Sample records for combustion system final

  1. Atomic-Scale Factors of Combustion Nanocatalysts

    DTIC Science & Technology

    2014-03-27

    AFRL-OSR-VA-TR-2014-0122 ATOMIC- SCALE PRINCIPLES OF COMBUSTION NANOCATALYSIS Uzi Landman GEORGIA TECH RESEARCH CORPORATION Final Report 05/19/2014...Prescribed by ANSI Std. Z39.18 27-03-2014 Final 01-06-2008 - 31-12-2013 MURI 08) - ATOMIC- SCALE PRINCIPLES OF COMBUSTION NANOCATALYSIS N/A FA9550-08...of predictive capabilities, addressing the creation, characterization, atomic- scale manipulations, and control of nanometer- scale catalytic systems

  2. Turbocharging of Small Internal Combustion Engines as a Means of Improving Engine/Application System Fuel Economy.

    DTIC Science & Technology

    1979-01-01

    OF SMALL INTERNAL COMBUSTION ENGINES AS A MEANS 0-.ETC(U) 1979 DAAK7O-78-C-O031 .hhuuufBuhhhh...Aerodyne Dallas th W__tIP FINAL REPORT CONTRACT* DAAK7-78-C-0031 FTURBOCHARGING OF SMALL INTERNAL COMBUSTION ENGINE AS A MEANS OF IMPROVING ENGINE ...DAAK70-78-C0031 TURBOCHARGING OF SMALL INTERNAL COMBUSTION ENGINES AS A MEANS OF IMPROVING ENGINE /APPLICATION SYSTEM FUEL ECONOMY Prepared by

  3. Computational Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surfacemore » and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.« less

  4. Multi-Point Combustion System: Final Report

    NASA Technical Reports Server (NTRS)

    Goeke, Jerry; Pack, Spencer; Zink, Gregory; Ryon, Jason

    2014-01-01

    A low-NOx emission combustor concept has been developed for NASA's Environmentally Responsible Aircraft (ERA) program to meet N+2 emissions goals for a 70,000 lb thrust engine application. These goals include 75 percent reduction of LTO NOx from CAEP6 standards without increasing CO, UHC, or smoke from that of current state of the art. An additional key factor in this work is to improve lean combustion stability over that of previous work performed on similar technology in the early 2000s. The purpose of this paper is to present the final report for the NASA contract. This work included the design, analysis, and test of a multi-point combustion system. All design work was based on the results of Computational Fluid Dynamics modeling with the end results tested on a medium pressure combustion rig at the UC and a medium pressure combustion rig at GRC. The theories behind the designs, results of analysis, and experimental test data will be discussed in this report. The combustion system consists of five radially staged rows of injectors, where ten small scale injectors are used in place of a single traditional nozzle. Major accomplishments of the current work include the design of a Multipoint Lean Direct Injection (MLDI) array and associated air blast and pilot fuel injectors, which is expected to meet or exceed the goal of a 75 percent reduction in LTO NOx from CAEP6 standards. This design incorporates a reduced number of injectors over previous multipoint designs, simplified and lightweight components, and a very compact combustor section. Additional outcomes of the program are validation that the design of these combustion systems can be aided by the use of Computational Fluid Dynamics to predict and reduce emissions. Furthermore, the staging of fuel through the individually controlled radially staged injector rows successfully demonstrated improved low power operability as well as improvements in emissions over previous multipoint designs. Additional comparison between Jet- A fuel and a hydrotreated biofuel is made to determine viability of the technology for use with alternative fuels. Finally, the operability of the array and associated nozzles proved to be very stable without requiring additional active or passive control systems. A number of publications have been publish

  5. Adaptation of Combustion Principles to Aircraft Propulsion. Volume I; Basic Considerations in the Combustion of Hydrocarbon Fuels with Air

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C (Editor); Hibbard, Robert R (Editor)

    1955-01-01

    The report summarizes source material on combustion for flight-propulsion engineers. First, several chapters review fundamental processes such as fuel-air mixture preparation, gas flow and mixing, flammability and ignition, flame propagation in both homogenous and heterogenous media, flame stabilization, combustion oscillations, and smoke and carbon formation. The practical significance and the relation of these processes to theory are presented. A second series of chapters describes the observed performance and design problems of engine combustors of the principal types. An attempt is made to interpret performance in terms of the fundamental processes and theories previously reviewed. Third, the design of high-speed combustion systems is discussed. Combustor design principles that can be established from basic considerations and from experience with actual combustors are described. Finally, future requirements for aircraft engine combustion systems are examined.

  6. Flex Fuel Optimized SI and HCCI Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Guoming; Schock, Harold; Yang, Xiaojian

    The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight enginemore » cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combustion mode transition strategy using the hybrid combustion mode that starts with the SI combustion and ends with the HCCI combustion was experimentally validated on a metal engine. The proposed model-based control approach made it possible to complete the SI-HCCI combustion mode transition within eight engine cycles utilizing the well controlled hybrid combustion mode. Without intensive control-oriented engine modeling and HIL simulation study of using the hybrid combustion mode during the mode transition, it would be impossible to validate the proposed combustion mode transition strategy in a very short period.« less

  7. [Study on expert system of infrared spectral characteristic of combustible smoke agent].

    PubMed

    Song, Dong-ming; Guan, Hua; Hou, Wei; Pan, Gong-pei

    2009-05-01

    The present paper studied the application of expert system in prediction of infrared spectral characteristic of combustible anti-infrared smoke agent. The construction of the expert system was founded, based on the theory of minimum free energy and infrared spectral addition. After the direction of smoke agent was input, the expert system could figure out the final combustion products. Then infrared spectrogram of smoke could also be simulated by adding the spectra of all of the combustion products. Meanwhile, the screening index of smoke was provided in the wave bands of 3-5 im and 8-14 microm. FTIR spectroscope was used to investigate the performance of one kind of HC smoke. The combustion products calculated by the expert system were coincident with the actual data, and the simulant infrared spectrum was also similar to the real one of the smoke. The screening index given by the system was consistent with the known facts. It was showed that a new approach was offered for the fast discrimination of varieties of directions of smoke agent.

  8. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions

    DTIC Science & Technology

    2016-09-07

    AFRL-AFOSR-UK-TR-2016-0021 Distributed Low Temperature Combustion 133024 Peter Lindstedt IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY & MEDICINE Final...TYPE Final 3. DATES COVERED (From - To) 01 Feb 2013 to 31 Jul 2016 4. TITLE AND SUBTITLE Distributed Low Temperature Combustion: Fundamental...identification of five separate fluid states. 15. SUBJECT TERMS EOARD, Low Temperature Combustion, Combustion Regime Transitions 16. SECURITY

  9. TRACE ELEMENT PARTITIONING AND TRANSFORMATIONS DURING COMBUSTION OF BITUMINOUS AND SUBBITUMINOUS U.S. COALS IN A 7-KW COMBUSTION SYSTEM. (R827649)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Combustion Characteristics of Sprays

    DTIC Science & Technology

    1989-08-01

    Lin. T. H.. and Sohrab. S. H. (1987). On the transition oi’diffusion to premixed I’lames in consers.ed ssstem Cornhusio. Flume 68. 73. Mlizutani. Y ...and Nakauima. A. (1973a). Combustion of fuel vapor-drop-air systems: Part 1-Open burner flames. Combust. F/ante 21.14. Mizutani. Y .. and Nakajima. A...AFOSR LES Final Report. AFRPL. Sohrab. S. H.. Ye. Z. Y .. and Law~k C. K. (1984). An experimenial investication on ilame interaction ano the

  11. Dynamic Burning Effects in the Combustion of Solid Propellants with Cracks, and the Use of Granular Bed Combustion Models

    DTIC Science & Technology

    1980-12-01

    Detachment, White Oak Laboratory, Silver Spring Code 240, Sigmund Jacobs (1) G. B. Wilmot (1) 1 Naval Underwater Systems Center, Newport (Code 5B331...Models by Kenneth K. Kuo and Mridul Kumar Systems Associates DTIC Pennsylvanir State University ELECTE for the APR 8 1981 Research Department B...ACTIVTY OF THE NAVAL MATERIAL COMMAND FOREWORD This is the final report for a research program conducted by Systems Associates, Pennsylvania State

  12. Evaluation and Improvement of Liquid Propellant Rocket Chugging Analysis Techniques. Part 2: a Study of Low Frequency Combustion Instability in Rocket Engine Preburners Using a Heterogeneous Stirred Tank Reactor Model. Final Report M.S. Thesis - Aug. 1987

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.

    1988-01-01

    During the shutdown of the space shuttle main engine, oxygen flow is shut off from the fuel preburner and helium is used to push the residual oxygen into the combustion chamber. During this process a low frequency combustion instability, or chug, occurs. This chug has resulted in damage to the engine's augmented spark igniter due to backflow of the contents of the preburner combustion chamber into the oxidizer feed system. To determine possible causes and fixes for the chug, the fuel preburner was modeled as a heterogeneous stirred tank combustion chamber, a variable mass flow rate oxidizer feed system, a constant mass flow rate fuel feed system and an exit turbine. Within the combustion chamber gases were assumed perfectly mixed. To account for liquid in the combustion chamber, a uniform droplet distribution was assumed to exist in the chamber, with mean droplet diameter determined from an empirical relation. A computer program was written to integrate the resulting differential equations. Because chamber contents were assumed perfectly mixed, the fuel preburner model erroneously predicted that combustion would not take place during shutdown. The combustion rate model was modified to assume that all liquid oxygen that vaporized instantaneously combusted with fuel. Using this combustion model, the effect of engine parameters on chamber pressure oscillations during the SSME shutdown was calculated.

  13. Changes in rat respiratory system produced by exposure to exhaust gases of combustion of glycerol.

    PubMed

    Serra, Daniel Silveira; Evangelista, Janaína Serra Azul Monteiro; Zin, Walter Araujo; Leal-Cardoso, José Henrique; Cavalcante, Francisco Sales Ávila

    2017-08-01

    The combustion of residual glycerol to generate heat in industrial processes has been suggested as a cost-effective solution for disposal of this environmental liability. Thus, we investigated the effects of exposure to the exhaust gases of glycerol combustion in the rat respiratory system. We used 2 rats groups, one exposed to the exhaust gases from glycerol combustion (Glycerol), and the other exposed to ambient air (Control). Exposure occurred 5h a day, 5days a week for 13 weeks. We observed statistically changes in all parameters of respiratory system mechanics in vivo. This results was supported by histological analysis and morphometric data, confirming narrower airways and lung parenchimal changes. Variables related to airway resistance (ΔR N ) and elastic properties of the tissue (ΔH), increased after challenge with methacholine. Finally, analysis of lung tissue micromechanics showed statistically increases in all parameters (R, E and hysteresivity). In conclusion, exhaust gases from glycerol combustion were harmful to the respiratory system. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Kerosene-base fuels in small gasoline engines. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Failla, C.C.; Pouring, A.A.

    1991-01-01

    This document presents the results of an engineering study to demonstrate the technology for converting small gasoline spark-ignited engines, to burn kerosene type fuels to power small generators (0.5 to 3.0 kw). Commercially available (plus those in the developmental stage), reciprocating, two-stroke, four stroke and rotary engines were evaluated for their conversion potential. Unique combustion systems were identified and trade-off studies conducted on engine type, combustion systems, and modification required to burn kerosene type fuels, with special emphasis given to minimizing life cycle cost. Recommendations for the most feasible system are given.

  15. Kerosene space heaters--combustion technology and kerosene characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubayashi, k.; I Wasaki, N.

    1984-07-01

    This paper describes kerosene combustion technology. Unvented wick-type kerosene space heaters are very popular in Japan because of their economy and convenience. In recent years new vaporized kerosene burners having premixed combustion systems have been developed to solve some of the problems encountered in the older portable type. Some of the features of the new burners are instantaneous ignition, no vaporizing deposit on the burner and a wide range heating capacity. These new kerosene heaters have four major components: an air supply fan, a fuel supply assembly, a burner assembly and a control assembly. These heaters are designed to bemore » highly reliable, have stable combustion characteristics, yield minimum carbon deposit. Finally, they are simple and inexpensive to operate.« less

  16. Experimental Investigation of Magnesium Powder Combustion With C02 for Mars Ascent Applications

    NASA Technical Reports Server (NTRS)

    Foote, John P.; Litchford, Ronald J.

    2005-01-01

    Combustion of metals with CO2 has been identified as a possible propellant for Mars ascent applications. CO2 could be condensed from the Martian atmosphere, reducing the amount of propellant that must be transported from Earth. An attractive feature of this approach compared to other in situ propellant concepts is that no chemical processing on Mars is required. Magnesium has been identified as the most promising metal for this application because it ignites and burns easily in CO2. Preliminary systems studies indicate a 2 to 1 delivered mass advantage for Mg ascent propulsion using in situ C02, as compared to a conventional storable propellant system. The Propulsion Research Center at MSFC is undertaking an experimental investigation of magnesium powder combustion with CO2 in order to provide fundamental data on the combustion performance of Mg powder + CO2 mixtures needed to assess the feasibility of developing a practical Mg powder + CO2 rocket engine. Initial combustion experiments will be carried out in a small scale atmospheric pressure dump combustor. Effects of varying the Mg particle size, firing rate and O/F ratio on combustion stability and efficiency will be investigated. The combustion process will be characterized by optical flame measurements and extraction of combustion product samples. The experimental facility is currently being prepared and combustion experiments will begin during the first quarter of 2005. The final paper will describe the test facility and initial experimental results.

  17. Waste burning and heat recovery characteristics of a mass burn incineration system.

    PubMed

    Chen, Wei-Hsin

    2003-02-01

    An experimental investigation on waste combustion characteristics of a mass burn incinerator is conducted in this study. Three different charging modes, including operator manipulation, periodic feeding, and temperature control, are taken into consideration. The results indicate that the burning characteristics in the combustion chambers are closely related to the operating modes. For the operator manipulation where the wastes are sent into the incinerator in two short periods, the entire temperature distribution of the primary combustion chamber can be partitioned into two parts, thereby yielding waste group combustion. Temperature oscillations in both the primary and secondary combustion chambers are characterized for the periodic feeding. However, because of the shorter charging period and smaller amount of waste, the burning interaction between the two chambers is initially weak and becomes notable in the final stage. When temperature control is performed, the burning oscillation of the primary combustion chamber is further amplified so the combustion interaction is drastic. These exhibitions are mainly caused by the competition between endothermic and exothermic reactions. The instantaneous heat exchange efficiency of the cyclone heat recovery system (CHRS) installed in the incineration system is also evaluated to obtain details of energy recovery behaviors. As a result, the efficiency tends to decrease linearly with increasing temperature of hot flue gas. This arises from the fact that heat loss from the gas to the environment is increased when the temperature of the former is higher, even though the temperature gradient across the cyclone is enlarged.

  18. Biomass Combustions and Burning Emissions Inferred from GOES Fire Radiative Power

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Kondragunta, S.; Schmidt, C.

    2007-12-01

    Biomass burning significantly affects air quality and climate changes. Current estimates of burning emissions are rather imprecise and vary markedly with different methodologies. This paper investigates biomass burning consumption and emissions using GOES (Geostationary Operational Environmental Satellites) WF_ABBA (Wildfire Automated Biomass Burning Algorithm) fire product. In doing this, we establish a set of representatives in diurnal patterns of half-hourly GOES Fire Radiative Power (FRP) for various ecosystems. The representative patterns are used to fill the missed and poor observations of half hourly FRP in GOES fire data for individual fire pixels. The simulated FRP is directly applied to the calculation of the biomass combusted during fire activities. The FRP-based biomass combustion is evaluated using the estimates using a traditional model which integrates burned area, fuel loading, and combustion factor. In the traditional model calculation, we derive burned areas from GOES WF_ABBA fire size. Fuel loading includes three different types (1) MODIS Vegetation Property-based Fuel System (MVPFS), (2) National Dangerous Rating Systems (NFDRS), and (3) the Fuel Characteristic Classification System (FCCS). By comparing the biomass combustions across the Contiguous United States (CONUS) from 2003-2005, we conclude that FRP is an effective tool to estimate the biomass burning emissions. Finally, we examine the temporal and spatial patterns in biomass combustions and emissions (PM2.5, CO, NH3) across the CONUS.

  19. Final Technical Report: Vibrational Spectroscopy of Transient Combustion Intermediates Trapped in Helium Nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douberly, Gary Elliott

    The objective of our experimental research program is to isolate and stabilize transient intermediates and products of prototype combustion reactions. This will be accomplished by Helium Nanodroplet Isolation, a novel technique where liquid helium droplets freeze out high energy metastable configurations of a reacting system, permitting infrared spectroscopic characterizations of products and intermediates that result from hydrocarbon radical reactions with molecular oxygen and other small molecules relevant to combustion environments. The low temperature (0.4 K) and rapid cooling associated with He droplets provides a perfectly suited medium to isolate and probe a broad range of molecular radical and carbene systemsmore » important to combustion chemistry. The sequential addition of molecular species to He droplets often leads to the stabilization of high-energy, metastable cluster configurations that represent regions of the potential energy surface far from the global minimum. Single and double resonance IR laser spectroscopy techniques, along with Stark and Zeeman capabilities, are being used to probe the structural and dynamical properties of these systems.« less

  20. Ignition and combustion characteristics of metallized propellants

    NASA Technical Reports Server (NTRS)

    Mueller, D. C.; Turns, Stephen R.

    1991-01-01

    Over the past six months, experimental investigations were continued and theoretical work on the secondary atomization process was begun. Final shakedown of the sizing/velocity measuring system was completed and the aluminum combustion detection system was modified and tested. Atomizer operation was improved to allow steady state operation over long periods of time for several slurries. To validate the theoretical modeling, work involving carbon slurry atomization and combustion was begun and qualitative observations were made. Simultaneous measurements of aluminum slurry droplet size distributions and detection of burning aluminum particles were performed at several axial locations above the burner. The principle theoretical effort was the application of a rigid shell formation model to aluminum slurries and an investigation of the effects of various parameters on the shell formation process. This shell formation model was extended to include the process leading up to droplet disruption, and previously developed analytical models were applied to yield theoretical aluminum agglomerate ignition and combustion times. The several theoretical times were compared with the experimental results.

  1. Effects of mesh type on a non-premixed model in a flameless combustion simulation

    NASA Astrophysics Data System (ADS)

    Komonhirun, Seekharin; Yongyingsakthavorn, Pisit; Nontakeaw, Udomkiat

    2018-01-01

    Flameless combustion is a recently developed combustion system, which provides zero emission product. This phenomenon requires auto-ignition by supplying high-temperature air with low oxygen concentration. The flame is vanished and colorless. Temperature of the flameless combustion is less than that of a conventional case, where NOx reactions can be well suppressed. To design a flameless combustor, the computational fluid dynamics (CFD) is employed. The designed air-and-fuel injection method can be applied with the turbulent and non-premixed models. Due to the fact that nature of turbulent non-premixed combustion is based on molecular randomness, inappropriate mesh type can lead to significant numerical errors. Therefore, this research aims to numerically investigate the effects of mesh type on flameless combustion characteristics, which is a primary step of design process. Different meshes, i.e. tetrahedral, hexagonal are selected. Boundary conditions are 5% of oxygen and 900 K of air-inlet temperature for the flameless combustion, and 21% of oxygen and 300 K of air-inlet temperature for the conventional case. The results are finally presented and discussed in terms of velocity streamlines, and contours of turbulent kinetic energy and viscosity, temperature, and combustion products.

  2. Detailed model for practical pulverized coal furnaces and gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.J.; Smoot, L.D.

    1989-08-01

    This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report:more » (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.« less

  3. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-01-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  4. Fluids and Combustion Facility: Fluids Integrated Rack Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.

    2005-01-01

    The Fluids Integrated Rack (FIR) is one of two racks in the Fluids and Combustion Facility on the International Space Station. The FIR is dedicated to the scientific investigation of space system fluids management supporting NASA s Exploration of Space Initiative. The FIR hardware was modal tested and FIR finite element model updated to satisfy the International Space Station model correlation criteria. The final cross-orthogonality results between the correlated model and test mode shapes was greater than 90 percent for all primary target modes.

  5. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc.more » in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business« less

  6. Injector Design Tool Improvements: User's manual for FDNS V.4.5

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Wei, Hong; Liu, Jiwen

    1998-01-01

    The major emphasis of the current effort is in the development and validation of an efficient parallel machine computational model, based on the FDNS code, to analyze the fluid dynamics of a wide variety of liquid jet configurations for general liquid rocket engine injection system applications. This model includes physical models for droplet atomization, breakup/coalescence, evaporation, turbulence mixing and gas-phase combustion. Benchmark validation cases for liquid rocket engine chamber combustion conditions will be performed for model validation purpose. Test cases may include shear coaxial, swirl coaxial and impinging injection systems with combinations LOXIH2 or LOXISP-1 propellant injector elements used in rocket engine designs. As a final goal of this project, a well tested parallel CFD performance methodology together with a user's operation description in a final technical report will be reported at the end of the proposed research effort.

  7. Stratified charge rotary engine combustion studies

    NASA Technical Reports Server (NTRS)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-01-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  8. Stratified charge rotary engine combustion studies

    NASA Astrophysics Data System (ADS)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-07-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  9. Combustion Stability of the Gas Generator Assembly from J-2X Engine E10001 and Powerpack Tests

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Kenny, R. L.; Casiano, M. J.

    2013-01-01

    Testing of a powerpack configuration (turbomachinery and gas generator assembly) and the first complete engine system of the liquid oxygen/liquid hydrogen propellant J-2X rocket engine have been completed at the NASA Stennis Space Center. The combustion stability characteristics of the gas generator assemblies on these two systems are of interest for reporting since considerable effort was expended to eliminate combustion instability during early development of the gas generator assembly with workhorse hardware. Comparing the final workhorse gas generator assembly development test data to the powerpack and engine system test data provides an opportunity to investigate how the nearly identical configurations of gas generator assemblies operate with two very different propellant supply systems one the autonomous pressure-fed test configuration on the workhorse development test stand, the other the pump-fed configurations on the powerpack and engine systems. The development of the gas generator assembly and the elimination of the combustion instability on the pressure-fed workhorse test stand have been reported extensively in the two previous Liquid Propulsion Subcommittee meetings 1-7. The powerpack and engine system testing have been conducted from mid-2011 through 2012. All tests of the powerpack and engine system gas generator systems to date have been stable. However, measureable dynamic behavior, similar to that observed on the pressure-fed test stand and reported in Ref. [6] and attributed to an injection-coupled response, has appeared in both powerpack and engine system tests. As discussed in Ref. [6], these injection-coupled responses are influenced by the interaction of the combustion chamber with a branch pipe in the hot gas duct that supplies gaseous helium to pre-spin the turbine during the start transient. This paper presents the powerpack and engine system gas generator test data, compares these data to the development test data, and provides additional combustion stability analyses of the configurations.

  10. Introductory lecture. Advanced laser spectroscopy in combustion chemistry: from elementary steps to practical devices.

    PubMed

    Wolfrum, J

    2001-01-01

    In recent years a large number of linear and nonlinear laser-based diagnostic techniques for nonintrusive measurements of species concentrations, temperatures, and gas velocities in a wide pressure and temperature range with high temporal and spatial resolution have been developed and have become extremely valuable tools to study many aspects of combustion. Beside the nonintrusive diagnostics of technical combustion devices the kinetics and microscopic dynamics of elementary chemical combustion reactions can be investigated in great detail by laser spectroscopy. These investigations show, that a small number of relatively simple elementary steps like H + O2-->OH + O, H2O2-->2OH, O + N2-->NO + N, NH2 + NO-->H2O + N2, OH + N2H control a large variety of combustion phenomena and pollutant formation processes. Laminar flames are ideal objects to develop the application of laser spectroscopic methods for practical combustion systems and to test and improve the gas-phase reaction mechanism in combustion models. Nonintrusive laser point and field measurements are of basic importance in the validation and further development of turbulent combustion models. Nonlinear laser spectroscopic techniques using infrared-visible sum-frequency generation can now bridge the pressure and materials gap to provide kinetic data for catalytic combustion. Finally, the potential of laser techniques for active combustion control in municipal waste incinerators is illustrated.

  11. Combustion and gasification characteristics of chars from four commercially significant coals of different rank. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nsakala, N.Y.; Patel, R.L.; Lao, T.C.

    1982-09-01

    The combustion and gasification kinetics of four size graded coal chars were investigated experimentally in Combustion Engineering's Drop Tube Furnace System (DTFS). The chars were prepared in the DTFS from commercially significant coals representing a wide range of rank; these included a Pittsburgh No. 8 Seam hvAb coal, an Illinois No. 6 Seam hvCb coal, a Wyoming Sub C, and a Texas Lignite A. Additionally, a number of standard ASTM and special bench scale tests were performed on the coals and chars to characterize their physicochemical properties. Results showed that the lower rank coal chars were more reactive than themore » higher rank coal chars and that combustion reactions of chars were much faster than the corresponding gasification reactions. Fuel properties, temperature, and reactant gas partial pressure had a significant influence on both combustion and gasification, and particle size had a mild but discernible influence on gasification. Fuel reactivities were closely related to pore structure. Computer simulation of the combustion and gasification performances of the subject samples in the DTFS supported the experimental findings.« less

  12. Radiation/Catalytic Augmented Combustion.

    DTIC Science & Technology

    1984-05-01

    interest to compare the experimental results for the solid bluff body with a thuoretical result. Using simple argtinieiiLs from fluid mechanics " one...responsibility through completion. Dr. A. E. Cerkanowlcz assisted in writing this final report. Experimental studies on catalytic augmented combustion...as well as with other combustion species, lead to ignition and sustained combustion via chain reactions. Simple combustion enhancement without

  13. Compact nanosecond laser system for the ignition of aeronautic combustion engines

    NASA Astrophysics Data System (ADS)

    Amiard-Hudebine, G.; Tison, G.; Freysz, E.

    2016-12-01

    We have studied and developed a compact nanosecond laser system dedicated to the ignition of aeronautic combustion engines. This system is based on a nanosecond microchip laser delivering 6 μJ nanosecond pulses, which are amplified in two successive stages. The first stage is based on an Ytterbium doped fiber amplifier (YDFA) working in a quasi-continuous-wave (QCW) regime. Pumped at 1 kHz repetition rate, it delivers TEM00 and linearly polarized nanosecond pulses centered at 1064 nm with energies up to 350 μJ. These results are in very good agreement with the model we specially designed for a pulsed QCW pump regime. The second amplification stage is based on a compact Nd:YAG double-pass amplifier pumped by a 400 W peak power QCW diode centered at λ = 808 nm and coupled to a 800 μm core multimode fiber. At 10 Hz repetition rate, this system amplifies the pulse delivered by the YDFA up to 11 mJ while preserving its beam profile, polarization ratio, and pulse duration. Finally, we demonstrate that this compact nanosecond system can ignite an experimental combustion chamber.

  14. Control of the low-load region in partially premixed combustion

    NASA Astrophysics Data System (ADS)

    Ingesson, Gabriel; Yin, Lianhao; Johansson, Rolf; Tunestal, Per

    2016-09-01

    Partially premixed combustion (PPC) is a low temperature, direct-injection combustion concept that has shown to give promising emission levels and efficiencies over a wide operating range. In this concept, high EGR ratios, high octane-number fuels and early injection timings are used to slow down the auto-ignition reactions and to enhance the fuel and are mixing before the start of combustion. A drawback with this concept is the combustion stability in the low-load region where a high octane-number fuel might cause misfire and low combustion efficiency. This paper investigates the problem of low-load PPC controller design for increased engine efficiency. First, low-load PPC data, obtained from a multi-cylinder heavy- duty engine is presented. The data shows that combustion efficiency could be increased by using a pilot injection and that there is a non-linearity in the relation between injection and combustion timing. Furthermore, intake conditions should be set in order to avoid operating points with unfavourable global equivalence ratio and in-cylinder temperature combinations. Model predictive control simulations were used together with a calibrated engine model to find a gas-system controller that fulfilled this task. The findings are then summarized in a suggested engine controller design. Finally, an experimental performance evaluation of the suggested controller is presented.

  15. High temperature alkali corrosion of ceramics in coal gas: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickrell, G.R.; Sun, T.; Brown, J.J. Jr.

    1994-12-31

    There are several ceramic materials which are currently being considered for use as structural elements in coal combustion and coal conversion systems because of their thermal and mechanical properties. These include alumina (refractories, membranes, heat engines); silicon carbide and silicon nitride (turbine engines, internal combustion engines, heat exchangers, particulate filters); zirconia (internal combustion engines, turbine engines, refractories); and mullite and cordierite (particulate filters, refractories, heat exchangers). High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and highmore » efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, and zirconia. The study consists of identification of the alkali reaction products and determination of the kinetics of the alkali reactions as a function of temperature and time. 145 refs., 29 figs., 12 tabs.« less

  16. Fact Sheet: 2015 Final Rule on the Disposal of Coal Combustion Residuals Generated by Electric Utilities

    EPA Pesticide Factsheets

    This fact sheet describes the final rule signed on December 19, 2014 establishing a comprehensive set of requirements for the disposal of coal combustion residuals generated by electric utilities in landfills and surface impoundments.

  17. Operating manual for coaxial injection combustion model. [for the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Sutton, R. D.; Schuman, M. D.; Chadwick, W. D.

    1974-01-01

    An operating manual for the coaxial injection combustion model (CICM) is presented as the final report for an eleven month effort designed to provide improvement, to verify, and to document the comprehensive computer program for analyzing the performance of thrust chamber operation with gas/liquid coaxial jet injection. The effort culminated in delivery of an operation FORTRAN IV computer program and associated documentation pertaining to the combustion conditions in the space shuttle main engine. The computer program is structured for compatibility with the standardized Joint Army-Navy-NASA-Air Force (JANNAF) performance evaluation procedure. Use of the CICM in conjunction with the JANNAF procedure allows the analysis of engine systems using coaxial gas/liquid injection.

  18. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gravel, Roland; Maronde, Carl; Gehrke, Chris

    2010-10-30

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustionmore » and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well-to-wheels analysis of the energy flows in a mobile vehicle system and a 2nd Law thermodynamic analysis of the engine system were also completed under this program.« less

  19. A review of active control approaches in stabilizing combustion systems in aerospace industry

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Lu, Zhengli; Zhao, He; Li, X. Y.; Wang, Bing; Liu, Peijin

    2018-02-01

    Self-sustained combustion instabilities are one of the most plaguing challenges and problems in lean-conditioned propulsion and land-based engine systems, such as rocket motors, gas turbines, industrial furnace and boilers, and turbo-jet thrust augmenters. Either passive or active control in open- or closed-loop configurations can be implemented to mitigate such instabilities. One of the classical disadvantages of passive control is that it is only implementable to a designed combustor over a limited frequency range and can not respond to the changes in operating conditions. Compared with passive control approaches, active control, especially in closed-loop configuration is more adaptive and has inherent capacity to be implemented in practice. The key components in closed-loop active control are 1) sensor, 2) controller (optimization algorithm) and 3) dynamic actuator. The present work is to outline the current status, technical challenges and development progress of the active control approaches (in open- or closed-loop configurations). A brief description of feedback control, adaptive control, model-based control and sliding mode control are provided first by introducing a simplified Rijke-type combustion system. The modelled combustion system provides an invaluable platform to evaluate the performance of these feedback controllers and a transient growth controller. The performance of these controllers are compared and discussed. An outline of theoretical, numerical and experimental investigations are then provided to overview the research and development progress made during the last 4 decades. Finally, potential, challenges and issues involved with the design, application and implementation of active combustion control strategies on a practical engine system are highlighted.

  20. EVALUATING MERCURY TRANSFORMATION MECHANISMS IN A LABORATORY-SCALE COMBUSTION SYSTEM. (R827649)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. Environmental assessment of combustion modification controls for stationary internal combustion engines. Final report Sep 78-Jul 79

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lips, H.I.; Gotterba, J.A.; Lim, K.J.

    1981-07-01

    The report gives results of an environmental assessment of combustion modification techniques for stationary internal combustion engines, with respect to NOx control reduction effectiveness, operational impact, thermal efficiency impact, capital and annualized operating costs, and effects on emissions of pollutants other than NOx.

  2. Constant-Pressure Combustion Charts Including Effects of Diluent Addition

    NASA Technical Reports Server (NTRS)

    Turner, L Richard; Bogart, Donald

    1949-01-01

    Charts are presented for the calculation of (a) the final temperatures and the temperature changes involved in constant-pressure combustion processes of air and in products of combustion of air and hydrocarbon fuels, and (b) the quantity of hydrocarbon fuels required in order to attain a specified combustion temperature when water, alcohol, water-alcohol mixtures, liquid ammonia, liquid carbon dioxide, liquid nitrogen, liquid oxygen, or their mixtures are added to air as diluents or refrigerants. The ideal combustion process and combustion with incomplete heat release from the primary fuel and from combustible diluents are considered. The effect of preheating the mixture of air and diluents and the effect of an initial water-vapor content in the combustion air on the required fuel quantity are also included. The charts are applicable only to processes in which the final mixture is leaner than stoichiometric and at temperatures where dissociation is unimportant. A chart is also included to permit the calculation of the stoichiometric ratio of hydrocarbon fuel to air with diluent addition. The use of the charts is illustrated by numerical examples.

  3. Near-extinction and final burnout in coal combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, R.H.; Davis, K.A.

    The late stages of char combustion have a special technological significance, as carbon conversions of 99% or greater are typically required for the economic operation of pulverized coal fired boilers. In the present article, two independent optical techniques are used to investigate near-extinction and final burnout phenomenas. Captive particle image sequences, combined with in situ optical measurements on entrained particles, provide dramatic illustration of the asymptotic nature of the char burnout process. Single particle combustion to complete burnout is seen to comprise two distinct stages: (1) a rapid high-temperature combustion stage, consuming about 70% of the char carbon and endingmore » with near-extinction of the heterogeneous reactions due to a loss of global particle reactivity, and (2) a final burnout stage occurring slowly at lower temperatures. For particles containing mineral matter, the second stage can be further subdivided into: (2a) late char combustion, which begins after the near-extinction event, and converts carbon-rich particles to mixed particle types at a lower temperature and a slower rate; and (2b) decarburization of ash -- the removal of residual carbon inclusions from inorganic (ash) frameworks in the very late stages of combustion. This latter process can be extremely slow, requiring over an order of magnitude more time than the primary rapid combustion stage. For particles with very little ash, the loss of global reactivity leading to early near-extinction is clearly related to changes in the carbonaceous char matrix, which evolves over the course of combustion. Current global kinetic models used for the prediction of char combustion rates and carbon burnout in boilers do not predict the asymptotic nature of char combustion. More realistic models accounting for the evolution of char structure are needed to make accurate predictions in the range of industrial interest.« less

  4. Investigation of Sustained Detonation Devices: the Pulse Detonation Engine-Crossover System and the Rotating Detonation Engine System

    NASA Astrophysics Data System (ADS)

    Driscoll, Robert B.

    An experimental study is conducted on a Pulse Detonation Engine-Crossover System to investigate the feasibility of repeated, shock-initiated combustion and characterize the initiation performance. A PDE-crossover system can decrease deflagration-to-detonation transition length while employing a single spark source to initiate a multi-PDE system. Visualization of a transferred shock wave propagating through a clear channel reveals a complex shock train behind the leading shock. Shock wave Mach number and decay rate remains constant for varying crossover tube geometries and operational frequencies. A temperature gradient forms within the crossover tube due to forward flow of high temperature ionized gas into the crossover tube from the driver PDE and backward flow of ionized gas into the crossover tube from the driven PDE, which can cause intermittent auto-ignition of the driver PDE. Initiation performance in the driven PDE is strongly dependent on initial driven PDE skin temperature in the shock wave reflection region. An array of detonation tubes connected with crossover tubes is developed using optimized parameters and successful operation utilizing shock-initiated combustion through shock wave reflection is achieved and sustained. Finally, an air-breathing, PDE-Crossover System is developed to characterize the feasibility of shock-initiated combustion within an air-breathing pulse detonation engine. The initiation effectiveness of shock-initiated combustion is compared to spark discharge and detonation injection through a pre-detonator. In all cases, shock-initiated combustion produces improved initiation performance over spark discharge and comparable detonation transition run-up lengths relative to pre-detonator initiation. A computational study characterizes the mixing processes and injection flow field within a rotating detonation engine. Injection parameters including reactant flow rate, reactant injection area, placement of the fuel injection, and fuel injection distribution are varied to assess the impact on mixing. Decreasing reactant injection areas improves fuel penetration into the cross-flowing air stream, enhances turbulent diffusion of the fuel within the annulus, and increases local equivalence ratio and fluid mixedness. Staggering fuel injection holes produces a decrease in mixing when compared to collinear fuel injection. Finally, emulating nozzle integration by increasing annulus back-pressure increases local equivalence ratio in the injection region due to increased convection residence time.

  5. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    NASA Astrophysics Data System (ADS)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time for current two-stroke swing engine is estimated as about 2.5 ms, which can be used in the prescribed burned mass fraction profile that follows the Wiebe's function. Finally, a 2D CFD code for compressible flow has been developed to study wave interactions in the engine and header system. It is found that with realistic working conditions, for a two-stroke swing engine, certain expansion waves can be created by the exhaust gas flows and the chamber pressure can reach as low as 5 psi below one atmosphere, which helps fill fresh reactant charge. The results also show that to obtain appropriate header tuning for the current two-stroke swing engine, the length of the header neck is about 40 cm.

  6. Advanced Chemical Modeling for Turbulent Combustion Simulations

    DTIC Science & Technology

    2012-05-03

    premixed combustion. The chemistry work proposes a method for defining jet fuel surrogates, describes how different sub- mechanisms can be incorporated...Chemical Modeling For Turbulent Combustion Simulations Final Report submitted by: Heinz Pitsch (PI) Stanford University Mechanical Engineering Flow Physics...predict the combustion characteristics of fuel oxidation and pollutant emissions from engines . The relevant fuel chemistry must be accurately modeled

  7. A review of acoustic dampers applied to combustion chambers in aerospace industry

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Li, X. Y.

    2015-04-01

    In engine combustion systems such as rockets, aero-engines and gas turbines, pressure fluctuations are always present, even during normal operation. One of design prerequisites for the engine combustors is stable operation, since large-amplitude self-sustained pressure fluctuations (also known as combustion instability) have the potential to cause serious structural damage and catastrophic engine failure. To dampen pressure fluctuations and to reduce noise, acoustic dampers are widely applied as a passive control means to stabilize combustion/engine systems. However, they cannot respond to the dynamic changes of operating conditions and tend to be effective over certain narrow range of frequencies. To maintain their optimum damping performance over a broad frequency range, extensive researches have been conducted during the past four decades. The present work is to summarize the status, challenges and progress of implementing such acoustic dampers on engine systems. The damping effect and mechanism of various acoustic dampers, such as Helmholtz resonators, perforated liners, baffles, half- and quarter-wave tube are introduced first. A summary of numerical, experimental and theoretical studies are then presented to review the progress made so far. Finally, as an alternative means, ';tunable acoustic dampers' are discussed. Potential, challenges and issues associated with the dampers practical implementation are highlighted.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This final safety evaluation report (FSER) documents the technical review of the System 80+ standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the System 80+ design was submitted by Combustion Engineering, Inc., now Asea Brown Boveri-Combustion Engineering (ABB-CE) as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. System 80+ is a pressurized water reactor with a rated power of 3914 megawatts thermal (MWt) and a design power of 3992 MWt at which accidents are analyzed. Many features of the System 80+ are similar to those of Abb-CE`s Systemmore » 80 design from which it evolved. Unique features of the System 80+ design included: a large spherical, steel containment; an in-containment refueling water storage tank; a reactor cavity flooding system, hydrogen ignitors, and a safety depressurization system for severe accident mitigation; a combustion gas turbine for an alternate ac source; and an advanced digitally based control room. On the basis of its evaluation and independent analyses, the NRC staff concludes that ABB-CE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the System 80+ standard design. This document, Volume 1, contains Chapters 1 through 14 of this report.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This final safety evaluation report (FSER) documents the technical review of the System 80+ standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the system 80+ design was submitted by Combustion Engineering, Inc., now Asea Brown Boveri-Combustion Engineering (ABB-CE) as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. System 80+ is a pressurized water reactor with a rated power of 3914 megawatts thermal (MWt) and a design power of 3992 MWt at which accidents are analyzed. Many features of the System 80+ are similar to those of ABB-CE`s Systemmore » 80 design from which it evolved. Unique features of the System 80+ design include: a large spherical, steel containment; an in-containment refueling water storage tank; a reactor cavity flooding system, hydrogen ignitors and a safety depressurization system for severe accident mitigation; a combustion gas turbine for an alternate ac source; and an advanced digitally based control room. On the basis of its evaluation and independent analyses, the NRC staff concludes that ABB-CE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the System 80+ standard design. This document, Volume 2, contains Chapters 15 through 22 and Appendices A through E.« less

  10. Control Strategies for HCCI Mixed-Mode Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Robert M; Edwards, Kevin Dean

    2010-03-01

    Delphi Automotive Systems and ORNL established this CRADA to expand the operational range of Homogenous Charge Compression Ignition (HCCI) mixed-mode combustion for gasoline en-gines. ORNL has extensive experience in the analysis, interpretation, and control of dynamic engine phenomena, and Delphi has extensive knowledge and experience in powertrain compo-nents and subsystems. The partnership of these knowledge bases was important to address criti-cal barriers associated with the realistic implementation of HCCI and enabling clean, efficient operation for the next generation of transportation engines. The foundation of this CRADA was established through the analysis of spark-assisted HCCI data from a single-cylinder research engine.more » This data was used to (1) establish a conceptual kinetic model to better understand and predict the development of combustion instabilities, (2) develop a low-order model framework suitable for real-time controls, and (3) provide guidance in the initial definition of engine valve strategies for achieving HCCI operation. The next phase focused on the development of a new combustion metric for real-time characterization of the combustion process. Rapid feedback on the state of the combustion process is critical to high-speed decision making for predictive control. Simultaneous to the modeling/analysis studies, Delphi was focused on the development of engine hardware and the engine management system. This included custom Delphi hardware and control systems allowing for flexible control of the valvetrain sys-tem to enable HCCI operation. The final phase of this CRADA included the demonstration of conventional and spark assisted HCCI on the multi-cylinder engine as well as the characterization of combustion instabilities, which govern the operational boundaries of this mode of combustion. ORNL and Delphi maintained strong collaboration throughout this project. Meetings were held on a bi-weekly basis with additional reports, presentation, and meetings as necessary to maintain progress. Delphi provided substantial support through modeling, hardware, data exchange, and technical consultation. This CRADA was also successful at establishing important next steps to further expanding the use of an HCCI engine for improved fuel efficiency and emissions. These topics will be address in a follow-on CRADA. The objectives are: (1) Improve fundamental understanding of the development of combustion instabilities with HCCI operation through modeling and experiments; (2) Develop low-order model and feedback combustion metrics which are well suited to real-time predictive controls; and (3) Construct multi-cylinder engine system with advanced Delphi technologies and charac-terize HCCI behavior to better understand limitations and opportunities for expanded high-efficiency operation.« less

  11. Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation

    DTIC Science & Technology

    2016-04-30

    AFRL-AFOSR-VA-TR-2016-0195 Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Kenneth Yu MARYLAND UNIV COLLEGE...MARCH 2016 4. TITLE AND SUBTITLE FUNDAMENTAL STRUCTURE OF HIGH-SPEED REACTING FLOWS: SUPERSONIC COMBUSTION AND DETONATION 5a. CONTRACT NUMBER...public release. Final Report on Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Grant

  12. Particulate matter emissions from combustion of wood in district heating applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghafghazi, S.; Sowlati, T.; Sokhansanj, Shahabaddine

    2011-01-01

    The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning systemmore » in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.« less

  13. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei-Ping Pan; Andy Wu; John T. Riley

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2004 through December 31, 2004. The following tasks have been completed. First, the renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have proceeded well. Second, the detailed design of supporting and hanging structures for the CFBC was completed. Third, the laboratory-scale simulated fluidized-bed facility was modified after completing a series of pretests. The two problems identified during the pretest were solved.more » Fourth, the carbonization of chicken waste and coal was investigated in a tube furnace and a Thermogravimetric Analyzer (TGA). The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.« less

  14. Integration of concentrated solar power (CSP) and circulating fluidized bed (CFB) power plants - final results of the COMBO-CFB project

    NASA Astrophysics Data System (ADS)

    Suojanen, Suvi; Hakkarainen, Elina; Kettunen, Ari; Kapela, Jukka; Paldanius, Juha; Tuononen, Minttu; Selek, Istvan; Kovács, Jenö; Tähtinen, Matti

    2017-06-01

    Hybridization of solar energy together with another energy source is an option to provide heat and power reliably on demand. Hybridization allows decreasing combustion related fuel consumption and emissions, assuring stable grid connection and cutting costs of concentrated solar power technology due to shared power production equipment. The research project "Integration of Concentrated Solar Power (CSP) and Circulating Fluidized Bed (CFB) Power Plants" (COMBO-CFB) has been carried out to investigate the technical possibilities and limitations of the concept. The main focus was on the effect of CSP integration on combustion dynamics and on the joint power cycle, and on the interactions of subsystems. The research provides new valuable experimental data and knowhow about dynamic behaviour of CFB combustion under boundary conditions of the hybrid system. Limiting factors for maximum solar share in different hybridization schemes and suggestions for enhancing the performance of the hybrid system are derived.

  15. Combustion of Na 2B 4O 7 + Mg + C to synthesis B 4C powders

    NASA Astrophysics Data System (ADS)

    Guojian, Jiang; Jiayue, Xu; Hanrui, Zhuang; Wenlan, Li

    2009-09-01

    Boron carbide powder was fabricated by combustion synthesis (CS) method directly from mixed powders of borax (Na 2B 4O 7), magnesium (Mg) and carbon. The adiabatic temperature of the combustion reaction of Na 2B 4O 7 + 6 Mg + C was calculated. The control of the reactions was achieved by selecting reactant composition, relative density of powder compact and gas pressure in CS reactor. The effects of these different influential factors on the composition and morphologies of combustion products were investigated. The results show that, it is advantageous for more Mg/Na 2B 4O 7 than stoichiometric ratio in Na 2B 4O 7 + Mg + C system and high atmosphere pressure in the CS reactor to increase the conversion degree of reactants to end product. The final product with the minimal impurities' content could be fabricated at appropriate relative density of powder compact. At last, boron carbide without impurities could be obtained after the acid enrichment and distilled water washing.

