended access to the microgravity environment, not possible on previous space flights. It is currently in the Engineering Model build phase with a planned flight launch with CIR in 2004. This paper provides an overview of the capabilities and development status of the MDCA. The MDCA contains the hardware and software required to conduct unique droplet combustion experiments in space. It consists of a Chamber Insert Assembly, an Avionics Package, and a multiple array of diagnostics. Its modular approach permits on-orbit changes for accommodating different fuels, fuel flow rates, soot sampling mechanisms, and varying droplet support and translation mechanisms to accommodate multiple investigations. Unique diagnostic measurement capabilities for each investigation are also provided. Additional hardware provided by the CIR facility includes the structural support, a combustion chamber, utilities for the avionics and diagnostic packages, and the fuel mixing capability for PI specific combustion chamber environments. Common diagnostics provided by the CIR will also be utilized by the MDCA. Single combustible fuel droplets of varying sizes, freely deployed or supported by a tether are planned for study using the MDCA. Such research supports how liquid-fuel-droplets ignite, spread, and extinguish under quiescent microgravity conditions. This understanding will help us develop more efficient energy production and propulsion systems on Earth and in space, deal better with combustion generated pollution, and address fire hazards associated with using liquid combustibles on Earth and in space. As a result of the concurrent design process of MDCA and CIR, the MDCA team continues to work closely with the CIR team, developing Integration Agreements and an Interface Control Document during preliminary integration activities. Integrated testing of hardware and software systems will occur at the Engineering Model and Flight Model phases. Because the engineering model is a high fidelity unit, it will be upgraded to a flight equivalent Ground Integration Unit (GIU) when the engineering model phase is completed. The GIU will be available on the ground for troubleshooting of any on-orbit problems. Integrated verification testing will be conducted with the MDCA flight unit and the CIR flight unit. Upon successful testing, the MDCA will be shipped to the Kennedy Space Center for a post-shipment checkout and final turn-over to CIR for final processing and launch to the International Space Station. Once on-orbit, the MDCA is managed from the GRC Telescience Support Center (TSC). The MDCA operations team resides at the TSC. Data is transmitted to the PI's at their home sites by means of TREK workstations, allowing direct interaction between the PI and operations staff to maximum science. Upon completion of a PI's experiment, the MDCA is reconfigured for the next of the three follow-on experiments or ultimately removed from the CIR, placed into stowage, and returned to Earth.
MacDonald, Russell D; Thomas, Laura; Rusk, Frederick C; Marques, Shauna D; McGuire, Dan
2010-01-01
Transport medicine personnel are potentially exposed to jet fuel combustion products. Setting-specific data are required to determine whether this poses a risk. This study assessed exposure to jet fuel combustion products, compared various engine ignition scenarios, and determined methods to minimize exposure. The Beechcraft King Air B200 turboprop aircraft equipped with twin turbine engines, using a kerosene-based jet fuel (Jet A-1), was used to measure products of combustion during boarding, engine startup, and flight in three separate engine start scenarios ("shielded": internal engine start, door closed; "exposed": ground power unit start, door open; and "minimized": ground power unit right engine start, door open). Real-time continuous monitoring equipment was used for oxygen, carbon dioxide, carbon monoxide, nitrogen dioxide, hydrogen sulfide, sulfur dioxide, volatile organic compounds, and particulate matter. Integrated methods were used for aldehydes, polycyclic aromatic hydrocarbons, volatile organic compounds, and aliphatic hydrocarbons. Samples were taken in the paramedic breathing zone for approximately 60 minutes, starting just before the paramedics boarded the aircraft. Data were compared against regulated time-weighted exposure thresholds to determine the presence of potentially harmful products of combustion. Polycyclic aromatic hydrocarbons, aldehydes, volatile organic compounds, and aliphatic hydrocarbons were found at very low concentrations or beneath the limits of detection. There were significant differences in exposures to particulates, carbon monoxide, and total volatile organic compound between the "exposed" and "minimized" scenarios. Elevated concentrations of carbon monoxide and total volatile organic compounds were present during the ground power unit-assisted dual-engine start. There were no appreciable exposures during the "minimized" or "shielded" scenarios. Air medical personnel exposures to jet fuel combustion products were generally low and did not exceed established U.S. or Canadian health and safety exposure limits. Avoidance of ground power unit-assisted dual-engine starts and closing the hangar door prior to start minimize or eliminate the occupational exposure.
