Science.gov

Sample records for combustion gases

  1. Handbook of infrared radiation from combustion gases

    NASA Technical Reports Server (NTRS)

    Ludwig, C. B.; Malkmus, W.; Reardon, J. E.; Thomson, J. A. L.; Goulard, R. (Editor)

    1973-01-01

    The treatment of radiant emission and absorption by combustion gases are discussed. Typical applications include: (1) rocket combustion chambers and exhausts, (2) turbojet engines and exhausts, and (3) industrial furnaces. Some mention is made of radiant heat transfer problems in planetary atmospheres, in stellar atmospheres, and in reentry plasmas. Particular consideration is given to the temperature range from 500K to 3000K and the pressure range from 0.001 atmosphere to 30 atmospheres. Strong emphasis is given to the combustion products of hydrocarbon fuels with oxygen, specifically to carbon dioxide, water vapor, and carbon monoxide. In addition, species such as HF, HC1, CN, OH, and NO are treated.

  2. Denitrification of combustion gases. [Patent application

    DOEpatents

    Yang, R.T.

    1980-10-09

    A method for treating waste combustion gas to remove the nitrogen oxygen gases therefrom is disclosed wherein the waste gas is first contacted with calcium oxide which absorbs and chemically reacts with the nitrogen oxide gases therein at a temperature from about 100/sup 0/ to 430/sup 0/C. The thus reacted calcium oxide (now calcium nitrate) is then heated at a temperature range between about 430/sup 0/ and 900/sup 0/C, resulting in regeneration of the calcium oxide and production of the decomposition gas composed of nitrogen and nitrogen oxide gas. The decomposition gases can be recycled to the calcium oxide contacting step to minimize the amount of nitrogen oxide gases in the final product gas.

  3. Sampling nitric oxide from combustion gases.

    NASA Technical Reports Server (NTRS)

    England, C.; Houseman, J.; Teixeira, D. P.

    1973-01-01

    Experimental study of several sampling tube and probe material compositions and designs aimed at preventing nitric oxide reduction when sampling nitric oxide from combustion gases. A 250,000 Btu/h furnace fired with technical grade methane was used for testing the sampling probes over a wide range of air-fuel mixtures. The results obtained include the finding that the use of stainless steel in probes creates inaccuracies in near-stoichiometric and fuel-rich sampling in hydrocarbon flames. For very fuel-rich flames, water cooling is needed even in quartz probes to prevent significant reduction of nitric oxide.-

  4. Remote control flare stack igniter for combustible gases

    NASA Technical Reports Server (NTRS)

    Ray, W. L.

    1972-01-01

    Device has been designed and developed for igniting nonrecoverable combustible gases and sustaining combustion of gases evolving from various gas vent stacks. Igniter is superior to existing systems because of simplicity of operation, low cost fabrication, installation, operational and maintainability features, and excellent reliability in all phases of required operations.

  5. Process for desulfurizing combustion exhaust gases

    SciTech Connect

    Kumagai, T.; Matsuda, S.; Mori, T.; Nishimura, T.; Nishimura, Y.

    1982-05-04

    An improved process for desulfurizing combustion exhaust gases of mainly coal containing sulfur oxides, Hf and dust containing Al is provided, which process consists of four steps; a first step of contacting the gases with calcium carbonate or hydroxide in the form of slurry to convert the sulfur oxides into caso3; a second step of contacting O2 with the resulting slurry to convert CaSo3 into caso4; a third step of separating caso4 and mother liquor from the resulting slurry; and a fourth step of preparing a slurry of calcium carbonate or hydroxide to be employed in the first step, from the mother liquor, the pHs of the slurry and the mother liquor in the first and fourth steps being adjusted to 5 or higher by adding alkali such as sodium carbonate. According to the present process, it is possible to prevent hindrance of hf and al contained in dust to the reaction of so2absorbent (CaCO3 or Ca(OH)2) with SO2 gas, and thereby improve percentage desulfurization and also obtain a high quality gypsum.

  6. 30 CFR 18.25 - Combustible gases from insulating material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.25 Combustible gases from insulating material. (a) Insulating...

  7. 30 CFR 18.25 - Combustible gases from insulating material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.25 Combustible gases from insulating material. (a) Insulating...

  8. Catalytic combustion of actual low and medium heating value gases

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.

    1982-01-01

    Catalytic combustion of both low and medium heating value gases using actual coal derived gases obtained from operating gasifiers was demonstrated. A fixed bed gasifier with a complete product gas cleanup system was operated in an air blown mode to produce low heating value gas. A fluidized bed gasifier with a water quench product gas cleanup system was operated in both an air enriched and an oxygen blown mode to produce low and medium, heating value gas. Noble metal catalytic reactors were evaluated in 12 cm flow diameter test rigs on both low and medium heating value gases. Combustion efficiencies greater than 99.5% were obtained with all coal derived gaseous fuels. The NOx emissions ranged from 0.2 to 4 g NO2 kg fuel.

  9. [Quantitative spectrum analysis of characteristic gases of spontaneous combustion coal].

    PubMed

    Liang, Yun-Tao; Tang, Xiao-Jun; Luo, Hai-Zhu; Sun, Yong

    2011-09-01

    Aimed at the characteristics of spontaneous combustion gas such as a variety of gases, lou limit of detection, and critical requirement of safety, Fourier transform infrared (FTIR) spectral analysis is presented to analyze characteristic gases of spontaneous combustion In this paper, analysis method is introduced at first by combing characteristics of absorption spectra of analyte and analysis requirement. Parameter setting method, sample preparation, feature variable abstract and analysis model building are taken into consideration. The methods of sample preparation, feature abstraction and analysis model are introduced in detail. And then, eleven kinds of gases were tested with Tensor 27 spectrometer. CH4, C2H6, C3H8, iC4H10, nC4H10, C2 H4, C3 H6, C3 H2, SF6, CO and CO2 were included. The optical path length was 10 cm while the spectra resolution was set as 1 cm(-1). The testing results show that the detection limit of all analytes is less than 2 x 10(-6). All the detection limits fit the measurement requirement of spontaneous combustion gas, which means that FTIR may be an ideal instrument and the analysis method used in this paper is competent for spontaneous combustion gas measurement on line.

  10. Decontamination of combustion gases in fluidized bed incinerators

    DOEpatents

    Leon, Albert M.

    1982-01-01

    Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

  11. Combustion Gases And Heat Release Analysis During Flame And Flameless Combustion Of Wood Pellets

    NASA Astrophysics Data System (ADS)

    Horváth, Jozef; Wachter, Igor; Balog, Karol

    2015-06-01

    With the growing prices of fossil fuels, alternative fuels produced of biomass come to the fore. They are made of waste materials derived from the processing of wood and wood materials. The main objective of this study was to analyse the fire-technical characteristics of wood pellets. The study analysed three dust samples acquired from wood pellets made of various types of wood biomass. Wood pellet dust is produced when manipulating with pellets. During this process a potentially hazardous situations may occur. Biomass is chemically composed mostly of hemicellulose, cellulose and lignin. During straining of the biomass by heat flux, combustion initiation occurs. Also, there was a change in the composition of material throughout combustion gases production, and the amount of heat generated by a flame or flameless combustion. Measurement of fire characteristics was conducted according to ISO 5660-1 standard using a cone calorimeter. Two samples of wood pellet dust were tested under the heat flux of 35 kW.m-2 and 50 kW.m-2. The process of combustion, the time to ignition, the carbon monoxide concentration and the amount of released heat were observed.

  12. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  13. Spectroscopy and Kinetics of Combustion Gases at High Temperatures

    SciTech Connect

    Hanson, Ronald; Bowman, Craig

    2016-02-01

    This report describes our research program that involves two complementary activities: (1) development and application of cw laser absorption methods for the measurement of concentration time-histories and fundamental spectroscopic parameters for species of interest in combustion; and (2) shock tube studies of reaction kinetics relevant to combustion. This first part of this report covers research during the final three-year support period, i.e. March 2012 – November 2015. The later part of this report summarizes research conducted over multiple-year periods between March 1988 to March 2012. Publications supported by DOE for each period are summarized at the end of that report section.

  14. Thermodynamics of Gases: Combustion Processes, Analysed in Slow Motion

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2013-01-01

    We present a number of simple demonstration experiments recorded with high-speed cameras in the fields of gas dynamics and thermal physics. The experiments feature relatively slow combustion processes of pure hydrogen as well as fast reactions involving oxy-hydrogen in a stoichiometric mixture. (Contains 4 figures.)

  15. Analysis of the response of a thermal barrier coating to sodium and vanadium doped combustion gases

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1979-01-01

    Published data on the behavior of zirconia-based thermal barrier coatings exposed to combustion gases doped with sodium and vanadium were analyzed with respect to calculated condensate dew points and melting points. Coating temperatures, failure locations, and depths were reasonably well correlated.

  16. Spectroscopy and kinetics of combustion gases at high temperatures

    SciTech Connect

    Hanson, R.K.; Bowman, C.T.

    1993-12-01

    This program involves two complementary activities: (1) development and application of cw ring dye laser absorption methods for sensitive detection of radical species and measurement of fundamental spectroscopic parameters at high temperatures; and (2) shock tube studies of reaction kinetics relevant to combustion. Species currently under investigation in the spectroscopic portion of the research include NO and CH{sub 3}; this has necessitated the continued operated at wavelengths in the range 210-230 nm. Shock tube studies of reaction kinetics currently are focussed on reactions involving CH{sub 3} radicals.

  17. Spectroscopy and kinetics of combustion gases at high temperatures

    SciTech Connect

    Hanson, R.K.; Bowman, C.T.

    1992-11-01

    This program involves two complementary activities: (1) development and application of cw ring dye laser absorption. methods for sensitive detection of radical species and measurement of fundamental spectroscopic parameters at high temperatures; and (2) shock tube studies of radical-molecule and radical-radical reactions relevant to combustion. Species currently under investigation in the spectroscopic portion of the research include NO and CH[sub 3]; this has necessitated the development of a unique intracavity frequency-doubling system for our cw laser which operates at wavelengths in the range 210--230 nm. Shock tube studies of reaction kinetics currently are focussed on reactions of CH[sub 3] radicals.

  18. Evaluation of lethality estimates for combustion gases in military scenarios.

    PubMed

    Smith, S M; Stuhmiller, J H; Januszkiewicz, A J

    1996-12-31

    To meet the military objective of determining criteria for incapacitation and lethality from toxic gas exposures, a series of small animal tests and data analyses were conducted. Carbon monoxide (CO), a narcotic gas and nitrogen dioxide (NO2), an irritant gas, along with carbon dioxide (CO2) were tested individually and in the following mixtures: (CO + CO2), (NO2 + CO2) and (NO2 + CO + CO2). A group of six animals was exposed to each of the gases and their combinations, lethality and biophysical data were collected. We conclude that our observations of lethality from single toxic gases can be correlated with a fractional effective dose (FED) description, in which external concentrations are corrected for minute volume changes. Multiple gas exposures clearly demonstrate synergistic effects because lethality rates greatly exceed those expected from statistically independent causes. Simple addition of the FED values, however, overstates the effect and implies a competition between the narcotic and irritant gas effects. The N-Gas model, while being an additive FED model, does not appear to be in a form that could guide the setting of military exposure standards.

  19. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    DOEpatents

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  20. Spectroscopy and kinetics of combustion gases at high temperatures

    SciTech Connect

    Hanson, R.K.; Bowman, C.T.

    1991-12-01

    This program involves two complementary activities: (1) development and application of cw ring dye laser absorption methods for sensitive detection of radical species and measurement of fundamental spectroscopic parameters at high temperatures; and (2) shock tube studies of radical-molecule and radical-radical reactions relevant to combustion. Species currently under investigation in the spectroscopic portion of the research include NO and CH{sub 3}; this has necessitated the development of a unique intracavity frequency-doubling system for our cw laser which operates at wavelengths in the range 210--230 nm. Shock tube studies of reaction kinetics currently are focused on reactions of CH{sub 3} radicals. Work during the current reporting period has been focused on the following activities: High resolution spectroscopy, and methyl diagnostics and kinetics.

  1. Simultaneous gas chromatographic determination of four toxic gases generally present in combustion atmospheres.

    PubMed

    Endecott, B R; Sanders, D C; Chaturvedi, A K

    1996-01-01

    The measurement of combustion gases produced by burning aircraft cabin materials poses a continuing limitation for smoke toxicity research. Because toxic effects of gases depend on both their concentrations and the duration of exposure, frequent atmosphere sampling is necessary to define the gas concentration-exposure time curve. A gas chromatographic (GC) method was developed for the simultaneous analyses of carbon monoxide (CO), hydrogen sulfide (H2S), sulfur dioxide (SO2), and hydrogen cyanide (HCN). The method used an MTI M200 dual-column gas chromatograph equipped with 4-m molecular sieve-5A and 8-m PoraPlot-U wall-coated capillary columns and two low-volume, high-sensitivity thermal conductivity detectors. Detectability (in parts per million [ppm]) and retention times (in seconds) for the gases were as follows: CO, 100 ppm, 28 s; H2S, 50 ppm, 26 s; SO2, 125 ppm, 76 s; and HCN, 60 ppm, 108 s. The method was effective for determining these gases in mixtures and in the combustion atmospheres generated by burning wool (CO, HCN, and H2S) and modacrylic fabrics (CO and HCN). Common atmospheric gaseous or combustion products (oxygen, carbon dioxide, nitrogen, water vapor, and other volatiles) did not interfere with the analyses. However, filtration of the combustion atmospheres was necessary to prevent restriction of the GC sampling inlet by smoke particulates. The speed, sensitivity, and selectivity of this method make it suitable for smoke toxicity research and for evaluating performance of passenger protective breathing equipment. Also, this method can potentially be modified to analyze these gases when they are liberated from biosamples.

  2. Modeling reacting gases and aftertreatment devices for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Depcik, Christopher David

    As more emphasis is placed worldwide on reducing greenhouse gas emissions, automobile manufacturers have to create more efficient engines. Simultaneously, legislative agencies want these engines to produce fewer problematic emissions such as nitrogen oxides and particulate matter. In response, newer combustion methods, like homogeneous charge compression ignition and fuel cells, are being researched alongside the old standard of efficiency, the compression ignition or diesel engine. These newer technologies present a number of benefits but still have significant challenges to overcome. As a result, renewed interest has risen in making diesel engines cleaner. The key to cleaning up the diesel engine is the placement of aftertreatment devices in the exhaust. These devices have shown great potential in reducing emission levels below regulatory levels while still allowing for increased fuel economy versus a gasoline engine. However, these devices are subject to many flow control issues. While experimental evaluation of these devices helps to understand these issues better, it is impossible to solve the problem through experimentation alone because of time and cost constraints. Because of this, accurate models are needed in conjunction with the experimental work. In this dissertation, the author examines the entire exhaust system including reacting gas dynamics and aftertreatment devices, and develops a complete numerical model for it. The author begins by analyzing the current one-dimensional gas-dynamics simulation models used for internal combustion engine simulations. It appears that more accurate and faster numerical method is available, in particular, those developed in aeronautical engineering, and the author successfully implements one for the exhaust system. The author then develops a comprehensive literature search to better understand the aftertreatment devices. A number of these devices require a secondary injection of fuel or reductant in the exhaust stream

  3. Mollier-I, S-Diagrams for Combustion Gases in Data Processing

    NASA Technical Reports Server (NTRS)

    Zacharias, F.

    1982-01-01

    In order to have all the thermal and caloric states of combustion gases accessible in a computer, closed mathematical approximation equations were established for the real factors, the enthalpy and the entropy of a real combustion gas. The equations approximate the various effects of molecular forces real gas influence and dissociation - at temperatures of 200 K to 6,000 K, pressures of 0.001 to 1,000 bar, and in the range from stoichiometric composition to air. A system of subprograms is listed in FORTRAN, by means of which thermodynamic calculations can be carried out in the same manner as with Mollier I,S diagrams.

  4. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOEpatents

    Mollot, Darren J.; Bonk, Donald L.; Dowdy, Thomas E.

    1998-01-01

    Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

  5. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOEpatents

    Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

    1998-01-13

    Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

  6. Identification of significant precursor gases of secondary organic aerosols from residential wood combustion

    NASA Astrophysics Data System (ADS)

    Bruns, Emily A.; El Haddad, Imad; Slowik, Jay G.; Kilic, Dogushan; Klein, Felix; Baltensperger, Urs; Prévôt, André S. H.

    2016-06-01

    Organic gases undergoing conversion to form secondary organic aerosol (SOA) during atmospheric aging are largely unidentified, particularly in regions influenced by anthropogenic emissions. SOA dominates the atmospheric organic aerosol burden and this knowledge gap contributes to uncertainties in aerosol effects on climate and human health. Here we characterize primary and aged emissions from residential wood combustion using high resolution mass spectrometry to identify SOA precursors. We determine that SOA precursors traditionally included in models account for only ~3–27% of the observed SOA, whereas for the first time we explain ~84–116% of the SOA by inclusion of non-traditional precursors. Although hundreds of organic gases are emitted during wood combustion, SOA is dominated by the aging products of only 22 compounds. In some cases, oxidation products of phenol, naphthalene and benzene alone comprise up to ~80% of the observed SOA. Identifying the main precursors responsible for SOA formation enables improved model parameterizations and SOA mitigation strategies in regions impacted by residential wood combustion, more productive targets for ambient monitoring programs and future laboratories studies, and links between direct emissions and SOA impacts on climate and health in these regions.

  7. Identification of significant precursor gases of secondary organic aerosols from residential wood combustion

    PubMed Central

    Bruns, Emily A.; El Haddad, Imad; Slowik, Jay G.; Kilic, Dogushan; Klein, Felix; Baltensperger, Urs; Prévôt, André S. H.

    2016-01-01

    Organic gases undergoing conversion to form secondary organic aerosol (SOA) during atmospheric aging are largely unidentified, particularly in regions influenced by anthropogenic emissions. SOA dominates the atmospheric organic aerosol burden and this knowledge gap contributes to uncertainties in aerosol effects on climate and human health. Here we characterize primary and aged emissions from residential wood combustion using high resolution mass spectrometry to identify SOA precursors. We determine that SOA precursors traditionally included in models account for only ~3–27% of the observed SOA, whereas for the first time we explain ~84–116% of the SOA by inclusion of non-traditional precursors. Although hundreds of organic gases are emitted during wood combustion, SOA is dominated by the aging products of only 22 compounds. In some cases, oxidation products of phenol, naphthalene and benzene alone comprise up to ~80% of the observed SOA. Identifying the main precursors responsible for SOA formation enables improved model parameterizations and SOA mitigation strategies in regions impacted by residential wood combustion, more productive targets for ambient monitoring programs and future laboratories studies, and links between direct emissions and SOA impacts on climate and health in these regions. PMID:27312480

  8. Sampling and analysis of hydrocarbons in combustion gases. Annual report, October 1979-September 1980

    SciTech Connect

    Johnson, I.; Myles, K.M.; Siczek, A.A.

    1981-04-01

    The purpose of these studies is to develop a method for the chemical analysis of ultratrace levels of polycyclic organic compounds in the flue gases from fluidized-bed combustors. Methods which have the potential for real time analysis have been studied. Two methods, double mass spectrometry and laser ionization mass spectrometry, appear to be promising. A brief review of current analytical methods has been made. A brief examination of fly ash from fluidized-bed combustion revealed no carcinogenic species although samples collected during fluidized-bed combustor startup were found to be mutagenic.

  9. A robust framework to predict mercury speciation in combustion flue gases.

    PubMed

    Ticknor, Jonathan L; Hsu-Kim, Heileen; Deshusses, Marc A

    2014-01-15

    Mercury emissions from coal combustion have become a global concern as growing energy demands have increased the consumption of coal. The effective implementation of treatment technologies requires knowledge of mercury speciation in the flue gas, namely concentrations of elemental, oxidized and particulate mercury at the exit of the boiler. A model that can accurately predict mercury species in flue gas would be very useful in that context. Here, a Bayesian regularized artificial neural network (BRANN) that uses five coal properties and combustion temperature was developed to predict mercury speciation in flue gases before treatment technology implementation. The results of the model show that up to 97 percent of the variation in mercury species concentration is captured through the use of BRANNs. The BRANN model was used to conduct a parametric sensitivity which revealed that the coal chlorine content and coal calorific value were the most sensitive parameters, followed by the combustion temperature. The coal sulfur content was the least important parameter. The results demonstrate the applicability of BRANNs for predicting mercury concentration and speciation in combustion flue gas and provide a more efficient and effective technique when compared to other advanced non-mechanistic modeling strategies.

  10. Impact of the injection dose of exhaust gases, on work parameters of combustion engine

    NASA Astrophysics Data System (ADS)

    Marek, W.; Śliwiński, K.

    2016-09-01

    This article is another one from the series in which were presented research results indicated the possible areas of application of the pneumatic injection using hot combustion gases proposed by Professor Jarnuszkiewicz. This publication present the results of the control system of exhaust gas recirculation. The main aim of this research was to determine the effect of exhaust gas recirculation to the operating parameters of the internal combustion engine on the basis of laboratory measurements. All measurements were performed at a constant engine speed. These conditions correspond to the operation of the motor operating an electrical generator. The study was conducted on the four-stroke two-cylinder engine with spark ignition. The study were specifically tested on the air injection system and therefore the selection of the rotational speed was not bound, as in conventional versions of operating parameters of the electrical machine. During the measurement there were applied criterion which used power control corresponding to the requirements of load power, at minimal values of engine speed. Recirculation value determined by the following recurrent position control valve of the injection doses inflator gas for pneumatic injection system. They were studied and recorded, the impact of dose of gases recirculation to the operating and ecological engine parameters such as power, torque, specific fuel consumption, efficiency, air fuel ratio, exhaust gas temperature and nitrogen oxides and hydrocarbons.

  11. JV Task 125-Mercury Measurement in Combustion Flue Gases Short Course

    SciTech Connect

    Dennis Laudal

    2008-09-30

    The short course, designed to train personnel who have an interest in measuring mercury in combustion flue gases, was held twice at the Drury Inn in Marion, Illinois. The short course helped to provide attendees with the knowledge necessary to avoid the many pitfalls that can and do occur when measuring mercury in combustion flue gases. The first short course, May 5-8, 2008, included both a classroom-type session and hands-on demonstration of mercury-sampling equipment. The hands-on demonstration of equipment was staged at Southern Illinois Power Cooperative. Not including the Illinois Clean Coal Institute and the U.S. Department of Energy project managers, there were 12 attendees. The second short course was conducted September 16-17, 2008, but only included the classroom portion of the course; 14 people attended. In both cases, lectures were provided on the various mercury measurement methods, and interaction between attendees and EERC research personnel to discuss specific mercury measurement problems was promoted. Overall, the response to the course was excellent.

  12. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 3: Assessment Manual

    SciTech Connect

    Müller, C.; Hughes, E. D.; Niederauer, G. F.; Wilkening, H.; Travis, J. R.; Spore, J. W.; Royl, P.; Baumann, W.

    1998-10-01

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best- estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume

  13. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 2: User's Manual

    SciTech Connect

    Nichols, B. D.; Mueller, C.; Necker, G. A.; Travis, J. R.; Spore, J. W.; Lam, K. L.; Royl, P.; Wilson, T. L.

    1998-10-01

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III

  14. Foliage plants for indoor removal of the primary combustion gases carbon monoxide and nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.; Mesick, H. H.

    1985-01-01

    Foliage plants were evaluated for their ability to sorb carbon monoxide and nitrogen dioxide, the two primary gases produced during the combustion of fossil fuels and tobacco. The spider plant (Chlorophytum elatum var. vittatum) could sorb 2.86 micrograms CO/sq cm leaf surface in a 6 h photoperiod. The golden pothos (Scindapsus aureus) sorbed 0.98 micrograms CO/sq cm leaf surface in the same time period. In a system with the spider plant, greater than or equal to 99 percent of an initial concentration of 47 ppm NO2 could be removed in 6 h from a void volume of approximately 0.35 cu m. One spider plant potted in a 3.8 liter container can sorb 3300 micrograms CO and effect the removal of 8500 micrograms NO2/hour, recognizing the fact that a significant fraction of NO2 at high concentrations will be lost by surface sorption, dissolving in moisture, etc.

  15. Application of a Modified Gas Chromatograph to Analyze Space Experiment Combustion Gases on Space Shuttle Mission STS-94

    NASA Technical Reports Server (NTRS)

    Coho, William K.; Weiland, Karen J.; VanZandt, David M.

    1998-01-01

    A space experiment designed to study the behavior of combustion without the gravitational effects of buoyancy was launched aboard the Space Shuttle Columbia on July 1, 1997. The space experiment, designated as Combustion Module-1 (CM-1), was one of several manifested on the Microgravity Sciences Laboratory - 1 (MSL-1) mission. The launch, designated STS-94, had the Spacelab Module as the payload, in which the MSL-1 experiments were conducted by the Shuttle crewmembers. CM-1 was designed to accommodate two different combustion experiments during MSL-1. One experiment, the Structure of Flame Balls at Low Lewis-number experiment (SOFBALL), required gas chromatography analysis to verify the composition of the known, premixed gases prior to combustion, and to determine the remaining reactant and the products resulting from the combustion process in microgravity. A commercial, off-the-shelf, dual-channel micro gas chromatograph was procured and modified to interface with the CM-1 Fluids Supply Package and the CM-1 Combustion Chamber, to accommodate two different carrier gases, each flowing through its own independent column module, to withstand the launch environment of the Space Shuttle, to accept Spacelab electrical power, and to meet the Spacelab flight requirements for electromagnetic interference (EMI) and offgassing. The GC data was down linked to the Marshall Space Flight Center for near-real time analysis, and stored on-orbit for post-flight analysis. The gas chromatograph operated successfully during the entire SOFBALL experiment and collected 309 runs. Because of the constraints imposed upon the gas chromatograph by the CM-1 hardware, system and operations, it was unable to measure the gases to the required accuracy. Future improvements to the system for a re-flight of the SOFBALL experiment are expected to enable the gas chromatograph to meet all the requirements.

  16. Theoretically predicted rate constants for mercury oxidation by hydrogen chloride in coal combustion flue gases.

    PubMed

    Wilcox, Jennifer; Robles, Joe; Marsden, David C J; Blowers, Paul

    2003-09-15

    In this work, theoretical rate constants are estimated for mercury oxidation reactions by hydrogen chloride that may occur in the flue gases of coal combustion. Rate constants are calculated using transition state theory at the quadratic configuration interaction (QCI) level of theory with single and double excitations, and are compared to results obtained from density functional theory, both including high level pseudopotentials for mercury. Thermodynamic and kinetic data from the literature are used to assess the accuracy of the theoretical calculations when possible. Validation of the chosen methods and basis sets is based upon previous and current research on mercury reactions involving chlorine. The present research shows that the QCISD method with the 1992 Stevens et al. basis set leads to the most accurate kinetic and thermodynamic results for the oxidation of mercury via chlorine containing molecules. Also, a comparison of the heats of reaction data for a series of mercury oxidation reactions reveals that the density functional method, B3LYP, with the 1997 Stuttgart basis set provides reasonably accurate results for these large systems.

  17. PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES: Laser-Induced Particle Jet and Its Ignition Application in Premixed Combustible Gases

    NASA Astrophysics Data System (ADS)

    Yang, Qian-Suo; Liu, Chun; Peng, Zhi-Min; Zhu, Nai-Yi

    2009-06-01

    A hot particle jet is induced as a laser pulse from a free oscillated Nd:YAG laser focused on a coal target. The particle jet successfully initiates combustion in a premixed combustible gas consisting of hydrogen, oxygen, and air. The experiment reveals that the ionization of the particle jet is enhanced during the laser pulse. This characteristic is attributed to the electron cascade process and the ionization of the particles or molecules of the target. The initial free electrons, which are ablated from the coal target, are accelerated by the laser pulse through the inverse Bremsstrahlung process and then collide with the neutrals in the jet, causing the latter to be ionized.

  18. Impact of oxy-fuel combustion gases on mercury retention in activated carbons from a macroalgae waste: effect of water.

    PubMed

    Lopez-Anton, M A; Ferrera-Lorenzo, N; Fuente, E; Díaz-Somoano, M; Suarez-Ruíz, I; Martínez-Tarazona, M R; Ruiz, B

    2015-04-01

    The aim of this study is to understand the different sorption behaviors of mercury species on activated carbons in the oxy-fuel combustion of coal and the effect of high quantities of water vapor on the retention process. The work evaluates the interactions between the mercury species and a series of activated carbons prepared from a macroalgae waste (algae meal) from the agar-agar industry in oxy-combustion atmospheres, focussing on the role that the high concentration of water in the flue gases plays in mercury retention. Two novel aspects are considered in this work (i) the impact of oxy-combustion gases on the retention of mercury by activated carbons and (ii) the performance of activated carbons prepared from biomass algae wastes for this application. The results obtained at laboratory scale indicate that the effect of the chemical and textural characteristics of the activated carbons on mercury capture is not as important as that of reactive gases, such as the SOx and water vapor present in the flue gas. Mercury retention was found to be much lower in the oxy-combustion atmosphere than in the O2+N2 (12.6% O2) atmosphere. However, the oxidation of elemental mercury (Hg0) to form oxidized mercury (Hg2+) amounted to 60%, resulting in an enhancement of mercury retention in the flue gas desulfurization units and a reduction in the amalgamation of Hg0 in the CO2 compression unit. This result is of considerable importance for the development of technologies based on activated carbon sorbents for mercury control in oxy-combustion processes.

  19. Experimental and theoretical deposition rates from salt-seeded combustion gases of a Mach 0.3 burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    Deposition rates on platinum-rhodium cylindrical collectors rotating in the cross streams of the combustion gases of a salt-seeded Mach 0.3 burner rig were determined. The collectors were internally air cooled so that their surface temperatures could be widely varied while they were exposed to constant combustion gas temperatures. The deposition rates were compared with those predicted by the chemically frozen boundary layer (CFBL) computer program, which is based on multicomponent vapor transport through the boundary layer. Excellent agreement was obtained between theory and experiment for the NaCl-seeded case, but the agreement lessened as the seed was changed to synthetic sea salt, NaNO3, and K2SO4, respectively, and was particularly poor in the case of Na2SO4. However, when inertial impaction was assumed to be the deposition mechanism for the Na2SO4 case, the predicted rates agreed well with the experimental rates. The former were calculated from a mean particle diameter that was derived from the measured intial droplet size distribution of the solution spray. Critical experiments showed that liquid phase deposits were blown off the smooth surface of the platinum-rhodium collectors by the aerodynamic shear forces of the high-velocity combustion gases but that rough or porous surfaces retained their liquid deposits.

  20. Microwave Plasma Assisted Combustion of Premixed Ar/CH4 and He/CH4 Gases at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Srivastava, Nimisha; Malik Kaya, Burak

    2010-11-01

    Low-temperature nonthermal plasma assisted combustion is of growing interest due to potential applications in the improvement of combustion efficiency, reduction of ignition delay time, fuel reforming, etc. A 2.45 GHz microwave plasma source was used to study the microwave plasma enhanced flame of premixed Ar/CH4 and He/CH4 gases at atmospheric pressure. We present the visual observations of the plasma-assisted flames sustained at different mixing ratios of Ar/CH4 and He/CH4 gases. Optical emission spectroscopy (OES) was employed to study the reactive species generated from plasma flame. Visual imaging clearly showed the effect of microwave power and difference in flame shapes created in the Ar/CH4 and He/CH4 combustion: for Ar/CH4 continuous flames were observed; for He/CH4 floating flames (flames sustained with an air-gap from the plasma orifice) were observed at low plasma powers and some particular gas mixing ratios of He/CH4. Measured flame temperatures were much higher than plasma gas temperatures. Reactive species, such as OH, NO, N2, and C2, were observed using OES. Effect of various gas mixing ratios, flow rates, and plasma powers on flame shape and flame temperature were also studied.

  1. A Sensor System Based on Semi-Conductor Metal Oxide Technology for In Situ Detection of Coal Fired Combustion Gases

    SciTech Connect

    Brent Marquis

    2007-05-31

    Sensor Research and Development Corporation (SRD) proposed a two-phase program to develop a robust, autonomous prototype analyzer for in situ, real-time detection, identification, and measurement of coal-fired combustion gases and perform field-testing at an approved power generation facility. SRD developed and selected sensor materials showing selective responses to carbon monoxide, carbon dioxide, nitric oxide, nitrogen dioxide, ammonia, sulfur dioxide and hydrogen chloride. Sensor support electronics were also developed to enable prototype to function in elevated temperatures without any issues. Field-testing at DOE approved facility showed the ability of the prototype to detect and estimate the concentration of combustion by-products accurately with relatively low false-alarm rates at very fast sampling intervals.

  2. A flow calorimeter for determining combustion efficiency from residual enthalpy of exhaust gases

    NASA Technical Reports Server (NTRS)

    Evans, Albert; Hibbard, Robert R

    1954-01-01

    A flow calorimeter for determining the combustion efficiency of turbojet and ram-jet combustors from measurement of the residual enthalpy of combustion of the exhaust gas is described. Briefly, the calorimeter catalytically oxidizes the combustible constituents of exhaust-gas samples, and the resultant temperature rise is measured. This temperature rise is related to the residual enthalpy of combustion of the sample by previous calibration of the calorimeter. Combustion efficiency can be calculated from a knowledge of the residual enthalpy of the exhaust gas and the combustor input enthalpy. An accuracy of +-0.2 Btu per cubic foot was obtained with prepared fuel-air mixtures, and the combustion efficiencies of single turbojet combustors measured by both the flow-calorimeter and heat-balance methods compared within 3 percentage units. Flow calorimetry appears to be a suitable method for determining combustion efficiencies at high combustor temperatures where ordinary thermocouples cannot be used. The method is fundamentally more accurate than heat-balance methods at high combustion efficiencies and can be used to verify near-100-percent efficiency data.

  3. Development of combustion data to utilize low-Btu gases as industrial process fuels: modification of flame characteristics. Project 61041 quarterly report, 1 January-31 March 1980

    SciTech Connect

    Waibel, R.T.

    1980-04-01

    This program consists of an experimental program to determine the burner modifications that will yield suitable flame characteristics and shapes with oxygen-blown gases manufactured from coal. Experiments will also be conducted to evaluate methods of enchancing the flame characteristics of manufactured gases from air-blown gasifiers. Progress to date includes a partial completion of the oxygen-enrichment system, preparation of the furnace for the trials, and discussions of the burner modifications needed for combustion trials with the burner manufacturer.

  4. Polarization (ellipsometric) measurements of liquid condensate deposition and evaporation rates and dew points in flowing salt/ash-containing combustion gases

    NASA Technical Reports Server (NTRS)

    Seshadri, K.; Rosner, D. E.

    1985-01-01

    An application of an optical polarization technique in a combustion environment is demonstrated by following, in real-time, growth rates of boric oxide condensate on heated platinum ribbons exposed to seeded propane-air combustion gases. The results obtained agree with the results of earlier interference measurements and also with theoretical chemical vapor deposition predictions. In comparison with the interference method, the polarization technique places less stringent requirements on surface quality, which may justify the added optical components needed for such measurements.

  5. MERCURY SPECIATION IN COMBUSTION SYSTEMS: STUDIES WITH SIMULATED FLUE GASES AND MODEL FLY ASHES

    EPA Science Inventory

    The paper gives results of a bench-scale study of the effects of flue gas and fly ash parameters on the oxidation of elemental mercury in simulated flue gases containing hydrogen chloride (HCl), nitric oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and water vapor (H2O...

  6. Theory of deposition of condensible impurities on surfaces immersed in combustion gases

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.

    1979-01-01

    The components resulting from the deposition of inorganic salts (e.g., Na2S04) and oxides present in the combustion products from gas turbine engines were investigated. Emphasis was placed on the effects of multicomponent vapor transport, thermophoretic transport of vapor and small particles to actively cooled surfaces, variable fluid properties within mass transfer boundary layers, and free stream turbulence.

  7. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. A.

    1985-01-01

    With a view to developing simulation criteria for the laboratory testing of high-temperature materials for gas turbine engines, the deposition rates of sodium sulfate from sodium salt-seeded combustion gases were determined experimentally using a well instrumented high-velocity burner. In the experiments, Na2SO4, NaCl, NaNO3, and simulated sea salt solutions were injected into the combustor of the Mach 0.3 burner rig operating at constant fuel/air ratios. The deposits formed on an inert rotating collector were then weighed and analyzed. The experimental results are compared to Rosner's vapor diffusion theory. Some additional test results, including droplet size distribution of an atomized salt spray, are used in interpreting the deposition rate data.

  8. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Gokoglu, S. A.; Kohl, F. J.; Stearns, C. A.; Rosner, D. E.

    1984-01-01

    The mechanism of deposition of Na2SO4 was studied under controlled laboratory conditions and the results have been compared to a recently developed comprehensive theory of vapor deposition. Thus Na2SO4, NaCl, NaNO3 and simulated sea salt solutions were injected into the combustor of a nominal Mach 0.3 burner rig burning jet fuel at constant fuel/air ratios. The deposits formed on inert collectors, rotation in the cross flow of the combustion gases, were weighed and analyzed. Collector temperature was uniform and could be varied over a large range by internal air cooling. Deposition rates and dew point temperatures were determined. Supplemental testing included droplet size measurements of the atomized salt solutions. These tests along with thermodynamic and transport calculations were utilized in the interpretation of the deposition results.

  9. A micromachined calorimetric gas sensor: an application of electrodeposited nanostructured palladium for the detection of combustible gases.

    PubMed

    Bartlett, Philip N; Guerin, Samuel

    2003-01-01

    Palladium films with regular nanoarchitectures were electrochemically deposited from the hexagonal (H1) lyotropic liquid crystalline phase of the nonionic surfactant octaethyleneglycol monohexadecyl ether (C16EO8) onto micromachined silicon hotplate structures. The H1-e Pd films were shown to have high surface areas (approximately 28 m2 g(-1)) and to act as effective and stable catalysts for the detection of methane in air on heating to 500 degrees C. The response of the H1-e Pd-coated planar pellistors was found to be linearly proportional to the concentration of methane between 0 and 2.5% in air with a detection limit below 0.125%. Our results show that the electrochemical deposition of nanostructured metal films offers a promising approach to the fabrication of micromachined calorimetric gas sensors for combustible gases.

  10. Transition duct system with metal liners for delivering hot-temperature gases in a combustion turbine engine

    DOEpatents

    Wiebe, David J.

    2017-04-11

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) and an arcuate connecting segment (36). A respective straight metal liner (92) and an arcuate metal liner (94) may be each inwardly disposed onto a metal outer shell (38) along the straight path segment and the arcuate connecting segment (36) of the exit piece. Structural arrangements are provided to securely attach the respective liners in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liners can be readily removed and replaced as needed.

  11. Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases

    DOEpatents

    Clay, David T.; Lynn, Scott

    1976-10-19

    A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

  12. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    SciTech Connect

    McMeeking, Gavin R.; Kreidenweis, Sonia M.; Baker, Stephen; Carrico, Christian M.; Chow, Judith C.; Collett, Jr., Jeffrey L.; Hao, Wei Min; Holden, Amanda S.; Kirchstetter, Thomas W.; Malm, William C.; Moosmuller, Hans; Sullivan, Amy P.; Wold, Cyle E.

    2009-05-15

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly-burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern US (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO{sub 2}, CO, CH{sub 4}, C{sub 2-4} hydrocarbons, NH{sub 3}, SO{sub 2}, NO, NO{sub 2}, HNO{sub 3} and particle-phase organic carbon (OC), elemental carbon (EC), SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, Cl{sup -}, Na{sup +}, K{sup +}, and NH{sub 4}{sup +} generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed EF for total fine particulate matter. Our measurements often spanned a larger range of MCE than prior studies, and thus help to improve estimates for individual fuels of the variation of emissions with combustion conditions.

  13. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    NASA Astrophysics Data System (ADS)

    McMeeking, Gavin R.; Kreidenweis, Sonia M.; Baker, Stephen; Carrico, Christian M.; Chow, Judith C.; Collett, Jeffrey L.; Hao, Wei Min; Holden, Amanda S.; Kirchstetter, Thomas W.; Malm, William C.; Moosmüller, Hans; Sullivan, Amy P.; Wold, Cyle E.

    2009-10-01

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern United States (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO2, CO, CH4, C2-4 hydrocarbons, NH3, SO2, NO, NO2, HNO3, and particle-phase organic carbon (OC), elemental carbon (EC), SO42-, NO3-, Cl-, Na+, K+, and NH4+ generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed emission factors for total fine particulate matter. Our measurements spanned a larger range of MCE than prior studies, and thus help to improve estimates of the variation of emissions with combustion conditions for individual fuels.

  14. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions.