  16. Final Report from the Department of Kinetics of Chemical and Biological Processes, Institute of Chemical Physics of Russian Academy of Sciences

    DTIC Science & Technology

    1994-01-01

    from polymer systems. Investigation of mechanisms of high-temperature pyrolysis and combustion reactions of network polymethacrylates. Rubailo V.L...are widely spread among agricultural important crops (i.e. cereals, fruits, grapevine, potato, cotton, tomato , leguminous) and ornamental plants

  17. EXPERIMENTAL INVESTIGATION OF MERCURY TRANSFORMATIONS IN PILOT-SCALE COMBUSTION SYSTEMS AND A BENCH-SCALE ENTRAINED FLOW REACTOR. (R827649)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Design and experimental investigation of an oxy-fuel combustion system for magnetohydrodynamic power extraction

    NASA Astrophysics Data System (ADS)

    Hernandez, Manuel Johannes

    A general consensus in the scientific and research community is the need to restrict carbon emissions in energy systems. Therefore, extensive research efforts are underway to develop the next generation of energy systems. In the field of power generation, researchers are actively investigating novel methods to produce electricity in a cleaner, efficient form. Recently, Oxy-Combustion for magnetohydrodynamic power extraction has generated significant interest, since the idea was proposed as a method for clean power generation in coal and natural gas power plants. Oxy-combustion technologies have been proposed to provide high enthalpy, electrically conductive flows for direct conversion of electricity. Direct power extraction via magnetohydrodynamics (MHD) can occur as a consequence of the motion of "seeded" combustion products in the presence of magnetic fields. However, oxy-combustion technologies for MHD power extraction has not been demonstrated in the available literature. Furthermore, there are still fundamental unexplored questions remaining, associated with this technology, for MHD power extraction. In this present study, previous magnetohydrodynamic combustion technologies and technical issues in this field were assessed to develop a new combustion system for electrically conductive flows. The research aims were to fully understand the current-state-of-the-art of open-cycle magnetohydrodynamic technologies and present new future directions and concepts. The design criteria, methodology, and technical specifications of an advanced cooled oxy-combustion technology are presented in this dissertation. The design was based on a combined analytical, empirical, and numerical approach. Analytical one-dimensional (1D) design tools initiated design construction. Design variants were analyzed and vetted against performance criteria through the application of computational fluid dynamics modeling. CFD-generated flow fields permitted insightful visualization of the design concepts. Therefore, numerical computational fluid dynamics (CFD) models were developed to design and optimize the combustion flow fields of oxy-fuel combustion systems. These models were analyzed to understand the boundary layer and heat transfer profile and qualitative behaviors in the product designs. Advanced materials for high-temperature applications were assessed for their possible implementation in the product design. A trade-off analysis indicated that this scheme may incur elevated product cost and a difficulty in manufacturing. Active cooling strategies were considered for product development. A rocket-based cooling scheme, regenerative cooling, was implemented to provide active cooling. In the hot gas path (HGP) cooling design, CFD models were developed to predict the variation of heat removal along the oxy-combustion wall for various operating conditions. The oxy-combustion technology was manufactured using electrical discharge machining (EDM). The product development lifecycle in this dissertation encompassed preliminary design, detailed design, and demonstration and validation of the product. Towards the final stages of the product development, Fuel-rich oxy combustion experiments were carried out to demonstrate and observe flame characteristics from the designed technology and to predict heat transfer loads. The demonstration findings of oxy-combustion flames are presented in this work to contribute the developing field of MHD direct power extraction, which lacks oxy-combustion design data and qualitative combustion datasets. The findings show that this oxy-combustion concept is capable of providing a high-enthalpy MHD environment for seeding, in order to render the flow to be conductive. Based on previous findings, temperatures in the range of 2800-3000 K may enable magnetohydrodynamic power extraction. The combustor hardware design was developed to contribute to engineered systems rated less than 100 kW for demonstration. The product hardware was designed to produce gas velocities of 2000 m/s gas and temperatures within the following range of 2800-3000 K. In the injection system, the momentum flux ratio (MFR) was estimated to be 16. The heat loss fraction in this oxy-combustion system, based on CFD and analytical calculations, at optimal operating conditions, was estimated to be less than 10 percent. Furthermore, the heat transfer design removed approximately 7 MW/m2. The experimental performance of oxy-combustion systems demonstrates promise for advanced power generation applications.

  19. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Urban, David

    2012-01-01

    From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center both Combustion, Fluid Physics, and Acceleration Measurement GRC has led the successful implementation of an Acceleration Measurement systems, the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion fire detection fire extinguishment soot phenomena flame liftoff and stability and material flammability. The fluids experiments have studied capillary flow magneto-rheological fluids colloidal systems extensional rheology pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years. We also provide a look to the future development. Experiments presented in combustion include areas such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes. In fluid physics, experiments are discussed in multiphase flows, capillary phenomena, and heat pipes. Finally in complex fluids, experiments in rheology and soft condensed materials will be presented.

  20. 78 FR 63181 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request; NESHAP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice...), ``NESHAP for Stationary Reciprocating Internal Combustion Engines (Renewal)'' (EPA ICR No. 1975.09, OMB... combustion engines (RICE) have been regulated under previous actions. Thus, this final action fulfills the...

  1. Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.

    PubMed

    Yu, Yong-Ho; Chung, Jinwook

    2015-01-01

    This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.

  2. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{submore » x} burners, advanced overfire systems, and digital control system.« less

  3. 75 FR 48381 - Final Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ..., (2) demonstrating containment structural integrity related to combustible gas control, and (3... pertain to the containment structural capacity above design-basis pressures, to combustible gas control...

  4. Research in Supercritical Fuel Properties and Combustion Modeling

    DTIC Science & Technology

    2015-09-18

    AFRL-AFOSR-VA-TR-2015-0296 RESEARCH IN SUPERCRITICAL FUEL PROPERTIES AND COMBUSTION MODELING Gregory Faris SRI INTERNATIONAL MENLO PARK CA Final...Properties and Combustion Modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0177 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gregory W...carbon atom species for combustion modeling and optimization. On the stimulated scattering task, we have tested new methods for rapidly scanning

  5. The Multi-User Droplet Combustion Apparatus: the Development and Integration Concept for Droplet Combustion Payloads in the Fluids and Combustion Facility Combustion Integrated Rack

    NASA Astrophysics Data System (ADS)

    Myhre, C. A.

    2002-01-01

    The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user facility designed to accommodate four different droplet combustion science experiments. The MDCA will conduct experiments using the Combustion Integrated Rack (CIR) of the NASA Glenn Research Center's Fluids and Combustion Facility (FCF). The payload is planned for the International Space Station. The MDCA, in conjunction with the CIR, will allow for cost effective extended access to the microgravity environment, not possible on previous space flights. It is currently in the Engineering Model build phase with a planned flight launch with CIR in 2004. This paper provides an overview of the capabilities and development status of the MDCA. The MDCA contains the hardware and software required to conduct unique droplet combustion experiments in space. It consists of a Chamber Insert Assembly, an Avionics Package, and a multiple array of diagnostics. Its modular approach permits on-orbit changes for accommodating different fuels, fuel flow rates, soot sampling mechanisms, and varying droplet support and translation mechanisms to accommodate multiple investigations. Unique diagnostic measurement capabilities for each investigation are also provided. Additional hardware provided by the CIR facility includes the structural support, a combustion chamber, utilities for the avionics and diagnostic packages, and the fuel mixing capability for PI specific combustion chamber environments. Common diagnostics provided by the CIR will also be utilized by the MDCA. Single combustible fuel droplets of varying sizes, freely deployed or supported by a tether are planned for study using the MDCA. Such research supports how liquid-fuel-droplets ignite, spread, and extinguish under quiescent microgravity conditions. This understanding will help us develop more efficient energy production and propulsion systems on Earth and in space, deal better with combustion generated pollution, and address fire hazards associated with using liquid combustibles on Earth and in space. As a result of the concurrent design process of MDCA and CIR, the MDCA team continues to work closely with the CIR team, developing Integration Agreements and an Interface Control Document during preliminary integration activities. Integrated testing of hardware and software systems will occur at the Engineering Model and Flight Model phases. Because the engineering model is a high fidelity unit, it will be upgraded to a flight equivalent Ground Integration Unit (GIU) when the engineering model phase is completed. The GIU will be available on the ground for troubleshooting of any on-orbit problems. Integrated verification testing will be conducted with the MDCA flight unit and the CIR flight unit. Upon successful testing, the MDCA will be shipped to the Kennedy Space Center for a post-shipment checkout and final turn-over to CIR for final processing and launch to the International Space Station. Once on-orbit, the MDCA is managed from the GRC Telescience Support Center (TSC). The MDCA operations team resides at the TSC. Data is transmitted to the PI's at their home sites by means of TREK workstations, allowing direct interaction between the PI and operations staff to maximum science. Upon completion of a PI's experiment, the MDCA is reconfigured for the next of the three follow-on experiments or ultimately removed from the CIR, placed into stowage, and returned to Earth.

  6. Report on Lincoln Electric System gas turbine inlet air cooling. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebeling, J.A.; Buecker, B.J.; Kitchen, B.J.

    1993-12-01

    As a result of increased electric power demand, the Lincoln Electric System (LES) of Lincoln, Nebraska (USA) decided to upgrade the generating capacity of their system. Based on capacity addition studies, the utility elected to improve performance of a GE MS7001B combustion turbine located at their Rokeby station. The turbine is used to meet summer-time peak loads, and as is common among combustion turbines, capacity declines as ambient air temperature rises. To improve the turbine capacity, LES decided to employ the proven technique of inlet air cooling, but with a novel approach: off-peak ice generation to be used for peak-loadmore » air cooling. EPRI contributed design concept definition and preliminary engineering. The American Public Power Association provided co-funding. Burns & McDonnell Engineering Company, under contract to Lincoln Electric System, provided detailed design and construction documents. LES managed the construction, start-up, and testing of the cooling system. This report describes the technical basis for the cooling system design, and it discusses combustion turbine performance, project economics, and potential system improvements. Control logic and P&ID drawings are also included. The inlet air cooling system has been available since the fall of 1991. When in use, the cooling system has increased turbine capacity by up to 17% at a cost of less than $200 per increased kilowatt of generation.« less

  7. Real time identification of the internal combustion engine combustion parameters based on the vibration velocity signal

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuliang; Cheng, Yong; Wang, Limei; Ji, Shaobo

    2017-03-01

    Accurate combustion parameters are the foundations of effective closed-loop control of engine combustion process. Some combustion parameters, including the start of combustion, the location of peak pressure, the maximum pressure rise rate and its location, can be identified from the engine block vibration signals. These signals often include non-combustion related contributions, which limit the prompt acquisition of the combustion parameters computationally. The main component in these non-combustion related contributions is considered to be caused by the reciprocating inertia force excitation (RIFE) of engine crank train. A mathematical model is established to describe the response of the RIFE. The parameters of the model are recognized with a pattern recognition algorithm, and the response of the RIFE is predicted and then the related contributions are removed from the measured vibration velocity signals. The combustion parameters are extracted from the feature points of the renovated vibration velocity signals. There are angle deviations between the feature points in the vibration velocity signals and those in the cylinder pressure signals. For the start of combustion, a system bias is adopted to correct the deviation and the error bound of the predicted parameters is within 1.1°. To predict the location of the maximum pressure rise rate and the location of the peak pressure, algorithms based on the proportion of high frequency components in the vibration velocity signals are introduced. Tests results show that the two parameters are able to be predicted within 0.7° and 0.8° error bound respectively. The increase from the knee point preceding the peak value point to the peak value in the vibration velocity signals is used to predict the value of the maximum pressure rise rate. Finally, a monitoring frame work is inferred to realize the combustion parameters prediction. Satisfactory prediction for combustion parameters in successive cycles is achieved, which validates the proposed methods.

  8. 78 FR 9111 - Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Final Amendments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... established standards in this final rule for the following four subcategories of CISWI units: Incinerators (i... incinerators; ERUs (i.e., units that would be boilers or process heaters if they did not combust solid waste); and waste burning kilns (i.e., units that would be cement kilns if they did not combust solid waste...

  9. Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooldridge, Margaret

    Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecularmore » structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.« less

  10. Three Dimensional Transient Turbulent Simulations of Scramjet Fuel Injection and Combustion

    NASA Astrophysics Data System (ADS)

    Bahbaz, Marwane

    2011-11-01

    Scramjet is a propulsion system that is more effective for hypersonic flights (M >5). The main objective of the simulation is to understand both the mixing and combustion process of air flow using hydrogen fuel in high speed environment s. The understanding of this phenomenon is used to determine the number of fuel injectors required to increase combustion efficiency and energy transfer. Due to the complexity of this simulation, multiple software tools are used to achieve this objective. First, Solid works is used to draw a scramjet combustor with accurate measurements. Second software tool used is Gambit; It is used to make several types of meshes for the scramjet combustor. Finally, Open Foam and CFD++ are software used to process and post process the scramjet combustor. At this stage, the simulation is divided into two categories. The cold flow category is a series of simulations that include subsonic and supersonic turbulent air flow across the combustor channel with fuel interaction from one or more injectors'. The second category is the combustion simulations which involve fluid flow and fuel mixing with ignition. The simulation and modeling of scramjet combustor will assist to investigate and understand the combustion process and energy transfer in hypersonic environment.

  11. Application of fault tree approach for the causation mechanism of urban haze in Beijing--Considering the risk events related with exhausts of coal combustion.

    PubMed

    Huang, Weiqing; Fan, Hongbo; Qiu, Yongfu; Cheng, Zhiyu; Qian, Yu

    2016-02-15

    Haze weather has become a serious environmental pollution problem which occurs in many Chinese cities. One of the most critical factors for the formation of haze weather is the exhausts of coal combustion, thus it is meaningful to figure out the causation mechanism between urban haze and the exhausts of coal combustion. Based on above considerations, the fault tree analysis (FAT) approach was employed for the causation mechanism of urban haze in Beijing by considering the risk events related with the exhausts of coal combustion for the first time. Using this approach, firstly the fault tree of the urban haze causation system connecting with coal combustion exhausts was established; consequently the risk events were discussed and identified; then, the minimal cut sets were successfully determined using Boolean algebra; finally, the structure, probability and critical importance degree analysis of the risk events were completed for the qualitative and quantitative assessment. The study results proved that the FTA was an effective and simple tool for the causation mechanism analysis and risk management of urban haze in China. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    DOEpatents

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  13. Process aspects in combustion and gasification Waste-to-Energy (WtE) units.

    PubMed

    Leckner, Bo

    2015-03-01

    The utilisation of energy in waste, Waste to Energy (WtE), has become increasingly important. Waste is a wide concept, and to focus, the feedstock dealt with here is mostly municipal solid waste. It is found that combustion in grate-fired furnaces is by far the most common mode of fuel conversion compared to fluidized beds and rotary furnaces. Combinations of pyrolysis in rotary furnace or gasification in fluidized or fixed bed with high-temperature combustion are applied particularly in Japan in systems whose purpose is to melt ashes and destroy dioxins. Recently, also in Japan more emphasis is put on WtE. In countries with high heat demand, WtE in the form of heat and power can be quite efficient even in simple grate-fired systems, whereas in warm regions only electricity is generated, and for this product the efficiency of boilers (the steam data) is limited by corrosion from the flue gas. However, combination of cleaned gas from gasification with combustion provides a means to enhance the efficiency of electricity production considerably. Finally, the impact of sorting on the properties of the waste to be fed to boilers or gasifiers is discussed. The description intends to be general, but examples are mostly taken from Europe. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Fundamental study of ash formation and deposition: Effect of reducing stoichiometry. Final report, April 1, 1993--June 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bool, L.E. III; Helble, J.J.; Shah, N.

    1995-09-01

    The technical objectives of this project are: (1) To identify the partitioning of inorganic coal constituents among vapor, submicron fume, and fly ash products generated during the combustion of pulverized coal under a variety of combustion conditions. Fuel lean and fuel rich combustion conditions are considered. (2) To identify and quantify the fundamental processes by which the transformations of minerals and organically-associated inorganic species occur. Emphasis is placed on identifying any changes that occur as a result of combustion under sub-stoichiometric combustion conditions. (3) To incorporate the effects of combustion stoichiometry into an Engineering Model for Ash Formation.

  15. Atomic-Scale Principles of Combustion Nanocatalysis

    DTIC Science & Technology

    2014-05-19

    of Combustion Nanocatalysts: Structures, Electronic Characteristics and Catalytic Pathways MURI FINAL REPORT Reporting Period: June 1, 2008 to...properties of nanoscale materials to be employed for catalytic combustion of fuels and propellants. Furthermore the research program seeks to establish... catalytic cycle. Both the carbon– hydrogen bond activation and the subsequent desorption of the ethylene product molecule require cooperative action

  16. Revised users manual, Pulverized Coal Gasification or Combustion: 2-dimensional (87-PCGC-2): Final report, Volume 2. [87-PCGC-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.J.; Smoot, L.D.; Brewster, B.S.

    1987-12-01

    A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along withmore » a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.« less

  17. Engine with exhaust gas recirculation system and variable geometry turbocharger

    DOEpatents

    Keating, Edward J.

    2015-11-03

    An engine assembly includes an intake assembly, an internal combustion engine defining a plurality of cylinders and configured to combust a fuel and produce exhaust gas, and an exhaust assembly in fluid communication with a first subset of the plurality of cylinders. Each of the plurality of cylinders are provided in fluid communication with the intake assembly. The exhaust assembly is provided in fluid communication with a first subset of the plurality of cylinders, and a dedicated exhaust gas recirculation system in fluid communication with both a second subset of the plurality of cylinders and with the intake assembly. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the second subset of the plurality of cylinders to the intake assembly. Finally, the engine assembly includes a turbocharger having a variable geometry turbine in fluid communication with the exhaust assembly.

  18. Application of carterpillar SMSF on ZiL 645 engine. Volume 1. Final report. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-23

    The report, written by the Southwest Research Institute and Caterpillar, Inc., was funded by the U.S. Trade and Development Agency on behalf of ZiL, a major Russian truck manufacturer. The purpose of the study was as follows: Install the Sleeve Metering Fuel System (SMFS) on the ZIL 645 NA. This would also include conversion of the MAN combustion system to a torroidal combustion system. Evaluate the cylinder head and determine if modifications are necessary, Design and test several sets of nozzles and two pistons to determine effect on smoke and fuel consumption, Obtain steady state emissions with the 'best' configurationmore » determined by smoke and specific fuel consumption and compare the results with EURO 1 standards. The scope of work did not include developing the engine to meet EURO 1 standards.« less

  19. Progress on alternative energy resources

    NASA Astrophysics Data System (ADS)

    Couch, H. T.

    1982-03-01

    Progress in the year 1981 toward the development of energy systems suitable for replacing petroleum products combustion and growing in use to fulfill a near term expansion in energy use is reviewed. Coal is noted to be a potentially heavy pollution source, and the presence of environmentally acceptable methods of use such as fluidized-bed combustion and gasification and liquefaction reached the prototype stage in 1981, MHD power generation was achieved in two U.S. plants, with severe corrosion problems remaining unsolved for the electrodes. Solar flat plate collectors sales amounted to 20 million sq ft in 1981, and solar thermal electric conversion systems with central receivers neared completion. Solar cells are progressing toward DOE goals of $.70/peak W by 1986, while wind energy conversion sales were 2000 machines in 1981, and the industry is regarded as maturing. Finally, geothermal, OTEC, and fusion systems are reviewed.

  20. Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate Pressures

    DTIC Science & Technology

    2016-07-26

    SECURITY CLASSIFICATION OF: The objective of this research is to characterize combustion of high molecular weight hydrocarbon fuels and jet- fuels (in...Unlimited UU UU UU UU 26-07-2016 1-May-2012 30-Apr-2016 Final Report: Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate...Report: Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate Pressures (Research Area 1: Mechanical Sciences) Report Title The

  1. 40 CFR 60.1105 - How do I submit my final materials separation plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... part of the notice of construction for the municipal waste combustion unit. Preconstruction...

  2. Transient combustion in hybrid rockets

    NASA Astrophysics Data System (ADS)

    Karabeyoglu, Mustafa Arif

    1998-09-01

    Hybrid rockets regained interest recently as an alternative chemical propulsion system due to their advantages over the solid and liquid systems that are currently in use. Development efforts on hybrids revealed two important problem areas: (1) low frequency instabilities and (2) slow transient response. Both of these are closely related to the transient behavior which is a poorly understood aspect of hybrid operation. This thesis is mainly involved with a theoretical study of transient combustion in hybrid rockets. We follow the methodology of identifying and modeling the subsystems of the motor such as the thermal lags in the solid, boundary layer combustion and chamber gasdynamics from a dynamic point of view. We begin with the thermal lag in the solid which yield the regression rate for any given wall heat flux variation. Interesting phenomena such as overshooting during throttling and the amplification and phase lead regions in the frequency domain are discovered. Later we develop a quasi-steady transient hybrid combustion model supported with time delays for the boundary layer processes. This is integrated with the thermal lag system to obtain the thermal combustion (TC) coupled response. The TC coupled system with positive delays generated low frequency instabilities. The scaling of the instabilities are in good agreement with actual motor test data. Finally, we formulate a gasdynamic model for the hybrid chamber which successfully resolves the filling/emptying and longitudinal acoustic behavior of the motor. The TC coupled system is later integrated to the gasdynamic model to obtain the overall response (TCG coupled system) of gaseous oxidizer motors with stiff feed systems. Low frequency instabilities were also encountered for the TCG coupled system. Apart from the transient investigations, the regression rate behavior of liquefying hybrid propellants such as solid cryogenic materials are also studied. The theory is based on the possibility of enhancement of regression rate by the entrainment mass transfer from a liquid layer formed on the fuel surface. The predicted regression rates are in good agreement with the cryogenic experimental findings obtained recently at Edwards Airforce Base with a frozen pentane and gaseous oxygen system.

  3. Direct Numerical Simulation of Turbulent Multi-Stage Autoignition Relevant to Engine Conditions

    NASA Astrophysics Data System (ADS)

    Chen, Jacqueline

    2017-11-01

    Due to the unrivaled energy density of liquid hydrocarbon fuels combustion will continue to provide over 80% of the world's energy for at least the next fifty years. Hence, combustion needs to be understood and controlled to optimize combustion systems for efficiency to prevent further climate change, to reduce emissions and to ensure U.S. energy security. In this talk I will discuss recent progress in direct numerical simulations of turbulent combustion focused on providing fundamental insights into key `turbulence-chemistry' interactions that underpin the development of next generation fuel efficient, fuel flexible engines for transportation and power generation. Petascale direct numerical simulation (DNS) of multi-stage mixed-mode turbulent combustion in canonical configurations have elucidated key physics that govern autoignition and flame stabilization in engines and provide benchmark data for combustion model development under the conditions of advanced engines which operate near combustion limits to maximize efficiency and minimize emissions. Mixed-mode combustion refers to premixed or partially-premixed flames propagating into stratified autoignitive mixtures. Multi-stage ignition refers to hydrocarbon fuels with negative temperature coefficient behavior that undergo sequential low- and high-temperature autoignition. Key issues that will be discussed include: 1) the role of mixing in shear driven turbulence on the dynamics of multi-stage autoignition and cool flame propagation in diesel environments, 2) the role of thermal and composition stratification on the evolution of the balance of mixed combustion modes - flame propagation versus spontaneous ignition - which determines the overall combustion rate in autoignition processes, and 3) the role of cool flames on lifted flame stabilization. Finally prospects for DNS of turbulent combustion at the exascale will be discussed in the context of anticipated heterogeneous machine architectures. sponsored by DOE Office of Basic Energy Sciences and computing resources provided by the Oakridge Leadership Computing Facility through the DOE INCITE Program.

  4. 40 CFR 62.15030 - What are my obligations under this subpart if I reduce my small municipal waste combustion unit's...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND... submit a final control plan according to the schedule in table 1 of this subpart and comply with § 62...) Calculations of the current maximum combustion capacity and the planned maximum combustion capacity after the...

  5. Combustion method for assay of biological materials labeled with carbon-14 or tritium, or double-labeled

    NASA Technical Reports Server (NTRS)

    Huebner, L. G.; Kisieleski, W. E.

    1969-01-01

    Dry catalytic combustion at high temperatures is used for assaying biological materials labeled carbon-14 and tritium, or double-labeled. A modified oxygen-flask technique is combined with standard vacuum-line techniques and includes convenience of direct in-vial collection of final combustion products, giving quantitative recovery of tritium and carbon-14.

  6. Combustor nozzle for a fuel-flexible combustion system

    DOEpatents

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  7. An experimental and theoretical investigation of a fuel system tuner for the suppression of combustion driven oscillations

    NASA Astrophysics Data System (ADS)

    Scarborough, David E.

    Manufacturers of commercial, power-generating, gas turbine engines continue to develop combustors that produce lower emissions of nitrogen oxides (NO x) in order to meet the environmental standards of governments around the world. Lean, premixed combustion technology is one technique used to reduce NOx emissions in many current power and energy generating systems. However, lean, premixed combustors are susceptible to thermo-acoustic oscillations, which are pressure and heat-release fluctuations that occur because of a coupling between the combustion process and the natural acoustic modes of the system. These pressure oscillations lead to premature failure of system components, resulting in very costly maintenance and downtime. Therefore, a great deal of work has gone into developing methods to prevent or eliminate these combustion instabilities. This dissertation presents the results of a theoretical and experimental investigation of a novel Fuel System Tuner (FST) used to damp detrimental combustion oscillations in a gas turbine combustor by changing the fuel supply system impedance, which controls the amplitude and phase of the fuel flowrate. When the FST is properly tuned, the heat release oscillations resulting from the fuel-air ratio oscillations damp, rather than drive, the combustor acoustic pressure oscillations. A feasibility study was conducted to prove the validity of the basic idea and to develop some basic guidelines for designing the FST. Acoustic models for the subcomponents of the FST were developed, and these models were experimentally verified using a two-microphone impedance tube. Models useful for designing, analyzing, and predicting the performance of the FST were developed and used to demonstrate the effectiveness of the FST. Experimental tests showed that the FST reduced the acoustic pressure amplitude of an unstable, model, gas-turbine combustor over a wide range of operating conditions and combustor configurations. Finally, combustor acoustic pressure amplitude measurements made in using the model combustor were used in conjunction with model predicted fuel system impedances to verify the developed design rules. The FST concept and design methodology presented in this dissertation can be used to design fuel system tuners for new and existing gas turbine combustors to reduce, or eliminate altogether, thermo-acoustic oscillations.

  8. Study of boron behaviour in two Spanish coal combustion power plants.

    PubMed

    Ochoa-González, Raquel; Cuesta, Aida Fuente; Córdoba, Patricia; Díaz-Somoano, Mercedes; Font, Oriol; López-Antón, M Antonia; Querol, Xavier; Martínez-Tarazona, M Rosa; Giménez, Antonio

    2011-10-01

    A full-scale field study was carried out at two Spanish coal-fired power plants equipped with electrostatic precipitator (ESP) and wet flue gas desulfurisation (FGD) systems to investigate the distribution of boron in coals, solid by-products, wastewater streams and flue gases. The results were obtained from the simultaneous sampling of solid, liquid and gaseous streams and their subsequent analysis in two different laboratories for purposes of comparison. Although the final aim of this study was to evaluate the partitioning of boron in a (co-)combustion power plant, special attention was paid to the analytical procedure for boron determination. A sample preparation procedure was optimised for coal and combustion by-products to overcome some specific shortcomings of the currently used acid digestion methods. In addition boron mass balances and removal efficiencies in ESP and FGD devices were calculated. Mass balance closures between 83 and 149% were obtained. During coal combustion, 95% of the incoming boron was collected in the fly ashes. The use of petroleum coke as co-combustible produced a decrease in the removal efficiency of the ESP (87%). Nevertheless, more than 90% of the remaining gaseous boron was eliminated via the FGD in the wastewater discharged from the scrubber, thereby causing environmental problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Dry low combustion system with means for eliminating combustion noise

    DOEpatents

    Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.

    2004-02-17

    A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.

  10. Ab Initio-Based Predictions of Hydrocarbon Combustion Chemistry

    DTIC Science & Technology

    2015-07-15

    There are two prime objectives of the research. One is to develop and apply efficient methods for using ab initio potential energy surfaces (PESs...31-Mar-2015 Approved for Public Release; Distribution Unlimited Final Report: Ab Initio -Based Predictions of Hydrocarbon Combustion Chemistry The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 hydrocarbon combustion, ab initio quantum chemistry, potential energy surfaces, chemical

  11. Energy Efficient Engine (E3) combustion system component technology performance report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.

  12. Design and Operation of the Synthesis Gas Generator System for Reformed Propane and Glycerin Combustion

    NASA Astrophysics Data System (ADS)

    Pickett, Derek Kyle

    Due to an increased interest in sustainable energy, biodiesel has become much more widely used in the last several years. Glycerin, one major waste component in biodiesel production, can be converted into a hydrogen rich synthesis gas to be used in an engine generator to recover energy from the biodiesel production process. This thesis contains information detailing the production, testing, and analysis of a unique synthesis generator rig at the University of Kansas. Chapter 2 gives a complete background of all major components, as well as how they are operated. In addition to component descriptions, methods for operating the system on pure propane, reformed propane, reformed glycerin along with the methodology of data acquisition is described. This chapter will serve as a complete operating manual for future students to continue research on the project. Chapter 3 details the literature review that was completed to better understand fuel reforming of propane and glycerin. This chapter also describes the numerical model produced to estimate the species produced during reformation activities. The model was applied to propane reformation in a proof of concept and calibration test before moving to glycerin reformation and its subsequent combustion. Chapter 4 first describes the efforts to apply the numerical model to glycerin using the calibration tools from propane reformation. It then discusses catalytic material preparation and glycerin reformation tests. Gas chromatography analysis of the reformer effluent was completed to compare to theoretical values from the numerical model. Finally, combustion of reformed glycerin was completed for power generation. Tests were completed to compare emissions from syngas combustion and propane combustion.

  13. Deflagration of thermite - ammonium nitrate based propellant mixture

    NASA Astrophysics Data System (ADS)

    Duraes, Luisa; Morgado, Joel; Portugal, Antonio; Campos, Jose

    2001-06-01

    Reaction between iron oxide (Fe2O3) and aluminum (Al) is the reference of the classic thermite compositions. The efficency of the reaction, for a given initial composition of Fe2O3 and Al, is evaluated by the final temperature and by the mass ratio of Al2O3 /AlO in products of combustion (in condensed phase). In order to increase pressure in products of thermite reaction, the original composition is mixed, with an original twin screw extruder, with a propellant binder composed of ammonium and sodium nitrates, initialy solved in formamide (CH3NO) and mixed with a polyurethane solution. The products of combustion and pyrolysis of this binder, reacting with thermite products, generates high pressure and high temperature conditions. These experimental conditions are also predicted using THOR code. The study presents DSC and TGA results of components and mixtures, and correlates them to the ignition phenomena and reaction properties. The regression rate of combustion and final attained temperature and pressure, in a closed confinement, as a function of composition of thermite components/propellant binder, are presented and discussed. They show the influence of gaseous combustion and pyrolysis products of binder in final reaction.

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, NOX CONTROL TECHNOLOGIES, CATALYTICA COMBUSTION SYSTEMS, INC., XONON FLAMELESS COMBUSTION SYSTEM

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Xonon Cool Combustion System manufactured by Catalytica Energy Systems, Inc., formerly Catalytica Combustion Systems, Inc., to control NOx emissions from gas turbines that operate wit...

  15. 36th International Symposium on Combustion (ISOC2016)

    DTIC Science & Technology

    2016-12-01

    GREENHOUSE GASES / IC ENGINE COMBUSTION I GAS TURBINE COMBUSTION I NOVEL COMBUSTION CONCEPTS, TECHNOLOGIES AND SYSTEMS 15. SUBJECT TERMS Reaction...pollutants and greenhouse gases; IC engine combustion; Gas turbine combustion; Novel combustion concepts, technologies and systems 16. SECURITY...PLENARY LECTURE TRANSFER (15 min) am Turbulent Flames IC Engines Laminar Flames Reaction Kinetics Gas Turbines Soot Solid Fuels/Pollutants

  16. Transformations of inorganic coal constituents in combustion systems. Volume 1, sections 1--5: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon themore » size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles? What determines their composition? Whether or not particles deposit? How combustion conditions, including reactor size, affect these processes? remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.« less

  17. Symposium on Combustion /International/, 16th, Massachusetts Institute of Technology, Cambridge, Mass., August 15-20, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Aspects of combustion technology in power systems are considered, taking into account a combustion in large boilers, the control of over-all thermal efficiency of combustion heating systems, a comparison of mathematical models of the radiative behavior of a large-scale experimental furnace, a concentric multiannular swirl burner, and the effects of water introduction on diesel engine combustion and emissions. Attention is also given to combustion and related processes in energy production from coal, spray and droplet combustion, soot formation and growth, the kinetics of elementary reactions, flame structure and chemistry, propellant ignition and combustion, fire and explosion research, mathematical modeling, high output combustion systems, turbulent flames and combustion, and ignition, optical, and electrical properties.

  18. Diode pumped solid state kilohertz disk laser system for time-resolved combustion diagnostics under microgravity at the drop tower Bremen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang

    We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (μg) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM{sub 00}) at narrowband operation (Δλ < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic aroundmore » 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under μg conditions. In order to demonstrate the capabilities of the capsule laser as a tool for μg combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.« less

  19. Implementation of a Water Flow Control System into the ISS'S Planned Fluids & Combustion Facility

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2003-01-01

    The Fluids and Combustion Facility (FCF) will become an ISS facility capable of performing basic combustion and fluids research. The facility consists of two independent payload racks specifically configured to support multiple experiments over the life of the ISS. Both racks will depend upon the ISS's Moderate Temperature Loop (MTL) for removing waste heat generated by the avionics and experiments operating within the racks. By using the MTL, constraints are imposed by the ISS vehicle on how the coolant resource is used. On the other hand, the FCF depends upon effective thermal control for maximizing life of the hardware and for supplying proper boundary conditions for the experiments. In the implementation of a design solution, significant factors in the selection of the hardware included ability to measure and control relatively low flow rates, ability to throttle flow within the time constraints of the ISS MTL, conserve energy usage, observe low mass and small volume requirements. An additional factor in the final design solution selection was considering how the system would respond to a loss of power event. This paper describes the method selected to satisfy the FCF design requirements while maintaining the constraints applied by the ISS vehicle.

  20. Commissioning and Performance Analysis of WhisperGen Stirling Engine

    NASA Astrophysics Data System (ADS)

    Pradip, Prashant Kaliram

    Stirling engine based cogeneration systems have potential to reduce energy consumption and greenhouse gas emission, due to their high cogeneration efficiency and emission control due to steady external combustion. To date, most studies on this unit have focused on performance based on both experimentation and computer models, and lack experimental data for diversified operating ranges. This thesis starts with the commissioning of a WhisperGen Stirling engine with components and instrumentation to evaluate power and thermal performance of the system. Next, a parametric study on primary engine variables, including air, diesel, and coolant flowrate and temperature were carried out to further understand their effect on engine power and efficiency. Then, this trend was validated with the thermodynamic model developed for the energy analysis of a Stirling cycle. Finally, the energy balance of the Stirling engine was compared without and with heat recovery from the engine block and the combustion chamber exhaust.

  1. Towards a coherent European approach for taxation of combustible waste.

    PubMed

    Dubois, Maarten

    2013-08-01

    Although intra-European trade of combustible waste has grown strongly in the last decade, incineration and landfill taxes remain disparate within Europe. The paper proposes a more coherent taxation approach for Europe that is based on the principle of Pigovian taxation, i.e. the internalization of environmental damage costs. The approach aims to create a level playing field between European regions while reinforcing incentives for sustainable management of combustible waste. Three important policy recommendations emerge. First, integrating waste incineration into the European Emissions Trading System for greenhouse gases (EU ETS) reduces the risk of tax competition between regions. Second, because taxation of every single air pollutant from waste incineration is cumbersome, a differentiated waste incineration tax based on NO(x) emissions can serve as a second-best instrument. Finally, in order to strengthen incentives for ash treatment, a landfill tax should apply for landfilled incineration residues. An example illustrates the coherence of the policy recommendations for incineration technologies with diverse environmental effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Final Rule to Reduce Hazardous Air Emissions from Newly Built Stationary Combustion Turbines: Fact Sheet

    EPA Pesticide Factsheets

    This page contains an August 2003 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Stationary Combustion Turbines. This document provides a summary of the information for this NESHAP.

  3. Regenerable cement sorbent for recycle fluidized-bed combustion systems. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, H.J.; Steinberg, M.

    1985-04-01

    Agglomerated cement sorbent pellets (ACS) were investigated as a regenerable sorbent for the purpose of removing SO/sub 2/ in a circulating fluidized-bed combustion (CFBC) system. The systems concept is to use an intermediate size sorbent pellet so that fine flyash can be separated from the sorbent at the top end of the CFBC and the coarse gangue can be separated from the sorbent remaining in the bottom end. In this study, basic experimental data were obtained on the sulfur capture capacity and regenerability of the ACS pellets as a function of the concentration of flyash mixed with the pellets andmore » as a function of temperature. Thermogravimetric Analysis (TGA) was used for this purpose. A 40 mm bench-scale fluidized-bed unit operated with a simulated combustion gas mixture was used to determine the attrition resistance of the pellets. The results indicate that 30-100 mesh ACS pellets at 958/sup 0/C (1756/sup 0/F) maintain a 55-60% sulfation capacity mixed with coal flyash concentration up to 75% by weight. The sorbent pellets were 100% regenerable and did not lose reactivity in repeated cyclical sulfation and regeneration tests. At higher temperatures up to 1158/sup 0/C (2116/sup 0/F) reactivity towards SO/sub 2/ declines due to sintering of the flyash on the surface of the ACS pellets. Tests showed good attrition resistance with only 1% loss per cycle in cyclical operation. These initial basic results indicate that ACS pellets are potentially useful as a recoverable and regenerable high capacity SO/sub 2/ sorbent in a circulating fluidized-bed combustion system. 5 refs., 7 figs., 8 tabs.« less

  4. Real-time combustion controls and diagnostics sensors (CCADS)

    DOEpatents

    Thornton, Jimmy D.; Richards, George A.; Dodrill, Keith A.; Nutter, Jr., Roy S.; Straub, Douglas

    2005-05-03

    The present invention is directed to an apparatus for the monitoring of the combustion process within a combustion system. The apparatus comprises; a combustion system, a means for supplying fuel and an oxidizer, a device for igniting the fuel and oxidizer in order to initiate combustion, and a sensor for determining the current conducted by the combustion process. The combustion system comprises a fuel nozzle and an outer shell attached to the combustion nozzle. The outer shell defines a combustion chamber. Preferably the nozzle is a lean premix fuel nozzle (LPN). Fuel and an oxidizer are provided to the fuel nozzle at separate rates. The fuel and oxidizer are ignited. A sensor positioned within the combustion system comprising at least two electrodes in spaced-apart relationship from one another. At least a portion of the combustion process or flame is between the first and second electrodes. A voltage is applied between the first and second electrodes and the magnitude of resulting current between the first and second electrodes is determined.

  5. Final report: Prototyping a combustion corridor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutland, Christopher J.; Leach, Joshua

    2001-12-15

    The Combustion Corridor is a concept in which researchers in combustion and thermal sciences have unimpeded access to large volumes of remote computational results. This will enable remote, collaborative analysis and visualization of state-of-the-art combustion science results. The Engine Research Center (ERC) at the University of Wisconsin - Madison partnered with Lawrence Berkeley National Laboratory, Argonne National Laboratory, Sandia National Laboratory, and several other universities to build and test the first stages of a combustion corridor. The ERC served two important functions in this partnership. First, we work extensively with combustion simulations so we were able to provide real worldmore » research data sets for testing the Corridor concepts. Second, the ERC was part of an extension of the high bandwidth based DOE National Laboratory connections to universities.« less

  6. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  7. Characterization of ceramics and intermetallics fabricated by self-propagating high-temperature synthesis

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    1989-01-01

    Three efforts aimed at investigating the process of self-propagating high temperature synthesis (SHS) for the fabrication of structural ceramics and intermetallics are summarized. Of special interest was the influence of processing variables such as exothermic dopants, gravity, and green state morphology in materials produced by SHS. In the first effort directed toward the fabrication of SiC, exothermic dopants of yttrium and zirconium were added to SiO2 or SiO2 + NiO plus carbon powder mix and processed by SHS. This approach was unsuccessful since it did not produce the desired product of crystalline SiC. In the second effort, the influence of gravity was investigated by examining Ni-Al microstructures which were produced by SHS combustion waves traveling with and opposite the gravity direction. Although final composition and total porosities of the combusted Ni-Al compounds were found to be gravity independent, larger pores were created in those specimens which were combusted opposite to the gravity force direction. Finally, it was found that green microstructure has a significant effect on the appearance of the combusted piece. Severe pressing laminations were observed to arrest the combustion front for TiC samples.

  8. Modelling and kinetics studies of a corn-rape blend combustion in an oxy-fuel atmosphere.

    PubMed

    López, R; Fernández, C; Martínez, O; Sánchez, M E

    2015-05-01

    A kinetic oxy-combustion study of a previously optimized lignocellulose blend is proposed. Kinetic and diffusion control mechanism are considered. The proposed correlations fit properly with the experimental results and diffusion effects are identified as be important enough to be taken into account. Afterwards, with the results obtained in the kinetic study, a detailed consecutive and parallel kinetic scheme is proposed for modelling the oxy-combustion of the blend. A discussion of the temperature and concentration profiles are included. Variation of products final distribution is considered. Smaller particles than 0.001 m are proposed for reducing temperature and concentration profiles and obtaining a good final product distribution. CO2-char reaction is identified as one of the most important step to be optimized for obtaining the lowest final residue. In this study, char is mainly oxidised at 950 K and this situation is attributed to an optimized blending of the bioresidues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Analysis and design of lean direct injection fuel nozzles by eddy resolved turbulence simulation

    NASA Astrophysics Data System (ADS)

    Ryon, Jason Allen

    Combustion systems in gas turbine engines are subjected to particular scrutiny in regards to the emissions which they produce. Of special interest are the emissions of Oxides of Nitrogen (NOx), which have a direct impact on air quality as well as health aspects. There is a need in the industry for elegant designs for these combustion systems which reduce the formation of NOx. The present study includes an in depth analysis of a state-of-the art prefilming airblast injector which is designed for achieving low NOx. The design has been studied through the use of turbulence resolving simulation to differentiate what is important for the design of this system. The OpenFOAM CFD software, with a Delayed Detached Eddy Simulation (DDES) model recently developed at Iowa State University, is shown to provide a suitable design tool which has been used to accurately predict a variety of parameters important to this combustion system. Of particular interest are the mixing characteristics of the atomizer, which have been studied through a series of CFD simulations including single-phase, multi-species, and multi-phase simulations. Turbulence simulations are validated by comparison to United Technologies Aerospace Systems (UTAS) data with air only. It is shown how DDES is able to capture the downstream mixing of air streams. Finally, a novel atomizer has been designed with these methods which is intended to promote thorough mixing. The CFD mixing characteristics are described and compared to the existing injector.

  10. Combustion chamber and thermal vapor stream producing apparatus and method

    DOEpatents

    Sperry, John S.; Krajicek, Richard W.; Cradeur, Robert R.

    1978-01-01

    A new and improved method and apparatus for burning a hydrocarbon fuel for producing a high pressure thermal vapor stream comprising steam and combustion gases for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, wherein a high pressure combustion chamber having multiple refractory lined combustion zones of varying diameters is provided for burning a hydrocarbon fuel and pressurized air in predetermined ratios injected into the chamber for producing hot combustion gases essentially free of oxidizing components and solid carbonaceous particles. The combustion zones are formed by zones of increasing diameters up a final zone of decreasing diameter to provide expansion zones which cause turbulence through controlled thorough mixing of the air and fuel to facilitate complete combustion. The high pressure air and fuel is injected into the first of the multiple zones where ignition occurs with a portion of the air injected at or near the point of ignition to further provide turbulence and more complete combustion.

  11. Effects of streamwise vortex breakdown on supersonic combustion.

    PubMed

    Hiejima, Toshihiko

    2016-04-01

    This paper presents a numerical simulation study of the combustion structure of streamwise vortex breakdown at Mach number 2.48. Hydrogen fuel is injected into a combustor at sonic speed from the rear of a hypermixer strut that can generate streamwise vortices. The results show that the burning behavior is enhanced at the points of the shock waves that are incident on the vortex and therefore the vortex breakdown in the subsonic region occurs due to combustion. The breakdown domain in the mainstream is found to form a flame-holding region suited to combustion and to lead to a stable combustion field with detached flames. In this way, streamwise vortex breakdown has an essential role in combustion enhancement and the formation of flames that hold under supersonic inflow conditions. Finally, the combustion property defined here is shown to coincide with the produced-water mass flow. This property shows that the amount of combustion is saturated at equivalence ratios over 0.4, although there is a slight increase beyond 1.

  12. Energy Efficient Engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.

  13. Mathematical Description of Complex Chemical Kinetics and Application to CFD Modeling Codes

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1993-01-01

    A major effort in combustion research at the present time is devoted to the theoretical modeling of practical combustion systems. These include turbojet and ramjet air-breathing engines as well as ground-based gas-turbine power generating systems. The ability to use computational modeling extensively in designing these products not only saves time and money, but also helps designers meet the quite rigorous environmental standards that have been imposed on all combustion devices. The goal is to combine the very complex solution of the Navier-Stokes flow equations with realistic turbulence and heat-release models into a single computer code. Such a computational fluid-dynamic (CFD) code simulates the coupling of fluid mechanics with the chemistry of combustion to describe the practical devices. This paper will focus on the task of developing a simplified chemical model which can predict realistic heat-release rates as well as species composition profiles, and is also computationally rapid. We first discuss the mathematical techniques used to describe a complex, multistep fuel oxidation chemical reaction and develop a detailed mechanism for the process. We then show how this mechanism may be reduced and simplified to give an approximate model which adequately predicts heat release rates and a limited number of species composition profiles, but is computationally much faster than the original one. Only such a model can be incorporated into a CFD code without adding significantly to long computation times. Finally, we present some of the recent advances in the development of these simplified chemical mechanisms.