Jathar, Shantanu H.; Gordon, Timothy D.; Hennigan, Christopher J.; Pye, Havala O. T.; Pouliot, George; Adams, Peter J.; Donahue, Neil M.; Robinson, Allen L.
2014-01-01
Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles, and biomass burning. About 10–20% of NMOG emissions from these major combustion sources are not routinely speciated and therefore are currently misclassified in emission inventories and chemical transport models. The smog chamber data demonstrate that this misclassification biases model predictions of SOA production low because the unspeciated NMOG produce more SOA per unit mass than the speciated NMOG. We present new source-specific SOA yield parameterizations for these unspeciated emissions. These parameterizations and associated source profiles are designed for implementation in chemical transport models. Box model calculations using these new parameterizations predict that NMOG emissions from the top six combustion sources form 0.7 Tg y−1 of first-generation SOA in the United States, almost 90% of which is from biomass burning and gasoline vehicles. About 85% of this SOA comes from unspeciated NMOG, demonstrating that chemical transport models need improved treatment of combustion emissions to accurately predict ambient SOA concentrations. PMID:25002466
Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.
ERIC Educational Resources Information Center
Lloyd, William G.; Davenport, Derek A.
1980-01-01
Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)
Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies
NASA Astrophysics Data System (ADS)
Ma, Zizhen; Deng, Jianguo; Li, Zhen; Li, Qing; Zhao, Ping; Wang, Liguo; Sun, Yezhu; Zheng, Hongxian; Pan, Li; Zhao, Shun; Jiang, Jingkun; Wang, Shuxiao; Duan, Lei
2016-04-01
Coal combustion in coal-fired power plants is one of the important anthropogenic NOx sources, especially in China. Many policies and methods aiming at reducing pollutants, such as increasing installed capacity and installing air pollution control devices (APCDs), especially selective catalytic reduction (SCR) units, could alter NOx emission characteristics (NOx concentration, NO2/NOx ratio, and NOx emission factor). This study reported the NOx characteristics of eight new coal-fired power-generating units with different boiler patterns, installed capacities, operating loads, and coal types. The results showed that larger units produced less NOx, and anthracite combustion generated more NOx than bitumite and lignite combustion. During formation, the NOx emission factors varied from 1.81 to 6.14 g/kg, much lower than those of older units at similar scales. This implies that NOx emissions of current and future units could be overestimated if they are based on outdated emission factors. In addition, APCDs, especially SCR, greatly decreased NOx emissions, but increased NO2/NOx ratios. Regardless, the NO2/NOx ratios were lower than 5%, in accordance with the guidelines and supporting the current method for calculating NOx emissions from coal-fired power plants that ignore NO2.
NASA Astrophysics Data System (ADS)
Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan
2014-08-01
The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.
NASA Technical Reports Server (NTRS)
Anderson, L. A.; Henry, R. L.; Fedor, O. H.; Owens, L. J.
1986-01-01
Rechargeable hydraulic powerpack functions as lightweight, compact source of mechanical energy. Self-contained hydraulic powerpack derives energy from solid chemical charge. Combustion of charge initiated by small hammer, and revolving feeder replaces charges expended. Combustion gases cool during expansion in turbine and not too hot for release to atmosphere. Unit has applications driving wheelchairs and operating drills, winches, and other equipment in remote areas. Also replaces electric motors and internal-combustion engines as source of power in explosive atmospheres.
