Dynamical evolution of the Oort cloud
NASA Technical Reports Server (NTRS)
Weissman, P. R.
1985-01-01
New studies of the dynamical evolution of cometary orbits in the Oort cloud are made using a revised version of Weissman's (1982) Monte Carlo simulation model, which more accurately mimics the perturbation of comets by the giant planets. It is shown that perturbations by Saturn and Jupiter provide a substantial barrier to the diffusion of cometary perihelia into the inner solar system. Perturbations by Uranus and Neptune are rarely great enough to remove comets from the Oort cloud, but do serve to scatter the comets in the cloud in initial energy. The new model gives a population of 1.8 to 2.1 x 10 to the 12th comets for the present-day Oort cloud, and a mass of 7 to 8 earth masses. Perturbation of the Oort cloud by giant molecular clouds in the galaxy is discussed, as is evidence for a massive 'inner Oort cloud' internal to the observed one. The possibility of an unseen solar companion orbiting in the Oort cloud and causing periodic comet showers is shown to be dynamically plausible but unlikely, based on the observed cratering rate on the earth and moon.
Dynamics of Long-period Comets
NASA Technical Reports Server (NTRS)
Weissman, P. R.
1985-01-01
Dynamical studies of the origin and evolution of long period comets in the Oort cloud during the past year have concentrated on four areas: (1) interpretation of IRAS observations of dust shells around Vega and some 40 other main sequence stars as evidence for cometary clouds around each of these stars; (2) the dynamical plausibility of an unseen solar companion star orbiting in the Oort cloud and causing periodic cometary showers which result in biological extinction events on the earth; (3) a review of the current hypotheses for cometary formation with particular attention to how each mechanism supplies the required mass of comets to the Oort cloud; and (4) development of new dynamics software to simulate the passage of individual stars directly through the Oort cloud. Each of these efforts is described in detail.
Origin and Evolution of Comet Clouds
NASA Astrophysics Data System (ADS)
Higuchi, Arika
2007-01-01
The Oort cloud (comet cloud) is a spherical comet reservoir surrounding a planetary system. We have investigated the comet cloud formation that consists of two dynamical stages of orbital evolution of planetesimals due to (1) planetary perturbation, and (2) the galactic tide. We investigated the first stage by using numerical calculations and obtained the probabilities of the fates of planetesimals as functions of the orbital parameters of the planets and planetesimals. We investigated the second stage by using the secular perturbation theory and showed the evolution of the structure of a comet cloud from a planetesimal disk. We found that (1) massive planets effectively produce comet cloud candidates by scattering and (2) many planetesimals with semimajor axes larger than 1,000 AU rise up their perihelion distances to the outside of the planetary region and become members of the Oort cloud in 5 Gyr.
Comet C/2017 K2 (PANSTARRS): Dynamically Old or New?
NASA Astrophysics Data System (ADS)
de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos
2018-04-01
At discovery time, C/2017 K2 (PANSTARRS) was the second most distant inbound active comet ever observed. It has been argued that this object is in the process of crossing the inner Solar System for the first time, but other authors have concluded that it is dynamically old. We have performed full N-body simulations for 3 Myr into the past using the latest public orbit determination for this object and most of them, 67%, are consistent with a bound and dynamically old Oort cloud comet, but about 29% of the studied orbits are compatible with an interstellar origin. Our independent calculations strongly suggest that C/2017 K2 is not a dynamically new Oort cloud comet.
The Oort cloud and the Galaxy - Dynamical interactions
NASA Technical Reports Server (NTRS)
Weissman, Paul R.