  14. Mathematical description of complex chemical kinetics and application to CFD modeling codes

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1993-01-01

    A major effort in combustion research at the present time is devoted to the theoretical modeling of practical combustion systems. These include turbojet and ramjet air-breathing engines as well as ground-based gas-turbine power generating systems. The ability to use computational modeling extensively in designing these products not only saves time and money, but also helps designers meet the quite rigorous environmental standards that have been imposed on all combustion devices. The goal is to combine the very complex solution of the Navier-Stokes flow equations with realistic turbulence and heat-release models into a single computer code. Such a computational fluid-dynamic (CFD) code simulates the coupling of fluid mechanics with the chemistry of combustion to describe the practical devices. This paper will focus on the task of developing a simplified chemical model which can predict realistic heat-release rates as well as species composition profiles, and is also computationally rapid. We first discuss the mathematical techniques used to describe a complex, multistep fuel oxidation chemical reaction and develop a detailed mechanism for the process. We then show how this mechanism may be reduced and simplified to give an approximate model which adequately predicts heat release rates and a limited number of species composition profiles, but is computationally much faster than the original one. Only such a model can be incorporated into a CFD code without adding significantly to long computation times. Finally, we present some of the recent advances in the development of these simplified chemical mechanisms.

  15. 78 FR 15011 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ..., Final EIS, DOE, TX, W.A. Parish Post-Combustion CO 2 Capture and Sequestration Project, Review Period.... 20130055, Final EIS, NPS, IA, Effigy Mounds National Monument Final General Management Plan, Review Period...] BILLING CODE 6560-50-P ...

  16. Combustion Synthesis Reaction Behavior of Cold-Rolled Ni/Al and Ti/Al Multilayers

    DTIC Science & Technology

    2011-04-01

    6   Figure 4 . Combustion synthesis process of the cold-rolled Ni/Al multilayer foils: (a) reaction front of the displacement of the reaction...Reactive Nanostructured Foil Used as a Heat Source for Joining Titanium . J. Appl. Phys. 2004, 96 ( 4 ), 2336–2342. 16. Wang, J.; Besnoin, E...2011 2. REPORT TYPE Final 3. DATES COVERED (From - To) January 2006–January 2008 4 . TITLE AND SUBTITLE Combustion Synthesis Reaction Behavior of

  17. 14 CFR 25.833 - Combustion heating systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Combustion heating systems. 25.833 Section 25.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Combustion heating systems. Combustion heaters must be approved. [Amdt. 25-72, 55 FR 29783, July 20, 1990...

  18. 14 CFR 25.833 - Combustion heating systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heating systems. 25.833 Section 25.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Combustion heating systems. Combustion heaters must be approved. [Amdt. 25-72, 55 FR 29783, July 20, 1990...

  19. 14 CFR 25.833 - Combustion heating systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heating systems. 25.833 Section 25.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Combustion heating systems. Combustion heaters must be approved. [Amdt. 25-72, 55 FR 29783, July 20, 1990...

  20. 14 CFR 25.833 - Combustion heating systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Combustion heating systems. 25.833 Section 25.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Combustion heating systems. Combustion heaters must be approved. [Amdt. 25-72, 55 FR 29783, July 20, 1990...

  1. 14 CFR 25.833 - Combustion heating systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heating systems. 25.833 Section 25.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Combustion heating systems. Combustion heaters must be approved. [Amdt. 25-72, 55 FR 29783, July 20, 1990...

  2. TECHNOLOGY DEMONSTRATION SUMMARY: THE AMERICAN COMBUSTION PYRETRON THERMAL DESTRUCTION SYSTEM AT THE U.S. EPA'S COMBUSTION FACILITY

    EPA Science Inventory

    The American Combustion Pyretron Thermal Destruction System at the U.S. EPA's Combustion Research Facility. Under the auspices of the Superfund Innovative Technology Evaluation, or SITE, program, a critical assessment was made of the American Combustion Pyretron™ oxygen enha...

  3. Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.

    2007-01-01

    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).

  4. List of Publicly Accessible Internet Sites Hosting Compliance Data and Information Required by the Disposal of Coal Combustion Residuals Rule

    EPA Pesticide Factsheets

    This page is to make accessible a list of the websites coal-fired power plants have created to post for the public to view with respect to their compliance with the disposal of coal combustion residuals final rule.

  5. A Systematic Method for the Condition Assessment of Central Heating Plants in Air Force Logistics Command

    DTIC Science & Technology

    1990-09-01

    Oil Combustion/Fuel System 59 Derivation of HTHW Plant Condition Indices ...... ................. .. 65 Distribution System . ........ .. 66 HTHW...with Load ..... ............... .. 54 3. Boiler Efficiency Curve for Gas Combustion . 61 4. Boiler Efficiency Curve for Oil Combustion . 62 v List of...147 6. Round One Relative Responses for Gas and Oil Combustion/Fue System .... ............ . 147 7. Round One Relative Responses for Coal - Combustion

  6. Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation. Volume 5: Auxiliary shuttle risk analyses

    NASA Technical Reports Server (NTRS)

    Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.

    1995-01-01

    Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.

  7. Slag processing system for direct coal-fired gas turbines

    DOEpatents

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  8. Experimental Study of the Conditions for Quenching Forest Combustible Materials

    NASA Astrophysics Data System (ADS)

    Antonov, D. V.; Volkov, R. S.; Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.

    2017-05-01

    To confirm the possibility of quenching forest combustible materials by small volumes of water, experimental studies have been made of the processes of interaction of droplets, films, and aerosol flows of water with small sources of combustion of typical forest combustible materials — birch leaves, pine needles, birch and asp twigs. Model combustion sources in the form of cylinders of diameter 20-60 mm and height 40-100 mm were constructed. With the use of high-speed video recording, the characteristic times of thermal decomposition of forest combustibles and the times of suppressing combustion of these materials under various conditions of their interaction with water (pulsed supply of aerosol, injection of water ″mist″ with droplets of radius up to 100 μm, sequential supply of large drops of radius about 1.5 mm) have been determined. Volumes of water sufficient for suppressing combustion depending on the method of supplying it onto the surface of the reacting forest combustible have been determined. Estimates have been made of the nonreacted portion of the material by comparing the initial mass of the sample of the forest combustible with its final mass (upon quenching the material).

  9. A Brief Study on Toxic Combustion Products of the Polymers Used in High-Pressure Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hshieh, Fu-Yu; Beeson, Harold D.

    2005-01-01

    One likely cause of polymer ignition in a high-pressure oxygen system is the adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper investigates the feasibility of using the NASA pneumatic-impact system to conduct adiabatic-compression combustion tests and determines the toxic combustion products produced from the burning of five selected polymers. Five polymers commonly used in high-pressure oxygen systems, Zytel(Registered TradeMark) 42 (Nylon 6/6), Buna N (nitrile rubber), Witon(Registered TradeMark) A (copolymer of vinylidene fluoride and hexafluoropropylene), Neoflon(Registered TradeMark) (polychlorotrifluoroethylene), and Teflon(Registered TradeMark) (polytetrafluoroethylene), were tested in the NASA pneumatic-impact test system at 17.2-MPa oxygen pressure. The polymers were ignited and burned; combustion products were collected in a stainless-steel sample bottle and analyzed using various methods. The results show that the NASA pneumatic-impact system is an appropriate test system to conduct adiabatic-compression combustion tests and to collect combustion products for further chemical analysis. The composition of the combustion product gas generated from burning the five selected polymers are presented and discussed.

  10. N+2 Advanced Low NOx Combustor Technology Final Report

    NASA Technical Reports Server (NTRS)

    Herbon, John; Aicholtz, John; Hsieh, Shih-Yang; Viars, Philip; Birmaher, Shai; Brown, Dan; Patel, Nayan; Carper, Doug; Cooper, Clay; Fitzgerald, Russell

    2017-01-01

    In accordance with NASAs technology goals for future subsonic vehicles, this contract identified and developed new combustor concepts toward meeting N+2 generation (2020) LTO (landing and take-off) NOx emissions reduction goal of 75 from the standard adopted at Committee on Aviation Environmental Protection 6 (CAEP6). Based on flame tube emissions, operability, and autoignition testing, one concept was down selected for sector testing at NASA. The N+2 combustor sector successfully demonstrated 75 reduction for LTO NOx (vs. CAEP6) and cruise NOx (vs. 2005 B777-200 reference) while maintaining 99.9 cruise efficiency and no increase in CO and HC emissions.The program also developed enabling technologies for the combustion system including ceramic matrix composites (CMC) liner materials, active combustion control concepts, and laser ignition for improved altitude relight.

  11. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    DOEpatents

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  12. Causes of Combustion Instabilities with Passive and Active Methods of Control for practical application to Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Cornwell, Michael D.

    Combustion at high pressure in applications such as rocket engines and gas turbine engines commonly experience destructive combustion instabilities. These instabilities results from interactions between combustion heat release, fluid mechanics and acoustics. This research explores the significant affect of unstable fluid mechanics processes in augmenting unstable periodic combustion heat release. The frequency of the unstable heat release may shift to match one of the combustors natural acoustic frequencies which then can result in significant energy exchange from chemical to acoustic energy resulting in thermoacoustic instability. The mechanisms of the fluid mechanics in coupling combustion to acoustics are very broad with many varying mechanisms explained in detail in the first chapter. Significant effort is made in understanding these mechanisms in this research in order to find commonalities, useful for mitigating multiple instability mechanisms. The complexity of combustion instabilities makes mitigation of combustion instabilities very difficult as few mitigation methods have historically proven to be very effective for broad ranges of combustion instabilities. This research identifies turbulence intensity near the forward stagnation point and movement of the forward stagnation point as a common link in what would otherwise appear to be very different instabilities. The most common method of stabilization of both premixed and diffusion flame combustion is through the introduction of swirl. Reverse flow along the centerline is introduced to transport heat and chemically active combustion products back upstream to sustain combustion. This research develops methods to suppress the movement of the forward stagnation point without suppressing the development of the vortex breakdown process which is critical to the transport of heat and reactive species necessary for flame stabilization. These methods are useful in suppressing the local turbulence at the forward stagnation point, limiting dissipation of heat and reactive species significantly improving stability. Combustion hardware is developed and tested to demonstrate the stability principles developed as part of this research. In order to more completely understand combustion instability a very unique method of combustion was researched where there are no discrete points of combustion initiation such as the forward stagnation point typical in many combustion systems including swirl and jet wake stabilized combustion. This class of combustion which has empirical evidence of great stability and efficient combustion with low CO, NOx and UHC emissions is described as high oxidization temperature distributed combustion. This mechanism of combustion is shown to be stable largely because there are no stagnations points susceptible to fluid mechanic perturbations. The final topic of research is active combustion control by fuel modulation. This may be the only practical method of controlling most instabilities with a single technique. As there are many papers reporting active combustion control algorithms this research focused on the complexities of the physics of fuel modulation at frequencies up to 1000 Hz with proportionally controlled flow amplitude. This research into the physics of high speed fluid movement, oscillation mechanical mechanisms and electromagnetics are demonstrated by development and testing of a High Speed Latching Oscillator Valve.

  13. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; andmore » an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.« less

  14. Analysis of Apex Seal Friction Power Loss in Rotary Engines

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Owen, A. Karl

    2010-01-01

    An analysis of the frictional losses from the apex seals in a rotary engine was developed. The modeling was initiated with a kinematic analysis of the rotary engine. Next a modern internal combustion engine analysis code was altered for use in a rotary engine to allow the calculation of the internal combustion pressure as a function of rotor rotation. Finally the forces from the spring, inertial, and combustion pressure on the seal were combined to provide the frictional horsepower assessment.

  15. An integrated approach to energy recovery from biomass and waste: Anaerobic digestion-gasification-water treatment.

    PubMed

    Milani, M; Montorsi, L; Stefani, M

    2014-07-01

    The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system. © The Author(s) 2014.

  16. Controllable Solid Propulsion Combustion and Acoustic Knowledge Base Improvements

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel; Fischbach, Sean; Fredrick, Robert

    2012-01-01

    Controllable solid propulsion systems have distinctive combustion and acoustic environments that require enhanced testing and analysis techniques to progress this new technology from development to production. In a hot gas valve actuating system, the movement of the pintle through the hot gas exhibits complex acoustic disturbances and flow characteristics that can amplify induced pressure loads that can damage or detonate the rocket motor. The geometry of a controllable solid propulsion gas chamber can set up unique unsteady flow which can feed acoustic oscillations patterns that require characterization. Research in this area aids in the understanding of how best to design, test, and analyze future controllable solid rocket motors using the lessons learned from past government programs as well as university research and testing. This survey paper will give the reader a better understanding of the potentially amplifying affects propagated by a controllable solid rocket motor system and the knowledge of the tools current available to address these acoustic disturbances in a preliminary design. Finally the paper will supply lessons learned from past experiences which will allow the reader to come away with understanding of what steps need to be taken when developing a controllable solid rocket propulsion system. The focus of this survey will be on testing and analysis work published by solid rocket programs and from combustion and acoustic books, conference papers, journal articles, and additionally from subject matter experts dealing currently with controllable solid rocket acoustic analysis.

  17. A Study of Cavitation-Ignition Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Jacqmin, David A.

    2005-01-01

    We present the results of an experimental and computational study of the physics and chemistry of cavitation-ignition bubble combustion (CIBC), a process that occurs when combustible gaseous mixtures are ignited by the high temperatures found inside a rapidly collapsing bubble. The CIBC process was modeled using a time-dependent compressible fluid-dynamics code that includes finite-rate chemistry. The model predicts that gas-phase reactions within the bubble produce CO and other gaseous by-products of combustion. In addition, heat and mechanical energy release through a bubble volume-expansion phase are also predicted by the model. We experimentally demonstrate the CIBC process using an ultrasonically excited cavitation flow reactor with various hydrocarbon-air mixtures in liquid water. Low concentrations (< 160 ppm) of carbon monoxide (CO) emissions from the ultrasonic reactor were measured, and found to be proportional to the acoustic excitation power. The results of the model were consistent with the measured experimental results. Based on the experimental findings, the computational model, and previous reports of the "micro-diesel effect" in industrial hydraulic systems, we conclude that CIBC is indeed possible and exists in ultrasonically- and hydrodynamically-induced cavitation. Finally, estimates of the utility of CIBC process as a means of powering an idealized heat engine are also presented.

  18. Characteristics of oily sludge combustion in circulating fluidized beds.

    PubMed

    Zhou, Lingsheng; Jiang, Xiumin; Liu, Jianguo

    2009-10-15

    Incineration of oily sludge in circulating fluidized beds may be an effective way for its management in some cases. The objective of the present paper is to investigate combustion characteristics of oily sludge, which would be helpful and useful for the design and simulation of a circulating fluidized bed. Firstly, the pyrolysis and combustion of oily sludge were studied through some thermal analyses, which included the thermogravimetric (TG) analysis and the differential thermal analytical (DTA) analysis. It was found that the combustion of oily sludge might be the combustion of its pyrolysis products. Secondly, an experiment for measuring of main components of the volatile from oily sludge pyrolysis was carried out. Some mathematic correlations about the compositions of volatile from oily sludge devolatilization were achieved from the experimental results. Finally, the combustion characteristics of oily sludge was studied in a lab-scale circulating fluidized bed, which could obtain some information about the location of release and combustion of the volatiles.

  19. The Effects of Gravity on Combustion and Structure Formation During Combustion Synthesis in Gasless Systems

    NASA Technical Reports Server (NTRS)

    Varma, Arvind; Mukasyan, Alexander; Pelekh, Aleksey

    1997-01-01

    There have been relatively few publications examining the role of gravity during combustion synthesis (CS), mostly involving thermite systems. The main goal of this research was to study the influence of gravity on the combustion characteristics of heterogeneous gasless systems. In addition, some aspects of microstructure formation processes which occur during gasless CS were also studied. Four directions for experimental investigation have been explored: (1) the influence of gravity force on the characteristic features of heterogeneous combustion wave propagation (average velocity, instantaneous velocities, shape of combustion front); (2) the combustion of highly porous mixtures (with porosity greater than that for loose powders), which cannot be obtained in normal gravity; (3) the effect of gravity on sample expansion during combustion, in order to produce highly porous materials under microgravity conditions; and (4) the effect of gravity on the structure formation mechanism during the combustion synthesis of poreless composite materials.

  20. 75 FR 80761 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... March 3, 2010, final national emission standards for hazardous air pollutants for reciprocating internal... engines to allow emergency engines to operate for up to 15 hours per year as part of an emergency demand...

  1. A planar reacting shear layer system for the study of fluid dynamics-combustion interaction

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Chang, C. T.; Ghorashi, B.; Wey, C. C.; Wey, C.; Mularz, E. J.

    1989-01-01

    A versatile planar reacting shear layer facility is constructed at NASA-Lewis. The research objectives, as well as design, instrumentations and the operational procedures developed for the system are described. The fundamental governing equations and the type of quantitative information that are needed from experiments are described. Additionally, a review of earlier work is presented. Whenever appropriate, comparisons are made with similar systems in other facilities and the main differences are described. Finally, the nonintrusive measurement techniques (PLIF, PMS, LDV, and Schlieren photography) and the type of experiments that are planned are described.

  2. Laser ignition application in a space experiment

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.; Culley, Dennis E.

    1993-01-01

    A laser ignition system is proposed for the Combustion Experiment Module on an orbiting spacecraft. The results of a design study are given using the scheduled 'Flame Ball Experiment' as the design guidelines. Three laser ignition mechanisms and wavelengths are evaluated. A prototype laser is chosen and its specifications are given, followed by consideration of the beam optical arrangement, the ignition power requirement, the laser ignition system weight, size, reliability, and laser cooling and power consumption. Electromagnetic interference to the onboard electronics caused by the laser ignition process is discussed. Finally, ground tests are suggested.

  3. Radiation effect on rocket engine performance

    NASA Technical Reports Server (NTRS)

    Chiu, Huei-Huang

    1988-01-01

    The effects of radiation on the performance of modern rocket propulsion systems operating at high pressure and temperature were recognized as a key issue in the design and operation of various liquid rocket engines of the current and future generations. Critical problem areas of radiation coupled with combustion of bipropellants are assessed and accounted for in the formulation of a universal scaling law incorporated with a radiation-enhanced vaporization combustion model. Numerical algorithms are developed and the pertaining data of the Variable Thrust Engine (VTE) and Space Shuttle Main Engine (SSME) are used to conduct parametric sensitivity studies to predict the principal intercoupling effects of radiation. The analysis reveals that low enthalpy engines, such as the VTE, are vulnerable to a substantial performance set back by the radiative loss, whereas the performance of high enthalpy engines such as the SSME, are hardly affected over a broad range of engine operation. Additionally, combustion enhancement by the radiative heating of the propellant has a significant impact in those propellants with high absorptivity. Finally, the areas of research related with radiation phenomena in bipropellant engines are identified.

  4. On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luong, Minh Bau; Sankaran, Ramanan; Yu, Gwang Hyeon

    2017-06-09

    The ignition characteristics of lean primary reference fuel (PRF)/air/exhaust gas recirculation (EGR) mixture under reactivity-controlled compression ignition (RCCI) and direct duel fuel stratification (DDFS) conditions are investigated in this paper by 2-D direct numerical simulations (DNSs) with a 116-species reduced chemistry of the PRF oxidation. The 2-D DNSs of the DDFS combustion are performed by varying the injection timing of iso-octane (i-C 8H 18) with a pseudo-iso-octane (PC 8H 18) model together with a novel compression heating model to account for the compression heating and expansion cooling effects of the piston motion in an engine cylinder. The PC 8H 18more » model is newly developed to mimic the timing, duration, and cooling effects of the direct injection of i-C 8H 18 onto a premixed background charge of PRF/air/EGR mixture with composition inhomogeneities. It is found that the RCCI combustion exhibits a very high peak heat release rate (HRR) with a short combustion duration due to the predominance of the spontaneous ignition mode of combustion. However, the DDFS combustion has much lower peak HRR and longer combustion duration regardless of the fuel injection timing compared to those of the RCCI combustion, which is primarily attributed to the sequential injection of i-C 8H 18. It is also found that the ignition delay of the DDFS combustion features a non-monotonic behavior with increasing fuel-injection timing due to the different effect of fuel evaporation on the low-, intermediate-, and high-temperature chemistry of the PRF oxidation. The budget and Damköhler number analyses verify that although a mixed combustion mode of deflagration and spontaneous ignition exists during the early phase of the DDFS combustion, the spontaneous ignition becomes predominant during the main combustion, and hence, the spread-out of heat release rate in the DDFS combustion is mainly governed by the direct injection process of i-C 8H 18. Finally, a misfire is observed for the DDFS combustion when the direct injection of i-C 8H 18 occurs during the intermediate-temperature chemistry (ITC) regime between the first- and second-stage ignition. Finally, this is because the temperature drop induced by the direct injection of i-C 8H 18 impedes the main ITC reactions, and hence, the main combustion fails to occur.« less

  5. FutureGen 2.0 Oxy-combustion Large Scale Test – Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenison, LaVesta; Flanigan, Thomas; Hagerty, Gregg

    The primary objectives of the FutureGen 2.0 CO 2 Oxy-Combustion Large Scale Test Project were to site, permit, design, construct, and commission, an oxy-combustion boiler, gas quality control system, air separation unit, and CO 2 compression and purification unit, together with the necessary supporting and interconnection utilities. The project was to demonstrate at commercial scale (168MWe gross) the capability to cleanly produce electricity through coal combustion at a retrofitted, existing coal-fired power plant; thereby, resulting in near-zeroemissions of all commonly regulated air emissions, as well as 90% CO 2 capture in steady-state operations. The project was to be fully integratedmore » in terms of project management, capacity, capabilities, technical scope, cost, and schedule with the companion FutureGen 2.0 CO 2 Pipeline and Storage Project, a separate but complementary project whose objective was to safely transport, permanently store and monitor the CO 2 captured by the Oxy-combustion Power Plant Project. The FutureGen 2.0 Oxy-Combustion Large Scale Test Project successfully achieved all technical objectives inclusive of front-end-engineering and design, and advanced design required to accurately estimate and contract for the construction, commissioning, and start-up of a commercial-scale "ready to build" power plant using oxy-combustion technology, including full integration with the companion CO 2 Pipeline and Storage project. Ultimately the project did not proceed to construction due to insufficient time to complete necessary EPC contract negotiations and commercial financing prior to expiration of federal co-funding, which triggered a DOE decision to closeout its participation in the project. Through the work that was completed, valuable technical, commercial, and programmatic lessons were learned. This project has significantly advanced the development of near-zero emission technology and will be helpful to plotting the course of, and successfully executing future large demonstration projects. This Final Scientific and Technical Report describes the technology and engineering basis of the project, inclusive of process systems, performance, effluents and emissions, and controls. Further, the project cost estimate, schedule, and permitting requirements are presented, along with a project risk and opportunity assessment. Lessons-learned related to these elements are summarized in this report. Companion reports Oxy-combustion further document the accomplishments and learnings of the project, including: A.01 Project Management Report which describes what was done to coordinate the various participants, and to track their performance with regard to schedule and budget B.02 Lessons Learned - Technology Integration, Value Improvements, and Program Management, which describes the innovations and conclusions that we arrived upon during the development of the project, and makes recommendations for improvement of future projects of a similar nature . B.03 Project Economics, which details the capital and operation costs and their basis, and also illustrates the cost of power produced by the plant with certain sensitivities. B.04 Power Plant, Pipeline, and Injection Site Interfaces, which details the interfaces between the two FutureGen projects B.05 Contractual Mechanisms for Design, Construction, and Operation, which describes the major EPC, and Operations Contracts required to execute the project.« less

  6. Recovery. Oxygen Transport Membrane-Based OxyCombustion for CO 2 Capture from Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Sean; Geary, Joan; Chakravrti, Shrikar

    2015-12-22

    This Final report documents and summarizes all of the work performed for the DOE award DE-FC26-07NT43088 during the period from April 2007 - June 2012. This report outlines accomplishments for the following tasks: Task 1 – Process and Systems Engineering, Task 2 – OTM Performance Improvement, Task 3 – OTM Manufacturing Development, Task 4 - Laboratory Scale Testing and Task 5 – Project Management.

  7. 76 FR 16646 - Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    .... (n/k/a Clean Energy Combustion Systems, Inc.), Collectible Concepts Group, Inc., Communitronics of America, Inc. (n/k/a RPM Advantage, Inc.), and ConSyGen, Inc., Order of Suspension of Trading March 22..., Inc. (n/k/a Clean Energy Combustion Systems, Inc.) because it has not filed any periodic reports since...

  8. Thermal Stability and Flammability of Styrene-Butadiene Rubber-Based (SBR) Ceramifiable Composites

    PubMed Central

    Anyszka, Rafał; Bieliński, Dariusz M.; Pędzich, Zbigniew; Rybiński, Przemysław; Imiela, Mateusz; Siciński, Mariusz; Zarzecka-Napierała, Magdalena; Gozdek, Tomasz; Rutkowski, Paweł

    2016-01-01

    Ceramifiable styrene-butadiene (SBR)-based composites containing low-softening-point-temperature glassy frit promoting ceramification, precipitated silica, one of four thermally stable refractory fillers (halloysite, calcined kaolin, mica or wollastonite) and a sulfur-based curing system were prepared. Kinetics of vulcanization and basic mechanical properties were analyzed and added as Supplementary Materials. Combustibility of the composites was measured by means of cone calorimetry. Their thermal properties were analyzed by means of thermogravimetry and specific heat capacity determination. Activation energy of thermal decomposition was calculated using the Flynn-Wall-Ozawa method. Finally, compression strength of the composites after ceramification was measured and their micromorphology was studied by scanning electron microscopy. The addition of a ceramification-facilitating system resulted in the lowering of combustibility and significant improvement of the thermal stability of the composites. Moreover, the compression strength of the mineral structure formed after ceramification is considerably high. The most promising refractory fillers for SBR-based ceramifiable composites are mica and halloysite. PMID:28773726

  9. Investigation of a rotary valving system with variable valve timing for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Cross, Paul C.; Hansen, Craig N.

    1994-11-01

    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve Timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multifuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this final report.

  10. Hot section viewing system

    NASA Technical Reports Server (NTRS)

    Morey, W. W.

    1983-01-01

    The objective of the hot section viewing program is to develop a prototype optical system for viewing the interior of a gas turbine combustor during high temperature, high pressure operation in order to produce a visual record of some causes of premature hot section failures. The program began by identifying and analyzing system designs that would provide clearest images while being able to survive the hostile environment inside the combustion chamber. Different illumination methods and computer techniques for image enhancement and analysis were examined during a preliminary test phase. In the final phase of the program the prototype system was designed and fabricated and is currently being tested on a high pressure combustor rig.

  11. Irradiated ignition over solid materials in reduce pressure environment: Fire safety issue in man-made enclosure system

    NASA Astrophysics Data System (ADS)

    Nakamura, N.; Aoki, A.

    Effects of ambient pressure and oxygen yield on irradiated ignition characteristics over solid combustibles have been studied experimentally Aim of the present study is to elucidate the flammability and chance of fire in depressurized enclosure system and give ideas for the fire safety and fire fighting strategies in such environment Thin cellulosic paper is considered as the solid combustible since cellulose is one of major organic compounds and flammables in the nature Applied atmosphere consists of inert gas either CO2 or N2 and oxygen and various mixture ratios are of concerned Total ambient pressure level is varied from 0 1MPa standard atmospheric pressure to 0 02MPa Ignition is initiated by external thermal flux exposed into the solid surface as a model of unexpected thermal input to initiate the localized fire Thermal degradation of the solid induces combustible gaseous products e g CO H2 or other low class of HCs and the gas mixes with ambient oxygen to form the combustible mixture over the solid Heat transfer from the hot irradiated surface into the mixture accelerates the local exothermic reaction in the gas phase and finally thermal runaway ignition is achieved Ignition event is recorded by high-speed digital video camera to analyze the ignition characteristics Flammable map in partial pressure of oxygen Pox and total ambient pressure Pt plane is made to reveal the fire hazard in depressurized environment Results show that wider flammable range is obtained depending on the imposed ambient

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaSalvia, J.C.; Meyers, M.A.

    The micromechanisms involved in the combustion synthesis of a Ti-C-Ni-Mo mixture resulting in the formation of a TiC-based composite were examined using the combustion wave quenching technique developed by Rogachev et al. At the micron level, the main reaction occurs at the interface between a Ti-Ni-C melt and C particles, resulting in the formation of a solid TiC{sub x} layer on the C particles. This layer undergoes a successive process of rapid growth and decomposition into TiC{sub x} spherules until all of the C particle is consumed. This mechanism is consistent with the apparent activation energy (E = 100 kJ/mol)more » for the process obtained from a macrokinetic investigation of the system. The apparent uniformity in size (d = 1 {mu}m) of the TiC{sub x} spherules upon formation indicates a critical condition in the stability of the energetics involved in the process. These TiC{sub x} spherules undergo growth due to Ostwald ripening and coalescence mechanisms resulting in a final apparent size of 2.5 {mu}m. For the compositions investigated, the addition of Mo did not affect either the micromechanisms or macrokinetics of the combustion synthesis process. Densification of the porous body after the combustion synthesis process can be carried out while it is still in a easily deformable state. The highly porous body is densified by a combination of fracture (communition), plastic deformation, and sintering. The mechanisms are identified for the case of combustion synthesized TiC. Mechanical properties and microstructures of a number of materials (e.g. TiC, TiB{sub 2}, Al{sub 2}O{sub 3}-TiB{sub 2}, TiB{sub 2}-SiC, TiC-Ni-Mo) produced by combustion synthesis combined with a high-velocity forging step are reviewed.« less

  13. Evaluation of weapons' combustion products in armored vehicles. Appendix A: Sampling and analysis methods. Appendix B: Analytical data. Final report, 30 September 1986-14 December 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzies, K.T.; Randel, M.A.; Quill, A.L.

    1989-01-01

    The U.S. Army Biomedical Research and Development Laboratory defined an extensive research program to address the generation of potentially toxic propellant combustion products in crew compartments of armored vehicles during weapons firing. The major objectives of the research were (1) to determine the presence and concentration of propellant combustion products, (2) to determine potential crew exposure to these combustion products, and (3) to assess the efficacy of field monitoring in armored vehicles. To achieve these goals, air monitoring was conducted in selected armored vehicle types, i.e., M109, M60, M3, M1, at several Army installations.

  14. A Preliminary Study on the Toxic Combustion Products Testing of Polymers Used in High-Pressure Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hshieh, Fu-Yu; Beeson, Harold D.

    2004-01-01

    One likely cause of polymer ignition in a high-pressure oxygen system is adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative _ pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper reports the preliminary results of toxic combustion product testing of selected polymers in a pneumatic-impact test system. Five polymers commonly used in high-pressure oxygen systems, Nylon 6/6, polychlorotrifluoroethylene (CTFE), polytetrafluoroethylene (PTFE), fluoroelastomer (Viton(TradeMark) A), and nitrile rubber (Buna N), were tested in a pneumatic-impact test system at 2500- or 3500-psia oxygen pressure. The polymers were ignited and burned, then combustion products were collected in a stainless-steel sample bottle and analyzed by GC/MS/IRD, GC/FID, and GC/Methanizer/FID. The results of adiabatic-compression tests show that combustion of hydrocarbon polymers, nitrogen-containing polymers, and halogenated polymers in high-pressure oxygen systems are relatively complete. Toxicity of the combustion product gas is presumably much lower than the combustion product gas generated from ambient-pressure oxygen (or air) environments. The NASA-Lewis equilibrium code was used to determine the composition of combustion product gas generated from a simulated, adiabatic-compression test of nine polymers. The results are presented and discussed.

  15. Liquid-feed flame spray pyrolysis synthesis of oxide nanopowders for the processing of ceramic composites

    NASA Astrophysics Data System (ADS)

    Taylor, Nathan John

    In the liquid-feed flame spray pyrolysis (LF-FSP) process, alcohol solutions of metalloorganic precursors are aerosolized by O2 and combusted. The metal oxide combustion products are rapidly quenched (< 10 ms) from flame temperatures of 1500°C to temperatures < 400° C, limiting particle growth. The resulting nanopowders are typically agglomerated but unaggregated. Here, we demonstrate two processing approaches to dense materials: nanopowders with the exact composition, and mixed single metal oxide nanopowders. The effect of the initial degree of phase separation on the final microstructures was determined by sintering studies. Our first studies included the production of yttrium aluminum garnet, Y3Al5O12 (YAG), tubes which we extruded from a thermoplastic/ceramic blend. At equivalent final densities, we found finer grain sizes in the from the mixed Y2O3 and Al2 O3 nanopowders, which was attributed to densification occurring before full transformation to the YAG phase. The enhanced densification in production of pure YAG from the reactive sintering process led us to produce composites in the YAG/alpha-Al 2O3 system. Finally, a third Y2O3 stabilized ZrO2 (YSZ) phase was added to further refine grain sizes using the same two processing approaches. In a separate study, single-phase metastable Al2O3 rich spinels with the composition MO•3Al 2O3 where M = Mg, Ni, and Co were sintered to produce dense MAl2O4/alpha-Al2O3 composites. All of these studies provide a test of the bottom-up approach; that is, how the initial length scale of mixing affects the final composite microstructure. Overall, the length scale of mixing is highly dependent upon the specific oxide composites studied. This work provides a processing framework to be adopted by other researchers to further refine microstructural size. LF-FSP flame temperatures were mapped using different alcohols with different heats of combustion: methanol, ethanol, 1-propanol, and n-butanol. The effect of different alcohols on particle size and phase was determined through studies on Al2O3, Y2O3 and TiO2 nanopowders. The final studies describe the morphology of composite nanopowders produced in the WO3-TiO2 and CuO-TiO2 systems. The composite nanopowders have novel morphology, and may offer novel electronic, optical, or catalytic properties.

  16. Pulse combustion engineering research laboratory for indirect heating applications (PERL-IH). Final report, October 1, 1989-June 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, F.E.

    1993-01-01

    Uncontrolled NOx emissions from a variety of pulse combustors were measured. The implementation of flue-gas recirculation to reduce NOx was studied. A flexible workstation for parametric testing was built and used to study the phasing between pressure and heat release, and effects of fuel/air mixing on performance. Exhaust-pipe heat transfer was analyzed. An acoustic model of pulse combustion was developed. Technical support was provided to manufacturers on noise, ignition and condensation. A computerized bibliographic database on pulse combustion was created.

  17. Ignition and combustion: Low compression ratio, high output diesel

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The feasibility of converting a spark ignition aircraft engine GTSI0-520 to compression ignition without increasing the peak combustion pressure of 1100 lbs/sq.in. was determined. The final contemplated utilized intake air heating at idle and light load and a compression ratio of about 10:1 with a small amount of fumigation (the addition of about 15% fuel into the combustion air before the cylinder). The engine used was a modification of a Continental-Teledyne gasoline engine cylinder from the GTSI0-520 supercharged aircraft engine.

  18. Real-time combustion control and diagnostics sensor-pressure oscillation monitor

    DOEpatents

    Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy [Morgantown, WV; Huckaby, E David [Morgantown, WV; Richards, George A [Morgantown, WV

    2009-07-14

    An apparatus and method for monitoring and controlling the combustion process in a combustion system to determine the amplitude and/or frequencies of dynamic pressure oscillations during combustion. An electrode in communication with the combustion system senses hydrocarbon ions and/or electrons produced by the combustion process and calibration apparatus calibrates the relationship between the standard deviation of the current in the electrode and the amplitudes of the dynamic pressure oscillations by applying a substantially constant voltage between the electrode and ground resulting in a current in the electrode and by varying one or more of (1) the flow rate of the fuel, (2) the flow rate of the oxidant, (3) the equivalence ratio, (4) the acoustic tuning of the combustion system, and (5) the fuel distribution in the combustion chamber such that the amplitudes of the dynamic pressure oscillations in the combustion chamber are calculated as a function of the standard deviation of the electrode current. Thereafter, the supply of fuel and/or oxidant is varied to modify the dynamic pressure oscillations.

  19. Burner systems

    DOEpatents

    Doherty, Brian J.

    1984-07-10

    A burner system particularly useful for downhole deployment includes a tubular combustion chamber unit housed within a tubular coolant jacket assembly. The combustion chamber unit includes a monolithic tube of refractory material whose inner surface defines the combustion zone. A metal reinforcing sleeve surrounds and extends the length of the refractory tube. The inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another in standby condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression during combustion system start up and cool down sequences.

  20. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...

  1. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...

  2. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...

  3. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...

  4. ISS Expedition 18 Fluids and Combustion Facility (FCF) Combustion Integration Rack (CIR) Passive Rack Isolation System (

    NASA Image and Video Library

    2009-01-05

    ISS018-E-017796 (5 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works on the Fluids and Combustion Facility (FCF) Combustion Integration Rack (CIR) Passive Rack Isolation System (PaRIS) in the Destiny laboratory of the International Space Station.

  5. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...

  6. 40 CFR 60.4219 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... given them in the CAA and in subpart A of this part. Combustion turbine means all equipment, including but not limited to the turbine, the fuel, air, lubrication and exhaust gas systems, control systems... simple cycle combustion turbine, any regenerative/recuperative cycle combustion turbine, the combustion...

  7. Automotive Stirling engine system component review

    NASA Technical Reports Server (NTRS)

    Hindes, Chip; Stotts, Robert

    1987-01-01

    The design and testing of the power and combustion control system for the basic Stirling engine, Mod II, are examined. The power control system is concerned with transparent operation, and the Mod II uses engine working gas pressure variation to control the power output of the engine. The main components of the power control system, the power control valve, the pump-down system, and the hydrogen stable system, are described. The combustion control system consists of a combustion air supply system and an air/fuel ratio control system, and the system is to maintain constant heater head temperature, and to maximize combustion efficiency and to minimize exhaust emissions.

  8. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  9. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  10. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  11. System design study to reduce capital and operating cost of a moving distributor, AFB advanced concept - comparison with an oil-fired boiler. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mah, C.S.; West, L.K.; Anderson, R.E.

    1985-12-01

    The Aerojet Energy Conversion Company, under contract with the United States Department of Energy, has performed a comparative economic study of the Aerojet Universal Atmospheric Fluidized Bed Combustion (UAFBC) system and a coventional atmospheric fluidized bed combustion (AFBC) system. The program title, ''System Design Study to Reduce Capital and Operating Cost and Bench Scale Testing of a Moving Distributor, AFB Concept,'' is a good description of the general objective of the program. The specific objective was to compare the UAFBC with the conventional AFBC in terms of normalized steam cost. The boilers were designed for 150,00 lb/hr of steam atmore » 650 psig and 750/sup 0/F. The reference coal used in the analysis was Pittsburgh No. 8 coal with a sulfur content of 4.3% and a higher heating value of 12,919 Bru/lb. The analysis assumed a plant life of 20 years and a discount rate of 15%. The UAFBC systems included the usual elements of the conventional cola-fired AFBC steam plant, but the coal preparation sysbsystem for the UAFBC was considerably simpler because the system can use ''run-of-mine'' coal. The UAFBC boiler itself consisted of a staged-combustion fluidized-bed, superimposed over a static bed, the latter supported by a moving distributor. It incorporated a fines burnup combustor, an entrained reciculating gas cleanup bed, and conventional convection boiler. The key features of the UAFBC design were: High fuel flexibility; low NO/sub x/ emission; and superior turndown capability. 30 refs., 52 figs., 12 tabs.« less

  12. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  13. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  14. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  15. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  16. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  17. Exhaust emissions reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.

    1982-01-01

    Three concepts which, to an aircraft piston engine, provide reductions in exhaust emissions of hydrocarbons and carbon monoxide while simultaneously improving fuel economy. The three chosen concepts, (1) an improved fuel injection system, (2) an improved cooling cylinder head, and (3) exhaust air injection, when combined, show a synergistic relationship in achieving these goals. In addition, the benefits of variable ignition timing were explored and both dynamometer and flight testing of the final engine configuration were accomplished.

  18. Assessment of Literature Related to Combustion Appliance Venting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, V. H.; Less, B. D.; Singer, B. C.

    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents theirmore » technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.« less

  19. DEMONSTRATION BULLETIN: CELLO PULSE COMBUSTION BURNER SYSTEM/SONOTECH INC.

    EPA Science Inventory

    Sonotech, Inc. (Sonotech), of Atlanta, GA, the developer of the Cello® pulse combustion burner, claims that its burner system can be beneficial to a variety of combustion processes. The system incorporates a combustor that can be tuned to induce large amplitude sonic pulsation...

  20. A practical approach in porous medium combustion for domestic application: A review

    NASA Astrophysics Data System (ADS)

    Ismail, A. K.; Ibrahim, N. H.; Shamsuddin, K. A.; Abdullah, M. Z.; Zubair, M.

    2018-05-01

    Combustion in porous media has been widely studied. Many application involving the combustion of porous media has been reported in various way with most consider on numerical works and industrial application. Besides, recent application of porous medium combustion for domestic is the topic of interest among researchers. In this paper, a review was conducted on the combustion of porous media in term of practical application for domestic consumers. Details on the type of fuel used including bio fuel and their system have been search thoroughly. Most of the system have utilized compressed air system to provide lean combustion in domestic application. Some self-aspirating system of porous medium burner was also reported. The application of new technology such as cogeneration by using thermoelectric cells in tandem with porous medium combustion is also revised according to recent work which have already been published. Besides, the recent advances which include coating of porous material is also considered at the end of this paper.

  1. Tripropellant combustion process

    NASA Technical Reports Server (NTRS)

    Kmiec, T. D.; Carroll, R. G.

    1988-01-01

    The addition of small amounts of hydrogen to the combustion of LOX/hydrocarbon propellants in large rocket booster engines has the potential to enhance the system stability. Programs being conducted to evaluate the effects of hydrogen on the combustion of LOX/hydrocarbon propellants at supercritical pressures are described. Combustion instability has been a problem during the development of large hydrocarbon fueled rocket engines. At the higher combustion chamber pressures expected for the next generation of booster engines, the effect of unstable combustion could be even more destructive. The tripropellant engine cycle takes advantage of the superior cooling characteristics of hydrogen to cool the combustion chamber and a small amount of the hydrogen coolant can be used in the combustion process to enhance the system stability. Three aspects of work that will be accomplished to evaluate tripropellant combustion are described. The first is laboratory demonstration of the benefits through the evaluation of drop size, ignition delay and burning rate. The second is analytical modeling of the combustion process using the empirical relationship determined in the laboratory. The third is a subscale demonstration in which the system stability will be evaluated. The approach for each aspect is described and the analytical models that will be used are presented.

  2. Detection and control of combustion instability based on the concept of dynamical system theory.

    PubMed

    Gotoda, Hiroshi; Shinoda, Yuta; Kobayashi, Masaki; Okuno, Yuta; Tachibana, Shigeru

    2014-02-01

    We propose an online method of detecting combustion instability based on the concept of dynamical system theory, including the characterization of the dynamic behavior of combustion instability. As an important case study relevant to combustion instability encountered in fundamental and practical combustion systems, we deal with the combustion dynamics close to lean blowout (LBO) in a premixed gas-turbine model combustor. The relatively regular pressure fluctuations generated by thermoacoustic oscillations transit to low-dimensional intermittent chaos owing to the intermittent appearance of burst with decreasing equivalence ratio. The translation error, which is characterized by quantifying the degree of parallelism of trajectories in the phase space, can be used as a control variable to prevent LBO.

  3. System and method for reducing combustion dynamics in a combustor

    DOEpatents

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Srinivasan, Shiva; York, William David

    2016-11-29

    A system for reducing combustion dynamics in a combustor includes an end cap that extends radially across the combustor and includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap, and tubes extend from the upstream surface through the downstream surface. Each tube provides fluid communication through the end cap to the combustion chamber. The system further includes means for reducing combustion dynamics in the combustor. A method for reducing combustion dynamics in a combustor includes flowing a working fluid through tubes that extend axially through an end cap that extends radially across the combustor and obstructing at least a portion of the working fluid flowing through a first set of the tubes.

  4. Combustion process for synthesis of carbon nanomaterials from liquid hydrocarbon

    DOEpatents

    Diener, Michael D.; Alford, J. Michael; Nabity, James; Hitch, Bradley D.

    2007-01-02

    The present invention provides a combustion apparatus for the production of carbon nanomaterials including fullerenes and fullerenic soot. Most generally the combustion apparatus comprises one or more inlets for introducing an oxygen-containing gas and a hydrocarbon fuel gas in the combustion system such that a flame can be established from the mixed gases, a droplet delivery apparatus for introducing droplets of a liquid hydrocarbon feedstock into the flame, and a collector apparatus for collecting condensable products containing carbon nanomaterials that are generated in the combustion system. The combustion system optionally has a reaction zone downstream of the flame. If this reaction zone is present the hydrocarbon feedstock can be introduced into the flame, the reaction zone or both.

  5. Detection and control of combustion instability based on the concept of dynamical system theory

    NASA Astrophysics Data System (ADS)

    Gotoda, Hiroshi; Shinoda, Yuta; Kobayashi, Masaki; Okuno, Yuta; Tachibana, Shigeru

    2014-02-01

    We propose an online method of detecting combustion instability based on the concept of dynamical system theory, including the characterization of the dynamic behavior of combustion instability. As an important case study relevant to combustion instability encountered in fundamental and practical combustion systems, we deal with the combustion dynamics close to lean blowout (LBO) in a premixed gas-turbine model combustor. The relatively regular pressure fluctuations generated by thermoacoustic oscillations transit to low-dimensional intermittent chaos owing to the intermittent appearance of burst with decreasing equivalence ratio. The translation error, which is characterized by quantifying the degree of parallelism of trajectories in the phase space, can be used as a control variable to prevent LBO.

  6. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li-Ping, E-mail: yangliping302@hrbeu.edu.cn; Ding, Shun-Liang; Song, En-Zhe

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrencemore » plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.« less

  7. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine.

    PubMed

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  8. Combustion of a Polymer (PMMA) Sphere in Microgravity

    NASA Technical Reports Server (NTRS)

    Yang, Jiann C.; Hamins, Anthony; Donnelly, Michelle K.

    1999-01-01

    A series of low gravity, aircraft-based, experiments was conducted to investigate the combustion of supported thermoplastic polymer spheres under varying ambient conditions. The three types of thermoplastic investigated were polymethylmethacrylate (PMMA), polypropylene (PP). and polystyrene (PS). Spheres with diameters ranging from 2 mm to 6.35 mm were tested. The total initial pressure varied from 0.05 MPa to 0. 15 MPa whereas the ambient oxygen concentration varied from 19 % to 30 % (by volume). The ignition system consisted of a pair of retractable energized coils. Two CCD cameras recorded the burning histories of the spheres. The video sequences revealed a number of dynamic events including bubbling and sputtering, as well as soot shell formation and break-up during combustion of the spheres at reduced gravity. The ejection of combusting material from the burning spheres represents a fire hazard that must be considered at reduced gravity. The ejection process was found to be sensitive to polymer type. All average burning rates were measured to increase with initial sphere diameter and oxygen concentration, whereas the initial pressure had little effect. The three thermoplastic types exhibited different burning characteristics. For the same initial conditions, the burning rate of PP was slower than PMMA, whereas the burning rate of PS was comparable to PMMA. The transient diameter of the burning thermoplastic exhibited two distinct periods: an initial period (enduring approximately half of the total burn duration) when the diameter remained approximately constant, and a final period when the square of the diameter linearly decreased with time. A simple homogeneous two-phase model was developed to understand the changing diameter of the burning sphere. Its value is based on a competition between diameter reduction due to mass loss from burning and sputtering, and diameter expansion due to the processes of swelling (density decrease with heating) and bubble growth. The model relies on empirical parameters for input, such as the burning rate and the duration of the initial and final burning periods.