    PubMed

    Astrup, Thomas; Møller, Jacob; Fruergaard, Thilde

    2009-11-01

    Important greenhouse gas (GHG) emissions related to waste incineration and co-combustion of waste were identified and considered relative to critical aspects such as: the contents of biogenic and fossil carbon, N(2)O emissions, fuel and material consumptions at the plants, energy recovery, and solid residues generated. GHG contributions were categorized with respect to direct emissions from the combustion plant as well as indirect upstream contributions (e.g. provision of fuels and materials) and indirect downstream contributions (e.g. substitution of electricity and heat produced elsewhere). GHG accounting was done per tonne of waste received at the plant. The content of fossil carbon in the input waste, for example as plastic, was found to be critical for the overall level of the GHG emissions, but also the energy conversion efficiencies were essential. The emission factors for electricity provision (also substituted electricity) affected the indirect downstream emissions with a factor of 3-9 depending on the type of electricity generation assumed. Provision of auxiliary fuels, materials and resources corresponded to up to 40% of the direct emission from the plants (which were 347-371 kg CO(2)-eq. tonne( -1) of waste for incineration and 735-803 kg CO(2)-eq. tonne(-1) of waste for co-combustion). Indirect downstream savings were within the range of -480 to -1373 kg CO(2)eq. tonne(-1) of waste for incineration and within -181 to -2607 kg CO(2)-eq. tonne(- 1) of waste for co-combustion. N(2)O emissions and residue management did not appear to play significant roles.

  15. PILOT-SCALE STUDY OF THE EFFECT OF SELECTIVE CATALYTIC REDUCTION CATALYST ON MERCURY SPECIATION IN ILLINOIS AND POWDER RIVER BASIN COAL COMBUSTION FLUE GASES

    EPA Science Inventory

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur and chlorine) and one Po...

  16. [Emission inventory of greenhouse gases from agricultural residues combustion: a case study of Jiangsu Province].

    PubMed

    Liu, Li-hua; Jiang, Jing-yan; Zong, Liang-gang

    2011-05-01

    Burning of agricultural crop residues was a major source greenhouse gases. In this study, the proportion of crop straws (rice, wheat, maize, oil rape, cotton and soja) in Jiangsu used as household fuel and direct open burning in different periods (1990-1995, 1996-2000, 2001-2005 and 2006-2008) was estimated through questionnaire. The emission factors of CO2, CO, CH4 and NO20 from the above six types of crop straws were calculated by the simulated burning experiment. Thus the emission inventory of greenhouse gases from crop straws burning was established according to above the burning percentages and emission factors, ratios of dry residues to production and crop productions of different periods in Jiangsu province. Results indicated that emission factors of CO2, CO, CH4 and N2O depended on crop straw type. The emission factors of CO2 and CH4 were higher for oil rape straw than the other straws, while the maize and the rice straw had the higher N2O and CO emission factor. Emission inventory of greenhouse gases from agricultural residues burning in Jiangsu province showed, the annual average global warming potential (GWP) of six tested crop straws were estimated to be 9.18 (rice straw), 4.35 (wheat straw), 2.55 (maize straw), 1.63 (oil rape straw), 0.55 (cotton straw) and 0. 39 (soja straw) Tg CO2 equivalent, respectively. Among the four study periods, the annual average GWP had no obvious difference between the 1990-1995 and 2006-2008 periods, while the maximal annual average GWP (23.83 Tg CO2 equivalent) happened in the 1996-2000 period, and the minimum (20.30 Tg CO2 equivalent) in 1996-2000 period.

  17. Experimental and theoretical studies of the laws governing condensate deposition from combustion gases

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Seshadri, K.

    1981-01-01

    A description is presented of the results of a research program directed at an improved understanding of condensate deposition rate phenomena in combustion systems. The conducted experiments make use of real-time optical laser reflectance-interference-polarization techniques in flame environments. The obtained new data and the results of previous gravimetric experiments are employed as a basis for the development of a comprehensive convective diffusion deposition theory, taking into account the assumption of a multicomponent vapor or multisize class particles 'source-free' boundary layer. The theory makes it possible to provide self-consistent salt/ash/soot deposition rate predictions over a wide variety of environmental conditions.

  18. Dry additives-reduction catalysts for flue waste gases originating from the combustion of solid fuels

    SciTech Connect

    1995-12-31

    Hard coal is the basic energy generating raw material in Poland. In 1990, 60% of electricity and thermal energy was totally obtained from it. It means that 100 million tons of coal were burned. The second position is held by lignite - generating 38% of electricity and heat (67.3 million tons). It is to be underlined that coal combustion is particularly noxious to the environment. The coal composition appreciably influences the volume of pollution emitted in the air. The contents of incombustible mineral parts - ashes - oscillates from 2 to 30%; only 0.02 comes from plants that had once originated coal and cannot be separated in any way. All the rest, viz. the so-called external mineral substance enters the fuel while being won. The most indesirable hard coal ingredient is sulfur whose level depends on coal sorts and its origin. The worse the fuel quality, the more sulfur it contains. In the utilization process of this fuel, its combustible part is burnt: therefore, sulfur dioxide is produced. At the present coal consumption, the SO{sub 2} emission reaches the level of 3.2 million per year. The intensifies the pressure on working out new coal utilization technologies, improving old and developing of pollution limiting methods. Research is also directed towards such an adaptation of technologies in order that individual users may also make use thereof (household furnaces) as their share in the pollution emission is considerable.

  19. Adsorption of sulfur dioxide from coal combustion gases on natural zeolite

    SciTech Connect

    Demirbas, A.

    2006-10-15

    In this study, better efficiency of SO{sub 2} removal in flue gas from lignite coal combustion by adding of NZ in the gas phase was achieved. Natural zeolite was exposed to flue gas containing sulfur dioxide at varying conditions of relative humidity and temperature. It was found that the amount of sulfate on the zeolite increased with increasing relative humidity and temperature. The percents of adsorbed sulfur dioxide were 86, 74, 56, and 35, while the values of relative humidity (RH) were 75, 60, 45, and 30% for 40 minutes, respectively. The percents of adsorbed sulfur dioxide sharply increased within the first 40 min for the values of RH were 75 and 60, and after 40 min, slightly increased, then reached a plateau. In general, as increasing the RH increased the amount of sulfur dioxide adsorbed by natural zeolite. The amounts of adsorbed sulfur dioxide increased with exposure time. It increased and reached 30.2 mg/g for 40 min. After 40 min, it slightly increased and then reached a plateau. The NZ adsorbs 35.1 mg SO{sub 2} per gram adsorbent with 75% RH at 298 K from a simulated coal combustion flue gas. The amounts of adsorbed sulfur dioxide increased with increasing temperature. The NZ adsorbs 71.5 mg SO{sub 2} per gram adsorbent with 75% RH for 100 min exposure time from the flue gas mixture.

  20. IGR solid-state electrochemical NO sub x control for natural gas combustion exhaust gases

    SciTech Connect

    Hossain, M.S.; Neyman, M.; Cook, W.J. ); Gordon, A.Z. )

    1989-07-01

    Solid-state electrochemical technology, embodied in the IGR process, is used to reduce nitrogen oxides (NO{sub x}) to nitrogen and oxygen, and thereby control NO{sub x} emissions from natural gas powered engines. The IGR deNO{sub x} process is based on solid-state, flow-through, high surface area, porous oxygen ion conductive ceramic electrolytes. Recent bench-scale experiments have demonstrated NO{sub x} reduction in multicomponent gas streams, the inert portion of which simulate natural gas combustion products. The reduction products were analyzed by in situ gas chromatography to verify NO{sub x} reduction rates inferred from electrochemical measurements. IGR process advantages compared with existing NO{sub x} control technologies are reviewed.

  1. IGR solid-state electrochemical NO/sub x/ control for natural combustion exhaust gases

    SciTech Connect

    Hossain, M.S.; Neyman, M.; Cook, W.J.; Gordon, A.Z.

    1988-01-01

    Solid-state electrochemical technology, embodied in the IGR process, is used to reduce nitrogen oxides (NO/sub x/) to nitrogen and oxygen, and thereby control NO/sub x/ emissions from natural gas powered engines. The IGR deNO/sub x/ process is based on solid-state, flow-through, high surface area, porous oxygen ion conductive ceramic electrolytes. Recent bench-scale experiments conducted for the Gas Research Institute have demonstrated NO/sub x/ reduction in multicomponent gas streams, the inert portion of which simulate natural gas combustion products. The reduction products were analyzed by in-situ gas chromatography to verify NO/sub x/ reduction rates inferred from electrochemical measurements. IGR process advantages compared with existing NO/sub x/ control technologies are reviewed.

  2. Spectroscopy and kinetics of combustion gases at high temperatures. Annual progress report 1991

    SciTech Connect

    Hanson, R.K.; Bowman, C.T.

    1991-12-01

    This program involves two complementary activities: (1) development and application of cw ring dye laser absorption methods for sensitive detection of radical species and measurement of fundamental spectroscopic parameters at high temperatures; and (2) shock tube studies of radical-molecule and radical-radical reactions relevant to combustion. Species currently under investigation in the spectroscopic portion of the research include NO and CH{sub 3}; this has necessitated the development of a unique intracavity frequency-doubling system for our cw laser which operates at wavelengths in the range 210--230 nm. Shock tube studies of reaction kinetics currently are focused on reactions of CH{sub 3} radicals. Work during the current reporting period has been focused on the following activities: High resolution spectroscopy, and methyl diagnostics and kinetics.

  3. Online elemental analysis of process gases with ICP-OES: A case study on waste wood combustion

    SciTech Connect

    Wellinger, Marco; Wochele, Joerg; Biollaz, Serge M.A.; Ludwig, Christian

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Simultaneous measurements of 23 elements in process gases of a waste wood combustor. Black-Right-Pointing-Pointer Mobile ICP spectrometer allows measurements of high quality at industrial plants. Black-Right-Pointing-Pointer Continuous online measurements with high temporal resolution. Black-Right-Pointing-Pointer Linear correlations among element concentrations in the raw flue gas were detected. Black-Right-Pointing-Pointer Novel sampling and calibration methods for ICP-OES analysis of process gases. - Abstract: A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. The analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium.

  4. Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania

    USGS Publications Warehouse

    Révész, K. M.; Breen, K.J.; Baldassare, A.J.; Burruss, R.C.

    2010-01-01

    The origin of the combustible gases in groundwater from glacial-outwash and fractured-bedrock aquifers was investigated in northern Tioga County, Pennsylvania. Thermogenic methane (CH4) and ethane (C2H6) and microbial CH4 were found. Microbial CH4 is from natural in situ processes in the shale bedrock and occurs chiefly in the bedrock aquifer. The δ13C values of CH4 and C2H6 for the majority of thermogenic gases from water wells either matched or were between values for the samples of non-native storage-field gas from injection wells and the samples of gas from storage-field observation wells. Traces of C2H6 with microbial CH4 and a range of C and H isotopic compositions of CH4 indicate gases of different origins are mixing in sub-surface pathways; gas mixtures are present in groundwater. Pathways for gas migration and a specific source of the gases were not identified. Processes responsible for the presence of microbial gases in groundwater could be elucidated with further geochemical study.

  5. Combustion

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.

  6. Method for removing sulfur oxides from combusting gases in wet, calcium-based flue gas desulfurization processes

    SciTech Connect

    Moser, R.E.; Meserole, F.

    1991-02-19

    This patent describes a method for reducing accumulation of solid sulfate-containing deposits in apparatus for storing, transporting or utilizing wet lime or limestone for combustion gas desulfurization. It comprises: the step of contact the combustion gas in a reaction zone in the presence of the wet lime or limestone with thiosulfate and an organic polyacid chelating agent. The thiosulfate and chelating agent being present in sufficient concentrations to diminish the amount of sulfate formed as the result of oxidation of sulfite to sulfate.

  7. Dry sorbent injection of trona to control acid gases from a pilot-scale coal-fired combustion facility

    EPA Science Inventory

    Gaseous and particulate emissions from the combustion of coal have been associated with adverse effects on human and environmental health, and have for that reason been subject to regulation by federal and state governments. Recent regulations by the United States Environmental ...

  8. GREENOUSE GASES FROM SMALL-SCALE COMBUSTION DEVICES IN DEVELOPING COUNTRIES, PHASE IIA. HOUSEHOLD STOVES IN INDIA

    EPA Science Inventory

    The report contains a systematic set of measurements of carbon dioxide (CO2), carbon monoxide, methane, total non-methane organic compounds, nitrous oxide, sulfur dioxide, nitrogen dioxide, and total suspended particulate emissions from the commonest combustion devices in the wor...

  9. Experimental Studies of the Formation/Deposition of Sodium Sulfate in/from Combustion Gases. [hot corrosion in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.

    1978-01-01

    Processes related to the hot corrosion of gas turbine components were examined in two separate investigations. Monochromatic laser light was used to probe condensation onset and condensate film growth (via interference of reflected light) on electrically heated ribbons immersed in seeded, flat flame combustion product gases. Boron trichloride is used as the seed gas in these preliminary experiments conducted to obtain precise measurements of the dew point/deposition rates. Because of the importance of gaseous Na(g) as a precursor to NaSO4 formation, the kinetics and mechanisms of the heterogeneous reaction H(g) + NaCl(s) yields Na(g) + HCl(g) was studied using atomic absorption spectroscopy combined with microwave discharge-vacuum flow reactor techniques at moderate temperatures. Preliminary results indicate the H-atom attack of solid NaCl vaporization is negligible; hence the corresponding gas phase (homogeneous) reaction no role in the observed Na(g) production.

  10. Spectroscopy and kinetics of combustion gases at high temperatures. Technical progress report, March 1, 1991--October 31, 1992

    SciTech Connect

    Hanson, R.K.; Bowman, C.T.

    1992-11-01

    This program involves two complementary activities: (1) development and application of cw ring dye laser absorption. methods for sensitive detection of radical species and measurement of fundamental spectroscopic parameters at high temperatures; and (2) shock tube studies of radical-molecule and radical-radical reactions relevant to combustion. Species currently under investigation in the spectroscopic portion of the research include NO and CH{sub 3}; this has necessitated the development of a unique intracavity frequency-doubling system for our cw laser which operates at wavelengths in the range 210--230 nm. Shock tube studies of reaction kinetics currently are focussed on reactions of CH{sub 3} radicals.

  11. A generic analysis of energy use and solvent selection for CO2 separation from post-combustion flue gases

    USGS Publications Warehouse

    Lu, Y.; Chen, S.; Rostam-Abadi, M.

    2008-01-01

    A thermodynamic calculation was performed to determine the theoretical minimum energy used to separate CO2 from a coal combustion flue gas in a typical adsorption-desorption system. Under ideal conditions, the minimum energy required to separate CO2 from post-combustion flue gas and produce pure CO2 at 1 atmospheric pressure was only about 1183 kJ/kg CO2. This amount could double with the addition of the driving forces of mass and heat transfer and the adverse impacts of absorption heat release on adsorption capacity. Thermodynamic analyses were also performed for the aqueous amine-based absorption process. Two CO2 reaction mechanisms, the carbamate formation reaction with primary/secondary amines and the CO2 hydration reaction with tertiary amines, were included in the absorption reaction. The reaction heat, sensible heat, and stripping heat were all important to the total heat requirement. The heat use of an ideal tertiary amine amounted to 2786 kJ/kg, compared to 3211 kJ/kg for an ideal primary amine. The heat usage of an ideal amine was about 20% lower than that of commercially available amines. Optimizing the absorption process configuration could further reduce energy use. This is an abstract of a paper presented at the 2008 AIChE Spring National Meeting (New Orleans, LA 4/6-10/2008).

  12. Chemically frozen multicomponent boundary layer theory of salt and/or ash deposition rates from combustion gases

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Chen, B.-K.; Fryburg, G. C.; Kohl, F. J.

    1979-01-01

    There is increased interest in, and concern about, deposition and corrosion phenomena in combustion systems containing inorganic condensible vapors and particles (salts, ash). To meet the need for a computationally tractable deposition rate theory general enough to embrace multielement/component situations of current and future gas turbine and magnetogasdynamic interest, a multicomponent chemically 'frozen' boundary layer (CFBL) deposition theory is presented and its applicability to the special case of Na2SO4 deposition from seeded laboratory burner combustion products is demonstrated. The coupled effects of Fick (concentration) diffusion and Soret (thermal) diffusion are included, along with explicit corrections for effects of variable properties and free stream turbulence. The present formulation is sufficiently general to include the transport of particles provided they are small enough to be formally treated as heavy molecules. Quantitative criteria developed to delineate the domain of validity of CFBL-rate theory suggest considerable practical promise for the present framework, which is characterized by relatively modest demands for new input information and computer time.

  13. Homogeneous chemistry of NO/sub x/ production and removal from fossil fuel combustion gases. Final technical report

    SciTech Connect

    Silver, J.A.; Gozewski, C.M.; Kolb, C.E.

    1980-11-01

    The reduction of NO/sub x/ emissions from stationary combustion sources by non-catalytic homogeneous chemical addition is a promising technique. Demonstrations in laboratory experiments and on a number of field scale combustors have shown that the addition of ammonia to the exhaust flow significantly reduces the NO concentrations in a narrow temperature range. This report summarizes the work performed to understand the detailed chemical mechanism which makes this reduction occur. A model describing the NH/sub i//NO/sub x/ chemical system is developed, and rates of the key reactions identified are measured in a high temperature fast flow reactor. Product channels for certain important reactions are also identified. The experimental results are incorporated into the computer code, and the model predictions are compared with laboratory and field test results. Possible additives other than ammonia are evaluated and discussed.

  14. Effect of varying the combustion parameters on the emissions of carbon monoxide and nitrogen oxides in the exhaust gases from propane-fueled vehicles.

    PubMed

    Roberge, B

    2000-05-01

    Propane-fueled forklifts are one source of carbon monoxide (CO) contamination of workplace air. The previous study carried out by the Quebec Occupational Health and Safety Research Institute dealt with worker exposure to CO during forklift use in buildings. It recommends that exhaust gas emissions be kept below a 1 percent concentration. However, this control has not produced a significant reduction in worker exposure to CO, when factors (ventilation, type of work tasks, and management of vehicle fleet) specific to companies are taken into account. Consequently, a reduction in CO emissions below the threshold of 0.3 percent should be considered. The experience acquired with propane-fueled ice resurfacers can be used to determine the effect of combustion parameters on exhaust gas emissions. It is known that a reduction in CO emissions from ice resurfacers resulted in the appearance of nitrogen oxides (NOx) and eventually in nitrogen dioxide (NO2) poisoning. Few publications present NOx results in relation to the CO measured in the exhaust gases of propane-fueled vehicles. The objective of this study is to define the level to which CO emissions can be reduced without increasing NOx concentrations. This real-situation study quantified the CO, NO, and NOx in the exhaust gases of a fleet of propane-fueled forklifts in relation to the mixture ratio. The results show the impact of the motor speed and mixture ratio on the CO, NO, and NO2 concentrations. They confirm an increase in NOx concentrations when CO concentrations are reduced. They also show that proper maintenance of forklifts combined with optimal adjustments can reduce CO and NOx emissions. The study proposes a compromise between CO and NOx emissions by taking into account worker health and safety as well as vehicle performance. Monitoring must be done to control air quality in work areas and worker exposure to CO and NO2. A forklift preventive maintenance program and general building ventilation are the favored

  15. Organic compound destruction and removal efficiency (DRE) for plasma incinerator off-gases using an electrically heated secondary combustion chamber

    SciTech Connect

    Whitworth, C.G.; Babko-Malyi, S.; Battleson, D.M.; Olstad, S.J.

    1998-12-31

    The US Department of Energy (DOE) sponsored a series pilot-scale plasma incineration tests of simulated mixed wastes at the MSE Technology Applications, Inc. technology development test facility in Butte, MT. One of the objectives of the test series was to assess the ability of an electrically heated afterburner to destroy organic compounds that may be present in the off-gases resulting from plasma incineration of mixed wastes. The anticipated benefit of an electrically heated afterburner was to decrease total off-gas volume by 50% or more, relative to fossil fuel-fired afterburners. For the present test series, feeds of interest to the DOE Mixed Waste Focus Area (MWFA) were processed in a plasma centrifugal furnace while metering selected organic compounds upstream of the electrically heated afterburner. The plasma furnace was equipped with a transferred-mode torch and was operated under oxidizing conditions. Feeds consisted of various mixtures of soil, plastics, portland cement, silicate fines, diesel fuel, and scrap metals. Benzene, chloroform, and 1,1,1-trichloroethane were selected for injection as simulates of organics likely to be present in DOE mixed wastes, and because of their relative rankings on the US Environmental Protection Agency (EPA) thermal stability index. The organic compounds were injected into the off-gas system at a nominal concentration of 2,000 ppmv. The afterburner outlet gas stream was periodically sampled, and analyzed by gas chromatography/mass spectrometry. For the electrically heated afterburner, at operating temperatures of 1,800--1,980 F (982--1,082 C), organic compound destruction and removal efficiencies (DREs) for benzene, chloroform, and 1,1,1-trichloroethane were found to be > 99.99%.

  16. Research and Education of CO{sub 2} Separation from Coal Combustion Flue Gases with Regenerable Magnesium Solutions

    SciTech Connect

    Lee, Joo-Youp

    2013-09-30

    A novel method using environment-friendly chemical magnesium hydroxide (Mg(OH){sub 2}) solution to capture carbon dioxide from coal-fired power plants flue gas has been studied under this project in the post-combustion control area. The project utilizes the chemistry underlying the CO{sub 2}-Mg(OH){sub 2} system and proven and well-studied mass transfer devices for high levels of CO{sub 2} removal. The major goals of this research were to select and design an appropriate absorber which can absorb greater than 90% CO{sub 2} gas with low energy costs, and to find and optimize the operating conditions for the regeneration step. During the project period, we studied the physical and chemical characteristics of the scrubbing agent, the reaction taking place in the system, development and evaluation of CO{sub 2} gas absorber, desorption mechanism, and operation and optimization of continuous operation. Both batch and continuous operations were performed to examine the effects of various parameters including liquid-to-gas ratio, residence time, lean solvent concentration, pressure drop, bed height, CO{sub 2} partial pressure, bubble size, pH, and temperature on the absorption. The dissolution of Mg(OH){sub 2} particles, formation of magnesium carbonate (MgCO{sub 3}), and vapor-liquid-solid equilibrium (VLSE) of the system were also studied. The dissolution of Mg(OH){sub 2} particles and the steady release of magnesium ions into the solution was a crucial step to maintain a level of alkalinity in the CO{sub 2} absorption process. The dissolution process was modeled using a shrinking core model, and the dissolution reaction between proton ions and Mg(OH){sub 2} particles was found to be a rate-controlling step. The intrinsic surface reaction kinetics was found to be a strong function of temperature, and its kinetic expression was obtained. The kinetics of MgCO{sub 3} formation was also studied in terms of different pH values and temperatures, and was enhanced under high p

  17. Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO₂ Capture from Post-Combustion Flue Gases

    SciTech Connect

    Chen, Shiaoguo

    2015-09-30

    A novel Gas Pressurized Stripping (GPS) post-combustion carbon capture (PCC) process has been developed by Carbon Capture Scientific, LLC, CONSOL Energy Inc., Nexant Inc., and Western Kentucky University in this bench-scale project. The GPS-based process presents a unique approach that uses a gas pressurized technology for CO₂ stripping at an elevated pressure to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over the MEA process. To meet project goals and objectives, a combination of experimental work, process simulation, and technical and economic analysis studies were applied. The project conducted individual unit lab-scale tests for major process components, including a first absorption column, a GPS column, a second absorption column, and a flasher. Computer simulations were carried out to study the GPS column behavior under different operating conditions, to optimize the column design and operation, and to optimize the GPS process for an existing and a new power plant. The vapor-liquid equilibrium data under high loading and high temperature for the selected amines were also measured. The thermal and oxidative stability of the selected solvents were also tested experimentally and presented. A bench-scale column-based unit capable of achieving at least 90% CO₂ capture from a nominal 500 SLPM coal-derived flue gas slipstream was designed and built. This integrated, continuous, skid-mounted GPS system was tested using real flue gas from a coal-fired boiler at the National Carbon Capture Center (NCCC). The technical challenges of the GPS technology in stability, corrosion, and foaming of selected solvents, and environmental, health and

  18. Cyclic carbonation calcination studies of limestone and dolomite for CO{sub 2} separation from combustion flue gases - article no. 011801

    SciTech Connect

    Senthoorselvan, S.; Gleis, S.; Hartmut, S.; Yrjas, P.; Hupa, M.

    2009-01-15

    Naturally occurring limestone and dolomite samples, originating from different geographical locations, were tested as potential sorbents for carbonation/calcination based CO{sub 2} capture from combustion flue gases. Samples have been studied in a thermogravimetric analyzer under simulated flue gas conditions at three calcination temperatures, viz., 750{sup o}C, 875{sup o}C, and 930{sup o}C for four carbonation calcination reaction (CCR) cycles. The dolomite sample exhibited the highest rate of carbonation than the tested limestones. At the third cycle, its CO{sub 2} capture capacity per kilogram of the sample was nearly equal to that of Gotland, the highest reacting limestone tested. At the fourth cycle it surpassed Gotland, despite the fact that the CaCO{sub 3} content of the Sibbo dolomite was only 2/3 of that of the Gotland. Decay coefficients were calculated by a curve fitting exercise and its value is lowest for the Sibbo dolomite. That means, most probably its capture capacity per kilogram of the sample would remain higher well beyond the fourth cycle. There was a strong correlation between the calcination temperature, the specific surface area of the calcined samples, and the degree of carbonation. It was observed that the higher the calcination temperature, the lower the sorbent reactivity. For a given limestone/dolomite sample, sorbents CO{sub 2} capture capacity depended on the number of CCR cycles and the calcination temperature. According to the equilibrium thermodynamics, the CO{sub 2} partial pressure in the calciner should be lowered to lower the calcination temperature. This can be achieved by additional steam supply into the calciner. Steam could then be condensed in an external condenser to single out the CO{sub 2} stream from the exit gas mixture of the calciner. A calciner design based on this concept is illustrated.

  19. Method for controlling corrosion in thermal vapor injection gases

    DOEpatents

    Sperry, John S.; Krajicek, Richard W.

    1981-01-01

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  20. Jet flows of reacting gases

    NASA Astrophysics Data System (ADS)

    Aliev, Farkhadzhan; Zhumaev, Zair Sh.

    The book presents fundamentals of the aerodynamic theory and calculation of straight gas jets. The discussion focuses on the flow structure and turbulent combustion of unmixed gases and thermal characteristics of the jet. The following three types of problems are considered: motion of unmixed chemically active gases; gas motion under conditions of chemical equilibrium; and motion of gases under conditions of finite-rate chemical reactions.

  1. Combustible particluate fuel heater

    SciTech Connect

    Collins, B.H.; Jurgens, H.J.W.

    1986-01-21

    This patent describes a combustible particulate fired heater. It consists of: a combustion chamber defined by upright side walls extending between open top and bottom ends; an enclosure surrounding the combustion chamber; a retort within the combustion chamber adjacent the bottom end and having a lower particulate receiving end and an upper open end; feed conveyor means leading through the enclosure to the retort for delivering metered quantities of combustible particulates to the lower particulate receiving end of the retort; primary combustion air supply means having a primary combustion air supply manifold extending at least partially about the upper open end of the retort; primary air control means on the primary air supply means for selectively allowing entry of combustion air from outside the enclosure in to the retort; secondary combustion air supply means including a secondary air supply manifold within the combustion chamber above the primary combustion air supply manifold; secondary air control means independent of the primary air control means for selectively allowing entry of secondary air from outside the enclosure to an area within the combustion chamber above the retort; an exhaust duct opening into the enclosure; and vacuum means connected to the exhaust duct for producing a pressure differential between the area confined by the enclosure and the ambient atmosphere such that ambient air is drawn through at least one of the combustion air supply means to induce a high level of gasification and to support combustion at the retort and for drawing combustion exhaust gases out through the exhaust duct.

  2. Determination of bromophenols as dioxin precursors in combustion gases of fire retarded extruded polystyrene by sorptive sampling-capillary gas chromatography-mass spectrometry.

    PubMed

    Desmet, Koen; Schelfaut, Marc; Sandra, Pat

    2005-04-15

    Extruded polystyrene (XPS) is often treated with hexabromocyclododecane (HBCD) as fire retardant (FR). Because of its aliphatic structure, HBCD is not suspected to cause formation of polybrominated dioxins upon combustion. Precursors of polybrominated dioxins, namely bromophenols, were detected during tubular furnace combustion experiments of FR-XPS in combination with sorptive enrichment on polydimethylsiloxane followed by on-line thermal desorption-capillary GC/MS. The highest concentration of mono- and tribromophenols detected were 85.9 and 3.7 mg kg(-1), respectively, at a temperature of 700 degrees C, while a temperature of 500 degrees C yielded the highest concentration of dibromophenols namely 10.4 mg kg(-1). At a combustion temperature of 900 degrees C no bromophenols were detected.

  3. EVALUATION OF SIGNIFICANT ANTHROPOGENIC SOURCES OF RADIATIVELY IMPORTANT TRACE GASES

    EPA Science Inventory

    The report is an initial evaluation of significant anthropogenic sources of radiatively important trace gases. missions of greenhouse gases from human activities--including fossil fuel combustion, industrial/agricultural activities, and transportation--contribute to the increasin...

  4. Method for storing radioactive combustible waste

    DOEpatents

    Godbee, H.W.; Lovelace, R.C.

    1973-10-01

    A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

  5. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub x} and NO{sub x} from coal combustion gases

    SciTech Connect

    Selvaraj, P.T.; Kaufman, E.N.

    1995-06-01

    The purpose of the proposed research program is the development and demonstration of a new generation of gaseous substrate-based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. Coal is thermochemically converted to synthesis gas consisting of carbon monoxide, hydrogen, and carbon dioxide. Conventional catalytic upgrading of coal synthesis gas into alcohols or other oxychemicals is subject to several processing problems such as interference of the other constituents in the synthesis gases, strict CO/H{sub 2} ratios required to maintain a particular product distribution and yield, and high processing cost due to the operation at high temperatures and pressures. Recently isolated and identified bacterial strains capable of utilizing CO as a carbon source and coverting CO and H{sub 2} into mixed alcohols offer the potential of performing synthesis gas conversion using biocatalysts. Biocatalytic conversion, though slower than the conventional process, has several advantages such as decreased interference of the other constituents in the synthesis gases, no requirement for strict CO/H{sub 2} ratios, and decreased capital and oeprating costs as the biocatalytic reactions occur at ambient temperatures and pressures.

  6. Boiler using combustible fluid

    DOEpatents

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  7. Combustion modeling in internal combustion engines

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  8. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  9. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  10. Analyzing Gases From Decomposing Electrical Insulation

    NASA Technical Reports Server (NTRS)

    Moffett, Gary; Shelley, Timothy J.; Morelli, John J.

    1995-01-01

    Test fixture holds insulated wire and traps gases emitted by heating of wire. Used with gas chromatograph and/or mass spectrometer, to analyze gases emitted by insulation on wire when wire heated with controlled current in controlled atmosphere to simulate pyrolysis, combustion, and arc tracking. Small, inexpensive, easily maintained, and relatively nonreactive to organic compounds produced during breakdown of insulation.

  11. Dynamic effects of combustion

    NASA Technical Reports Server (NTRS)

    Oppenheim, A. K.

    1982-01-01

    The dynamic effects of combustion are due to the evolution of exothermic energy and its deposition in the compressible medium where the process takes place. The paper examines the dynamics of combustion phenomena, including ignition, turbulent flame propagation (inflammation), explosion, and detonation, with emphasis on their exothermic characteristics. Ignition and explosion are treated as problems of nonlinear mechanics, and their dynamic behavior is described in terms of phase space models and cinematographic laser shear interferograms. The results of a numerical random vortex model of turbulent flame propagation are confirmed in a combustion tunnel experiment, where it was observed that a fresh mixture of burnt and unburnt gases can sustain combustion with a relatively small expenditure of overall mass flow, due to the increasing specific volume of burnt gases inside the flame front. An isentropic pressure wave is found to precede the accelerating flame in the process of detonation, and components of this presssure wave are shown to propagate at local sonic velocities.

  12. Facile synthesis of hollow Co3O4 microspheres and its use as a rapid responsive CL sensor of combustible gases.

    PubMed

    Teng, Fei; Yao, Wenqing; Zheng, Youfei; Ma, Yutao; Xu, Tongguang; Gao, Guizhi; Liang, Shuhui; Teng, Yang; Zhu, Yongfa

    2008-09-15

    The hollow Co(3)O(4) microspheres (HCMs) were prepared by the carbonaceous templates, which did not need the surface pretreatment. The chemiluminescence (CL) and catalytic properties for CO oxidation over these hollow samples were evaluated. The samples were characterized by scanning electron microscopy (SEM), energy disperse spectra (EDS), transmission electron microscopy (TEM), selected area electron diffraction (ED), X-ray diffraction (XRD), temperature-programmed desorption (TPD) and N(2) adsorption. The influences of filter' band length, flow rate of gas, test temperature, and particle structure on CL intensities were mainly investigated. It was found that compared with the solid Co(3)O(4) particles (SCPs), HCMs had a stronger CL intensity, which was ascribed to its hollow structure; and that CL properties of the catalysts were well correlated with their reaction activities. Moreover, HCMs were used to fabricate a highly sensitive gas detector, which is a rapid and effective method for the selection of catalysts or the detection of environmental deleterious gases.

  13. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  14. Gas turbine combustion chamber with air scoops

    SciTech Connect

    Mumford, S.E.; Smed, J.P.

    1989-12-19

    This patent describes a gas turbine combustion chamber. It comprises: means for admission of fuel to the upstream end thereof and discharge of hot gases from the downstream end thereof, and a combustion chamber wall, having an outer surface, with apertures therethrough, and air scoops provided through the apertures to direct air into the combustion chamber.

  15. Greenhouse Gases

    MedlinePlus

    ... Found Solar Thermal Power Plants Solar Thermal Collectors Solar Energy and the Environment Secondary Sources Electricity The Science ... the earth’s atmosphere act as greenhouse gases. When sunlight strikes the earth’s surface, some of it radiates ...

  16. Toxic gases.

    PubMed Central

    Matthews, G.

    1989-01-01

    An overview of the widespread use of gases and some volatile solvents in modern society is given. The usual circumstances in which undue exposure may occur are described. The most prominent symptoms and general principles of diagnosis and treatment are given and are followed by more specific information on the commoner, more toxic materials. While acute poisonings constitute the greater part of the paper, some indication of chronic disorders arising from repeated or prolonged exposure is also given. PMID:2687827

  17. Noble Gases

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the

  18. Volcanic gases: hydrogen burning at kilauea volcano, hawaii.

    PubMed

    Cruikshank, D P; Morrison, D; Lennon, K

    1973-10-19

    Spectroscopic evidence for hydrogen burning in air was obtained at Kilauea Volcano. The abundance of hydrogen required to support combustion is consistent with that predicted for gases in equilibrium with typical Hawaiian tholeiitic basalt.

  19. 49 CFR 229.43 - Exhaust and battery gases.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively....

  20. 49 CFR 229.43 - Exhaust and battery gases.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively....

  1. 49 CFR 229.43 - Exhaust and battery gases.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively....

  2. 49 CFR 229.43 - Exhaust and battery gases.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively....

  3. 49 CFR 229.43 - Exhaust and battery gases.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively....

  4. Combustion engine. [for air pollution control

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1977-01-01

    An arrangement for an internal combustion engine is provided in which one or more of the cylinders of the engine are used for generating hydrogen rich gases from hydrocarbon fuels, which gases are then mixed with air and injected into the remaining cylinders to be used as fuel. When heavy load conditions are encountered, hydrocarbon fuel may be mixed with the hydrogen rich gases and air and the mixture is then injected into the remaining cylinders as fuel.

  5. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage of combustible liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4462 Storage of combustible liquids underground. The requirements of this standard apply to underground areas only....

  6. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage of combustible liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4462 Storage of combustible liquids underground. The requirements of this standard apply to underground areas only....

  7. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of combustible liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4462 Storage of combustible liquids underground. The requirements of this standard apply to underground areas only....

  8. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of combustible liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4462 Storage of combustible liquids underground. The requirements of this standard apply to underground areas only....

  9. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage of combustible liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4462 Storage of combustible liquids underground. The requirements of this standard apply to underground areas only....

  10. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  11. Stationary Engineers Apprenticeship. Related Training Modules. 16.1-16.5 Combustion.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with combustion. Addressed in the individual instructional packages included in the module are the following topics: the combustion process, types of fuel, air and flue gases, heat transfer during combustion, and wood combustion. Each…

  12. Hydrogen Peroxide Enhances Removal of NOx from Flue Gases

    NASA Technical Reports Server (NTRS)

    Collins, Michelle M.

    2005-01-01

    Pilot scale experiments have demonstrated a method of reducing the amounts of oxides of nitrogen (NOx) emitted by industrial boilers and powerplant combustors that involves (1) injection of H2O2 into flue gases and (2) treatment of the flue gases by caustic wet scrubbing like that commonly used to remove SO2 from combustion flue gases. Heretofore, the method most commonly used for removing NOx from flue gases has been selective catalytic reduction (SCR), in which the costs of both installation and operation are very high. After further development, the present method may prove to be an economically attractive alternative to SCR.

  13. [Effect of combustion devices on the quality of indoor air].

    PubMed

    Ulbrich, G

    1982-01-01

    Combustion devices and the equipment conducting their effluent gases such as ducts and chimneys are factors which might have an unreasonable or even dangerous impact on the quality of air inside buildings. There is a danger of flue gases entering the indoor environment during the heating process (a) if the air-circulation associated with the operation of a combustion device is disturbed or even interrupted, (b) if the air stream - as far as flue gases are involved - flows under elevated pressure, and (c) if the combustion device and the flue gas conducting equipment are not leak-proof. These three cases and their influence on indoor air quality are extensively discussed. In the German Combustion Device Code from 1980 care is taken to minimize the pollutant concentrations in rooms with combustion devices by setting special requirements for the room in which the device is located, and by prescribing the standardization of the technical characteristics of chimneys and combustion devices.

  14. Determining Heats of Combustion of Gaseous Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Sprinkle, Danny R.; Puster, Richard L.

    1987-01-01

    Enrichment-oxygen flow rate-ratio related to heat of combustion. Technique developed for determining heats of combustion of natural-gas samples. Based on measuring ratio m/n, where m is (volmetric) flow rate of oxygen required to enrich carrier air in which test gas flowing at rate n is burned, such that mole fraction of oxygen in combustion-product gases equals that in carrier air. The m/n ratio directly related to heats of combustion of saturated hydrocarbons present in natural gas.

  15. Flameless Combustion for Gas Turbines

    NASA Astrophysics Data System (ADS)

    Gutmark, Ephraim; Li, Guoqiang; Overman, Nick; Cornwell, Michael; Stankovic, Dragan; Fuchs, Laszlo; Milosavljevic, Vladimir

    2006-11-01

    An experimental study of a novel flameless combustor for gas turbine engines is presented. Flameless combustion is characterized by distributed flame and even temperature distribution for high preheat air temperature and large amount of recirculating low oxygen exhaust gases. Extremely low emissions of NOx, CO, and UHC are reported. Measurements of the flame chemiluminescence, CO and NOx emissions, acoustic pressure, temperature and velocity fields as a function of the preheat temperature, inlet air mass flow rate, exhaust nozzle contraction ratio, and combustor chamber diameter are described. The data indicate that larger pressure drop promotes flameless combustion and low NOx emissions at the same flame temperature. High preheated temperature and flow rates also help in forming stable combustion and therefore are favorable for flameless combustion.

  16. Hybrid fluidized bed combuster

    DOEpatents

    Kantesaria, Prabhudas P.; Matthews, Francis T.

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  17. Computational Combustion

    SciTech Connect

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  18. Combustion chamber and thermal vapor stream producing apparatus and method

    DOEpatents

    Sperry, John S.; Krajicek, Richard W.; Cradeur, Robert R.

    1978-01-01

    A new and improved method and apparatus for burning a hydrocarbon fuel for producing a high pressure thermal vapor stream comprising steam and combustion gases for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, wherein a high pressure combustion chamber having multiple refractory lined combustion zones of varying diameters is provided for burning a hydrocarbon fuel and pressurized air in predetermined ratios injected into the chamber for producing hot combustion gases essentially free of oxidizing components and solid carbonaceous particles. The combustion zones are formed by zones of increasing diameters up a final zone of decreasing diameter to provide expansion zones which cause turbulence through controlled thorough mixing of the air and fuel to facilitate complete combustion. The high pressure air and fuel is injected into the first of the multiple zones where ignition occurs with a portion of the air injected at or near the point of ignition to further provide turbulence and more complete combustion.

  19. Simulating Combustion

    NASA Astrophysics Data System (ADS)

    Merker, G.; Schwarz, C.; Stiesch, G.; Otto, F.

    The content spans from simple thermodynamics of the combustion engine to complex models for the description of the air/fuel mixture, ignition, combustion and pollutant formation considering the engine periphery of petrol and diesel engines. Thus the emphasis of the book is on the simulation models and how they are applicable for the development of modern combustion engines. Computers can be used as the engineers testbench following the rules and recommendations described here.