Anantharaman, Rahul; Peters, Thijs; Xing, Wen; Fontaine, Marie-Laure; Bredesen, Rune
2016-10-20
Dual phase membranes are highly CO 2 -selective membranes with an operating temperature above 400 °C. The focus of this work is to quantify the potential of dual phase membranes in pre- and post-combustion CO 2 capture processes. The process evaluations show that the dual phase membranes integrated with an NGCC power plant for CO 2 capture are not competitive with the MEA process for post-combustion capture. However, dual phase membrane concepts outperform the reference Selexol technology for pre-combustion CO 2 capture in an IGCC process. The two processes evaluated in this work, post-combustion NGCC and pre-combustion IGCC, represent extremes in CO 2 partial pressure fed to the separation unit. Based on the evaluations it is expected that dual phase membranes could be competitive for post-combustion capture from a pulverized coal fired power plant (PCC) and pre-combustion capture from an Integrated Reforming Cycle (IRCC).
CONTROLLING EMISSIONS FROM FUEL AND WASTE COMBUSTION
Control of emissions from combustion of fuels and wastes has been a traditional focus of air pollution regulations. Significant technology developments of the '50s and '60s have been refined into reliable chemical and physical process unit operations. In the U.S., acid rain legis...
Penn, Stefani L.; Arunachalam, Saravanan; Woody, Matthew; Heiger-Bernays, Wendy; Tripodis, Yorghos; Levy, Jonathan I.
2016-01-01
Background: Residential combustion (RC) and electricity generating unit (EGU) emissions adversely impact air quality and human health by increasing ambient concentrations of fine particulate matter (PM2.5) and ozone (O3). Studies to date have not isolated contributing emissions by state of origin (source-state), which is necessary for policy makers to determine efficient strategies to decrease health impacts. Objectives: In this study, we aimed to estimate health impacts (premature mortalities) attributable to PM2.5 and O3 from RC and EGU emissions by precursor species, source sector, and source-state in the continental United States for 2005. Methods: We used the Community Multiscale Air Quality model employing the decoupled direct method to quantify changes in air quality and epidemiological evidence to determine concentration–response functions to calculate associated health impacts. Results: We estimated 21,000 premature mortalities per year from EGU emissions, driven by sulfur dioxide emissions forming PM2.5. More than half of EGU health impacts are attributable to emissions from eight states with significant coal combustion and large downwind populations. We estimate 10,000 premature mortalities per year from RC emissions, driven by primary PM2.5 emissions. States with large populations and significant residential wood combustion dominate RC health impacts. Annual mortality risk per thousand tons of precursor emissions (health damage functions) varied significantly across source-states for both source sectors and all precursor pollutants. Conclusions: Our findings reinforce the importance of pollutant-specific, location-specific, and source-specific models of health impacts in design of health-risk minimizing emissions control policies. Citation: Penn SL, Arunachalam S, Woody M, Heiger-Bernays W, Tripodis Y, Levy JI. 2017. Estimating state-specific contributions to PM2.5- and O3-related health burden from residential combustion and electricity generating unit emissions in the United States. Environ Health Perspect 125:324–332; http://dx.doi.org/10.1289/EHP550 PMID:27586513
A flow calorimeter for determining combustion efficiency from residual enthalpy of exhaust gases
NASA Technical Reports Server (NTRS)
Evans, Albert; Hibbard, Robert R
1954-01-01
A flow calorimeter for determining the combustion efficiency of turbojet and ram-jet combustors from measurement of the residual enthalpy of combustion of the exhaust gas is described. Briefly, the calorimeter catalytically oxidizes the combustible constituents of exhaust-gas samples, and the resultant temperature rise is measured. This temperature rise is related to the residual enthalpy of combustion of the sample by previous calibration of the calorimeter. Combustion efficiency can be calculated from a knowledge of the residual enthalpy of the exhaust gas and the combustor input enthalpy. An accuracy of +-0.2 Btu per cubic foot was obtained with prepared fuel-air mixtures, and the combustion efficiencies of single turbojet combustors measured by both the flow-calorimeter and heat-balance methods compared within 3 percentage units. Flow calorimetry appears to be a suitable method for determining combustion efficiencies at high combustor temperatures where ordinary thermocouples cannot be used. The method is fundamentally more accurate than heat-balance methods at high combustion efficiencies and can be used to verify near-100-percent efficiency data.