  9. Sewage sludge conditioning with the application of ash from biomass-fired power plant

    NASA Astrophysics Data System (ADS)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2018-02-01

    During biomass combustion, there are formed combustion products. Available data indicates that only 29.1 % of biomass ashes were recycled in Poland in 2013. Chemical composition and sorptive properties of ashes enable their application in the sewage sludge treatment. This paper analyses the impact of ashes from biomass-combustion power plant on sewage sludge dewatering and higienisation. The results obtained in laboratory tests proved the possitive impact of biomass ashes on sewage sludge hydration reduction after dewatering and the increase of filtrate volume. After sludge conditioning with the use of biomass combustion by-products, the final moisture content decreased by approximatelly 10÷25 % in comparison with raw sewage sludge depending on the method of dewatering. The application of biomass combustion products in sewage sludge management could provide an alternative method of their utilization according to law and environmental requirements.

  10. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass.

    PubMed

    López-González, D; Fernandez-Lopez, M; Valverde, J L; Sanchez-Silva, L

    2013-09-01

    Combustion characteristics of biomass main components and three lignocellulosic biomass (fir wood, eucalyptus wood and pine bark) were investigated by thermogravimetric analysis coupled with mass spectrometry. The combustion of biomass was divided into two main steps, devolatilization and char oxidation stage. Heating rate effect was also studied. Generally, the higher the heating rate, the higher the decomposition temperature. Furthermore, the weight loss rate decreased due to particle temperature gradients. Combustion kinetics were studied. Models based on reaction order (Oi), nucleation (Ni) and diffusion (Di) achieved the best fitting to the experimental data. Cellulose oxidation presented the highest activation energies. CO, CO2 and H2O were the main components evolved from combustion. Additionally, light hydrocarbons (CH4 and C2H5) were also present. Finally, nitrogen compounds were in a higher proportion than sulfur compounds being released as primary amines and NOx. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Thermophysics Characterization of Kerosene Combustion

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2001-01-01

    A one-formula surrogate fuel formulation and its quasi-global combustion kinetics model are developed to support the design of injectors and thrust chambers of kerosene-fueled rocket engines. This surrogate fuel model depicts a fuel blend that properly represents the general physical and chemical properties of kerosene. The accompanying gaseous-phase thermodynamics of the surrogate fuel is anchored with the heat of formation of kerosene and verified by comparing a series of one-dimensional rocket thrust chamber calculations. The quasi-global combustion kinetics model consists of several global steps for parent fuel decomposition, soot formation, and soot oxidation and a detailed wet-CO mechanism to complete the combustion process. The final thermophysics formulations are incorporated with a computational fluid dynamics model for prediction of the combustion efficiency of an unielement, tripropellant combustor and the radiation of a kerosene-fueled thruster plume. The model predictions agreed reasonably well with those of the tests.

  12. J-2X Gas Generator Development Testing at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Reynolds, D. C.; Hormonzian, Carlo

    2010-01-01

    NASA is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, two phases of testing have been completed on the development of the gas generator for the J-2X engine. The hardware has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in combustion instability of the gas generator assembly. Development of the final configuration of workhorse hardware (which will ultimately be used to verify critical requirements on a component level) has required a balance between changes in the injector and chamber hardware in order to successfully mitigate the combustion instability without sacrificing other engine system requirements. This paper provides an overview of the two completed test series, performed at NASA s Marshall Space Flight Center. The requirements, facility setup, hardware configurations, and test series progression are detailed. Significant levels of analysis have been performed in order to provide design solutions to mitigate the combustion stability issues, and these are briefly covered. Also discussed are the results of analyses related to either anomalous readings or off-nominal testing throughout the two test series.

  13. An ignition-temperature model with two free interfaces in premixed flames

    NASA Astrophysics Data System (ADS)

    Brauner, Claude-Michel; Gordon, Peter V.; Zhang, Wen

    2016-11-01

    In this paper we consider an ignition-temperature zero-order reaction model of thermo-diffusive combustion. This model describes the dynamics of thick flames, which have recently received considerable attention in the physical and engineering literature. The model admits a unique (up to translations) planar travelling wave solution. This travelling wave solution is quite different from those usually studied in combustion theory. The main qualitative feature of this travelling wave is that it has two interfaces: the ignition interface where the ignition temperature is attained and the trailing interface where the concentration of deficient reactants reaches zero. We give a new mathematical framework for studying the cellular instability of such travelling front solutions. Our approach allows the analysis of a free boundary problem to be converted into the analysis of a boundary value problem having a fully nonlinear system of parabolic equations. The latter is very suitable for both mathematical and numerical analysis. We prove the existence of a critical Lewis number such that the travelling wave solution is stable for values of Lewis number below the critical one and is unstable for Lewis numbers that exceed this critical value. Finally, we discuss the results of numerical simulations of a fully nonlinear system that describes the perturbation dynamics of planar fronts. These simulations reveal, in particular, some very interesting 'two-cell' steady patterns of curved combustion fronts.

  14. Effect of pulsation on black liquor gasification. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinn, B.T.; Jagoda, J.; Jeong, H.

    1998-12-01

    Pyrolysis is an endothermic process. The heat of reaction is provided either by partial combustion of the waste or by heat transfer from an external combustion process. In one proposed system black liquor is pyrolized in a fluidized bed to which heat is added through a series of pulse combustor tail pipes submerged in the bed material. This system appears promising because of the relatively high heat transfer in pulse combustors and in fluidized beds. Other advantages of pulse combustors are discussed elsewhere. The process is, however, only economically viable if a part of the pyrolysis products can be usedmore » to fire the pulse combustors. The overall goals of this study were to determine: (1) which is the limiting heat transfer rate in the process of transferring heat from the hot combustion products to the pipe, through the pipe, from the tail pipe to the bed and through the bed; i.e., whether increased heat transfer within the pulse combustor will significantly increase the overall heat transfer rate; (2) whether the heat transfer benefits of the pulse combustor can be utilized while maintaining the temperature in the bed within the narrow temperature range required by the process without generating hot spots in the bed; and (3) whether the fuel gas produced during the gasification process can be used to efficiently fire the pulse combustor.« less

  15. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1997-01-01

    Combustion is a key element of many critical technologies used by contemporary society. For example, electric power production, home heating, surface and air transportation, space propulsion, and materials synthesis all utilize combustion as a source of energy. Yet, although combustion technology is vital to our standard of living, it poses great challenges to maintaining a habitable environment. For example, pollutants, atmospheric change and global warming, unwanted fires and explosions, and the incineration of hazardous wastes are major problem areas which would benefit from improved understanding of combustion. Effects of gravitational forces impede combustion studies more than most other areas of science since combustion involves production of high-temperature gases whose low density results in buoyant motion, vastly complicating the execution and interpretation of experiments. Effects of buoyancy are so ubiquitous that their enormous negative impact on the rational development of combustion science is generally not recognized. Buoyant motion also triggers the onset of turbulence, yielding complicating unsteady effects. Finally, gravity forces cause particles and drops to settle, inhibiting deconvoluted studies of heterogeneous flames important to furnace, incineration and power generation technologies. Thus, effects of buoyancy have seriously limited our capabilities to carry out 'clean' experiments needed for fundamental understanding of flame phenomena. Combustion scientists can use microgravity to simplify the study of many combustion processes, allowing fresh insights into important problems via a deeper understanding of elemental phenomena also found in Earth-based combustion processes and to additionally provide valuable information concerning how fires behave in microgravity and how fire safety on spacecraft can be enhanced.

  16. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improvesmore » the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen carriers in the system by using the high-sulfur-laden asphalt fuels. In all, the scaled-up test in 10 kW CLC facility demonstrated that the preparation method of copper-based oxygen carrier not only help to maintain its good reactivity, also largely minimize its agglomeration tendency.« less

  17. Combustion Control System Design of Diesel Engine via ASPR based Output Feedback Control Strategy with a PFC

    NASA Astrophysics Data System (ADS)

    Mizumoto, Ikuro; Tsunematsu, Junpei; Fujii, Seiya

    2016-09-01

    In this paper, a design method of an output feedback control system with a simple feedforward input for a combustion model of diesel engine will be proposed based on the almost strictly positive real-ness (ASPR-ness) of the controlled system for a combustion control of diesel engines. A parallel feedforward compensator (PFC) design scheme which renders the resulting augmented controlled system ASPR will also be proposed in order to design a stable output feedback control system for the considered combustion model. The effectiveness of our proposed method will be confirmed through numerical simulations.

  18. Electrically heated particulate filter propagation support methods and systems

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-06-07

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate combustion of particulate matter in the particulate filter. A propagation module estimates a propagation status of the combustion of the particulate matter based on a combustion temperature. A temperature adjustment module controls the combustion temperature by selectively increasing a temperature of exhaust that passes through the particulate filter.

  19. Numerical studies of nonspherical carbon combustion models

    NASA Astrophysics Data System (ADS)

    Mueller, E.; Arnett, W. D.

    1982-10-01

    First results of axisymmetric numerical studies of the final evolution of degenerate C + O cores are reported. The two-dimensional convective flow is treated without a phenomenological theory of convection. The computations show that, in the beginning, the nuclear burning propagates slowly outward from the center of the star in a spherical combustion front. Small-scale eddies form, giving rise to bumps in the front. The bumps grow into blobs and eventually into fingers, which steadily elongate relative to the rest of the combustion front. This behavior is not well described by either the detonation or deflagration models, being more complex than either.

  20. JANNAF 37th Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    2000-01-01

    This volume, the first of two volumes is a compilation of 59 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 37th Combustion Subcommittee (CS) meeting held jointly with the 25th Airbreathing Propulsion Subcommittee (APS), 19th Propulsion Systems Hazards Subcommittee (PSHS), and 1st Modeling and Simulation Subcommittee (MSS) meetings. The meeting was held 13-17 November 2000 at the Naval Postgraduate School and Hyatt Regency Hotel, Monterey, California. Topics covered at the CS meeting include: a keynote address on the Future Combat Systems, and review of a new JANNAF Modeling and Simulation Subcommittee, and technical papers on gun propellant burning rate, gun tube erosion, advanced gun propulsion concepts, ETC guns, novel gun propellants; liquid, hybrid and novel propellant combustion; solid propellant combustion kinetics, GAP, ADN and RDX combustion, sandwich combustion, metal combustion, combustion instability, and motor combustion instability.

  1. Gas turbine premixing systems

    DOEpatents

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  2. Fire-protection research for energy technology: Fy 80 year end report

    NASA Astrophysics Data System (ADS)

    Hasegawa, H. K.; Alvares, N. J.; Lipska, A. E.; Ford, H.; Priante, S.; Beason, D. G.

    1981-05-01

    This continuing research program was initiated in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-free analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate model and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.

  3. Diode laser absorption sensors for gas-dynamic and combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.

    1998-01-01

    Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room-temperature mid-IR materials and broadly tunable multisection devices is reviewed to suggest new sensor possibilities.

  4. Novel incineration technology integrated with drying, pyrolysis, gasification, and combustion of MSW and ashes vitrification.

    PubMed

    Liu, Yangsheng; Liu, Yushan

    2005-05-15

    The conventional mass burn systems for municipal solid waste (MSW) emit large amount of acidic gases and dioxins as well as heavy metals due to the large excess air ratio. Additionally, the final process residues, bottom ash with potential leachability of heavy metals and fly ash with high level of heavy metals and dioxins, also constitute a major environmental problem. To deal with these issues more effectively, a novel MSW incineration technology was developed in this study. MSW drying, pyrolysis, gasification, incineration, and ash vitrification were achieved as a spectrum of combustion by the same equipment (primary chamber) in one step. In practice, the primary chamber of this technology actually acted as both gasifier for organic matter and vitrifying reactor for ashes, and the combustion process was mainly completed in the secondary chamber. Experiments were carried outto examine its characteristics in an industrial MSW incineration plant, located in Taiyuan, with a capability of 100 tons per day (TPD). Results showed that (1) the pyrolysis, gasification, and vitrification processes in the primary chamber presented good behaviors resulting in effluent gases with high contents of combustibles (e.g., CO and CH4) and bottom ash with a low loss-on-ignition (L.o.l), low leachability of heavy metals, and low toxicity of cyanide and fluoride. The vitrified bottom ash was benign to its environment and required no further processing for its potential applications. (2) Low stack emissions of dioxins (0.076 ng of TEQ m(-3)), heavy metals (ranging from 0.013 to 0.033 mg m(-3)), and other air pollutants were achieved. This new technology could effectively dispose Chinese MSW with a low calorific value and high water content; additionally, it also had a low capital and operating costs compared with the imported systems.

  5. Hybrid lean premixing catalytic combustion system for gas turbines

    DOEpatents

    Critchley, Ian L.

    2003-12-09

    A system and method of combusting a hydrocarbon fuel is disclosed. The system combines the accuracy and controllability of an air staging system with the ultra-low emissions achieved by catalytic combustion systems without the need for a pre-heater. The result is a system and method that is mechanically simple and offers ultra-low emissions over a wide range of power levels, fuel properties and ambient operating conditions.

  6. Pulsation-based method for reduction of nitrogen oxides content in torch combustion products

    NASA Astrophysics Data System (ADS)

    Berg, I. A.; Porshnev, S. V.; Oshchepkova, V. Y.; Kit, M.

    2018-01-01

    Out of all ways to fuel bum the torch combustion systems is used most often. Even though the processes in the steam boiler are stochastic, the system can be controlled rather easily by changing the flowrate of the air pumped into it and - in case of balanced flue units - exhausters load. Advantages offered by torch-based combustion systems are offset by a disadvantage resulted in oxidation of nitrogen contained in the air. This paper provides rationale for an NOx content reduction method that employs pulsation mode of fuel combustion; it also describes combustion control and monitoring system employed for implementation of this method. Described methodology can be used not only for pulsation combustion studies but also for studies of torches formed by conventional burning systems. The outcome of the experimental study supports the assumption that it is possible to create conditions for NOx content reduction in flue gases by means of cycling the fuel supply on/off valve at the rate of 6 Hz.

  7. Oxy-fuel combustion with integrated pollution control

    DOEpatents

    Patrick, Brian R [Chicago, IL; Ochs, Thomas Lilburn [Albany, OR; Summers, Cathy Ann [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul Chandler [Independence, OR

    2012-01-03

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  8. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, William L

    2012-10-31

    The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examiningmore » specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude glycerol from biodiesel production. This analysis showed that the cost of replacing natural gas with crude glycerol requires a strong function of the market price per unit of energy for the traditional fuel. However, the economics can be improved through the inclusion of a federal tax credit for the use of a renewable fuel. The conclusion of this analysis also shows that the ideal customer for energy replacement via crude glycerol is biodiesel producers who are located in remote regions, where the cost of energy is higher and the cost of crude glycerol is lowest. Lastly, the commercialization strategy analyzed competing technologies, namely traditional natural gas and electric heaters, as well as competing glycerol burners, and concludes with a discussion of the requirements for a pilot demonstration.« less

  9. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing.

    PubMed

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele

    2013-10-31

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications.

  10. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing

    PubMed Central

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele

    2013-01-01

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications. PMID:28788372

  11. Motor Flow Instabilities - Part 1

    DTIC Science & Technology

    2004-01-01

    by the flow, the structure motions (as possibly affecting the mean and unsteady flows). Finally, the model should be able: a) to propagate the...combustion responses function determinations, Dedicated models for combustion mechanisms and fluid- structure couplings, Dedicated and documented test...associated with these large motors (recall that f1L ≈ a/2L) rendered such oscillations undesirable since they were able to couple to the structural modes

  12. Handbook for Repairing Nonconventional Roofing Systems

    DTIC Science & Technology

    1988-12-01

    membrane. 61 PIMB (solvent) Figure 71. Apply welding solvent to the PIB patch. Figure 72. Work the solvent Into the P113 patch. Pila 62 (solvent) Figure 73...when exposed to flame but will not burn nor support combustion . PVC repair techniques are basically the same as for a new application of a PVC fully...granules (if desired) before the final coat dries. 83 PUF F4gue 102. Remove the damaged material and bevel the s! des of the hole. 4󈧵, Figure 103. Trim th

  13. Supersonic Post-Combustion Inertial CO 2 Extraction System Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balepin, Vladimir

    This report summarizes the effort carried out under NETL contract DE- FE0013122 from 1 October 2013 to 31 March 2017. As described in this document, technical challenges realized during the performance of this project resulted in completion of only the first two of three planned budget periods. Despite this outcome, substantial progress was made toward understanding and maturing the CO 2 capture technology under consideration and considerable future promise remains for applications requiring lower CO 2 capture and/or lower CO 2.

  14. Modeling the emissions of a dual fuel engine coupled with a biomass gasifier-supplementing the Wiebe function.

    PubMed

    Vakalis, Stergios; Caligiuri, Carlo; Moustakas, Konstantinos; Malamis, Dimitris; Renzi, Massimiliano; Baratieri, Marco

    2018-03-12

    There is a growing market demand for small-scale biomass gasifiers that is driven by the economic incentives and the legislative framework. Small-scale gasifiers produce a gaseous fuel, commonly referred to as producer gas, with relatively low heating value. Thus, the most common energy conversion systems that are coupled with small-scale gasifiers are internal combustion engines. In order to increase the electrical efficiency, the operators choose dual fuel engines and mix the producer gas with diesel. The Wiebe function has been a valuable tool for assessing the efficiency of dual fuel internal combustion engines. This study introduces a thermodynamic model that works in parallel with the Wiebe function and calculates the emissions of the engines. This "vis-à-vis" approach takes into consideration the actual conditions inside the cylinders-as they are returned by the Wiebe function-and calculates the final thermodynamic equilibrium of the flue gases mixture. This approach aims to enhance the operation of the dual fuel internal combustion engines by identifying the optimal operating conditions and-at the same time-advance pollution control and minimize the environmental impact.

  15. Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale testsmore » at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of fuels, oxyprocess variables and boiler design parameters. Significant improvement of CFD modeling tools and validation against 15 MWth experimental data has been completed. Oxy-boiler demonstration and large reference designs have been developed, supported with the information and knowledge gained from the 15 MWth testing. The results from the 15 MWth testing in the BSF and complimentary bench-scale testing are addressed in this volume (Volume II) of the final report. The results of the modeling efforts (Volume III) and the oxy boiler design efforts (Volume IV) are reported in separate volumes.« less

  16. Determination of Combustion Product Radicals in a Hydrocarbon Fueled Rocket Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Langford, Lester A.; Allgood, Daniel C.; Junell, Justin C.

    2007-01-01

    The identification of metallic effluent materials in a rocket engine exhaust plume indicates the health of the engine. Since 1989, emission spectroscopy of the plume of the Space Shuttle Main Engine (SSME) has been used for ground testing at NASA's Stennis Space Center (SSC). This technique allows the identification and quantification of alloys from the metallic elements observed in the plume. With the prospect of hydrocarbon-fueled rocket engines, such as Rocket Propellant 1 (RP-1) or methane (CH4) fueled engines being considered for use in future space flight systems, the contributions of intermediate or final combustion products resulting from the hydrocarbon fuels are of great interest. The effect of several diatomic molecular radicals, such as Carbon Dioxide , Carbon Monoxide, Molecular Carbon, Methylene Radical, Cyanide or Cyano Radical, and Nitric Oxide, needs to be identified and the effects of their band systems on the spectral region from 300 nm to 850 nm determined. Hydrocarbon-fueled rocket engines will play a prominent role in future space exploration programs. Although hydrogen fuel provides for higher engine performance, hydrocarbon fuels are denser, safer to handle, and less costly. For hydrocarbon-fueled engines using RP-1 or CH4 , the plume is different from a hydrogen fueled engine due to the presence of several other species, such as CO2, C2, CO, CH, CN, and NO, in the exhaust plume, in addition to the standard H2O and OH. These species occur as intermediate or final combustion products or as a result of mixing of the hot plume with the atmosphere. Exhaust plume emission spectroscopy has emerged as a comprehensive non-intrusive sensing technology which can be applied to a wide variety of engine performance conditions with a high degree of sensitivity and specificity. Stennis Space Center researchers have been in the forefront of advancing experimental techniques and developing theoretical approaches in order to bring this technology to a more mature stage.

  17. JANNAF 35th Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor); Rognan, Melanie (Editor)

    1998-01-01

    Volume 1, the first of two volumes is a compilation of 63 unclassified/unlimited distribution technical papers presented at the 35th meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Combustion Subcommittee (CS) held jointly with the 17th Propulsion Systems Hazards Subcommittee (PSHS) and Airbreathing Propulsion Subcommittee (APS). The meeting was held on 7-11 December 1998 at Raytheon Systems Company and the Marriott Hotel, Tucson, AZ. Topics covered include solid gun propellant processing, ignition and combustion, charge concepts, barrel erosion and flash, gun interior ballistics, kinetics and molecular modeling, ETC gun modeling, simulation and diagnostics, and liquid gun propellant combustion; solid rocket motor propellant combustion, combustion instability fundamentals, motor instability, and measurement techniques; and liquid and hybrid rocket combustion.

  18. Parametric Study Conducted of Rocket- Based, Combined-Cycle Nozzles

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.; Smith, Timothy D.

    1998-01-01

    Having reached the end of the 20th century, our society is quite familiar with the many benefits of recycling and reusing the products of civilization. The high-technology world of aerospace vehicle design is no exception. Because of the many potential economic benefits of reusable launch vehicles, NASA is aggressively pursuing this technology on several fronts. One of the most promising technologies receiving renewed attention is Rocket-Based, Combined-Cycle (RBCC) propulsion. This propulsion method combines many of the efficiencies of high-performance jet aircraft with the power and high-altitude capability of rocket engines. The goal of the present work at the NASA Lewis Research Center is to further understand the complex fluid physics within RBCC engines that govern system performance. This work is being performed in support of NASA's Advanced Reusable Technologies program. A robust RBCC engine design optimization demands further investigation of the subsystem performance of the engine's complex propulsion cycles. The RBCC propulsion system under consideration at Lewis is defined by four modes of operation in a singlestage- to-orbit configuration. In the first mode, the engine functions as a rocket-driven ejector. When the rocket engine is switched off, subsonic combustion (mode 2) is present in the ramjet mode. As the vehicle continues to accelerate, supersonic combustion (mode 3) occurs in the ramjet mode. Finally, as the edge of the atmosphere is approached and the engine inlet is closed off, the rocket is reignited and the final accent to orbit is undertaken in an all-rocket mode (mode 4). The performance of this fourth and final mode is the subject of this present study. Performance is being monitored in terms of the amount of thrust generated from a given amount of propellant.

  19. Analysis of pressure spectra measurements in a ducted combustion system. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1980-01-01

    Combustion noise propagation in an operating ducted liquid fuel combustion system is studied in relation to the development of combustion noise prediction and suppression techniques. The presence of combustor emissions in the duct is proposed as the primary mechanism producing the attenuation and dispersion of combustion noise propagating in an operating liquid fuel combustion system. First, a complex mathematical model for calculating attenuation and dispersion taking into account mass transfer, heat transfer, and viscosity effects due to the presence of liquid fuel droplets or solid soot particles is discussed. Next, a simpler single parameter model for calculating pressure auto-spectra and cross-spectra which takes into account dispersion and attenuation due to heat transfer between solid soot particles and air is developed. Then, auto-spectra and cross-spectra obtained from internal pressure measurements in a combustion system consisting of a J-47 combustor can, a spool piece, and a long duct are presented. Last, analytical results obtained with the single parameter model are compared with the experimental measurements. The single parameter model results are shown to be in excellent agreement with the measurements.

  20. Analysis of pressure spectra measurements in a ducted combustion system

    NASA Astrophysics Data System (ADS)

    Miles, J. H.

    1980-11-01

    Combustion noise propagation in an operating ducted liquid fuel combustion system is studied in relation to the development of combustion noise prediction and suppression techniques. The presence of combustor emissions in the duct is proposed as the primary mechanism producing the attenuation and dispersion of combustion noise propagating in an operating liquid fuel combustion system. First, a complex mathematical model for calculating attenuation and dispersion taking into account mass transfer, heat transfer, and viscosity effects due to the presence of liquid fuel droplets or solid soot particles is discussed. Next, a simpler single parameter model for calculating pressure auto-spectra and cross-spectra which takes into account dispersion and attenuation due to heat transfer between solid soot particles and air is developed. Then, auto-spectra and cross-spectra obtained from internal pressure measurements in a combustion system consisting of a J-47 combustor can, a spool piece, and a long duct are presented. Last, analytical results obtained with the single parameter model are compared with the experimental measurements. The single parameter model results are shown to be in excellent agreement with the measurements.

  1. Injection system used into SI engines for complete combustion and reduction of exhaust emissions in the case of alcohol and petrol alcohol mixtures feed

    NASA Astrophysics Data System (ADS)

    Ispas, N.; Cofaru, C.; Aleonte, M.

    2017-10-01

    Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

  2. Combustion Limits and Efficiency of Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Barnett, H. C.; Jonash, E. R.

    1956-01-01

    Combustion must be maintained in the turbojet-engine combustor over a wide range of operating conditions resulting from variations in required engine thrust, flight altitude, and flight speed. Furthermore, combustion must be efficient in order to provide the maximum aircraft range. Thus, two major performance criteria of the turbojet-engine combustor are (1) operatable range, or combustion limits, and (2) combustion efficiency. Several fundamental requirements for efficient, high-speed combustion are evident from the discussions presented in chapters III to V. The fuel-air ratio and pressure in the burning zone must lie within specific limits of flammability (fig. 111-16(b)) in order to have the mixture ignite and burn satisfactorily. Increases in mixture temperature will favor the flammability characteristics (ch. III). A second requirement in maintaining a stable flame -is that low local flow velocities exist in the combustion zone (ch. VI). Finally, even with these requirements satisfied, a flame needs a certain minimum space in which to release a desired amount of heat, the necessary space increasing with a decrease in pressure (ref. 1). It is apparent, then, that combustor design and operation must provide for (1) proper control of vapor fuel-air ratios in the combustion zone at or near stoichiometric, (2) mixture pressures above the minimum flammability pressures, (3) low flow velocities in the combustion zone, and (4) adequate space for the flame.

  3. Experimental study of combustion in hydrogen peroxide hybrid rockets

    NASA Astrophysics Data System (ADS)

    Wernimont, Eric John

    Combustion behavior in a hydrogen peroxide oxidized hybrid rocket motor is investigated with a series of experiments. Hybrid chemical rocket propulsion is presently of interest due to reduced system complexity compared to classical chemical propulsion systems. Reduced system complexity, by use of a storable oxidizer and a hybrid configuration, is expected to reduce propulsive costs. The fuel in this study is polyethylene which has the potential of continuous manufacture leading to further reduced system costs. The study investigated parameters of interest for nominal design of a full scale hydrogen peroxide oxidized hybrid rocket. Amongst these parameters is the influence of chamber pressure, mass flux, fuel molecular weight and fuel density on fuel regression rate. Effects of chamber pressure and aft combustion length on combustion efficiency and non-acoustic combustion oscillations are also examined. The fuel regression behavior is found to be strongly influenced by both chamber pressure and mass flux. Combustion efficiencies in the upper 90% range are attained by simple changes to the aft combustion chamber length as well as increased combustion pressure. Fuel burning surface is found to be influenced by the density of the polyethylene polymer as well as molecular weight. The combustion is observed to be exceptionally smooth (oscillations less than 5% zero-to-peak of mean) in all motors tested in this program. Tests using both a single port fuel gain and a novel radial flow hybrid are also performed.

  4. Reducing mode circulating fluid bed combustion

    DOEpatents

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  5. Slag processing system for direct coal-fired gas turbines

    DOEpatents

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

  6. Combustion-gas recirculation system

    DOEpatents

    Baldwin, Darryl Dean

    2007-10-09

    A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

  7. Development of Advanced In-Cylinder Components and Tribological Systems for Low Heat Rejection Diesel Engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.

    1999-01-01

    In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.

  8. Testing fireproof materials in a combustion chamber

    NASA Astrophysics Data System (ADS)

    Kulhavy, Petr; Martinec, Tomas; Novak, Ondrej; Petru, Michal; Srb, Pavel

    This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free) and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time). Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results - i.e. thermal distribution inside and heat release rate that has gone through the sample.

  9. Recent advances in large-eddy simulation of spray and coal combustion

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2013-07-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.

  10. Updating the conceptual model for fine particle mass emissions from combustion systems.

    PubMed

    Robinson, Allen L; Grieshop, Andrew P; Donahue, Neil M; Hunt, Sherri W

    2010-10-01

    Atmospheric transformations determine the contribution of emissions from combustion systems to fine particulate matter (PM) mass. For example, combustion systems emit vapors that condense onto existing particles or form new particles as the emissions are cooled and diluted. Upon entering the atmosphere, emissions are exposed to atmospheric oxidants and sunlight, which causes them to evolve chemically and physically, generating secondary PM. This review discusses these transformations, focusing on organic PM. Organic PM emissions are semi-volatile at atmospheric conditions and thus their partitioning varies continuously with changing temperature and concentration. Because organics contribute a large portion of the PM mass emitted by most combustion sources, these emissions cannot be represented using a traditional, static emission factor. Instead, knowledge of the volatility distribution of emissions is required to explicitly account for changes in gas-particle partitioning. This requires updating how PM emissions from combustion systems are measured and simulated from combustion systems. Secondary PM production often greatly exceeds the direct or primary PM emissions; therefore, secondary PM must be included in any assessment of the contribution of combustion systems to ambient PM concentrations. Low-volatility organic vapors emitted by combustion systems appear to be very important secondary PM precursors that are poorly accounted for in inventories and models. The review concludes by discussing the implications that the dynamic nature of these PM emissions have on source testing for emission inventory development and regulatory purposes. This discussion highlights important linkages between primary and secondary PM, which could lead to simplified certification test procedures while capturing the emission components that contribute most to atmospheric PM mass.

  11. Updating the Conceptual Model for Fine Particle Mass Emissions from Combustion Systems Allen L. Robinson.

    PubMed

    Robinson, Allen L; Grieshop, Andrew P; Donahue, Neil M; Hunt, Sherri W

    2010-10-01

    Atmospheric transformations determine the contribution of emissions from combustion systems to fine particulate matter (PM) mass. For example, combustion systems emit vapors that condense onto existing particles or form new particles as the emissions are cooled and diluted. Upon entering the atmosphere, emissions are exposed to atmospheric oxidants and sunlight, which causes them to evolve chemically and physically, generating secondary PM. This review discusses these transformations, focusing on organic PM. Organic PM emissions are semi -volatile at atmospheric conditions and thus their partitioning varies continuously with changing temperature and concentration. Because organics contribute a large portion of the PM mass emitted by most combustion sources, these emissions cannot be represented using a traditional, static emission factor. Instead, knowledge of the volatility distribution of emissions is required to explicitly account for changes in gas-particle partitioning. This requires updating how PM emissions from combustion systems are measured and simulated from combustion systems. Secondary PM production often greatly exceeds the direct or primary PM emissions; therefore, secondary PM must be included in any assessment of the contribution of combustion systems to ambient PM concentrations. Low-volatility organic vapors emitted by combustion systems appear to be very important secondary PM precursors that are poorly accounted for in inventories and models. The review concludes by discussing the implications that the dynamic nature of these PM emissions have on source testing for emission inventory development and regulatory purposes. This discussion highlights important linkages between primary and secondary PM, which could lead to simplified certification test procedures while capturing the emission components that contribute most to atmospheric PM mass.

  12. Diagnostics in Japan's microgravity experiments

    NASA Technical Reports Server (NTRS)

    Kadota, Toshikazu

    1995-01-01

    The achievement of the combustion research under microgravity depends substantially on the availability of diagnostic systems. The non-intrusive diagnostic systems are potentially applicable for providing the accurate, realistic and detailed information on momentum, mass and energy transport, complex gas phase chemistry, and phase change in the combustion field under microgravity. The non-intrusive nature of optical instruments is essential to the measurement of combustion process under microgravity which is very nervous to any perturbation. However, the implementation of the non-intrusive combustion diagnostic systems under microgravity is accompanied by several constraints. Usually, a very limited space is only available for constructing a highly sophisticated system which is so sensitive that it is easily affected by the magnitude of the gravitational force, vibration and heterogeneous field of temperature and density of the environments. The system should be properly adjusted prior to the experiment. Generally, it is quite difficult to tune the instruments during measurements. The programmed sequence of operation should also be provided. Extensive effort has been toward the development of non-intrusive diagnostic systems available for the combustion experiments under microgravity. This paper aims to describe the current art and the future strategy on the non-intrusive diagnostic systems potentially applicable to the combustion experiments under microgravity in Japan.

  13. Exhaust heated hydrogen and oxygen producing catalytic converter for combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, E.T.

    1977-07-26

    A steam generator is provided in operative association with a source of water and the exhaust system of a combustion engine including an air induction system provided with primary fuel inlet structure and supplemental fuel inlet structure. The steam generator derives its heat for converting water into steam from the exhaust system of the combustion engine and the steam generator includes a steam outlet communicated with and opening into one end of an elongated tubular housing disposed in good heat transfer relation with the exhaust system of the combustion engine and having a gas outlet at its other end communicatedmore » with the supplemental fuel inlet of the induction system. The tubular housing has iron filings disposed therein and is in such heat transfer relation with the exhaust system of the combustion engine so as to elevate the temperature of steam passing therethrough and to heat the iron filings to the extent that passage of the heated steam over the heated filings will result in hydrogen and oxygen gas being produced in the tubular housing for subsequent passage to the supplemental fuel inlet of the combustion engine induction system.« less

  14. Small rocket research and technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven; Biaglow, James

    1993-01-01

    Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion include apogee kick, delta-V, de-orbit, drag makeup, final insertions, north-south stationkeeping, orbit change/trim, perigee kick, and reboost. The program encompasses efforts on earth-storable, space storable, and cryogenic propellants. The earth-storable propellants include nitrogen tetroxide (NTO) as an oxidizer with monomethylhydrazine (MMH) or anhydrous hydrazine (AH) as fuels. The space storable propellants include liquid oxygen (LOX) as an oxidizer with hydrazine or hydrocarbons such as liquid methane, ethane, and ethanol as fuels. Cryogenic propellants are LOX or gaseous oxygen (GOX) as oxidizers and liquid or gaseous hydrogen as fuels. Improved performance and lifetime for small chemical rockets are sought through the development of new predictive tools to understand the combustion and flow physics, the introduction of high temperature materials to eliminate fuel film cooling and its associated combustion inefficiency, and improved component designs to optimize performance. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Results indicate that modeling of the injector and combustion process in small rockets needs improvement. High temperature materials require the development of fabrication processes, a durability data base in both laboratory and rocket environments, and basic engineering property data such as strength, creep, fatigue, and work hardening properties at both room and elevated temperature. Promising materials under development include iridium-coated rhenium and a ceramic composite of mixed hafnium carbide and tantalum carbide reinforced with graphite fibers.

  15. APTI (Air Pollution Training Institute) Course 427: combustion evaluation, student manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beard, J.T.; Iachetta, F.A.; Lilleleht, L.U.

    1980-02-01

    This Student Manual is used in conjunction with Course No. 427, 'Combustion Evaluation' as applied to air pollution control situations. This manual was prepared by the EPA Air Pollution Training Institute (APTI) to supplement the course lecture materials and to present detailed reference information on the following topics: combustion fundamentals, fuel properties, combustion system design, pollutant emission evaluations, combustion control, gas, oil, and coal burning, solid waste and wood burning, incineration of wastes, sewage sludge incineration, waste gas flares, hazardous waste combustion, NOx control, and improved combustion systems. Note: There is also an Instructor's Guide to be used in conductingmore » the training course - (EPA-450/2-80-065) and a Student Workbook to be used for homework and in-class problem solving - (EPA-450/2-80-64).« less

  16. Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace

    NASA Astrophysics Data System (ADS)

    Karim, Md. Rezwanul; Naser, Jamal

    2017-06-01

    Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.

  17. Invited Review. Combustion instability in spray-guided stratified-charge engines. A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fansler, Todd D.; Reuss, D. L.; Sick, V.

    2015-02-02

    Our article reviews systematic research on combustion instabilities (principally rare, random misfires and partial burns) in spray-guided stratified-charge (SGSC) engines operated at part load with highly stratified fuel -air -residual mixtures. Results from high-speed optical imaging diagnostics and numerical simulation provide a conceptual framework and quantify the sensitivity of ignition and flame propagation to strong, cyclically varying temporal and spatial gradients in the flow field and in the fuel -air -residual distribution. For SGSC engines using multi-hole injectors, spark stretching and locally rich ignition are beneficial. Moreover, combustion instability is dominated by convective flow fluctuations that impede motion of themore » spark or flame kernel toward the bulk of the fuel, coupled with low flame speeds due to locally lean mixtures surrounding the kernel. In SGSC engines using outwardly opening piezo-electric injectors, ignition and early flame growth are strongly influenced by the spray's characteristic recirculation vortex. For both injection systems, the spray and the intake/compression-generated flow field influence each other. Factors underlying the benefits of multi-pulse injection are identified. Finally, some unresolved questions include (1) the extent to which piezo-SGSC misfires are caused by failure to form a flame kernel rather than by flame-kernel extinction (as in multi-hole SGSC engines); (2) the relative contributions of partially premixed flame propagation and mixing-controlled combustion under the exceptionally late-injection conditions that permit SGSC operation on E85-like fuels with very low NO x and soot emissions; and (3) the effects of flow-field variability on later combustion, where fuel-air-residual mixing within the piston bowl becomes important.« less

  18. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    DOE PAGES

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NO X and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustionmore » when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less

  19. Investigation of micro burner performance during porous media combustion for surface and submerged flames

    NASA Astrophysics Data System (ADS)

    Janvekar, Ayub Ahmed; Abdullah, M. Z.; Ahmad, Z. A.; Abas, Aizat; Hussien, Ahmed A.; Kataraki, Pramod S.; Mohamed, Mazlan; Husin, Azmi; Fadzli, Khairil

    2018-05-01

    Porous media combustion is considered to be one of the popular choice due to its tremendous advantages. Such type of combustion liberates not only super stable flame but also maintains emissions parameters below thresholds level. Present study incorporates reaction and preheat layer with discrete and foam type of materials respectively. Burner was made to run in ultra-lean mode. Optimum equivalence ratio was found out to be 0.7 for surface flame, while 0.6 during submerged flame condition. Maximum thermal efficiency was noted to be 81%. Finally, emissions parameters where recorded continuously to measure NOx and CO, which were under global limits.

  20. A combustion model of vegetation burning in "Tiger" fire propagation tool

    NASA Astrophysics Data System (ADS)

    Giannino, F.; Ascoli, D.; Sirignano, M.; Mazzoleni, S.; Russo, L.; Rego, F.

    2017-11-01

    In this paper, we propose a semi-physical model for the burning of vegetation in a wildland fire. The main physical-chemical processes involved in fire spreading are modelled through a set of ordinary differential equations, which describe the combustion process as linearly related to the consumption of fuel. The water evaporation process from leaves and wood is also considered. Mass and energy balance equations are written for fuel (leaves and wood) assuming that combustion process is homogeneous in space. The model is developed with the final aim of simulating large-scale wildland fires which spread on heterogeneous landscape while keeping the computation cost very low.

  1. Simulation of low temperature combustion mechanism of different combustion-supporting agents in close-coupled DOC and DPF system.

    PubMed

    Jiao, Penghao; Li, Zhijun; Li, Qiang; Zhang, Wen; He, Li; Wu, Yue

    2018-07-01

    In the coupled Diesel Oxidation Catalyst (DOC) and Diesel Particular Filter (DPF) system, soot cannot be completely removed by only using the passive regeneration. And DPF active regeneration is necessary. The research method in this paper is to spray different kinds of combustion-supporting agents to the DOC in the front of the DPF. Therefore, the low temperature combustion mechanism of different kinds of combustion-supporting agents in DOC was studied, in order to grasp the law of combustion in DOC, and the influence of follow-up emission on DPF removal of soot. During the study, CH 4 H 2 mixture and diesel (n-heptane + toluene) were used as combustion-supporting agents respectively. The simplified mechanisms of two kinds of gas mixtures used as the combustion-supporting agents in DPF have been constructed and testified in the paper. In this paper, the combustion and emission conditions of the two combustion-supporting agents were analyzed so as to meet the practical requirements of different working conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Early distinction system of mine fire in underground by using a neural-network system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohga, Kotaro; Higuchi, Kiyoshi

    1996-12-31

    In our laboratory, a new detection system using smell detectors was developed to detect the spontaneous combustion of coal and the combustion of other materials used underground. The results of experiments clearly the combustion of materials can be detected earlier by this detection system than by conventional detectors for gas and smoke, and there were significant differences between output data from each smell detector for coal, rubber, oil and wood. In order to discern the source of combustion gases, we have been developing a distinction system using a neural-network system. It has shown successful results in laboratory tests. This papermore » describes our detection system using smell detectors and our distinction system which uses a neural-network system, and presents results of experiments using both systems.« less

  3. Fuel injection device and method

    DOEpatents

    Carlson, L.W.

    1983-12-21

    A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

  4. Fuel injection device and method

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

  5. Fuel injection device and method

    DOEpatents

    Carlson, Larry W.

    1986-02-04

    A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

  6. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay

    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressedmore » by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for optimization. The results reveal that for the SPOC design, absorption and emission due to particles is the dominant factor for determining the wall heat flux. The mechanism of “radiative trapping” of energy within the high-temperature flame region and the approach to utilizing this mechanism to control wall heat flux are described. This control arises, by design, from the highly non-uniform (non-premixed) combustion characteristics within the SPOC boiler, and the resulting gradients in temperature and particle concentration. Finally, a simple method for estimating the wall heat flux in pressurized combustion systems is presented.« less

  7. Theoretical Basis for Estimated Test Times and Conditions for Drop Tower and Space-Based Droplet Burning Experiments With Methanol and N-Heptane

    NASA Technical Reports Server (NTRS)

    Marchese, Anthony J.; Dryer, Fredrick L.; Choi, Mun Y.

    1994-01-01

    In order to develop an extensive envelope of test conditions for NASA's space-based Droplet Combustion Experiment (DCE) as well those droplet experiments which can be performed using a drop tower, the transient vaporization and combustion of methanol and n-heptane droplets were simulated using a recently developed fully time-dependent, spherically symmetric droplet combustion model. The transient vaporization of methanol and n-heptane was modeled to characterize the instantaneous gas phase composition surrounding the droplet prior to the introduction of an ignition source. The results for methanol/air showed that the entire gas phase surrounding a 2 mm methanol droplet deployed in zero-g .quickly falls outside the lean flammability limit. The gas phase surrounding an identically-sized n-heptane droplet, on the other hand, remains flammable. The combustion of methanol was then modeled considering a detailed gas phase chemical kinetic mechanism (168 steps, 26 species) and the effect of the dissolution of flame-generated water into the liquid droplet. These results were used to determine the critical ignition diameter required to achieve quasi-steady droplet combustion in a given oxidizing environment. For droplet diameters greater than the critical ignition diameter, the model predicted a finite diameter at which the flame would extinguish. These extinction diameters were found to vary significantly with initial droplet diameter. This phenomenon appears to be unique to the transient heat transfer, mass transfer and chemical kinetics of the system and thus has not been reported elsewhere to date. The extinction diameter was also shown to vary significantly with the liquid phase Lewis number since the amount of water present in the droplet at extinction is largely governed by the rate at which water is transported into the droplet via mass diffusion. Finally, the numerical results for n-heptane combustion were obtained using both 2 step and 96 step semi-emperical chemical kinetic mechanisms. Neither mechanism exhibited the variation of extinction diameter with initial diameter.

  8. A Refrigerated Web Camera for Photogrammetric Video Measurement inside Biomass Boilers and Combustion Analysis

    PubMed Central

    Porteiro, Jacobo; Riveiro, Belén; Granada, Enrique; Armesto, Julia; Eguía, Pablo; Collazo, Joaquín

    2011-01-01

    This paper describes a prototype instrumentation system for photogrammetric measuring of bed and ash layers, as well as for flying particle detection and pursuit using a single device (CCD) web camera. The system was designed to obtain images of the combustion process in the interior of a domestic boiler. It includes a cooling system, needed because of the high temperatures in the combustion chamber of the boiler. The cooling system was designed using CFD simulations to ensure effectiveness. This method allows more complete and real-time monitoring of the combustion process taking place inside a boiler. The information gained from this system may facilitate the optimisation of boiler processes. PMID:22319349

  9. A refrigerated web camera for photogrammetric video measurement inside biomass boilers and combustion analysis.

    PubMed

    Porteiro, Jacobo; Riveiro, Belén; Granada, Enrique; Armesto, Julia; Eguía, Pablo; Collazo, Joaquín

    2011-01-01

    This paper describes a prototype instrumentation system for photogrammetric measuring of bed and ash layers, as well as for flying particle detection and pursuit using a single device (CCD) web camera. The system was designed to obtain images of the combustion process in the interior of a domestic boiler. It includes a cooling system, needed because of the high temperatures in the combustion chamber of the boiler. The cooling system was designed using CFD simulations to ensure effectiveness. This method allows more complete and real-time monitoring of the combustion process taking place inside a boiler. The information gained from this system may facilitate the optimisation of boiler processes.

  10. An innovative system for supplying air and fuel mixture to a combustion chamber of an engine

    NASA Astrophysics Data System (ADS)

    Saikumar, G. R. Bharath

    2018-04-01

    Conventional carburetors are being used since decades to ensure that the desired ratio of air and fuel enters the combustion chamber for combustion for the purpose of generating power in an Spark Ignition(SI) internal combustion engine. However to increase the efficiency, the carburetor system is gradually being replaced by fuel injection systems. Fuel injection systems use injectors to supply pressurized fuel into the combustion chamber. Owing to the high initial and maintenance cost, carburetors are still ruling in the low cost vehicle domain. An innovative concept is conceived, which is an alternative method to the carburetor system to supply the air and fuel mixture to a combustion chamber of an engine. This system comprises of an inner hollow cylinder with minute holes drilled along its length with an outer cylinder capable of sliding along its length or its longitudinal axis. This system is placed in the venturi instead of the conventional carburetor system. Fuel enters from the bottom inlet of the inner cylinder and flows out through the holes provided along its length. The fuel flow from the inner cylinder is dependent on the size and the number of holes exposed at that instance by the sliding outer cylinder which in turn is connected to the throttle or accelerator.