1986-01-01
The results of recent dynamical studies of the Oort cloud and its interaction with the Galaxy are discussed. Various studies which used Monte Carlo simulations to investigate the evolution of comets in the Oort cloud and the manner in which they are injected into the planetary region are reviewed. Work done on perturbation of cometary orbits by stars, interstellar clouds, and the Galaxy is examined. The growing consensus that there is a massive inner Oort cloud with a population up to 100 times that of the dynamically active outer cloud is addressed. Variations on the Oort hypothesis are discussed. It is argued that speculations about the existence of a small unseen solar companion star or a tenth planet causing periodic comet showers from the inner Oort cloud are not supported by dynamical studies or analyses of the terrestrial and lunar cratering record. Evidence for Oort clouds around other stars is summarized.
Sedna and the cloud of comets surrounding the solar system in Milgromian dynamics
NASA Astrophysics Data System (ADS)
Paučo, R.; Klačka, J.
2016-05-01
We reconsider the hypothesis of a vast cometary reservoir surrounding the solar system - the Oort cloud of comets - within the framework of Milgromian dynamics (MD or MOND). For this purpose we built a numerical model of the cloud, assuming the theory of modified gravity, QUMOND. In modified gravity versions of MD, the internal dynamics of a system is influenced by the external gravitational field in which the system is embedded, even when this external field is constant and uniform, a phenomenon dubbed the external field effect (EFE). Adopting the popular pair ν(x) = [1-exp(-x1 / 2)] -1 for the MD interpolating function and a0 = 1.2 × 10-10 m s-2 for the MD acceleration scale, we found that the observationally inferred Milgromian cloud of comets is much more radially compact than its Newtonian counterpart. The comets of the Milgromian cloud stay away from the zone where the Galactic tide can torque their orbits significantly. However, this does not need to be an obstacle for the injection of the comets into the inner solar system as the EFE can induce significant change in perihelion distance during one revolution of a comet around the Sun. Adopting constraints on different interpolating function families and a revised value of a0 (provided recently by the Cassini spacecraft), the aforementioned qualitative results no longer hold, and, in conclusion, the Milgromian cloud is very similar to the Newtonian in its overall size, binding energies of comets and hence the operation of the Jupiter-Saturn barrier. However, EFE torquing of perihelia still play a significant role in the inner parts of the cloud. Consequently Sedna-like orbits and orbits of large semi-major axis Centaurs are easily comprehensible in MD. In MD, they both belong to the same population, just in different modes of their evolution.
NASA Technical Reports Server (NTRS)
Mumma, M. J.; DiSanti, M. A.; Bonev, B. P.; Villanueva, G. L.; Magee-Sauer, K.; Gibb, E. L.; Paganini, L.; Radeva, Y. L.; Charnley, S. B.
2012-01-01
It is relatively easy to identify the reservoir from which a given comet was ejected. But dynamical models demonstrate that the main cometary reservoirs (Kuiper Belt, Oort Cloud) each contain icy bodies that formed in a range of environments in the protoplanetary disk, and the Oort Cloud may even contain bodies that formed in disks of sibling stars in the Sun s birth cluster. The cometary nucleus contains clues to the formative region(s) of its individual components. The composition of ices and rocky grains reflect a range of processes experienced by material while on the journey from the natal interstellar cloud core to the cometary nucleus. For that reason, emphasis is placed on classifying comets according to their native ices and dust (rather than orbital dynamics). Mumma & Charnley [1] reviewed the current status of taxonomies for comets and relation to their natal heritage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smoluchowski, R.; Bahcall, J.M.; Matthews, M.S.
1986-01-01
The solar-Galactic neighborhood, massive interstellar clouds and other Galactic features, the Oort cloud, perturbations of the solar system, and the existence and stability of a solar companion star are examined in chapters based on contributions to a conference held in Tucson, AZ during January 1985. The individual topics addressed include: the Galactic environment of the solar system; stars within 25 pc of the sun; the path of the sun in 100 million years; the local velocity field in the last billion years; interstellar clouds near the sun; and evidence for a local recent supernova. Also considered are: dynamic influence ofmore » Galactic tides and molecular clouds on the Oort cloud; cometary evidence for a solar companion; dynamical interactions between the Oort cloud and the Galaxy; geological periodicities and the Galaxy; giant comets and the Galaxy; dynamical evidence for Planet X; evolution of the solar system in the presence of a solar companion star; mass extinctions, crater ages, and comet showers; evidence for Nemesis, a solar companion star.« less
The effect of the solar motion on the flux of long-period comets
NASA Astrophysics Data System (ADS)
Gardner, E.; Nurmi, P.; Flynn, C.; Mikkola, S.