  20. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1997-01-01

    Combustion is a key element of many critical technologies used by contemporary society. For example, electric power production, home heating, surface and air transportation, space propulsion, and materials synthesis all utilize combustion as a source of energy. Yet, although combustion technology is vital to our standard of living, it poses great challenges to maintaining a habitable environment. For example, pollutants, atmospheric change and global warming, unwanted fires and explosions, and the incineration of hazardous wastes are major problem areas which would benefit from improved understanding of combustion. Effects of gravitational forces impede combustion studies more than most other areas of science since combustion involves production of high-temperature gases whose low density results in buoyant motion, vastly complicating the execution and interpretation of experiments. Effects of buoyancy are so ubiquitous that their enormous negative impact on the rational development of combustion science is generally not recognized. Buoyant motion also triggers the onset of turbulence, yielding complicating unsteady effects. Finally, gravity forces cause particles and drops to settle, inhibiting deconvoluted studies of heterogeneous flames important to furnace, incineration and power generation technologies. Thus, effects of buoyancy have seriously limited our capabilities to carry out 'clean' experiments needed for fundamental understanding of flame phenomena. Combustion scientists can use microgravity to simplify the study of many combustion processes, allowing fresh insights into important problems via a deeper understanding of elemental phenomena also found in Earth-based combustion processes and to additionally provide valuable information concerning how fires behave in microgravity and how fire safety on spacecraft can be enhanced.

  1. Microprobe sampling--photo ionization-time-of-flight mass spectrometry for in situ chemical analysis of pyrolysis and combustion gases: examination of the thermo-chemical processes within a burning cigarette.

    PubMed

    Hertz, Romy; Streibel, Thorsten; Liu, Chuan; McAdam, Kevin; Zimmermann, Ralf

    2012-02-10

    A microprobe sampling device (μ-probe) has been developed for in situ on-line photo ionization mass spectrometric analysis of volatile chemical species formed within objects consisting of organic matter during thermal processing. With this approach the chemical signature occurring during heating, pyrolysis, combustion, roasting and charring of organic material within burning objects such as burning fuel particles (e.g., biomass or coal pieces), lit cigarettes or thermally processed food products (e.g., roasting of coffee beans) can be investigated. Due to its dynamic changes between combustion and pyrolysis phases the cigarette smoking process is particularly interesting and has been chosen as first application. For this investigation the tip of the μ-probe is inserted directly into the tobacco rod and volatile organic compounds from inside the burning cigarette are extracted and real-time analyzed as the glowing front (or coal) approaches and passes the μ-probe sampling position. The combination of micro-sampling with photo ionization time-of-flight mass spectrometry (PI-TOFMS) allows on-line intrapuff-resolved analysis of species formation inside a burning cigarette. Monitoring volatile smoke compounds during cigarette puffing and smoldering cycles in this way provides unparalleled insights into formation mechanisms and their time-dependent change. Using this technique the changes from pyrolysis conditions to combustion conditions inside the coal of a cigarette could be observed directly. A comparative analysis of species formation within a burning Kentucky 2R4F reference cigarette with μ-probe analysis reveals different patterns and behaviors for nicotine, and a range of semi-volatile aromatic and aliphatic species.

  2. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  3. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  4. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi

    1986-01-01

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  5. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  6. Coal-water slurry fuel internal combustion engine and method for operating same

    DOEpatents

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  7. Hydrophobic Catalysts For Removal Of NOx From Flue Gases

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.; Voecks, Gerald E.

    1995-01-01

    Improved catalysts for removal of nitrogen oxides (NO and NO2) from combustion flue gases formulated as composites of vanadium pentoxide in carbon molecular sieves. Promotes highly efficient selective catalytic reduction of NOx at relatively low temperatures while not being adversely affected by presence of water vapor and sulfur oxide gases in flue gas. Apparatus utilizing catalyst of this type easily integrated into exhaust stream of power plant to remove nitrogen oxides, generated in combustion of fossil fuels and contribute to formation of acid rain and photochemical smog.

  8. Multi-stage combustion using nitrogen-enriched air

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  9. Space Station Freedom combustion research

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame

  10. Aerovalve pulse combustion: Technical note

    SciTech Connect

    Richards, G.A.; Gemmen, R.S.; Narayanaswami, L.

    1994-07-01

    The authors present a mathematical model and an experimental investigation of aerodynamically valved pulse combustion. The model uses a control-volume approach to solve conservation laws in several regions of a pulse combustor. Mixing between the fresh charge and combustion products is modeled as a two-step process, with the mixing occurring slowly for a specified eddy time during each cycle, and then changing to a higher rate. Results of model simulations demonstrate that eddy time plays a significant role in determining the frequency and amplitude of combustion oscillation. The authors show that short eddy times produce steady, rather than pulsating, combustion. And they show that changes to the mixing process alter the temperature-species history of combustion gases in a manner that could prevent or promote the formation of nitrogen oxides, depending on specific mixing rates. The relatively simple control-volume approach used in this model allows rapid investigation of a wide range of geometric and operating parameters, and also defines characteristic length and time scales relevant to aerovalve pulse combustion. Experimental measurements compare favorably to model predictions. The authors place particular emphasis on time-averaged pressure differences through the combustor, which act as an indicator of pressure gain performance. They investigate both operating conditions and combustor geometry, and they show that a complex interaction between the inlet and exit flows of a combustor makes it difficult to produce general correlations among the various parameters. They use a scaling rule to produce a combustor geometry capable of producing pressure gain.

  11. Device for improved combustion

    SciTech Connect

    Polomchak, R.W.; Yacko, M.

    1988-03-08

    A device for improved combustion is described comprising: a tubular housing member having a first end and a second end, the first and second ends each having a circular opening therethrough; a combustion chamber disposed about the second end of the-tubular-housing member; a first conduit member extending from the first end of the tubular housing member and in fluid communication with the circular opening in the first end of the tubular housing member so as to allow the passage of air therethrough; a second conduit member axially disposed within the first conduit member and extending through the first conduit member and through the tubular housing member to the circular opening the second end of the tubular housing member so as to allow the passage of fuel therethrough; means for effecting turbulence in the air passing through the tubular housing member; means for effecting turbulence in the fuel passing through the second conduit member; means for intermixing and emitting the turbulent air and the fuel in a mushroom shaped configuration with the turbulent air surrounding the mushroom shaped configuration so as to substantially eliminate noxious waste gases as by-product of combustion of the air and fuel mixture.

  12. Trends in source gases

    NASA Technical Reports Server (NTRS)

    Ehhalt, D. H.; Fraser, P. J.; Albritton, D.; Cicerone, R. J.; Khalil, M. A. K.; Legrand, M.; Makide, Y.; Rowland, F. S.; Steele, L. P.; Zander, R.

    1989-01-01

    Source gases are defined as those gases that, by their breakdown, introduce into the stratosphere halogen, hydrogen, and nitrogen compounds that are important in stratospheric ozone destruction. Given here is an update of the existing concentration time series for chlorocarbons, nitrous oxide, and methane. Also reviewed is information on halogen containing species and the use of these data for establishing trends. Also reviewed is evidence on trends in trace gases that influence tropospheric chemistry and thus the tropospheric lifetimes of source gases, such as carbon dioxide, carbon monoxide, or nitrogen oxides. Much of the information is given in tabular form.

  13. Combustion in cracks of PBX 9501

    SciTech Connect

    Berghout, H. L.; Son, S. F.; Bolme, C. A.; Hill, L. G.; Asay, B. W.; Dickson, P. M.; Henson, B. F.; Smilowitz, L. B.

    2002-01-01

    Recent experiments involving the combustion of PBX 9501 explosive under confined conditions reveal the importance of crack and flaws in reaction violence. Experiments on room temperature confined disks of pristine and thermally damaged PBX 9501 reveal that crack ignition depends on hot gases entering existing or pressure induced cracks rather than on energy release at the crack tip. PBX 9501 slot combustion experiments show that the reaction propagation rate in the slot does not depend on the external pressure. We have observed 1500 d s in long slots of highly-confined PBX 9501. We present experiments that examine the combustion of mechanically and thermally damaged samples of PBX 9501.

  14. Advanced bioreactor concepts for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub x} and NO{sub x} from coal combustion gases. CRADA final report

    SciTech Connect

    Kaufman, E.N.; Selvaraj, P.T.

    1997-10-01

    The purpose of the proposed research program was the development and demonstration of a new generation of gaseous substrate-based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from coal combustion flue gas. This study addressed the further investigation of optimal bacterial strains, growth media and kinetics for the biocatalytic conversion of coal synthesis gas to liquid fuel such as ethanol and the reduction of gaseous flue gas constituents. The primary emphasis was on the development of advanced bioreactor systems coupled with innovative biocatalytic systems that will provide increased productivity under controlled conditions. It was hoped that this would result in bioprocessing options that have both technical and economic feasibility, thus, ensuring early industrial use. Predictive mathematical models were formulated to accommodate hydrodynamics, mass transport, and conversion kinetics, and provide the data base for design and scale-up. The program was separated into four tasks: (1) Optimization of Biocatalytic Kinetics; (2) Development of Well-mixed and Columnar Reactors; (3) Development of Predictive Mathematical Models; and (4) Industrial Demonstration. Research activities addressing both synthesis gas conversion and flue gas removal were conducted in parallel by BRI and ORNL respectively.

  15. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub X} and NO{sub X} from coal combustion gases

    SciTech Connect

    Selvaraj, P.T.; Kaufman, E.N.

    1996-06-01

    The purpose of this research program is the development and demonstration of a new generation of gaseous substrate based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. This R&D program is a joint effort between the staff of the Bioprocessing Research and Development Center (BRDC) of ORNL and the staff of Bioengineering Resources, Inc. (BRI) under a Cooperative Research and Development Agreement (CRADA). The Federal Coordinating Council for Science, Engineering, and Technology report entitled {open_quotes}Biotechnology for the 21st Century{close_quotes} and the recent Energy Policy Act of 1992 emphasizes research, development, and demonstration of the conversion of coal to gaseous and liquid fuels and the control of sulfur and nitrogen oxides in effluent streams. This R&D program presents an innovative approach to the use of bioprocessing concepts that will have utility in both of these identified areas.

  16. Combustion synthesis of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  17. Dry cleaning aluminum cell gases from Söderberg cells

    NASA Astrophysics Data System (ADS)

    Doheim, M. A.; Shafey, H. M.; Abdellatif, A. A.; Ahmed, M. S.

    2000-02-01

    This article describes dry cleaning gases from vertical Söderberg cells via a two-step process involving the combustion of tars and CO followed by the chemisorption of HF on smelter-grade alumina. Both steps take place in fluidized-bed reactors. Studied parameters include distributor design, fluidizing velocity, bed temperature, and bed height.

  18. Millwright Apprenticeship. Related Training Modules. 10.1-10.5 Combustion.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains five modules covering combustion. The modules provide information on the following topics: the combustion process, types of fuel, air and fuel gases, heat transfer, and combustion in wood. Each module consists of a goal,…

  19. EFFECTS OF IRON CONTENT IN COAL COMBUSTION FLY ASHES ON SPECIATION OF MERCURY

    EPA Science Inventory

    The paper discusses the effects of iron content in coal combustion fly ashes on speciation of mercury. (NOTE: The chemical form of mercury species in combustion flue gases is an important influence on the control of mercury emissions from coal combustion). The study focused on th...

  20. Development of a Novel Gas Pressurized Process-Based Technology for CO2 Capture from Post-Combustion Flue Gases Preliminary Year 1 Techno-Economic Study Results and Methodology for Gas Pressurized Stripping Process

    SciTech Connect

    Chen, Shiaoguo

    2013-03-01

    Under the DOE’s Innovations for Existing Plants (IEP) Program, Carbon Capture Scientific, LLC (CCS) is developing a novel gas pressurized stripping (GPS) process to enable efficient post-combustion carbon capture (PCC) from coal-fired power plants. A technology and economic feasibility study is required as a deliverable in the project Statement of Project Objectives. This study analyzes a fully integrated pulverized coal power plant equipped with GPS technology for PCC, and is carried out, to the maximum extent possible, in accordance to the methodology and data provided in ATTACHMENT 3 – Basis for Technology Feasibility Study of DOE Funding Opportunity Number: DE-FOA-0000403. The DOE/NETL report on “Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity (Original Issue Date, May 2007), NETL Report No. DOE/NETL-2007/1281, Revision 1, August 2007” was used as the main source of reference to be followed, as per the guidelines of ATTACHMENT 3 of DE-FOA-0000403. The DOE/NETL-2007/1281 study compared the feasibility of various combinations of power plant/CO2 capture process arrangements. The report contained a comprehensive set of design basis and economic evaluation assumptions and criteria, which are used as the main reference points for the purpose of this study. Specifically, Nexant adopted the design and economic evaluation basis from Case 12 of the above-mentioned DOE/NETL report. This case corresponds to a nominal 550 MWe (net), supercritical greenfield PC plant that utilizes an advanced MEAbased absorption system for CO2 capture and compression. For this techno-economic study, CCS’ GPS process replaces the MEA-based CO2 absorption system used in the original case. The objective of this study is to assess the performance of a full-scale GPS-based PCC design that is integrated with a supercritical PC plant similar to Case 12 of the DOE/NETL report, such that it corresponds to a nominal 550 MWe

  1. Aviation combustion toxicology: an overview.

    PubMed

    Chaturvedi, Arvind K

    2010-01-01

    Aviation combustion toxicology is a subspecialty of the field of aerospace toxicology, which is composed of aerospace and toxicology. The term aerospace, that is, the environment extending above and beyond the surface of the Earth, is also used to represent the combined fields of aeronautics and astronautics. Aviation is another term interchangeably used with aerospace and aeronautics and is explained as the science and art of operating powered aircraft. Toxicology deals with the adverse effects of substances on living organisms. Although toxicology borrows knowledge from biology, chemistry, immunology, pathology, physiology, and public health, the most closely related field to toxicology is pharmacology. Economic toxicology, environmental toxicology, and forensic toxicology, including combustion toxicology, are the three main branches of toxicology. In this overview, a literature search for the period of 1960-2007 was performed and information related to aviation combustion toxicology collected. The overview included introduction; combustion, fire, and smoke; smoke gas toxicity; aircraft material testing; fire gases and their interactive effects; result interpretation; carboxyhemoglobin and blood cyanide ion levels; pyrolytic products of aircraft engine oils, fluids, and lubricants; and references. This review is anticipated to be an informative resource for aviation combustion toxicology and fire-related casualties.

  2. Biofuels Combustion

    NASA Astrophysics Data System (ADS)

    Westbrook, Charles K.

    2013-04-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  3. Biofuels combustion.

    PubMed

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  4. Biofuels combustion*

    SciTech Connect

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.

  5. Biofuels combustion*

    DOE PAGES

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acidsmore » and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.« less

  6. Gas Sensor Evaluations in Polymer Combustion Product Atmospheres

    NASA Technical Reports Server (NTRS)

    Delgado, Rafael H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Toxic gases produced by the combustion or thermo-oxidative degradation of materials such as wire insulation, foam, plastics, or electronic circuit boards in space shuttle or space station crew cabins may pose a significant hazard to the flight crew. Toxic gas sensors are routinely evaluated in pure gas standard mixtures, but the possible interferences from polymer combustion products are not routinely evaluated. The NASA White Sands Test Facility (WSTF) has developed a test system that provides atmospheres containing predetermined quantities of target gases combined with the coincidental combustion products of common spacecraft materials. The target gases are quantitated in real time by infrared (IR) spectroscopy and verified by grab samples. The sensor responses are recorded in real time and are compared to the IR and validation analyses. Target gases such as carbon monoxide, hydrogen cyanide, hydrogen chloride, and hydrogen fluoride can be generated by the combustion of poly(vinyl chloride), polyimide-fluoropolymer wire insulation, polyurethane foam, or electronic circuit board materials. The kinetics and product identifications for the combustion of the various materials were determined by thermogravimetric-IR spectroscopic studies. These data were then scaled to provide the required levels of target gases in the sensor evaluation system. Multisensor toxic gas monitors from two manufacturers were evaluated using this system. In general, the sensor responses satisfactorily tracked the real-time concentrations of toxic gases in a dynamic mixture. Interferences from a number of organic combustion products including acetaldehyde and bisphenol-A were minimal. Hydrogen bromide in the products of circuit board combustion registered as hydrogen chloride. The use of actual polymer combustion atmospheres for the evaluation of sensors can provide additional confidence in the reliability of the sensor response.

  7. Photochemistry of biogenic gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1989-01-01

    The relationship between the biosphere and the atmosphere is examined, emphasizing the composition and photochemistry and chemistry of the troposphere and stratosphere. The reactions of oxygen, ozone, and hydroxyl are reviewed and the fate of the biogenic gases ammonia, methane, reduced sulfur species, reduced halogen species, carbon monoxide, nitric oxide, nitrous oxide, nitrogen, and carbon dioxide are described. A list is given of the concentration and sources of the various gases.

  8. Turbulent combustion

    SciTech Connect

    Talbot, L.; Cheng, R.K.

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  9. Computational Modeling of the Working Process in the Combustion Chamber for Casing-Head Gas Recovery

    NASA Astrophysics Data System (ADS)

    Bachev, N. L.; Betinskaya, O. A.; Bul‧bovich, R. V.

    2016-01-01

    The present paper considers problems of computational modeling of the working process in multizone combustion chambers (CC) forming a part of gas-turbine power plants for recovering casing-head and other process gases. To investigate the turbulent flow and combustion, we use the LES method with a Smagorinskii subnet model. Various schemes of feeding components into combustion and dilution zones are considered. A comparison is made between the calculated and experimental data on the temperature in the combustion zone.

  10. Catalytic destruction of tars in biomass-derived gases

    SciTech Connect

    Mudge, L K; Baker, E G; Brown, M D; Wilcox, W A

    1988-02-01

    The Biomass and Municipal Waste Technology Division of the US Department of Energy is sponsoring studies at the Pacific Northwest Laboratory on catalytic destruction of condensible hydrocarbons (tars) in biomass-derived gases. Currently gasifiers generate a significant amount of tars in the product gases. These tars create problems with plugging in downstream equipment and with wastewater treatment. Partial oxidation of the gas stream in a secondary fluid bed of catalyst destroys the tars in biomass-derived gases while increasing the energy content of the product gas by over 20%. Catalysts that remain active for tar destruction are used in the secondary reactor which is specially designed to promote destruction of tars and minimize oxidation of combustible gases such as CO and H/sub 2/. Results of studies with different catalysts which have been tested for this application are described.

  11. Non-CO2 greenhouse gases and climate change.

    PubMed

    Montzka, S A; Dlugokencky, E J; Butler, J H

    2011-08-03

    Earth's climate is warming as a result of anthropogenic emissions of greenhouse gases, particularly carbon dioxide (CO(2)) from fossil fuel combustion. Anthropogenic emissions of non-CO(2) greenhouse gases, such as methane, nitrous oxide and ozone-depleting substances (largely from sources other than fossil fuels), also contribute significantly to warming. Some non-CO(2) greenhouse gases have much shorter lifetimes than CO(2), so reducing their emissions offers an additional opportunity to lessen future climate change. Although it is clear that sustainably reducing the warming influence of greenhouse gases will be possible only with substantial cuts in emissions of CO(2), reducing non-CO(2) greenhouse gas emissions would be a relatively quick way of contributing to this goal.

  12. Diode-Laser-Based Spectrometer for Sensing Gases

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.

    2005-01-01

    A diode-laser-based spectrometer has been developed for measuring concentrations of gases and is intended particularly for use in analyzing and monitoring combustion processes under microgravitational conditions in a drop tower or a spacecraft. This instrument is also well suited for use on Earth in combustion experiments and for such related purposes as fire-safety monitoring and monitoring toxic and flammable gases in industrial settings. Of the gas-sensing spectrometers available prior to the development of this instrument, those that were sensitive enough for measuring the combustion gases of interest were too large, required critical optical alignments, used far too much electrical power, and were insufficiently rugged for use under the severe conditions of spacecraft launch and space flight. In contrast, the present instrument is compact, consumes relatively little power, and is rugged enough to withstand launch vibrations and space flight. In addition, this instrument is characterized by long-term stability, accuracy, and reliability. The diode laser in this spectrometer is operated in a wavelength-modulation mode. Different gases to be measured can be selected by changing modular laser units. The operation of the laser is controlled by customized, low-power electronic circuitry built around a digital signal-processor board. This customized circuitry also performs acquisition and analysis of data, controls communications, and manages errors.

  13. Regenerative combustion device

    DOEpatents

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  14. Assessment and mitigation of combustible dust hazards in the plastics industry

    NASA Astrophysics Data System (ADS)

    Stern, Michael C.; Ibarreta, Alfonso; Myers, Timothy J.

    2015-05-01

    A number of recent industrial combustible dust fires and explosions, some involving powders used in the plastics industry, have led to heightened awareness of combustible dust hazards, increased regulatory enforcement, and changes to the current standards and regulations. This paper provides a summary of the fundamentals of combustible dust explosion hazards, comparing and contrasting combustible dust to flammable gases and vapors. The types of tests used to quantify and evaluate the potential hazard posed by plastic dusts are explored. Recent changes in NFPA 654, a standard applicable to combustible dust in the plastics industry, are also discussed. Finally, guidance on the primary methods for prevention and mitigation of combustible dust hazards are provided.

  15. Advanced Combustion

    SciTech Connect

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  16. Strongly correlated Bose gases

    NASA Astrophysics Data System (ADS)

    Chevy, F.; Salomon, C.

    2016-10-01

    The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states. We outline differences and similarities with ultracold Fermi gases, discuss recent experiments on the unitary Bose gas, and finally present a few perspectives for future research.

  17. Natural Cycles, Gases

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Jackman, Charles H.; Rood, R. B.; Aikin, A. C.; Stolarski, R. S.; Mccormick, M. P.; Fahey, David W.

    1992-01-01

    The major gaseous components of the exhaust of stratospheric aircraft are expected to be the products of combustion (CO2 and H2O), odd nitrogen (NO, NO2 HNO3), and products indicating combustion inefficiencies (CO and total unburned hydrocarbons). The species distributions are produced by a balance of photochemical and transport processes. A necessary element in evaluating the impact of aircraft exhaust on the lower stratospheric composition is to place the aircraft emissions in perspective within the natural cycles of stratospheric species. Following are a description of mass transport in the lower stratosphere and a discussion of the natural behavior of the major gaseous components of the stratospheric aircraft exhaust.

  18. Biomass burning and the production of greenhouse gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    The present discussion of related aspects of biomass burning describes a technique for estimating the instantaneous emission of trace gases generated by such fires on the basis of satellite imagery, and notes that burning results in significantly enhanced biogenic emissions of N2O, NO, and CH4. Biomass burning therefore has both immediate and long-term impacts on the trace-gas content of the atmosphere. The effects of Kuwait's oil fires, which encompass both combustion gases and particulates, are compared with those of the more general problem.

  19. Device to lower NOx in a gas turbine engine combustion system

    DOEpatents

    Laster, Walter R; Schilp, Reinhard; Wiebe, David J

    2015-02-24

    An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).

  20. Combustible colonic gas levels during flexible sigmoidoscopy and colonoscopy.

    PubMed

    Monahan, D W; Peluso, F E; Goldner, F

    1992-01-01

    To what extent the standard preparation for sigmoidoscopy (phosphosoda enemas) makes the bowel safe for electrocautery is unknown. Sixty patients were prospectively evaluated to compare the presence of the combustible gases hydrogen and methane during colonoscopy and flexible sigmoidoscopy. Thirty patients underwent flexible sigmoidoscopy after phosphosoda enema preparation, and 30 patients underwent colonoscopy after a polyethylene glycol solution preparation. During colonoscopy, the concentrations of hydrogen and methane remained below combustible levels in all patients. Even segments of colon with significant fecal matter present did not have combustible levels of these two gases. However, at flexible sigmoidoscopy, combustible levels of hydrogen and methane were measured in 3 of 30 (10%) patients. Due to the risk of explosion, electrocautery should not be performed during routine flexible sigmoidoscopy after the standard phosphosoda enema preparation.

  1. Theoretical Innovations in Combustion Stability Research: Integrated Analysis and Computation

    DTIC Science & Technology

    2011-04-14

    presentation [2] has been made at a national conference of this subject. b.2-Thermomechanics of reactive gases Transient, spatially...Integrated Analysis and Computation 5a. CONTRACT NUMBER FA9550-10-C-0088 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David Kassoy...KISS and JPL personnel. 15. SUBJECT TERMS Combustion, Thermomechanics, Turbulent Reacting Flow, Supercritical Gases , Rocket Engine Stability 16

  2. Toxic-Waste Disposal by Combustion in Containers

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Stephens, J. B.; Moynihan, P. I.; Compton, L. E.; Kalvinskas, J. J.

    1986-01-01

    Chemical wastes burned with minimal handling in storage containers. Technique for disposing of chemical munitions by burning them inside shells applies to disposal of toxic materials stored in drums. Fast, economical procedure overcomes heat-transfer limitations of conventional furnace designs by providing direct contact of oxygenrich combustion gases with toxic agent. No need to handle waste material, and container also decontaminated in process. Oxygen-rich torch flame cuts burster well and causes vaporization and combustion of toxic agent contained in shell.

  3. Removal of sulfur compounds from combustion product exhaust

    DOEpatents

    Cheng, Dah Y.

    1982-01-01

    A method and device are disclosed for removing sulfur containing contaminents from a combustion product exhaust. The removal process is carried out in two stages wherein the combustion product exhaust is dissolved in water, the water being then heated to drive off the sulfur containing contaminents. The sulfur containing gases are then resolublized in a cold water trap to form a concentrated solution which can then be used as a commercial product.

  4. High Efficiency, Clean Combustion

    SciTech Connect

    Donald Stanton

    2010-03-31

    challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high

  5. Kinetic Theory of Gases

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The theory, developed in the nineteenth century, notably by Rudolf Clausius (1822-88) and James Clerk Maxwell (1831-79), that the properties of a gas (temperature, pressure, etc) could be described in terms of the motions (and kinetic energy) of the molecules comprising the gases. The theory has wide implications in astrophysics. In particular, the perfect gas law, which relates the pressure, vol...

  6. Sudden releases of gases

    NASA Astrophysics Data System (ADS)

    Chaloupecká, Hana; Jaňour, Zbyněk; Jurčáková, Klára; Kukačka, Libor; Nosek, Štěpán

    2014-03-01

    Conurbations all over the world have enlarged for numberless years. The accidental or intentional releases of gases become more frequent. Therefore, these crises situations have to be studied. The aim of this paper is to describe experiments examining these processes that were carried out in the laboratory of Environmental Aerodynamics of the Institute of Thermomechanics AS CR in Nový Knín. Results show huge puff variability from replica to replica.

  7. Toxic gases from fires.

    PubMed

    Terrill, J B; Montgomery, R R; Reinhardt, C F

    1978-06-23

    The major lethal factors in uncontrolled fires are toxic gases, heat, and oxygen deficiency. The predominant toxic gas is carbon monoxide, which is readily generated from the combusion of wood and other cellulosic materials. Increasing use of a variety of synthetic polymers has stimulated interest in screening tests to evaluated the toxicity of polymeric materials when thermally decomposed. As yet, this country lacks a standardized fire toxicity test protocol.

  8. Biomass Burning and the Production of Greenhouse Gases. Chapter 9

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1994-01-01

    Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along with methane, lead to the chemical production of tropospheric ozone (another greenhouse gas) as well as control the concentration of the hydroxyl radical, which regulates the lifetime of almost every atmospheric gas. Following biomass burning, biogenic emissions of nitrous oxide, nitric oxide, and methane are significantly enhanced. It is hypothesized that enhanced postburn biogenic emissions of these gases are related to fire-induced changes in soil chemistry and/or microbial ecology. Biomass burning, once believed to be a tropical phenomenon, has been demonstrated by satellite imagery to also be a regular feature of the world's boreal forests. One example of biomass burning is the extensive 1987 fire that destroyed more than 12 million acres of boreal forest in the People's Republic of China and across its border in the Soviet Union. Recent estimates indicate that almost all biomass burning is human-initiated and that it is increasing with time. With the formation of greenhouse and chemically active gases as direct combustion products and a longer-term enhancement of biogenic emissions of gases, biomass burning may be a significant driver for global change.

  9. Combustion chemistry

    SciTech Connect

    Brown, N.J.

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  10. Industrial gases offer new processing alternatives

    SciTech Connect

    Jackow, F.

    1996-07-01

    Creative use of industrial gases, such as oxygen, nitrogen, hydrogen and carbon dioxide, can provide new approaches to many chemical and industrial processes. One example is using pure oxygen to replace air for combustion, a technique that makes it possible to increase incineration efficiency and reduce the amount of nitrogen oxides produced, thus lowering a plant`s environmental impact. Recent downsizing trends, cost-reduction efforts and environmental regulations have modified the relationship between major chemical and industrial gas companies. Chemical producers are now often interested in outsourcing not only industrial gas supply but also technology and turnkey solutions. Among the benefits to the end users are enhanced safety, reduced environmental impact and improved profitability.

  11. Biomass burning - Combustion emissions, satellite imagery, and biogenic emissions

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Cofer, Wesley R., III; Winstead, Edward L.; Rhinehart, Robert P.; Cahoon, Donald R., Jr.; Sebacher, Daniel I.; Sebacher, Shirley; Stocks, Brian J.

    1991-01-01

    After detailing a technique for the estimation of the instantaneous emission of trace gases produced by biomass burning, using satellite imagery, attention is given to the recent discovery that burning results in significant enhancement of biogenic emissions of N2O, NO, and CH4. Biomass burning accordingly has an immediate and long-term impact on the production of atmospheric trace gases. It is presently demonstrated that satellite imagery of fires may be used to estimate combustion emissions, and could be used to estimate long-term postburn biogenic emission of trace gases to the atmosphere.

  12. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Increased emphasis is placed on fundamental and generic research at Lewis Research Center with less systems development efforts. This is especially true in combustion research, where the study of combustion fundamentals has grown significantly in order to better address the perceived long term technical needs of the aerospace industry. The main thrusts for this combustion fundamentals program area are as follows: analytical models of combustion processes, model verification experiments, fundamental combustion experiments, and advanced numeric techniques.

  13. Coal combustion science

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  14. Tropospheric trace gases

    NASA Technical Reports Server (NTRS)

    Gammon, R.; Wofsy, S. C.; Cicerone, R. J.; Delany, A. C.; Harriss, R. T.; Khalil, M. A. K.; Logan, J. A.; Midgley, P.; Prather, M.

    1985-01-01

    Trace gas concentrations in the atmosphere reflect in part the overall metabolism of the biosphere, and in part the broad range of human activities such as agriculture, production of industrial chemicals, and combustion of fossil fuels and biomass. There is compelling evidence that the composition of the atmosphere is now changing. Observed trends in trace gas levels are reviewed and implications for the chemistry of the atmosphere are discussed. Throughout the discussion, particular emphasis is given to those species which are now increasing in the atmosphere.

  15. Time-resolved multispectral imaging of combustion reaction

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Fréderick

    2015-05-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. This allows to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases such as carbon dioxide (CO2) selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge about spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using Telops MS-IR MW camera which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profile derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  16. Time-resolved multispectral imaging of combustion reactions

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Frédérick

    2015-10-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. These allow to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases, such as carbon dioxide (CO2), selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge of spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using a Telops MS-IR MW camera, which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profiles derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  17. Downhole steam generator with improved preheating, combustion and protection features

    DOEpatents

    Fox, Ronald L.

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein feedback preheater means are provided for the fuel and water before entering the combustor assembly. First, combustion gases are conducted from the combustion chamber to locations in proximity to the water and fuel supplies. Secondly, both hot combustion gases and steam are conducted from the borehole back to the water and fuel supply. The water used for conversion to steam is passed in a countercurrent manner through a plurality of annular water flow channels surrounding the combustion chamber. In this manner, the water is preheated, and the combustion chamber is cooled simultaneously, thereby minimizing thermal stresses and deterioration of the walls of the combustion chamber. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet of the combustor assembly. The outlet doors and fluid flow functions may be controlled by a diagnostic/control module. The module is positioned in the water flow channel to maintain a relatively constant, controlled temperature.

  18. Combustion technologies

    SciTech Connect

    Barsin, J.A.

    1994-12-31

    The presentation will cover the highlights of sludge, providing information as to where it comes from, projection of how much more is expected, what is sludge, what can be done with them, and finally focus in one combustion technology that can be utilized and applied to recycle sludge. The author is with Gotaverken Energy Systems Inc. where for the past 100 years they have been involved in the recovery of chemicals in chemical pulp mills. One week ago, our name was changed to Kvaerner Pulping Inc. to better reflect our present make-up which is a combination of Kamyr AB (suppliers of proprietary highly engineered totally chlorine free chemical pulp manufacturing systems, including digesters, O{sub 2} delignification systems, and bleach plant systems) and Goetaverken. Sludges that we are concerned with derive from several sources within chemical pulp mills such as: such as primary clarifier sludges, secondary clarifier sludges, and most recently those sludges derived from post consumer paper and board recycle efforts including de-inking and those from the thermal mechanical pulping processes. These sludges have been classified as non-hazardous therefore, residue can be landfilled, but the volumes involved are growing at an alarming rate.

  19. Steady Nuclear Combustion in Rockets

    NASA Technical Reports Server (NTRS)

    Saenger, E.

    1957-01-01

    The astrophysical theory of stationary nuclear reactions in stars is applied to the conditions that would be met in the practical engineering cases that would differ from the former, particularly with respect to the much lower combustion pressures, dimensions of the reacting volume, and burnup times. This application yields maximum rates of hear production per unit volume of reacting gas occurring at about 10(exp 8) K in the cases of reactions between the hydrogen isotopes, but yields higher rates for heavier atoms. For the former, with chamber pressures of the order of 100 atmospheres, the energy production for nuclear combustion reaches values of about 10(exp 4) kilocalories per cubic meter per second, which approaches the magnitude for the familiar chemical fuels. The values are substantially lower for heavier atoms, and increase with the square of the combustion pressure. The half-life of the burnup in the fastest reactions may drop to values as low as those for chemical fuels so that, despite the high temperature, the radiated energy can remain smaller than the energy produced, particularly if an inefficiently radiating (i.e., easily completely ionized reacting material like hydrogen), is used. On the other hand, the fraction of completely ionized particles in the gases undergoing nuclear combustion must not exceed a certain upper limit because the densities (approximately 10(exp -10) grams per cubic centimeter)) lie in the range of high vacua and only for the previously mentioned fraction of nonionized particles can mean free paths be retained small enough so that the chamber diameters of several dozen meters will suffice. Under these conditions it appears that continuously maintained stable nuclear reactions at practical pressures and dimensions are fundamentally possible and their application can be visualized as energy sources for power plants and propulsion units.

  20. Combustion modeling for experimentation in a space environment

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.

    1974-01-01

    The merits of combustion experimentation in a space environment are assessed, and the impact of such experimentation on current theoretical models is considered. It is noted that combustion theory and experimentation for less than normal gravitational conditions are incomplete, inadequate, or nonexistent. Extensive and systematic experimentation in a space environment is viewed as essential for more adequate and complete theoretical models of such processes as premixed flame propagation and extinction limits, premixed flame propagation in droplet and particle clouds, ignition and autoignition in premixed combustible media, and gas jet combustion of unpremixed reactants. Current theories and models in these areas are described, and some combustion studies that can be undertaken in the Space Shuttle Program are proposed, including crossed molecular beam, turbulence, and upper pressure limit (of gases) studies.

  1. Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae.

    PubMed

    Sanchez-Silva, L; López-González, D; Garcia-Minguillan, A M; Valverde, J L

    2013-02-01

    Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae (NG microalgae) were investigated by thermogravimetric analysis (TGA). NG microalgae pyrolysis and combustion could be divided into three main stages: dehydration, proteins and polysaccharides degradation and char decomposition. The effects of the initial sample mass, particle size and gas flow on the pyrolysis and combustion processes were studied. In addition, gasification operation conditions such as temperature, initial sample mass, particle size, sweep gas flow and steam concentration, were experimentally evaluated. The evolved gases were analyzed online using mass spectroscopy (MS). In pyrolysis and combustion processes, most of the gas products were generated at the second degradation step. N-compounds evolution was associated with the degradation of proteins. Furthermore, SO(2) release from combustion could be related to sulphated polysaccharides decomposition. The main products detected during gasification were CO(2), CO, H(2), indicating that oxidation reactions, water gas and water gas shift reactions, were predominant.

  2. Combustion process for synthesis of carbon nanomaterials from liquid hydrocarbon

    DOEpatents

    Diener, Michael D.; Alford, J. Michael; Nabity, James; Hitch, Bradley D.

    2007-01-02

    The present invention provides a combustion apparatus for the production of carbon nanomaterials including fullerenes and fullerenic soot. Most generally the combustion apparatus comprises one or more inlets for introducing an oxygen-containing gas and a hydrocarbon fuel gas in the combustion system such that a flame can be established from the mixed gases, a droplet delivery apparatus for introducing droplets of a liquid hydrocarbon feedstock into the flame, and a collector apparatus for collecting condensable products containing carbon nanomaterials that are generated in the combustion system. The combustion system optionally has a reaction zone downstream of the flame. If this reaction zone is present the hydrocarbon feedstock can be introduced into the flame, the reaction zone or both.

  3. Equilibration of quantum gases

    NASA Astrophysics Data System (ADS)

    Farrelly, Terry

    2016-07-01

    Finding equilibration times is a major unsolved problem in physics with few analytical results. Here we look at equilibration times for quantum gases of bosons and fermions in the regime of negligibly weak interactions, a setting which not only includes paradigmatic systems such as gases confined to boxes, but also Luttinger liquids and the free superfluid Hubbard model. To do this, we focus on two classes of measurements: (i) coarse-grained observables, such as the number of particles in a region of space, and (ii) few-mode measurements, such as phase correlators. We show that, in this setting, equilibration occurs quite generally despite the fact that the particles are not interacting. Furthermore, for coarse-grained measurements the timescale is generally at most polynomial in the number of particles N, which is much faster than previous general upper bounds, which were exponential in N. For local measurements on lattice systems, the timescale is typically linear in the number of lattice sites. In fact, for one-dimensional lattices, the scaling is generally linear in the length of the lattice, which is optimal. Additionally, we look at a few specific examples, one of which consists of N fermions initially confined on one side of a partition in a box. The partition is removed and the fermions equilibrate extremely quickly in time O(1/N).

  4. Methodology development of a time-resolved in-cylinder fuel oxidation analysis: Homogeneous charge compression ignition combustion study application

    SciTech Connect

    Nowak, L.; Guibert, P.; Cavadias, S.; Dupre, S.; Momique, J.C.

    2008-08-15

    A technique was developed and applied to understand the mechanism of fuel oxidation in an internal combustion engine. This methodology determines the fuel and concentrations of various intermediates during the combustion cycle. A time-resolved measurement of a large number of species is the objective of this work and is achieved by the use of a sampling probe developed in-house. A system featuring an electromagnetically actuated sampling valve with internal N{sub 2} dilution was developed for sampling gases coming from the combustion chamber. Combustion species include O{sub 2}, CO{sub 2}, CO, NO{sub x}, fuel components, and hydrocarbons produced due to incomplete combustion of fuel. Combustion gases were collected and analyzed with the objectives of analysis by an automotive exhaust analyzer, separation by gas chromatography, and detection by flame ionization detection and mass spectrometry. The work presented was processed in a homogeneous charge compression ignition combustion mode context. (author)

  5. Combustion 2000

    SciTech Connect

    2000-06-30

    This report presents work carried out under contract DE-AC22-95PC95144 ''Combustion 2000 - Phase II.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: {lg_bullet} thermal efficiency (HHV) {ge} 47% {lg_bullet} NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) {lg_bullet} coal providing {ge} 65% of heat input {lg_bullet} all solid wastes benign {lg_bullet} cost of electricity {le} 90% of present plants Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. Phase II, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase III. As part of a descoping initiative, the Phase III program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase II Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4, and 5) and the development of a site specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: {lg_bullet} Task 2.2.4 Pilot Scale Testing {lg_bullet} Task 2.2.5.2 Laboratory and Bench Scale Activities

  6. Combustion 2000

    SciTech Connect

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  7. Homogeneous Atomic Fermi Gases

    NASA Astrophysics Data System (ADS)

    Mukherjee, Biswaroop; Yan, Zhenjie; Patel, Parth B.; Hadzibabic, Zoran; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin W.

    2017-03-01

    We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential. In the momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface and the saturated occupation of one particle per momentum state: the striking consequence of Pauli blocking in momentum space for a degenerate gas. Cooling a spin-balanced Fermi gas at unitarity, we create homogeneous superfluids and observe spatially uniform pair condensates. For thermodynamic measurements, we introduce a hybrid potential that is harmonic in one dimension and uniform in the other two. The spatially resolved compressibility reveals the superfluid transition in a spin-balanced Fermi gas, saturation in a fully polarized Fermi gas, and strong attraction in the polaronic regime of a partially polarized Fermi gas.