  11. Automatic calibration and control system for a combined oxygen and combustibles analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolbert, G.D.; Jewett, S.Y.; Robertson, J.W. Jr.

    1989-08-01

    This patent describes an automatic, periodically calibrating system for continuous output of calibrated signals from a combined oxygen and combustibles analyzer. It comprises: a combined oxygen and combustibles analyzer for sensing a level of oxygen and a level of combustibles in a volatile atmosphere and for producing a first sample signal indicative of the oxygen level and a second sample signal indicative of the combustibles level; means for introducing zero and span calibration test gases into the analyzer; means for periodically calibrating the analyzer. This including: a data control unit; a timer unit; a mechanical unit, means for calculating zeromore » and span values for oxygen and combustibles, means for comparing the calculated zero and span values for oxygen and combustibles to the preset alarm limits for oxygen and combustibles, means for activating an operator alarm, means for calculating oxygen and combustibles drift adjustments, a memory unit; and means for applying the oxygen and combustibles drift adjustments concurrently to the first and second sample signals, according to predetermined mathematical relationship, to obtain calibrated output signals indicative of the oxygen and combustibles level in the volatile atmosphere.« less

  12. Innovations in the Assay of Un-Segregated Multi-Isotopic Grade TRU Waste Boxes with SuperHENC and FRAM Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, A. P.; Barber, S.; Abdurrahman, N. M.

    2006-07-01

    The Super High Efficiency Neutron Coincidence Counter (SuperHENC) was originally developed by BIL Solutions Inc., Los Alamos National Laboratory (LANL) and Rocky Flats Environmental Technology Site (RFETS) for assay of transuranic (TRU) waste in Standard Waste Boxes (SWB) at Rocky Flats. This mobile system was a key component in the shipment of over 4,000 SWBs to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The system was WIPP certified in 2001 and operated at the site for four years. The success of this system, a passive neutron coincidence counter combined with high resolution gamma spectroscopy, led to themore » order of two new units, delivered to Hanford in 2004. Several new challenges were faced at Hanford: For example, the original RFETS system was calibrated for segregated waste streams such that metals, plastics, wet combustibles and dry combustibles were separated by 'Item Description Codes' prior to assay. Furthermore, the RFETS mission of handling only weapons grade plutonium, enabled the original SuperHENC to benefit from the use of known Pu isotopics. Operations at Hanford, as with most other DOE sites, generate un-segregated waste streams, with a wide diversity of Pu isotopics. Consequently, the new SuperHENCs are required to deal with new technical challenges. The neutron system's software and calibration methodology have been modified to encompass these new requirements. In addition, PC-FRAM software has been added to the gamma system, providing a robust isotopic measurement capability. Finally a new software package has been developed that integrates the neutron and gamma data to provide a final assay results and analysis report. The new system's performance has been rigorously tested and validated against WIPP quality requirements. These modifications, together with the mobile platform, make the new SuperHENC far more versatile in handling diverse waste streams and allow for rapid redeployment around the DOE complex. (authors)« less

  13. Lean, Premixed-Prevaporized (LPP) combustor conceptual design study

    NASA Technical Reports Server (NTRS)

    Dickman, R. A.; Dodds, W. J.; Ekstedt, E. E.

    1979-01-01

    Four combustion systems were designed and sized for the energy efficient engine. A fifth combustor was designed for the cycle and envelope of the twin-spool, high bypass ratio, high pressure ratio turbofan engine. Emission levels, combustion performance, life, and reliability assessments were made for these five combustion systems. Results of these design studies indicate that cruise NOx emission can be reduced by the use of lean, premixed-prevaporaized combustion and airflow modulation.

  14. Flame Suppression Agent, System and Uses

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2013-01-01

    Aqueous droplets encapsulated in a flame retardant polymer are useful in suppressing combustion. Upon exposure to a flame, the encapsulated aqueous droplets rupture and vaporize, removing heat and displacing oxygen to retard the combustion process. The polymer encapsulant, through decomposition, may further add free radicals to the combustion atmosphere, thereby further retarding the combustion process. The encapsulated aqueous droplets may be used as a replacement to halon, water mist and dry powder flame suppression systems.

  15. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Increased emphasis is placed on fundamental and generic research at Lewis Research Center with less systems development efforts. This is especially true in combustion research, where the study of combustion fundamentals has grown significantly in order to better address the perceived long term technical needs of the aerospace industry. The main thrusts for this combustion fundamentals program area are as follows: analytical models of combustion processes, model verification experiments, fundamental combustion experiments, and advanced numeric techniques.

  16. Flashback detection sensor for lean premix fuel nozzles

    DOEpatents

    Thornton, Jimmy Dean [Morgantown, WV; Richards, George Alan [Morgantown, WV; Straub, Douglas L [Morgantown, WV; Liese, Eric Arnold [Morgantown, WV; Trader, Jr., John Lee; Fasching, George Edward [Morgantown, WV

    2002-08-06

    A sensor for detecting the flame occurring during a flashback condition in the fuel nozzle of a lean premix combustion system is presented. The sensor comprises an electrically isolated flashback detection electrode and a guard electrode, both of which generate electrical fields extending to the walls of the combustion chamber and to the walls of the fuel nozzle. The sensor is positioned on the fuel nozzle center body at a location proximate the entrance to the combustion chamber of the gas turbine combustion system. The sensor provides 360.degree. detection of a flashback inside the fuel nozzle, by detecting the current conducted by the flame within a time frame that will prevent damage to the gas turbine combustion system caused by the flashback condition.

  17. Closed-loop system for growth of aquatic biomass and gasification thereof

    DOEpatents

    Oyler, James R.

    2017-09-19

    Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.

  18. Numerical simulation of turbulent combustion: Scientific challenges

    NASA Astrophysics Data System (ADS)

    Ren, ZhuYin; Lu, Zhen; Hou, LingYun; Lu, LiuYan

    2014-08-01

    Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes, improving engine performance, and reducing pollutant emissions. Critical issues as turbulence modeling, turbulence-chemistry interaction, and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for high-fidelity combustion simulation. This paper reviews the current status of the state-of-the-art large eddy simulation (LES)/prob-ability density function (PDF)/detailed chemistry approach that can address the three challenging modelling issues. PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described. Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified. Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.

  19. Scaling of Performance in Liquid Propellant Rocket Engine Combustion Devices

    NASA Technical Reports Server (NTRS)

    Hulka, James R.

    2008-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  20. APTI (Air Pollution Training Institute) course 427: combustion evaluation, instructor's guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beard, J.T.; Iachetta, F.A.; Lilleleht, L.U.

    1980-02-01

    This Instructor's Guide is used in conjunction with Course No. 427, 'Combustion Evaluation' as applied to air pollution control situations. The teaching guide was prepared by the EPA Air Pollution Training Institute (APTI) to assist instructors in presenting course No. 427. The guide contains sections on the following topics: combustion fundamentals, fuel properties, combustion system design, pollutant emission calculations, combustion control, gas, oil, and burning, solid waste and wood burning, incineration of wastes, sewage sludge incineration, flame and catalytic incineration, waste gas flares, hazardous waste combustion, NOx control, improved combustion systems. Note: There is also a Student Workbook to bemore » used for homework and in-class problem solving (EPA-450/2-80-064) and a Student Manual for reference and additional subject material (EPA-450/2-80-063).« less

  1. FY2017 Advanced Combustion Systems and Fuels Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Combustion Systems and Fuels Program supports VTO’s goal and focuses early-stage research and development (R&D) to improve understanding of the combustion processes, fuel properties, and emission control technologies while generating knowledge and insight necessary for industry to develop the next generation of engines.

  2. NETL- High-Pressure Combustion Research Facility

    ScienceCinema

    None

    2018-02-14

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  3. Thermal Destruction Of CB Contaminants Bound On Building ...

    EPA Pesticide Factsheets

    Symposium Paper An experimental and theoretical program has been initiated by the U.S. EPA to investigate issues of chemical/biological agent destruction in incineration systems when the agent in question is bound on common porous building interior materials. This program includes 3-dimensional computational fluid dynamics modeling with matrix-bound agent destruction kinetics, bench-scale experiments to determine agent destruction kinetics while bound on various matrices, and pilot-scale experiments to scale-up the bench-scale experiments to a more practical scale. Finally, model predictions are made to predict agent destruction and combustion conditions in two full-scale incineration systems that are typical of modern combustor design.

  4. Selection of alternative central-station technologies for the Satellite Power System (SPS) comparative assessment

    NASA Technical Reports Server (NTRS)

    Samsa, M.

    1980-01-01

    An important effort is the Satellite Power System (SPS) comparative Assessment is the selection and characterization of alternative technologies to be compared with the SPS concept. The ground rules, criteria, and screening procedure applied in the selection of those alternative technologies are summarized. The final set of central station alternatives selected for comparison with the SPS concept includes: (1) light water reactor with improved fuel utilization, (2) conventional coal combustion with improved environmental controls, (3) open cycle gas turbine with integral low Btu gasifier, (4) terrestrial photovoltaic, (5) liquid metal fast breeder reactor, and (6) magnetic confinement fusion.

  5. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste

    PubMed Central

    2011-01-01

    Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants. PMID:21284885

  6. Ignition and combustion characteristics of metallized propellants

    NASA Technical Reports Server (NTRS)

    Mueller, D. C.; Turns, Stephen R.

    1992-01-01

    During this reporting period, theoretical work on the secondary atomization process was continued and the experimental apparatus was improved. A one-dimensional model of a rocket combustor, incorporating multiple droplet size classes, slurry combustion, secondary atomization, radiation heat transfer, and two-phase slip between slurry droplets and the gas flow was derived and a computer code was written to implement this model. The STANJAN chemical equilibrium solver was coupled with this code to yield gas temperature, density, and composition as functions of axial location. Preliminary results indicate that the model is performing correctly, given current model assumptions. Radiation heat transfer in the combustion chamber is treated as an optically-thick participating media problem requiring a solution of the radiative transfer equation. A cylindrical P sub 1 approximation was employed to yield an analytical expression for chamber-wall heat flux at each axial location. The code exercised to determine the effects of secondary atomization intensity, defined as the number of secondary drops produced per initial drop, on chamber burnout distance and final Al2O3 agglomerate diameter. These results indicate that only weak secondary atomization is required to significantly reduce these two parameters. Stronger atomization intensities were found to yield decreasing marginal benefits. The experimental apparatus was improved to reduce building vibration effects on the optical system alignment. This was accomplished by mounting the burner and the transmitting/receiving optics on a single frame supported by vibration-isolation legs. Calibration and shakedown tests indicate that vibration problems were eliminated and that the system is performing correctly.

  7. Adsorption properties of regenerative materials for removal of low concentration of toluene.

    PubMed

    Xie, Zhen-Zhen; Wang, Lin; Cheng, Ge; Shi, Lei; Zhang, Yi-Bo

    2016-12-01

    A specific type of material, activated carbon fiber (ACF), was modified by SiO 2 , and the final products ACF-x were obtained as ACF-12.5, ACF-20, ACF-40, and ACF-80 according to different dosages of tetraethoxysilane (TEOS). The modified material on the ACF surface had a significant and smooth cover layer with low content of silica from scanning electron microscope (SEM) image. The modified ACF-x showed the stronger hydrophobicity, thermal stability, and adsorption capacity, which had almost no effect in the presence of water vapor and no destruction in multiple cycles. ACF-20 was proven as the most efficient adsorbent in humid conditions. The dual-function system composed of the regenerative adsorbents and the combustion catalyst would be efficient in consecutive toluene adsorption/oxidation cycles, in which the combustion catalyst was prepared by the displacement reaction of H 2 PtCl 6 with foam Ni. Therefore, the adsorption/catalytic oxidation could be a promising technique in the indoor air purification, especially in the case of very low volatile organic compound (VOC; toluene) concentration levels. Exploring highly effective adsorptive materials with less expensive costs becomes an urgent issue in the indoor air protection. ACF-20 modified by SiO 2 with Pt/Ni catalysts shows stronger hydrophobicity, thermal stability, and adsorption capacity. This dual-function system composed of the regenerative materials and the combustion catalyst would be a promising technique in the indoor air purification, especially in the case of removal of very low concentration of toluene.

  8. X-33 Combustion-Wave Ignition System Tested

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    1999-01-01

    The NASA Lewis Research Center, in cooperation with Rocketdyne, the Boeing Company, tested a novel rocket engine ignition system, called the combustion-wave ignition system, in its Research Combustion Laboratory. This ignition system greatly simplifies ignition in rocket engines that have a large number of combustors. The particular system tested was designed and fabricated by Rocketdyne for the national experimental spacecraft, X-33, which uses Rocketdyne s aerospike rocket engines. The goal of the tests was to verify the system design and define its operational characteristics. Results will contribute to the eventual successful flight of X-33. Furthermore, the combustion-wave ignition system, after it is better understood and refined on the basis of the test results and, later, flight-proven onboard X-33, could become an important candidate engine ignition system for our Nation s next-generation reusable launch vehicle.

  9. High-speed flight propulsion systems. Progress in Astronautics and Aeronautics. Vol. 137

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, S.N.B.; Curran, E.T.

    1991-01-01

    Various papers on high-speed flight propulsion systems are presented. The topics addressed are: propulsion systems from takeoff to high-speed flight, propulsion system performance and integration for high Mach air-breathing flight, energy analysis of high-speed flight systems, waves and thermodynamics in high Mach number propulsive ducts, turbulent free shear layer mixing and combustion, turbulent mixing in supersonic combustion systems, mixing and mixing enhancement in supersonic reacting flowfields, study of combustion and heat-exchange processes in high-enthalpy short-duration facilities, and facility requirements for hypersonic propulsion system testing.

  10. Kinetics and Product Channels in Combustion Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershberger, John F.

    We report study of the chemical kinetics and/or photochemistry of several chemical reactions of potential interest in understanding the gas phase combustion chemistry of nitrogen-containing molecules. Studies completed during the final grant period include determination of quantum yields of the photolysis of HCNO, fulminic acid, a kinetics and product channel study of the reaction of CN radicals with methyl bromide, and study of the products of the reaction of hydroxymethyl radical with nitric oxide.

  11. Combustion system CFD modeling at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.

    1995-01-01

    This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.

  12. Combustion system CFD modeling at GE Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.

    1995-03-01

    This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.

  13. Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, J.D.; Chorpening, B.T.; Sidwell, T.

    2007-05-01

    The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustionmore » control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETL’s Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.« less

  14. An alternative method of OBT measurement for the limited quantity of environmental samples using a combustion bomb.

    PubMed

    Kim, Sang Bog; Stuart, Marilyne

    2013-12-01

    The measurement of organically bound tritium (OBT) in environmental samples is much more difficult than the measurement of tritiated water (HTO). This study describes an alternative method for OBT determination in plant materials in which tritium-free polyethylene beads are added to the plant sample prior to combustion in a combustion bomb. It is not always possible to collect large enough amounts of some plants (e.g. algae, plankton, grass) within a specific area or specific period. Excellent water recovery is achieved when dry plant materials are combusted with polyethylene beads. When Ultima Gold AB is used as the scintillation cocktail, it is possible to measure the combustion water directly without distillation. Correction factors were derived for the plants used in the study to account for the dilution of the combustion water due to addition of the polyethylene beads. The alternative method has a number of advantages, including an increased yield of combustion water for liquid scintillation counting, less color quenching, reduced sample size and decreased analysis time. Finally, accuracy tests comparing results of the conventional method with those of the alternative method were carried out using environmental samples. Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

  15. Steam generator on-line efficiency monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.K.; Kaya, A.; Keyes, M.A. IV

    1987-08-04

    This patent describes a system for automatically and continuously determining the efficiency of a combustion process in a fossil-fuel fired vapor generator for utilization by an automatic load control system that controls the distribution of a system load among a plurality of vapor generators, comprising: a first function generator, connected to an oxygen transducer for sensing the level of excess air in the flue gas, for generating a first signal indicative of the total air supplied for combustion in percent by weight; a second function generator, connected to a combustibles transducer for sensing the level of combustibles in the fluemore » gas, for generating a second signal indicative of the percent combustibles present in the flue gas; means for correcting the first signal, connected to the first and second function generators, when the oxygen transducer is of a type that operates at a temperature level sufficient to cause the unburned combustibles to react with the oxygen present in the flue gas; an ambient air temperature transducer for generating a third signal indicative of the temperature of the ambient air supplied to the vapor generator for combustion.« less

  16. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, Robert C. W.

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  17. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  18. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2015-01-01

    Combustion instability in solid rocket motors and liquid engines is a complication that continues to plague designers and engineers. Many rocket systems experience violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. During sever cases of combustion instability fluctuation amplitudes can reach values equal to or greater than the average chamber pressure. Large amplitude oscillations lead to damaged injectors, loss of rocket performance, damaged payloads, and in some cases breach of case/loss of mission. Historic difficulties in modeling and predicting combustion instability has reduced most rocket systems experiencing instability into a costly fix through testing paradigm or to scrap the system entirely.

  19. Development of Air Supply System for Gas Turbine Combustor Test Rig

    NASA Astrophysics Data System (ADS)

    Kamarudin, Norhaimi Izlan; Hanafi, Muhammad; Mantari, Asril Rajo; Jaafar, Mohammad Nazri Mohd

    2010-06-01

    Complete combustion process occurs when the air and fuel burns at their stoichiometric ratio, which determines the appropriate amount of air needed to be supplied to the combustion chamber. Thus, designing an appropriate air supply system is important, especially for multi-fuel combustion. Each type of fuel has different molecular properties and structures which influence the stoichiometric ratio. Therefore, the designed air supply system must be operable for different types of fuels. Basically, the design of the air supply system is at atmospheric pressure. It is important that the air which enters the combustion chamber is stable and straight. From the calculation, the maximum required mass flow rate of air is 0.1468kg/s.

  20. Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, James P; Edwards, Kevin Dean; Foster, Matthew

    2013-01-01

    While the potential emissions and efficiency benefits of homogeneous charge compression ignition (HCCI) combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on characterizing the authority of the available engine controls as the high load limit of HCCI combustion is approached. The experimental work is performed on a boosted single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), and a hydraulic valve actuation (HVA) valve train to enable the negative valve overlap (NVO) breathing strategy. Valve lift and duration are held constant whilemore » phasing is varied in an effort to make the results as relevant as possible to production intent cam-based variable valve actuation (VVA) systems on multi-cylinder engines. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa at 2000 rpm. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. Both NVO duration and fuel injection timing are effective means of controlling combustion phasing, with NVO duration being a coarse control and fuel injection timing being a fine control. NOX emissions are low throughout the study, with emissions below 0.1 g/kW-h at all boosted HCCI conditions, while good combustion efficiency is maintained (>96.5%). Net indicated thermal efficiency increases with load up to 600 kPa IMEPnet, where a peak efficiency of 41% is achieved. Results of independent parametric investigations are presented on the effect of external EGR, intake effect of manifold pressure, and the effect of NVO duration. It is found that increasing EGR at a constant manifold pressure and increasing manifold pressure at a constant EGR rate both have the effect of retarding combustion phasing. It is also found that combustion phasing becomes increasingly sensitive to NVO duration as engine load increases. Finally, comparisons are made between three commonly used noise metrics (AVL noise meter, ringing intensity (RI), and maximum pressure rise rate (MPRR)). It is found that compared to the AVL noise meter, RI significantly underestimates combustion noise under boosted conditions.« less

  1. Device to lower NOx in a gas turbine engine combustion system

    DOEpatents

    Laster, Walter R; Schilp, Reinhard; Wiebe, David J

    2015-02-24

    An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).

  2. Oxide Protective Coats for Ir/Re Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Fortini, Arthur; Tuffias, Robert H.

    2003-01-01

    An improved material system has been developed for rocket engine combustion chambers for burning oxygen/ hydrogen mixtures or novel monopropellants, which are highly oxidizing at operating temperatures. The baseline for developing the improved material system is a prior iridium/rhenium system for chambers burning nitrogen tetroxide/monomethyl hydrazine mixtures, which are less oxidizing. The baseline combustion chamber comprises an outer layer of rhenium that provides structural support, plus an inner layer of iridium that acts as a barrier to oxidation of the rhenium. In the improved material system, the layer of iridium is thin and is coated with a thermal fatigue-resistant refractory oxide (specifically, hafnium oxide) that serves partly as a thermal barrier to decrease the temperature and thus the rate of oxidation of the rhenium. The oxide layer also acts as a barrier against the transport of oxidizing species to the surface of the iridium. Tests in which various oxygen/hydrogen mixtures were burned in iridium/rhenium combustion chambers lined with hafnium oxide showed that the operational lifetimes of combustion chambers of the improved material system are an order of magnitude greater than those of the baseline combustion chambers.

  3. Internet of Things Based Combustible Ice Safety Monitoring System Framework

    NASA Astrophysics Data System (ADS)

    Sun, Enji

    2017-05-01

    As the development of human society, more energy is requires to meet the need of human daily lives. New energies play a significant role in solving the problems of serious environmental pollution and resources exhaustion in the present world. Combustible ice is essentially frozen natural gas, which can literally be lit on fire bringing a whole new meaning to fire and ice with less pollutant. This paper analysed the advantages and risks on the uses of combustible ice. By compare to other kinds of alternative energies, the advantages of the uses of combustible ice were concluded. The combustible ice basic physical characters and safety risks were analysed. The developments troubles and key utilizations of combustible ice were predicted in the end. A real-time safety monitoring system framework based on the internet of things (IOT) was built to be applied in the future mining, which provide a brand new way to monitoring the combustible ice mining safety.

  4. Mechanism of plasma-assisted ignition for H2 and C1-C5 hydrocarbons

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Aleksandrov, Nikolay

    2016-09-01

    Nonequilibrium plasma demonstrates ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions. A new, validated mechanism for high-temperature hydrocarbon plasma assisted combustion was built and allows to qualitatively describe plasma-assisted combustion close and above the self-ignition threshold. The principal mechanisms of plasma-assisted ignition and combustion have been established and validated for a wide range of plasma and gas parameters. These results provide a basis for improving various energy-conversion combustion systems, from automobile to aircraft engines, using nonequilibrium plasma methods.

  5. Method and apparatus for detecting combustion instability in continuous combustion systems

    DOEpatents

    Benson, Kelly J.; Thornton, Jimmy D.; Richards, George A.; Straub, Douglas L.

    2006-08-29

    An apparatus and method to sense the onset of combustion stability is presented. An electrode is positioned in a turbine combustion chamber such that the electrode is exposed to gases in the combustion chamber. A control module applies a voltage potential to the electrode and detects a combustion ionization signal and determines if there is an oscillation in the combustion ionization signal indicative of the occurrence of combustion stability or the onset of combustion instability. A second electrode held in a coplanar but spaced apart manner by an insulating member from the electrode provides a combustion ionization signal to the control module when the first electrode fails. The control module broadcasts a notice if the parameters indicate the combustion process is at the onset of combustion instability or broadcasts an alarm signal if the parameters indicate the combustion process is unstable.

  6. Path planning during combustion mode switch

    DOEpatents

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  7. System and method for cooling a combustion gas charge

    DOEpatents

    Massey, Mary Cecelia; Boberg, Thomas Earl

    2010-05-25

    The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.

  8. Development and application of noninvasive technology for study of combustion in a combustion chamber of gas turbine engine

    NASA Astrophysics Data System (ADS)

    Inozemtsev, A. A.; Sazhenkov, A. N.; Tsatiashvili, V. V.; Abramchuk, T. V.; Shipigusev, V. A.; Andreeva, T. P.; Gumerov, A. R.; Ilyin, A. N.; Gubaidullin, I. T.

    2015-05-01

    The paper formulates the issue of development of experimental base with noninvasive optical-electronic tools for control of combustion in a combustion chamber of gas turbine engine. The design and specifications of a pilot sample of optronic system are explained; this noninvasive system was created in the framework of project of development of main critical technologies for designing of aviation gas turbine engine PD-14. The testbench run data are presented.

  9. Technology evaluation report: SITE (Superfund Innovative Technology Evaluation) program demonstration test. The American Combustion Pyretron Thermal Destruction System at the US EPA's (Environmental Protection Agency's) combustion research facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waterland, L.; Lee, J.W.

    1989-04-01

    A series of demonstration tests of the American Combustion, Inc., Thermal Destruction System was performed under the SITE program. This oxygen-enhanced combustion system was retrofit to the rotary-kiln incinerator at EPA's Combustion Research Facility. The system's performance was tested firing contaminated soil from the Stringfellow Superfund Site, both alone and mixed with a coal tar waste (KO87). Comparative performance with conventional incinerator operation was also tested. Compliance with the incinerator performance standards of 99.99% principal organic hazardous constituents (POHC) destruction and removal efficiency and particulate emissions of less than 180 mg/dscm at 7% O2 was measured for all tests. Themore » Pyretron system was capable of in-compliance performance at double the mixed waste feedrate and at a 60% increase in batch waste charge mass than possible with conventional incineration. Scrubber blowdown and kiln ash contained no detectable levels of any of the POHCs chosen.« less

  10. Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

  11. The effect of convection and shear on the damping and propagation of pressure waves

    NASA Astrophysics Data System (ADS)

    Kiel, Barry Vincent

    Combustion instability is the positive feedback between heat release and pressure in a combustion system. Combustion instability occurs in the both air breathing and rocket propulsion devices, frequently resulting in high amplitude spinning waves. If unchecked, the resultant pressure fluctuations can cause significant damage. Models for the prediction of combustion instability typically include models for the heat release, the wave propagation and damping. Many wave propagation models for propulsion systems assume negligible flow, resulting in the wave equation. In this research the effect of flow on wave propagation was studied both numerically and experimentally. Two experiential rigs were constructed, one with axial flow to study the longitudinal waves, the other with swirling flow to study circumferential waves. The rigs were excited with speakers and the resultant pressure was measured simultaneously at many locations. Models of the rig were also developed. Equations for wave propagation were derived from the Euler Equations. The resultant resembled the wave equation with three additional terms, two for the effect of the convection and a one for the effect of shear of the mean flow on wave propagation. From the experimental and numerical data several conclusions were made. First, convection and shear both act as damping on the wave propagation, reducing the magnitude of the Frequency Response Function and the resonant frequency of the modes. Second, the energy extracted from the mean flow as a result of turbulent shear for a given condition is frequency dependent, decreasing with increasing frequency. The damping of the modes, measured for the same shear flow, also decreased with frequency. Finally, the two convective terms cause the anti-nodes of the modes to no longer be stationary. For both the longitudinal and circumferential waves, the anti-nodes move through the domain even for mean flow Mach numbers less than 0.10. It was concluded that convection causes the spinning waves documented in inlets and exhausts of gas turbine engines, rocket combustion chambers, and afterburner chambers. As a result, the effects of shear must be included when modeling wave propagation, even for mean flows less than < Mach 0.10.

  12. APTI Course 427, Combustion Evaluation. Student Workbook.

    ERIC Educational Resources Information Center

    Beard, J. Taylor; And Others

    Presented are exercises intended to supplement course work in air pollution control, specifically as they relate to combustion. Chapters offered in this workbook include: (1) Combustion Calculations, (2) Combustion System Design Problems, (3) Emission Calculations I, (4) Emission Calculations II, (5) Afterburner Design Problems, and (6) Cumbustion…

  13. Computational fluid dynamics study of pulverized coal combustion in blast furnace raceway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Y.S.; Maldonado, D.; Guo, B.Y.

    In this work, a numerical model is used to study the flow and coal combustion along the coal plume in a large-scale setting simulating the lance-blowpipe-tuyere-raceway region of a blast furnace. The model formulation is validated against the measurements in terms of burnout for both low and high volatile coals. The typical phenomena related to coal combustion along the coal plume are simulated and analyzed. The effects of some operational parameters on combustion behavior are also investigated. The results indicate that oxygen as a cooling gas gives a higher coal burnout than methane and air. The underlying mechanism of coalmore » combustion is explored. It is shown that under the conditions examined, coal burnout strongly depends on the availability of oxygen and residence time. Moreover, the influences of two related issues, i.e. the treatment of volatile matter (VM) and geometric setting in modeling, are investigated. The results show that the predictions of final burnouts using three different VM treatments are just slightly different, but all comparable to the measurements. However, the influence of the geometric setting is not negligible when numerically examining the combustion of pulverized coal under blast furnace conditions.« less

  14. An engineering assessment of the burning of the combustible fraction of construction and demolition wastes in a redundant brick kiln.

    PubMed

    Chang, N B; Lin, K S; Sun, Y P; Wang, H P

    2001-12-01

    This paper confirms both technical feasibility and economic potential via the use of redundant brick kilns as an alternative option for disposal of the combustible fractions of construction and demolition wastes by a three-stage analysis. To assess such an idea, one brick kiln was selected for performing an engineering feasibility study. First of all, field sampling and lab-analyses were carried out to gain a deeper understanding of the physical, chemical, and thermodynamic properties of the combustible fractions of construction and demolition wastes. Kinetic parameters for the oxidation of the combustible fractions of construction and demolition wastes were therefore numerically calculated from the weight loss data obtained through a practice of thermogravimetric analyzer (TGA). Secondly, an engineering assessment for retrofitting the redundant brick kiln was performed based on integrating several new and existing unit operations, consisting of waste storage, shredding, feeding, combustion, flue gas cleaning, and ash removal. Such changes were subject to the operational condition in accordance with the estimated mass and energy balances. Finally, addressing the economic value of energy recovery motivated a renewed interest to convert the combustible fractions of construction and demolition wastes into useful hot water for secondary uses.

  15. Performance of a supercharged direct-injection stratified-charge rotary combustion engine

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.; Willis, Edward A.

    1990-01-01

    A zero-dimensional thermodynamic performance computer model for direct-injection stratified-charge rotary combustion engines was modified and run for a single rotor supercharged engine. Operating conditions for the computer runs were a single boost pressure and a matrix of speeds, loads and engine materials. A representative engine map is presented showing the predicted range of efficient operation. After discussion of the engine map, a number of engine features are analyzed individually. These features are: heat transfer and the influence insulating materials have on engine performance and exhaust energy; intake manifold pressure oscillations and interactions with the combustion chamber; and performance losses and seal friction. Finally, code running times and convergence data are presented.

  16. One-Dimensional Modelling of Internal Ballistics

    NASA Astrophysics Data System (ADS)

    Monreal-González, G.; Otón-Martínez, R. A.; Velasco, F. J. S.; García-Cascáles, J. R.; Ramírez-Fernández, F. J.

    2017-10-01

    A one-dimensional model is introduced in this paper for problems of internal ballistics involving solid propellant combustion. First, the work presents the physical approach and equations adopted. Closure relationships accounting for the physical phenomena taking place during combustion (interfacial friction, interfacial heat transfer, combustion) are deeply discussed. Secondly, the numerical method proposed is presented. Finally, numerical results provided by this code (UXGun) are compared with results of experimental tests and with the outcome from a well-known zero-dimensional code. The model provides successful results in firing tests of artillery guns, predicting with good accuracy the maximum pressure in the chamber and muzzle velocity what highlights its capabilities as prediction/design tool for internal ballistics.

  17. Dynamical and statistical behavior of discrete combustion waves: a theoretical and numerical study.

    PubMed

    Bharath, Naine Tarun; Rashkovskiy, Sergey A; Tewari, Surya P; Gundawar, Manoj Kumar

    2013-04-01

    We present a detailed theoretical and numerical study of combustion waves in a discrete one-dimensional disordered system. The distances between neighboring reaction cells were modeled with a gamma distribution. The results show that the random structure of the microheterogeneous system plays a crucial role in the dynamical and statistical behavior of the system. This is a consequence of the nonlinear interaction of the random structure of the system with the thermal wave. An analysis of the experimental data on the combustion of a gasless system (Ti + xSi) and a wide range of thermite systems was performed in view of the developed model. We have shown that the burning rate of the powder system sensitively depends on its internal structure. The present model allows for reproducing theoretically the experimental data for a wide range of pyrotechnic mixtures. We show that Arrhenius' macrokinetics at combustion of disperse systems can take place even in the absence of Arrhenius' microkinetics; it can have a purely thermal nature and be related to their heterogeneity and to the existence of threshold temperature. It is also observed that the combustion of disperse systems always occurs in the microheterogeneous mode according to the relay-race mechanism.

  18. Dynamical and statistical behavior of discrete combustion waves: A theoretical and numerical study

    NASA Astrophysics Data System (ADS)

    Bharath, Naine Tarun; Rashkovskiy, Sergey A.; Tewari, Surya P.; Gundawar, Manoj Kumar

    2013-04-01

    We present a detailed theoretical and numerical study of combustion waves in a discrete one-dimensional disordered system. The distances between neighboring reaction cells were modeled with a gamma distribution. The results show that the random structure of the microheterogeneous system plays a crucial role in the dynamical and statistical behavior of the system. This is a consequence of the nonlinear interaction of the random structure of the system with the thermal wave. An analysis of the experimental data on the combustion of a gasless system (Ti + xSi) and a wide range of thermite systems was performed in view of the developed model. We have shown that the burning rate of the powder system sensitively depends on its internal structure. The present model allows for reproducing theoretically the experimental data for a wide range of pyrotechnic mixtures. We show that Arrhenius’ macrokinetics at combustion of disperse systems can take place even in the absence of Arrhenius’ microkinetics; it can have a purely thermal nature and be related to their heterogeneity and to the existence of threshold temperature. It is also observed that the combustion of disperse systems always occurs in the microheterogeneous mode according to the relay-race mechanism.

  19. Molecular-beam gas-sampling system

    NASA Technical Reports Server (NTRS)

    Young, W. S.; Knuth, E. L.

    1972-01-01

    A molecular beam mass spectrometer system for rocket motor combustion chamber sampling is described. The history of the sampling system is reviewed. The problems associated with rocket motor combustion chamber sampling are reported. Several design equations are presented. The results of the experiments include the effects of cooling water flow rates, the optimum separation gap between the end plate and sampling nozzle, and preliminary data on compositions in a rocket motor combustion chamber.

  20. USAF Aircraft Engine Emission Goals: A Critical Review.

    DTIC Science & Technology

    1979-09-01

    21 June 1965 and Change 1; and the National Pollution Discharge Elimination System . it applies to all Air Force installations and facilities, the Air...the combustion problems in turbine engines from a more applied viewpoint. He states: "While the combustion system was the primary limitation in... microemulsions and to determine their capacity for reducing smoke emissions from an aviation gas turbine combustion system . (2) A secondary objective is

  1. Towards a coherent European approach for taxation of combustible waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubois, Maarten, E-mail: maarten.dubois@kuleuven.be

    2013-08-15

    Highlights: • Current European waste taxes do not constitute a level playing field. • Integrating waste incineration in EU ETS avoids regional tax competition. • A differentiated incineration tax is a second-best instrument for NO{sub x} emissions. • A tax on landfilled incineration residues stimulates ash treatment. - Abstract: Although intra-European trade of combustible waste has grown strongly in the last decade, incineration and landfill taxes remain disparate within Europe. The paper proposes a more coherent taxation approach for Europe that is based on the principle of Pigovian taxation, i.e. the internalization of environmental damage costs. The approach aims tomore » create a level playing field between European regions while reinforcing incentives for sustainable management of combustible waste. Three important policy recommendations emerge. First, integrating waste incineration into the European Emissions Trading System for greenhouse gases (EU ETS) reduces the risk of tax competition between regions. Second, because taxation of every single air pollutant from waste incineration is cumbersome, a differentiated waste incineration tax based on NO{sub x} emissions can serve as a second-best instrument. Finally, in order to strengthen incentives for ash treatment, a landfill tax should apply for landfilled incineration residues. An example illustrates the coherence of the policy recommendations for incineration technologies with diverse environmental effects.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, J.; Larson, E.M.; Holt, J.B.

    Real-time synchrotron diffraction has been used to monitor the phase transformations of highly exothermic, fast self-propagating solid combustion reactions on a subsecond time scale down to 100 milliseconds and in some instances to 10 milliseconds. Three systems were investigated: Ti + C {yields} TiC; Ti + C + xNi {yields} TiC + Ni-Ti alloy; and Al + Ni {yields} AlNi. In all three reactions, the first step was the melting of the metal reactants. Formation of TiC in the first two reactions was completed within 400 milliseconds of the melting of the Ti metal, indicating that the formation of TiCmore » took place during the passage of the combustion wave front. In the Al + Ni reaction, however, passage of the wave front was followed by the appearance and disappearance of at least one intermediate in the afterburn region. The final AlNi was formed some 5 seconds later and exhibited a delayed appearance of the (210) reflection, which tends to support a phase transformation from a disordered AlNi phase at high temperature to an ordered CsCl structure some 20 seconds later. This new experimental approach can be used to study the chemical dynamics of high-temperature solid-state phenomena and to provide the needed database to test various models for solid combustion. 28 refs., 4 figs.« less

  3. DOE Light Truck Clean Diesel (LTCD) Program Final Caterpillar Public Report Light Truck Clean Diesel Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Fluga

    The US Department of Energy and Caterpillar entered a Cooperative Agreement to develop compression ignition engine technology suitable for the light truck/SUV market. Caterpillar, in collaboration with a suitable commercialization partner, developed a new Compression Ignition Direct Injection (CIDI) engine technology to dramatically improve the emissions and performance of light truck engines. The overall program objective was to demonstrate engine prototypes by 2004, with an order of magnitude emission reduction while meeting challenging fuel consumption goals. Program emphasis was placed on developing and incorporating cutting edge technologies that could remove the current impediments to commercialization of CIDI power sources inmore » light truck applications. The major obstacle to commercialization is emissions regulations with secondary concerns of driveability and NVH (noise, vibration and harshness). The target emissions levels were 0.05 g/mile NOx and 0.01 g/mile PM to be compliant with the EPA Tier 2 fleet average requirements of 0.07 g/mile and the CARB LEV 2 of 0.05 g/mile for NOx, both have a PM requirement of 0.01 g/mile. The program team developed a combustion process that fundamentally shifted the classic NOx vs. PM behavior of CIDI engines. The NOx vs. PM shift was accomplished with a form of Homogeneous Charge Compression Ignition (HCCI). The HCCI concept centers on appropriate mixing of air and fuel in the compression process and controlling the inception and rate of combustion through various means such as variable valve timing, inlet charge temperature and pressure control. Caterpillar has adapted an existing Caterpillar design of a single injector that: (1) creates the appropriate fuel and air mixture for HCCI, (2) is capable of a more conventional injection to overcome the low power density problems of current HCCI implementations, (3) provides a mixed mode where both the HCCI and conventional combustion are functioning in the same combustion cycle. Figure 1 illustrates the mixed mode injection system. Under the LTCD program Caterpillar developed a mixed mode injector for a multi-cylinder engine system. The mixed mode injection system represents a critical enabling technology for the implementation of HCCI. In addition, Caterpillar implemented variable valve system technology and air system technology on the multi-cylinder engine platform. The valve and air system technology were critical to system control. Caterpillar developed the combustion system to achieve a 93% reduction in NOx emissions. The resulting NOx emissions were 0.12 gm/mile NOx. The demonstrated emissions level meets the stringent Tier 2 Bin 8 requirement without NOx aftertreatment! However, combustion development alone was not adequate to meet the program goal of 0.05gm/mile NOx. To meet the program goals, an additional 60% NOx reduction technology will be required. Caterpillar evaluated a number of NOx reduction technologies to quantify and understand the NOx reduction potential and system performance implications. The NOx adsorber was the most attractive NOx aftertreatment option based on fuel consumption and NOx reduction potential. In spite of the breakthrough technology development conducted under the LTCD program there remains many significant challenges associated with the technology configuration. For HCCI, additional effort is needed to develop a robust control strategy, reduce the hydrocarbon emissions at light load condition, and develop a more production viable fuel system. Furthermore, the NOx adsorber suffers from cost, packaging, and durability challenges that must be addressed.« less

  4. Pollutant formation in fuel lean recirculating flows. Ph.D. Thesis. Final Report; [in an Opposed Reacting Jet Combustor

    NASA Technical Reports Server (NTRS)

    Schefer, R. W.; Sawyer, R. F.

    1976-01-01

    An opposed reacting jet combustor (ORJ) was tested at a pressure of 1 atmosphere. A premixed propane/air stream was stabilized by a counterflowing jet of the same reactants. The resulting intensely mixed zone of partially reacted combustion products produced stable combustion at equivalence ratios as low as 0.45. Measurements are presented for main stream velocities of 7.74 and 13.6 m/sec with an opposed jet velocity of 96 m/sec, inlet air temperatures from 300 to 600 K, and equivalence ratios from 0.45 to 0.625. Fuel lean premixed combustion was an effective method of achieving low NOx emissions and high combustion efficiencies simultaneously. Under conditions promoting lower flame temperature, NO2 constituted up to 100 percent of the total NOx. At higher temperatures this percentage decreased to a minimum of 50 percent.

  5. Evaluation of weapons' combustion products in armored vehicles. Final report, 30 September 1986-14 December 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzies, K.T.; Randel, M.A.; Quill, A.L.

    1989-01-01

    The U.S. Army Biomedical Research and Development Laboratory defined an extensive research program to address the generation of potentially toxic propellant combustion products in crew compartments of armored vehicles during weapons firing. The major objectives of the research were: (1) to determine the presence and concentration of propellant combustion products, (2) to determine potential crew exposure to these combustion products, and (3) to assess the efficacy of field monitoring in armored vehicles. To achieve these goals, air monitoring was conducted in selected armored vehicle types, i.e., M109, M60, M3, M1, at several Army installations. Auxiliary information concerning the specific munitionsmore » fired and the Training and Doctrine Command (TRADOC) or Forces Command (FORSCOM) firing scenarios was collected so that a comparison of pollutant concentrations generated by specific weapons both within vehicle types and between vehicle types could be made.« less

  6. Chemical reacting flows

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Sockol, Peter M.

    1990-01-01

    Future aerospace propulsion concepts involve the combustion of liquid or gaseous fuels in a highly turbulent internal airstream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence-combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at LeRC to better understand chemical reacting flows with the long-term goal of establishing these reliable computer codes. Our approach to understand chemical reacting flows is to look at separate, more simple parts of this complex phenomenon as well as to study the full turbulent reacting flow process. As a result, we are engaged in research on the fluid mechanics associated with chemical reacting flows. We are also studying the chemistry of fuel-air combustion. Finally, we are investigating the phenomenon of turbulence-combustion interaction. Research, both experimental and analytical, is highlighted in each of these three major areas.

  7. Predicted exhaust emissions from a methanol and jet fueled gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Adelman, H. G.; Browning, L. H.; Pefley, R. K.

    1975-01-01

    A computer model of a gas turbine combustor has been used to predict the kinetic combustion and pollutant formation processes for methanol and simulated jet fuel. Use of the kinetic reaction mechanisms has also allowed a study of ignition delay and flammability limit of these two fuels. The NOX emissions for methanol were predicted to be from 69 to 92% lower than those for jet fuel at the same equivalence ratio which is in agreement with experimentally observed results. The high heat of vaporization of methanol lowers both the combustor inlet mixture temperatures and the final combustion temperatures. The lower combustion temperatures lead to low NOX emissions while the lower inlet mixture temperatures increase methanol's ignition delay. This increase in ignition delay dictates the lean flammability limit of methanol to be 0.8, while jet fuel is shown to combust at 0.4.

  8. Spray combustion modeling

    NASA Technical Reports Server (NTRS)

    Bellan, J.

    1997-01-01

    Concern over the future availability of high quality liquid fuels or use in furnaces and boilers prompted the U. S. Department of Energy (DOE) to consider alternate fuels as replacements for the high grade liquid fuels used in the 1970's and 1980's. Alternate fuels were defined to be combinations of a large percentage of viscous, low volatility fuels resulting from the low end of distillation mixed with a small percentage of relatively low viscosity, high volatility fuels yielded by the high end of distillation. The addition of high volatility fuels was meant to promote desirable characteristics to a fuel that would otherwise be difficult to atomize and burn and whose combustion would yield a high amount of pollutants. Several questions thus needed to be answered before alternate fuels became commercially viable. These questions were related to fuel atomization, evaporation, ignition, combustion and pollutant formation. This final report describes the results of the most significant studies on ignition and combustion of alternative fuels.

  9. Review of Combustion-acoustic Instabilities

    NASA Technical Reports Server (NTRS)

    Oyediran, Ayo; Darling, Douglas; Radhakrishnan, Krishnan

    1995-01-01

    Combustion-acoustic instabilities occur when the acoustic energy increase due to the unsteady heat release of the flame is greater than the losses of acoustic energy from the system. The problem of combustion-acoustic instability is a concern in many devices for various reasons, as each device may have a unique mechanism causing unsteady heat release rates and many have unique boundary conditions. To accurately predict and quantify combustion-acoustic stabilities, the unsteady heat release rate and boundary conditions need to be accurately determined. The present review brings together work performed on a variety of practical combustion devices. Many theoretical and experimental investigations of the unsteady heat release rate have been performed, some based on perturbations in the fuel delivery system particularly for rocket instabilities, while others are based on hydrodynamic processes as in ramjet dump combustors. The boundary conditions for rocket engines have been analyzed and measured extensively. However, less work has been done to measure acoustic boundary conditions in many other combustion systems.

  10. Simulation of Combustion Systems with Realistic g-Jitter

    NASA Technical Reports Server (NTRS)

    Mell, W. E.; McGrattan, K. B.; Nakamura, Y.; Baum, H. R.

    2001-01-01

    A number of facilities are available for microgravity combustion experiments: aircraft, drop towers, sounding rockets, the space shuttle, and, in the future, the International Space Station (ISS). Acceleration disturbances or g-jitter about the background level of reduced gravity exist in all these microgravity facilities. While g-jitter is routinely measured, a quantitative comparison of the quality of g-jitter among the different microgravity facilities, in terms of its affects on combustion experiments, has not been compiled. Low frequency g-jitter (< 1 Hz) has been repeatedly observed to disturb a number of combustion systems. Guidelines regarding tolerable levels of acceleration disturbances for combustion experiments have been developed for use in the design of ISS experiments. The validity of these guidelines, however, remains unknown. In this project a transient, 3-D numerical model is under development to simulate the effects of realistic g-jitter on a number of combustion systems. The measured acceleration vector or some representation of it can be used as input to the simulation.

  11. Combustion performance and heat transfer characterization of LOX/hydrocarbon type propellants

    NASA Technical Reports Server (NTRS)

    Gross, R. S.

    1980-01-01

    A sound data base was established by analytically and experimentally generating basic regenerative cooling, combustion performance, combustion stability, and combustion chamber heat transfer parameters for LOX/HC propellants, with specific application to second generation orbit maneuvering and reaction control systems (OMS/RCS) for the Space Shuttle Orbiter.