2011-02-01
The long-term dynamics of Oort cloud comets are studied under the influence of both the radial and the vertical components of the Galactic tidal field. Sporadic dynamical perturbation processes, such as passing stars, are ignored since we aim to study the influence of just the axisymmetric Galactic tidal field on the cometary motion and how it changes in time. We use a model of the Galaxy with a disc, bulge and dark halo, and a local disc density and disc scalelength constrained to fit the best available observational constraints. By integrating a few million of cometary orbits over 1 Gyr, we calculate the time variable flux of Oort cloud comets that enter the inner Solar system for the cases of a constant Galactic tidal field and a realistically varying tidal field, which is a function of the Sun's orbit. The applied method calculates the evolution of the comets by using first-order averaged mean elements. We find that the periodicity in the cometary flux is complicated and quasi-periodic. The amplitude of the variations in the flux is of the order of 30 per cent. The radial motion of the Sun is the chief cause of this behaviour, and should be taken into account when the Galactic influence on the Oort cloud comets is studied.
Dynamical Zodiacal Cloud Models Constrained by High Resolution Spectroscopy of the Zodiacal Light
NASA Technical Reports Server (NTRS)
Ipatov, S. I.; Kutyrev, A. S.; Madsen, G. J.; Mather, J. C.; Moseley, S. H.; Reynolds, R. J.
2005-01-01
We have developed a set of self-consistent dynamical models of the Zodiacal cloud, following the orbital evolution of dust particles. Three populations were considered, originating from the Kuiper belt, asteroids and comets. Using the models developed, we investigated how the solar spectrum is changed by scattering by the zodiacal cloud grains and compared the obtained spectra with the observations.
Dynamical lifetime of the new Oort Cloud comets under planetary perturbations
NASA Astrophysics Data System (ADS)
Ito, T.; Higuchi, A.
2014-07-01
Nearly-isotropic comets with very long orbital period are supposed to come from the Oort Cloud. Recent observational and theoretical studies have greatly revealed the dynamical nature of this cloud and its evolutional history, but many issues are yet to be known. Our goal is to trace the dynamical evolution of the Oort Cloud new comets (OCNCs) produced by an evolving comet cloud, hopefully estimating the fraction of OCNCs embedded in the current populations of the solar system small bodies. We combine two models to follow the dynamical evolution of OCNCs beginning from their production until their ejection out of the solar system, obtaining statistics of the dynamical lifetime of OCNCs: The first model is a semi-analytical one about the OCNC production in an evolving comet cloud under the perturbation of the galactic tide and stellar encounters. The second model numerically deals with planetary perturbation over OCNCs' dynamics in planetary region. The main results of the present study are: (1) Typical dynamical lifetime of OCNCs in our models turned out to be O(10^7) years. Once entering into the planetary region, most OCNCs stay there just for this timespan, then get ejected out of the solar system on hyperbolic orbits. (2) While average orbital inclination of OCNCs is small, the so-called ''planet barrier'' works rather effectively, preventing some OCNCs from penetrating into the terrestrial planetary region. Models. Recently a series of detailed dynamical studies with similar scientific objects to ours are published [1-3]. Our present study is an extension of our own independent project [4], using a pair of dynamical models. The first model is for the evolving Oort Cloud that produces OCNCs along its evolution [5,6]. The model initially starts from a planar planetesimal disk, which evolves into a three- dimensional, nearly isotropic shape over a timespan of Gyr under the perturbation by the galactic tide and stellar encounters. This model is largely analytical in order to reduce the amount of computation. The second one is a numerical model for incorporating planetary perturbation from the major seven