  8. Observation of spontaneous combustion of hydrogen and oxygen in microbubbles

    NASA Astrophysics Data System (ADS)

    Postnikov, A. V.; Uvarov, I. V.; Prokaznikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Experimental evidence is presented that combustion can ignite at room temperature spontaneously inside microbubbles filled with mixture of hydrogen and oxygen. We perform water electrolysis in a closed microchamber by voltage pulses of alternating polarity at repetition frequencies ≥100 kHz to pump the gases rapidly into the electrolyte and produce extreme supersaturation with both gases. After a delay of 300 -600 μs , we observe stroboscopically microbubbles of 5 -20 μm in diameter that appear in between the electrodes for several microseconds. Each event is accompanied by a pressure jump of 0.1 -1 bar that is measured interferometrically. The pressure jumps are attributed to combustion of the gases in the microbubbles.

  9. Combustion 2000

    SciTech Connect

    1999-12-31

    This report presents work carried out under contract DE-AC22-95PC95144 ''Combustion 2000 - Phase II.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: {lg_bullet} thermal efficiency (HHV) {ge} 47% {lg_bullet} NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) {lg_bullet} coal providing {ge} 65% of heat input {lg_bullet} all solid wastes benign {lg_bullet} cost of electricity {le} 90% of present plants Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. Phase II, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase III. As part of a descoping initiative, the Phase III program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase II Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4, and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: {lg_bullet} Task 2.2.4 Pilot Scale Testing {lg_bullet} Task 2.2.5.2 Laboratory and Bench Scale Activities

  10. Real-time combustion controller

    DOEpatents

    Lindner, J.S.; Shepard, W.S.; Etheridge, J.A.; Jang, P.R.; Gresham, L.L.

    1997-02-04

    A method and system are disclosed for regulating the air to fuel ratio supplied to a burner to maximize the combustion efficiency. Optical means are provided in close proximity to the burner for directing a beam of radiation from hot gases produced by the burner to a plurality of detectors. Detectors are provided for sensing the concentration of, inter alia, CO, CO{sub 2}, and H{sub 2}O. The differences between the ratios of CO to CO{sub 2} and H{sub 2}O to CO are compared with a known control curve based on those ratios for air to fuel ratios ranging from 0.85 to 1.30. The fuel flow is adjusted until the difference between the ratios of CO to CO{sub 2} and H{sub 2}O to CO fall on a desired set point on the control curve. 20 figs.

  11. Real-time combustion controller

    DOEpatents

    Lindner, Jeffrey S.; Shepard, W. Steve; Etheridge, John A.; Jang, Ping-Rey; Gresham, Lawrence L.

    1997-01-01

    A method and system of regulating the air to fuel ratio supplied to a burner to maximize the combustion efficiency. Optical means are provided in close proximity to the burner for directing a beam of radiation from hot gases produced by the burner to a plurality of detectors. Detectors are provided for sensing the concentration of, inter alia, CO, CO.sub.2, and H.sub.2 O. The differences between the ratios of CO to CO.sub.2 and H.sub.2 O to CO are compared with a known control curve based on those ratios for air to fuel ratios ranging from 0.85 to 1.30. The fuel flow is adjusted until the difference between the ratios of CO to CO.sub.2 and H.sub.2 O to CO fall on a desired set point on the control curve.

  12. Assembly for directing combustion gas

    SciTech Connect

    Charron, Richard C.; Little, David A.; Snyder, Gary D.

    2016-04-12

    An arrangement is provided for delivering gases from a plurality of combustors of a can-annular gas turbine combustion engine to a first row of turbine blades including a first row of turbine blades. The arrangement includes a gas path cylinder, a cone and an integrated exit piece (IEP) for each combustor. Each IEP comprises an inlet chamber for receiving a gas flow from a respective combustor, and includes a connection segment. The IEPs are connected together to define an annular chamber extending circumferentially and concentric to an engine longitudinal axis, for delivering the gas flow to the first row of blades. A radiused joint extends radially inward from a radially outer side of the inlet chamber to an outer boundary of the annular chamber, and a flared fillet extends radially inward from a radially inner side of the inlet chamber to an inner boundary of the annular chamber.

  13. Fundamentals of Gas Turbine combustion

    NASA Technical Reports Server (NTRS)

    Gerstein, M.

    1979-01-01

    Combustion problems and research recommendations are discussed in the areas of atomization and vaporization, combustion chemistry, combustion dynamics, and combustion modelling. The recommendations considered of highest priority in these areas are presented.

  14. Gases in Seawater

    NASA Astrophysics Data System (ADS)

    Nightingale, P. D.; Liss, P. S.

    2003-12-01

    The annual gross and net primary productivity of the surface oceans is similar in size to that on land (IPCC, 2001). Marine productivity drives the cycling of gases such as oxygen (O2), dimethyl sulfide (DMS), carbon monoxide (CO), carbon dioxide (CO2), and methyl iodide (CH3I) which are of fundamental importance in studies of marine productivity, biogeochemical cycles, atmospheric chemistry, climate, and human health, respectively. For example, ˜30% of the world's population (1,570 million) is thought to be at risk of iodine-deficiency disorders that impair mental development (WHO, 1996). The main source of iodine to land is the supply of volatile iodine compounds produced in the ocean and then transferred to the atmosphere via the air-surface interface. The flux of these marine iodine species to the atmosphere is also thought to be important in the oxidation capacity of the troposphere by the production of the iodine oxide radical ( Alicke et al., 1999). A further example is that the net flux of CO2 from the atmosphere to the ocean, ˜1.7±0.5 Gt C yr-1, represents ˜30% of the annual release of anthropogenic CO2 to the atmosphere (IPCC, 2001). This net flux is superimposed on a huge annual flux (90 Gt C yr-1) of CO2 that is cycled "naturally" between the ocean and the atmosphere. The long-term sink for anthropogenic CO2 is recognized as transfer to the ocean from the atmosphere. A final example is the emission of volatile sulfur, in the form of DMS, from the oceans. Not only is an oceanic flux from the oceans needed to balance the loss of sulfur (a bioessential element) from the land via weathering, it has also been proposed as having a major control on climate due to the formation of cloud condensation nuclei (Charlson et al., 1987). Indeed, the existence of DMS and CH3I has been used as evidence in support of the Gaia hypothesis (Lovelock, 1979).There are at least four main processes that affect the concentration of gases in the water column: biological

  15. GREENHOUSE GASES FROM BIOMASS AND FOSSIL FUEL STOVES IN DEVELOPING COUNTRIES: A MANILA PILOT STUDY

    EPA Science Inventory

    Samples were taken of the combustion gases released by household cookstoves in Manila, Philippines. In a total of 24 samples, 14 cookstoves were tested. These were fueled by liquefied petroleum gas (LPG), kerosene (three kinds of stoves), charcoal, and wood. Ambient samples were ...

  16. Flameless Combustion Workshop

    DTIC Science & Technology

    2005-09-20

    future roadmap. "Flameless Combustion " is characterized by high stability levels with virtually no thermoacoustic instabilities, very low lean... future roadmap. "Flameless Combustion " is characterized by high stability levels with virtually no thermoacoustic instabilities, very low lean stability...C. Bruno, Italy 1430-1500 Technology to Ramjet Combustion Application of FLameless H. Mongia , GE Transportation, 1500-1530 Combustion (FLC) for

  17. Mechanisms of droplet combustion

    NASA Technical Reports Server (NTRS)

    Law, C. K.

    1982-01-01

    The fundamental physico-chemical mechanisms governing droplet vaporization and combustion are discussed. Specific topics include governing equations and simplifications, the classical d(2)-Law solution and its subsequent modification, finite-rate kinetics and the flame structure, droplet dynamics, near- and super-critical combustion, combustion of multicomponent fuel blends/emulsions/suspensions, and droplet interaction. Potential research topics are suggested.

  18. Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

  19. Radiative heat transfer analysis in modern rocket combustion chambers

    NASA Astrophysics Data System (ADS)

    Goebel, Florian; Kniesner, Björn; Frey, Manuel; Knab, Oliver; Mundt, Christian

    2014-06-01

    Radiative heat transfer is analyzed for subscale and fullscale rocket combustion chambers for H2/O2 and CH4/O2 combustion using the P1 radiation transport model in combination with various Weighted Sum of Gray Gases Models (WSGGMs). The influence of different wall emissivities, as well as the results using different WSGGMs, the size of the combustion chamber and the coupling of radiation and fluid dynamics, is investigated. Using rather simple WSGGMs for homogeneous systems yields similar results as using sophisticated models. With models for nonhomogeneous systems the radiative wall heat flux (RWHF) decreases by 25-30 % for H2/O2 combustion and by almost 50 % for CH4/O2 combustion. Enlarging the volume of the combustion chamber increases the RWHF. The influence of radiation on the flow field is found to be negligible. The local ratio of RWHF to total wall heat flux shows a maximum of 9-10 % for H2/O2 and 8 % for CH4/O2 combustion. The integrated heat load ratio is around 3 % for H2/O2 and 2.5 % for CH4/O2 combustion. With WSGGMs for nonhomogeneous systems, the local ratio decreases to 5 % (H2/O2) and 3 % (CH4/O2) while the integrated ratio is only 2 % (H2/O2) and 1.3 % (CH4/O2).

  20. Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.; Kobak, J. A.

    1980-01-01

    The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.

  1. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOEpatents

    Walker, Richard J.

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  2. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J.; Graham, H. V.; Archer, P. D.; Brunner, A.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; Mahaffy, P. R.; McAdam, A. C.; Ming, D. W.; Niles, P. B.; Steele, A.

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precision measurements of the abundance and carbon isotopic composition (delta C-13) of the evolved CO2 and hydrogen isotopic composition (delta D) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx. 550 C and above approx. 550 C.

  3. Environmental implications of anesthetic gases.

    PubMed

    Yasny, Jeffrey S; White, Jennifer

    2012-01-01

    For several decades, anesthetic gases have greatly enhanced the comfort and outcome for patients during surgery. The benefits of these agents have heavily outweighed the risks. In recent years, the attention towards their overall contribution to global climate change and the environment has increased. Anesthesia providers have a responsibility to minimize unnecessary atmospheric pollution by utilizing techniques that can lessen any adverse effects of these gases on the environment. Moreover, health care facilities that use anesthetic gases are accountable for ensuring that all anesthesia equipment, including the scavenging system, is effective and routinely maintained. Implementing preventive practices and simple strategies can promote the safest and most healthy environment.

  4. Noble gases in the moon

    NASA Technical Reports Server (NTRS)

    Manuel, O. K.; Srinivasan, B.; Hennecke, E. W.; Sinclair, D. E.

    1972-01-01

    The abundance and isotopic composition of helium, neon, argon, krypton, and xenon which were released by stepwise heating of lunar fines (15601.64) and (15271.65) were measured spectrometrically. The results of a composition of noble gases released from the lunar fines with noble gases in meteorites and in the earth are presented along with the isotopic composition of noble gases in lunar fines, in meteorites, and in the atmosphere. A study of two isotopically distinct components of trapped xenon in carbonaceous chondrites is also included.

  5. Sulfur dioxide removal from gases using a modified lime

    SciTech Connect

    Lee, Y.J.; Benson, L.B.

    1992-01-21

    This patent describes improvement in a process for removing sulfur dioxide from combustion gases by contacting the gases in a wet scrubbing unit with an aqueous scrubbing slurry, containing calcium components, for the removal of the sulfur dioxide, the calcium components provided in the slurry by adding aqueous slaked lime thereto, and a portion of the effluent from the scrubbing unit, containing calcium sulfite solids, is clarified to remove calcium sulfite solids therefrom as an aqueous sludge. The improvement comprises: the aqueous slaked lime added to the scrubbing slurry is formed by mixing lime and water, with the water containing a calcium sulfur-oxide salt in an amount sufficient to provide between about 0.3 to 5.0 percent by weight of the calcium sulfur-oxide salt based on the lime, whereby the average particle size of calcium sulfite solids in the aqueous sludge is increased to provide improved separation of water of the aqueous sludge therefrom.

  6. Opportunities in pulse combustion

    SciTech Connect

    Brenchley, D.L.; Bomelburg, H.J.

    1985-10-01

    In most pulse combustors, the combustion occurs near the closed end of a tube where inlet valves operate in phase with the pressure amplitude variations. Thus, within the combustion zone, both the temperature and the pressure oscillate around a mean value. However, the development of practical applications of pulse combustion has been hampered because effective design requires the right combination of the combustor's dimensions, valve characteristics, fuel/oxidizer combination, and flow pattern. Pulse combustion has several additional advantages for energy conversion efficiency, including high combustion and thermal efficiency, high combustion intensity, and high convective heat transfer rates. Also, pulse combustion can be self-aspirating, generating a pressure boost without using a blower. This allows the use of a compact heat exchanger that may include a condensing section and may obviate the need for a chimney. In the last decade, these features have revived interest in pulse combustion research and development, which has resulted in the development of a pulse combustion air heater by Lennox, and a pulse combustion hydronic unit by Hydrotherm, Inc. To appraise this potential for energy savings, a systematic study was conducted of the many past and present attempts to use pulse combustion for practical purposes. The authors recommended areas where pulse combustion technology could possibly be applied in the future and identified areas in which additional R and D would be necessary. Many of the results of the study project derived from a special workshop on pulse combustion. This document highlights the main points of the study report, with particular emphasis on pulse combustion application in chemical engineering.

  7. Oxy-Combustion Boiler Material Development

    SciTech Connect

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  8. Oxy-Combustion Boiler Material Development

    SciTech Connect

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  9. Biomedically relevant chemical and physical properties of coal combustion products.

    PubMed Central

    Fisher, G L

    1983-01-01

    The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824

  10. Minimization of combustion by-products: Toxic metal emissions

    SciTech Connect

    Lee, C.C.; Huffman, G.L.

    1991-12-01

    Incinerators may release trace amounts of unwanted combustion by-products (CBPs), particularly if the incinerators are not well designed or properly operated. The Clean Air Act Amendment is emphasizing the control of toxic air pollutants from all combustion and process sources; some of these pollutants are CBPs. CBPs include: (1) unburned principal organic hazardous constituents (POHCs); (2) products of incomplete combustion (PICs); (3) metal emissions; (4) residuals/ashes; and (5) acid gases. This Paper is a part of a series of writings on the subject of the CBP issue from EPA's Risk Reduction Engineering Laboratory in Cincinnati, Ohio and is one of the first metal emission papers in the series. It specifically addresses the aspect of potential toxic metal emissions from combustion/incineration processes.

  11. Brown clouds over South Asia: biomass or fossil fuel combustion?

    PubMed

    Gustafsson, Orjan; Kruså, Martin; Zencak, Zdenek; Sheesley, Rebecca J; Granat, Lennart; Engström, Erik; Praveen, P S; Rao, P S P; Leck, Caroline; Rodhe, Henning

    2009-01-23

    Carbonaceous aerosols cause strong atmospheric heating and large surface cooling that is as important to South Asian climate forcing as greenhouse gases, yet the aerosol sources are poorly understood. Emission inventory models suggest that biofuel burning accounts for 50 to 90% of emissions, whereas the elemental composition of ambient aerosols points to fossil fuel combustion. We used radiocarbon measurements of winter monsoon aerosols from western India and the Indian Ocean to determine that biomass combustion produced two-thirds of the bulk carbonaceous aerosols, as well as one-half and two-thirds of two black carbon subfractions, respectively. These constraints show that both biomass combustion (such as residential cooking and agricultural burning) and fossil fuel combustion should be targeted to mitigate climate effects and improve air quality.

  12. Oscillatory combustion of liquid monopropellant droplets

    NASA Technical Reports Server (NTRS)

    Chanin, S. P.; Faeth, G. M.

    1976-01-01

    A theoretical investigation was conducted on the open-loop combustion response of monopropellant droplets and sprays to imposed pressure oscillations. The theoretical model was solved as a perturbation analysis through first order, yielding linear response results. Unsteady gas phase effects were considered in some cases, but the bulk of the calculations assumed a quasi-steady gas phase. Calculations were conducted using properties corresponding to hydrazine decomposition. Zero-order results agreed with earlier measurements of hydrazine droplet burning in combustion gases. The droplet response was greatest (exceeding unity in some cases) for large droplets with liquid phase temperature gradients; at frequencies near the characteristic frequency of the liquid phase thermal wave. The response of a spray is less than that of its largest droplet, however, a relatively small percentage of large droplets provides a substantial response (exceeding unity in some cases).

  13. Dust Combustion Safety Issues for Fusion Applications

    SciTech Connect

    L. C. Cadwallader

    2003-05-01

    This report summarizes the results of a safety research task to identify the safety issues and phenomenology of metallic dust fires and explosions that are postulated for fusion experiments. There are a variety of metal dusts that are created by plasma erosion and disruptions within the plasma chamber, as well as normal industrial dusts generated in the more conventional equipment in the balance of plant. For fusion, in-vessel dusts are generally mixtures of several elements; that is, the constituent elements in alloys and the variety of elements used for in-vessel materials. For example, in-vessel dust could be composed of beryllium from a first wall coating, tungsten from a divertor plate, copper from a plasma heating antenna or diagnostic, and perhaps some iron and chromium from the steel vessel wall or titanium and vanadium from the vessel wall. Each of these elements has its own unique combustion characteristics, and mixtures of elements must be evaluated for the mixture’s combustion properties. Issues of particle size, dust temperature, and presence of other combustible materials (i.e., deuterium and tritium) also affect combustion in air. Combustion in other gases has also been investigated to determine if there are safety concerns with “inert” atmospheres, such as nitrogen. Several coolants have also been reviewed to determine if coolant breach into the plasma chamber would enhance the combustion threat; for example, in-vessel steam from a water coolant breach will react with metal dust. The results of this review are presented here.

  14. Fuel Droplet Burning During Droplet Combustion Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fuel ignites and burns in the Droplet Combustion Experiment (DCE) on STS-94 on July 4 1997, MET:2/05:40 (approximate). The DCE was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. DCE used various fuels -- in drops ranging from 1 mm (0.04 inches) to 5 mm (0.2 inches) -- and mixtures of oxidizers and inert gases to learn more about the physics of combustion in the simplest burning configuration, a sphere. The experiment elapsed time is shown at the bottom of the composite image. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.4MB, 13-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300168.html.

  15. Determination of the emissions of pollutants formed during the co-combustion of sludges with coals in a fluidized bed combustor

    SciTech Connect

    Gulyurtlu, I.; Lopes, H.; Bordalo, C.; Seica, A.; Cabrita, I.

    1996-12-31

    Co-combustion studies were carried out with mixtures of sludges with South African coal using a bubbling fluidized bed combustor of 90 kW. The combustion gases leaving the combustor was analyzed for CO{sub 2}, CO, O{sub 2}, NO{sub x}, N{sub 2}O, and SO{sub 2}. Sorbents were used to reduce the levels of SO{sub 2} and the influence of sorbent in capturing heavy metals during the combustion. Particles were collected from the combustion gases using an isokinetic sampling probe and the solids recovered were then analyzed to determine the particle size range and the composition.

  16. Lump wood combustion process

    NASA Astrophysics Data System (ADS)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  17. High-pressure liquid-monopropellant strand combustion.

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1972-01-01

    Examination of the influence of dissolved gases on the state of the liquid surface during high-pressure liquid-monopropellant combustion through the use of a strand burning experiment. Liquid surface temperatures were measured, using fine-wire thermocouples, during the strand combustion of ethyl nitrate, normal propyl nitrate, and propylene glycol dinitrate at pressures up to 81 atm. These measurements were compared with the predictions of a variable-property gas-phase analysis assuming an infinite activation energy for the decomposition reaction. The state of the liquid surface was estimated using a conventional low-pressure phase equilibrium model, as well as a high-pressure version that considered the presence of dissolved combustion-product gases in the liquid phase. The high-pressure model was found to give a superior prediction of measured liquid surface temperatures. Computed total pressures required for the surface to reach its critical mixing point during strand combustion were found to be in the range from 2.15 to 4.62 times the critical pressure of the pure propellant. Computed dissolved gas concentrations at the liquid surface were in the range from 35 to 50% near the critical combustion condition.

  18. Fuels Combustion Research.

    DTIC Science & Technology

    1984-07-18

    uncertainties in the future sources and characteristics of fuels has emphasized the need to better understand fuel effects on combustion , e.g. energy release...experimentally to be made. Unsuccessful comparisons can lead to impro- vements in modelling concepts . Two simplified models for the combustion of slurry...AD-A149 186 FUELS COMBUSTION RESEACCH(U) PRINCETON UNIV NJ DEPT OF i/i MECHANICAL AND AEROSPACE ENGINEERING F L DRYER ET AL. 18 JUL 84 NAE-i668 AFOSR

  19. Coal combustion products

    USGS Publications Warehouse

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  20. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    PubMed Central

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified. PMID:24696663

  1. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions.

    PubMed

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.

  2. Supersonic combustion engine and method of combustion initiation and distribution

    SciTech Connect

    Stickler, D.B.; Ballantyne, A.; Kyuman Jeong.

    1993-06-29

    A supersonic combustion ramjet engine having a combustor with a combustion zone intended to channel gas flow at relatively high speed therethrough, the engine comprising: means for substantially continuously supplying fuel into the combustion zone; and means for substantially instantaneously igniting a volume of fuel in the combustion zone for providing a spatially controlled combustion distribution, the igniting means having means for providing a diffuse discharge of energy into the volume, the volume extending across a substantially complete cross-sectional area of the combustion zone, the means for discharging energy being capable of generating free radicals within the volume of reactive fuel in the combustion zone such that fuel in the volume can initiate a controlled relatively rapid combustion of fuel in the combustion zone whereby combustion distribution in relatively high speed gas flows through the combustion zone can be initiated and controlled without dependence upon a flame holder or relatively high local static temperature in the combustion zone.

  3. Tripropellant combustion process

    NASA Technical Reports Server (NTRS)

    Kmiec, T. D.; Carroll, R. G.

    1988-01-01

    The addition of small amounts of hydrogen to the combustion of LOX/hydrocarbon propellants in large rocket booster engines has the potential to enhance the system stability. Programs being conducted to evaluate the effects of hydrogen on the combustion of LOX/hydrocarbon propellants at supercritical pressures are described. Combustion instability has been a problem during the development of large hydrocarbon fueled rocket engines. At the higher combustion chamber pressures expected for the next generation of booster engines, the effect of unstable combustion could be even more destructive. The tripropellant engine cycle takes advantage of the superior cooling characteristics of hydrogen to cool the combustion chamber and a small amount of the hydrogen coolant can be used in the combustion process to enhance the system stability. Three aspects of work that will be accomplished to evaluate tripropellant combustion are described. The first is laboratory demonstration of the benefits through the evaluation of drop size, ignition delay and burning rate. The second is analytical modeling of the combustion process using the empirical relationship determined in the laboratory. The third is a subscale demonstration in which the system stability will be evaluated. The approach for each aspect is described and the analytical models that will be used are presented.

  4. Droplet Combustion Experiment

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha

    1998-01-01

    Liquid fuel combustion provides a major portion of the world's energy supply. In most practical combustion devices, liquid burns after being separated into a droplet spray. Essential to the design of efficient combustion systems is a knowledge of droplet combustion behavior. The microgravity environment aboard spacecraft provides an opportunity to investigate the complex interactions between the physical and chemical combustion processes involved in droplet combustion without the complications of natural buoyancy. Launched on STS-83 and STS-94 (April 4 and July 1, 1997), the Droplet Combustion Experiment (DCE) investigated the fundamentals of droplet combustion under a range of pressures (0.25 to 1 atm), oxygen mole fractions (<0.5), and droplet sizes (1.5 to 5 mm). Principal DCE flight hardware features were a chamber to supply selected test environments, the use of crew-inserted bottles, and a vent system to remove unwanted gaseous combustion products. The internal apparatus contained the droplet deployment and ignition mechanisms to burn single, freely deployed droplets in microgravity. Diagnostics systems included a 35-mm high-speed motion picture camera (see the following sequence of photos) with a backlight to photograph burning droplets and a camcorder to monitor experiment operations. Additional diagnostics included an ultraviolet-light-sensitive CCD (charge couple discharge) camera to obtain flame radiation from hydroxyl radicals (see the final figure) and a 35-mm SLR (single-lens-reflex) camera to obtain color still photographs of the flames.

  5. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  6. On-line infrared process signature measurements through combustion atmospheres

    NASA Astrophysics Data System (ADS)

    Zweibaum, F. M.; Kozlowski, A. T.; Surette, W. E., Jr.

    1980-01-01

    A number of on-line infrared process signature measurements have been made through combustion atmospheres, including those in jet engines, piston engines, and coal gasification reactors. The difficulties involved include operation in the presence of pressure as high as 1800 psi, temperatures as high as 3200 F, and explosive, corrosive and dust-laden atmospheres. Calibration problems have resulted from the use of purge gases to clear the viewing tubes, and the obscuration of the view ports by combustion products. A review of the solutions employed to counteract the problems is presented, and areas in which better solutions are required are suggested.

  7. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Analytical gases. 1065.750 Section... ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.750 Analytical gases. Analytical gases must meet the accuracy and purity specifications of...

  8. Symposium /International/ on Combustion, 17th, Leeds University, Leeds, England, August 20-25, 1978, Proceedings

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Symposium focused on deflagration to detonation transition, coal combustion, turbulent-combustion interactions, kinetics, furnace combustion, inhibition and ignition, flame structure and chemistry, combustion studies, measurement techniques, fire and explosion, engine combustion, soot, and propellants and explosives. Papers were presented on numerical modeling of the deflagration-to-detonation transition, the interaction between turbulence and combustion, turbulent flame propagation in premixed gases, spray evaporation in recirculating flow, dissociation of nitric oxide in shock waves, pollutant emissions from partially mixed turbulent flames, energy transfer and quenching rates of laser-pumped electronically excited alkalis in flames, a study of flammability limits using counterflow flames, the unified theory of explosions with fuel consumption, and the dynamics and radiant intensity of large hydrogen flames.

  9. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.

    PubMed

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M

    2013-02-01

    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  10. Design of a multifunctional and portable detector for indoor gases

    NASA Astrophysics Data System (ADS)

    Zhang, Liping; Wang, Yutian; Li, Taishan

    2003-09-01

    With the increase of the living standards of city dwellers, home decoration has been more and more popular these years. Different kinds of material have come into people's home, which brings about beauties to the house as well as some bad effect. Because of differences in manufacturing techniques and quality, much of the material will emit poisonous gases more or less. Even if you have selected the qualified product, the toal amount of gases in you houses may not be guaranteed because of the simple reason that more than one kind of material are applied. Living in the complex environment for a long time will eventually have a bad effect on one's health. In addition the fear of the harm to be done will exert great impact psychologically. In another aspect, the coal-gas in the house-hood for cooking is also explosive and poisonous. In conclusion, the research on the indoor hazardous gases measurement and alarm device is of much economic and practical importance. The device is portable and versatile. We use rechargeable battery as the power supply. The device can detect the density of gases at the ppb level for the emission of the material and the measured value can be shown on the display. As for coal gas it can detect the percentage of LEL and make sound of alarm. We use two kinds of gas-sensors in the device, with catalytic combustion principal for coal gas detection and the PID method for the gas emissions of the decoration material. UV will destroy harmful material (such as: ammonia, dimethylamine, methyl-sulfhydrate, benzene etc.) into positive or negative ions. The sensor detects the electric charges of ionized gases and converts them into electric current signals. It is then amplified and changed into digits by amplifier and A/D. The digit signal is processed by micro-controller system of the device.

  11. 46 CFR 194.15-17 - Compressed gases other than inert gases.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Compressed gases other than inert gases. 194.15-17... Scientific Laboratory § 194.15-17 Compressed gases other than inert gases. (a) When, in consideration for a particular operation, compressed gases are needed within the laboratory, the cylinders may be...

  12. 46 CFR 194.15-17 - Compressed gases other than inert gases.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Compressed gases other than inert gases. 194.15-17... Scientific Laboratory § 194.15-17 Compressed gases other than inert gases. (a) When, in consideration for a particular operation, compressed gases are needed within the laboratory, the cylinders may be...

  13. 46 CFR 194.15-17 - Compressed gases other than inert gases.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Compressed gases other than inert gases. 194.15-17... Scientific Laboratory § 194.15-17 Compressed gases other than inert gases. (a) When, in consideration for a particular operation, compressed gases are needed within the laboratory, the cylinders may be...

  14. Unit for combustion of process exhaust gas and production of hot air

    SciTech Connect

    Andersson, J.O.; Eriksson, T.L.; Nystrom, O.

    1982-12-07

    Unit for thermal incineration of non-explosive gases with minor amounts of organic pollutants and for production of hot air, and which can be adapted to various types of supplementary fuel. There is a combustion chamber which consists of a flame pipe inside an outer jacket. Through the space therebetween, incoming process gas is led as coolant. At its front end, the combustion chamber has a burner for supplementary fuel and a mixing-in zone for process gas. The process gas rapidly mixes with the hot combustion gases in the flame, the gas reaching its reaction temperature directly. Powerful turbulence in the mixing-in zone gas, film-layer cooling, convective cooling and even flow give highly efficient and pure combustion while keeping the flame pipe temperature low enough to prevent corrosion.

  15. Fifteenth combustion research conference

    SciTech Connect

    1993-06-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

  16. Coal Combustion Science

    SciTech Connect

    Hardesty, D.R.; Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. )

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  17. Plasma Assisted Combustion

    DTIC Science & Technology

    2007-02-28

    2005) AIAA–2005–0405. [99] E.M. Van Veldhuizen (ed) Electrical Discharges for Environmental Purposes: Fun- damentals and Applications (New York: Nova...in russian), 18, 4, 1982, 48-51. [238] Combustion Chemestry , ed. W. Gardiner-Jr, Moscow, Mir, 1988. [239] G.P.Tewari, J.R.Wilson, Combust. Flame, 24

  18. Combustion Devices CFD Team Analyses Review

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin

    2008-01-01

    A variety of CFD simulations performed by the Combustion Devices CFD Team at Marshall Space Flight Center will be presented. These analyses were performed to support Space Shuttle operations and Ares-1 Crew Launch Vehicle design. Results from the analyses will be shown along with pertinent information on the CFD codes and computational resources used to obtain the results. Six analyses will be presented - two related to the Space Shuttle and four related to the Ares I-1 launch vehicle now under development at NASA. First, a CFD analysis of the flow fields around the Space Shuttle during the first six seconds of flight and potential debris trajectories within those flow fields will be discussed. Second, the combusting flows within the Space Shuttle Main Engine's main combustion chamber will be shown. For the Ares I-1, an analysis of the performance of the roll control thrusters during flight will be described. Several studies are discussed related to the J2-X engine to be used on the upper stage of the Ares I-1 vehicle. A parametric study of the propellant flow sequences and mixture ratios within the GOX/GH2 spark igniters on the J2-X is discussed. Transient simulations will be described that predict the asymmetric pressure loads that occur on the rocket nozzle during the engine start as the nozzle fills with combusting gases. Simulations of issues that affect temperature uniformity within the gas generator used to drive the J-2X turbines will described as well, both upstream of the chamber in the injector manifolds and within the combustion chamber itself.

  19. Japan's microgravity combustion science program

    NASA Technical Reports Server (NTRS)

    Sato, Junichi

    1993-01-01

    Most of energy used by us is generated by combustion of fuels. On the other hand, combustion is responsible for contamination of our living earth. Combustion, also, gives us damage to our life as fire or explosive accidents. Therefore, clean and safe combustion is now eagerly required. Knowledge of the combustion process in combustors is needed to achieve proper designs that have stable operation, high efficiency, and low emission levels. However, current understanding on combustion is far from complete. Especially, there is few useful information on practical liquid and solid particle cloud combustion. Studies on combustion process under microgravity condition will provide many informations for basic questions related to combustors.

  20. Combustion of TNT products in a confined explosion

    SciTech Connect

    Ferguson, R E; Kuhl, A L; Oppenheim, A K

    1999-06-18

    The effects of turbulent combustion of detonation products gases in a confined explosion are explored via laboratory experiments and high-resolution numerical simulations. The expanded products from the detonation of a TNT charge are rich in C and CO, which act as a fuel. When these hot gases mix with air, they are oxidized to CO2--thereby releasing 2482 Cal/g in addition to the 1093 Cal/g deposited by the detonation wave. In this case, the exothermic power is controlled by the turbulent mixing rate, rather than by chemistry. A kinetic law of turbulent combustion is suggested for this process. Pressure histories from the numerical simulations were in good agreement with the experimental measurements--demonstrating that the numerical model contains the fundamental mechanism that controls the exothermic process.

  1. Laser Diagnostics Study of Plasma Assisted Combustion for Scramjet Applications

    DTIC Science & Technology

    2011-12-01

    future. The combustion process in these engines typically involves highly turbulent reactive flow conditions, often beyond the limits of our...electric field gives rise to new electron and ion impact processes which can enhance the propagation and branching of radicals and ultimately...is generated separately and the flame is ignited as the gases pass over the plasma region. The actual oxidation process occurs further downstream

  2. Transport Phenomena and Interfacial Kinetics in Multiphase Combustion Systems

    DTIC Science & Technology

    1989-02-01

    diffusivities in combustion gases, (2) role of thermophoresis and photophoresis in the capture of soot particles, (3) I boundary layer computational methods and...fabrication, and hot gas "clean-up". Perhaps the most interesting and important corollary of our studies of particle thermophoresis relate to potential use... thermophoresis (Eisner and Rosner, 1985). Thus, straight-line re-plots of thermocouple diameter vs. time data were possible and the slopes (m) of these particular

  3. Permeability of cork to gases.

    PubMed

    Faria, David P; Fonseca, Ana L; Pereira, Helen; Teodoro, Orlando M N D

    2011-04-27

    The permeability of gases through uncompressed cork was investigated. More than 100 samples were assessed from different plank qualities to provide a picture of the permeability distribution. A novel technique based on a mass spectrometer leak detector was used to directly measure the helium flow through the central area of small disks 10 mm in diameter and 2 mm thick. The permeability for nitrogen, oxygen, and other gases was measured by the pressure rise technique. Boiled and nonboiled cork samples from different sections were evaluated. An asymmetric frequency distribution ranging 3 orders of magnitude (roughly from 1 to 1000 μmol/(cm·atm·day)) for selected samples without macroscopic defects was found, having a peak below 100 μmol/(cm·atm·day). Correlation was found between density and permeability: higher density samples tend to show lower permeability. However, boiled cork showed a mean lower permeability despite having a lower density. The transport mechanism of gases through cork was also examined. Calculations suggest that gases permeate uncompressed cork mainly through small channels between cells under a molecular flow regime. The diameter of such channels was estimated to be in the range of 100 nm, in agreement with the plasmodesmata size in the cork cell walls.

  4. Hydrophobic encapsulation of hydrocarbon gases.

    PubMed

    Leontiev, Alexander V; Saleh, Anas W; Rudkevich, Dmitry M

    2007-04-26

    [reaction: see text] Encapsulation data for hydrophobic hydrocarbon gases within a water-soluble hemicarcerand in aqueous solution are reported. It is concluded that hydrophobic interactions serve as the primary driving force for the encapsulation, which can be used for the design of gas-separating polymers with intrinsic inner cavities.

  5. Interaction quenches of Fermi gases

    SciTech Connect

    Uhrig, Goetz S.

    2009-12-15

    It is shown that the jump in the momentum distribution of Fermi gases evolves smoothly for small and intermediate times once an interaction between the fermions is suddenly switched on. The jump does not vanish abruptly. The loci in momentum space where the jumps occur are those of the noninteracting Fermi sea. No relaxation of the Fermi surface geometry takes place.

  6. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.

    PubMed

    Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua

    2015-12-01

    Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes.

  7. Safety aspects of large-scale combustion of hydrogen

    SciTech Connect

    Edeskuty, F.J.; Haugh, J.J.; Thompson, R.T.

    1986-01-01

    Recent hydrogen-safety investigations have studied the possible large-scale effects from phenomena such as the accumulation of combustible hydrogen-air mixtures in large, confined volumes. Of particular interest are safe methods for the disposal of the hydrogen and the pressures which can arise from its confined combustion. Consequently, tests of the confined combustion of hydrogen-air mixtures were conducted in a 2100 m/sup 3/ volume. These tests show that continuous combustion, as the hydrogen is generated, is a safe method for its disposal. It also has been seen that, for hydrogen concentrations up to 13 vol %, it is possible to predict maximum pressures that can occur upon ignition of premixed hydrogen-air atmospheres. In addition information has been obtained concerning the survivability of the equipment that is needed to recover from an accident involving hydrogen combustion. An accident that involved the inadvertent mixing of hydrogen and oxygen gases in a tube trailer gave evidence that under the proper conditions hydrogen combustion can transit to a detonation. If detonation occurs the pressures which can be experienced are much higher although short in duration.

  8. Internal Heterogeneous Processes in Aluminum Combustion

    NASA Technical Reports Server (NTRS)

    Dreizin, E. L.

    1999-01-01

    evolution of its internal composition, the change from the spherically symmetric to asymmetric flame shape occurring upon the transition from stage I to stage II combustion could not be understood based only on the fact that dissolved oxygen is detected in the particles. The connection between the two phenomena appeared even less significant because in earlier aluminum combustion studies carried in O2/Ar mixtures, flame asymmetry was not observed as opposed to experiments in air or O2/CO mixtures. It has been proposed that the presence of other gases, i.e., hydrogen, or nitrogen causes the change in the combustion regime.

  9. Quantitative measurement of oxygen in microgravity combustion

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.

    1995-01-01

    This research combines two innovations in an experimental system which should result in a new capability for quantitative, nonintrusive measurement of major combustion species. Using a newly available vertical cavity surface-emitting diode laser (VCSEL) and an improved spatial scanning method, we plan to measure the temporal and spatial profiles of the concentrations and temperatures of molecular oxygen in a candle flame and in a solid fuel (cellulose sheet) system. The required sensitivity for detecting oxygen is achieved by the use of high frequency wavelength modulation spectroscopy (WMS). Measurements will be performed in the NASA Lewis 2.2-second Drop Tower Facility. The objective of this research is twofold. First, we want to develop a better understanding of the relative roles of diffusion and reaction of oxygen in microgravity combustion. As the primary oxidizer species, oxygen plays a major role in controlling the observed properties of flames, including flame front speed (in solid or liquid flames), extinguishment characteristics, flame size, and flame temperature. The second objective is to develop better diagnostics based on diode laser absorption which can be of real value in microgravity combustion research. We will also demonstrate diode lasers' potential usefulness for compact, intrinsically-safe monitoring sensors aboard spacecraft. Such sensors could be used to monitor any of the major cabin gases as well as important pollutants.

  10. Liquid rocket combustion computer model with distributed energy release. DER computer program documentation and user's guide, volume 1

    NASA Technical Reports Server (NTRS)

    Combs, L. P.

    1974-01-01

    A computer program for analyzing rocket engine performance was developed. The program is concerned with the formation, distribution, flow, and combustion of liquid sprays and combustion product gases in conventional rocket combustion chambers. The capabilities of the program to determine the combustion characteristics of the rocket engine are described. Sample data code sheets show the correct sequence and formats for variable values and include notes concerning options to bypass the input of certain data. A seperate list defines the variables and indicates their required dimensions.

  11. Alternate Fuels Combustion Research

    DTIC Science & Technology

    1984-07-01

    AFWAL-TR-84-2042 ESL-TR-84-29 ALTERNATE FUELS COMBUSTION RESEARCH 0) PRATT & WHITNEY CANADA MISSISSAUGA, ONTARIO CANADA In JULY 1984 Final Report for...in small engincs. -291 REFERENCES 1. Gratton, M., Sampath, P., " Alternate Fuels Combustion Research Phase If", Pratt & Whitney Canada , AFWAL-TR-83-2057...for Period May 80 Sep e ALTERNATE FUELS COMBUSTION RESEARCHMa80-Sp3 4. PERFORMING ORIJ. REPORT NUMBER 7. AUTNOR(s) 4. 60ONTRA-CT-WI GANUMNER(s) *M

  12. Dry low combustion system with means for eliminating combustion noise

    DOEpatents

    Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.

    2004-02-17

    A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.

  13. Interactions of Hydrazine and Blowby Gases

    NASA Technical Reports Server (NTRS)

    Meagher, Nancy E.