  12. 40 CFR Table 2 to Subpart Eeee of... - Emission Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for combustion devices using supplemental combustion air, by venting emissions through a closed vent... concentration less than or equal to 20 ppmv, on a dry basis corrected to 3 percent oxygen for combustion devices using supplemental combustion air, by venting emissions through a closed vent system to any combination...

  13. Shock tube study of the reactions of the hydroxyl radical with combustion species and pollutants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, N.; Koffend, J.B.

    1998-02-01

    Shock heating t-butyl hydroperoxide behind a reflected shock wave has proved to be as a convenient source of hydroxyl radicals at temperatures near 1000 K. We applied this technique to the measurement of reaction rate coefficients of OH with several species of interest in combustion chemistry, and developed a thermochemical kinetics/transition state theory (TK-TST) model for predicting the temperature dependence of OH rate coefficients.

  14. Environmentally-benign conversion of biomass residues to electricity

    NASA Astrophysics Data System (ADS)

    Davies, Andrew

    As petroleum resources are finite, it is imperative to use them wisely in energy conversion applications and, at the same time, develop alternative energy sources. Biomass is one of the renewable energy sources that can be used to partially replace fossil fuels. Biomass-based fuels can be produced domestically and can reduce dependency on fuel imports. Due to their abundant supply, and given that to an appreciable extent they can be considered carbon-neutral, their use for power generation is of technological interest. However, whereas biomasses can be directly burned in furnaces, such a conventional direct combustion technique is ill-controlled and typically produces considerable amounts of health-hazardous airborne compounds [1,2]. Thus, an alternative technology for biomass utilization is described herein to address increasing energy needs in an environmentally-benign manner. More specifically, a multi-step process/device is presented to accept granulated or pelletized biomass, and generate an easily-identifiable form of energy as a final product. To achieve low emissions of products of incomplete combustion, the biomass is gasified pyrolytically, mixed with air, ignited and, finally, burned in nominally premixed low-emission flames. Combustion is thus indirect, since the biomass is not directly burned, instead its gaseous pyrolyzates are burned upon mixing with air. Thereby, combustion is well-controlled and can be complete. A demonstration device has been constructed to convert the internal energy of plastics into "clean" thermal energy and, eventually to electricity.

  15. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2000-10-24

    The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Ordermore » has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.« less

  16. Thermal engine driven heat pump for recovery of volatile organic compounds

    DOEpatents

    Drake, Richard L.

    1991-01-01

    The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

  17. Experimental studies of thermal preparation of internal combustion engine

    NASA Astrophysics Data System (ADS)

    Karnaukhov, N. N.; Merdanov, Sh M.; V, Konev V.; Borodin, D. M.

    2018-05-01

    In conditions of autonomous functioning of road construction machines, it becomes necessary to use its internal sources. This can be done by using a heat recovery system of an internal combustion engine (ICE). For this purpose, it is proposed to use heat accumulators that accumulate heat of the internal combustion engine during the operation of the machine. Experimental studies have been carried out to evaluate the efficiency of using the proposed pre-start thermal preparation system, which combines a regular system based on liquid diesel fuel heaters and an ICE heat recovery system. As a result, the stages of operation of the preheating thermal preparation system, mathematical models and the dependence of the temperature change of the antifreeze at the exit from the internal combustion engine on the warm-up time are determined.

  18. Stagnation point reverse flow combustor for a combustion system

    NASA Technical Reports Server (NTRS)

    Zinn, Ben T. (Inventor); Neumeier, Yedidia (Inventor); Seitzman, Jerry M. (Inventor); Jagoda, Jechiel (Inventor); Hashmonay, Ben-Ami (Inventor)

    2007-01-01

    A combustor assembly includes a combustor vessel having a wall, a proximate end defining an opening and a closed distal end opposite said proximate end. A manifold is carried by the proximate end. The manifold defines a combustion products exit. The combustion products exit being axially aligned with a portion of the closed distal end. A plurality of combustible reactant ports is carried by the manifold for directing combustible reactants into the combustion vessel from the region of the proximate end towards the closed distal end.

  19. Combustor oscillation attenuation via the control of fuel-supply line dynamics

    DOEpatents

    Richards, George A.; Gemmen, Randall S.

    1998-01-01

    Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value.

  20. Method and system for controlled combustion engines

    DOEpatents

    Oppenheim, A. K.

    1990-01-01

    A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

  1. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.V.

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and somemore » air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.« less

  2. Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances.

    PubMed

    Czech, Hendryk; Miersch, Toni; Orasche, Jürgen; Abbaszade, Gülcin; Sippula, Olli; Tissari, Jarkko; Michalke, Bernhard; Schnelle-Kreis, Jürgen; Streibel, Thorsten; Jokiniemi, Jorma; Zimmermann, Ralf

    2018-01-15

    Combustion technologies of small-scale wood combustion appliances are continuously developed decrease emissions of various pollutants and increase energy conversion. One strategy to reduce emissions is the implementation of air staging technology in secondary air supply, which became an established technique for modern wood combustion appliances. On that account, emissions from a modern masonry heater fuelled with three types of common logwood (beech, birch and spruce) and a modern pellet boiler fuelled with commercial softwood pellets were investigated, which refer to representative combustion appliances in northern Europe In particular, emphasis was put on the organic constituents of PM2.5, including polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs) and phenolic species, by targeted and non-targeted mass spectrometric analysis techniques. Compared to conventional wood stoves and pellet boilers, organic emissions from the modern appliances were reduced by at least one order of magnitude, but to a different extent for single species. Hence, characteristic ratios of emission constituents and emission profiles for wood combustion identification and speciation do not hold for this type of advanced combustion technology. Additionally, an overall substantial reduction of typical wood combustion markers, such as phenolic species and anhydrous sugars, were observed. Finally, it was found that slow ignition of log woods changes the distribution of characteristic resin acids and phytosterols as well as their thermal alteration products, which are used as markers for specific wood types. Our results should be considered for wood combustion identification in positive matrix factorisation or chemical mass balance in northern Europe. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Combustion physics

    NASA Astrophysics Data System (ADS)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  4. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    DOEpatents

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  5. High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine

    NASA Astrophysics Data System (ADS)

    Smith, James D.; Sick, Volker

    2005-11-01

    An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.

  6. High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine.

    PubMed

    Smith, James D; Sick, Volker

    2005-11-01

    An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.

  7. Studies in nonlinear problems of energy. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matkowsky, B.J.

    1998-12-01

    The author completed a successful research program on Nonlinear Problems of Energy, with emphasis on combustion and flame propagation. A total of 183 papers associated with the grant has appeared in the literature, and the efforts have twice been recognized by DOE`s Basic Science Division for Top Accomplishment. In the research program the author concentrated on modeling, analysis and computation of combustion phenomena, with particular emphasis on the transition from laminar to turbulent combustion. Thus he investigated the nonlinear dynamics and pattern formation in the successive stages of transition. He described the stability of combustion waves, and transitions to wavesmore » exhibiting progressively higher degrees of spatio-temporal complexity. Combustion waves are characterized by large activation energies, so that chemical reactions are significant only in thin layers, termed reaction zones. In the limit of infinite activation energy, the zones shrink to moving surfaces, termed fronts, which must be found during the course of the analysis, so that the problems are moving free boundary problems. The analytical studies were carried out for the limiting case with fronts, while the numerical studies were carried out for the case of finite, though large, activation energy. Accurate resolution of the solution in the reaction zone(s) is essential, otherwise false predictions of dynamical behavior are possible. Since the reaction zones move, and their location is not known a-priori, the author has developed adaptive pseudo-spectral methods, which have proven to be very useful for the accurate, efficient computation of solutions of combustion, and other, problems. The approach is based on a combination of analytical and numerical methods. The numerical computations built on and extended the information obtained analytically. Furthermore, the solutions obtained analytically served as benchmarks for testing the accuracy of the solutions determined computationally. Finally, the computational results suggested new analysis to be considered. A cumulative list of publications citing the grant make up the contents of this report.« less

  8. Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties

    PubMed Central

    Kocbach Bølling, Anette; Pagels, Joakim; Yttri, Karl Espen; Barregard, Lars; Sallsten, Gerd; Schwarze, Per E; Boman, Christoffer

    2009-01-01

    Background Residential wood combustion is now recognized as a major particle source in many developed countries, and the number of studies investigating the negative health effects associated with wood smoke exposure is currently increasing. The combustion appliances in use today provide highly variable combustion conditions resulting in large variations in the physicochemical characteristics of the emitted particles. These differences in physicochemical properties are likely to influence the biological effects induced by the wood smoke particles. Outline The focus of this review is to discuss the present knowledge on physicochemical properties of wood smoke particles from different combustion conditions in relation to wood smoke-induced health effects. In addition, the human wood smoke exposure in developed countries is explored in order to identify the particle characteristics that are relevant for experimental studies of wood smoke-induced health effects. Finally, recent experimental studies regarding wood smoke exposure are discussed with respect to the applied combustion conditions and particle properties. Conclusion Overall, the reviewed literature regarding the physicochemical properties of wood smoke particles provides a relatively clear picture of how these properties vary with the combustion conditions, whereas particle emissions from specific classes of combustion appliances are less well characterised. The major gaps in knowledge concern; (i) characterisation of the atmospheric transformations of wood smoke particles, (ii) characterisation of the physicochemical properties of wood smoke particles in ambient and indoor environments, and (iii) identification of the physicochemical properties that influence the biological effects of wood smoke particles. PMID:19891791

  9. Dynamic estimator for determining operating conditions in an internal combustion engine

    DOEpatents

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  10. Study of the Performances of a Thermoelectric Generator Based on a Catalytic Meso-Scale H₂/C₃H₈ Fueled Combustor.

    PubMed

    Abedi, Hossein; Merotto, Laura; Fanciulli, Carlo; Donde, Roberto; De Luliis, Silvana; Passaretti, Francesca

    2017-03-01

    In this work the thermoelectric generator (TEG) based on catalytic combustion already developed in our lab has been further investigated and improved. The system made of two thermoelectric (TE) modules coupled with a catalytic combustor has been used in this work to obtain higher overall efficiency by adding hydrogen to the fuel mixture. Since implementation of hydrogen as a fuel has shown low and stable combustion temperature in literature, it is expected to achieve good overall efficiency of TEG. Moreover, hydrogen can be used to improve the system inducing self-ignition. Focus of the present work is the implementation of different mixture proportions, varying the amount of hydrogen, and the investigation of their effects on the overall efficiency. The overall TEG efficiency, has been evaluated by parallel characterization of thermoelectric modules and exhaust gases composition. The system performances have been characterized using different mixtures: the results indicate that addition of H₂ to the fuel contribute to increase the chemical and overall TEG efficiency respect to previous work, producing up to 5.92 W of electrical power. Finally, the effects of H₂ for on self-ignition conditions have been investigated finding the minimum H₂ amount for different gas flow rates.

  11. CFD analysis of municipal solid waste combustion using detailed chemical kinetic modelling.

    PubMed

    Frank, Alex; Castaldi, Marco J

    2014-08-01

    Nitrogen oxides (NO x ) emissions from the combustion of municipal solid waste (MSW) in waste-to-energy (WtE) facilities are receiving renewed attention to reduce their output further. While NO x emissions are currently 60% below allowed limits, further reductions will decrease the air pollution control (APC) system burden and reduce consumption of NH3. This work combines the incorporation of the GRI 3.0 mechanism as a detailed chemical kinetic model (DCKM) into a custom three-dimensional (3D) computational fluid dynamics (CFD) model fully to understand the NO x chemistry in the above-bed burnout zones. Specifically, thermal, prompt and fuel NO formation mechanisms were evaluated for the system and a parametric study was utilized to determine the effect of varying fuel nitrogen conversion intermediates between HCN, NH3 and NO directly. Simulation results indicate that the fuel nitrogen mechanism accounts for 92% of the total NO produced in the system with thermal and prompt mechanisms accounting for the remaining 8%. Results also show a 5% variation in final NO concentration between HCN and NH3 inlet conditions, demonstrating that the fuel nitrogen intermediate assumed is not significant. Furthermore, the conversion ratio of fuel nitrogen to NO was 0.33, revealing that the majority of fuel nitrogen forms N2. © The Author(s) 2014.

  12. Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette.

    PubMed

    Zimmermann, Ralf; Hertz-Schünemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten

    2015-02-03

    The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.

  13. A novel approach to predict the stability limits of combustion chambers with large eddy simulation

    NASA Astrophysics Data System (ADS)

    Pritz, B.; Magagnato, F.; Gabi, M.

    2010-06-01

    Lean premixed combustion, which allows for reducing the production of thermal NOx, is prone to combustion instabilities. There is an extensive research to develop a reduced physical model, which allows — without time-consuming measurements — to calculate the resonance characteristics of a combustion system consisting of Helmholtz resonator type components (burner plenum, combustion chamber). For the formulation of this model numerical investigations by means of compressible Large Eddy Simulation (LES) were carried out. In these investigations the flow in the combustion chamber is isotherm, non-reacting and excited with a sinusoidal mass flow rate. Firstly a combustion chamber as a single resonator subsequently a coupled system of a burner plenum and a combustion chamber were investigated. In this paper the results of additional investigations of the single resonator are presented. The flow in the combustion chamber was investigated without excitation at the inlet. It was detected, that the mass flow rate at the outlet cross section is pulsating once the flow in the chamber is turbulent. The fast Fourier transform of the signal showed that the dominant mode is at the resonance frequency of the combustion chamber. This result sheds light on a very important source of self-excited combustion instabilities. Furthermore the LES can provide not only the damping ratio for the analytical model but the eigenfrequency of the resonator also.

  14. Combustion Characterization and Model Fuel Development for Micro-tubular Flame-assisted Fuel Cells.

    PubMed

    Milcarek, Ryan J; Garrett, Michael J; Baskaran, Amrish; Ahn, Jeongmin

    2016-10-02

    Combustion based power generation has been accomplished for many years through a number of heat engine systems. Recently, a move towards small scale power generation and micro combustion as well as development in fuel cell research has created new means of power generation that combine solid oxide fuel cells with open flames and combustion exhaust. Instead of relying upon the heat of combustion, these solid oxide fuel cell systems rely on reforming of the fuel via combustion to generate syngas for electrochemical power generation. Procedures were developed to assess the combustion by-products under a wide range of conditions. While theoretical and computational procedures have been developed for assessing fuel-rich combustion exhaust in these applications, experimental techniques have also emerged. The experimental procedures often rely upon a gas chromatograph or mass spectrometer analysis of the flame and exhaust to assess the combustion process as a fuel reformer and means of heat generation. The experimental techniques developed in these areas have been applied anew for the development of the micro-tubular flame-assisted fuel cell. The protocol discussed in this work builds on past techniques to specify a procedure for characterizing fuel-rich combustion exhaust and developing a model fuel-rich combustion exhaust for use in flame-assisted fuel cell testing. The development of the procedure and its applications and limitations are discussed.

  15. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion.

    PubMed

    Li, Fa-tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-11-14

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  16. Synthesis of Nano-Polycrystalline Synroc-B Powders as a High Level Radioactive Wastes Ceramic Forms by a Solution Combustion Synthesis.

    PubMed

    Han, Young-Min; Lee, Sang-Jin; Kim, Yeon-Ku; Jung, Choong-Hwan

    2016-02-01

    Synroc (Synthetic Rock) consists of four main titanate phases: peroveskite (CaTiO3), zirconolite (CaZrTi2O7), hollandite (BaAl2Ti6O16) and rutile (TiO2). Nano-polycrystalline synroc powders were made by a synthesis combustion process. The combustion process, an externally initiated reaction is self-sustained owing to the exothermic reaction. A significant volume of gas is evolved during the combustion reaction and leads to loosely agglomerated powders. This exothermic reaction provides necessary heat to further carry the reaction in forward direction to produce nanocrystalline powders as the final product. Glycine is used as a fuel, being oxidized by nitrate ions. It is inexpensive, has high energy efficiency, fast heating rates, short reaction times and high compositional homogeneity. In this study, combustion synthesis of nano-sized synroc-B powder is introduced. The fabrication of synroc-B powder result of observation XRD were prepared for polycrystalline (perovskite, zirconolite, hollandite, rutile) structures. The characterization of the synthesized powders is conducted by using XRD, SEM/EDS and TEM.

  17. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Li, Fa-Tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-10-01

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  18. Research on optimization of combustion efficiency of thermal power unit based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the economic performance and reduce pollutant emissions of thermal power units, the characteristics of neural network in establishing boiler combustion model are analyzed based on the analysis of the main factors affecting boiler efficiency by using orthogonal method. In addition, on the basis of this model, the genetic algorithm is used to find the best control amount of the furnace combustion in a certain working condition. Through the genetic algorithm based on real number encoding and roulette selection is concluded: the best control quantity at a condition of furnace combustion can be combined with the boiler combustion system model for neural network training. The precision of the neural network model is further improved, and the basic work is laid for the research of the whole boiler combustion optimization system.

  19. Thief process for the removal of mercury from flue gas

    DOEpatents

    Pennline, Henry W.; Granite, Evan J.; Freeman, Mark C.; Hargis, Richard A.; O'Dowd, William J.

    2003-02-18

    A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

  20. Combustion system for hybrid solar fossil fuel receiver

    DOEpatents

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  1. Diesel fuel burner for diesel emissions control system

    DOEpatents

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  2. National Combustion Code: Parallel Performance

    NASA Technical Reports Server (NTRS)

    Babrauckas, Theresa

    2001-01-01

    This report discusses the National Combustion Code (NCC). The NCC is an integrated system of codes for the design and analysis of combustion systems. The advanced features of the NCC meet designers' requirements for model accuracy and turn-around time. The fundamental features at the inception of the NCC were parallel processing and unstructured mesh. The design and performance of the NCC are discussed.

  3. Effect of diluted and preheated oxidizer on the emission of methane flameless combustion

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Ehsan; Salehirad, Saber; Wahid, M. A.; Sies, Mohsin Mohd; Saat, Aminuddin

    2012-06-01

    In combustion process, reduction of emissions often accompanies with output efficiency reduction. It means, by using current combustion technique it is difficult to obtainlow pollution and high level of efficiency in the same time. In new combustion system, low NOxengines and burners are studied particularly. Recently flameless or Moderate and Intensive Low oxygen Dilution (MILD) combustion has received special attention in terms of low harmful emissions and low energy consumption. Behavior of combustion with highly preheated air was analyzed to study the change of combustion regime and the reason for the compatibility of high performance and low NOx production. Sustainability of combustion under low oxygen concentration was examined when; the combustion air temperature was above the self-ignition temperature of the fuel. This paper purposes to analyze the NOx emission quantity in conventional combustion and flameless combustion by Chemical Equilibrium with Applications (CEA) software.

  4. Preliminary thermodynamic study for an efficient turbo-blower external combustion Rankine cycle

    NASA Astrophysics Data System (ADS)

    Romero Gómez, Manuel; Romero Gómez, Javier; Ferreiro Garcia, Ramón; Baaliña Insua, Álvaro

    2014-08-01

    This research paper presents a preliminary thermodynamic study of an innovative power plant operating under a Rankine cycle fed by an external combustion system with turbo-blower (TB). The power plant comprises an external combustion system for natural gas, where the combustion gases yield their thermal energy, through a heat exchanger, to a carbon dioxide Rankine cycle operating under supercritical conditions and with quasi-critical condensation. The TB exploits the energy from the pressurised exhaust gases for compressing the combustion air. The study is focused on the comparison of the combustion system's conventional technology with that of the proposed. An energy analysis is carried out and the effect of the flue gas pressure on the efficiency and on the heat transfer in the heat exchanger is studied. The coupling of the TB results in an increase in efficiency and of the convection coefficient of the flue gas with pressure, favouring a reduced volume of the heat exchanger. The proposed innovative system achieves increases in efficiency of around 12 % as well as a decrease in the heat exchanger volume of 3/5 compared with the conventional technology without TB.

  5. Engine and method for operating an engine

    DOEpatents

    Lauper, Jr., John Christian; Willi, Martin Leo [Dunlap, IL; Thirunavukarasu, Balamurugesh [Peoria, IL; Gong, Weidong [Dunlap, IL

    2008-12-23

    A method of operating an engine is provided. The method may include supplying a combustible combination of reactants to a combustion chamber of the engine, which may include supplying a first hydrocarbon fuel, hydrogen fuel, and a second hydrocarbon fuel to the combustion chamber. Supplying the second hydrocarbon fuel to the combustion chamber may include at least one of supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into an intake system of the engine and supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into the combustion chamber. Additionally, the method may include combusting the combustible combination of reactants in the combustion chamber.

  6. Three-dimensional modeling of diesel engine intake flow, combustion and emissions

    NASA Technical Reports Server (NTRS)

    Reitz, R. D.; Rutland, C. J.

    1992-01-01

    A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation, and the intake flow process. Improved and/or new submodels which were completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Results to date show that adding the effects of unsteadiness and compressibility improves the accuracy of heat transfer predictions; spray drop rebound can occur from walls at low impingement velocities (e.g., in cold-starting); larger spray drops are formed at the nozzle due to the influence of vaporization on the atomization process; a laminar-and-turbulent characteristic time combustion model has the flexibility to match measured engine combustion data over a wide range of operating conditions; and finally, the characteristic time combustion model can also be extended to allow predictions of ignition. The accuracy of the predictions is being assessed by comparisons with available measurements. Additional supporting experiments are also described briefly. To date, comparisons with measured engine cylinder pressure and heat flux data were made for homogeneous charge, spark-ignited and compression-ignited engines. The model results are in good agreement with the experiments.

  7. Modeling complex chemical effects in turbulent nonpremixed combustion

    NASA Technical Reports Server (NTRS)

    Smith, Nigel S. A.

    1995-01-01

    Virtually all of the energy derived from the consumption of combustibles occurs in systems which utilize turbulent fluid motion. Since combustion is largely related to the mixing of fluids and mixing processes are orders of magnitude more rapid when enhanced by turbulent motion, efficiency criteria dictate that chemically powered devices necessarily involve fluid turbulence. Where combustion occurs concurrently with mixing at an interface between two reactive fluid bodies, this mode of combustion is called nonpremixed combustion. This is distinct from premixed combustion where flame-fronts propagate into a homogeneous mixture of reactants. These two modes are limiting cases in the range of temporal lag between mixing of reactants and the onset of reaction. Nonpremixed combustion occurs where this lag tends to zero, while premixed combustion occurs where this lag tends to infinity. Many combustion processes are hybrids of these two extremes with finite non-zero lag times. Turbulent nonpremixed combustion is important from a practical standpoint because it occurs in gas fired boilers, furnaces, waste incinerators, diesel engines, gas turbine combustors, and afterburners etc. To a large extent, past development of these practical systems involved an empirical methodology. Presently, efficiency standards and emission regulations are being further tightened (Correa 1993), and empiricism has had to give way to more fundamental research in order to understand and effectively model practical combustion processes (Pope 1991). A key element in effective modeling of turbulent combustion is making use of a sufficiently detailed chemical kinetic mechanism. The prediction of pollutant emission such as oxides of nitrogen (NO(x)) and sulphur (SO(x)) unburned hydrocarbons, and particulates demands the use of detailed chemical mechanisms. It is essential that practical models for turbulent nonpremixed combustion are capable of handling large numbers of 'stiff' chemical species equations.

  8. Coal combustion system

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.; Tramm, Peter C.

    1988-01-01

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  9. Jet plume injection and combustion system for internal combustion engines

    DOEpatents

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  10. Jet plume injection and combustion system for internal combustion engines

    DOEpatents

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  11. Japanese RDF-fired power generation system and fundamental research on RDF combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narukawa, Kimihito; Goto, Hidenori; Chen, Y.

    1997-12-31

    Power generation from refuse derived fuel (RDF) is one of the new technologies for municipal solid waste (MSW) management. This technology is strongly attracting the attention of the Japanese government. The results of a feasibility study of this system in Japan is presented. To develop this highly efficient RDF-fired CFB generating process, combustibility and dechlorination characteristics of RDF were investigated by both the thermo-balance technique and combustion tests with an electric furnace. RDF combustion tests by a bench scale CFBC were carried out and then the following experimental results were obtained: (1) RDF can be combusted almost completely even inmore » small scale CFBC; (2) HCl and N{sub 2}O emissions are quite low at any conditions; and (3) NO{sub x} emissions are a little higher in single stage combustion, however they are reduced at 50% air bias ratio. Some of the results can be explained by a RDF combustion model.« less

  12. Combustion-derived substances in deep basins of Puget Sound: historical inputs from fossil fuel and biomass combustion.

    PubMed

    Kuo, Li-Jung; Louchouarn, Patrick; Herbert, Bruce E; Brandenberger, Jill M; Wade, Terry L; Crecelius, Eric

    2011-04-01

    Reconstructions of 250 years historical inputs of two distinct types of black carbon (soot/graphitic black carbon (GBC) and char-BC) were conducted on sediment cores from two basins of the Puget Sound, WA. Signatures of polycyclic aromatic hydrocarbons (PAHs) were also used to support the historical reconstructions of BC to this system. Down-core maxima in GBC and combustion-derived PAHs occurred in the 1940s in the cores from the Puget Sound Main Basin, whereas in Hood Canal such peak was observed in the 1970s, showing basin-specific differences in inputs of combustion byproducts. This system showed relatively higher inputs from softwood combustion than the northeastern U.S. The historical variations in char-BC concentrations were consistent with shifts in climate indices, suggesting an influence of climate oscillations on wildfire events. Environmental loading of combustion byproducts thus appears as a complex function of urbanization, fuel usage, combustion technology, environmental policies, and climate conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Thermodynamic and transport combustion properties of hydrocarbons with air. Part 2: Compositions corresponding to Kelvin temperature schedules in part 1

    NASA Technical Reports Server (NTRS)

    Gordon, S.

    1982-01-01

    The equilibrium compositions that correspond to the thermodynamic and transport combustion properties for a wide range of conditions for the reaction of hydrocarbons with air are presented. Initially 55 gaseous species and 3 coin condensed species were considered in the calculations. Only 17 of these 55 gaseous species had equilibrium mole fractions greater than 0.000005 for any of the conditions studied and therefore these were the only ones retained in the final tables.

  14. Variational Transition State Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truhlar, Donald G.

    2016-09-29

    This is the final report on a project involving the development and applications of variational transition state theory. This project involved the development of variational transition state theory for gas-phase reactions, including optimized multidimensional tunneling contributions and the application of this theory to gas-phase reactions with a special emphasis on developing reaction rate theory in directions that are important for applications to combustion. The development of variational transition state theory with optimized multidimensional tunneling as a useful computational tool for combustion kinetics involved eight objectives.

  15. Development of Predictive Models of Advanced Propulsion Concepts for Low Cost Space Transportation

    NASA Technical Reports Server (NTRS)

    Morrell, Michael Randy

    2002-01-01

    This final report presents the Graduate Student Research Program (GSRP) work Mr. Morrell was able to complete as a summer intern at NASA MSFS during the summer of 2001, and represents work completed from inception through project termination. The topics include: 1) NASA TD40 Organization; 2) Combustion Physics Lab; 3) Advanced Hydrocarbon Fuels; 4) GSRP Summer Tasks; 5) High Pressure Facility Installation; 6) High Pressure Combustion Issues; 7) High Energy Density Matter (HEDM) Hydrocarbons; and 8) GSRP Summer Intern Summary.

  16. Radiative Augmented Combustion

    DTIC Science & Technology

    1988-03-01

    PbLFICE SY 7a NAME OF MONITORING ORGANIZATION M.L. ENERGIA , Inc. AFOSR/NA 6r. ADDRESS (City. State. anW ZIP Code) 7b. ADDRESS (City State, and ZIPCode...27 -00 N ’fPECTED 0 6I FOREWORD This is the Final Report on research on Radiative Augmented Combustion conducted at M. L. ENERGIA , Inc. It was a...the first two annual reports prior to this one. The entire research program was performed at ENERGIA , Inc., Princeton, New Jersey, with Dr. Moshe Lavid

  17. A Combustion Laboratory for Undergraduates.

    ERIC Educational Resources Information Center

    Peters, James E.

    1985-01-01

    Describes a combustion laboratory facility and experiments for a senior-level (undergraduate) course in mechanical engineering. The experiment reinforces basic thermodynamic concepts and provides many students with their first opportunity to work with a combustion system. (DH)

  18. Predictive modeling and reducing cyclic variability in autoignition engines

    DOEpatents

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-08-30

    Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.

  19. Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems. Rev. 1

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt (Compiler)

    2003-01-01

    The Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems was planned for June 3-6, 2003, in Cleveland, Ohio, near the NASA John H. Glenn Research Center at Lewis Field. The new name for the workshop is based on the decision to broaden our scope to encompass support for future space exploration through basic and applied research in reacting systems that in some cases may not look like combustion. The workshop has been lengthened to 4 days with focus sessions on spacecraft fire safety and exploration-related research. We believe that the microgravity combustion science community is almost uniquely positioned to make substantial contributions to this new effort.

  20. Thermodynamics and combustion modeling

    NASA Technical Reports Server (NTRS)

    Zeleznik, Frank J.

    1986-01-01

    Modeling fluid phase phenomena blends the conservation equations of continuum mechanics with the property equations of thermodynamics. The thermodynamic contribution becomes especially important when the phenomena involve chemical reactions as they do in combustion systems. The successful study of combustion processes requires (1) the availability of accurate thermodynamic properties for both the reactants and the products of reaction and (2) the computational capabilities to use the properties. A discussion is given of some aspects of the problem of estimating accurate thermodynamic properties both for reactants and products of reaction. Also, some examples of the use of thermodynamic properties for modeling chemically reacting systems are presented. These examples include one-dimensional flow systems and the internal combustion engine.

  1. Fuel governor for controlled autoignition engines

    DOEpatents

    Jade, Shyam; Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li

    2016-06-28

    Methods and systems for controlling combustion performance of an engine are provided. A desired fuel quantity for a first combustion cycle is determined. One or more engine actuator settings are identified that would be required during a subsequent combustion cycle to cause the engine to approach a target combustion phasing. If the identified actuator settings are within a defined acceptable operating range, the desired fuel quantity is injected during the first combustion cycle. If not, an attenuated fuel quantity is determined and the attenuated fuel quantity is injected during the first combustion cycle.

  2. Systems and methods of storing combustion waste products

    DOEpatents

    Chen, Shen-En; Wang, Peng; Miao, Xiexing; Feng, Qiyan; Zhu, Qianlin

    2016-04-12

    In one aspect, methods of storing one or more combustion waste products are described herein. Combustion waste products stored by a method described herein can include solid combustion waste products such as coal ash and/or gaseous combustion products such as carbon dioxide. In some embodiments, a method of storing carbon dioxide comprises providing a carbon dioxide storage medium comprising porous concrete having a macroporous and microporous pore structure and flowing carbon dioxide captured from a combustion flue gas source into the pore structure of the porous concrete.

  3. Combustor oscillation attenuation via the control of fuel-supply line dynamics

    DOEpatents

    Richards, G.A.; Gemmen, R.S.

    1998-09-22

    Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value. 9 figs.

  4. A combustion driven shock tunnel to complement the free piston shock tunnel T5 at GALCIT

    NASA Technical Reports Server (NTRS)

    Belanger, Jacques; Hornung, Hans G.

    1992-01-01

    A combustion driven shock tunnel was designed and built at GALCIT to supply the hypersonic facility T5 with 'hot' hydrogen for mixing and combustion experiments. This system was chosen over other options for better flexibility and for safety reasons. The shock tunnel is described and the overall efficiency of the system is discussed. The biggest challenge in the design was to synchronize the combustion driven shock tunnel with T5. To do so, the main diaphragm of the combustion driven shock tunnel is locally melted by an electrical discharge. This local melting is rapidly followed by the complete collapse of the diaphragm in a very repeatable way. A first set of experiments on supersonic hydrogen transverse jets over a flat plate have just been completed with the system and some of the preliminary results are presented.

  5. The history and evolution of optically accessible research engines and their impact on our understanding of engine combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, Paul C.

    2015-03-01

    The development and application of optically accessible engines to further our understanding of in-cylinder combustion processes is reviewed, spanning early efforts in simplified engines to the more recent development of high-pressure, high-speed engines that retain the geometric complexities of modern production engines. Limitations of these engines with respect to the reproduction of realistic metal test engine characteristics and performance are identified, as well as methods that have been used to overcome these limitations. Finally, the role of the work performed in these engines on clarifying the fundamental physical processes governing the combustion process and on laying the foundation for predictivemore » engine simulation is summarized.« less

  6. Experimental and modeling studies of small molecule chemistry in expanding spherical flames

    NASA Astrophysics Data System (ADS)

    Santner, Jeffrey

    Accurate models of flame chemistry are required in order to predict emissions and flame properties, such that clean, efficient engines can be designed more easily. There are three primary methods used to improve such combustion chemistry models - theoretical reaction rate calculations, elementary reaction rate experiments, and combustion system experiments. This work contributes to model improvement through the third method - measurements and analysis of the laminar burning velocity at constraining conditions. Modern combustion systems operate at high pressure with strong exhaust gas dilution in order to improve efficiency and reduce emissions. Additionally, flames under these conditions are sensitized to elementary reaction rates such that measurements constrain modeling efforts. Measurement conditions of the present work operate within this intersection between applications and fundamental science. Experiments utilize a new pressure-release, heated spherical combustion chamber with a variety of fuels (high hydrogen content fuels, formaldehyde (via 1,3,5-trioxane), and C2 fuels) at pressures from 0.5--25 atm, often with dilution by water vapor or carbon dioxide to flame temperatures below 2000 K. The constraining ability of these measurements depends on their uncertainty. Thus, the present work includes a novel analytical estimate of the effects of thermal radiative heat loss on burning velocity measurements in spherical flames. For 1,3,5-trioxane experiments, global measurements are sufficiently sensitive to elementary reaction rates that optimization techniques are employed to indirectly measure the reaction rates of HCO consumption. Besides the influence of flame chemistry on propagation, this work also explores the chemistry involved in production of nitric oxide, a harmful pollutant, within flames. We find significant differences among available chemistry models, both in mechanistic structure and quantitative reaction rates. There is a lack of well-defined measurements of nitric oxide formation at high temperatures, contributing to disagreement between chemical models. This work accomplishes several goals. It identifies disagreements in pollutant formation chemistry. It creates a novel database of burning velocity measurements at relevant, sensitive conditions. It presents a simple, conservative estimate of radiation-induced measurement uncertainty in spherical flames. Finally, it utilizes systems-level flame experiments to indirectly measure elementary reaction rates.

  7. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    DOEpatents

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dempsey, Adam B.; Curran, Scott; Reitz, Rolf D.

    The focus of the present paper was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over amore » variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition. The experiments were conducted on a modern four cylinder light-duty diesel engine that was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. The results indicate that the authority to control the combustion phasing through the fuel delivery strategy (e.g., direct injection timing or premixed gasoline percentage) is not a strong function of the EHN concentration in the direct-injected fuel. It was also observed that NOx emissions are a strong function of the global EHN concentration in-cylinder and the combustion phasing. Finally, in general, NOx emissions are significantly elevated for gasoline/gasoline+EHN operation compared with gasoline/diesel RCCI operation at a given operating condition.« less

  9. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOEpatents

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  10. JANNAF 36th Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    Volume 1, the first of three volumes is a compilation of 47 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 36th Combustion Subcommittee held jointly with the 24th Airbreathing Propulsion Subcommittee and 18th Propulsion Systems Hazards Subcommittee. The meeting was held on 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Solid phase propellant combustion topics covered in this volume include cookoff phenomena in the pre- and post-ignition phases, solid rocket motor and gun propellant combustion, aluminized composite propellant combustion, combustion modeling and combustion instability and instability measurement techniques.

  11. Modeling of a Sequential Two-Stage Combustor

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Liu, N.-S.; Gallagher, J. R.; Ryder, R. C.; Brankovic, A.; Hendricks, J. A.

    2005-01-01

    A sequential two-stage, natural gas fueled power generation combustion system is modeled to examine the fundamental aerodynamic and combustion characteristics of the system. The modeling methodology includes CAD-based geometry definition, and combustion computational fluid dynamics analysis. Graphical analysis is used to examine the complex vortical patterns in each component, identifying sources of pressure loss. The simulations demonstrate the importance of including the rotating high-pressure turbine blades in the computation, as this results in direct computation of combustion within the first turbine stage, and accurate simulation of the flow in the second combustion stage. The direct computation of hot-streaks through the rotating high-pressure turbine stage leads to improved understanding of the aerodynamic relationships between the primary and secondary combustors and the turbomachinery.

  12. 40 CFR 98.342 - GHGs to report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... collection and combustion systems. (c) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...

  13. 40 CFR 98.342 - GHGs to report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... collection and combustion systems. (c) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...

  14. 40 CFR 98.342 - GHGs to report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... collection and combustion systems. (c) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...

  15. 40 CFR 98.342 - GHGs to report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... collection and combustion systems. (c) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...

  16. 40 CFR 98.342 - GHGs to report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... collection and combustion systems. (c) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2, CH4, and N2O from each stationary combustion unit following the...

  17. Combustion of a Pb(II)-loaded olive tree pruning used as biosorbent.

    PubMed

    Ronda, A; Della Zassa, M; Martín-Lara, M A; Calero, M; Canu, P

    2016-05-05

    The olive tree pruning is a specific agroindustrial waste that can be successfully used as adsorbent, to remove Pb(II) from contaminated wastewater. Its final incineration has been studied in a thermobalance and in a laboratory flow reactor. The study aims at evaluating the fate of Pb during combustion, at two different scales of investigation. The flow reactor can treat samples approximately 10(2) larger than the conventional TGA. A detailed characterization of the raw and Pb(II)-loaded waste, before and after combustion is presented, including analysis of gas and solids products. The Pb(II)-loaded olive tree pruning has been prepared by a previous biosorption step in a lead solution, reaching a concentration of lead of 2.3 wt%. Several characterizations of the ashes and the mass balances proved that after the combustion, all the lead presents in the waste remained in ashes. Combustion in a flow reactor produced results consistent with those obtained in the thermobalance. It is thus confirmed that the combustion of Pb(II)-loaded olive tree pruning is a viable option to use it after the biosorption process. The Pb contained in the solid remained in the ashes, preventing possible environmental hazards. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Near-zero emissions combustor system for syngas and biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yongho, Kim; Rosocha, Louis

    2010-01-01

    A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. Inmore » this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates ({approx} 10 {micro}m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.« less

  19. 75 FR 33238 - Basin Electric Power Cooperative: Deer Creek Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... include a new natural gas-fired combustion turbine set, a heat recovery steam generator (HRSG), and a steam turbine generator set. DATES: Written comments on this Final EIS will be accepted on or before... at: http://www.usda.gov/rus/water/ees/eis.htm . Copies of the Final EIS will also be available for...

  20. Combustion Instability in an Acid-Heptane Rocket with a Pressurized-Gas Propellant Pumping System

    NASA Technical Reports Server (NTRS)

    Tischler, Adelbert O.; Bellman, Donald R.

    1951-01-01

    Results of experimental measurements of low-frequency combustion instability of a 300-pound thrust acid-heptane rocket engine were compared to the trends predicted by an analysis of combustion instability in a rocket engine with a pressurized-gas propellant pumping system. The simplified analysis, which assumes a monopropellant model, was based on the concept of a combustion the delay occurring from the moment of propellant injection to the moment of propellant combustion. This combustion time delay was experimentally measured; the experimental values were of approximately half the magnitude predicted by the analysis. The pressure-fluctuation frequency for a rocket engine with a characteristic length of 100 inches and operated at a combustion-chamber pressure of 280 pounds per square inch absolute was 38 cycles per second; the analysis indicated. a frequency of 37 cycles per second. Increasing combustion-chamber characteristic length decreased the pressure-fluctuation frequency, in conformity to the analysis. Increasing the chamber operating pressure or increasing the injector pressure drop increased the frequency. These latter two effects are contrary to the analysis; the discrepancies are attributed to the conflict between the assumptions made to simplify the analysis and the experimental conditions. Oxidant-fuel ratio had no apparent effect on the experimentally measured pressure-fluctuation frequency for acid-heptane ratios from 3.0 to 7.0. The frequencies decreased with increased amplitude of the combustion-chamber pressure variations. The analysis indicated that if the combustion time delay were sufficiently short, low-frequency combustion instability would be eliminated.

  1. Burning Questions in Gravity-Dependent Combustion Science

    NASA Technical Reports Server (NTRS)

    Urban, David; Chiaramonte, Francis P.

    2012-01-01

    Building upon a long history of spaceflight and ground based research, NASA's Combustion Science program has accumulated a significant body of accomplishments on the ISS. Historically, NASAs low-gravity combustion research program has sought: to provide a more complete understanding of the fundamental controlling processes in combustion by identifying simpler one-dimensional systems to eliminate the complex interactions between the buoyant flow and the energy feedback to the reaction zone to provide realistic simulation of the fire risk in manned spacecraft and to enable practical simulation of the gravitational environment experienced by reacting systems in future spacecraft. Over the past two decades, low-gravity combustion research has focused primarily on increasing our understanding of fundamental combustion processes (e.g. droplet combustion, soot, flame spread, smoldering, and gas-jet flames). This research program was highly successful and was aided by synergistic programs in Europe and in Japan. Overall improvements were made in our ability to model droplet combustion in spray combustors (e.g. jet engines), predict flame spread, predict soot production, and detect and prevent spacecraft fires. These results provided a unique dataset that supports both an active research discipline and also spacecraft fire safety for current and future spacecraft. These experiments have been conducted using the Combustion Integrated Rack (CIR), the Microgravity Science Glovebox and the Express Rack. In this paper, we provide an overview of the earlier space shuttle experiments, the recent ISS combustion experiments in addition to the studies planned for the future. Experiments in combustion include topics such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes.

  2. Advancements in Dual-Pump Broadband CARS for Supersonic Combustion Measurements

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah Augusta Umberger

    2010-01-01

    Space- and time-resolved measurements of temperature and species mole fractions of nitrogen, oxygen, and hydrogen were obtained with a dual-pump coherent anti-Stokes Raman spectroscopy (CARS) system in hydrogen-fueled supersonic combustion free jet flows. These measurements were taken to provide time-resolved fluid properties of turbulent supersonic combustion for use in the creation and verification of computational fluid dynamic (CFD) models. CFD models of turbulent supersonic combustion flow currently facilitate the design of air-breathing supersonic combustion ramjet (scramjet) engines. Measurements were made in supersonic axi-symmetric free jets of two scales. First, the measurement system was tested in a laboratory environment using a laboratory-scale burner (approx.10 mm at nozzle exit). The flow structures of the laboratory-burner were too small to be resolved with the CARS measurements volume, but the composition and temperature of the jet allowed the performance of the system to be evaluated. Subsequently, the system was tested in a burner that was approximately 6 times larger, whose length scales are better resolved by the CARS measurement volume. During both these measurements, weaknesses of the CARS system, such as sensitivity to vibrations and beam steering and inability to measure temperature or species concentrations in hydrogen fuel injection regions were indentified. Solutions were then implemented in improved CARS systems. One of these improved systems is a dual-pump broadband CARS technique called, Width Increased Dual-pump Enhanced CARS (WIDECARS). The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature. WIDECARS is also designed for measurements of all the major species (except water) in supersonic combustion flows fueled with hydrogen and hydrogen/ethylene mixtures (N2, O2, H2, C2H4, CO, and CO2). This instrument can characterize supersonic combustion fueled with surrogate fuel mixtures of hydrogen and ethylene. This information can lead to a better understanding of the chemistry and performance of supersonic combustion fueled with cracked jet propulsion (JP)-type fuel.

  3. Method and apparatus for controlling hybrid powertrain system in response to engine temperature

    DOEpatents

    Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L

    2014-10-07

    A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.

  4. Appraisal of biomass combustion biomarkers to track the paleo-occurrence of forest fires

    NASA Astrophysics Data System (ADS)

    Rivas-Ruiz, P.; Cao, M.; Rosell Mele, A.

    2015-12-01

    Wildfires influence many aspects of the Earth system, including ecosystem distribution, biodiversity, the carbon cycle, atmospheric chemistry and climate. The challenge is disentangling the various controls of fire, partly because of their diversity, and also because fire was impossible to observe and analyse as a global phenomenon until the satellite era. The study of ancient climates can be helpful to understand the natural drivers of wildfires. However, the reconstruction of wildfires is limited by the nature of the proxies available, chiefly charcoal, which only represents a portion of the carbon combustion continuum. In here we evaluate the application molecular combustion biomarkers. For this purpose we have compiled an extensive collection of soils and lacustrine sediments representative of the humid to arid environments, which encompass the wide range of climates and ecosystems within the Iberian peninsula. We have measured the abundance of a monosaccharide anhydride (MA) biomarker called levoglucosan (1,6-anhydro-β-D-glucopyranose) and polyaromatic hydrocarbons (PAHs), as well as general plant biomarkers such as n-alkanes. To discern between biogenic and/or anthropogenic combustion sources and the nature of fires we have investigated the use of levoglucosan, retene (PAH generated during combustion of conifer trees) and PAHs ratios such as phenantrane/anthracene and fluoranthene/pyrene. Charcoal (>150 microns) has also been measured in the lake samples to contribute in the assessment of local vs. regions fire signals. The final objective is to constrain the use of the molecular proxies as quantitative biomass combustion paleoproxies. The data obtained has been mapped and compared to the documented occurrence of wildfires in Spain over the last two decades, and mesoescale patterns of atmospheric circulation and particle transport. Results show that the occurrence of levoglucosan and PAHs is widespread in modern soils and sediments in Iberia. Chemical markers are indicative of regional patterns of biomass burning rather than just local fires. Moreover, the interpretation of the molecular data requires careful consideration of the preservation processes of biomarkers as well as their input fluxes to sediments and soils.

  5. Secondary fuel delivery system

    DOEpatents

    Parker, David M.; Cai, Weidong; Garan, Daniel W.; Harris, Arthur J.

    2010-02-23

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  6. Pollution reduction technology program for small jet aircraft engines, phase 1

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1977-01-01

    A series of combustor pressure rig screening tests was conducted on three combustor concepts applied to the TFE731-2 turbofan engine combustion system for the purpose of evaluating their relative emissions reduction potential consistent with prescribed performance, durability, and envelope contraints. The three concepts and their modifications represented increasing potential for reducing emission levels with the penalty of increased hardware complexity and operational risk. Concept 1 entailed advanced modifications to the present production TFE731-2 combustion system. Concept 2 was based on the incorporation of an axial air-assisted airblast fuel injection system. Concept 3 was a staged premix/prevaporizing combustion system. Significant emissions reductions were achieved in all three concepts, consistent with acceptable combustion system performance. Concepts 2 and 3 were identified as having the greatest achievable emissions reduction potential, and were selected to undergo refinement to prepare for ultimate incorporation within an engine.