planets except Mercury, similar to the framework of our previous studies [7,8]. It receives OCNCs from the first model, and traces the orbital evolution of the comets up to 500 Myr until they get ejected out of the solar system by being scattered away. The second model does not include the galactic tide or stellar perturbation. For further reduction of computation amount, we assume that OCNCs go along their Keplerian orbits beyond r = 800 au without any perturbations. The effect of the galactic tide that OCNCs would have during this period is separately evaluated using a perturbation function that includes the galactic tide used in the first model. Results. We selected two different eras among the Oort Cloud history: (a) the initial 1 Gyr while the comet cloud is still nearly planar with a high OCNC production rate, and (b) the period t =4-5 Gyr when the comet cloud is almost in an isotropic shape with nearly constant supply of OCNCs. It turned out that most of the OCNCs got scattered away by the four giant planets (i.e being ejected out of the system with r > 800 au and e > 1, or aphelion distance becoming larger than Q >2 × 10^5 au) with a typical timespan of O(10^7) years in the planetary region. This timescale is roughly consistent with an analytical estimate in [9]. Also, this timescale does not strongly dependent on which era we choose, as the range of OCNC's semimajor axis is similar to each other. To get an estimate as to which planet has the largest dynamical influence on the fate of OCNCs, we calculated the number of planetary encounters defined by OCNC's close approaches within 500 × scatter radius of planets, r_{s} (r_{s} is a typical distance when a massless body's orbit gets bent 90 degrees by scattering. It is proportional to (relative velocity){}^{-2}). A simple analysis shows that Jupiter and Saturn play a dominant role on scattering OCNCs away from the system. There has been a concept called the ''Jupiter barrier'' where giant planets such as Jupiter protect the Earth from cometary bombardments (e.g. [10,11]). Our study partially validates this hypothesis, showing that the planetary barrier actually works when the incoming OCNC flux is nearly planar as in the era (a). The main barrier is composed by Saturn with an aid by Jupiter, making OCNCs' perihelia stick around Saturn's orbit. Once the comet cloud has become isotropic as in the era (b), OCNCs come from almost any directions, and the barrier no longer works. This is just the situation in the current solar system.
Can Oort clouds pollute their parent stars after they become white dwarfs?
NASA Astrophysics Data System (ADS)
Veras, D.; Shannon, A.; Gänsicke, B. T.
2017-09-01
Comets impact the Sun frequently. In fact, coronographs like those which are part of Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph Experiment (LASCO) reveal that a comet grazes the Sun every few days, with a total of about 2400 grazers from 1996 to 2008. This frequency underscores an outstanding question in the quest to understand planetary systems: what types of small bodies - pebbles, asteroids, comets or moons - are the primary polluter of white dwarfs? We determine how often remnant exo-Oort clouds, freshly excited from post-main-sequence stellar mass loss, dynamically inject comets inside the white dwarf's Roche radius. We improve upon previous studies by considering a representative range of single white dwarf masses (0.52-1.00 M⊙) and incorporating different cloud architectures, giant branch stellar mass loss, stellar flybys, Galactic tides and a realistic escape ellipsoid in self-consistent numerical simulations that integrate beyond 8 Gyr ages of white dwarf cooling. We find that ˜10^(-5) of the material in an exo-Oort cloud is typically amassed onto the white dwarf, and that hydrogen deposits accumulate even as the cloud dissipates. This accumulation may account for the relatively large amount of trace hydrogen, 10^(22) -10^(25) g, that is determined frequently among white dwarfs with cooling ages ≥1 Gyr. Our results also reaffirm the notion that exo-Oort cloud comets are not the primary agents of the metal budgets observed in polluted white dwarf atmospheres.