    2003-01-01

    The interactions between hydrazine and blowby gases from pyrovalves was explored in this research project. Investigating the decomposition chemistry of hydrazine through detailed chemical kinetic modeling is a project started last summer while participating in the Summer Faculty Fellowship program. During the 1999-2000 academic year, the chemical kinetic mechanism for hydrazine decomposition developed while a SFF at NASA's White Sands Test Facility was further revised and validated against the limited experimental data in the literature. This mechanism was then used in assessing the effects of blowby gas species on hydrazine decomposition. The combustion products introduced into the fuel line by pyrovalve actuation consist primarily of hydrogen gas. Hydrogen is also a product of the decomposition of hydrazine. Additional gaseous chemical species are introduced into the fuel, as well as metals and metal salts that deposit onto the walls of the fuel line. The deposition process is undoubtedly very rapid, and exothermic. Therefore, the major focus of this summer's work was examining the effects of hydrogen presence on hydrazine decomposition, with some representative calculations including the remaining gaseous species found to exist in blowby gases. Since hydrogen is a product of hydrazine decomposition, all reactions necessary to evaluate its effect on hydrazine decomposition chemistry were in the original mechanism developed. However, the mechanism needed to be considerably expanded to include the reactions of the other gaseous blowby species with hydrazine, all the intermediate species formed in its decomposition, and each other. The expanded mechanism consists of 70 species interacting via a network of 452 reactions. Calculations with molecular hydrogen introduced into hydrazine gas in an inert bath gas indicate that H2 presence as an initial reactant in substantial amounts can dramatically impact the decomposition process for hydrazine. The other gaseous blowby

  14. EDITORIAL: Cold Quantum GasesEditorial: Cold Quantum Gases

    NASA Astrophysics Data System (ADS)

    Vassen, W.; Hemmerich, A.; Arimondo, E.

    2003-04-01

    This Special Issue of Journal of Optics B: Quantum and Semiclassical Optics brings together the contributions of various researchers working on theoretical and experimental aspects of cold quantum gases. Different aspects of atom optics, matter wave interferometry, laser manipulation of atoms and molecules, and production of very cold and degenerate gases are presented. The variety of subjects demonstrates the steadily expanding role associated with this research area. The topics discussed in this issue, extending from basic physics to applications of atom optics and of cold atomic samples, include: bulletBose--Einstein condensation bulletFermi degenerate gases bulletCharacterization and manipulation of quantum gases bulletCoherent and nonlinear cold matter wave optics bulletNew schemes for laser cooling bulletCoherent cold molecular gases bulletUltra-precise atomic clocks bulletApplications of cold quantum gases to metrology and spectroscopy bulletApplications of cold quantum gases to quantum computing bulletNanoprobes and nanolithography. This special issue is published in connection with the 7th International Workshop on Atom Optics and Interferometry, held in Lunteren, The Netherlands, from 28 September to 2 October 2002. This was the last in a series of Workshops organized with the support of the European Community that have greatly contributed to progress in this area. The scientific part of the Workshop was managed by A Hemmerich, W Hogervorst, W Vassen and J T M Walraven, with input from members of the International Programme Committee who are listed below. The practical aspects of the organization were ably handled by Petra de Gijsel from the Vrije Universiteit in Amsterdam. The Workshop was funded by the European Science Foundation (programme BEC2000+), the European Networks 'Cold Quantum Gases (CQG)', coordinated by E Arimondo, and 'Cold Atoms and Ultraprecise Atomic Clocks (CAUAC)', coordinated by J Henningsen, by the German Physical Society (DFG), by

  15. Sandia Combustion Research: Technical review

    SciTech Connect

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  16. To improve the stability of combustion of low rank coal

    SciTech Connect

    Jing Bin Wei

    1995-03-01

    A new aerothermodynamic method, Bi-Flat Inlet Flow Precombustor with Control Jets, developed for flame stabilization of pulverized-coal and the improvement of the ignition condition of low grade coal is described in this paper. The BI-flat flow precombustor consists of a rectangular combustion chamber which can be installed in the location of the burner in the utility and industrial boilers to be used to advance ignition of fuel and primary air mixture and to increase combustion stability of the furnace flames. This type of precombustor simply constructs with two flattened primary air flow and control jets at the head end of the combustor. The velocity of control jets is higher than that of primary flow. A very large recirculation zone with high temperature burnt gases and high turbulent intensity as an ignition source is created in the center of combustion chamber based upon the principles of the actions of jets entraining and Coanda effect. Meanwhile, the higher velocity air layers with lower concentration of coal characteristics on preventing walls from slagging accumulation. Another very important feature is that coal particles could enter directly into the recirculation zone as their inertia and diffusion forces so that it shows a good compatibility of the flow paths of coal particles and high temperature gases. Finally, it is full of promise to be a low pollution emissions combustor since its staged flow and combustion structures.

  17. Numerical and experimental investigation of a mild combustion burner

    SciTech Connect

    Galletti, Chiara; Parente, Alessandro; Tognotti, Leonardo

    2007-12-15

    An industrial burner operating in the MILD combustion regime through internal recirculation of exhaust gases has been characterized numerically. To develop a self-sufficient numerical model of the burner, two subroutines are coupled to the CFD solver to model the air preheater section and heat losses from the burner through radiation. The resulting model is validated against experimental data on species concentration and temperature. A 3-dimensional CFD model of the burner is compared to an axisymmetric model, which allows considerable computational saving, but neglects some important burner features such as the presence of recirculation windows. Errors associated with the axisymmetric model are evaluated and discussed, as well as possible simplified procedures for engineering purposes. Modifications of the burner geometry are investigated numerically and suggested in order to enhance its performances. Such modifications are aimed at improving exhaust gases recirculation which is driven by the inlet air jet momentum. The burner is found to produce only 30 ppm{sub v} of NO when operating in MILD combustion mode. For the same air preheating the NO emissions would be of approximately 1000 ppm{sub v} in flame combustion mode. It is also shown that the burner ensures more homogeneous temperature distribution in the outer surfaces with respect to flame operation, and this is attractive for burners used in furnaces devoted to materials' thermal treatment processes. The effect of air excess on the combustion regime is also discussed. (author)

  18. A simplified method for determining heat of combustion of natural gas

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Chegini, Hoshang; Mall, Gerald H.

    1987-01-01

    A simplified technique for determination of the heat of combustion of natural gas has been developed. It is a variation of the previously developed technique wherein the carrier air, in which the test sample was burnt, was oxygen enriched to adjust the mole fraction of oxygen in the combustion product gases up to that in the carrier air. The new technique eliminates the need for oxygen enrichment of the experimental mixtures and natural gas samples and has been found to predict their heats of combustion to an uncertainty of the order of 1 percent.

  19. Combustion Technology Outreach

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Lewis' High Speed Research (HSR) Propulsion Project Office initiated a targeted outreach effort to market combustion-related technologies developed at Lewis for the next generation of supersonic civil transport vehicles. These combustion-related innovations range from emissions measurement and reduction technologies, to diagnostics, spray technologies, NOx and SOx reduction of burners, noise reduction, sensors, and fuel-injection technologies. The Ohio Aerospace Institute and the Great Lakes Industrial Technology Center joined forces to assist Lewis' HSR Office in this outreach activity. From a database of thousands of nonaerospace firms considered likely to be interested in Lewis' combustion and emission-related technologies, the outreach team selected 41 companies to contact. The selected companies represent oil-gas refineries, vehicle/parts suppliers, and manufacturers of residential furnaces, power turbines, nonautomobile engines, and diesel internal combustion engines.

  20. Fluidized coal combustion

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L.

    1979-01-01

    Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.

  1. Studies in premixed combustion

    SciTech Connect

    Sivashinsky, G.I.

    1992-01-01

    This report discusses the following topics on premixed combustion: theory of turbulent flame propagation; pattern formation in premixed flames and related problems; and pattern formation in extended systems. (LSP)

  2. TENORM: Coal Combustion Residuals

    EPA Pesticide Factsheets

    Burning coal in boilers to create steam for power generation and industrial applications produces a number of combustion residuals. Naturally radioactive materials that were in the coal mostly end up in fly ash, bottom ash and boiler slag.

  3. Generalities on combustion instabilities

    NASA Astrophysics Data System (ADS)

    Kuentzmann, Paul

    The main manifestations of combustion instabilities are reviewed, and the specific characteristics of instabilities in solid-propellant rocket engines are analyzed, with the Minuteman III third-stage engine and the SRB engine of Titan 34 D considered as examples. The main approaches for predicting combustion instabilities are discussed, including the linear approach based on the acoustic balance, the nonlinear mode-coupling approach, and the nonlinear approach using numerical calculation. Projected directions for future research are also examined.

  4. Scramjet Combustion Processes

    DTIC Science & Technology

    2010-09-01

    plan for these flights is as follows: Scramjet Combustion Processes RTO-EN-AVT-185 11 - 21 HyShot 5 – A Free-Flying Hypersonic Glider HyShot...5 will be a hypersonic glider designed to fly at Mach 8. It will separate from its rocket booster in space and perform controlled manoeuvres as it...RTO-EN-AVT-185 11 - 1 Scramjet Combustion Processes Michael Smart and Ray Stalker Centre for Hypersonics The University of Queensland

  5. Analysis of air pollution and greenhouse gases

    SciTech Connect

    Benkovitz, C.M.

    1992-03-01

    The current objective of the project Analysis of Air Pollution and Greenhouse Gases'' is to develop a study of emissions and emission sources that could easily be linked to models of economic activity. Initial studies were conducted to evaluate data currently available linking activity rates and emissions estimates. The emissions inventory developed for the National Acid Precipitation Assessment Program (NAPAP) presents one of the most comprehensive data sets, and was chosen for our initial studies, which are described in this report. Over 99% of the SO{sub 2} emissions, 98% of the NO{sub x} emission and 57% of the VOC emissions from area sources are related to fuel combustion. The majority of emission from these sources are generated by the transportation sector. Activity rates for area sources are not archived with the NAPAP inventory; alternative derivations of these data will be part of the future activities of this project. The availability and completeness of the fuel heat content data in the NAPAP inventory were also studied. Approximately 10% of the SO{sub 2} emissions, 13% of the NO{sub x} emissions and 46% of the VOC emissions are generated by sources with unavailable data for fuel heat content. Initial estimates of pollutant emission rate per unit fuel heat content. Initial estimates of pollutant emission rate per unit fuel heat content were generated. Future studies for this project include the derivation of activity rates for area sources, improved explanations for the default fuel parameters defined in the NAPAP inventory and the development of links to data bases of economic activity.

  6. Isotopic Analysis and Evolved Gases

    NASA Technical Reports Server (NTRS)

    Swindle, Timothy D.; Boynton, William V.; Chutjian, Ara; Hoffman, John H.; Jordan, Jim L.; Kargel, Jeffrey S.; McEntire, Richard W.; Nyquist, Larry

    1996-01-01

    Precise measurements of the chemical, elemental, and isotopic composition of planetary surface material and gases, and observed variations in these compositions, can contribute significantly to our knowledge of the source(s), ages, and evolution of solar system materials. The analyses discussed in this paper are mostly made by mass spectrometers or some other type of mass analyzer, and address three broad areas of interest: (1) atmospheric composition - isotopic, elemental, and molecular, (2) gases evolved from solids, and (3) solids. Current isotopic data on nine elements, mostly from in situ analysis, but also from meteorites and telescopic observations are summarized. Potential instruments for isotopic analysis of lunar, Martian, Venusian, Mercury, and Pluto surfaces, along with asteroid, cometary and icy satellites, surfaces are discussed.

  7. Extended thermodynamics of dense gases

    NASA Astrophysics Data System (ADS)

    Arima, T.; Taniguchi, S.; Ruggeri, T.; Sugiyama, M.

    2012-11-01

    We study extended thermodynamics of dense gases by adopting the system of field equations with a different hierarchy structure to that adopted in the previous works. It is the theory of 14 fields of mass density, velocity, temperature, viscous stress, dynamic pressure, and heat flux. As a result, most of the constitutive equations can be determined explicitly by the caloric and thermal equations of state. It is shown that the rarefied-gas limit of the theory is consistent with the kinetic theory of gases. We also analyze three physically important systems, that is, a gas with the virial equations of state, a hard-sphere system, and a van der Waals fluid, by using the general theory developed in the former part of the present work.

  8. Sandia Combustion Research Program

    SciTech Connect

    Johnston, S.C.; Palmer, R.E.; Montana, C.A.

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  9. Coal combustion system

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.; Tramm, Peter C.

    1988-01-01

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  10. Annihilation in Gases and Galaxies

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J. (Editor)

    1990-01-01

    This publication contains most of the papers, both invited and contributed, that were presented at the Workshop of Annihilation in Gases and Galaxies. This was the fifth in a biennial series associated with the International Conference on the Physics of Electronic and Atomic Collisions. Subjects covered included the scattering and annihilation of positrons and positronium atoms in various media, including those of astrophysical interest. In addition, the topics of antimatter and dark matter were covered.

  11. Theoretical Insight into Shocked Gases

    SciTech Connect

    Leiding, Jeffery Allen

    2016-09-29

    I present the results of statistical mechanical calculations on shocked molecular gases. This work provides insight into the general behavior of shock Hugoniots of gas phase molecular targets with varying initial pressures. The dissociation behavior of the molecules is emphasized. Impedance matching calculations are performed to determine the maximum degree of dissociation accessible for a given flyer velocity as a function of initial gas pressure.

  12. 46 CFR 147.60 - Compressed gases.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Compressed gases. 147.60 Section 147.60 Shipping COAST... Other Special Requirements for Particular Materials § 147.60 Compressed gases. (a) Cylinder requirements. Cylinders used for containing hazardous ships' stores that are compressed gases must be— (1) Authorized...

  13. 46 CFR 147.60 - Compressed gases.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Compressed gases. 147.60 Section 147.60 Shipping COAST... Other Special Requirements for Particular Materials § 147.60 Compressed gases. (a) Cylinder requirements. Cylinders used for containing hazardous ships' stores that are compressed gases must be— (1) Authorized...

  14. 46 CFR 147.60 - Compressed gases.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Compressed gases. 147.60 Section 147.60 Shipping COAST... Other Special Requirements for Particular Materials § 147.60 Compressed gases. (a) Cylinder requirements. Cylinders used for containing hazardous ships' stores that are compressed gases must be— (1) Authorized...

  15. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Analytical gases. 1065.750 Section 1065.750 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... § 1065.750 Analytical gases. Analytical gases must meet the accuracy and purity specifications of...

  16. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Analytical gases. 1065.750 Section 1065.750 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... § 1065.750 Analytical gases. Analytical gases must meet the accuracy and purity specifications of...

  17. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Analytical gases. 1065.750 Section 1065.750 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... § 1065.750 Analytical gases. Analytical gases must meet the accuracy and purity specifications of...

  18. 40 CFR 92.112 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Analytical gases. 92.112 Section 92.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.112 Analytical gases. (a) Gases...

  19. 40 CFR 89.312 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Analytical gases. 89.312 Section 89.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF....312 Analytical gases. (a) The shelf life of all calibration gases must not be exceeded. The...

  20. 40 CFR 89.312 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Analytical gases. 89.312 Section 89.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Provisions § 89.312 Analytical gases. (a) The shelf life of all calibration gases must not be exceeded....

  1. Exhaust Nozzle for a Multitube Detonative Combustion Engine

    NASA Technical Reports Server (NTRS)

    Bratkovich, Thomas E.; Williams, Kevin E.; Bussing, Thomas R. A.; Lidstone, Gary L.; Hinkey, John B.

    2004-01-01

    expansion of the pulsed combustion gases from the multiple combustion tubes into a common exhaust stream, in such a manner as to enhance performance in two ways: (1) It reduces the cyclic variations of pressure at the outlets of the combustion tubes so as to keep the pressure approximately constant near the optimum level needed for filling the tubes, regardless of atmospheric pressure at the altitude of operation; and (2) It maximizes the transfer of momentum from the exhaust gas to the engine, thereby maximizing thrust. The figure depicts a typical engine equipped with a nozzle according to the invention. The nozzle includes an interface section comprising multiple intake ports that couple the outlets of the combustion tubes to a common plenum. Proceeding from its upstream to its downstream end, the interface section tapers to a larger cross-sectional area for flow. This taper fosters expansion of the exhaust gases flowing from the outlets of the combustion tubes and contributes to the desired equalization of exhaust combustion pressure. The cross-sectional area for flow in the common plenum is greater than, or at least equal to, the combined cross-sectional flow areas of the combustor tubes. In the common plenum, the exhaust streams from the individual combustion tubes mix to form a single compound subsonic exhaust stream. Downstream of the common plenum is the throat that tapers to a smaller flow cross section. In this throat, the exhaust gases become compressed to form a compound sonic gas stream. Downstream of the throat is an expansion section, which typically has a bell or a conical shape. (The expansion section can be truncated or even eliminated in the case of an air-breathing engine.) After entering the expansion section, the exhaust gases expand rapidly from compound sonic to compound supersonic speeds and are then vented to the environment. The basic invention admits of numerous variations. For example, the combustion tubes can be arranged around the central

  2. Greenhouse Gases Monitoring from Space

    NASA Astrophysics Data System (ADS)

    Moriyama, Takashi

    The role of greenhouse gases in global warming processes and an important element of the global carbon cycle is widely recognized. With the advent of the technical means to provide new monitoring and measurement of greenhouse gases (GHG) from space, JAXA has identified the coordination of these measurements and their application by cooperating with international space agencies. In order to foster the use of space-based GHG observations and consolidate data requirements for the next generation GHG monitoring mission from space, a synergetic strategy for easy access to GHG satellite observations, including GOSAT (Greenhouse Gases Monitoring Satellite, JAXA) and current observations should be developed, and also harmonizing the next generation of GHG satellite observations shoud be facilitated. The Paper describes the current status of international activities of GHG monitoring from space and relations with policy makers and stake holders. The long term GHG monitoring from space is also proposed by respecting the GEO Carbon Strategy which is published in March 2010. Also, GOSAT sample XCO2 and XCH4 global column amount datasets will be introduced with the avtivities of validation campaign.

  3. New type of microengine using internal combustion of hydrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Svetovoy, Vitaly B.; Sanders, Remco G. P.; Ma, Kechun; Elwenspoek, Miko C.

    2014-03-01

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines.

  4. Fuel/oxidizer-rich high-pressure preburners. [staged-combustion rocket engine

    NASA Technical Reports Server (NTRS)

    Schoenman, L.

    1981-01-01

    The analyses, designs, fabrication, and cold-flow acceptance testing of LOX/RP-1 preburner components required for a high-pressure staged-combustion rocket engine are discussed. Separate designs of injectors, combustion chambers, turbine simulators, and hot-gas mixing devices are provided for fuel-rich and oxidizer-rich operation. The fuel-rich design addresses the problem of non-equilibrium LOX/RP-1 combustion. The development and use of a pseudo-kinetic combustion model for predicting operating efficiency, physical properties of the combustion products, and the potential for generating solid carbon is presented. The oxygen-rich design addresses the design criteria for the prevention of metal ignition. This is accomplished by the selection of materials and the generation of well-mixed gases. The combining of unique propellant injector element designs with secondary mixing devices is predicted to be the best approach.

  5. Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor

    DOE PAGES

    Isvoranu, Dragos D.; Cizmas, Paul G. A.

    2003-01-01

    This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has beenmore » used to investigate the flow and combustion in a one-stage turbine combustor.« less

  6. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Shuxiao; Wu, Qingru; Wang, Fengyang; Lin, Che-Jen; Zhang, Leiming; Hui, Mulin; Yang, Mei; Su, Haitao; Hao, Jiming

    2016-02-01

    Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, waste incinerators, biomass burning and so on. Mercury in coal, ores, and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of Hg0 to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g., TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher Hg0 fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non-ferrous metal smelting, cement and

  7. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wang, S. X.; Wu, Q. R.; Wang, F. Y.; Lin, C.-J.; Zhang, L. M.; Hui, M. L.; Hao, J. M.

    2015-11-01

    Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, municipal solid waste incinerators, and biomass burning. Mercury in coal, ores and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of gaseous elemental mercury (Hg0) to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g.,TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non

  8. Single-bubble sonoluminescence from noble gases.

    PubMed

    Yasui, K

    2001-03-01

    Single-bubble sonoluminescence (SBSL) from noble gases in water is studied theoretically in order to clarify the reason of the distinguished feature that the luminescence is strong for all noble gases, while the other systems of cavitation luminescence are greatly enhanced by the presence of the heavy noble gas(xenon). It is clarified that in spite of the larger thermal conductivity of lighter noble gases the maximum temperature in a SBSL bubble of lighter noble gases is higher due both to the segregation of water vapor and noble gas inside a SBSL bubble and the stronger acoustic drive of a SBSL bubble of lighter noble gases.

  9. Single-bubble sonoluminescence from noble gases

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi

    2001-03-01

    Single-bubble sonoluminescence (SBSL) from noble gases in water is studied theoretically in order to clarify the reason of the distinguished feature that the luminescence is strong for all noble gases, while the other systems of cavitation luminescence are greatly enhanced by the presence of the heavy noble gas(xenon). It is clarified that in spite of the larger thermal conductivity of lighter noble gases the maximum temperature in a SBSL bubble of lighter noble gases is higher due both to the segregation of water vapor and noble gas inside a SBSL bubble and the stronger acoustic drive of a SBSL bubble of lighter noble gases.

  10. HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF AN EMULSIFIED HEAVY FUEL OIL IN A FIRETUBE BOILER

    EPA Science Inventory

    The report gives results of measuring emissions of hazardous air pollutants (HAPs) from the combustion flue gases of a No. 6 fuel oil, both with and without an emulsifying agent, in a 2.5 million Btu/hr (732 kW) firetube boiler with the purpose of determining the impacts of the e...

  11. High Frequency Combustion Instability Studies of LOX/Methane Fueled Rocket Engines

    DTIC Science & Technology

    2009-09-25

    drops, secondary atomization of drops, drop heating and vaporization , mixing processes involving the drops and gases, mixture ratio distribution in space... hydrazine family of fuels. Engines using LOX/H2 propellants have experienced considerably less incidences of combustion instability, but are not totally...fuel tanks and its low vaporization temperature limiting its storability. Recently, renewed interest in lower operational costs, higher propellant

  12. Photographic Study of Combustion in a Rocket Engine I : Variation in Combustion of Liquid Oxygen and Gasoline with Seven Methods of Propellant Injection

    NASA Technical Reports Server (NTRS)

    Bellman, Donald R; Humphrey, Jack C

    1948-01-01

    Motion pictures at camera speeds up to 3000 frames per second were taken of the combustion of liquid oxygen and gasoline in a 100-pound-thrust rocket engine. The engine consisted of thin contour and injection plates clamped between two clear plastic sheets forming a two-dimensional engine with a view of the entire combustion chamber and nozzle. A photographic investigation was made of the effect of seven methods of propellant injection on the uniformity of combustion. From the photographs, it was found that the flame front extended almost to the faces of the injectors with most of the injection methods, all the injection systems resulted in a considerable nonuniformity of combustion, and luminosity rapidly decreased in the divergent part of the nozzle. Pressure vibration records indicated combustion vibrations that approximately corresponded to the resonant frequencies of the length and the thickness of the chamber. The combustion temperature divided by the molecular weight of the combustion gases as determined from the combustion photographs was about 50 to 70 percent of the theoretical value.

  13. Inert gases in Sea of Fertility regolith

    NASA Technical Reports Server (NTRS)

    Vinogradov, A. P.; Zadorozhnyy, I. K.

    1974-01-01

    The content and isotopic composition were studied of inert gases -- He, Ne, Ar, Kr, and Xe -- in samples of lunar regolith returned by the Luna 16 automatic station. The samples were taken from depths of about 12 and 30 cm. The high concentrations of inert gases exceed by several orders their concentrations observed in ordinary stony meteorites. The gases in lunar regolith were a complex mixture of gases of different origins: Solar, cosmogenic, radiogenic, and so on. Solar wind gases predominated, distributed in the thin surficial layer of the regolith grains. The concentrations of these gases in the surficial layer is several cubic centimeters per gram. The isotopic composition of the inert gases of solar origin approaches their composition measured in gas-rich meteorites.

  14. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  15. Environmentally conscious coal combustion

    SciTech Connect

    Hickmott, D.D.; Brown, L.F.; Currier, R.P.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) `back of the envelope` calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to heat their homes with low-grade coal.

  16. Microgravity Combustion Diagnostics Workshop

    NASA Technical Reports Server (NTRS)

    Santoro, Gilbert J. (Editor); Greenberg, Paul S. (Editor); Piltch, Nancy D. (Editor)

    1988-01-01

    Through the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications (OSSA) at NASA Headquarters, a program entitled, Advanced Technology Development (ATD) was promulgated with the objective of providing advanced technologies that will enable the development of future microgravity science and applications experimental flight hardware. Among the ATD projects one, Microgravity Combustion Diagnostics (MCD), has the objective of developing advanced diagnostic techniques and technologies to provide nonperturbing measurements of combustion characteristics and parameters that will enhance the scientific integrity and quality of microgravity combustion experiments. As part of the approach to this project, a workshop was held on July 28 and 29, 1987, at the NASA Lewis Research Center. A small group of laser combustion diagnosticians met with a group of microgravity combustion experimenters to discuss the science requirements, the state-of-the-art of laser diagnostic technology, and plan the direction for near-, intermediate-, and long-term programs. This publication describes the proceedings of that workshop.

  17. Combustion chamber noise suppressor

    SciTech Connect

    Livingston, A.M.

    1986-08-19

    A combustion chamber is described for a hot fog generating machine comprising a hollow cylindrical combustion chamber shell having a closure plate at one end and outlet means at the opposite end for directing hot combustion gasses to a fogging nozzle, air inlet means disposed adjacent the outlet means, fuel inlet means and ignition means mounted in the closure plate and liner means disposed concentrically within the cylindrical combustion chamber for controlling the flow of air and combustion gasses within the shell. The liner means includes a liner base having a frustroconical configuration with the smaller diameter end thereof disposed in communication with the outlet means and with the larger diameter end thereof disposed in spaced relation to the shell, circumferentially spaced, longitudinally extending fins extending outwardly from the liner base intermediate the liner base and the shell, a cylindrical liner midsection having circumferentially spaced fins extending outwardly therefrom between the midsection and the shell with the fins supporting the midsection on the larger diameter end of the liner base.

  18. Combustion in fluidized beds

    SciTech Connect

    Dry, F.J.; La Nauze, R.D. )

    1990-07-01

    Circulating fluidized-bed (CFB) combustion systems have become popular since the late 1970s, and, given the current level of activity in the area,it is clear that this technology has a stable future in the boiler market. For standard coal combustion applications, competition is fierce with mature pulverized-fuel-based (PF) technology set to maintain a strong profile. CFB systems, however, can be more cost effective than PF systems when emission control is considered, and, as CFB technology matures, it is expected that an ever-increasing proportion of boiler installations will utilize the CFB concept. CFB systems have advantages in the combustion of low-grade fuels such as coal waste and biomass. In competition with conventional bubbling beds, the CFB boiler often demonstrates superior carbon burn-out efficiency. The key to this combustion technique is the hydrodynamic behavior of the fluidized bed. This article begins with a description of the fundamental fluid dynamic behavior of the CFB system. This is followed by an examination of the combustion process in such an environment and a discussion of the current status of the major CFB technologies.

  19. Challenges of oxyfuel combustion modeling for carbon capture

    NASA Astrophysics Data System (ADS)

    Kangwanpongpan, T.; Klatt, M.; Krautz, H. J.

    2012-04-01

    of changes depends on the amount of both mentioned gases because both gases have higher thermal heat capacity than N2 in air-fired combustion processes and also are a good emitter and absorber of radiation [13-14]. The mentioned mathematical models are investigated using numerical CFD software (ANSYS FLUENT 12.0) [15] to provide predictions of aerodynamics, thermo-chemical and heat transfer quantities. The numerical models of lignite combustion under oxy-fuel conditions are first investigated in laboratory scaled furnace applying correlations for weighted sum of gray gases (WSGG) model for the predictions of radiation properties of oxy-fuel gas mixture [16]. The developed numerical models are further used for the predictions of temperature, hemi-spherical incident intensity and species concentrations (O2, CO2, H2O) for a 0.4 MWth oxy-fuel furnace at BTU Cottbus.

  20. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  1. LES of Mild Combustion using Pareto-efficient Combustion Adaptation

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Evans, Michael; Ihme, Matthias

    2015-11-01

    Moderate or Intense Low-Oxygen Dilution (MILD) combustion is a combustion regime that provides opportunities for improved thermal efficiency and reduced pollutant emissions. In this study, large-eddy simulation is used to investigate the ignition, mixing, and stabilization of a jet flame in this kinetics-controlled combustion regime. The combustion process is modeled by a Pareto-efficient combustion (PEC) formulation that optimally combines reaction-transport and chemistry combustion models. In this approach, a three-stream flamelet/progress variable model is used as a computationally efficient description of equilibrated flame regions, and a finite-rate chemistry representation is employed to accurately represent the ignition behavior and flame stabilization. Through comparisons with experiments and simulations with single-regime combustion models, it will be shown that this Pareto-efficient combustion submodel assignment accurately captures important dynamics in complex turbulent flame configurations.

  2. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D; Swank, William D.

    2011-08-30

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  3. Experimental biomass burning emission assessment by combustion chamber

    NASA Astrophysics Data System (ADS)

    Lusini, Ilaria; Pallozzi, Emanuele; Corona, Piermaria; Ciccioli, Paolo; Calfapietra, Carlo

    2014-05-01

    Biomass burning is a significant source of several atmospheric gases and particles and it represents an important ecological factor in the Mediterranean ecosystem. In this work we describe the performances of a recently developed combustion chamber to show the potential of this facility in estimating the emission from wildland fire showing a case study with leaves, small branches and litter of two representative species of Mediterranean vegetation, Quercus pubescens and Pinus halepensis. The combustion chamber is equipped with a thermocouple, a high resolution balance, an epiradiometer, two different sampling lines to collect organic volatile compounds (VOCs) and particles, a sampling line connected to a Proton Transfer Reaction Mass-Spectrometer (PTR-MS) and a portable analyzer to measure CO and CO2 emission. VOCs emission were both analyzed with GC-MS and monitored on-line with PTR-MS. The preliminary qualitative analysis of emission showed that CO and CO2 are the main gaseous species emitted during the smoldering and flaming phase, respectively. Many aromatics VOCs as benzene and toluene, and many oxygenated VOC as acetaldehyde and methanol were also released. This combustion chamber represents an important tool to determine the emission factor of each plant species within an ecosystem, but also the contribution to the emissions of the different plant tissues and the kinetics of different compound emissions during the various combustion phases. Another important feature of the chamber is the monitoring of the carbon balance during the biomass combustion.

  4. Effect of oxy-combustion flue gas on mercury oxidation.

    PubMed

    Fernández-Miranda, Nuria; Lopez-Anton, M Antonia; Díaz-Somoano, Mercedes; Martínez-Tarazona, M Rosa

    2014-06-17

    This study evaluates the effect of the gases present in a typical oxy-coal combustion atmosphere on mercury speciation and compares it with the mercury speciation produced in conventional air combustion atmospheres. The work was performed at laboratory scale at 150 °C. It was found that the minor constituents (SO2, NOx, and HCl) significantly modify the percentages of Hg(2+) in the gas. The influence of these species on mercury oxidation was demostrated when they were tested individually and also when they were blended in different gas compositions, although the effect was different to the sum of their individual effects. Of the minor constituents, NOx were the main species involved in oxidation of mercury. Moreover, it was found that a large concentration of H2O vapor also plays an important role in mercury oxidation. Around 50% of the total mercury was oxidized in atmospheres with H2O vapor concentrations typical of oxy-combustion conditions. When the atmospheres have similar concentrations of SO2, NO, NO2, HCl, and H2O, the proportion of Hg(0)/Hg(2+) is similar regardless of whether CO2 (oxy-fuel combustion) or N2 (air combustion) are the main components of the gas.

  5. New method for determining heats of combustion of gaseous hydrocarbons

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sprinkle, D. R.; Puster, R. L.

    1985-01-01

    As a spin off of a system developed for monitoring and controlling the oxygen concentration in the Langley 8-foot High Temperature Tunnel, a highly accurate on-line technique was developed for determining heats of combustion of natural gas samples. It is based on measuring the ratio m/n, where m is the (volumetric) flowrate of oxygen required to enrich the carrier air in which the test gas flowing at the rate n is burned, such that the mole fraction of oxygen in the combustion product gases equals that in the carrier air. The m/n ratio is directly related to the heats of combustion of the saturated hydrocarbons present in the natural gas. A measurement of the m/n ratio for the test gas can provide a direct means of determination of its heat of combustion by using the calibration graph relating the m/n values for pure saturated hydrocarbons with their heats of combustion. The accuracy of the technique is determine solely by the accuracy with which the flowrates m and n can be measured and is of the order of 2 percent in the present study. The theoretical principles and experimental results are discussed.

  6. Oxy-fuel combustion with integrated pollution control

    DOEpatents

    Patrick, Brian R [Chicago, IL; Ochs, Thomas Lilburn [Albany, OR; Summers, Cathy Ann [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul Chandler [Independence, OR

    2012-01-03

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  7. Climate Change and Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Ledley, Tamara S.; Sundquist, Eric; Schwartz, Stephen; Hall, Dorothy K.; Fellows, Jack; Killeen, Timothy

    1999-01-01

    The American Geophysical Union (AGU), as a scientific organization devoted to research on the Earth and space sciences, provides current scientific information to the public on issues pertinent to geophysics. The Council of the AGU approved a position statement on Climate Change and Greenhouse Gases in December 1998. The statement, together with a short summary of the procedures that were followed in its preparation, review, and adoption were published in the February 2, 1999 issue of Eos ([AGU, 1999]. The present article reviews scientific understanding of this issue as presented in peer-reviewed publications that serves as the underlying basis of the position statement.

  8. Ames Hybrid Combustion Facility

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)

    2003-01-01

    The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.

  9. Thermodynamics and combustion modeling

    NASA Technical Reports Server (NTRS)

    Zeleznik, Frank J.

    1986-01-01

    Modeling fluid phase phenomena blends the conservation equations of continuum mechanics with the property equations of thermodynamics. The thermodynamic contribution becomes especially important when the phenomena involve chemical reactions as they do in combustion systems. The successful study of combustion processes requires (1) the availability of accurate thermodynamic properties for both the reactants and the products of reaction and (2) the computational capabilities to use the properties. A discussion is given of some aspects of the problem of estimating accurate thermodynamic properties both for reactants and products of reaction. Also, some examples of the use of thermodynamic properties for modeling chemically reacting systems are presented. These examples include one-dimensional flow systems and the internal combustion engine.

  10. Droplet Combustion Experiment movie

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Droplet Combustion Experiment (DCE) was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1 mission (STS-83, April 4-8 1997; the shortened mission was reflown as MSL-1R on STS-94). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.1 MB, 12-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300164.html.

  11. Internal combustion engine

    DOEpatents

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  12. Fluidized-bed combustion

    SciTech Connect

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  13. Antipollution combustion chamber

    SciTech Connect

    Caruel, J.E.; Gastebois, P.M.

    1981-01-27

    The invention concerns a combustion chamber for turbojet engines. The combustion chamber is of the annular type and consists of two coaxial flame tubes opening into a common dilution and mixing zone. The inner tube is designed for low operating ratings of the engine, the outer tube for high ratings. Air is injected as far upstream as possible into the dilution zone, to enhance the homogenization of the gaseous flow issuing from the two tubes prior to their passage into the turbine and to assure the optimum radial distribution of temperatures. The combustion chamber according to the invention finds application in a particularly advantageous manner in turbojet engines used in aircraft propulsion because of the reduced emission of pollutants it affords.

  14. Forced cocurrent smoldering combustion

    SciTech Connect

    Dosanjh, S.S.; Pagni, P.J.; Fernandez-Pello, A.C.

    1987-05-01

    An analytic model of the propagation of smoldering combustion through a very porous solid fuel is presented. Here smoldering is initiated at the top of a long, radially insulated, uniform fuel cylinder, so that the smolder wave propagates downward, opposing an upward forced flow of oxidizer. Because the solid fuel and the gaseous oxidizer enter the reaction zone from the same direction, this configuration is referred to as cocurrent (or premixed-flame-like). It is assumed that the propagation of the smolder wave is one-dimensional and steady in a frame of reference moving with the wave. Buoyancy is included and shown to be negligible in the proposed application of a smoldering combustion experiment for use on the Space Shuttle. Radiation heat transfer is incorporated using the diffusion approximation and smoldering combustion is modeled by a finite rate, one-step reaction mechanism.

  15. Energy recycling by co-combustion of coal and recovered paint solids from automobile paint operations.

    PubMed

    Suriyawong, Achariya; Magee, Rogan; Peebles, Ken; Biswas, Pratim

    2009-05-01

    During the past decade, there has been substantial interest in recovering energy from many unwanted byproducts from industries and municipalities. Co-combustion of these products with coal seems to be the most cost-effective approach. The combustion process typically results in emissions of pollutants, especially fine particles and trace elements. This paper presents the results of an experimental study of particulate emission and the fate of 13 trace elements (arsenic [As], barium [Ba], cadmium [Cd], chromium [Cr], copper [Cu], cobalt [Co], manganese [Mn], molybdenum [Mo], nickel [Ni], lead [Pb], mercury [Hg], vanadium [V], and zinc [Zn]) during combustion tests of recovered paint solids (RPS) and coal. The emissions from combustions of coal or RPS alone were compared with those of co-combustion of RPS with subbituminous coal. The distribution/partitioning of these toxic elements between a coarse-mode ash (particle diameter [dp] > 0.5 microm), a submicrometer-mode ash (dp < 0.5 microm), and flue gases was also evaluated. Submicrometer particles generated by combustion of RPS alone were lower in concentration and smaller in size than that from combustion of coal. However, co-combustion of RPS and coal increased the formation of submicrometer-sized particles because of the higher reducing environment in the vicinity of burning particles and the higher volatile chlorine species. Hg was completely volatilized in all cases; however, the fraction in the oxidized state increased with co-combustion. Most trace elements, except Zn, were retained in ash during combustion of RPS alone. Mo was mostly retained in all samples. The behavior of elements, except Mn and Mo, varied depending on the fuel samples. As, Ba, Cr, Co, Cu, and Pb were vaporized to a greater extent from cocombustion of RPS and coal than from combustion of either fuel. Evidence of the enrichment of certain toxic elements in submicrometer particles has also been observed for As, Cd, Cr, Cu, and Ni during co-combustion.

  16. Studies in combustion dynamics

    SciTech Connect

    Koszykowski, M.L.

    1993-12-01

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  17. Alternate Fuels Combustion Research

    DTIC Science & Technology

    1983-10-01

    AFWAL-TR-83-2057 AD A13 8 5 7 5 ALTERNATE FUELS COMBUSTION RESEARCH PHASE RI ’~*~~4 & IWITEY CMAAA * ’s~t:Uwz, ONTARIO October 1983 I•oerls Report...83-2057 P_______________ C TITLE (mod ,,--tt-) 5. TYPE OF REPORT A PERIOD COVERED Alternate Fuels ioahusticn Research Interim Report for Period Phase...I$. KEY WORDS (Continue on reverse sirte it necessear and identify by block number) FUELS ALTERNATE FUELS GAS TURBINE COMBUSTION EXHAUST EMISSIONS 0

  18. Thermal ignition combustion system

    DOEpatents

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  19. Thermal ignition combustion system

    DOEpatents

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  20. Transition nozzle combustion system

    DOEpatents

    Kim, Won-Wook; McMahan, Kevin Weston; Maldonado, Jaime Javier

    2016-11-29

    The present application provides a combustion system for use with a cooling flow. The combustion system may include a head end, an aft end, a transition nozzle extending from the head end to the aft end, and an impingement sleeve surrounding the transition nozzle. The impingement sleeve may define a first cavity in communication with the head end for a first portion of the cooling flow and a second cavity in communication with the aft end for a second portion of the cooling flow. The transition nozzle may include a number of cooling holes thereon in communication with the second portion of the cooling flow.

  1. Toxicology of Biodiesel Combustion products

    EPA Science Inventory

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  2. Combuster. [low nitrogen oxide formation

    NASA Technical Reports Server (NTRS)

    Mckay, R. A. (Inventor)

    1978-01-01

    A combuster is provided for utilizing a combustible mixture containing fuel and air, to heat a load fluid such as water or air, in a manner that minimizes the formation of nitrogen oxide. The combustible mixture passes through a small diameter tube where the mixture is heated to its combustion temperature, while the load fluid flows past the outside of the tube to receive heat. The tube is of a diameter small enough that the combustible mixture cannot form a flame, and yet is not subject to wall quench, so that combustion occurs, but at a temperature less than under free flame conditions. Most of the heat required for heating the combustible mixture to its combustion temperature, is obtained from heat flow through the walls of the pipe to the mixture.

  3. Bacterial contamination of anaesthetic gases.

    PubMed

    Nielsen, H; Vasegaard, M; Stokke, D B

    1978-08-01

    The bacterial content of oxygen and nitrous oxide immediately before and after passing through clean and used breathing systems (circuits) was measured using a specially constructed agar chamber (Bourdillon's slit sampler). The content per litre of oxygen from the outlet of the anaesthetic machine was 4.0 X 10-2, and 2.9 X 10-2 for nitrous oxide, corresponding to 3.5 X 10-2 for a 50% mixture of the gases. After passing through cleaned circuits, the bacterial pollution of the gas mixture had increased by 30%, but more than elevenfold after passing through used circuits. The content from cleaned circuits was less than that measured previously in the air of hospital wards and operating theatres, whereas gases from used circuits were polluted to approximately the same extent. It is concluded that used circuits may increase the risk of cross-infection. The cleaning method employed by us (dish-washer--hot airy drying) appeared to be acceptable.