  7. Influence of the Structure of a Solid-Fuel Mixture on the Thermal Efficiency of the Combustion Chamber of an Engine System

    NASA Astrophysics Data System (ADS)

    Futko, S. I.; Koznacheev, I. A.; Ermolaeva, E. M.

    2014-11-01

    On the basis of thermodynamic calculations, the features of the combustion of a solid-fuel mixture based on the glycidyl azide polymer were investigated, the thermal cycle of the combustion chamber of a model engine system was analyzed, and the efficiency of this chamber was determined for a wide range of pressures in it and different ratios between the components of the combustible mixture. It was established that, when the pressure in the combustion chamber of an engine system increases, two maxima arise successively on the dependence of the thermal efficiency of the chamber on the weight fractions of the components of the combustible mixture and that the first maximum shifts to the side of smaller concentrations of the glycidyl azide polymer with increase in the pressure in the chamber; the position of the second maximum is independent of this pressure, coincides with the minimum on the dependence of the rate of combustion of the mixture, and corresponds to the point of its structural phase transition at which the mole fractions of the carbon and oxygen atoms in the mixture are equal. The results obtained were interpreted on the basis of the Le-Chatelier principle.

  8. Furnace devices aerodynamics optimization for fuel combustion efficiency improvement and nitrogen oxide emission reduction

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Prokhorov, V. B.; Arkhipov, A. M.; Chernov, S. L.; Kirichkov, V. S.; Kaverin, A. A.

    2017-11-01

    MPEI conducts researches on physical and mathematical models of furnace chambers for improvement of power-generation equipment fuel combustion efficiency and ecological safety. Results of these researches are general principles of furnace aerodynamics arrangement for straight-flow burners and various fuels. It has been shown, that staged combustion arrangement with early heating and igniting with torch distribution in all furnace volume allows to obtain low carbon in fly ash and nitrogen oxide emission and also to improve boiler operation reliability with expand load adjustment range. For solid fuel combustion efficiency improvement it is practical to use high-placed and strongly down-tilted straight-flow burners, which increases high-temperature zone residence time for fuel particles. In some cases, for this combustion scheme it is possible to avoid slag-tap removal (STR) combustion and to use Dry-bottom ash removal (DBAR) combustion with tolerable carbon in fly ash level. It is worth noting that boilers with STR have very high nitrogen oxide emission levels (1200-1800 mg/m3) and narrow load adjustment range, which is determined by liquid slag output stability, so most industrially-developed countries don’t use this technology. Final decision about overhaul of boiler unit is made with regard to physical and mathematical modeling results for furnace and zonal thermal calculations for furnace and boiler as a whole. Overhaul of boilers to provide staged combustion and straight-flow burners and nozzles allows ensuring regulatory nitrogen oxide emission levels and corresponding best available technology criteria, which is especially relevant due to changes in Russian environmental regulation.

  9. Emission and control of N2O and composition of ash derived from cattle manure combustion using a pilot-scale fluidized bed incinerator.

    PubMed

    Oshita, Kazuyuki; Kawaguchi, Koji; Takaoka, Masaki; Matsukawa, Kazutsugu; Fujimori, Takashi; Fujiwara, Taku

    2015-10-06

    This study investigates the emission of nitrous oxide (N 2 O) and discusses the reduction of N 2 O emissions during the 24-h combustion of cattle manure using a pilot-scale fluidized bed incinerator under various experimental conditions. The results of these experiments were then validated against previously reported data. In addition, the characteristics of cattle manure incineration ash and their changes under different combustion conditions were estimated. In incineration experiments with composted cattle manure, N 2 O concentrations using multi-stage combustion were 75% lower than the concentrations resulting from normal combustion without additional auxiliary fuel, since N 2 O could be decomposed in the high-temperature zone formed by the inlet of the secondary combustion air. The N 2 O emission factor under normal combustion conditions (800°C) was 6.0% g-N 2 O-N/g-N. This result is similar to the values found in previous studies at the same temperature. The N 2 O emission factor was decreased to 1.6% g-N 2 O-N/g-N using a multi-stage combustion procedure. The current Japanese N 2 O emission factor of 0.1% g-N 2 O-N/g-N is an underestimate for some conditions and should be uniquely specified for each condition. Finally, cattle manure ash contains ample fertilizer elements, little Fe, Al and Zn, but abundant Cl. Therefore if Cl could be removed by some kind of pretreatment, cattle manure ash could be used as a favourable fertilizer.

  10. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal.

    PubMed

    Roy, Bithi; Chen, Luguang; Bhattacharya, Sankar

    2014-12-16

    This study investigates, for the first time, the NOx, N2O, SO3, and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOx emissions and higher N2O formation were observed in the oxy-fuel atmosphere. These NOx reduction and N2O formations were further enhanced with steam in the combustion environment. The NOx concentration level in the flue gas was within the permissible limit in coal-fired power plants in Victoria. Therefore, an additional NOx removal system will not be required using this coal. In contrast, both SO3 and gaseous mercury concentrations were considerably higher under oxy-fuel combustion compared to that in the air combustion. Around 83% of total gaseous mercury released was Hg(0), with the rest emitted as Hg(2+). Therefore, to control harmful Hg(0), a mercury removal system may need to be considered to avoid corrosion in the boiler and CO2 separation units during the oxy-fuel fluidized-bed combustion using this coal.

  11. Turbulent combustion in aluminum-air clouds for different scale explosion fields

    NASA Astrophysics Data System (ADS)

    Kuhl, Allen L.; Balakrishnan, Kaushik; Bell, John B.; Beckner, Vincent E.

    2017-01-01

    This paper explores "scaling issues" associated with Al particle combustion in explosions. The basic idea is the following: in this non-premixed combustion system, the global burning rate is controlled by rate of turbulent mixing of fuel (Al particles) with air. From similarity considerations, the turbulent mixing rates should scale with the explosion length and time scales. However, the induction time for ignition of Al particles depends on an Arrhenius function, which is independent of the explosion length and time. To study this, we have performed numerical simulations of turbulent combustion in unconfined Al-SDF (shock-dispersed-fuel) explosion fields at different scales. Three different charge masses were assumed: 1-g, 1-kg and 1-T Al-powder charges. We found that there are two combustion regimes: an ignition regime—where the burning rate decays as a power-law function of time, and a turbulent combustion regime—where the burning rate decays exponentially with time. This exponential dependence is typical of first order reactions and the more general concept of Life Functions that control the dynamics of evolutionary systems. Details of the combustion model are described. Results, including mean and rms profiles in combustion cloud and fuel consumption histories, are presented.

  12. Apparatus and method for gas turbine active combustion control system

    NASA Technical Reports Server (NTRS)

    Knobloch, Aaron (Inventor); Mancini, Alfred Albert (Inventor); Myers, William J. (Inventor); Fortin, Jeffrey B. (Inventor); Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor)

    2011-01-01

    An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.

  13. Hybrid two fuel system nozzle with a bypass connecting the two fuel systems

    DOEpatents

    Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy Steve [Simpsonville, SC; Yilmaz, Ertan [Albany, NY; Lacy, Benjamin [Greer, SC; Zuo, Baifang [Simpsonville, SC; York, William David [Greer, SC

    2012-05-29

    A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

  14. FIELD DEMONSTRATION OF THE LINDE OXYGEN COMBUSTION SYSTEM ON THE EPA MOBILE INCINERATOR

    EPA Science Inventory

    This paper summarizes the various system performance tests and the long-term operating experience of the LINDE Oxygen Combustion System installed on the U.S. Environmental Protection Agency's Mobile Incineration System (MIS) when it was in operation at the Denney Farm site in sou...

  15. Evaluation of electrostatic precipitator during SRC combustion tests. Final task report Apr--Aug 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, G.B.; Barrett, W.J.

    1978-07-01

    The report deals with the evaluation of an electrostatic precipitator (ESP) and associated environmental factors during the burning of solvent refined coal (SRC) in a boiler at Plant Mitchell of the Georgia Power Company. The effort was part of an overall study of the use of SRC in a full-scale electric power plant. Results of a performance evaluation of the ESP are reported and interpreted. Samples of stack emissions were collected with a Source Assessment Sampling System (SASS) train for chemical analysis: results of the analysis are to be reported later.

  16. Development of Novel Fe-Based Coating Systems for Internal Combustion Engines

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Königstein, T.; Dröder, K.; Hoffmeister, H.-W.; Mahlfeld, G.; Schläfer, T.

    2018-04-01

    Nowadays, combustion engines are the most common way to power vehicles. Thereby, losses occur due to cooling, exhaust gas and friction. With regard to frictional losses, highest potentials for optimization can be found in the tribological system of the inner surface of combustion chamber and piston ring. Besides friction, corrosive stress increases, e.g., due to utilization of exhaust gas recovery. In order to save energy, reduce emissions and enhance the life span of combustion engines, the demand for innovative coating material systems, especially for the inner surface of combustion chamber, increases. This study focuses on the development of innovative iron-based coating materials for the combustion chamber. As a first step, the plasma transferred wire arc and rotating single wire arc (RSW) technologies were compared using 0.8% C-steel as a reference. Subsequently, RSW was used for coating deposition using an innovative iron-based feedstock material. In order to improve wear and corrosion resistance, boron and chromium were added to the feedstock material. After deposition, different honing topographies were manufactured and compared under tribological load. Furthermore, electrochemical corrosion tests were conducted using an electrolyte simulating the exhaust gas concentrate. Especially with regard to corrosion, the novel coating system FeCrBMn showed promising results.

  17. Advanced engine management of individual cylinders for control of exhaust species

    DOEpatents

    Graves, Ronald L [Knoxville, TN; West, Brian H [Knoxville, TN; Huff, Shean P [Knoxville, TN; Parks, II, James E

    2008-12-30

    A method and system controls engine-out exhaust species of a combustion engine having a plurality of cylinders. The method typically includes various combinations of steps such as controlling combustion parameters in individual cylinders, grouping the individual cylinders into a lean set and a rich set of one or more cylinders, combusting the lean set in a lean combustion parameter condition having a lean air:fuel equivalence ratio, combusting the rich set in a rich combustion parameter condition having a rich air:fuel equivalence ratio, and adjusting the lean set and the rich set of one or more cylinders to generate net-lean combustion. The exhaust species may have elevated concentrations of hydrogen and oxygen.

  18. Development and validation of spray models for investigating diesel engine combustion and emissions

    NASA Astrophysics Data System (ADS)

    Som, Sibendu

    Diesel engines intrinsically generate NOx and particulate matter which need to be reduced significantly in order to comply with the increasingly stringent regulations worldwide. This motivates the diesel engine manufacturers to gain fundamental understanding of the spray and combustion processes so as to optimize these processes and reduce engine emissions. Strategies being investigated to reduce engine's raw emissions include advancements in fuel injection systems, efficient nozzle orifice design, injection and combustion control strategies, exhaust gas recirculation, use of alternative fuels such as biodiesel etc. This thesis explores several of these approaches (such as nozzle orifice design, injection control strategy, and biodiesel use) by performing computer modeling of diesel engine processes. Fuel atomization characteristics are known to have a significant effect on the combustion and emission processes in diesel engines. Primary fuel atomization is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. The breakup models that are currently used in diesel engine simulations generally consider aerodynamically induced breakup using the Kelvin-Helmholtz (KH) instability model, but do not account for inner nozzle flow effects. An improved primary breakup (KH-ACT) model incorporating cavitation and turbulence effects along with aerodynamically induced breakup is developed and incorporated in the computational fluid dynamics code CONVERGE. The spray simulations using KH-ACT model are "quasi-dynamically" coupled with inner nozzle flow (using FLUENT) computations. This presents a novel tool to capture the influence of inner nozzle flow effects such as cavitation and turbulence on spray, combustion, and emission processes. Extensive validation is performed against the non-evaporating spray data from Argonne National Laboratory. Performance of the KH and KH-ACT models is compared against the evaporating and combusting data from Sandia National Laboratory. The KH-ACT model is observed to provide better predictions for spray dispersion, axial velocity decay, sauter mean diameter, and liquid and lift-off length interplay which is attributed to the enhanced primary breakup predicted by this model. In addition, experimentally observed trends with changing nozzle conicity could only be captured by the KH-ACT model. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. Finally, the differences in inner nozzle flow and spray characteristics of petrodiesel and biodiesel are quantified. The improved modeling capability developed in this work can be used for extensive diesel engine simulations to further optimize injection, spray, combustion, and emission processes.

  19. Friction Stir Welding of GR-Cop 84 for Combustion Chamber Liners

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn K.; Carter, Robert; Ellis, David L.; Goudy, Richard

    2004-01-01

    GRCop-84 is a copper-chromium-niobium alloy developed by the Glenn Research Center for liquid rocket engine combustion chamber liners. GRCop-84 exhibits superior properties over conventional copper-base alloys in a liquid hydrogen-oxygen operating environment. The Next Generation Launch Technology program has funded a program to demonstrate scale-up production capabilities of GR-Cop 84 to levels suitable for main combustion chamber production for the prototype rocket engine. This paper describes a novel method of manufacturing the main combustion chamber liner. The process consists of several steps: extrude the GR-Cop 84 powder into billets, roll the billets into plates, bump form the plates into cylinder halves and friction stir weld the halves into a cylinder. The cylinder is then metal spun formed to near net liner dimensions followed by finish machining to the final configuration. This paper describes the friction stir weld process development including tooling and non-destructive inspection techniques, culminating in the successful production of a liner preform completed through spin forming.

  20. Hybrid Rocket Performance Prediction with Coupling Method of CFD and Thermal Conduction Calculation

    NASA Astrophysics Data System (ADS)

    Funami, Yuki; Shimada, Toru

    The final purpose of this study is to develop a design tool for hybrid rocket engines. This tool is a computer code which will be used in order to investigate rocket performance characteristics and unsteady phenomena lasting through the burning time, such as fuel regression or combustion oscillation. When phenomena inside a combustion chamber, namely boundary layer combustion, are described, it is difficult to use rigorous models for this target. It is because calculation cost may be too expensive. Therefore simple models are required for this calculation. In this study, quasi-one-dimensional compressible Euler equations for flowfields inside a chamber and the equation for thermal conduction inside a solid fuel are numerically solved. The energy balance equation at the solid fuel surface is solved to estimate fuel regression rate. Heat feedback model is Karabeyoglu's model dependent on total mass flux. Combustion model is global single step reaction model for 4 chemical species or chemical equilibrium model for 9 chemical species. As a first step, steady-state solutions are reported.

  1. Evaluation of weapons' combustion products in armored vehicles. Appendix C: Summary of descriptive statistics (proc tabulate). Appendix D: Summary of comparative statistics. Final report, 30 September 1986-14 December 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzies, K.T.; Randel, M.A.; Quill, A.L.

    1989-01-01

    The U.S. Army Biomedical Research and Development Laboratory defined an extensive research program to address the generation of potentially toxic propellant combustion products in crew compartments of armored vehicles during weapons firing. The major objectives of the research were (1) to determine the presence and concentration of propellant combustion products, (2) to determine potential crew exposure to these combustion products, and (3) to assess the efficacy of field monitoring in armored vehicles. To achieve these goals, air monitoring was conducted in selected armored vehicle types, i.e., M109, M60, M3, M1, at several Army installations. Auxiliary information concerning the specific munitionsmore » fired and the Training and Doctrine Command (TRADOC) or Forces Command (FORSCOM) firing scenarios was collected so that a comparison of pollutant concentrations generated by specific weapons both within vehicle types and between vehicle types could be made.« less

  2. Calorimetric determination of the heat of combustion of spent Green River shale at 978 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mraw, S.C.; Keweshan, C.F.

    1987-08-01

    A Calvet-type calorimeter was used to measure heats of combustion of spent Colorado oil shales. For Green River shale, the samples were members of a sink-float series spanning oil yields from 87 to 340 L . tonne/sup -1/. Shale samples (30-200 mg) are dropped into the calorimeter at high temperature, and a peak in the thermopile signal records the total enthalpy change of the sample between room temperature and the final temperature. Duplicate samples from the above sink-float series were first retorted at 773 K and then dropped separately into nitrogen and oxygen at 978 K. The resulting heats aremore » subtracted to give the heat of combustion, and the results are compared to values from classical bomb calorimetry. The agreement shows that the heats of combustion of the organic component are well understood but that question remain on the reactions of the mineral components.« less

  3. Effect of cavity configuration on kerosene spark ignition in a scramjet combustor at Ma 4.5 flight condition

    NASA Astrophysics Data System (ADS)

    Bao, Heng; Zhou, Jin; Pan, Yu

    2015-12-01

    Spark ignition experiments of liquid kerosene are conducted in a scramjet model equipped with dual-cavities at Ma 4.5 flight condition with a stagnation temperature of 1032 K. The ignition ability of two cavities with different length is compared and analyzed based on the wall pressure distribution along the combustor and the thrust evolution. The experimental results indicate that the longer cavity (L/D=7) is more suitable than the smaller cavity (L/D=5) in spark ignition. When employing the smaller cavity, three steady combustion states are observed after spark ignition. The concept of 'local flame' is adopted to explain the expanding problem of weak combustion. The local equivalence ratio in the shear layer is the dominated factor in determining the developing process of local flame. The final steady combustion mode of the combustor is dependent on the flame developing process. When employing the longer cavity, the establishment of intense combustion state can be much easier.

  4. System and method for engine combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sczomak, David P.; Gallon, Robert J.; Solomon, Arun S.

    A combustion system for use with one or more cylinder bores of an internal combustion engine includes at least one cylinder head defining first and second intake ports in fluid communication with the one or more cylinder bores. A flap is adjustably connected to the at least one cylinder head. The flap includes a first flap portion cooperating with the first intake port extending from an arm and a second flap portion cooperating with the second intake port extending from the arm and disposed adjacent the first flap portion. A controller in electrical communication with an actuator monitors the conditionmore » of the engine and actuates the flap to position the first and second flap portions between first and second positions to create a first combustion condition and a second combustion condition.« less

  5. Effective density and morphology of particles emitted from small-scale combustion of various wood fuels.

    PubMed

    Leskinen, Jani; Ihalainen, Mika; Torvela, Tiina; Kortelainen, Miika; Lamberg, Heikki; Tiitta, Petri; Jakobi, Gert; Grigonyte, Julija; Joutsensaari, Jorma; Sippula, Olli; Tissari, Jarkko; Virtanen, Annele; Zimmermann, Ralf; Jokiniemi, Jorma

    2014-11-18

    The effective density of fine particles emitted from small-scale wood combustion of various fuels were determined with a system consisting of an aerosol particle mass analyzer and a scanning mobility particle sizer (APM-SMPS). A novel sampling chamber was combined to the system to enable measurements of highly fluctuating combustion processes. In addition, mass-mobility exponents (relates mass and mobility size) were determined from the density data to describe the shape of the particles. Particle size, type of fuel, combustion phase, and combustion conditions were found to have an effect on the effective density and the particle shape. For example, steady combustion phase produced agglomerates with effective density of roughly 1 g cm(-3) for small particles, decreasing to 0.25 g cm(-3) for 400 nm particles. The effective density was higher for particles emitted from glowing embers phase (ca. 1-2 g cm(-3)), and a clear size dependency was not observed as the particles were nearly spherical in shape. This study shows that a single value cannot be used for the effective density of particles emitted from wood combustion.

  6. Slurry combustion. Volume 2: Appendices, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essenhigh, R.

    1993-06-01

    Volume II contains the following appendices: coal analyses and slurryability characteristics; listings of programs used to call and file experimental data, and to reduce data in enthalpy and efficiency calculations; and tabulated data sets.

  7. Hot-Fire Test Results of Liquid Oxygen/RP-2 Multi-Element Oxidizer-Rich Preburners

    NASA Technical Reports Server (NTRS)

    Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.; Hulka, J. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. To supply the oxidizer-rich combustion products to the main injector of the integrated test article, existing subscale preburner injectors from a previous NASA-funded oxidizer-rich staged combustion engine development program were utilized. For the integrated test article, existing and newly designed and fabricated inter-connecting hot gas duct hardware were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. However, before one of the preburners was used in the integrated test article, it was first hot-fire tested at length to prove it could provide the hot exhaust gas mean temperature, thermal uniformity and combustion stability necessary to perform in the integrated test article experiment. This paper presents results from hot-fire testing of several preburner injectors in a representative combustion chamber with a sonic throat. Hydraulic, combustion performance, exhaust gas thermal uniformity, and combustion stability data are presented. Results from combustion stability modeling of these test results are described in a companion paper at this JANNAF conference, while hot-fire test results of the preburner injector in the integrated test article are described in another companion paper.

  8. Combustion of Unconfined Droplet Clusters in Microgravity

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.

    2001-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the confounding effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would fill a large gap in our current understanding of droplet and spray combustion and provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. This paper describes the design and performance of the 1-g experimental apparatus, some preliminary 1-g results, and plans for testing in microgravity.

  9. Liquid rocket engine combustion stabilization devices

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Combustion instability, which results from a coupling of the combustion process and the fluid dynamics of the engine system, was investigated. The design of devices which reduce coupling (combustion chamber baffles) and devices which increase damping (acoustic absorbers) are described. Included in the discussion are design criteria and recommended practices, structural and mechanical design, thermal control, baffle geometry, baffle/engine interactions, acoustic damping analysis, and absorber configurations.

  10. Laser Schlieren and ultraviolet diagnostics of rocket combustion

    NASA Technical Reports Server (NTRS)

    Fisher, S. C.

    1985-01-01

    A low pressure oxygen/hydrogen turbine drive combustor hot-fire test series was conducted on the Turbine Drive Combustor Technology Program. The first objective was to gather data on an axisymmetric combustion system to support anchoring of a new combustion/fluid dynamics computer code under development on the same contract. The second objective was to gain insight into low mixture ratio combustion characteristics of coaxial injector elements.

  11. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOEpatents

    Janata, Jiri; McVay, Gary L.; Peden, Charles H.; Exarhos, Gregory J.

    1998-01-01

    A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

  12. Near Zero Emissions at 50 Percent Thermal Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2012-12-31

    Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called Near-Zero Emission at 50 Percent Thermal Efficiency, and was completed in 2007. The second phase was initiated in 2006, and this phase was named Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines. This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: Quantify thermal efficiency degradation associated with reductionmore » of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under EPA 2010 emissions regulations. Experimentally demonstrate brake efficiency of 48.5% at EPA 2010 emission level at single steady-state point. Analytically demonstrated additional brake efficiency benefits using advanced aftertreatment configuration concept and air system enhancement including, but not limited to, turbo-compound, variable valve actuator system, and new cylinder head redesign, thus helping to achieve the final program goals. Experimentally demonstrated EPA 2010 emissions over FTP cycles using advanced integrated engine and aftertreatment system. These aggressive thermal efficiency and emissions results were achieved by applying a robust systems technology development methodology. It used integrated analytical and experimental tools for subsystem component optimization encompassing advanced fuel injection system, increased EGR cooling capacity, combustion process optimization, and advanced aftertreatment technologies. Model based controls employing multiple input and output techniques enabled efficient integration of the various subsystems and ensured optimal performance of each system within the total engine package. . The key objective of the NZ-50 program for the second phase was to explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize cylinder-out emissions, targeting a 10% efficiency improvement. The most noteworthy achievements in this phase of the program are summarized as follows: Experimentally and analytically evaluated numerous air system improvements related to the turbocharger and variable valve actuation. Some of the items tested proved to be very successful and modifications to the turbine discovered in this program have since been incorporated into production hardware. The combustion system development continued with evaluation of various designs of the 2-step piston bowl. Significant improvements in engine emissions have been obtained, but fuel economy improvements have been tougher to realize. Development of a neural network control system progressed to the point that the system was fully functional and showing significant fuel economy gains in transient engine testing. Development of the QuantLogic injector with the capability of both a hollow cone spray during early injection and conventional diesel injection at later injection timings was undertaken and proved to be problematic. This injector was designed to be a key component in a PCCI combustion system, but this innovative fuel injector required significantly more development effort than this programâ's resources or timing would allow.« less

  13. Combustion characteristics of eastern white pine bark and Douglas fir planer shavings. Technical Progress Report No. 5, September 16, 1977--September 15, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junge, D.C.

    1978-12-01

    Significant quantities of wood residue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the combustion process in industrial boilersmore » serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. Data are presented on the combustion characteristics of eastern white pine bark mixed with Douglas fir planer shavings.« less

  14. Environmental research program. 1995 Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.J.

    1996-06-01

    The objective of the Environmental Research Program is to enhance the understanding of, and mitigate the effects of pollutants on health, ecological systems, global and regional climate, and air quality. The program is multidisciplinary and includes fundamental research and development in efficient and environmentally benign combustion, pollutant abatement and destruction, and novel methods of detection and analysis of criteria and noncriteria pollutants. This diverse group conducts investigations in combustion, atmospheric and marine processes, flue-gas chemistry, and ecological systems. Combustion chemistry research emphasizes modeling at microscopic and macroscopic scales. At the microscopic scale, functional sensitivity analysis is used to explore themore » nature of the potential-to-dynamics relationships for reacting systems. Rate coefficients are estimated using quantum dynamics and path integral approaches. At the macroscopic level, combustion processes are modelled using chemical mechanisms at the appropriate level of detail dictated by the requirements of predicting particular aspects of combustion behavior. Parallel computing has facilitated the efforts to use detailed chemistry in models of turbulent reacting flow to predict minor species concentrations.« less

  15. System approach to the analysis of an integrated oxy-fuel combustion power plant

    NASA Astrophysics Data System (ADS)

    Ziębik, Andrzej; Gładysz, Paweł

    2014-09-01

    Oxy-fuel combustion (OFC) belongs to one of the three commonly known clean coal technologies for power generation sector and other industry sectors responsible for CO2 emissions (e.g., steel or cement production). The OFC capture technology is based on using high-purity oxygen in the combustion process instead of atmospheric air. Therefore flue gases have a high concentration of CO2. Due to the limited adiabatic temperature of combustion some part of CO2 must be recycled to the boiler in order to maintain a proper flame temperature. An integrated oxy-fuel combustion power plant constitutes a system consisting of the following technological modules: boiler, steam cycle, air separation unit, cooling water and water treatment system, flue gas quality control system and CO2 processing unit. Due to the interconnections between technological modules, energy, exergy and ecological analyses require a system approach. The paper present the system approach based on the `input-output' method to the analysis of the: direct energy and material consumption, cumulative energy and exergy consumption, system (local and cumulative) exergy losses, and thermoecological cost. Other measures like cumulative degree of perfection or index of sustainable development are also proposed. The paper presents a complex example of the system analysis (from direct energy consumption to thermoecological cost) of an advanced integrated OFC power plant.

  16. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan

    2016-01-01

    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  17. Gas Sensor Evaluations in Polymer Combustion Product Atmospheres

    NASA Technical Reports Server (NTRS)

    Delgado, Rafael H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Toxic gases produced by the combustion or thermo-oxidative degradation of materials such as wire insulation, foam, plastics, or electronic circuit boards in space shuttle or space station crew cabins may pose a significant hazard to the flight crew. Toxic gas sensors are routinely evaluated in pure gas standard mixtures, but the possible interferences from polymer combustion products are not routinely evaluated. The NASA White Sands Test Facility (WSTF) has developed a test system that provides atmospheres containing predetermined quantities of target gases combined with the coincidental combustion products of common spacecraft materials. The target gases are quantitated in real time by infrared (IR) spectroscopy and verified by grab samples. The sensor responses are recorded in real time and are compared to the IR and validation analyses. Target gases such as carbon monoxide, hydrogen cyanide, hydrogen chloride, and hydrogen fluoride can be generated by the combustion of poly(vinyl chloride), polyimide-fluoropolymer wire insulation, polyurethane foam, or electronic circuit board materials. The kinetics and product identifications for the combustion of the various materials were determined by thermogravimetric-IR spectroscopic studies. These data were then scaled to provide the required levels of target gases in the sensor evaluation system. Multisensor toxic gas monitors from two manufacturers were evaluated using this system. In general, the sensor responses satisfactorily tracked the real-time concentrations of toxic gases in a dynamic mixture. Interferences from a number of organic combustion products including acetaldehyde and bisphenol-A were minimal. Hydrogen bromide in the products of circuit board combustion registered as hydrogen chloride. The use of actual polymer combustion atmospheres for the evaluation of sensors can provide additional confidence in the reliability of the sensor response.

  18. Flame Interactions and Thermoacoustics in Multiple-Nozzle Combustors

    NASA Astrophysics Data System (ADS)

    Dolan, Brian

    The first major chapter of original research (Chapter 3) examines thermoacoustic oscillations in a low-emission staged multiple-nozzle lean direct injection (MLDI) combustor. This experimental program investigated a relatively practical combustor sector that was designed and built as part of a commercial development program. The research questions are both practical, such as under what conditions the combustor can be safely operated, and fundamental, including what is most significant to driving the combustion oscillations in this system. A comprehensive survey of operating conditions finds that the low-emission (and low-stability) intermediate and outer stages are necessary to drive significant thermoacoustics. Phase-averaged and time-resolved OH* imaging show that dramatic periodic strengthening and weakening of the reaction zone downstream of the low-emission combustion stages. An acoustic modal analysis shows the pressure wave shapes and identifies the dominant thermoacoustic behavior as the first longitudinal mode for this combustor geometry. Finally, a discussion of the likely significant coupling mechanisms is given. Periodic reaction zone behavior in the low-emission fuel stages is the primary contributor to unsteady heat release. Differences between the fuel stages in the air swirler design, the fuel number of the injectors, the lean blowout point, and the nominal operating conditions all likely contribute to the limit cycle behavior of the low-emission stages. Chapter 4 investigates the effects of interaction between two adjacent swirl-stabilized nozzles using experimental and numerical tools. These studies are more fundamental; while the nozzle hardware is the same as the lean direct injection nozzles used in the MLDI combustion concept, the findings are generally applicable to other swirl-stabilized combustion systems as well. Much of the work utilizes a new experiment where the distance between nozzles was varied to change the level of interaction between the two nozzles. A decrease in inter-nozzle spacing resulted in a penalty to the lean blowout point and NO X emissions. Particle image velocimetry shows that the nozzle spacing also has an important effect on the flowfield of the nozzles including the shape of the recirculation region and the quantitative flow velocities. In particular, interaction in the tangential velocity between the two nozzles has large effects on the swirl number and the recirculation zone. Numerical simulations of the isothermal airflows of two pilot nozzles are validated using experimental measurements and used to provide flowfield information outside of the measurement domain. At wider inter-nozzle spacings under certain reacting conditions, an alternating flow pattern develops in the combustion chamber. The shear layers of one nozzle extent into the combustion chamber whereas the inlet reactants from the other nozzle attach near the dome wall to create a very wide recirculation region. Combustion properties, including the fuel type, are shown experimentally to affect whether or not a system will develop an alternating pattern. Simplified computational models of two interacting swirling flows are used to parametrically study the effects of nozzle exit geometry and swirl number on an alternating pattern. Both parameters are shown to be potential drivers of an alternating pattern under some conditions. A hypothesis that proposes a physical mechanism explaining the alternating flow pattern, consistent with the work in this proposal and the research of other groups, is presented. When the nozzle design, flow, or combustion characteristics cause the shear layers of the adjacent nozzles to become sufficiently opposite in direction, the two flows can no longer mix. Instead, one shear layer goes underneath the other which results in the differing flow features of the adjacent nozzles.

  19. Compression ignition engine having fuel system for non-sooting combustion and method

    DOEpatents

    Bazyn, Timothy; Gehrke, Christopher

    2014-10-28

    A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.

  20. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karmis, Michael; Luttrell, Gerald; Ripepi, Nino

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderlessmore » coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO x, CO 2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.« less

  1. Environmental Degradation of Fuels, Fluids and Related Materials for Aircraft

    DTIC Science & Technology

    1976-03-01

    23. As a final step of this treatment, the tube is rinsed with hot (200*F) 5% oxalic acid solution to remove metal oxides and com- plex salts. This...of DuPont Method for Deter- 70 mination of DCI-4A Corrosion Inhibitor D. Determination of Total Acid Number for 71 Coirosion Inhibitor No. 4269-28 E...Analyses of Hydrocarbon Fuels 58 18 Heat of Combustion of Benzoic Acid 60 19 Heat of Combustion Values for Ten JP-4 Specimens 61 ix -I /𔃻 " ’ List of Tables

  2. Combustion characteristics of lodge pole pine wood chips. Technical progress report No. 15, September 16, 1978-September 15, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junge, D.C.

    1979-09-01

    Significant quantits of wood resiue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the combustion process in industrial boilersmore » serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. This report presents data on the combustion characteristics of lodge pole pine wood chips. The data were obtained in a pilot scale combustion test facility at Oregon State University.« less

  3. WASTE COMBUSTION SYSTEM ANALYSIS

    EPA Science Inventory

    The report gives results of a study of biomass combustion alternatives. The objective was to evaluate the thermal performance and costs of available and developing biomass systems. The characteristics of available biomass fuels were reviewed, and the performance parameters of alt...

  4. Nonlinear Combustion Instability Prediction

    NASA Technical Reports Server (NTRS)

    Flandro, Gary

    2010-01-01

    The liquid rocket engine stability prediction software (LCI) predicts combustion stability of systems using LOX-LH2 propellants. Both longitudinal and transverse mode stability characteristics are calculated. This software has the unique feature of being able to predict system limit amplitude.

  5. Microgravity combustion discipline working group summary of requirements for noncontact temperature measurements

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt

    1988-01-01

    Current efforts of the Microgravity Combustion Working Group are summarized and the temperature measurement requirements for the combustion studies are defined. Many of the combustion systems that are studied in the low gravity environment are near-limit systems, that is, systems that are acting near the limit of flammability in terms of oxygen concentration or fuel concentration. Systems of this type are normally weak in the sense that there is a delicate balance between the heat released in the flame and the heat required to sustain the flame. Intrusive or perturbative temperature measurement probes can be inaccurate in these situations and in the limiting case extinguish the flame. Noncontact techniques then become the only way to obtain the required measurements. Noncontact measurement requirements for each of the three thermodynamic phases are described in terms of spatial and temporal resolution and temperature range.

  6. JANNAF 36th Combustion Subcommittee Meeting. Volume 2

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    Volume 11, the second of three volumes is a compilation of 33 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 36th Combustion Subcommittee held jointly with the 24 Airbreathing Propulsion Subcommittee and 18th Propulsion Systems Hazards Subcommittee. The meeting was held on 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Topics covered include gun solid propellant ignition and combustion, Electrothermal Chemical (ETC) propulsion phenomena, liquid propellant gun combustion and barrel erosion, gas phase propellant combustion, kinetic and decomposition phenomena and liquid and hybrid propellant combustion behavior.

  7. Environmental Impact Analysis Process. Environmental Assessment for NAVSTAR Global Positioning System, Block IIR, and Medium Launch Vehicle III, Cape Canaveral Air Station, Florida

    DTIC Science & Technology

    1994-11-01

    59 10 Solid Rocket Motor Combustion Products ...60 11 Core Vehicle First Stage Combustion Products ......................................................60 12 Health Hazard...Qualities of Hazardous Launch Emissions......................................61 13 Atlas II Combustion Products

  8. Potential Commercial Applications from Combustion and Fire Research in Space

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Lyons, Valerie J.

    1996-01-01

    The near-zero (microgravity) environment of orbiting spacecraft minimizes buoyant flows, greatly simplifying combustion processes and isolating important phenomena ordinarily concealed by the overwhelming gravity-driven forces and flows. Fundamental combustion understanding - the focus to date of the NASA microgravity-combustion program - has greatly benefited from analyses and experiments conducted in the microgravity environment. Because of the economic and commercial importance of combustion in practice, there is strong motivation to seek wider applications for the microgravity-combustion findings. This paper reviews selected technology developments to illustrate some emerging applications. Topics cover improved fire-safety technology in spacecraft and terrestrial systems, innovative combustor designs for aerospace and ground propulsion, applied sensors and controls for combustion processes, and self-sustaining synthesis techniques for advanced materials.

  9. Research and Development of Natural Draft Ultra-Low Emissions Burners for Gas Appliances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Therkelsen, Peter; Cheng, Robert; Sholes, Darren

    Combustion systems used in residential and commercial cooking appliances must be robust and easy to use while meeting air quality standards. Current air quality standards for cooking appliances are far greater than other stationary combustion equipment. By developing an advanced low emission combustion system for cooking appliances, the air quality impacts from these devices can be reduced. This project adapted the Lawrence Berkeley National Laboratory (LBNL) Ring-Stabilizer Burner combustion technology for residential and commercial natural gas fired cooking appliances (such as ovens, ranges, and cooktops). LBNL originally developed the Ring-Stabilizer Burner for a NASA funded microgravity experiment. This natural draftmore » combustion technology reduces NOx emissions significantly below current SCAQMD emissions standards without post combustion treatment. Additionally, the Ring-Stabilizer Burner technology does not require the assistance of a blower to achieve an ultra-low emission lean premix flame. The research team evaluated the Ring-Stabilizer Burner and fabricated the most promising designs based on their emissions and turndown.« less

  10. Progress towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.

    2012-03-13

    Enormous military and commercial interests exist in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. Design and development of a portable TE power system using a JP-8 combustor as a high temperature heat source and optimal process flows depend on efficient heat generation, transfer, and recovery within the system are explored. Design optimization of the system required considering the combustion system efficiency and TE conversion efficiency simultaneously. The combustor performance and TE sub-system performance were coupled directlymore » through exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation of this system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed thermoelectric converter thermal/mechanical modeling. To this end, this work reports on design integration of systemlevel process flow simulations using commercial software CHEMCADTM with in-house thermoelectric converter and module optimization, and heat exchanger analyses using COMSOLTM software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem level conversion efficiencies exceeding 10%. These TE advances are integrated with a high performance microtechnology combustion reactor based on recent advances at the Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation established a basis for optimal selection of fuel and air flow rates, thermoelectric module design and operating conditions, and microtechnology heat-exchanger design criteria. This paper will discuss this simulation process that leads directly to system efficiency power maps defining potentially available optimal system operating conditions and regimes. This coupled simulation approach enables pathways for integrated use of high-performance combustor components, high performance TE devices, and microtechnologies to produce a compact, lightweight, combustion driven TE power system prototype that operates on common fuels.« less

  11. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOEpatents

    Janata, J.; McVay, G.L.; Peden, C.H.; Exarhos, G.J.

    1998-07-14

    A method and apparatus are disclosed for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO{sub 2} is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine. 4 figs.

  12. System and method for reducing combustion dynamics in a combustor

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

    2015-09-01

    A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend from the upstream surface through the downstream surface. A divider inside a tube bundle defines a diluent passage that extends axially through the downstream surface, and a diluent supply in fluid communication with the divider provides diluent flow to the diluent passage. A method for reducing combustion dynamics in a combustor includes flowing a fuel through tube bundles, flowing a diluent through a diluent passage inside a tube bundle, wherein the diluent passage extends axially through at least a portion of the end cap into a combustion chamber, and forming a diluent barrier in the combustion chamber between the tube bundle and at least one other adjacent tube bundle.

  13. Early detection of mine fire in underground by using smell detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohga, Kotaro; Higuchi, Kiyoshi

    1995-12-31

    In our laboratory, a new detection system using smell detectors was developed to detect the spontaneous combustion of coal and the combustion of other materials used underground. Laboratory experiments were carried out on several kinds of coals, including South African coals, and machine oil, wood and rubber used in belt conveyers. The following results were obtained: (1) Spontaneous combustion of coal can be detected earlier by smell detectors than by conventional CO detection methods. (2) There were no differences in the results using different kinds of coal. (3) Combustion d other materials can also be detected earlier by this systemmore » than by conventional detectors for gas and smoke. (4) Use of this detection system enables one to discern the source of the combustion gases, whether it be coal, wood, oil or rubber.« less

  14. On-Line Analysis and Kinetic Behavior of Arsenic Release during Coal Combustion and Pyrolysis.

    PubMed

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Dai, Jinxin

    2015-11-17

    The kinetic behavior of arsenic (As) release during coal combustion and pyrolysis in a fluidized bed was investigated by applying an on-line analysis system of trace elements in flue gas. This system, based on inductively coupled plasma optical emission spectroscopy (ICP-OES), was developed to measure trace elements concentrations in flue gas quantitatively and continuously. Obvious variations of arsenic concentration in flue gas were observed during coal combustion and pyrolysis, indicating strong influences of atmosphere and temperature on arsenic release behavior. Kinetic laws governing the arsenic release during coal combustion and pyrolysis were determined based on the results of instantaneous arsenic concentration in flue gas. A second-order kinetic law was determined for arsenic release during coal combustion, and the arsenic release during coal pyrolysis followed a fourth-order kinetic law. The results showed that the arsenic release rate during coal pyrolysis was faster than that during coal combustion. Thermodynamic calculations were carried out to identify the forms of arsenic in vapor and solid phases during coal combustion and pyrolysis, respectively. Ca3(AsO4)2 and Ca(AsO2)2 are the possible species resulting from As-Ca interaction during coal combustion. Ca(AsO2)2 is the most probable species during coal pyrolysis.

  15. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Riccardi, D. P.; Mitchell, J. C.

    1993-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.

  16. Small Municipal Waste Combustion Units Air Toxics Rules Fact Sheets

    EPA Pesticide Factsheets

    This page contains several fact sheets with information regarding the final New Source Performance Standards (NSPS), Emission Guidelines, and Compliance Times regulations. This document provides a summary of the information for these regulations.

  17. Carbon footprints of heating oil and LPG heating systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Eric P., E-mail: ejohnson@ecosite.co.uk

    For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used thatmore » were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.« less

  18. Herbert Easterly auxiliary truck heater. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle`s primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work ninemore » different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.« less

  19. The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions: part 5. Summary, comparisons, and conclusions.

    PubMed

    Claxton, Larry D

    2015-01-01

    As seen through the previous reviews, each carbonaceous source of energy is associated with genotoxic and carcinogenic health risks; however, energy use is central to human society and provides many health benefits. These reviews examined the genotoxicity of carbonaceous sources of energy, focusing on the impacts due to the combustion of fuels and biomass. In previous reviews, information and data were used to examine occupational, industrial, household, and general environmental pollution as well as laboratory research. In this final summation, the effort is not only to summarize the previous reviews but to provide additional information to support any final conclusions. Included in the final observations are: (1) emissions from combusted carbonaceous fuels are very likely to include genotoxicants and/or carcinogens, and, as such, they can considerably increase the risk of adverse health effects in exposed humans, (2) environmental transformation is likely to increase genotoxicity of emissions, and (3) the world's poor households have an increased health risk because they have limited access to clean fuels and electricity. Because carbonaceous fuel emissions are highly complex, risk assessments are difficult; however, decision makers have many toxicological approaches for evaluating emissions. Although energy efficiency brings many benefits, it also involves health risks, as do renewable energy systems, if not managed carefully. The reviews do not examine climate change or non-carbonaceous fuels (e.g., nuclear fuels). Because these are not papers about the risk assessment or regulation of pollutants from carbon-based fuels, the discussions of regulations were to place research, concerns, and actions into a historical reference for the reader. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. DEVELOPMENT OF A HAZARDOUS WASTE INCINERATOR TARGET ANALYTE LIST OF PRODUCTS OF INCOMPLETE COMBUSTION

    EPA Science Inventory

    The report gives results of pilot-scale incineration testing to develop a comprehensive list of products of incomplete combustion (PICs) from hazardous waste combustion (HWC) systems. Project goals were to: (1) identify the total mass of organic compounds sufficiently to estimate...

  1. Internal combustion engine for natural gas compressor operation

    DOEpatents

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  2. Reducing NOx Emissions for a 600 MWe Down-Fired Pulverized-Coal Utility Boiler by Applying a Novel Combustion System.

    PubMed

    Ma, Lun; Fang, Qingyan; Lv, Dangzhen; Zhang, Cheng; Chen, Yiping; Chen, Gang; Duan, Xuenong; Wang, Xihuan

    2015-11-03

    A novel combustion system was applied to a 600 MWe Foster Wheeler (FW) down-fired pulverized-coal utility boiler to solve high NOx emissions, without causing an obvious increase in the carbon content of fly ash. The unit included moving fuel-lean nozzles from the arches to the front/rear walls and rearranging staged air as well as introducing separated overfire air (SOFA). Numerical simulations were carried out under the original and novel combustion systems to evaluate the performance of combustion and NOx emissions in the furnace. The simulated results were found to be in good agreement with the in situ measurements. The novel combustion system enlarged the recirculation zones below the arches, thereby strengthening the combustion stability considerably. The coal/air downward penetration depth was markedly extended, and the pulverized-coal travel path in the lower furnace significantly increased, which contributed to the burnout degree. The introduction of SOFA resulted in a low-oxygen and strong-reducing atmosphere in the lower furnace region to reduce NOx emissions evidently. The industrial measurements showed that NOx emissions at full load decreased significantly by 50%, from 1501 mg/m3 (O2 at 6%) to 751 mg/m3 (O2 at 6%). The carbon content in the fly ash increased only slightly, from 4.13 to 4.30%.

  3. Application of image converter camera to measure flame propagation in S. I. engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, A.; Ishii, K.; Sasaki, T.

    1989-01-01

    A combustion flame visualization system, for use as an engine diagnostics tool, was developed in order to evaluate combustion chamber shapes in the development stage of mass-produced spark ignition (S.I.) engines. The system consists of an image converter camera and a computer-aided image processing system. The system is capable of high speed photography (10,000 fps) at low intensity light (1,000 cd/m/sup 2/), and of real-time display of the raw images of combustion flames. By using this system, flame structure estimated from the brightness level on a photograph and direction of flame propagation in a mass-produced 4-valve engine were measured. Itmore » was observed that the difference in the structure and the propagation of the flame in the cases of 4-valve and quasi-2-valve combustion chambers, which has the same in the pressure diagram, were detected. The quasi-2-valve configuration was adopted in order to improve swirl intensity.« less

  4. Integrated exhaust gas recirculation and charge cooling system

    DOEpatents

    Wu, Ko-Jen

    2013-12-10

    An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.

  5. Efficient volatile metal removal from low rank coal in gasification, combustion, and processing systems and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bland, Alan E.; Sellakumar, Kumar Muthusami; Newcomer, Jesse D.

    Efficient coal pre-processing systems (69) integrated with gasification, oxy-combustion, and power plant systems include a drying chamber (28), a volatile metal removal chamber (30), recirculated gases, including recycled carbon dioxide (21), nitrogen (6), and gaseous exhaust (60) for increasing the efficiencies and lowering emissions in various coal processing systems.

  6. Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

    DOE PAGES

    Dempsey, Adam B.; Curran, Scott; Reitz, Rolf D.