29 CFR 1926.151 - Fire prevention.
Code of Federal Regulations, 2010 CFR
2010-07-01
... inches shall be maintained between such piping and combustible material. (3) Smoking shall be prohibited...: “No Smoking or Open Flame.” (4) Portable battery powered lighting equipment, used in connection with... maintained around lights and heating units to prevent ignition of combustible materials. (7) A clearance of...
77 FR 76542 - Millstone Power Station, Unit 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
... cable insulation and limited floor based combustibles. The licensee also stated that two of the fire... are provided with ionization smoke detectors. The licensee stated that the smoke and heat detection... combustible loading that predominantly consists of cable insulation and that potential ignition sources for...
40 CFR 74.10 - Roles-EPA and permitting authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... allowance allocation, and allocating allowances for combustion or process sources that become affected units under this part; (2) Certifying or recertifying monitoring systems for combustion or process sources as... accounting for the replacement of thermal energy, closing accounts for opt-in sources that shut down, are...
Code of Federal Regulations, 2011 CFR
2011-07-01
... OR INGREDIENTS IN COMBUSTION UNITS General § 241.2 Definitions. For the purposes of this subpart... products of incomplete combustion. Contained means the non-hazardous secondary material is stored in a... with section 241.3(b)(2)(i) from the point of removal from the vehicle through arrival at the...
40 CFR 49.125 - Rule for limiting the emissions of particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pollution sources? (1) Particulate matter emissions from a combustion source stack (except for wood-fired..., British thermal unit (Btu), coal, combustion source, distillate fuel oil, emission, fuel, fuel oil, gaseous fuel, heat input, incinerator, marine vessel, mobile sources, motor vehicle, nonroad engine...
Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soloiu, Valentin A.
2012-03-31
The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Directmore » Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.« less
Fluids and Combustion Facility: Combustion Integrated Rack Modal Model Correlation
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.
2005-01-01
The Fluids and Combustion Facility (FCF) is a modular, multi-user, two-rack facility dedicated to combustion and fluids science in the US Laboratory Destiny on the International Space Station. FCF is a permanent facility that is capable of accommodating up to ten combustion and fluid science investigations per year. FCF research in combustion and fluid science supports NASA's Exploration of Space Initiative for on-orbit fire suppression, fire safety, and space system fluids management. The Combustion Integrated Rack (CIR) is one of two racks in the FCF. The CIR major structural elements include the International Standard Payload Rack (ISPR), Experiment Assembly (optics bench and combustion chamber), Air Thermal Control Unit (ATCU), Rack Door, and Lower Structure Assembly (Input/Output Processor and Electrical Power Control Unit). The load path through the rack structure is outlined. The CIR modal survey was conducted to validate the load path predicted by the CIR finite element model (FEM). The modal survey is done by experimentally measuring the CIR frequencies and mode shapes. The CIR model was test correlated by updating the model to represent the test mode shapes. The correlated CIR model delivery is required by NASA JSC at Launch-10.5 months. The test correlated CIR flight FEM is analytically integrated into the Shuttle for a coupled loads analysis of the launch configuration. The analysis frequency range of interest is 0-50 Hz. A coupled loads analysis is the analytical integration of the Shuttle with its cargo element, the Mini Payload Logistics Module (MPLM), in the Shuttle cargo bay. For each Shuttle launch configuration, a verification coupled loads analysis is performed to determine the loads in the cargo bay as part of the structural certification process.