  4. Atmospheric trace gases in antarctica.

    PubMed

    Rasmussen, R A; Khalil, M A; Dalluge, R W

    1981-01-16

    Trace gases have been measured, by electron-capture gas chromatography and gas chromatography-mass spectrometry techniques, at the South Pole (SP) in Antarctica and in the U.S. Pacific Northwest (PNW) ( approximately 45 degrees N) during January of each year from 1975 to 1980. These measurements show that the concentrations of CCl(3)F, CCl(2)F(2), and CH(3)CCl(3) have increased exponentially at substantial rates. The concentration of CCl(3)F increased at 12 percent per year at the SP and at 8 percent per year in the PNW; CCl(2)F(2) increased at about 9 percent per year at both locations, and CH(3)CCl(3) increased at 17 percent per year at the SP and 11.6 percent per year at the PNW site. There is some evidence that CCl(4) ( approximately 3 percent per year) and N(2)O (0.1 to 0.5 percent per year) may also have increased. Concentrations of nine other trace gases of importance in atmospheric chemistry are also being measured at these two locations. Results of the measurements of CHClF(2)(F-22), C(2)Cl(3)F(3)(F-113), SF(6), C(2)-hydrocarbons, and CH(3)Cl are reported here.

  5. Predicting Flows of Rarefied Gases

    NASA Technical Reports Server (NTRS)

    LeBeau, Gerald J.; Wilmoth, Richard G.

    2005-01-01

    DSMC Analysis Code (DAC) is a flexible, highly automated, easy-to-use computer program for predicting flows of rarefied gases -- especially flows of upper-atmospheric, propulsion, and vented gases impinging on spacecraft surfaces. DAC implements the direct simulation Monte Carlo (DSMC) method, which is widely recognized as standard for simulating flows at densities so low that the continuum-based equations of computational fluid dynamics are invalid. DAC enables users to model complex surface shapes and boundary conditions quickly and easily. The discretization of a flow field into computational grids is automated, thereby relieving the user of a traditionally time-consuming task while ensuring (1) appropriate refinement of grids throughout the computational domain, (2) determination of optimal settings for temporal discretization and other simulation parameters, and (3) satisfaction of the fundamental constraints of the method. In so doing, DAC ensures an accurate and efficient simulation. In addition, DAC can utilize parallel processing to reduce computation time. The domain decomposition needed for parallel processing is completely automated, and the software employs a dynamic load-balancing mechanism to ensure optimal parallel efficiency throughout the simulation.

  6. Capturing Gases in Carbon Honeycomb

    NASA Astrophysics Data System (ADS)

    Krainyukova, Nina V.

    2016-12-01

    In our recent paper (Krainyukova and Zubarev in Phys Rev Lett 116:055501, 2016. doi: 10.1103/PhysRevLett.116.055501) we reported the observation of an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. A family of structures can be built from absolutely dominant {sp}2 -bonded carbon atoms, and may be considered as three-dimensional graphene. Such structures demonstrate high absorption capacity for gases and liquids. In this work we show that the formation of honeycomb structures is highly sensitive to the carbon evaporation temperature and deposition rates. Both parameters are controlled by the electric current flowing through thin carbon rods. Two distinctly different regimes were found. At lower electric currents almost pure honeycomb structures form owing to sublimation. At higher currents the surface-to-bulk rod melting is observed. In the latter case densification of the carbon structures and a large contribution of glassy graphite emerge. The experimental diffraction patterns from honeycomb structures filled with absorbed gases and analyzed by the advanced method are consistent with the proposed models for composites which are different for Ar, Kr and Xe atoms in carbon matrices.

  7. Capturing Gases in Carbon Honeycomb

    NASA Astrophysics Data System (ADS)

    Krainyukova, Nina V.

    2017-04-01

    In our recent paper (Krainyukova and Zubarev in Phys Rev Lett 116:055501, 2016. doi: 10.1103/PhysRevLett.116.055501) we reported the observation of an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. A family of structures can be built from absolutely dominant {sp}2-bonded carbon atoms, and may be considered as three-dimensional graphene. Such structures demonstrate high absorption capacity for gases and liquids. In this work we show that the formation of honeycomb structures is highly sensitive to the carbon evaporation temperature and deposition rates. Both parameters are controlled by the electric current flowing through thin carbon rods. Two distinctly different regimes were found. At lower electric currents almost pure honeycomb structures form owing to sublimation. At higher currents the surface-to-bulk rod melting is observed. In the latter case densification of the carbon structures and a large contribution of glassy graphite emerge. The experimental diffraction patterns from honeycomb structures filled with absorbed gases and analyzed by the advanced method are consistent with the proposed models for composites which are different for Ar, Kr and Xe atoms in carbon matrices.

  8. DEVELOPMENT OF A NOVEL GAS PRESSURIZED STRIPPING (GPS)-BASED TECHNOLOGY FOR CO2 CAPTURE FROM POST-COMBUSTION FLUE GASES Topical Report: Techno-Economic Analysis of GPS-based Technology for CO2 Capture

    SciTech Connect

    Chen, Shiaoguo

    2015-09-30

    This topical report presents the techno-economic analysis, conducted by Carbon Capture Scientific, LLC (CCS) and Nexant, for a nominal 550 MWe supercritical pulverized coal (PC) power plant utilizing CCS patented Gas Pressurized Stripping (GPS) technology for post-combustion carbon capture (PCC). Illinois No. 6 coal is used as fuel. Because of the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant is not exactly 550 MWe. DOE/NETL Case 11 supercritical PC plant without CO2 capture and Case 12 supercritical PC plant with benchmark MEA-based CO2 capture are chosen as references. In order to include CO2 compression process for the baseline case, CCS independently evaluated the generic 30 wt% MEA-based PCC process together with the CO2 compression section. The net power produced in the supercritical PC plant with GPS-based PCC is 647 MW, greater than the MEA-based design. The levelized cost of electricity (LCOE) over a 20-year period is adopted to assess techno-economic performance. The LCOE for the supercritical PC plant with GPS-based PCC, not considering CO2 transport, storage and monitoring (TS&M), is 97.4 mills/kWh, or 152% of the Case 11 supercritical PC plant without CO2 capture, equivalent to $39.6/tonne for the cost of CO2 capture. GPS-based PCC is also significantly superior to the generic MEA-based PCC with CO2 compression section, whose LCOE is as high as 109.6 mills/kWh.

  9. The removal of sulfur dioxide from flue gases

    PubMed Central

    Kettner, Helmut

    1965-01-01

    The growth of industrialization makes it imperative to reduce the amounts of sulfur dioxide emitted into the atmosphere. This article describes various processes for cleaning flue gases, and gives details of new methods being investigated. Wet scrubbing with water, though widely practised, has many disadvantages. Scrubbing with zinc oxide, feasible in zinc works, is more satisfactory. Dry methods use a solid absorbent; they have the advantage of a high emission temperature. Other methods are based on the addition to the fuel or the flue gases of substances such as activated metal oxides, which react with the sulfur to form compounds less harmful than sulfur dioxide. Also being investigated are a two-stage combustion system, in which the sulfur dioxide is removed in the first stage, and the injection of activated powdered dolomite into burning fuel; the resulting sulfates being removed by electrostatic precipitation. A wet catalysis process has recently been developed. Most of the cleaning processes are not yet technically mature, but first results show good efficiency and relatively low cost. PMID:14315714

  10. THE REMOVAL OF SULFUR DIOXIDE FROM FLUE GASES.

    PubMed

    KETTNER, H

    1965-01-01

    The growth of industrialization makes it imperative to reduce the amounts of sulfur dioxide emitted into the atmosphere. This article describes various processes for cleaning flue gases, and gives details of new methods being investigated.Wet scrubbing with water, though widely practised, has many disadvantages. Scrubbing with zinc oxide, feasible in zinc works, is more satisfactory.Dry methods use a solid absorbent; they have the advantage of a high emission temperature.Other methods are based on the addition to the fuel or the flue gases of substances such as activated metal oxides, which react with the sulfur to form compounds less harmful than sulfur dioxide. Also being investigated are a two-stage combustion system, in which the sulfur dioxide is removed in the first stage, and the injection of activated powdered dolomite into burning fuel; the resulting sulfates being removed by electrostatic precipitation.A wet catalysis process has recently been developed.Most of the cleaning processes are not yet technically mature, but first results show good efficiency and relatively low cost.

  11. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    DOEpatents

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2012-05-15

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  12. Reversed flow fluidized-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Wilson, John S.

    1984-01-01

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  13. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    SciTech Connect

    Not Available

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  14. VOC emissions from residential combustion of Southern and mid-European woods

    NASA Astrophysics Data System (ADS)

    Evtyugina, Margarita; Alves, Célia; Calvo, Ana; Nunes, Teresa; Tarelho, Luís; Duarte, Márcio; Prozil, Sónia O.; Evtuguin, Dmitry V.; Pio, Casimiro

    2014-02-01

    Emissions of trace gases (carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC)), and volatile organic compounds (VOCs) from combustion of European beech, Pyrenean oak and black poplar in a domestic woodstove and fireplace were studied. These woods are widely used as biofuel in residential combustion in Southern and mid-European countries. VOCs in the flue gases were collected in Tedlar bags, concentrated in sorbent tubes and analysed by thermal desorption-gas chromatography-flame ionisation detection (GC-FID). CO2 emissions ranged from 1415 ± 136 to 1879 ± 29 g kg-1 (dry basis). The highest emission factors for CO and THC, 115.8 ± 11.7 and 95.6 24.7 ± 6.3 g kg-1 (dry basis), respectively, were obtained during the combustion of black poplar in the fireplace. European beech presented the lowest CO and THC emission factors for both burning appliances. Significant differences in emissions of VOCs were observed among wood species burnt and combustion devices. In general the highest emission factors were obtained from the combustion of Pyrenean oak in the woodstove. Among the VOCs identified, benzene and related compounds were always the most abundant group, followed by oxygenated compounds and aliphatic hydrocarbons. The amount and the composition of emitted VOCs were strongly affected by the wood composition, the type of burning device and operating conditions. Emission data obtained in this work are useful for modelling the impact of residential wood combustion on air quality and tropospheric ozone formation.

  15. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    PubMed Central

    Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  16. Virtual Instrument for Emissions Measurement of Internal Combustion Engines.

    PubMed

    Pérez, Armando; Ramos, Rogelio; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user.

  17. Combustible dust tests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugar dust explosion in Georgia on February 7, 2008 killed 14 workers and injured many others (OSHA, 2009). As a consequence of this explosion, OSHA revised its Combustible Dust National Emphasis (NEP) program. The NEP targets 64 industries with more than 1,000 inspections and has found more tha...

  18. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The various physical processes that occur in the gas turbine combustor and the development of analytical models that accurately describe these processes are discussed. Aspects covered include fuel sprays; fluid mixing; combustion dynamics; radiation and chemistry and numeric techniques which can be applied to highly turbulent, recirculating, reacting flow fields.

  19. WASTE COMBUSTION SYSTEM ANALYSIS

    EPA Science Inventory

    The report gives results of a study of biomass combustion alternatives. The objective was to evaluate the thermal performance and costs of available and developing biomass systems. The characteristics of available biomass fuels were reviewed, and the performance parameters of alt...

  20. Spray combustion stability project

    NASA Technical Reports Server (NTRS)

    Jeng, San-Mou; Litchford, Ron J.

    1992-01-01

    This report summarizes research activity on the Spray Combustion Stability Project, characterizes accomplishments and current status, and discusses projected future work. The purpose is to provide a concise conceptual overview of the research effort to date so the reader can quickly assimilate the gist of the research results and place them within the context of their potential impact on liquid rocket engine design technology.

  1. Monopropellant combustion system

    NASA Technical Reports Server (NTRS)

    Berg, Gerald R. (Inventor); Mueller, Donn C. (Inventor); Parish, Mark W. (Inventor)

    2005-01-01

    An apparatus and method are provided for decomposition of a propellant. The propellant includes an ionic salt and an additional fuel. Means are provided for decomposing a major portion of the ionic salt. Means are provided for combusting the additional fuel and decomposition products of the ionic salt.

  2. Coal combustion research

    SciTech Connect

    Daw, C.S.

    1996-06-01

    This section describes research and development related to coal combustion being performed for the Fossil Energy Program under the direction of the Morgantown Energy Technology Center. The key activity involves the application of chaos theory for the diagnosis and control of fossil energy processes.

  3. Angular correlation studies in noble gases

    NASA Technical Reports Server (NTRS)

    Coleman, P. G.

    1990-01-01

    There has been a recent revival of interest in the measurement of angular correlation of annihilation photons from the decay of positrons and positronium in gases. This revival has been stimulated by the possibility offered by the technique to shed new light on the apparently low positronium formation fraction in the heavier noble gases and to provide information on positronium quenching processes in gases such as oxygen. There is also the potential for learning about positronium slowing down in gases. This review focuses on experimental noble gas work and considers what new information has been, and may be, gained from these studies.

  4. Fuel combustion exhibiting low NO{sub x} and CO levels

    DOEpatents

    Keller, J.O.; Bramlette, T.T.; Barr, P.K.

    1996-07-30

    Method and apparatus are disclosed for safely combusting a fuel in such a manner that very low levels of NO{sub x} and CO are produced. The apparatus comprises an inlet line containing a fuel and an inlet line containing an oxidant. Coupled to the fuel line and to the oxidant line is a mixing means for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure, into a combustion region. Coupled to the combustion region is a means for producing a periodic flow field within the combustion region to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor, a rotating band, or a rotating cylinder within an acoustic chamber positioned upstream or downstream of the region of combustion. The mixing means can be a one-way flapper valve; a rotating cylinder; a rotating band having slots that expose open ends of said fuel inlet line and said oxidant inlet line simultaneously; or a set of coaxial fuel annuli and oxidizer annuli. The means for producing a periodic flow field may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion. 14 figs.

  5. Aerodynamic properties of turbulent combustion fields

    NASA Technical Reports Server (NTRS)

    Hsiao, C. C.; Oppenheim, A. K.

    1985-01-01

    Flow fields involving turbulent flames in premixed gases under a variety of conditions are modeled by the use of a numerical technique based on the random vortex method to solve the Navier-Stokes equations and a flame propagation algorithm to trace the motion of the front and implement the Huygens principle, both due to Chorin. A successive over-relaxation hybrid method is applied to solve the Euler equation for flows in an arbitrarily shaped domain. The method of images, conformal transformation, and the integral-equation technique are also used to treat flows in special cases, according to their particular requirements. Salient features of turbulent flame propagation in premixed gases are interpreted by relating them to the aerodynamic properties of the flow field. Included among them is the well-known cellular structure of flames stabilized by bluff bodies, as well as the formation of the characteristic tulip shape of flames propagating in ducts. In its rudimentary form, the mechanism of propagation of a turbulent flame is shown to consist of: (1) rotary motion of eddies at the flame front, (2) self-advancement of the front at an appropriate normal burning speed, and (3) dynamic effects of expansion due to exothermicity of the combustion reaction. An idealized model is used to illustrate these fundamental mechanisms and to investigate basic aerodynamic features of flames in premixed gases. The case of a confined flame stabilized behind a rearward-facing step is given particular care and attention. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and reattachment length.

  6. VOC Destruction by Catalytic Combustion Microturbine

    SciTech Connect

    Tom Barton

    2009-03-10

    This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of

  7. APPARATUS FOR CATALYTICALLY COMBINING GASES

    DOEpatents

    Busey, H.M.

    1958-08-12

    A convection type recombiner is described for catalytically recombining hydrogen and oxygen which have been radiolytically decomposed in an aqueous homogeneous nuclear reactor. The device is so designed that the energy of recombination is used to circulate the gas mixture over the catalyst. The device consists of a vertical cylinder having baffles at its lower enda above these coarse screens having platinum and alumina pellets cemented thereon, and an annular passage for the return of recombined, condensed water to the reactor moderator system. This devicea having no moving parts, provides a simple and efficient means of removing the danger of accumulated hot radioactive, explosive gases, and restoring them to the moderator system for reuse.

  8. Cooling Atomic Gases With Disorder.

    PubMed

    Paiva, Thereza; Khatami, Ehsan; Yang, Shuxiang; Rousseau, Valéry; Jarrell, Mark; Moreno, Juana; Hulet, Randall G; Scalettar, Richard T

    2015-12-11

    Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a nondisordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approach the Néel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust.

  9. Electron clusters in inert gases.

    PubMed

    Nazin, S; Shikin, V

    2008-10-17

    This Letter addresses the counterintuitive behavior of electrons injected into dense cryogenic media with negative scattering length L. Instead of strongly reduced mobility at all but the lowest densities due to the polaronic effect involving the formation of density enhancement clusters (expected in the theory with a simple gas-electron interaction successfully applied earlier to electrons in helium where L>0) which should substantially decrease the electron mobility, an opposite picture is observed: with increasing |L| (the trend taking place for inert gases with the growth of atomic number) and the gas density, the electrons remain practically free. An explanation of this behavior is provided based on consistent accounting for the nonlinearity of the electron interaction with the gaseous medium in the gas atom number density.

  10. Natural outlet of flue gases

    NASA Astrophysics Data System (ADS)

    Adámek, Karel; Kolář, Jan; Peukert, Pavel

    2016-06-01

    Many incidents of poisoning all the time became due to bad natural exhaust of burnt product from heating devices. The aim of this article is to simulate some reasons of it, therefore the content is focused on some influences, only - the vertical and horizontal shape of the outlet channel, the design of the chimney cap, situation of the surrounding walls, combined with the wind influence etc. It does not solve the possible bad maintaining of both chimney and device, bad supply of the combustion air etc. As main results of simulation there is presented an optimum cap shape of the chimney and an unsuitable influence of the unsteady starting of the flow just after the burner ignition.

  11. Low emission internal combustion engine

    DOEpatents

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  12. Modelling of CWS combustion process

    NASA Astrophysics Data System (ADS)

    Rybenko, I. A.; Ermakova, L. A.

    2016-10-01

    The paper considers the combustion process of coal water slurry (CWS) drops. The physico-chemical process scheme consisting of several independent parallel-sequential stages is offered. This scheme of drops combustion process is proved by the particle size distribution test and research stereomicroscopic analysis of combustion products. The results of mathematical modelling and optimization of stationary regimes of CWS combustion are provided. During modeling the problem of defining possible equilibrium composition of products, which can be obtained as a result of CWS combustion processes at different temperatures, is solved.

  13. Continuous Processing with Mars Gases

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde; Jennings, Paul; Delgado, Hugo (Technical Monitor)

    2001-01-01

    Current Martian missions call for the production of oxygen for breathing, and fuel and oxygen for propulsion to be produced from atmospheric carbon dioxide (CO2). Adsorption and freezing are the two methods considered for capturing CO, from the atmosphere. However, the nitrogen (N2) and argon (Ar), which make up less than 5 percent of the atmosphere, cause difficulties with both of these processes by blocking the CO2, This results in the capture process rapidly changing from a pressure driven process to a diffusion controlled process. To increase the CO, capture rates, some type of mechanical pump is usually proposed to remove the N2 and Ar. The N2 and Ar are useful and have been proposed for blanketing and pressurizing fuel tanks and as buffer gas for breathing air for manned missions. Separation of the Martian gases with the required purity can be accomplished with a combination of membranes. These membrane systems do not require a high feed pressure and provide suitable separation. Therefore, by use of the appropriate membrane combination with the Martian atmosphere supplied by a compressor a continuous supply of CO2 for fuel and oxygen production can be supplied. This phase of our program has focused on the selection of the membrane system. Since permeation data for membranes did not exist for Martian atmospheric pressures and temperatures, this information had to be compiled. The general trend as the temperature was lowered was for the membranes to become more selective. In addition, the relative permeation rates between the three gases changed with temperature. The end result was to provide design parameters that could be used to separate CO2 from N2 and Ar. This paper will present the membrane data, provide the design requirements for a compressor, and compare the results with adsorption and freezer methods.

  14. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  15. Time Resolved FTIR Analysis of Combustion of Ethanol and Gasoline Combustion in AN Internal Combustion Engine

    NASA Astrophysics Data System (ADS)

    White, Allen R.; Sakai, Stephen; Devasher, Rebecca B.

    2011-06-01

    In order to pursue In Situ measurements in an internal combustion engine, a MegaTech Mark III transparent spark ignition engine was modified with a sapphire combustion chamber. This modification will allow the transmission of infrared radiation for time-resolved spectroscopic measurements by an infrared spectrometer. By using a Step-scan equipped Fourier transform spectrometer, temporally resolved infrared spectral data were acquired and compared for combustion in the modified Mark III engine. Measurements performed with the FTIR system provide insight into the energy transfer vectors that precede combustion and also provides an in situ measurement of the progress of combustion. Measurements were performed using ethanol and gasoline.

  16. Combustion efficiency and hydrocarbon emissions from charcoal production kilns in the tropics

    SciTech Connect

    Ward, D.E.; Hao, W.M.; Babbitt, R.E.

    1995-12-01

    Charcoal is one of the major energy resources in tropical countries. We investigate the combustion processes in charcoal production kilns in Zambia and Brazil. The Zambian kilns were made of earth and there was sufficient air for combustion inside the kilns. The Brazilian kilns were made of bricks which limited the available oxygen. The combustion efficiency and the concentrations of CO{sub 2}, CO, CH{sub 4}, C{sub 2}-C{sub 6} alkanes and alkenes, and aromatic compounds produced were monitored throughout the combustion processes. The contributions of charcoal production processes to the atmospheric sources of these gases were estimated. The strategies for improving charcoal yield and reducing emissions of carbon-containing compounds are discussed.

  17. Pyrolysis and combustion of oil palm stone and palm kernel cake in fixed-bed reactors.

    PubMed

    Razuan, R; Chen, Q; Zhang, X; Sharifi, V; Swithenbank, J

    2010-06-01

    The main objective of this research was to investigate the main characteristics of the thermo-chemical conversion of oil palm stone (OPS) and palm kernel cake (PKC). A series of combustion and pyrolysis tests were carried out in two fixed-bed reactors. The effects of heating rate at the temperature of 700 degrees C on the yields and properties of the pyrolysis products were investigated. The results from the combustion experiments showed that the burning rates increased with an increase in the air flow rate. In addition, the FLIC code was used to simulate the combustion of the oil palm stone to investigate the effect of primary air flow on the combustion process. The FLIC modelling results were in good agreement with the experimental data in terms of predicting the temperature profiles along the bed height and the composition of the flue gases.

  18. 40 CFR 91.312 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Analytical gases. 91.312 Section 91.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. Record the expiration...

  19. 40 CFR 90.312 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Analytical gases. 90.312 Section 90.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... § 90.312 Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. The...

  20. 40 CFR 90.312 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Analytical gases. 90.312 Section 90.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Provisions § 90.312 Analytical gases. (a) The shelf life of a calibration gas may not be exceeded....

  1. 40 CFR 91.312 - Analytical gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) (Oxygen content between 18-21 percent vol.) (c) Calibration and span gases. (1) Calibration gas values are... purified nitrogen. Note: For the HFID or FID, the manufacturer may choose to use as a diluent span gas and... calibration and span gases. If a manufacturer chooses to use C3 H8 and purified nitrogen for the...

  2. 40 CFR 90.312 - Analytical gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and span gases. (1) Calibration gas values are to be derived from NIST “Standard Reference Materials... or FID the manufacturer may choose to use as a diluent span gas and the calibration gas either... choice of diluent (zero air or purified nitrogen) between the calibration and span gases. If...

  3. Facilitating Conceptual Change in Gases Concepts

    ERIC Educational Resources Information Center

    Cetin, Pinar Seda; Kaya, Ebru; Geban, Omer

    2009-01-01

    The aim of this study is to investigate the effectiveness of conceptual change oriented instruction (CCOI) over traditionally designed chemistry instruction (TDCI) on overcoming 10th grade students' misconceptions on gases concepts. In addition, the effect of gender difference on students' understanding of gases concepts was investigated. The…

  4. Kinetic Theory of Reactive Molecular Gases

    DTIC Science & Technology

    2009-09-01

    quantities as local averages of various properties of elementary particles (molecules, atoms, ions ,…) and by taking into account their interactions...GASES 4.1 (WNE)V+(SNE)C Case We consider dissociating polyatomic gases; as generally the characteristic chemical times are larger than vibrational

  5. Predict thermal conductivities of pure gases

    SciTech Connect

    Weber, J.H.

    1981-01-01

    The programs presented for the TI-59 programmable calculator can determine the thermal conductivity of pure gases and gases at low pressures as well as the effect of pressure on conductivity. They are based on correlations by Eucken, Stiel-Thodos, Misic-Thodos, Roy-Thodos, and Redlich-Kwong.

  6. A Pilot-Scale Evaluation of a New Technology to Control NO(x) Emissions from Boilers at KSC: Hydrogen Peroxide Injection into Boiler Flue Gases Followed by Wet Scrubbing of Acid Gases

    NASA Technical Reports Server (NTRS)

    Cooper, C. David

    1997-01-01

    Emissions of nitrogen oxides NO(x) are a significant problem in the United States. NO(x) are formed in any combustion process, therefore it is not surprising that NO(x) are emitted from the boilers at KSC. Research at UCF has shown (in the laboratory) that injecting H2O2 into hot simulated flue gases can oxidize the NO and NO2 to their acid gas forms, HNO2 and HNO3, respectively. These acid gases are much more water soluble than their counterparts, and theoretically can be removed easily by wet scrubbing. This technology was of interest to NASA, both for their boilers at KSC, and for their combustion sources elsewhere. However, it was necessary to field test the technology and to provide pilot-scale data to aid in design of full-scale facilities. Hence this project was initiated in May of 1996.

  7. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2005-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run the first set of experiments with actual coal combustion gases with two different strains of microalgae. In addition further, full scale carbon sequestration tests with propane combustion gases were conducted. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns.

  8. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2004-12-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run the first set of experiments with actual coal combustion gases with two different strains of microalgae. In addition further, full scale carbon sequestration tests with propane combustion gases were conducted. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns.

  9. CLEANING OF FLUE GASES FROM WASTE COMBUSTORS

    EPA Science Inventory

    The paper addresses flue gas cleaning processes currently used commercially in waste combustion facilities. It also discusses the operating concepts of dry, semi-dry, and wet processes and their effectiveness in controlling various pollutants. Air pollutants from the combustion o...

  10. Combustion characteristics of hydrogen-carbon monoxide based gaseous fuels

    NASA Technical Reports Server (NTRS)

    White, D. J.; Kubasco, A. J.; Lecren, R. T.; Notardonato, J. J.

    1982-01-01

    The results of trials with a staged combustor designed to use coal-derived gaseous fuels and reduce the NO(x) emissions from nitrogen-bound fuels to 75 ppm and 37 ppm without bound nitrogen in 15% O2 are reported. The combustor was outfitted with primary zone regenerative cooling, wherein the air cooling the primary zone was passed into the combustor at 900 F and mixed with the fuel. The increase in the primary air inlet temperature eliminated flashback and autoignition, lowered the levels of CO, unburned hydrocarbons, and smoke, and kept combustion efficiencies to the 99% level. The combustor was also equipped with dual fuel injection to test various combinations of liquid/gas fuel mixtures. Low NO(x) emissions were produced burning both Lurgi and Winkler gases, regardless of the inlet pressure and temperature conditions. Evaluation of methanation of medium energy gases is recommended for providing a fuel with low NO(x) characteristics.

  11. Heavily fractionated noble gases in an acid residue from the Klein Glacier 98300 EH3 chondrite

    NASA Astrophysics Data System (ADS)

    Nakashima, Daisuke; Ott, Ulrich; El Goresy, Ahmed; Nakamura, Tomoki

    2010-09-01

    Noble gases were measured both in bulk samples (stepped pyrolysis and total extraction) and in a HF/HCl residue (stepped pyrolysis and combustion) from the Klein Glacier (KLE) 98300 EH3 chondrite. Like the bulk meteorite and as seen in previous studies of bulk type 3 E chondrites ("sub-Q"), the acid residue contains elementally fractionated primordial noble gases. As we show here, isotopically these are like those in phase-Q of primitive meteorites, but elementally they are heavily fractionated relative to these. The observed noble gases are different from "normal" Q noble gases also with respect to release patterns, which are similar to those of Ar-rich noble gases in anhydrous carbonaceous chondrites and unequilibrated ordinary chondrites (with also similar isotopic compositions). While we cannot completely rule out a role for parent body processes such as thermal and shock metamorphism (including a later thermal event) in creating the fractionated elemental compositions, parent body processes in general seem not be able to account for the distinct release patterns from those of normal Q noble gases. The fractionated gases may have originated from ion implantation from a nebular plasma as has been suggested for other types of primordial noble gases, including Q, Ar-rich, and ureilite noble gases. With solar starting composition, the corresponding effective electron temperature is about 5000 K. This is lower than inferred for other primordial noble gases (10,000-6000 K). Thus, if ion implantation from a solar composition reservoir was a common process for the acquisition of primordial gas, electron temperatures in the early solar system must have varied spatially or temporally between 10,000 and 5000 K. Neon and xenon isotopic ratios of the residue suggest the presence of presolar silicon carbide and diamond in abundances lower than in the Qingzhen EH3 and Indarch EH4 chondrites. Parent body processes including thermal and shock metamorphism and a late thermal

  12. Combustion engine system

    NASA Technical Reports Server (NTRS)

    Houseman, John (Inventor); Voecks, Gerald E. (Inventor)

    1986-01-01

    A flow through catalytic reactor which selectively catalytically decomposes methanol into a soot free hydrogen rich product gas utilizing engine exhaust at temperatures of 200 to 650 C to provide the heat for vaporizing and decomposing the methanol is described. The reactor is combined with either a spark ignited or compression ignited internal combustion engine or a gas turbine to provide a combustion engine system. The system may be fueled entirely by the hydrogen rich gas produced in the methanol decomposition reactor or the system may be operated on mixed fuels for transient power gain and for cold start of the engine system. The reactor includes a decomposition zone formed by a plurality of elongated cylinders which contain a body of vapor permeable, methanol decomposition catalyst preferably a shift catalyst such as copper-zinc.

  13. Stratified combustion engine

    SciTech Connect

    Solheim, R.G.

    1987-03-17

    The method is described of operating an internal combustion engine having a cylinder with an inner wall. The method comprises admitting, adjacent to the inner wall of the cylinder, a quantity of substantially pure air in a spirally rapidly rotating layer and directing all of the quantity uniformly coaxially relative to the cylinder and toward and against only the adjacent inner wall of the cylinder, and held thereat by Coanda effect and centrifugal force. This is done while also admitting a quantity of fuel mixture in a non-rotating and non-turbulent manner between the layer of rotating pure air and the longitudinal axis of the cylinder, compressing the rotating pure air and the non-rotating fuel mixture simultaneously and firing the non-rotating fuel mixture and exhausting the products of combustion and pure air uniformly coaxially relative to the cylinder and only from a region adjacent to the inner wall and uniformly and completely from the inner wall.

  14. Dynamic features of combustion

    NASA Technical Reports Server (NTRS)

    Oppenheim, A. K.

    1985-01-01

    The dynamic features of combustion are discussed for four important cases: ignition, inflammation, explosion, and detonation. Ignition, the initiation of a self-sustained exothermic process, is considered in the simplest case of a closed thermodynamic system and its stochastic distribution. Inflammation, the initiation and propagation of self-sustained flames, is presented for turbulent flow. Explosion, the dynamic effects caused by the deposition of exothermic energy in a compressible medium, is illustrated by self-similar blast waves with energy deposition at the front and the adiabatic non-self-similar wave. Detonation, the most comprehensive illustration of all the dynamic effects of combustion, is discussed with a phenomenological account of the development and structure of the wave.

  15. Research of medical gases in Poland

    PubMed Central

    2013-01-01

    Research of medical gases is well established in Poland and has been marked with the foundation of several professional societies. Numerous academic centers including those dealing with hyperbaric and diving medicine conduct studies of medical gases, in vast majority supported with intramural funds. In general, Polish research of medical gases is very much clinical in nature, covering new applications and safety of medical gases in medicine; on the other hand there are several academic centers pursuing preclinical studies, and elaborating basic theories of gas physiology and mathematical modeling of gas exchange. What dominates is research dealing with oxygen and ozone as well as studies of anesthetic gases and their applications. Finally, several research directions involving noble gas, hydrogen and hydrogen sulfide for cell protection, only begin to gain recognition of basic scientists and clinicians. However, further developments require more monetary spending on research and clinical testing as well as formation of new collective bodies for coordinating efforts in this matter. PMID:23916016

  16. Supersonic Combustion Ramjet Research

    DTIC Science & Technology

    2012-08-01

    4.2 Ignition, Flameholding, and Flame Propagation in Supersonic Flows ......................... 18 4.2.1 Plasma -Assisted Ignition and Flameholding...high- speed flows), plasma -assisted combustion, flameholding (particularly in a high-speed flow), and development and application of diagnostic...Flameholding, and Flame Propagation in Supersonic Flows 4.2.1 Plasma -Assisted Ignition and Flameholding Key questions that have guided this

  17. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  18. Spray combustion stability project

    NASA Technical Reports Server (NTRS)

    Jeng, San-Mou; Litchford, Ron J.

    1990-01-01

    This report summarizes research activity on the Spray Combustion Stability Project, characterizes accomplishments and current status, and discusses projected future work. The purpose is to provide a concise conceptual overview of the research effort so the reader can quickly assimilate the gist of the research results and place them within the context of their potential impact on liquid rocket engine design technology. Therefore, this report does not elaborate on many of the detailed technical aspects of the research program.

  19. Industrial Combustion Coordinated Rulemaking.

    PubMed

    Melton, Lula H

    1996-08-01

    The following article is excerpted from the document Industrial Combustion Coordinated Rulemaking - Proposed Organizational Structure and Process, which is available from the Technology Transfer Network (TTN), a computer bulletin board. To access the TTN, call (919) 541-5742; to obtain help with the TTN, call (919) 541-5384. The Industrial Combustion Coordinated Rulemaking (ICCR) document is evolving, reflecting an ongoing dialogue with various stakeholders; therefore, there may be changes between this article and the ICCR as it is implemented. EPA would like to thank all stakeholders (e.g., representatives from various companies and trade associations, state and local air pollution control agencies, and environmental organizations) who have offered suggestions and comments on development of the ICCR. As mentioned in the implications statement, the overall goal of the ICCR is to develop a unified set of federal air emissions regulations. The proposed ICCR will achieve this goal by: • Obtaining active participation from stakeholders, including environmental groups, regulated industries, and state and local regulatory agencies in all phases of regulatory development. • Coordinating the schedule and approach for development of regulations under Sections 111, 112, and 129 of the Clean Air Act that affect ICI combustion. • Determining the most effective ways to address the environmental issues associated with toxic and criteria pollutants from the range of combustion sources. • More effectively considering interactions among the regulations by analyzing the combined benefits and economic impacts of the group of Section 111, 112, and 129 regulations. • Considering strategies to simplify the regulations and allow flexibility in the methods of compliance while maintaining full environmental benefits.

  20. Combustion Characteristics of Sprays

    DTIC Science & Technology

    1989-08-01

    regarded by implication or otherwise, or in any way licensing the holder or any other person or corporation, or conveying any rights or permission to...00 _’N 1. TI TLE inctuat Security CZaaafication5 Combustion Characteristics of Sprays 12. PERSONAL AUTHOR(S) Sohrab, Siavash H. 13& TYPE OF REPORT...to ?!HF of rich butane/air 3unsen flames. .lso, the rotacion speed and :he oerodic temDeracure fluc:uations of rotacfng ?HF are examined. :’!naily

  1. Combustible Cartridge Case Characterization

    DTIC Science & Technology

    1984-02-01

    University (NYU) has resulted in the selection of two cross-linked melamine / formaldehyde acrylic styrene resin systems that can be used in the beater additive... melamine resin Akaradit II stabilizer 20. ABSTRACT (con) Test coupons of combustible cartridge case material were fabricated using these recommended...and agitated for 30 min before the pH was slowly lowered to 3 with p-toluene sulfonic acid. In order to maintain this pH in the felting tank, it was

  2. Spontaneous combustion of hydrogen

    NASA Technical Reports Server (NTRS)

    Nusselt, Wilhelm; Pothmann, PH

    1923-01-01

    It is shown by the author's experiments that hydrogen which escapes to the atmosphere through openings in the system may burn spontaneously if it contains dust. Purely thermal reasoning can not account for the combustion. It seems to be rather an electrical ignition. In order to determine whether the cause of the spontaneous ignition was thermo-chemical, thermo-mechanical, or thermo-electrical, the experiments in this paper were performed.

  3. Gas-deposit-alloy corrosion interactions in simulated combustion environments

    NASA Astrophysics Data System (ADS)

    Luer, Kevin Raymond

    High temperature corrosion in aggressive coal combustion environments involves simultaneous corrosion reactions between combustion gases, ash deposits, and alloys. This research investigated the behavior of a ferritic steel (SA387-Gr11) and three weld claddings (309L SS, Alloy 72, and Alloy 622) in five combustion environments beneath solid deposits at 500°C for up to 1000 hours. The synthetic gases consisted of N2-CO-CO-H2-H2O-H 2S-SO2 mixtures that simulated a range of fuel-rich or fuel-lean combustion environments with a constant sulfur content. The synthetic deposits contained FeS2, FeS, Fe3O4 and/or carbon. Reaction kinetics was studied in individual gas-metal, gas deposit, and deposit-alloy systems. A test method was developed to investigate simultaneous gas-deposit-metal corrosion reactions. The results showed reaction kinetics varied widely, depending on the gas-alloy system and followed linear, parabolic, and logarithmic rate laws. Under reducing conditions, the alloys exhibited a range of corrosion mechanisms including carburization-sulfidation, sulfidation, and sulfidation-oxidation. Most alloys were not resistant to the highly reducing gases but offered moderate resistance to mixed oxidation-sulfidation by demonstrating parabolic or logarithmic behavior. Under oxidizing conditions, all of the alloys were resistant. Under oxidizing-sulfating conditions, alloys with high Fe or Cr contents sulfated whereas an alloy containing Mo and W was resistant. In the gas-deposit-metal tests, FeS2-bearing deposits were extremely corrosive to low alloy steel under both reducing and oxidizing conditions but they had little influence on the weld claddings. Accelerated corrosion was attributed to rapid decomposition or oxidation of FeS2 particles that generated sulfur-rich gases above the alloy surface. In contrast, FeS-type deposits had no influence under reducing conditions but they were aggressive to low alloy steel under oxidizing conditions. The extent of damage

  4. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    SciTech Connect

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  5. Internal combustion engine using premixed combustion of stratified charges

    DOEpatents

    Marriott, Craig D.; Reitz, Rolf D. (Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  6. Thermogravimetric characterization of dairy manure as pyrolysis and combustion feedstocks.

    PubMed

    Wu, Hanjing; Hanna, Milford A; Jones, David D

    2012-10-01

    Thermogravimetric analysis was used to examine the thermal behavior of dairy manure as a pyrolysis and combustion feedstock. Nitrogen and air were used as purging gases to analyze the pyrolysis and combustion reactions, respectively, and heating rates of 20°C min(-1), 40°C min(-1) and 60°C min(-1) were applied. An Arrhenius model was used to estimate the kinetic parameters (activation energy, reaction order and pre-exponential factor). Results showed four steps for both the pyrolysis and the combustion reactions, with the second step being the most critical one and during which most thermal decomposition of cellulose, hemicelluloses, starch and protein occurred. Thermochemical reactions were determined mainly by temperature. Heating rate influenced the start and the end of the thermal conversions. The activation energies for the two major reaction zones were 93.63 kJ mol(-1) and 84.53 kJ mol(-1) for pyrolysis, and 83.03 kJ mol(-1) and 55.65 kJ mol(-1) for combustion. Knowledge of the thermal behavior of dairy manure provides guidelines for future energy utilization.

  7. Strobes: an oscillatory combustion.

    PubMed

    Corbel, Justine M L; Lingen, Joost N J; Zevenbergen, John F; Gijzeman, Onno L J; Meijerink, Andries

    2012-04-26

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the beginning of the 20th century. However, the chemical and physical processes involved in this curious oscillatory combustion remain unknown. Several theories have been proposed: One claims that two different reactions occur: one during the slow dark phase and another during the fast flash phase. The alternation between the phases is ascribed to heat variations. Other theories suggest that the formation of intermediate species during the dark phase and the change of phase are caused by variations in their concentration. A ternary strobe composition with ammonium perchlorate, magnalium, and barium sulfate is analyzed. The role of barium sulfate is studied by replacing it by other metal sulfates that have different physical properties (melting points), and the burning of the compositions is recorded with a high-speed camera and a spectrometer coupled with a charge-coupled device (CCD) camera. Experimental results show noticeable differences in the physical and chemical processes involved in the strobe reactions.