    2015-04-14

    The focus of the present paper was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over amore » variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition. The experiments were conducted on a modern four cylinder light-duty diesel engine that was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. The results indicate that the authority to control the combustion phasing through the fuel delivery strategy (e.g., direct injection timing or premixed gasoline percentage) is not a strong function of the EHN concentration in the direct-injected fuel. It was also observed that NOx emissions are a strong function of the global EHN concentration in-cylinder and the combustion phasing. Finally, in general, NOx emissions are significantly elevated for gasoline/gasoline+EHN operation compared with gasoline/diesel RCCI operation at a given operating condition.« less

  7. Heart of the Hearth: Making the Popular Clean, Not the Clean Popular - Technology Research, Development, and Tools for Clean Biomass Cookstoves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gist, Ryan

    This technical report summarizes the work completed by BioLite in fulfilment of the US DOE EERE award. The work plan focused on three key objectives: developing an optimized combustion system that demonstrates high combustion efficiency and low PM 2.5 and CO emissions, integrate the system into popular stove phenotypes – side-fed rocket stove architecture like the BioLite HomeStove, and the Patsari chimney stove in Mexico such that they maintain their important phenotypical characteristics, independently evaluate quantitative fuel and emissions performance of the integrated ‘Turbo-Patsari’ in Mexican households. The project activities were organized into six major tasks: A. Develop, fabricate, andmore » test proof-of-concept prototypes B. Develop field prototypes, assess user feedback and field performance C. Define revised stove design for pre-production model, Identify manufacturing requirements and estimated cost to build, Conduct reliability, emissions, and performance testing of pre-production Turbo-Patsari D. Build pre-production Turbo-Patsari stove combustion cores E. Conduct pre-production field trials F. Summarize field trial results and evaluate Turbo-Patsari for potential volume production. A two-pronged approach was adopted for the above tasks. The first involved building a modular test platform that allowed parametric variation of multiple stove design parameters that directly affect its performance – heat output, thermal efficiency, and emissions. The second part of the approach comprised of building a surrogate Patsari based on GIRA’s specifications that could then be modified or retrofitted for optimum performance based on the learnings from the modular test platform. The following sections of the report will describe the findings of tests on these platform, the subsequent development, design, and installation of the Turbo-Patsari, and finally the in-home field trial.« less

  8. Theoretical Studies of Elementary Hydrocarbon Species and Their Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Wesley D.; Schaefer, Henry F.

    The research program supported by this DOE grant carried out both methodological development and computational applications of first-principles theoretical chemistry based on quantum mechanical wavefunctions, as directed toward understanding and harnessing the fundamental chemical physics of combustion. To build and refine the world’s database of thermochemistry, spectroscopy, and chemical kinetics, predictive and definitive computational methods are needed that push the envelope of modern electronic structure theory. The application of such methods has been made to gain comprehensive knowledge of the paradigmatic reaction networks by which the n- and i-propyl, t-butyl, and n-butyl radicals are oxidized by O 2. Numerous ROOmore » and QOOH intermediates in these R + O 2 reaction systems have been characterized along with the interconnecting isomerization transition states and the barriers leading to fragmentation. Other combustion-related intermediates have also been studied, including methylsulfinyl radical, cyclobutylidene, and radicals derived from acetaldehyde and vinyl alcohol. Theoretical advances have been achieved and made available to the scientific community by implementation into PSI4, an open-source electronic structure computer package emphasizing automation, advanced libraries, and interoperability. We have pursued the development of universal explicitly correlated methods applicable to general electronic wavefunctions, as well as a framework that allows multideterminant reference functions to be expressed as a single determinant from quasiparticle operators. Finally, a rigorous analytical tool for correlated wavefunctions has been created to elucidate dispersion interactions, which play essential roles in many areas of chemistry, but whose effects are often masked and enigmatic. Our research decomposes and analyzes the coupled-cluster electron correlation energy in molecular systems as a function of interelectronic distance. Concepts are emerging that can be used to explain the influence of dispersion on the thermochemistry of large hydrocarbons, including fuels important to combustion technologies.« less

  9. Devices to improve the performance of a conventional two-stroke spark ignition engine

    NASA Astrophysics Data System (ADS)

    Poola, R. B.; Nagalingam, B.; Gopalakrishnan, K. V.

    1995-08-01

    This paper presents research efforts made in three different phases with the objective of improving the fuel economy of and reducing exhaust emissions from conventional, carbureted, two-stroke spark ignition (SI) engines, which are widely employed in two-wheel transportation in India. A review concerning the existing two-stroke engine technology for this application is included. In the first phase, a new scavenging system was developed and tested to reduce the loss of fresh charge through the exhaust port. In the second phase, the following measures were carried out to improve the combustion process: (1) using an in-cylinder catalyst, such as copper, chromium, and nickel, in the form of coating; (2) providing moderate thermal insulation in the combustion chamber, either by depositing thin ceramic material or by metal inserts; (3) developing a high-energy ignition system; and (4) employing high-octane fuel, such as methanol, ethanol, eucalyptus oil, and orange oil, as a blending agent with gasoline. Based on the effectiveness of the above measures, an optimized design was developed in the final phase to achieve improved performance. Test results indicate that with an optimized two-stroke SI engine, the maximum percentage improvement in brake thermal efficiency is about 31%, together with a reduction of 3400 ppm in hydrocarbons (HC) and 3% by volume of carbon monoxide (CO) emissions over the normal engine (at 3 kW, 3000 rpm). Higher cylinder peak pressures (3-5 bar), lower ignition delay (2-4 degrees CA), and shorter combustion duration (4-10 degrees CA) are obtained. The knock-limited power output is also enhanced by 12.7% at a high compression ratio (CR) of 9:1. The proposed modifications in the optimized design are simple, low-cost, and easy to adopt for both production and existing engines.

  10. Managing Toxicological Risks: The Legacy of Shuttle Operations

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Space toxicology greatly matured as a result of research and operations associated with the Shuttle. Materials offgassing had been a manageable concern since the Apollo days, but we learned to pay careful attention to compounds that could escape containment, to combustion events, to toxic propellants, to overuse of utility compounds, and to microbial and human metabolites. We also learned that flying real-time hardware to monitor air pollutants was a pathway with unanticipated speed bumps. Each new orbiter was tested for any excess offgassing products that could pollute the air during flight. In the late 1990s toxicologists and safety experts developed a 5-level toxicity rating system to guide containment of toxic compounds. This system is now in use aboard the International Space Station (ISS). Several combustion events during Shuttle Mir and also during Shuttle free-flight impelled toxicologists to identify hardware capable of monitoring toxic products; however, rapid adaptation of the hardware for the unique conditions of spaceflight caused unexpected missteps. Current and planned combustion analyzers would be useful to commercial partners that wish to manage the risk of health effects from thermal events. Propellants received special attention during the Shuttle program because of the possibility of bringing them into the habitable volume on extravehicular activity suits. Monitors for the airlocks were developed to mitigate this risk. Utility materials, such as lubricants, posed limited toxicological problems because water was not recovered. One clearly documented case of microbial metabolites polluting the Shuttle atmosphere was noted, and this has implications for commercial flights and control of microbes. Finally, carbon dioxide, the major human metabolite, episodically presented air quality problems aboard Shuttle, especially when nominal air flows were obstructed. Commercial vehicles must maintain robust air circulation given the anticipated high density of human occupants.

  11. Combustion characteristics of Douglas Fir planer shavings. Technical progress report No. 4, September 16, 1977--September 15, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junge, D.C.

    1978-12-01

    Significant quantities of wood residue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the the combustion process in industrialmore » boilers serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. This report presents data on the combustion characteristics of Douglas Fir planer shavings. The data were obtained in a pilot scale combustion test facility at Oregon State Univerisity. Other technical reports present data on the combustion characteristics of: Douglas Fir bark, Red Alder sawdust, Red Alder bark, Ponderosa pine bark, Hemlock bark, and Eastern White Pine bark. An executive summary report is also available which compares the combustion characteristics of the various fuel species.« less

  12. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    PubMed

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Combustion characteristics and turbulence modeling of swirling reacting flow in solid fuel ramjet

    NASA Astrophysics Data System (ADS)

    Musa, Omer; Xiong, Chen; Changsheng, Zhou

    2017-10-01

    This paper reviews the historical studies have been done on the solid-fuel ramjet engine and difficulties associated with numerical modeling of swirling flow with combustible gases. A literature survey about works related to numerical and experimental investigations on solid-fuel ramjet as well as using swirling flow and different numerical approaches has been provided. An overview of turbulence modeling of swirling flow and the behavior of turbulence at streamline curvature and system rotation are presented. A new and simple curvature/correction factor is proposed in order to reduce the programming complexity of SST-CC turbulence model. Finally, numerical and experimental investigations on the impact of swirling flow on SFRJ have been carried out. For that regard, a multi-physics coupling code is developed to solve the problems of multi-physics coupling of fluid mechanics, solid pyrolysis, heat transfer, thermodynamics, and chemical kinetics. The connected-pipe test facility is used to carry out the experiments. The results showed a positive impact of swirling flow on SFRJ along with, three correlations are proposed.

  14. Laminar soot processes

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Lin, K.-C.; Faeth, G. M.

    1995-01-01

    Soot processes within hydrocarbon fueled flames are important because they affect the durability and performance of propulsion systems, the hazards of unwanted fires, the pollutant and particulate emissions from combustion processes, and the potential for developing computational combustion. Motivated by these observations, the present investigation is studying soot processes in laminar diffusion and premixed flames in order to better understand the soot and thermal radiation emissions of luminous flames. Laminar flames are being studied due to their experimental and computational tractability, noting the relevance of such results to practical turbulent flames through the laminar flamelet concept. Weakly-buoyant and nonbuoyant laminar diffusion flames are being considered because buoyancy affects soot processes in flames while most practical flames involve negligible effects of buoyancy. Thus, low-pressure weakly-buoyant flames are being observed during ground-based experiments while near atmospheric pressure nonbuoyant flames will be observed during space flight experiments at microgravity. Finally, premixed laminar flames also are being considered in order to observe some aspects of soot formation for simpler flame conditions than diffusion flames. The main emphasis of current work has been on measurements of soot nucleation and growth in laminar diffusion and premixed flames.

  15. Using Sediment Records to Reconstruct Historical Inputs Combustion-Derived Contaminants to Urban Airsheds/Watersheds: A Case Study From the Puget Sound

    NASA Astrophysics Data System (ADS)

    Louchouarn, P. P.; Kuo, L.; Brandenberger, J.; Marcantonio, F.; Wade, T. L.; Crecelius, E.; Gobeil, C.

    2008-12-01

    Urban centers are major sources of combustion-derived particulate matter (e.g. black carbon (BC), polycyclic aromatic hydrocarbons (PAH), anhydrosugars) and volatile organic compounds to the atmosphere. Evidence is mounting that atmospheric emissions from combustion sources remain major contributors to air pollution of urban systems. For example, recent historical reconstructions of depositional fluxes for pyrogenic PAHs close to urban systems have shown an unanticipated reversal in the trends of decreasing emissions initiated during the mid-20th Century. Here we compare a series of historical reconstructions of combustion emission in urban and rural airsheds over the last century using sedimentary records. A complex suite of combustion proxies (BC, PAHs, anhydrosugars, stable lead concentrations and isotope signatures) assisted in elucidating major changes in the type of atmospheric aerosols originating from specific processes (i.e. biomass burning vs. fossil fuel combustion) or fuel sources (wood vs. coal vs. oil). In all studied locations, coal continues to be a major source of combustion-derived aerosols since the early 20th Century. Recently, however, oil and biomass combustion have become substantial additional sources of atmospheric contamination. In the Puget Sound basin, along the Pacific Northwest region of the U.S., rural locations not impacted by direct point sources of contamination have helped assess the influence of catalytic converters on concentrations of oil-derived PAH and lead inputs since the early 1970s. Although atmospheric deposition of lead has continued to drop since the introduction of catalytic converters and ban on leaded gasoline, PAH inputs have "rebounded" in the last decade. A similar steady and recent rise in PAH accumulations in urban systems has been ascribed to continued urban sprawl and increasing vehicular traffic. In the U.S., automotive emissions, whether from gasoline or diesel combustion, are becoming a major source of combustion-derived PM and BC to the atmosphere and have started to replace coal as the major source in some surficial reservoirs. This increased urban influence of gasoline and diesel combustion on BC emissions was also observed in Europe both from model estimates as well as from measured fluxes in recent lake sediments.

  16. Research and development studies for MHD/coal power flow train components. Part II. Diagnostics and instrumentation MHD channel combutor. Progres report. [Flow calculations for combustors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, M.H.; Lederman, S.; Sforza, P.

    1980-01-01

    This is Part II of the Technical Progress Report on Tasks II-IV of the subject contract. It deals sequentially with Diagnostics and Instrumentation, the MHD Channel and the Combustor. During this period, a significant effort has gone into establishing a schematic design of a laser diagnostic system which can be applied to the flow-train of the MHD system, and to acquiring, assembling and shaking down a laboratory set-up upon which a prototype can be based. With further reference to the MHD Channel, a model analysis has been initiated of the two-dimensional MHD boundary layer between two electrodes in the limitmore » of small magnetic Reynolds numbers with negligible effect of the flow on the applied magnetic field. An objective of this model study is the assessment of variations in initial conditions on the boundary layer behavior. Finally, the problem of combustion modeling has been studied on an initial basis. The open reports on this subject depict a high degree of empiricism, centering attention on global behavior mainly. A quasi-one-dimensional model code has been set-up to check some of the existing estimates. Also a code for equilibrium combustion has been activated.« less

  17. Low NOx Heavy Fuel Combustor Concept Program

    NASA Technical Reports Server (NTRS)

    Novick, A. S.; Troth, D. L.

    1981-01-01

    The development of the technology required to operate an industrial gas turbine combustion system on minimally processed, heavy petroleum or residual fuels having high levels of fuel-bound nitrogen (FBN) while producing acceptable levels of exhaust emissions is discussed. Three combustor concepts were designed and fabricated. Three fuels were supplied for the combustor test demonstrations: a typical middle distillate fuel, a heavy residual fuel, and a synthetic coal-derived fuel. The primary concept was an air staged, variable-geometry combustor designed to produce low emissions from fuels having high levels of FBN. This combustor used a long residence time, fuel-rich primary combustion zone followed by a quick-quench air mixer to rapidly dilute the fuel rich products for the fuel-lean final burnout of the fuel. This combustor, called the rich quench lean (RQL) combustor, was extensively tested using each fuel over the entire power range of the model 570 K engine. Also, a series of parameteric tests was conducted to determine the combustor's sensitivity to rich-zone equivalence ratio, lean-zone equivalence ratio, rich-zone residence time, and overall system pressure drop. Minimum nitrogen oxide emissions were measured at 50 to 55 ppmv at maximum continuous power for all three fuels. Smoke was less than a 10 SAE smoke number.

  18. SONOTECH, INC. FREQUENCY-TUNABLE PULSE COMBUSTION SYSTEM (CELLO PULSE BURNER) - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    Sonotech, Inc. (Sonotech) of Atlanta, Georgia, has developed a pulse combustion burner technology that claims to offer benefits when applied in a variety of combustion processes. The technology incorporates a combustor that can be tuned to induce large-amplitude acoustic or soni...

  19. Remote control flare stack igniter for combustible gases

    NASA Technical Reports Server (NTRS)

    Ray, W. L.

    1972-01-01

    Device has been designed and developed for igniting nonrecoverable combustible gases and sustaining combustion of gases evolving from various gas vent stacks. Igniter is superior to existing systems because of simplicity of operation, low cost fabrication, installation, operational and maintainability features, and excellent reliability in all phases of required operations.

  20. The numerical modelling and process simulation for the fault diagnosis of rotary kiln incinerator.

    PubMed

    Roh, S D; Kim, S W; Cho, W S

    2001-10-01

    The numerical modelling and process simulation for the fault diagnosis of rotary kiln incinerator were accomplished. In the numerical modelling, two models applied to the modelling within the kiln are the combustion chamber model including the mass and energy balance equations for two combustion chambers and 3D thermal model. The combustion chamber model predicts temperature within the kiln, flue gas composition, flux and heat of combustion. Using the combustion chamber model and 3D thermal model, the production-rules for the process simulation can be obtained through interrelation analysis between control and operation variables. The process simulation of the kiln is operated with the production-rules for automatic operation. The process simulation aims to provide fundamental solutions to the problems in incineration process by introducing an online expert control system to provide an integrity in process control and management. Knowledge-based expert control systems use symbolic logic and heuristic rules to find solutions for various types of problems. It was implemented to be a hybrid intelligent expert control system by mutually connecting with the process control systems which has the capability of process diagnosis, analysis and control.

  1. Assessment of Turbulence-Chemistry Interaction Models in the National Combustion Code (NCC) - Part I

    NASA Technical Reports Server (NTRS)

    Wey, Thomas Changju; Liu, Nan-suey

    2011-01-01

    This paper describes the implementations of the linear-eddy model (LEM) and an Eulerian FDF/PDF model in the National Combustion Code (NCC) for the simulation of turbulent combustion. The impacts of these two models, along with the so called laminar chemistry model, are then illustrated via the preliminary results from two combustion systems: a nine-element gas fueled combustor and a single-element liquid fueled combustor.

  2. The problem of carrying out a diagnosis of an internal combustion engine by vibroacoustical parameters

    NASA Technical Reports Server (NTRS)

    Lukanin, V. N.; Sidorov, V. I.

    1973-01-01

    The physics of noise formation in an internal combustion engine is discussed. A dependence of the acoustical radiation on the engine operating process, its construction, and operational parameters, as well as on the degree of wear on its parts, has been established. An example of tests conducted on an internal combustion engine is provided. A system for cybernetic diagnostics for internal combustion engines by vibroacoustical parameters is diagrammed.

  3. W.A. Parish Post Combustion CO 2 Capture and Sequestration Project Final Public Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armpriester, Anthony

    The Petra Nova Project is a commercial scale post-combustion carbon dioxide capture project that is being developed by a joint venture between NRG Energy (NRG) and JX Nippon Oil and Gas Exploration (JX). The project is designed to separate and capture carbon dioxide from an existing coal-fired unit's flue gas slipstream at NRG's W.A. Parish Generation Station located southwest of Houston, Texas. The captured carbon dioxide will be transported by pipeline and injected into the West Ranch oil field to boost oil production. The project, which is partially funded by financial assistance from the U.S. Department of Energy will usemore » Mitsubishi Heavy Industries of America, Inc.'s Kansai Mitsubishi Carbon Dioxide Recovery (KM-CDR(R)) advanced amine-based carbon dioxide absorption technology to treat and capture at least 90% of the carbon dioxide from a 240 megawatt equivalent flue gas slipstream off of Unit 8 at W.A. Parish. The project will capture approximately 5,000 tons of carbon dioxide per day or 1.5 million tons per year that Unit 8 would otherwise emit, representing the largest commercial scale deployment of post-combustion carbon dioxide capture at a coal power plant to date. The joint venture issued full notice to proceed in July 2014 and when complete, the project is expected to be the world's largest post-combustion carbon dioxide capture facility on an existing coal plant. The detailed engineering is sufficiently complete to prepare and issue the Final Public Design Report.« less

  4. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Gregory T.; Sellnau, Mark C.

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder ofmore » the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.« less

  5. A nonlinear dynamical system for combustion instability in a pulse model combustor

    NASA Astrophysics Data System (ADS)

    Takagi, Kazushi; Gotoda, Hiroshi

    2016-11-01

    We theoretically and numerically study the bifurcation phenomena of nonlinear dynamical system describing combustion instability in a pulse model combustor on the basis of dynamical system theory and complex network theory. The dynamical behavior of pressure fluctuations undergoes a significant transition from steady-state to deterministic chaos via the period-doubling cascade process known as Feigenbaum scenario with decreasing the characteristic flow time. Recurrence plots and recurrence networks analysis we adopted in this study can quantify the significant changes in dynamic behavior of combustion instability that cannot be captured in the bifurcation diagram.

  6. Method and apparatus for effecting light-off of a catalytic converter in a hybrid powertrain system

    DOEpatents

    Roos, Bryan Nathaniel; Spohn, Brian L

    2013-07-02

    A powertrain system includes a hybrid transmission and an internal combustion engine coupled to an exhaust aftertreatment device. A method for operating the powertrain system includes operating the hybrid transmission to generate tractive torque responsive to an operator torque request with the internal combustion engine in an engine-off state so long as the tractive torque is less than a threshold. The internal combustion engine is operated in an engine-on state at preferred operating conditions to effect light-off of the exhaust aftertreatment device and the hybrid transmission is coincidentally operated to generate tractive torque responsive to the operator torque request when the operator torque request exceeds the threshold. The internal combustion engine is then operated in the engine-on state to generate tractive torque responsive to the operator torque request.

  7. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    NASA Astrophysics Data System (ADS)

    Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.

    2013-06-01

    Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  8. Low emission U-fired boiler combustion system

    DOEpatents

    Ake, Terence; Beittel, Roderick; Lisauskas, Robert A.; Reicker, Eric

    2000-01-01

    At least one main combustion chamber contains at least one pulverized coal burner. Each pulverized coal burner is operatively arranged for minimizing NO.sub.X production and for maintaining a predetermined operating temperature to liquefy ash within the combustion chamber. The combustion chamber includes a slag drain for removing slag from the combustion chamber. A slag screen is positioned in a generally U-shaped furnace flow pattern. The slag screen is positioned between the combustion chamber and a radiant furnace. The radiant furnace includes a reburning zone for in-furnace No.sub.X reduction. The reburning zone extends between a reburning fuel injection source and at least one overfire air injection port for injecting air.

  9. Electric vehicle life cycle cost analysis : final research project report.

    DOT National Transportation Integrated Search

    2017-02-01

    This project compared total life cycle costs of battery electric vehicles (BEV), plug-in hybrid electric vehicles (PHEV), hybrid electric vehicles (HEV), and vehicles with internal combustion engines (ICE). The analysis considered capital and operati...

  10. Lightweight Small Arms Technologies

    DTIC Science & Technology

    2006-11-01

    conducted using several methods. Initial measurements were obtained using a strand burner , followed by closed bomb measurements using both pressed... pellets and entire cases. Specialized fixtures were developed to measure primer and booster combustion properties. The final verification of interior

  11. Scaling of Performance in Liquid Propellant Rocket Engine Combustors

    NASA Technical Reports Server (NTRS)

    Hulka, James R.

    2007-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  12. 38th JANNAF Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Eggleston, Debra S. (Editor); Gannaway, Mary T. (Editor)

    2002-01-01

    This volume, the first of two volumes, is a collection of 55 unclassified/unlimited-distribution papers which were presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 38th Combustion Subcommittee (CS), 26 th Airbreathing Propulsion Subcommittee (APS), 20th Propulsion Systems Hazards Subcommittee (PSHS), and 21 Modeling and Simulation Subcommittee. The meeting was held 8-12 April 2002 at the Bayside Inn at The Sandestin Golf & Beach Resort and Eglin Air Force Base, Destin, Florida. Topics cover five major technology areas including: 1) Combustion - Propellant Combustion, Ingredient Kinetics, Metal Combustion, Decomposition Processes and Material Characterization, Rocket Motor Combustion, and Liquid & Hybrid Combustion; 2) Liquid Rocket Engines - Low Cost Hydrocarbon Liquid Rocket Engines, Liquid Propulsion Turbines, Liquid Propulsion Pumps, and Staged Combustion Injector Technology; 3) Modeling & Simulation - Development of Multi- Disciplinary RBCC Modeling, Gun Modeling, and Computational Modeling for Liquid Propellant Combustion; 4) Guns Gun Propelling Charge Design, and ETC Gun Propulsion; and 5) Airbreathing - Scramjet an Ramjet- S&T Program Overviews.

  13. Turbo-generator control with variable valve actuation

    DOEpatents

    Vuk, Carl T [Denver, IA

    2011-02-22

    An internal combustion engine incorporating a turbo-generator and one or more variably activated exhaust valves. The exhaust valves are adapted to variably release exhaust gases from a combustion cylinder during a combustion cycle to an exhaust system. The turbo-generator is adapted to receive exhaust gases from the exhaust system and rotationally harness energy therefrom to produce electrical power. A controller is adapted to command the exhaust valve to variably open in response to a desired output for the turbo-generator.

  14. Thermal ignition combustion system

    DOEpatents

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  15. Thermal ignition combustion system

    DOEpatents

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  16. Optical backscatter probe for sensing particulate in a combustion gas stream

    DOEpatents

    Parks, James E; Partridge, William P

    2013-05-28

    A system for sensing particulate in a combustion gas stream is disclosed. The system transmits light into a combustion gas stream, and thereafter detects a portion of the transmitted light as scattered light in an amount corresponding to the amount of particulates in the emissions. Purge gas may be supplied adjacent the light supply and the detector to reduce particles in the emissions from coating or otherwise compromising the transmission of light into the emissions and recovery of scattered light from the emissions.

  17. Electric machine for hybrid motor vehicle

    DOEpatents

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  18. Method and device for determining heats of combustion of gaseous hydrocarbons

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Sprinkle, Danny R. (Inventor); Puster, Richard L. (Inventor)

    1988-01-01

    A method and device is provided for a quick, accurate and on-line determination of heats of combustion of gaseous hydrocarbons. First, the amount of oxygen in the carrier air stream is sensed by an oxygen sensing system. Second, three individual volumetric flow rates of oxygen, carrier stream air, and hydrocrabon test gas are introduced into a burner. The hydrocarbon test gas is fed into the burner at a volumetric flow rate, n, measured by a flowmeter. Third, the amount of oxygen in the resulting combustion products is sensed by an oxygen sensing system. Fourth, the volumetric flow rate of oxygen is adjusted until the amount of oxygen in the combustion product equals the amount of oxygen previously sensed in the carrier air stream. This equalizing volumetric flow rate is m and is measured by a flowmeter. The heat of combustion of the hydrocrabon test gas is then determined from the ratio m/n.

  19. System and method for reducing combustion dynamics in a combustor

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

    2013-08-20

    A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.

  20. Oil shale retorting and combustion system

    DOEpatents

    Pitrolo, Augustine A.; Mei, Joseph S.; Shang, Jerry Y.

    1983-01-01

    The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

  1. A sustained-arc ignition system for internal combustion engines

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  2. Simulation of Combustion Systems with Realistic g-jitter

    NASA Technical Reports Server (NTRS)

    Mell, William E.; McGrattan, Kevin B.; Baum, Howard R.

    2003-01-01

    In this project a transient, fully three-dimensional computer simulation code was developed to simulate the effects of realistic g-jitter on a number of combustion systems. The simulation code is capable of simulating flame spread on a solid and nonpremixed or premixed gaseous combustion in nonturbulent flow with simple combustion models. Simple combustion models were used to preserve computational efficiency since this is meant to be an engineering code. Also, the use of sophisticated turbulence models was not pursued (a simple Smagorinsky type model can be implemented if deemed appropriate) because if flow velocities are large enough for turbulence to develop in a reduced gravity combustion scenario it is unlikely that g-jitter disturbances (in NASA's reduced gravity facilities) will play an important role in the flame dynamics. Acceleration disturbances of realistic orientation, magnitude, and time dependence can be easily included in the simulation. The simulation algorithm was based on techniques used in an existing large eddy simulation code which has successfully simulated fire dynamics in complex domains. A series of simulations with measured and predicted acceleration disturbances on the International Space Station (ISS) are presented. The results of this series of simulations suggested a passive isolation system and appropriate scheduling of crew activity would provide a sufficiently "quiet" acceleration environment for spherical diffusion flames.

  3. Photographic Study of Combustion in a Rocket Engine I : Variation in Combustion of Liquid Oxygen and Gasoline with Seven Methods of Propellant Injection

    NASA Technical Reports Server (NTRS)

    Bellman, Donald R; Humphrey, Jack C

    1948-01-01

    Motion pictures at camera speeds up to 3000 frames per second were taken of the combustion of liquid oxygen and gasoline in a 100-pound-thrust rocket engine. The engine consisted of thin contour and injection plates clamped between two clear plastic sheets forming a two-dimensional engine with a view of the entire combustion chamber and nozzle. A photographic investigation was made of the effect of seven methods of propellant injection on the uniformity of combustion. From the photographs, it was found that the flame front extended almost to the faces of the injectors with most of the injection methods, all the injection systems resulted in a considerable nonuniformity of combustion, and luminosity rapidly decreased in the divergent part of the nozzle. Pressure vibration records indicated combustion vibrations that approximately corresponded to the resonant frequencies of the length and the thickness of the chamber. The combustion temperature divided by the molecular weight of the combustion gases as determined from the combustion photographs was about 50 to 70 percent of the theoretical value.

  4. Coanda injection system for axially staged low emission combustors

    DOEpatents

    Evulet, Andrei Tristan [Clifton Park, NY; Varatharajan, Balachandar [Cincinnati, OH; Kraemer, Gilbert Otto [Greer, SC; ElKady, Ahmed Mostafa [Niskayuna, NY; Lacy, Benjamin Paul [Greer, SC

    2012-05-15

    The low emission combustor includes a combustor housing defining a combustion chamber having a plurality of combustion zones. A liner sleeve is disposed in the combustion housing with a gap formed between the liner sleeve and the combustor housing. A secondary nozzle is disposed along a centerline of the combustion chamber and configured to inject a first fluid comprising air, at least one diluent, fuel, or combinations thereof to a downstream side of a first combustion zone among the plurality of combustion zones. A plurality of primary fuel nozzles is disposed proximate to an upstream side of the combustion chamber and located around the secondary nozzle and configured to inject a second fluid comprising air and fuel to an upstream side of the first combustion zone. The combustor also includes a plurality of tertiary coanda nozzles. Each tertiary coanda nozzle is coupled to a respective dilution hole. The tertiary coanda nozzles are configured to inject a third fluid comprising air, at least one other diluent, fuel, or combinations thereof to one or more remaining combustion zones among the plurality of combustion zones.

  5. The combustion behavior of diesel/CNG mixtures in a constant volume combustion chamber

    NASA Astrophysics Data System (ADS)

    Firmansyah; Aziz, A. R. A.; Heikal, M. R.

    2015-12-01

    The stringent emissions and needs to increase fuel efficiency makes controlled auto-ignition (CAI) based combustion an attractive alternative for the new combustion system. However, the combustion control is the main obstacles in its development. Reactivity controlled compression ignition (RCCI) that employs two fuels with significantly different in reactivity proven to be able to control the combustion. The RCCI concept applied in a constant volume chamber fuelled with direct injected diesel and compressed natural gas (CNG) was tested. The mixture composition is varied from 0 - 100% diesel/CNG at lambda 1 with main data collection are pressure profile and combustion images. The results show that diesel-CNG mixture significantly shows better combustion compared to diesel only. It is found that CNG is delaying the diesel combustion and at the same time assisting in diesel distribution inside the chamber. This combination creates a multipoint ignition of diesel throughout the chamber that generate very fast heat release rate and higher maximum pressure. Furthermore, lighter yellow color of the flame indicates lower soot production in compared with diesel combustion.

  6. Interaction of turbulent premixed flames with combustion products: Role of stoichiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coriton, Bruno Rene Leon; Frank, Jonathan H.; Gomez, Alessandro

    Stabilization methods of turbulent flames often involve mixing of reactants with hot products of combustion. The stabilizing effect of combustion product enthalpy has been long recognized, but the role played by the chemical composition of the product gases is typically overlooked. We employ a counterflow system to pinpoint the effects of the combustion product stoichiometry on the structure of turbulent premixed flames under conditions of both stable burning and local extinction. To that end, a turbulent jet of lean-to-rich, CH 4/O 2/N 2-premixed reactants at a turbulent Reynolds number of 1050 was opposed to a stream of hot products ofmore » combustion that were generated in a preburner. While the combustion product stream temperature was kept constant, its stoichiometry was varied independently from that of the reactant stream, leading to reactant-to-product stratification of relevance to practical combustion systems. The detailed structure of the turbulent flame front was analyzed in two series of experiments using laser-induced fluorescence (LIF): joint CH 2O LIF and OH LIF measurements and joint CO LIF and OH LIF measurements. Results revealed that a decrease in local CH 2O+OH and CO+OH reaction rates coincide with the depletion of OH radicals in the vicinity of the combustion product stream. These critical combustion reaction rates were more readily quenched in the presence of products of combustion from a stoichiometric flame, whereas they were favored by lean combustion products. As a result, stoichiometric combustion products contributed to a greater occurrence of local extinction. Furthermore, they limited the capacity of premixed reactants to ignite and of the turbulent premixed flames to stabilize. In contrast, lean and rich combustion products facilitated flame ignition and stability and reduced the rate of local extinction. The influence of the combustion product stream on the turbulent flame front was limited to a zone of approximately two millimeters from the gas mixing layer interface (GMLI) of the product stream. As a result, flame fronts that were separated from the GMLI by larger distances were unaffected by the product stream stoichiometry.« less

  7. Interaction of turbulent premixed flames with combustion products: Role of stoichiometry

    DOE PAGES

    Coriton, Bruno Rene Leon; Frank, Jonathan H.; Gomez, Alessandro

    2016-05-30

    Stabilization methods of turbulent flames often involve mixing of reactants with hot products of combustion. The stabilizing effect of combustion product enthalpy has been long recognized, but the role played by the chemical composition of the product gases is typically overlooked. We employ a counterflow system to pinpoint the effects of the combustion product stoichiometry on the structure of turbulent premixed flames under conditions of both stable burning and local extinction. To that end, a turbulent jet of lean-to-rich, CH 4/O 2/N 2-premixed reactants at a turbulent Reynolds number of 1050 was opposed to a stream of hot products ofmore » combustion that were generated in a preburner. While the combustion product stream temperature was kept constant, its stoichiometry was varied independently from that of the reactant stream, leading to reactant-to-product stratification of relevance to practical combustion systems. The detailed structure of the turbulent flame front was analyzed in two series of experiments using laser-induced fluorescence (LIF): joint CH 2O LIF and OH LIF measurements and joint CO LIF and OH LIF measurements. Results revealed that a decrease in local CH 2O+OH and CO+OH reaction rates coincide with the depletion of OH radicals in the vicinity of the combustion product stream. These critical combustion reaction rates were more readily quenched in the presence of products of combustion from a stoichiometric flame, whereas they were favored by lean combustion products. As a result, stoichiometric combustion products contributed to a greater occurrence of local extinction. Furthermore, they limited the capacity of premixed reactants to ignite and of the turbulent premixed flames to stabilize. In contrast, lean and rich combustion products facilitated flame ignition and stability and reduced the rate of local extinction. The influence of the combustion product stream on the turbulent flame front was limited to a zone of approximately two millimeters from the gas mixing layer interface (GMLI) of the product stream. As a result, flame fronts that were separated from the GMLI by larger distances were unaffected by the product stream stoichiometry.« less

  8. Lean, premixed, prevaporized combustion for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1979-01-01

    The application of lean, premixed, prevaporized combustion to aircraft turbine engine systems can result in benefits in terms of superior combustion performance, improved combustor and turbine durability, and environmentally acceptable pollutant emissions. Lean, premixed prevaporized combustion is particularly attractive for reducing the oxides of nitrogen emissions during high altitude cruise. The NASA stratospheric cruise emission reduction program will evolve and demonstrate lean, premixed, prevaporized combustion technology for aircraft engines. This multiphased program is described. In addition, the various elements of the fundamental studies phase of the program are reviewed, and results to date of many of these studies are summarized.

  9. Particulate matter emissions, and metals and toxic elements in airborne particulates emitted from biomass combustion: The importance of biomass type and combustion conditions.

    PubMed

    Zosima, Angela T; Tsakanika, Lamprini-Areti V; Ochsenkühn-Petropoulou, Maria Th

    2017-05-12

    The aim of this study was to investigate the impact of biomass combustion with respect to burning conditions and fuel types on particulate matter emissions (PM 10 ) and their metals as well as toxic elements content. For this purpose, different lab scale burning conditions were tested (20 and 13% O 2 in the exhaust gas which simulate an incomplete and complete combustion respectively). Furthermore, two pellet stoves (8.5 and 10 kW) and one open fireplace were also tested. In all cases, 8 fuel types of biomass produced in Greece were used. Average PM 10 emissions ranged at laboratory-scale combustions from about 65 to 170 mg/m 3 with flow oxygen at 13% in the exhaust gas and from 85 to 220 mg/m 3 at 20% O 2 . At pellet stoves the emissions were found lower (35 -85 mg/m 3 ) than the open fireplace (105-195 mg/m 3 ). The maximum permitted particle emission limit is 150 mg/m 3 . Metals on the PM 10 filters were determined by several spectrometric techniques after appropriate digestion or acid leaching of the filters, and the results obtained by these two methods were compared. The concentration of PM 10 as well as the total concentration of the metals on the filters after the digestion procedure appeared higher at laboratory-scale combustions with flow oxygen at 20% in the exhaust gas and even higher at fireplace in comparison to laboratory-scale combustions with 13% O 2 and pellet stoves. Modern combustion appliances and appropriate types of biomass emit lower PM 10 emissions and lower concentration of metals than the traditional devices where incomplete combustion conditions are observed. Finally, a comparison with other studies was conducted resulting in similar results.

  10. Study on the valorization routes of ashes from thermoelectric power plants working under mono-and co-combustion regimes

    NASA Astrophysics Data System (ADS)

    Barbosa, Rui Pedro Fernandes

    The main objective of this thesis was to study new valorization routes of ashes produced in combustion and co-combustion processes. Three main valorization pathways were analyzed: (i)production of cement mortars, (ii) production of concretes, and (iii) use as chemical agents to remove contaminants from wastewaters. Firstly, the ashes produced during the mono-combustion of coal, co-combustion of coal and meat and bone meal (MBM), and mono-combustion of MBM were characterized. The aim of this study was to understand the ashes properties in extreme levels of substitution of coal by a residue with a high contamination of specific metals. The substitution of coal by MBM produced ashes with higher content of heavy metals. Secondly, the ashes coming from an industrial power plant working under mono-combustion(coal) and co-combustion conditions (coal+sewage sludge+MBM) were studied. The use of cofuels did not promote significant changes in the chemical and ecotoxicological properties of ashes. Fly ashes were successfully stabilized/solidified in cement mortar, and bottom and circulating ashes were successfully used as raw materials in concrete. The third step involved the characterization and valorization of biomass ashes resulting from the combustion of forestry residues. The highest concentrations of metals/metalloids were found in the lowest particle size fractions of ashes. Biomass ashes successfully substituted cement and natural aggregates in concretes, without compromising their mechanical, chemical, and ecotoxicological properties. Finally, the biomass ashes were tested as chemical agents to remove contaminants from wastewaters. The removal of P, mainly phosphates, and Pb from wastewaters was assayed. Biomass ashes presented a high capacity to remove phosphates. As fly ashes were more efficient in removing phosphates, they were further used to remove Pb from wastewaters. Again, they presented a high efficiency in Pb removal. New potential valorization routes for these ashes are now opened, contributing to improve their valorization rates.

  11. PARTITIONING OF THE REFRACTORY METALS, NICKEL AND CHROMIUM, IN COMBUSTION SYSTEMS

    EPA Science Inventory

    The partitioning of nickel (Ni) and Chromium (Cr) in combustion systems was investigated theoretically and experimentally. In comparison to other volatile and semi-volatile metals, both Ni and Cr are usually considered to be refractory (non-volatile). Theoretical predictions ba...

  12. POSSIBLE ROLE OF INDOOR RADON REDUCTION SYSTEMS IN BACK-DRAFTING RESIDENTIAL COMBUSTION APPLIANCES

    EPA Science Inventory

    The article gives results of a computational sensitivity analysis conducted to identify conditions under which residential active soil depressurization (ASD) systems for indoor radon reduction might contribute to or create back-drafting of natural draft combustion appliances. Par...

  13. SITE TECHNOLOGY CAPSULE: SONOTECH PULSE COMBUSTION SYSTEM

    EPA Science Inventory

    Sonotech has targeted waste incineration as a potential application for this technology. Based on bench-scale rotary-kiln simulator tests, Sonotech proposed a demonstration under the SITE program to evaluate the Sonotech pulse combustion system on a larger scale at EPA's IRF in J...

  14. Annual Report: DOE Advanced Combustion Systems & Fuels R&D; Light-Duty Diesel Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, Stephen

    Despite compliance issues in previous years, automakers have demonstrated that the newest generation of diesel power trains are capable of meeting all federal and state regulations (EPA, 2016). Diesels continue to be a cost-effective, efficient, powerful propulsion source for many light- and medium-duty vehicle applications (Martec, 2016). Even modest reductions in the fuel consumption of light- and medium duty diesel vehicles in the U.S. will eliminate millions of tons of CO2 emissions per year. Continued improvement of diesel combustion systems will play an important role in reducing fleet fuel consumption, but these improvements will require an unprecedented scientific understanding ofmore » how changes in engine design and calibration affect the mixture preparation, combustion, and pollutant formation processes that take place inside the cylinder. The focus of this year’s research is to provide insight into the physical mechanisms responsible for improved thermal efficiency observed with a stepped-lip piston. Understanding how piston design can influence efficiency will help engineers develop and optimize new diesel combustion systems.« less

  15. Hepatic Transcriptome Responses in Mice (Mus musculus) Exposed to the Nafion Membrane and Its Combustion Products

    PubMed Central

    Feng, Mingbao; Qu, Ruijuan; Habteselassie, Mussie; Wu, Jun; Yang, Shaogui; Sun, Ping; Huang, Qingguo; Wang, Zunyao

    2015-01-01

    Nafion 117 membrane (N117), an important polymer electrolyte membrane (PEM), has been widely used for numerous chemical technologies. Despite its increasing production and use, the toxicity data for N117 and its combustion products remain lacking. Toxicity studies are necessary to avoid problems related to waste disposal in landfills and incineration that may arise. In this study, we investigated the histopathological alterations, oxidative stress biomarker responses, and transcriptome profiles in the liver of male mice exposed to N117 and its combustion products for 24 days. An ion-chromatography system and liquid chromatography system coupled to a hybrid quadrupole time-of-flight mass spectrometry were used to analyze the chemical compositions of these combustion products. The transcriptomics analysis identified several significantly altered molecular pathways, including the metabolism of xenobiotics, carbohydrates and lipids; signal transduction; cellular processes; immune system; and signaling molecules and interaction. These studies provide preliminary data for the potential toxicity of N117 and its combustion products on living organisms and may fill the information gaps in the toxicity databases for the currently used PEMs. PMID:26057616

  16. Performance Charts for a Turbojet System

    NASA Technical Reports Server (NTRS)

    Karp, Irving M.

    1947-01-01

    Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.

  17. A comprehensive evaluation of different radiation models in a gas turbine combustor under conditions of oxy-fuel combustion with dry recycle

    NASA Astrophysics Data System (ADS)

    Kez, V.; Liu, F.; Consalvi, J. L.; Ströhle, J.; Epple, B.

    2016-03-01

    The oxy-fuel combustion is a promising CO2 capture technology from combustion systems. This process is characterized by much higher CO2 concentrations in the combustion system compared to that of the conventional air-fuel combustion. To accurately predict the enhanced thermal radiation in oxy-fuel combustion, it is essential to take into account the non-gray nature of gas radiation. In this study, radiation heat transfer in a 3D model gas turbine combustor under two test cases at 20 atm total pressure was calculated by various non-gray gas radiation models, including the statistical narrow-band (SNB) model, the statistical narrow-band correlated-k (SNBCK) model, the wide-band correlated-k (WBCK) model, the full spectrum correlated-k (FSCK) model, and several weighted sum of gray gases (WSGG) models. Calculations of SNB, SNBCK, and FSCK were conducted using the updated EM2C SNB model parameters. Results of the SNB model are considered as the benchmark solution to evaluate the accuracy of the other models considered. Results of SNBCK and FSCK are in good agreement with the benchmark solution. The WBCK model is less accurate than SNBCK or FSCK. Considering the three formulations of the WBCK model, the multiple gases formulation is the best choice regarding the accuracy and computational cost. The WSGG model with the parameters of Bordbar et al. (2014) [20] is the most accurate of the three investigated WSGG models. Use of the gray WSSG formulation leads to significant deviations from the benchmark data and should not be applied to predict radiation heat transfer in oxy-fuel combustion systems. A best practice to incorporate the state-of-the-art gas radiation models for high accuracy of radiation heat transfer calculations at minimal increase in computational cost in CFD simulation of oxy-fuel combustion systems for pressure path lengths up to about 10 bar m is suggested.

  18. Process for generating electricity in a pressurized fluidized-bed combustor system

    DOEpatents

    Kasper, Stanley

    1991-01-01

    A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.

  19. Characterisation of acoustic energy content in an experimental combustion chamber with and without external forcing

    NASA Astrophysics Data System (ADS)

    Webster, S.; Hardi, J.; Oschwald, M.

    2015-03-01

    The influence of injection conditions on rocket engine combustion stability is investigated for a sub-scale combustion chamber with shear coaxial injection elements and the propellant combination hydrogen-oxygen. The experimental results presented are from a series of tests conducted at subcritical and supercritical pressures for oxygen and for both ambient and cryogenic temperature hydrogen. The stability of the system is characterised by the root mean squared amplitude of dynamic combustion chamber pressure in the upper part of the acoustic spectrum relevant for high frequency combustion instabilities. Results are presented for both unforced and externally forced combustion chamber configurations. It was found that, for both the unforced and externally forced configurations, the injection velocity had the strongest influence on combustion chamber stability. Through the use of multivariate linear regression the influence of hydrogen injection temperature and hydrogen injection mass flow rate were best able to explain the variance in stability for dependence on injection velocity ratio. For unforced tests turbulent jet noise from injection was found to dominate the energy content of the signal. For the externally forced configuration a non-linear regression model was better able to predict the variance, suggesting the influence of non-linear behaviour. The response of the system to variation of injection conditions was found to be small; suggesting that the combustion chamber investigated in the experiment is highly stable.

  20. Physics through the 1990s: Plasmas and fluids

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume contains recommendations for programs in, and government support of, plasma and fluid physics. Four broad areas are covered: the physics of fluids, general plasma physics, fusion, and space and astrophysical plasmas. In the first section, the accomplishments of fluid physics and a detailed review of its sub-fields, such as combustion, non-Newtonian fluids, turbulence, aerodynamics, and geophysical fluid dynamics, are described. The general plasma physics section deals with the wide scope of the theoretical concepts involved in plasma research, and with the machines; intense beam systems, collective and laser-driven accelerators, and the associated diagnostics. The section on the fusion plasma research program examines confinement and heating systems, such as Tokamaks, magnetic mirrors, and inertial-confinement systems, and several others. Finally, theory and experiment in space and astrophysical plasma research is detailed, ranging from the laboratory to the solar system and beyond. A glossary is included.

Top