Comets and the origin of the solar system - Reading the Rosetta Stone
NASA Technical Reports Server (NTRS)
Mumma, Michael J.; Weissman, Paul R.; Stern, S. A.
1993-01-01
It is argued that, from the measured volatile abundances, comets formed at temperatures near or below about 60 K and possibly as low as about 25 K. Grains in Comet Halley were found to be of two types: silicates and organics. Isotopic evidence shows that Comet Halley formed from material with the same compositional mix as the rest of the solar system, and is consistent with comets having been a major contributor to the volatile reservoirs on the terrestrial planets. A variety of processes have been shown to modify and reprocess the outer layers of comets both during their long residence time in the Oort cloud and following their entry back into the planetary system. The most likely formation site for comets is in the Uranus-Neptune zone or just beyond, with dynamical ejection by the growing protoplanets to distant orbits to form the Oort cloud. A substantial flux of interstellar comets was likely created by the same process, and may be detectable if cometary formation is common in planetary systems around other stars.
NASA Astrophysics Data System (ADS)
Mumma, Michael J.
2008-10-01
As messengers from the early Solar System, comets contain key information from the time of planet formation and even earlier some may contain material formed in our natal interstellar cloud. Along with water, the cometary nucleus contains ices of natural gases (CH4, C2H6), alcohols (CH3OH), acids (HCOOH), embalming fluid (H2CO), and even anti-freeze (ethylene glycol). Comets today contain some ices that vaporize at temperatures near absolute zero (CO, CH4), demonstrating that their compositions remain largely unchanged after 4.5 billion years. By comparing their chemical diversity, several distinct cometary classes have been identified but their specific relation to chemical gradients in the proto-planetary disk remains murky. How does the compositional diversity of comets relate to nebular processes such as chemical processing, radial migration, and dynamical scattering? No current reservoir holds a unique class, but their fractional abundance can test emerging dynamical models for origins of the scattered Kuiper disk, the Oort cloud, and the (proposed) main-belt comets. I will provide a simplified overview emphasizing what we are learning, current issues, and their relevance to the subject of this Symposium.
SOFIA FORCAST Far-IR Photometry of Comet ISON and Constraints on the Coma Grain Size Distribution
NASA Technical Reports Server (NTRS)
Wooden, D. H.; DeBuizer, J. M.; Kelley, M. S.; Woodward, C. E.; Harker, D. E.; Reach, W. T.; Sitko, M. L.; Russell, R. W.; Gehrz, R. D.; dePater, Imke;
2014-01-01
Comet C/2012 S1 (ISON) was unique in that it was a dynamically new comet derived from the nearly isotropic Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) observations were executed on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) by the FORCAST instrument on 2013 October 25 UT (r(sub h)=1.18 AU, Delta=1.5AU). Photometry was obtained in FORCAST filters centered at 11.1, 19.7, and 31.5 micron. The observations compliment a large world-wide effort to observe and characterize comet ISON.
Long-term evolution of Oort Cloud comets: capture of comets
NASA Astrophysics Data System (ADS)
Nurmi, P.; Valtonen, M. J.; Zheng, J. Q.; Rickman, H.
2002-07-01
We test different possibilities for the origin of short-period comets captured from the Oort Cloud. We use an efficient Monte Carlo simulation method that takes into account non-gravitational forces, Galactic perturbations, observational selection effects, physical evolution and tidal splittings of comets. We confirm previous results and conclude that the Jupiter family comets cannot originate in the spherically distributed Oort Cloud, since there is no physically possible model of how these comets can be captured from the Oort Cloud flux and produce the observed inclination and Tisserand constant distributions. The extended model of the Oort Cloud predicted by the planetesimal theory consisting of a non-randomly distributed inner core and a classical Oort Cloud also cannot explain the observed distributions of Jupiter family comets. The number of comets captured from the outer region of the Solar system are too high compared with the observations if the inclination distribution of Jupiter family comets is matched with the observed distribution. It is very likely that the Halley-type comets are captured mainly from the classical Oort Cloud, since the distributions in inclination and Tisserand value can be fitted to the observed distributions with very high confidence. Also the expected number of comets is in agreement with the observations when physical evolution of the comets is included. However, the solution is not unique, and other more complicated models can also explain the observed properties of Halley-type comets. The existence of Jupiter family comets can be explained only if they are captured from the extended disc of comets with semimajor axes of the comets a<5000au. The original flattened distribution of comets is conserved as the cometary orbits evolve from the outer Solar system era to the observed region.