Thermal gain of CHP steam generator plants and heat supply systems
NASA Astrophysics Data System (ADS)
Ziganshina, S. K.; Kudinov, A. A.
2016-08-01
Heating calculation of the surface condensate heat recovery unit (HRU) installed behind the BKZ-420-140 NGM boiler resulting in determination of HRU heat output according to fire gas value parameters at the heat recovery unit inlet and its outlet, heated water quantity, combustion efficiency per boiler as a result of installation of HRU, and steam condensate discharge from combustion products at its cooling below condensing point and HRU heat exchange area has been performed. Inspection results of Samara CHP BKZ-420-140 NGM power boilers and field tests of the surface condensate heat recovery unit (HRU) made on the bimetal calorifier base KCk-4-11 (KSk-4-11) installed behind station no. 2 Ulyanovsk CHP-3 DE-10-14 GM boiler were the basis of calculation. Integration of the surface condensation heat recovery unit behind a steam boiler rendered it possible to increase combustion efficiency and simultaneously decrease nitrogen oxide content in exit gases. Influence of the blowing air moisture content, the excess-air coefficient in exit gases, and exit gases temperature at the HRU outlet on steam condensate amount discharge from combustion products at its cooling below condensing point has been analyzed. The steam condensate from HRU gases is offered as heat system make-up water after degasification. The cost-effectiveness analysis of HRU installation behind the Samara CHP BKZ-420-140 NGM steam boiler with consideration of heat energy and chemically purified water economy has been performed. Calculation data for boilers with different heat output has been generalized.
Gaseous and particulate emissions from the combustion of coal have been associated with adverse effects on human and environmental health, and have for that reason been subject to regulation by federal and state governments. Recent regulations by the United States Environmental ...
40 CFR 98.173 - Calculating GHG emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b... basis (% CO2). Q = Hourly stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage in... vented through the same stack as any combustion unit or process equipment that reports CO2 emissions...
40 CFR 98.173 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b..., dry basis (% CO2). Q = Hourly stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage... reduction furnace are vented through the same stack as any combustion unit or process equipment that reports...
40 CFR 98.173 - Calculating GHG emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b... basis (% CO2). Q = Hourly stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage in... vented through the same stack as any combustion unit or process equipment that reports CO2 emissions...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., turbine, internal combustion engine, or any other combustion unit used to destroy or oxidize methane... GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills § 98.348 Definitions. Except as specified in this section, all terms used in this subpart have the same meaning given in the Clean Air Act and subpart A of...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., turbine, internal combustion engine, or any other combustion unit used to destroy or oxidize methane... GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills § 98.348 Definitions. Except as specified in this section, all terms used in this subpart have the same meaning given in the Clean Air Act and subpart A of...
40 CFR 60.1410 - What must I include in my annual report?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) For municipal waste combustion units that use activated carbon for controlling dioxins/furans or mercury emissions, include four records: (1) The average carbon feed rates recorded during the most recent..., nitrogen oxides emissions. (3) Carbon monoxide emissions. (4) Load level of the municipal waste combustion...
40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... emissions from a combustion source stack must not exceed an average of 500 parts per million by volume, on a..., air pollution source, ambient air, British thermal unit (Btu), coal, combustion source, continuous..., incinerator, marine vessel, mobile sources, motor vehicle, nonroad engine, nonroad vehicle, open burning...
40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.
Code of Federal Regulations, 2011 CFR
2011-07-01
... emissions from a combustion source stack must not exceed an average of 500 parts per million by volume, on a..., air pollution source, ambient air, British thermal unit (Btu), coal, combustion source, continuous..., incinerator, marine vessel, mobile sources, motor vehicle, nonroad engine, nonroad vehicle, open burning...
40 CFR 60.1115 - What is a siting analysis?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... § 60.1115 What is a siting analysis? The siting analysis addresses how your municipal waste combustion... environmental and social costs resulting from its location and construction. The analysis must also consider...