  8. Droplet Combustion Experiment (DCE)

    NASA Technical Reports Server (NTRS)

    Haggard, John B., Jr.; Nayagan, Vedha; Dryer, Frederick L.; Williams, Forman A.

    1998-01-01

    The first space-based experiments were performed on the combustion of free, individual liquid fuel droplets in oxidizing atmospheres. The fuel was heptane, with initial droplet diameters ranging about from 1 mm to 4 mm. The atmospheres were mixtures of helium and oxygen, at pressures of 1.00, 0.50 and 0.25 bar, with oxygen mole fractions between 20% and 40%, as well as normal Spacelab cabin air. The temperatures of the atmospheres and of the initial liquid fuel were nominally 300 K. A total of 44 droplets were burned successfully on the two flights, 8 on the shortened STS-83 mission and 36 on STS-94. The results spanned the full range of heptane droplet combustion behavior, from radiative flame extinction at larger droplet diameters in the more dilute atmospheres to diffusive extinction in the less dilute atmospheres, with the droplet disappearing prior to flame extinction at the highest oxygen concentrations. Quasisteady histories of droplet diameters were observed along with unsteady histories of flame diameters. New and detailed information was obtained on burning rates, flame characteristics and soot behavior. The results have motivated new computational and theoretical investigations of droplet combustion, improving knowledge of the chemical kinetics, fluid mechanics and heat and mass transfer processes involved in burning liquid fuels.

  9. Driven fragmentation of granular gases.

    PubMed

    Cruz Hidalgo, Raúl; Pagonabarraga, Ignacio

    2008-06-01

    The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the long velocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f(c) approximately exp(-cn) , with n approximately 1.2 , regarding less the fragmentation mechanisms.

  10. Cooling Atomic Gases With Disorder

    NASA Astrophysics Data System (ADS)

    Scalettar, Richard

    Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a non-disordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approach the Neél temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust. Thereza Paiva, Ehsan Khatami, Shuxiang Yang, Valery Rousseau, Mark Jarrell, Juana Moreno, Randall G. Hulet, and Richard T. Scalettar, arXiv:1508.02613 This work was supported by the NNSA SSAA program.

  11. Greenhouse Trace Gases in Deadwood

    NASA Astrophysics Data System (ADS)

    Covey, Kristofer; Bueno de Mesquita, Cliff; Oberle, Brad; Maynard, Dan; Bettigole, Charles; Crowther, Thomas; Duguid, Marlyse; Steven, Blaire; Zanne, Amy; Lapin, Marc; Ashton, Mark; Oliver, Chad; Lee, Xuhui; Bradford, Mark

    2016-04-01

    Deadwood, long recognized as playing an important role in carbon cycling in forest ecosystems, is more recently drawing attention for its potential role in the cycling of other greenhouse trace gases. We report data from four independent studies measuring internal gas concentrations in deadwood in in three Quercus dominated upland forest systems in the Northeastern and Central United States. Mean methane concentrations in deadwood were 23 times atmospheric levels, indicating a lower bound, mean radial wood surface area flux of ~6 x 10-4 μmol CH4 m-2 s-1. Site, decay class, diameter, and species were all highly significant predictors of methane abundance in deadwood, and log diameter and decay stage interacted as important controls limiting methane concentrations in the smallest and most decayed logs. Nitrous oxide concentrations were negatively correlated with methane and on average ~25% lower than ambient, indicating net consumption of nitrous oxide. These data suggest nonstructural carbohydrates fuel archaeal methanogens and confirm the potential for widespread in situ methanogenesis in both living and deadwood. Applying this understanding to estimate methane emissions from microbial activity in living trees implies a potential global flux of 65.6±12.0 Tg CH4 yr-1, more than 20 times greater than currently considered.

  12. Atomtronics with Ultracold Bose Gases

    NASA Astrophysics Data System (ADS)

    Ott, Herwig

    Neutral atom systems can exhibit similar transport properties like solid state devices. For instance, a neutral atom current is induced by a difference in chemical potential very much in the same way as a voltage drives an electric current. Employing Bose-Einstein condensed atomic gases allows observing superfluid transport phenomena, thus drawing connections to superconductivity. With help of light fields, the atomic current can additionally be guided in engineered potential landscapes in which one can also incorporate tunneling junctions. Eventually, the different components and elements can be integrated in atomtronic circuits which shed light on fundamental transport properties of many-body quantum systems. In this talk, I will present two fundamental atomtronic devices. The first is the observation of negative differential conductivity, which occurs at a multimode tunneling junction for ultracold atoms. The second is the appearance of a DC Josephson current in a biased tunneling junction, which features bistable transport characteristics. I will discuss the prospects of these basic elements for more complex atomtronic circuits.

  13. Feedback control of combustion oscillations in combustion chambers

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Wang, Jing; Li, Dong-hai; Zhu, Min; Xue, Ya-li

    2010-11-01

    Model-based algorithms are generally employed in active control of combustion oscillations. Since practical combustion processes consist of complex thermal and acoustic couplings, their accurate models and parameters may not be obtained in advance economically, a model free controller is necessary for the control of thermoacoustic instabilities. Active compensation based control algorithm is applied in the suppression of combustion instabilities. Tuning the controller parameters on line, the amplitudes of the acoustic waves can be modulated to desired values. Simulations performed on a control oriented, typical longitudinal oscillations combustor model illustrate the controllers' capability to attenuate combustion oscillations.

  14. Combustion of dense streams of coal particles. Final report, August 29, 1990--February 28, 1994

    SciTech Connect

    Annamalai, K.; Gopalakrishnan, C.; Du, X.

    1994-05-01

    The USA consumes almost 94 quads of energy (1 quad = 10{sup 15} BTU or 1.05 {times} 10{sup 15} KJ). The utilities account for about 30 quads of fossil energy where coal is predominantly used as energy source. The coal is ground to finer size and fired into the boiler as dense suspension. Under dense conditions, the particles burn at slower rate due to deficient oxygen within the interparticle spacing. Thus interactions exist amongst the particles for dense clouds. While the earlier literature dealt with combustion processes of isolated particles, the recent research focusses upon the interactive combustion. The interactive combustion studies include arrays consisting of a finite number of particles, and streams and clouds of a large number of particles. Particularly stream combustion models assume cylindrical geometry and predict the ignition and combustion characteristics. The models show that the ignition starts homogeneously for dense streams of coal particles and the ignition time show a minimum as the stream denseness is increased, and during combustion, there appears to be an inner flame within the stream and an outer flame outside the stream for a short period of time. The present experimental investigation is an attempt to verify the model predictions. The set-up consists of a flat flame burner for producing hot vitiated gases, a locally fluidizing feeder system for feeding coal particles, a particle collection probe for collecting particles and an image processing system for analyzing the flame structure. The particles are introduced as a stream into the hot gases and subsequently they ignite and burn. The ash % of fired and collected particles are determined and used to estimate the gasification efficiency or burnt fraction. The parametric studies include gas temperature, oxygen % in gases, residence time, and A:F ratio of the stream.

  15. Preliminary thermodynamic study for an efficient turbo-blower external combustion Rankine cycle

    NASA Astrophysics Data System (ADS)

    Romero Gómez, Manuel; Romero Gómez, Javier; Ferreiro Garcia, Ramón; Baaliña Insua, Álvaro

    2014-08-01

    This research paper presents a preliminary thermodynamic study of an innovative power plant operating under a Rankine cycle fed by an external combustion system with turbo-blower (TB). The power plant comprises an external combustion system for natural gas, where the combustion gases yield their thermal energy, through a heat exchanger, to a carbon dioxide Rankine cycle operating under supercritical conditions and with quasi-critical condensation. The TB exploits the energy from the pressurised exhaust gases for compressing the combustion air. The study is focused on the comparison of the combustion system's conventional technology with that of the proposed. An energy analysis is carried out and the effect of the flue gas pressure on the efficiency and on the heat transfer in the heat exchanger is studied. The coupling of the TB results in an increase in efficiency and of the convection coefficient of the flue gas with pressure, favouring a reduced volume of the heat exchanger. The proposed innovative system achieves increases in efficiency of around 12 % as well as a decrease in the heat exchanger volume of 3/5 compared with the conventional technology without TB.

  16. Energy Conversion and Combustion Sciences

    DTIC Science & Technology

    2012-03-08

    Rotational /Continuous Detonation • Only Single Initiation needed (Circumvent Initiation/DDT difficulty/loss in PDE ) • 10-100x cycle rate increase • Near...new fuels: 1. Rotational or Continuous Detonation (intense/concentrated combustion); 2. Flameless combustion (distributed combustion process...Steady Exit Flow *CFD Courtesy of NRL Rotational Detonation : (PI: Schauer, AFRL/RZ, working with NRL) Rotational Approach Allows Continuous

  17. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis.

    PubMed

    Daw, C S; Finney, C E A; Kaul, B C; Edwards, K D; Wagner, R M

    2015-02-13

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel economy. One new advanced engine strategy ustilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy in the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.

  18. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis

    SciTech Connect

    Daw, C. Stuart; Finney, Charles E. A.; Kaul, Brian C.; Edwards, Kevin Dean; Wagner, Robert M.

    2014-12-29

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel-economy. One new advanced engine strategy utilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy in the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.

  19. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis

    DOE PAGES

    Daw, C. Stuart; Finney, Charles E. A.; Kaul, Brian C.; ...

    2014-12-29

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel-economy. One new advanced engine strategy utilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy inmore » the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.« less

  20. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.

    PubMed

    Tang, Shunlin; Feng, Xinbin; Qiu, Jianrong; Yin, Guoxun; Yang, Zaichan

    2007-10-01

    Although China has been regarded as one of the largest anthropogenic mercury emission source with coal combustion, so far the actual measurements of Hg species and Hg emissions from the combustion and the capture of Hg in Chinese emission control devices were very limited. Aiming at Hg mercury species measurements in Guiyang, the capital city of Guizhou province in Southwest China, we studied flue gases of medium-to-small-sized industrial steam coal-firing boiler (10-30 t/h) with no control devices, medium-to-small-sized industrial steam coal-firing boiler with WFGD and large-scale coal combustion with ESPs using Ontario Hytro method. We obtained mercury emission factors of the three representative coal combustion and estimated mercury emissions in Guiyang in 2003, as well as the whole province from 1986 to 2002. Coal combustion in Guiyang emitted 1898 kg mercury to the atmosphere, of which 36% Hg is released from power plants, 41% from industrial coal combustion, and 23% from domestic users, and 267 kg is Hg(p), 813 kg is Hg(2+) and 817 kg is Hg0. Mercury emission in Guizhou province increased sharply from 5.8 t in 1986 to 16.4 t in 2002. With the implementation of national economic strategy of China's Western Development, the annual mercury emission from coal combustion in the province is estimated to be about 32 t in 2015.

  1. Numerical prediction of radiative heat transfer in reciprocating superadiabatic combustion in porous media.

    PubMed

    Du, Liming; Xie, Maozhao

    2011-06-01

    A numerical study of Reciprocating Superadiabatic Combustion of Premixed gases in porous media (hereafter, referred to as RSCP) is performed. In this system the transient combustion of methane-air mixture is stabilized in a porous media combustor by periodically switching flow directions. The mass, momentum, energy and species conservation equations are solved using a two-dimensional control volume method. Local thermal non-equilibrium between the gas and the solid phases is considered by solving separate energy equations for the two phases and coupling them through a convective heat transfer coefficient. The porous media is assumed to emit, absorb and isotropically scatter radiation. The influences of the dominating operating parameters, such as filtration velocity, equivalence ratio and half cycle on the temperature profile, heat release rate, radiant flux, radiant efficiency and combustion efficiency are discussed. The results show that coupling calculating of flow field, combustion reaction and volume radiation of the optically thick media is successively achieved and heat radiation plays an important role in the overall performance of the burner. The temperature profile inside the RSCP combustor has a typical trapezoidal shape and the profile of radiation flux is similar to sinusoidal shape. Compared with the conventional premixed combustion in porous medium, combustion behavior in RSCP combustor is superior, such as better thermal structure and higher radiation efficiency and combustion efficiency.

  2. Mercury speciation and emissions from coal combustion in Guiyang, southwest China

    SciTech Connect

    Tang, S.L.; Feng, X.B.; Qiu, H.R.; Yin, G.X.; Yang, Z.C.

    2007-10-15

    Although China has been regarded as one of the largest anthropogenic mercury emission source with coal combustion, so far the actual measurements of Hg species and Hg emissions from the combustion and the capture of Hg in Chinese emission control devices were very limited. Aiming at Hg mercury species measurements in Guiyang, the capital city of Guizhou province in Southwest China, we studied flue gases of medium-to-small-sized industrial steam coal-firing boiler (10-30 t/h) with no control devices, medium-to-small-sized industrial steam coal-firing boiler with WFGD and large-scale coal combustion with ESPs using Ontario Hytro method. We obtained mercury emission factors of the three representative coal combustion and estimated mercury emissions in Guiyang in 2003, as well as the whole province from 1986 to 2002. Coal combustion in Guiyang emitted 1898 kg mercury to the atmosphere, of which 36% Hg is released from power plants, 41% from industrial coal combustion, and 23% from domestic users, and 267 kg is Hg{sup P}, 813 kg is Hg{sup 2+} and 817 kg is Hg{sup 0}. Mercury emission in Guizhou province increased sharply from 5.8 t in 1986 to 16.4 t in 2002. With the implementation of national economic strategy of China's Western Development, the annual mercury emission from coal combustion in the province is estimated to be about 32 t in 2015.

  3. Combustion of various types of residues in a circulating fluidized bed combustor

    SciTech Connect

    Gulyurtlu, I.; Frade, E.; Lopes, H.; Figueiredo, F.; Cabrita, I.

    1997-12-31

    Combustion studies of different wastes alone or mixed were undertaken in an atmospheric circulating fluidized bed. The combustor was operated over a temperature range of 700 to 1,000 C. The residues studied included biomass, tyres, and oil sludges. The main parameters that were investigated are (1) where and how to feed residues, (2) the ratios of amounts of residues when they are burned mixed, (3) air staging, and (4) excess air levels along the riser. The main conclusions are: (1) a large variation in the combustion efficiency was observed depending on the fuel, its particle size and where the fuel was fed in the combustor, (2) in the case of the use of mixture of wastes the utilization of biomass residues as the base fuel increased their combustion efficiency and resulted in very stable combustion conditions, (3) temperature appeared to be still very influential in reducing the levels of unburned carbon and hydrocarbons released from residues, and (4) the air staging in the freeboard improved combustion efficiency by enhancing the combustion of volatiles released from residues in the riser and produced lower emissions of both NO{sub x}. Particles collected in the cyclone and those removed from the bed were also analyzed to determine the levels of heavy metals. When oil sludge was added, high amounts of very fine particles of heavy metals were observed in the combustion gases.

  4. Energy recycling by co-combustion of coal and recovered paint solids from automobile paint operations

    SciTech Connect

    Achariya Suriyawong; Rogan Magee; Ken Peebles; Pratim Biswas

    2009-05-15

    This paper presents the results of an experimental study of particulate emission and the fate of 13 trace elements (arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), copper (Cu), cobalt (Co), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), mercury (Hg), vanadium (V), and zinc (Zn)) during combustion tests of recovered paint solids (RPS) and coal. The emissions from combustions of coal or RPS alone were compared with those of co-combustion of RPS with subbituminous coal. The distribution/partitioning of these toxic elements between a coarse-mode ash (particle diameter (d{sub p}) > 0.5 {mu}m), a submicrometer-mode ash (d{sub p} < 0.5 {mu}m), and flue gases was also evaluated. Submicrometer particles generated by combustion of RPS alone were lower in concentration and smaller in size than that from combustion of coal. However, co-combustion of RPS and coal increased the formation of submicrometer-sized particles because of the higher reducing environment in the vicinity of burning particles and the higher volatile chlorine species. Hg was completely volatilized in all cases; however, the fraction in the oxidized state increased with co-combustion. Most trace elements, except Zn, were retained in ash during combustion of RPS alone. Mo was mostly retained in all samples. The behavior of elements, except Mn and Mo, varied depending on the fuel samples. As, Ba, Cr, Co, Cu, and Pb were vaporized to a greater extent from cocombustion of RPS and coal than from combustion of either fuel. Evidence of the enrichment of certain toxic elements in submicrometer particles has also been observed for As, Cd, Cr, Cu, and Ni during co-combustion. 27 refs., 6 figs., 5 tabs.

  5. Combustion Engineering IGCC Repowering Project

    SciTech Connect

    Andrus, H.E.; Thibeault, P.R.; Gibson, C.R.

    1992-11-01

    C-E gasification process uses an entrained-flow, two-stage, slagging bottom gasifier. Figure 1 shows a schematic of the gasifier concept. Some of the coal and all of the char is fed to the combustor section, while the remaining coal is fed to the reducter section of the gasifier. The coal and char in the combustor is mixed with air and the fuel-rich mixture is burned creating the high temperature necessary to gasify the coal and melt the mineral matter in the coal. The slag flows through a slag tap at the bottom of the combustor into a water-filled slag tank where it is quenched and transformed into an inert, glassy, granular material. This vitrified slag is non-leaching, making it easy to dispose of in an environmentally acceptable manner. The hot gas leaving the combustor enters the second stage called the reductor. In the reducter, the char gasification occurs along the length of the reductor zone until the temperature falls to a point where the gasification kinetics become too slow. Once the gas temperature reaches this level, essentially no further gasification takes place and the gases subsequently are cooled with convective surface to a temperature low enough to enter the cleanup system. Nearly all of the liberated energy from the coal that does not produce fuel gas is collected and recovered with steam generating surface either in the walls of the vessel or by conventional boiler convective surfaces in the backpass of the gasifier. A mixture of unburned carbon and ash (called char) is carried out of the gasifier with the product gas strewn. The char is collected and recycled back to the gasifier where it is consumed. Thus, there is no net production of char which results in negligible carbon loss. The product gas enters a desulfurization system where it is cleaned of sulfur compounds present in the fuel gas. The clean fuel gas is now available for use in the gas turbine combuster for an integrated coal gasification combined cycle (IGCC) application.

  6. 46 CFR 194.20-17 - Compressed gases.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Compressed gases. (a) Nonflammable compressed gases (excluding oxygen) may be securely stowed in the... chemical storeroom. (b) Flammable compressed gases and oxygen shall be stowed in accordance with 49...

  7. Combustion characteristics of husk charcoal

    SciTech Connect

    Shimizu, H.; Kimura, T.; Nishiyama, Y.; Terui, T.

    1984-07-01

    This paper analyzes the factors involved in the extraordinary temperature generation in husk combustion furnaces, and investigates methods of protecting furnaces from heat damage. The combustion characteristics of fixed carbon in rice husks are examined in relation to the air flow rate using different husk charcoals. The theoretical flame temperature in a practical bed was determined from the combustion propagation velocity. It is determined that deviation from the regression line relating the combustion propagation velocity with the specific air flow rate showed a slight correlation with the bulk density of the charcoal samples used.

  8. Microgravity Smoldering Combustion Takes Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Microgravity Smoldering Combustion (MSC) experiment lifted off aboard the Space Shuttle Endeavour in September 1995 on the STS-69 mission. This experiment is part of series of studies focused on the smolder characteristics of porous, combustible materials in a microgravity environment. Smoldering is a nonflaming form of combustion that takes place in the interior of combustible materials. Common examples of smoldering are nonflaming embers, charcoal briquettes, and cigarettes. The objective of the study is to provide a better understanding of the controlling mechanisms of smoldering, both in microgravity and Earth gravity. As with other forms of combustion, gravity affects the availability of air and the transport of heat, and therefore, the rate of combustion. Results of the microgravity experiments will be compared with identical experiments carried out in Earth's gravity. They also will be used to verify present theories of smoldering combustion and will provide new insights into the process of smoldering combustion, enhancing our fundamental understanding of this frequently encountered combustion process and guiding improvement in fire safety practices.

  9. Light Duty Efficient, Clean Combustion

    SciTech Connect

    Stanton, Donald W.

    2011-06-03

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of our objectives were met with fuel efficiency improvement targets exceeded.

  10. Flammability of Heterogeneously Combusting Metals

    NASA Technical Reports Server (NTRS)

    Jones, Peter D.

    1998-01-01

    Most engineering materials, including some metals, most notably aluminum, burn in homogeneous combustion. 'Homogeneous' refers to both the fuel and the oxidizer being in the same phase, which is usually gaseous. The fuel and oxidizer are well mixed in the combustion reaction zone, and heat is released according to some relation like q(sub c) = delta H(sub c)c[((rho/rho(sub 0))]exp a)(exp -E(sub c)/RT), Eq. (1) where the pressure exponent a is usually close to unity. As long as there is enough heat released, combustion is sustained. It is useful to conceive of a threshold pressure beyond which there is sufficient heat to keep the temperature high enough to sustain combustion, and beneath which the heat is so low that temperature drains away and the combustion is extinguished. Some materials burn in heterogeneous combustion, in which the fuel and oxidizer are in different phases. These include iron and nickel based alloys, which burn in the liquid phase with gaseous oxygen. Heterogeneous combustion takes place on the surface of the material (fuel). Products of combustion may appear as a solid slag (oxide) which progressively covers the fuel. Propagation of the combustion melts and exposes fresh fuel. Heterogeneous combustion heat release also follows the general form of Eq.(1), except that the pressure exponent a tends to be much less than 1. Therefore, the increase in heat release with increasing pressure is not as dramatic as it is in homogeneous combustion. Although the concept of a threshold pressure still holds in heterogeneous combustion, the threshold is more difficult to identify experimentally, and pressure itself becomes less important relative to the heat transfer paths extant in any specific application. However, the constants C, a, and E(sub c) may still be identified by suitable data reduction from heterogeneous combustion experiments, and may be applied in a heat transfer model to judge the flammability of a material in any particular actual

  11. Thermocamera studies of gases and vapours.

    PubMed Central

    Carlsson, P; Ljungqvist, B; Neikter, K

    1982-01-01

    Most gases and vapours with a bipolar molecular structure absorb infrared energy. If such a gas is interposed between an object emitting infrared radiation and a thermocamera the gas will absorb some of the infrared radiation and thus cast a shadow on the thermocamera picture. In this assay it is possible to visualise the gas. This method had been used to study pollution with anaesthetic gases and vapours in operating theatres. The vapours of other chemicals used in hospitals and other places of work also have been studied. The method permits the study of dispersion and flow patterns of polluting gases and vapours during work. Images PMID:7093159

  12. Fiber optic sensing system for monitoring of coal waste piles in combustion

    NASA Astrophysics Data System (ADS)

    Viveiros, D.; Ribeiro, J.; Carvalho, J. P.; Ferreira, J.; Pinto, A. M. R.; Perez-Herrera, R. A.; Diaz, S.; Lopez-Gil, A.; Dominguez-Lopez, A.; Esteban, O.; Martins, H. F.; Martin-Lopez, S.; Baierl, H.; Auguste, J.-L.; Jamier, R.; Rougier, S.; Santos, J. L.; Flores, D.; Roy, P.; González-Herráez, M.; López-Amo, M.; Baptista, J. M.

    2014-05-01

    The combustion of coal wastes resulting from mining is of particular environmental concern and therefore the importance of the proper management involving real-time assessment of their status and identification of probable evolution scenarios is recognized. Continuous monitoring of combustion temperature and emission levels of certain gases opens the possibility to plan corrective actions to minimize their negative impact in the surroundings. Optical fiber technology is well-suited to this purpose and in this work it is described the main attributes of a fiber optic sensing system projected to gather data on distributed temperature and gas emission in these harsh environments.

  13. Potential of alternative sorbents for desulphurization: from laboratory tests to the full-scale combustion unit

    SciTech Connect

    Zbyszek Szeliga; Dagmar Juchelkova; Bohumir Cech; Pavel Kolat; Franz Winter; Adam J. Campen; Tomasz S. Wiltowski

    2008-09-15

    At present, natural limestone is used for the desulphurization of waste gases from the combustion of fossil fuels. However, it is important to save all primary resources, such as limestone, for the future. The researchers focused on finding alternative sorbents for the purpose of desulphurization in a dry additive method, which would become the alternative for natural limestone. This paper is primarily focused on desulphurization tests of selected substances. Tests were initially conducted on the laboratory scale, followed by pilot and full-scale combustion units. 15 refs., 9 figs., 5 tabs.

  14. Fuel NOx production during the combustion of low caloric value fuel

    SciTech Connect

    Colaluca, M.A.; Caraway, J.P.

    1997-07-01

    The objective of this investigation is to identify and qualify physical mechanisms and parameters that affect the combustion of low caloric value gases (LCVG) and the formation of NOx pollutants produced form fuel bound nitrogen. Average physical properties of a low caloric value gas were determined from the products of several industrial coal gasifiers. A computer model was developed, utilizing the PHOENICS computational fluid dynamics software to model the combustion of LCVG. The model incorporates a 3-dimensional physical design and is based on typical industrial combustors. Feed stock to the gasifier can be wood, feed stock manure, cotton gin trash, coal, lignite and numerous forms of organic industrial wastes.

  15. Optimum Chemical Regeneration of the Gases Burnt in Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Baskakov, A. P.; Volkova, Yu. V.; Plotnikov, N. S.

    2014-07-01

    A simplified method of calculating the concentrations of the components of a thermodynamically equilibrium mixture (a synthesis gas) supplied to the anode channel of a battery of solid oxide fuel cells and the change in these concentrations along the indicated channel is proposed and results of corresponding calculations are presented. The variants of reforming of a natural gas (methane) by air and steam as well as by a part of the exhaust combustion products for obtaining a synthesis gas are considered. The amount of the anode gases that should be returned for the complete chemical regeneration of the gases burnt in the fuel cells was determined. The dependence of the electromotive force of an ideal oxide fuel element (the electric circuit of which is open) on the degree of absorption of oxygen in a thermodynamically equilibrium fuel mixture was calculated.

  16. Use of sulfide-containing liquors for removing mercury from flue gases

    DOEpatents

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2003-01-01

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  17. Use of sulfide-containing liquors for removing mercury from flue gases

    DOEpatents

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  18. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  19. Combustion Branch Website Development

    NASA Technical Reports Server (NTRS)

    Bishop, Eric

    2004-01-01

    The NASA combustion branch is a leader in developing and applying combustion science to focused aerospace propulsion systems concepts. It is widely recognized for unique facilities, analytical tools, and personnel. In order to better communicate the outstanding research being done in this Branch to the public and other research organization, a more substantial website was desired. The objective of this project was to build an up-to-date site that reflects current research in a usable and attractive manner. In order to accomplish this, information was requested from all researchers in the Combustion branch, on their professional skills and on the current projects. This information was used to fill in the Personnel and Research sections of the website. A digital camera was used to photograph all personnel and these photographs were included in the personnel section as well. The design of the site was implemented using the latest web standards: xhtml and external css stylesheets. This implementation conforms to the guidelines recommended by the w3c. It also helps to ensure that the web site is accessible by disabled users, and complies with Section 508 Federal legislation (which mandates that all Federal websites be accessible). Graphics for the new site were generated using the gimp (www.gimp.org) an open-source graphics program similar to Adobe Photoshop. Also, all graphics on the site were of a reasonable size (less than 20k, most less than 2k) so that the page would load quickly. Technologies such as Macromedia Flash and Javascript were avoided, as these only function on some clients which have the proper software installed or enabled. The website was tested on different platforms with many different browsers to ensure there were no compatibility issues. The website was tested on windows with MS IE 6, MSIE 5 , Netscape 7, Mozilla and Opera. On a Mac, the site was tested with MS IE 5 , Netscape 7 and Safari.

  20. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  1. Combustion of White Phosphorus

    NASA Astrophysics Data System (ADS)

    Keiter, Richard L.; Gamage, Chaminda P.

    2001-07-01

    The reaction of white phosphorus with pure oxygen is conveniently and safely demonstrated by carrying out the reaction in a retort that has its open end submerged in water. After filling the retort with oxygen gas, a small amount of white phosphorus is introduced and heated with a hot-plate until it ignites. The spectacular reaction leads to consumption and expulsion of oxygen gas, creation of a partial vacuum in the retort, and back suction of water that extinguishes the combustion. Featured on the Cover

  2. Lithium Combustion: A Review

    DTIC Science & Technology

    1990-12-01

    lithium vapors generated with air formed an intense white flame that produced branched- chain condensation aerosol particles, of concentrations 򓆄 mg/im3...generated chain -aggregate lithium combustion aerosols in dry, COg-free air prior to reaction with 0, 0.10, 0.50, 1.0, 1.75, or 5.0% CO in air at a...In order to burn in gaseous chlorine or in bromine or iodine vapor, lithium needs to be heated. With iodine vapor, the reaction is accompanied by

  3. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    EPA Science Inventory

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  4. Path planning during combustion mode switch

    SciTech Connect

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  5. Plasma igniter for internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  6. Some Factors Affecting Combustion in an Internal-Combustion Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  7. Preliminary assessment of combustion modes for internal combustion wave rotors

    NASA Technical Reports Server (NTRS)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  8. Nanoindentation of GaSe thin films

    PubMed Central

    2012-01-01

    The structural and nanomechanical properties of GaSe thin films were investigated by means of X-ray diffraction (XRD) and nanoindentation techniques. The GaSe thin films were deposited on Si(111) substrates by pulsed laser deposition. XRD patterns reveal only the pure (000 l)-oriented reflections originating from the hexagonal GaSe phase and no trace of any impurity or additional phases. Nanoindentation results exhibit discontinuities (so-called multiple ‘pop-in’ events) in the loading segments of the load–displacement curves, and the continuous stiffness measurements indicate that the hardness and Young’s modulus of the hexagonal GaSe films are 1.8 ± 0.2 and 65.8 ± 5.6 GPa, respectively. PMID:22804961

  9. Thermal Properties of Degenerate Relativistic Quantum Gases

    NASA Astrophysics Data System (ADS)

    Homorodean, Laurean

    We present the concentration-temperature phase diagram, characteristic functions, thermal equation of state and heat capacity at constant volume for degenerate ideal gases of relativistic fermions and bosons. The nonrelativistic and ultrarelativistic limits of these laws are also discussed.

  10. Voluntary reporting of greenhouse gases, 1995

    SciTech Connect

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  11. Ultrasonic propagation in gases at high temperatures

    NASA Technical Reports Server (NTRS)

    Carey, C.; Carnevale, E. H.; Lynworth, L. C.; Uva, S.

    1970-01-01

    Ultrasonic pulse method /1 to 3 MHz/ measures both sound speed and absorption in monatomic and polyatomic gases in a temperature range of 300 to 20000 degrees K at atmospheric pressure. Helium, nitrogen, oxygen, and argon are investigated.

  12. Instabilities in Inductive Discharges with Electronegative Gases

    DTIC Science & Technology

    2003-07-20

    electronegative gases P. Chabert, H . Abada , and J.-P. Booth LPTP, Ecole Polytechnique, 91128 Palaiseau cedex, France A.J. Lichtenberg, M.A. Lieberman, A. M...can exist in two inductive discharge modes: the capacitive (E) mode, for low power, and the g00 inductive ( H ) mode, for high power. As the power is -1...increased, transitions from capacitive to inductive modes D00 (E- H transitions) are observed [7,8]. When operating with Q. electropositive gases the

  13. Flux Jacobian Matrices For Equilibrium Real Gases

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  14. Quantum Polarization Spectroscopy of Ultracold Spinor Gases

    SciTech Connect

    Eckert, K.; Zawitkowski, L.; Sanpera, A.; Lewenstein, M.; Polzik, E. S.

    2007-03-09

    We propose a method for the detection of ground state quantum phases of spinor gases through a series of two quantum nondemolition measurements performed by sending off-resonant, polarized light pulses through the gas. Signatures of various mean-field as well as strongly correlated phases of F=1 and F=2 spinor gases obtained by detecting quantum fluctuations and mean values of polarization of transmitted light are identified.

  15. Biological production of products from waste gases

    DOEpatents

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  16. Fuel Effects on Gas Turbine Combustion

    DTIC Science & Technology

    1983-01-01

    W. S., Combustion Considerations for Future Jet Fuels, Sixteenth Symposium (International) on Combustion , The Combustion Institute, pp. 1631-1638...AFWAL-TR-83-2004 -. i FUEL EFFECTS ON SGAS TURBINE COMBUSTION A. H. Lefebvre <.A t • Combustion Laboratory Thermal Science and Propulsion Center...PERIOD COVEREDFinal Report for Period FUEL EFFECTS ON GAS TURBINE COMBUSTION 21 Sep 81 - 23 Dec 82 6. PERFORMING OIG. REPORT NUMBER ś. AUT"HOR(.) S

  17. Source gases: Concentrations, emissions, and trends

    NASA Technical Reports Server (NTRS)

    Fraser, Paul J.; Harriss, Robert; Penkett, Stuart A.; Makide, Yoshihiro; Sanhueza, Eugenio; Alyea, Fred N.; Rowland, F. Sherwood; Blake, Don; Sasaki, Toru; Cunnold, Derek M.

    1991-01-01

    Source gases are defined as those gases that influence levels of stratospheric ozone (O3) by transporting species containing halogen, hydrogen, and nitrogen to the stratosphere. Examples are the CFC's, methane (CH4), and nitrous oxide (N2O). Other source gases that also come under consideration in an atmospheric O3 context are those that are involved in the O3 or hydroxyl (OH) radical chemistry of the troposphere. Examples are CH4, carbon monoxide (CO), and nonmethane hydrocarbons (NMHC's). Most of the source gases, along with carbon dioxide (CO2) and water vapor (H2O), are climatically significant and thus affect stratospheric O3 levels by their influence on stratospheric temperatures. Carbonyl sulphide (COS) could affect stratospheric O3 through maintenance of the stratospheric sulphate aerosol layer, which may be involved in heterogeneous chlorine-catalyzed O3 destruction. The previous reviews of trends and emissions of source gases, either from the context of their influence on atmospheric O3 or global climate change, are updated. The current global abundances and concentration trends of the trace gases are given in tabular format.

  18. Combustion of Methane Hydrate

    NASA Astrophysics Data System (ADS)

    Roshandell, Melika

    A significant methane storehouse is in the form of methane hydrates on the sea floor and in the arctic permafrost. Methane hydrates are ice-like structures composed of water cages housing a guest methane molecule. This caged methane represents a resource of energy and a potential source of strong greenhouse gas. Most research related to methane hydrates has been focused on their formation and dissociation because they can form solid plugs that complicate transport of oil and gas in pipelines. This dissertation explores the direct burning of these methane hydrates where heat from the combustion process dissociates the hydrate into water and methane, and the released methane fuels the methane/air diffusion flame heat source. In contrast to the pipeline applications, very little research has been done on the combustion and burning characteristics of methane hydrates. This is the first dissertation on this subject. In this study, energy release and combustion characteristics of methane hydrates were investigated both theoretically and experimentally. The experimental study involved collaboration with another research group, particularly in the creation of methane hydrate samples. The experiments were difficult because hydrates form at high pressure within a narrow temperature range. The process can be slow and the resulting hydrate can have somewhat variable properties (e.g., extent of clathration, shape, compactness). The experimental study examined broad characteristics of hydrate combustion, including flame appearance, burning time, conditions leading to flame extinguishment, the amount of hydrate water melted versus evaporated, and flame temperature. These properties were observed for samples of different physical size. Hydrate formation is a very slow process with pure water and methane. The addition of small amounts of surfactant increased substantially the hydrate formation rate. The effects of surfactant on burning characteristics were also studied. One finding

  19. Liquid propellant rocket combustion instability

    NASA Technical Reports Server (NTRS)

    Harrje, D. T.

    1972-01-01

    The solution of problems of combustion instability for more effective communication between the various workers in this field is considered. The extent of combustion instability problems in liquid propellant rocket engines and recommendations for their solution are discussed. The most significant developments, both theoretical and experimental, are presented, with emphasis on fundamental principles and relationships between alternative approaches.

  20. Manifold methods for methane combustion

    SciTech Connect

    Yang, B.; Pope, S.B.

    1995-10-01

    Great progresses have been made in combustion research, especially, the computation of laminar flames and the probability density function (PDF) method in turbulent combustion. For one-dimensional laminar flames, by considering the transport mechanism, the detailed chemical kinetic mechanism and the interactions between these two basic processes, today it is a routine matter to calculate flame velocities, extinction, ignition, temperature, and species distributions from the governing equations. Results are in good agreement with those obtained for experiments. However, for turbulent combustion, because of the complexities of turbulent flow, chemical reactions, and the interaction between them, in the foreseeable future, it is impossible to calculate the combustion flow field by directly integrating the basic governing equations. So averaging and modeling are necessary in turbulent combustion studies. Averaging, on one hand, simplifies turbulent combustion calculations, on the other hand, it introduces the infamous closure problems, especially the closure problem with chemical reaction terms. Since in PDF calculations of turbulent combustion, the averages of the chemical reaction terms can be calculated, PDF methods overcome the closure problem with the reaction terms. It has been shown that the PDF method is a most promising method to calculate turbulent combustion. PDF methods have been successfully employed to calculate laboratory turbulent flames: they can predict phenomena such as super equilibrium radical levels, and local extinction. Because of these advantages, PDF methods are becoming used increasingly in industry combustor codes.

  1. PDF Modeling of Turbulent Combustion

    DTIC Science & Technology

    2008-11-30

    extend methodologies for the modeling and simulation of turbulent combustion. Probability density function (PDF) calculations were performed of piloted...were developed to implement the combined methodology of large-eddy simulation (LES) and filtered density function (FDF). Second-order schemes were...was to advance and extend methodologies for the modeling and simulation of turbulent combustion. Probability density function (PDF) calculations were

  2. Method for in situ combustion

    DOEpatents

    Pasini, III, Joseph; Shuck, Lowell Z.; Overbey, Jr., William K.

    1977-01-01

    This invention relates to an improved in situ combustion method for the recovery of hydrocarbons from subterranean earth formations containing carbonaceous material. The method is practiced by penetrating the subterranean earth formation with a borehole projecting into the coal bed along a horizontal plane and extending along a plane disposed perpendicular to the plane of maximum permeability. The subterranean earth formation is also penetrated with a plurality of spaced-apart vertical boreholes disposed along a plane spaced from and generally parallel to that of the horizontal borehole. Fractures are then induced at each of the vertical boreholes which project from the vertical boreholes along the plane of maximum permeability and intersect the horizontal borehole. The combustion is initiated at the horizontal borehole and the products of combustion and fluids displaced from the earth formation by the combustion are removed from the subterranean earth formation via the vertical boreholes. Each of the vertical boreholes are, in turn, provided with suitable flow controls for regulating the flow of fluid from the combustion zone and the earth formation so as to control the configuration and rate of propagation of the combustion zone. The fractures provide a positive communication with the combustion zone so as to facilitate the removal of the products resulting from the combustion of the carbonaceous material.

  3. Structural and compositional transformations of biomass chars during combustion

    SciTech Connect

    Wornat, M.J.; Hurt, R.H.; Yang, N.Y.C. ); Headley, T.J. )

    1995-01-01

    In an investigation of the physical and chemical transformations of biomass chars during combustion, the authors have subjected two chars, produced from the pyrolysis of pine and switchgrass, to combustion at 1,600 K in a laminar flow reactor. In order to obtain time-resolved data on the structural and compositional transformations of the biomass chars, samples are extracted from the reactor at different residence times and subjected to a variety of analytical techniques: elemental analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and high-resolution transmission electron microscopy. The results point to several changes in both the organic and inorganic constituents of the chars. The early stages of conversion are characterized by devolatilization, which leads to the removal of amorphous material and the release of oxygen- and hydrogen-rich gases. After devolatilization, combustion is accompanied by: vaporization of some metals (particularly Na and K), surface migration and coalescence of inorganic material, and the incorporation of metals (particularly Ca) into silicate structures. The latest stages of combustion reveal the transformation of inorganic constituents from amorphous phases to crystalline forms. Some short-range order appears in the carbon-rich portions of the chars as combustion proceeds, but the high levels of oxygen originally present in these chars foster cross-linking, which limits the extent of order ultimately attained. The transformation of the biomass chars are compared with those of coal chars, and the implications of these observations--with respect to reactivity and ash behavior--are discussed.

  4. Staged fluidized-bed combustion and filter system

    DOEpatents

    Mei, Joseph S.; Halow, John S.

    1994-01-01

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  5. Prediction of the combustion characteristics in a downhole steam generator

    SciTech Connect

    Naugler, David G.; Mohtadi, M. F.

    1984-02-01

    Downhole steam generation is an attractive alternative to conventional surface steam generation for recovery of heavy oils from deep reservoirs. Downhole steam generation technique has been under development in the past five years in the United States, Canada and the United Kingdom. The main advantages of this method are very high thermal efficiency, flexibility of operation and lower environmental pollution load. In conjunction with experimental work on the development of a downhole steam generator at the University of Calgary, two computer models for prediction of the combustion characteristics in such generators have been developed. The first model is based on the assumption of a balanced reaction and complete combustion of the fuel. It determines the reaction temperature and the enthalpy of the product gases at different pressures, air/fuel ratios and water injection rates. The second model uses a modified version of the Dixon Lewis method to determine equilibrium for all species of the reaction system, including nitrogen oxides. A non-Jacobian numerical method is used for the solution of the resulting system of non-linear equations. The results show that to a fairly good approximation, the reaction temperature and the composition of product gases may be correlated with the main operating variables by simple logarithmic plots. This facilitates extrapolation of the experimental data by the use of allocation transformations.