Evaporation and accretion of extrasolar comets following white dwarf kicks
NASA Astrophysics Data System (ADS)
Stone, Nicholas; Metzger, Brian D.; Loeb, Abraham
2015-03-01
Several lines of observational evidence suggest that white dwarfs receive small birth kicks due to anisotropic mass-loss. If other stars possess extrasolar analogues to the Solar Oort cloud, the orbits of comets in such clouds will be scrambled by white dwarf natal kicks. Although most comets will be unbound, some will be placed on low angular momentum orbits vulnerable to sublimation or tidal disruption. The dusty debris from these comets will manifest itself as an IR excess temporarily visible around newborn white dwarfs; examples of such discs may already have been seen in the Helix Nebula, and around several other young white dwarfs. Future observations with the James Webb Space Telescope may distinguish this hypothesis from alternatives such as a dynamically excited Kuiper Belt analogue. Although competing hypotheses exist, the observation that ≳15 per cent of young white dwarfs possess such discs, if interpreted as indeed being cometary in origin, provides indirect evidence that low-mass gas giants (thought necessary to produce an Oort cloud) are common in the outer regions of extrasolar planetary systems. Hydrogen abundances in the atmospheres of older white dwarfs can, if sufficiently low, also be used to place constraints on the joint parameter space of natal kicks and exo-Oort cloud models.
Chaotic motion of comets in near-parabolic orbit: Mapping aproaches
NASA Astrophysics Data System (ADS)
Liu, Jie; Sun, Yi-Sui
1994-09-01
There exist many comets with near-parabolic orbits in the solar system. Among various theories proposed to explain their origin, the Oort cloud hypothesis seems to be the most reasonable. The theory assumes that there is a cometary cloud at a distance 103 to 107 from the sun and that perturbing forces from planets or stars make orbits of some of these comets become the near-parabolic type. Concerning the evolution of these orbits under planetary perturbations, we can raise the question: Will they stay in the solar system forever or will they escape from it? This is an attractive dynamical problem. If we go ahead by directly solving the dynamical differential equations, we may encounter the difficulty of long-time computation. For the orbits of these comets are near-parabolic and their periods are too long to study on their long-term evolution. With mapping approaches the difficulty will be overcome. In another aspect, the study of this model has special meaning for chaotic dynamics. We know that in the neighborhood of any separatrix i.e. the trajectory with zero frequency of the uperturbed motion of a Hamiltonian system, some chaotic motions have to be expected. Actually, the simplest example of separatrix is the parabolic trajectory of the two-body problem which separates the bounded and unbounded motion. From this point of view, the dynamical study of near-parabolic motion is very important. Petrosky's elegant but more abstract deduction gives a Kepler mapping which describes the dynamics of the cometary motion. In this paper we derive a similar mapping directly and discuss its dynamical characters.
Reservoirs for Comets: Compositional Differences Based on Infrared Observations
NASA Astrophysics Data System (ADS)
Disanti, Michael A.; Mumma, Michael J.
Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ˜2-5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets' region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.
Reservoirs for Comets: Compositional Differences Based on Infrared Observations
NASA Astrophysics Data System (ADS)
Disanti, Michael A.; Mumma, Michael J.
2008-07-01
Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ˜2 5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets’ region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.