  6. Burners and combustion apparatus for carbon nanomaterial production

    DOEpatents

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  7. Burners and combustion apparatus for carbon nanomaterial production

    DOEpatents

    Alford, J. Michael; Diener, Michael D.; Nabity, James; Karpuk, Michael

    2007-10-09

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  8. Risk analysis of highly combustible gas storage, supply, and distribution systems in PWR plants

    SciTech Connect

    Simion, G.P.; VanHorn, R.L.; Smith, C.L.; Bickel, J.H.; Sattison, M.B.; Bulmahn, K.D.

    1993-06-01

    This report presents the evaluation of the potential safety concerns for pressurized water reactors (PWRs) identified in Generic Safety Issue 106, Piping and the Use of Highly Combustible Gases in Vital Areas. A Westinghouse four-loop PWR plant was analyzed for the risk due to the use of combustible gases (predominantly hydrogen) within the plant. The analysis evaluated an actual hydrogen distribution configuration and conducted several sensitivity studies to determine the potential variability among PWRs. The sensitivity studies were based on hydrogen and safety-related equipment configurations observed at other PWRs within the United States. Several options for improving the hydrogen distribution system design were identified and evaluated for their effect on risk and core damage frequency. A cost/benefit analysis was performed to determine whether alternatives considered were justifiable based on the safety improvement and economics of each possible improvement.

  9. A Combustion Chemistry Analysis of Carbonate Solvents in Li-Ion Batteries

    SciTech Connect

    Harris, S J; Timmons, A; Pitz, W J

    2008-11-13

    Under abusive conditions Li-ion batteries can rupture, ejecting electrolyte and other flammable gases. In this paper we consider some of the thermochemical properties of these gases that will determine whether they ignite and how energetically they burn. We show that flames of carbonate solvents are fundamentally less energetic than those of conventional hydrocarbons. An example of this difference is given using a recently developed mechanism for dimethyl carbonate (DMC) combustion, where we show that a diffusion flame burning DMC has only half the peak energy release rate of an analogous propane flame. We find a significant variation among the carbonate solvents in the factors that are important to determining flammability, such as combustion enthalpy and vaporization enthalpy. This result suggests that thermochemical and kinetic factors might well be considered when choosing solvent mixtures.

  10. Comparative valorisation of agricultural and industrial biowastes by combustion and pyrolysis.

    PubMed

    Ferreira, Catarina I A; Calisto, Vânia; Cuerda-Correa, Eduardo M; Otero, Marta; Nadais, Helena; Esteves, Valdemar I

    2016-10-01

    Combustion and pyrolysis processes were assessed and compared for two types of lignocellulosic biowastes: agricultural (Eucalyptus bark, grape seeds, peach stones, walnut shells, olive waste and peanut shells) and industrial (primary and biological paper mill sludge) biowastes. They were characterized by elemental, proximate and thermal analyses; the pyrolysis behaviour was studied by thermogravimetric analysis and the gases produced were identified using mass spectrometry. Agricultural biowastes showed the highest calorific values, close to the fossil fuel values (20-30MJkg(-1)) and, in general, emission of gases containing the carbon element (CH4, C2H2, CO and CO2) was higher than that of the tested industrial biowastes, making the agricultural biowastes highly competitive for combustion applications such as gas fuel. Further, the solid product which resulted from the pyrolysis of industrial biowastes is a material with large specific surface area, which is a good characteristic for possible applications as adsorbent in water remediation.

  11. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOEpatents

    Heffel, James W.; Scott, Paul B.; Park, Chan Seung

    2011-11-01

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  12. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOEpatents

    Heffel, James W.; Scott, Paul B.

    2003-09-02

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  13. Inhibition of Dioxins in Combustion of Printed Wiring Boards by Use of Hydrogenated Alicyclic Epoxy Resin

    NASA Astrophysics Data System (ADS)

    Mori, Takahiro; Saito, Seiichi; Saito, Shigemasa; Fujimoto, Kozo

    The amount of halogenated dioxins in combustion gases of printed circuit boards depends on the concentration of halogen in the substrate, and also changes with resin structures to be applied. In this study, it was revealed that by combined use of fine aluminum hydroxide, phosphate flame retardant and alicyclic epoxy resin instead of halogenated epoxy resin or aromatic epoxy resin, these printed circuit boards met UL94-V0 flammability classification. Furthermore halogenated dibenzodioxin/dibenzofuran was hardly detected in combustion gases. The printed circuit boards which consisted of alicyclic epoxy resin could control generating of halogenated dioxins, as compared with aromatic resin. According to the heat decomposition behavior, it was suggested that alicyclic resin was easy to decompose because of weak C-C bond strength and generating of halogenated dioxins were controlled by the structure of resins.

  14. Polycrystalline-silicon microbridge combustible gas sensor

    NASA Astrophysics Data System (ADS)

    Manginell, Ronald Paul

    Catalytic, calorimetric gas detection is the most commonly used method for the detection of combustible gases below the lower-explosive limit (LEL). In this method, the heat of oxidation of a combustible species on a heated catalyst surface is detected by a resistance thermometer in proximity. Conventionally fabricated sensors suffer from high-power consumption (˜500 mW), slow thermal response (˜15 sec) and low thermal sensitivity (1-2sp°C/mW). Fully CMOS-compatible, surface-micromachined polysilicon bridges have been fabricated for use in catalytic, calorimetric gas detection and are characterized by low-power consumption (35 mW), fast response (0.2 msec) and high sensitivity (16sp°C/mW). The batch fabrication techniques used here significantly increase the manufacturability of these devices as compared with their conventional predecessors, since hand manufacture/sorting conventionally used ate eliminated. A post-processing, post-packaging micro-chemical-vapor-deposition technique was developed for the purpose of selectively depositing catalytic films only in the active area of the sensor. Film microstructure was modified using a pulsed-deposition technique and in situ methods of film growth monitoring were investigated. With a Pt catalyst, ultimate device sensitivity to hydrogen was 100 ppm in air. To predict device response, knowledge of the temperature distribution along a microbridge is required. Both analytical and numerical techniques were used to model this distribution and are in good agreement with measurements obtained by infrared microscopy, For modeling purposes the temperature dependence of the thermal and electrical conductivity of polysilicon at high temperature ({>}300sp°C) were measured using microbridges outfitted with special high-temperature bond pads. Physical models of thermal and electrical conduction in polysilicon were constructed.

  15. Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine

    DOEpatents

    Provol, Steve J.; Russell, David B.; Isaksson, Matti J.

    1994-01-01

    A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.

  16. Polymeric materials combustion: Toxicity hazards and legal aspects. January 1973-December 1989 (Citations from the Rubber and Plastics Research Association data base). Report for January 1973-December 1989

    SciTech Connect

    Not Available

    1989-12-01

    This bibliography contains citations concerning toxicity hazards and legal aspects of polymeric materials combustion in building, electrical and electronic applications. Flammability assessment, flame retardant additives, and toxicity standards of polymeric materials are discussed. Regulations and legislation on polymer flammability are presented. Health hazards caused by toxic gases from polymeric materials combustion are considered. (This updated bibliography contains 238 citations, 28 of which are new entries to the previous edition.)

  17. Combustion instability control in the model of combustion chamber

    NASA Astrophysics Data System (ADS)

    Akhmadullin, A. N.; Ahmethanov, E. N.; Iovleva, O. V.; Mitrofanov, G. A.

    2013-12-01

    An experimental study of the influence of external periodic perturbations on the instability of the combustion chamber in a pulsating combustion. As an external periodic disturbances were used sound waves emitted by the electrodynamics. The purpose of the study was to determine the possibility of using the method of external periodic perturbation to control the combustion instability. The study was conducted on a specially created model of the combustion chamber with a swirl burner in the frequency range from 100 to 1400 Hz. The study found that the method of external periodic perturbations may be used to control combustion instability. Depending on the frequency of the external periodic perturbation is observed as an increase and decrease in the amplitude of the oscillations in the combustion chamber. These effects are due to the mechanisms of synchronous and asynchronous action. External periodic disturbance generated in the path feeding the gaseous fuel, showing the high efficiency of the method of management in terms of energy costs. Power required to initiate periodic disturbances (50 W) is significantly smaller than the thermal capacity of the combustion chamber (100 kW).

  18. Airfoil cooling hole plugging by combustion gas impurities of the type found in coal derived fuels

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1979-01-01

    The plugging of airfoil cooling holes by typical coal-derived fuel impurities was evaluated using doped combustion gases in an atmospheric pressure burner rig. Very high specific cooling air mass flow rates reduced or eliminated plugging. The amount of flow needed was a function of the composition of the deposit. It appears that plugging of film-cooled holes may be a problem for gas turbines burning coal-derived fuels.

  19. Multiuser Droplet Combustion Apparatus Developed to Conduct Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Myhre, Craig A.

    2001-01-01

    A major portion of the energy produced in the world today comes from the combustion or burning of liquid hydrocarbon fuels in the form of droplets. However, despite vigorous scientific examinations for over a century, researchers still lack a full understanding of many fundamental combustion processes of liquid fuels. Understanding how these fuel droplets ignite, spread, and extinguish themselves will help us develop more efficient ways of energy production and propulsion, as well as help us deal better with the problems of combustion-generated pollution and fire hazards associated with liquid combustibles. The ability to conduct more controlled experiments in space, without the complication of gravity, provides scientists with an opportunity to examine these complicated processes closely. The Multiuser Droplet Combustion Apparatus (MDCA) supports this continued research under microgravity conditions. The objectives are to improve understanding of fundamental droplet phenomena affected by gravity, to use research results to advance droplet combustion science and technology on Earth, and to address issues of fire hazards associated with liquid combustibles on Earth and in space. MDCA is a multiuser facility designed to accommodate different combustion science experiments. The modular approach permits the on-orbit replacement of droplet combustion principal investigator experiments such as different fuels, droplet-dispensing needles, and droplet-tethering mechanisms. Large components such as the avionics, diagnostics, and base-plate remain on the International Space Station to reduce the launch mass of new experiments. MDCA is also designed to operate in concert with ground systems on Earth to minimize the involvement of the crew during orbit.

  20. Fluids and Combustion Facility-Combustion Integrated Rack

    NASA Technical Reports Server (NTRS)

    Francisco, David R.

    1998-01-01

    This paper describes in detail the concept of performing Combustion microgravity experiments in the Combustion Integrated Rack (CIR) of the Fluids and Combustion Facility (FCF) on the International Space Station (ISS). The extended duration microgravity environment of the ISS will enable microgravity research to enter into a new era of increased scientific and technological data return. The FCF is designed to increase the amount and quality of scientific and technological data and decrease the development cost of an individual experiment relative to the era of Space Shuttle experiments. This paper also describes how the FCF will cost effectively accommodate these experiments.

  1. Solid Surface Combustion Experiment Yields Significant Observations

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R.; Koudelka, John M.; Vergilii, Franklin

    1999-01-01

    The spread of a flame over solid fuel is not only a fundamental textbook combustion phenomenon, but also the central element of destructive fires that cause tragic loss of life and property each year. Throughout history, practical measures to prevent and fight fires have been developed, but these have often been based on lessons learned in a costly fire. Since the 1960 s, scientists and engineers have employed powerful tools of scientific research to understand the details of flame spread and how a material can be rendered nonflammable. High-speed computers have enabled complex flame simulations, whereasand lasers have provided measurements of the chemical composition, temperature, and air velocities inside flames. The microgravity environment has emerged as the third great tool for these studies. Spreading flames are complex combinations of chemical reactions and several physical processes including the transport of oxygen and fuel vapor to the flame and the transfer of heat from the flame to fresh fuel and to the surroundings. Depending on its speed, air motion in the vicinity of the flame can affect the flame in substantially different ways. For example, consider the difference between blowing on a campfire and blowing out a match. On Earth, gravity induces air motion because of buoyancy (the familiar rising hot gases); this process cannot be controlled experimentally. For theoreticians, buoyant air motion complicates the problem modeling of flame spread beyond the capacity of modern computers to simulate. The microgravity environment provides experimental control of air motion near spreading flames, with results that can be compared with detailed theory. The Solid Surface Combustion Experiment (SSCE) was designed to obtain benchmark flame spreading data in quiescent test atmospheres--the limiting case of flames spreading. Professor Robert Altenkirch, Vice President for Research at Mississippi State University, proposed the experiment concept, and the NASA Lewis

  2. Emission characteristics of dioxins, furans and polycyclic aromatic hydrocarbons during fluidized-bed combustion of sewage sludge.

    PubMed

    Deng, Wenyi; Yan, Jianhua; Li, Xiaodong; Wang, Fei; Chi, Yong; Lu, Shengyong

    2009-01-01

    Pre-dried sewage sludge with high sulfur content was combusted in an electrically heated lab-scale fluidized-bed incinerator. The emission characteristics of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs) were studied. Coal and calcium oxide (CaO) were added during the sewage sludge combustion tests to optimize combustion conditions and control SO2 emission. The results indicated that the flue gases emitted during mono-combustion of sewage sludge were characterized by relatively high concentrations of SO2, NOx and organic pollutants, due to the high sulfur, nitrogen, and volatile matter content of sewage sludge. The total 16 USEPA priority PAHs and 2,3,7,8-substituted PCDD/Fs produced from sewage sludge combustion were found to be 106.14 microg/m3 and 8955.93 pg/m3 in the flue gas, respectively. In the case of co-combustion with coal (m(sludge)/m(coal) = 1:1), the 16 PAHs and 2,3,7,8-substituted PCDD/Fs concentrations were markedly lower than those found during mono-combustion of sewage sludge. During co-combustion, a suppressant effect of CaO on PCDD/Fs formation was observed.

  3. 41 CFR 50-204.70 - Compressed gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Compressed gases. 50-204... Gases, Vapors, Fumes, Dusts, and Mists § 50-204.70 Compressed gases. The in-plant handling, storage, and utilization of all compressed gases in cylinders, portable tanks, rail tankcars, or motor vehicle cargo...

  4. 41 CFR 50-204.70 - Compressed gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Compressed gases. 50-204... Gases, Vapors, Fumes, Dusts, and Mists § 50-204.70 Compressed gases. The in-plant handling, storage, and utilization of all compressed gases in cylinders, portable tanks, rail tankcars, or motor vehicle cargo...

  5. 46 CFR 194.20-17 - Compressed gases.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Compressed gases. 194.20-17 Section 194.20-17 Shipping... Compressed gases. (a) Nonflammable compressed gases (excluding oxygen) may be securely stowed in the... chemical storeroom. (b) Flammable compressed gases and oxygen shall be stowed in accordance with 49...

  6. 41 CFR 50-204.70 - Compressed gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Compressed gases. 50-204... Gases, Vapors, Fumes, Dusts, and Mists § 50-204.70 Compressed gases. The in-plant handling, storage, and utilization of all compressed gases in cylinders, portable tanks, rail tankcars, or motor vehicle cargo...

  7. 46 CFR 194.20-17 - Compressed gases.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Compressed gases. 194.20-17 Section 194.20-17 Shipping... Compressed gases. (a) Nonflammable compressed gases (excluding oxygen) may be securely stowed in the... chemical storeroom. (b) Flammable compressed gases and oxygen shall be stowed in accordance with 49...

  8. 41 CFR 50-204.70 - Compressed gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Compressed gases. 50-204... Gases, Vapors, Fumes, Dusts, and Mists § 50-204.70 Compressed gases. The in-plant handling, storage, and utilization of all compressed gases in cylinders, portable tanks, rail tankcars, or motor vehicle cargo...

  9. 46 CFR 194.20-17 - Compressed gases.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Compressed gases. 194.20-17 Section 194.20-17 Shipping... Compressed gases. (a) Nonflammable compressed gases (excluding oxygen) may be securely stowed in the... chemical storeroom. (b) Flammable compressed gases and oxygen shall be stowed in accordance with 49...

  10. 40 CFR 86.1214-85 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1214-85 Analytical gases. (a) Analyzer gases. (1) Gases for the... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Analytical gases. 86.1214-85...

  11. 40 CFR 86.1214-85 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1214-85 Analytical gases. (a) Analyzer gases. (1) Gases for the... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Analytical gases. 86.1214-85...

  12. 40 CFR 86.1214-85 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1214-85 Analytical gases. (a) Analyzer gases. (1) Gases for the... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Analytical gases. 86.1214-85...

  13. 40 CFR 86.514-78 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Analytical gases. 86.514-78 Section 86.514-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Later New Motorcycles; Test Procedures § 86.514-78 Analytical gases. (a) Analyzer gases. (1) Gases...

  14. 40 CFR 86.514-78 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Analytical gases. 86.514-78 Section 86.514-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Later New Motorcycles; Test Procedures § 86.514-78 Analytical gases. (a) Analyzer gases. (1) Gases...

  15. 40 CFR 86.514-78 - Analytical gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Analytical gases. 86.514-78 Section 86.514-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Later New Motorcycles; Test Procedures § 86.514-78 Analytical gases. (a) Analyzer gases. (1) Gases...

  16. 40 CFR 86.514-78 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Analytical gases. 86.514-78 Section 86.514-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Later New Motorcycles; Test Procedures § 86.514-78 Analytical gases. (a) Analyzer gases. (1) Gases...

  17. 40 CFR 86.514-78 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Analytical gases. 86.514-78 Section 86.514-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Later New Motorcycles; Test Procedures § 86.514-78 Analytical gases. (a) Analyzer gases. (1) Gases...

  18. Dual-Mode Combustion

    NASA Technical Reports Server (NTRS)

    Goyne, Christopher P.; McDaniel, James C.

    2002-01-01

    The Department of Mechanical and Aerospace Engineering at the University of Virginia has conducted an investigation of the mixing and combustion processes in a hydrogen fueled dual-mode scramjet combustor. The experiment essentially consisted of the "direct connect" continuous operation of a Mach 2 rectangular combustor with a single unswept ramp fuel injector. The stagnation enthalpy of the test flow simulated a flight Mach number of 5. Measurements were obtained using conventional wall instrumentation and laser based diagnostics. These diagnostics included, pressure and wall temperature measurements, Fuel Plume Imaging (FPI) and Particle Image Velocimetry (PIV). A schematic of the combustor configuration and a summary of the measurements obtained are presented. The experimental work at UVa was parallel by Computational Fluid Dynamics (CFD) work at NASA Langley. The numerical and experiment results are compared in this document.

  19. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect

    Takashi Nakamura

    2004-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.

  20. Quantitative PLIF Imaging in High-Pressure Combustion

    NASA Technical Reports Server (NTRS)

    Hanson, R. K.

    1997-01-01

    This is the final report for a research project aimed at developing planar laser-induced fluorescence (PLIF) techniques for quantitative 2-D species imaging in fuel-lean, high-pressure combustion gases, relevant to modem aircraft gas turbine combustors. The program involved both theory and experiment. The theoretical activity led to spectroscopic models that allow calculation of the laser-induced fluorescence produced in OH, NO and 02 for arbitrary excitation wavelength, pressure, temperature, gas mixture and laser linewidth. These spectroscopic models incorporate new information on line- broadening, energy transfer and electronic quench rates. Extensive calculations have been made with these models in order to identify optimum excitation strategies, particularly for detecting low levels (ppm) of NO in the presence of large 02 mole fractions (10% is typical for the fuel-lean combustion of interest). A promising new measurement concept has emerged from these calculations, namely that excitation at specific wavelengths, together with detection of fluorescence in multiple spectral bands, promises to enable simultaneous detection of both NO (at ppm levels) and 02 or possibly NO, 02 and temperature. Calculations have been made to evaluate the expected performance of such a diagnostic for a variety of conditions and choices of excitation and detection wavelengths. The experimental effort began with assembly of a new high-pressure combustor to provide controlled high-temperature and high-pressure combustion products. The non-premixed burner enables access to postflame gases at high temperatures (to 2000 K) and high pressures (to 13 atm), and a range of fuel-air equivalence ratios. The chamber also allowed use of a sampling probe, for chemiluminescent detection of NO/NO2, and thermocouples for measurement of gas temperature. Experiments were conducted to confirm the spectroscopic models for OH, NO and 02.

  1. On the temperature dependence of flammability limits of gases.

    PubMed

    Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki

    2011-03-15

    Flammability limits of several combustible gases were measured at temperatures from 5 to 100 °C in a 12-l spherical flask basically following ASHRAE method. The measurements were done for methane, propane, isobutane, ethylene, propylene, dimethyl ether, methyl formate, 1,1-difluoroethane, ammonia, and carbon monoxide. As the temperature rises, the lower flammability limits are gradually shifted down and the upper limits are shifted up. Both the limits shift almost linearly to temperature within the range examined. The linear temperature dependence of the lower flammability limits is explained well using a limiting flame temperature concept at the lower concentration limit (LFL)--'White's rule'. The geometric mean of the flammability limits has been found to be relatively constant for many compounds over the temperature range studied (5-100 °C). Based on this fact, the temperature dependence of the upper flammability limit (UFL) can be predicted reasonably using the temperature coefficient calculated for the LFL. However, some compounds such as ethylene and dimethyl ether, in particular, have a more complex temperature dependence.

  2. Microgravity combustion of dust suspensions

    NASA Technical Reports Server (NTRS)

    Lee, John H. S.; Peraldi, Olivier; Knystautas, Rom

    1993-01-01

    Unlike the combustion of homogeneous gas mixtures, there are practically no reliable fundamental data (i.e., laminar burning velocity, flammability limits, quenching distance, minimum ignition energy) for the combustion of heterogeneous dust suspensions. Even the equilibrium thermodynamic data such as the constant pressure volume combustion pressure and the constant pressure adiabatic flame temperature are not accurately known for dust mixtures. This is mainly due to the problem of gravity sedimentation. In normal gravity, turbulence, convective flow, electric and acoustic fields are required to maintain a dust in suspension. These external influences have a dominating effect on the combustion processes. Microgravity offers a unique environment where a quiescent dust cloud can in principle be maintained for a sufficiently long duration for almost all combustion experiments (dust suspensions are inherently unstable due to Brownian motion and particle aggregation). Thus, the microgravity duration provided by drop towers, parabolic flights, and the space shuttle, can all be exploited for different kinds of dust combustion experiments. The present paper describes some recent studies on microgravity combustion of dust suspension carried out on the KC-135 and the Caravelle aircraft. The results reported are obtained from three parabolic flight campaigns.

  3. Filtration combustion: Smoldering and SHS

    NASA Technical Reports Server (NTRS)

    Matkowsky, Bernard J.

    1995-01-01

    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of combustion waves propagating in porous media. When delivery of reactants through the pores to the reaction site is an important aspect of the process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to insure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application may well differ. For example, smoldering generally occurs at a relatively low temperature and with a smaller propagation velocity than SHS filtration combustion waves. Nevertheless, the two areas of application have much in common, so that mechanisms learned about in one application can be used to advantage in the other. In this paper we discuss recent results in the areas of filtration combustion.

  4. Interaction of turbulent premixed flames with combustion products: Role of stoichiometry

    DOE PAGES

    Coriton, Bruno Rene Leon; Frank, Jonathan H.; Gomez, Alessandro

    2016-05-30

    Stabilization methods of turbulent flames often involve mixing of reactants with hot products of combustion. The stabilizing effect of combustion product enthalpy has been long recognized, but the role played by the chemical composition of the product gases is typically overlooked. We employ a counterflow system to pinpoint the effects of the combustion product stoichiometry on the structure of turbulent premixed flames under conditions of both stable burning and local extinction. To that end, a turbulent jet of lean-to-rich, CH4/O2/N2-premixed reactants at a turbulent Reynolds number of 1050 was opposed to a stream of hot products of combustion that weremore » generated in a preburner. While the combustion product stream temperature was kept constant, its stoichiometry was varied independently from that of the reactant stream, leading to reactant-to-product stratification of relevance to practical combustion systems. The detailed structure of the turbulent flame front was analyzed in two series of experiments using laser-induced fluorescence (LIF): joint CH2O LIF and OH LIF measurements and joint CO LIF and OH LIF measurements. Results revealed that a decrease in local CH2O+OH and CO+OH reaction rates coincide with the depletion of OH radicals in the vicinity of the combustion product stream. These critical combustion reaction rates were more readily quenched in the presence of products of combustion from a stoichiometric flame, whereas they were favored by lean combustion products. As a result, stoichiometric combustion products contributed to a greater occurrence of local extinction. Furthermore, they limited the capacity of premixed reactants to ignite and of the turbulent premixed flames to stabilize. In contrast, lean and rich combustion products facilitated flame ignition and stability and reduced the rate of local extinction. The influence of the combustion product stream on the turbulent flame front was limited to a zone of approximately two millimeters

  5. Interaction of turbulent premixed flames with combustion products: Role of stoichiometry

    SciTech Connect

    Coriton, Bruno Rene Leon; Frank, Jonathan H.; Gomez, Alessandro

    2016-05-30

    Stabilization methods of turbulent flames often involve mixing of reactants with hot products of combustion. The stabilizing effect of combustion product enthalpy has been long recognized, but the role played by the chemical composition of the product gases is typically overlooked. We employ a counterflow system to pinpoint the effects of the combustion product stoichiometry on the structure of turbulent premixed flames under conditions of both stable burning and local extinction. To that end, a turbulent jet of lean-to-rich, CH4/O2/N2-premixed reactants at a turbulent Reynolds number of 1050 was opposed to a stream of hot products of combustion that were generated in a preburner. While the combustion product stream temperature was kept constant, its stoichiometry was varied independently from that of the reactant stream, leading to reactant-to-product stratification of relevance to practical combustion systems. The detailed structure of the turbulent flame front was analyzed in two series of experiments using laser-induced fluorescence (LIF): joint CH2O LIF and OH LIF measurements and joint CO LIF and OH LIF measurements. Results revealed that a decrease in local CH2O+OH and CO+OH reaction rates coincide with the depletion of OH radicals in the vicinity of the combustion product stream. These critical combustion reaction rates were more readily quenched in the presence of products of combustion from a stoichiometric flame, whereas they were favored by lean combustion products. As a result, stoichiometric combustion products contributed to a greater occurrence of local extinction. Furthermore, they limited the capacity of premixed reactants to ignite and of the turbulent premixed flames to stabilize. In contrast, lean and rich combustion products facilitated flame ignition and stability and reduced the rate of local extinction. The influence of the combustion product stream on the turbulent flame front was

  6. An Evaluation of Flare Combustion Efficiency Using Open-Path Fourier Transform Infrared Technology.

    PubMed

    Blackwood, Thomas R

    2000-10-01

    Open-path Fourier transform infrared (OP-FTIR) technology was used to evaluate the combustion efficiency of a flare for comparison to several combustion models. Most flares have been considered an effective method for destroying organic compounds and anything that burns. As the Btu content of the flare gas is reduced, the combustion efficiency may also be reduced. Recent studies have suggested that lower Btu flares may have efficiencies as low as 65%. In addition, models have been developed to predict the effect of wind speed and stack discharge velocity on the combustion efficiency. This study was conducted on a low-Btu flare gas that is primarily CO. While the models would predict efficiencies as low as 30%, the sampling using OP-FTIR showed most combustion efficiencies well above 90%. Three methods were used to track combustion efficiency: monitoring the ratio of CO to CO2, monitoring the ratio of CO to tracer gas, and dispersion modeling. This study was complicated by the presence of two flare stacks, thus two tracer gases were used-SF6 and CF4. A method was developed for distinguishing between the two stacks and quantifying the efficiency in each stack.

  7. An evaluation of flare combustion efficiency using open-path Fourier transform infrared technology.

    PubMed

    Blackwood, T R

    2000-10-01

    Open-path Fourier transform infrared (OP-FTIR) technology was used to evaluate the combustion efficiency of a flare for comparison to several combustion models. Most flares have been considered an effective method for destroying organic compounds and anything that burns. As the Btu content of the flare gas is reduced, the combustion efficiency may also be reduced. Recent studies have suggested that lower Btu flares may have efficiencies as low as 65%. In addition, models have been developed to predict the effect of wind speed and stack discharge velocity on the combustion efficiency. This study was conducted on a low-Btu flare gas that is primarily CO. While the models would predict efficiencies as low as 30%, the sampling using OP-FTIR showed most combustion efficiencies well above 90%. Three methods were used to track combustion efficiency: monitoring the ratio of CO to CO2, monitoring the ratio of CO to tracer gas, and dispersion modeling. This study was complicated by the presence of two flare stacks, thus two tracer gases were used--SF6 and CF4. A method was developed for distinguishing between the two stacks and quantifying the efficiency in each stack.

  8. Combustion modeling and performance evaluation in a full-scale rotary kiln incinerator.

    PubMed

    Chen, K S; Hsu, W T; Lin, Y C; Ho, Y T; Wu, C H

    2001-06-01

    This work summarizes the results of numerical investigations and in situ measurements for turbulent combustion in a full-scale rotary kiln incinerator (RKI). The three-dimensional (3D) governing equations for mass, momentum, energy, and species, together with the kappa - epsilon turbulence model, are formulated and solved using a finite volume method. Volatile gases from solid waste were simulated by gaseous CH4 distributed nonuniformly along the kiln bed. The combustion process was considered to be a two-step stoichiometric reaction for primary air mixed with CH4 gas in the combustion chamber. The mixing-controlled eddy-dissipation model (EDM) was employed to predict the conversion rates of CH4, O2, CO2, and CO. The results of the prediction show that reverse flows occur near the entrance of the first combustion chamber (FCC) and the turning point at the entrance to the second combustion chamber (SCC). Temperature and species are nonuniform and are vertically stratified. Meanwhile, additional mixing in the SCC enhances postflame oxidation. A combustion efficiency of up to 99.96% can be achieved at approximately 150% excess air and 20-30% secondary air. Reasonable agreement is achieved between numerical predictions and in situ measurements.

  9. Rotrix `vortex breakdown` burner turbulence-stabilized combustion of heating oil

    SciTech Connect

    Hofbauer, P.

    1995-04-01

    For the past two years, the Viessmann MatriX radiant burner has been setting the standard for low emission combustion of gas. Now, with the RotriX burner, Viessmann has succeeded in drastically reducing nitrogenoxide emissions in the combustoin of oil. After a successful test period, the RotriX burner is now being introduced to the market. The RotriX oil burner consequently takes into account the mechanisms in the creation of harmful emissions in the combustion of heating oil No. 2, and guarantees stable combustion under any operating conditions. The burner has the following features: heating oil is combusted only after complete vaporization and mixing with combustion air and recirculated flue gases; the flame is not stabilized with a turbulator disk, but a strong turbulating current is created by means of the Vortex Breakdown phenomenon, which develops a very stable flame under any operating conditions; and high internal flue gas recirculation rates lower the flame temperature to the point where thermal NO formation is reduced to the same low level as in the combustion of gas. The new burner has extremely low emissions of NOx < 60 mg/kWh, and CO < 5 mg/kWh at a CO{sub 2} concentraiton of 14%.

  10. 46 CFR 194.15-17 - Compressed gases other than inert gases.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Compressed gases other than inert gases. 194.15-17 Section 194.15-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory...

  11. 46 CFR 194.15-17 - Compressed gases other than inert gases.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compressed gases other than inert gases. 194.15-17 Section 194.15-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory...

  12. Broader perspectives for comparing different greenhouse gases.

    PubMed

    Manning, Martin; Reisinger, Andy

    2011-05-28

    Over the last 20 years, different greenhouse gases have been compared, in the context of climate change, primarily through the concept of global warming potentials (GWPs). This considers the climate forcing caused by pulse emissions and integrated over a fixed time horizon. Recent studies have shown that uncertainties in GWP values are significantly larger than previously thought and, while past literature in this area has raised alternative means of comparison, there is not yet any clear alternative. We propose that a broader framework for comparing greenhouse gases has become necessary and that this cannot be addressed by using simple fixed exchange rates. From a policy perspective, the framework needs to be clearly aligned with the goal of climate stabilization, and we show that comparisons between gases can be better addressed in this context by the forcing equivalence index (FEI). From a science perspective, a framework for comparing greenhouse gases should also consider the full range of processes that affect atmospheric composition and how these may alter for climate stabilization at different levels. We cover a basis for a broader approach to comparing greenhouse gases by summarizing the uncertainties in GWPs, linking those to uncertainties in the FEIs consistent with stabilization, and then to a framework for addressing uncertainties in the corresponding biogeochemical processes.

  13. Supported, Alkali-Promoted Cobalt Oxide Catalysts for NOx Removal from Coal Combustion Flue Gases

    SciTech Connect

    Morris D. Argyle

    2005-12-31

    A series of cobalt oxide catalysts supported on alumina ({gamma}-Al{sub 2}O{sub 3}) were synthesized with varying contents of cobalt and of added alkali metals, including lithium, sodium, potassium, rubidium, and cesium. Unsupported cobalt oxide catalysts and several cobalt oxide catalysts supported ceria (CeO{sub 2}) with varying contents of cobalt with added potassium were also prepared. The catalysts were characterized with UV-visible spectroscopy and were examined for NO{sub x} decomposition activity. The CoO{sub x}/Al{sub 2}O{sub 3} catalysts and particularly the CoO{sub x}/CeO{sub 2} catalysts show N{sub 2}O decomposition activity, but none of the catalysts (unsupported Co{sub 3}O{sub 4} or those supported on ceria or alumina) displayed significant, sustained NO decomposition activity. For the Al{sub 2}O{sub 3}-supported catalysts, N{sub 2}O decomposition activity was observed over a range of reaction temperatures beginning about 723 K, but significant (>50%) conversions of N{sub 2}O were observed only for reaction temperatures >900 K, which are too high for practical commercial use. However, the CeO{sub 2}-supported catalysts display N{sub 2}O decomposition rates similar to the Al{sub 2}O{sub 3}-supported catalysts at much lower reaction temperatures, with activity beginning at {approx}573 K. Conversions of >90% were achieved at 773 K for the best catalysts. Catalytic rates per cobalt atom increased with decreasing cobalt content, which corresponds to increasing edge energies obtained from the UV-visible spectra. The decrease in edge energies suggests that the size and dimensionality of the cobalt oxide surface domains increase with increasing cobalt oxide content. The rate data normalized per mass of catalyst that shows the activity of the CeO{sub 2}-supported catalysts increases with increasing cobalt oxide content. The combination of these data suggest that supported cobalt oxide species similar to bulk Co{sub 3}O{sub 4} are inherently more active than more dispersed cobalt oxide species, but this effect was only observed with the CeO{sub 2}-supported catalysts.

  14. ARTIFICIAL INTELLIGENCE-BASED ESTIMATION OF MERCURY SPECIATION IN COMBUSTION FLUE GASES. (R827649)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  16. Influence of sulfur in coals on char morphology and combustion

    SciTech Connect

    Marsh, H.

    1991-01-01

    During coal carbonization (pyrolysis), as during the combustion process of pulverized coal in a combustor, not all of the sulfur is released. Significant proportions become pat of the structure of the resultant coke and char. The combustion process of the char within the flames of the combustor in influenced dominantly by char morphology. This, in turn, controls the accessibility of oxidizing gases to the surfaces of the carbonaceous substance of the char. Mineral matter content, its extent and state of distribution, also exerts an influence on char morphology created during pyrolysis/carbonization. This complexity of coal renders it a very difficult material to study, systematically, to distinguish and separate out the contributing factors which influence combustion characteristics. Therefore, in such circumstances, it is necessary to simplify the systems by making use of model chars/cokes/carbons which can be made progressively more complex, but in a controlled way. In this way complicating influence in chars from coals can be eliminated, so enabling specific influences to be studied independently. It is important to note that preliminary work by Marsh and Gryglewicz (1990) indicated that levels of sulfur of about 3 to 5 wt % can reduce reactivities by 10 to 25%. The overall purpose of the study is to provide meaningful kinetic data to establish, quantitatively, the influence of organically-bound sulfur on the reactivity of carbons, and to ascertain if gasification catalysts are effective in the preferential removal of sulfur from the chars.

  17. Experimental investigation on combustion of hydrogen-oxygen and methane-oxygen mixtures in the medium of low-superheated steam

    NASA Astrophysics Data System (ADS)

    Pribaturin, N. A.; Fedorov, V. A.; Alekseev, M. V.; Bogomolov, A. R.; Sorokin, A. L.; Azikhanov, S. S.; Shevyrev, S. A.

    2016-05-01

    Experimental data are represented on the investigation of combustion of hydrogen-oxygen and methane-oxygen mixtures in the medium of low-superheated (initial temperature of approximately 150°C) steam at atmospheric pressure. The influence of the ratio of mass flows of the combustible mixture and steam on the qualitative composition of combustion products and the temperature of produced steam is revealed. Main laws for combustion of the hydrogen-oxygen mixture within the steam flow, which affect the completeness of mixture combustion, are determined. Experimental data on the influence of concentrations of the hydrogen-oxygen mixture within the flow of the steam and the combustible mixture upon the completeness of combustion are given. It is found that, when burning the hydrogen-oxygen mixture within the steam flow with a temperature of 1000-1200°C, it is possible using a variation of the combustible mixture flow. At the same time, the volume fraction of noncondensable gases in the produced steam is no more than 2%. It is revealed that there are several combustion modes of the hydrogen-oxygen mixture within the steam flow, in which, in one case, the steam always suppresses combustion and, in another one, detonation of the combustible mixture combustible mixture occurs. It is found that with the excess air factor close to unit, the combustion of the methane-oxygen mixture within steam and the vapor conversion of methane, which result in the appearance of free hydrogen in the produced high-temperature steam, are possible. The description and the principle of the operation of the experimental bench for investigation of combustion of methane-oxygen and hydrogen-oxygen mixtures in the medium of steam are given. Results of experimental investigations of burning fuel and oxygen in the medium of steam are used in the development of a steam superheater for a hightemperature steam turbine.

  18. Thermochemical recovery of heat contained in flue gases by means of bioethanol conversion

    NASA Astrophysics Data System (ADS)

    Pashchenko, D. I.

    2013-06-01

    In the present paper consideration is being given to the use of bioethanol in the schemes of thermochemical recovery of heat contained in exit flue gases. Schematic diagrams illustrate the realization of thermochemical heat recovery by implementing ethanol steam conversion and conversion of ethanol by means of products of its complete combustion. The feasibility of attaining a high degree of recovery of heat contained in flue gases at the moderate temperature (up to 450°C) of combustion components is demonstrated in the example of the energy balance of the system for thermochemical heat recovery. The simplified thermodynamic analysis of the process of ethanol steam conversion was carried out in order to determine possible ranges of variation of process variables (temperature, pressure, composition) of a reaction mixture providing the efficient heat utilization. It was found that at the temperature above 600 K the degree of ethanol conversion is near unity. The equilibrium composition of products of reaction of ethanol steam conversion has been identified for different temperatures at which the process occurs at the ratio H2O/EtOH = 1 and at the pressure of 0.1 MPa. The obtained results of calculation agree well with the experimental data.

  19. The Effect of Diluent Gases In The Shock Tube and Rapid Compression Machine

    SciTech Connect

    Silke, E; W?rmel, J; O?Conaire, M; Simmie, J; Curran, H

    2007-02-09

    Studying the details of hydrocarbon chemistry in an internal combustion engine is not straightforward. A number of factors, including varying conditions of temperature and pressure, complex fluid motions, as well as variation in the composition of gasoline, render a meaningful characterization of the combusting system difficult. Some simplified experimental laboratory devices offer an alternative to complex engine environments: they remove some of the complexities that exist in real engines but retain the ability to work under engine-relevant conditions. The choice of simplified experimental devices is limited by the range of temperature and pressure at which they can operate; only the shock tube and rapid compression machine (RCM) can reach engine-relevant temperatures and pressures quickly enough and yet withstand the high pressures that occur after the ignition event. Both devices, however, suffer a common drawback: the use of inert diluent gases has been shown to affect the measured ignition delay time under some experimental conditions. Interestingly, this effect appears to be opposite in the shock tube and RCM: in the comparative study of the carrier gases argon and nitrogen, argon decreases the ignition delay time in the shock tube, but increases it in the RCM. This observation is investigated in more detail in this study.

  20. SOHC type internal combustion engine

    SciTech Connect

    Fujii, N.; Iwata, T.; Oikawa, T.

    1989-01-10

    An SOHC type internal combustion engine is described comprising a cylinder head which has a combustion chamber defined therein, a camshaft carried thereon, an ignition plug mounting hole opening to a center portion of a top surface of the combustion chamber and a protecting cylinder formed therein with an ignition plug insertion hole. The journal for the camshaft has a diameter larger than a path of rotation of a lobe of a cam on the camshaft and is supported by a bearing hole formed in a camshaft receiving wall which is provided on the cylinder head. The protecting cylinder and the camshaft receiving wall are formed in a single piece.