OORT-Cloud and Kuiper-Belt Comets
NASA Technical Reports Server (NTRS)
Whipple, Fred L.
1998-01-01
This paper follows the broadly accepted theory that Oort-Cloud Comets originated in the Solar Nebula in the general region where the major planets, Jupiter and Saturn, were formed while the Kuiper-Belt Comets originated farther out where the temperatures were lower. The Oort-Cloud Comets are identified orbitally by long periods and random inclinations and, including the Halley-type comets, comets with a Tisserand Criterion less than 2.0. Kuiper-Belt comets are identified by short periods, usually much less than 200 years, and small inclinations to the ecliptic. Here two criteria for comet activity are found to separate the two classes of comets. These quantities NG1 and NG2, were intended to measure theoretical nongravitaional effects on comet orbits. They are only, mildly successful in correlations with observed cases of measured non-gravitational forces. But, in fact, their variations with perihelion distance separate the two classes of comets. The results are consistent with the theory that the activity or intrinsic brightness of Oort-Cloud Comets fall off faster with increasing perihelion distance that does the intrinsic brightness of short-period Kuiper-Belt Comets.
On stellar encounters and their effect on cometary orbits in the Oort cloud
NASA Astrophysics Data System (ADS)
Serafin, R. A.; Grothues, H.-G.
2002-03-01
We systematically investigate the encounters between the Sun and neighbouring stars and their effects on cometary orbits in the Oort cloud, including the intrinsic one with the star Gl 710 (HIP 89 825), with some implications to stellar and cometary dynamics. Our approach is principally based on the combination of a Keplerian-rectilinear model of stellar passages and the Hipparcos Catalogue (ESA 1997). Beyond the parameters of encounter, we pay particular attention to the observational errors in parallaxes and stellar velocities, and their propagation in time. Moreover, as a special case of this problem, we consider the collision probability of a star passing very closely to the Sun, taking also into account the mutual gravitational attraction between the stars. In the part dealing with the influence of stellar encounters on the orbital elements of Oort cloud comets, we derive new simple formulae calculating the changes in the cometary orbital elements, expressed as functions of the Jeans impulse formula. These expressions are then applied to calculate numerical values of the element changes caused by close encounters of neighbouring stars with some model comets in the Oort cloud. Moreover, the general condition for an ejection of comets from the cloud effected by a single encounter is derived and discussed.
NASA Technical Reports Server (NTRS)
Mumma, Michael J.; Charnley, Steven B.
2012-01-01
The question of exogenous delivery of water and organics to Earth and other young planets is of critical importance for understanding the origin of Earth's volatiles, and for assessing the possible existence of exo-planets similar to Earth. Viewed from a cosmic perspective, Earth is a dry planet, yet its oceans are enriched in deuterium by a large factor relative to nebular hydrogen and analogous isotopic enrichments in atmospheric nitrogen and noble gases are also seen. Why is this so? What are the implications for Mars? For icy Worlds in our Planetary System? For the existence of Earth-like exoplanets? An exogenous (vs. outgassed) origin for Earth's atmosphere is implied, and intense debate on the relative contributions of comets and asteroids continues - renewed by fresh models for dynamical transport in the protoplanetary disk, by revelations on the nature and diversity of volatile and rocky material within comets, and by the discovery of ocean-like water in a comet from the Kuiper Belt (cf., Mumma & Charnley 2011). Assessing the creation of conditions favorable to the emergence and sustenance of life depends critically on knowledge of the nature of the impacting bodies. Active comets have long been grouped according to their orbital properties, and this has proven useful for identifying the reservoir from which a given comet emerged (OC, KB) (Levison 1996). However, it is now clear that icy bodies were scattered into each reservoir from a range of nebular distances, and the comet populations in today's reservoirs thus share origins that are (in part) common. Comets from the Oort Cloud and Kuiper Disk reservoirs should have diverse composition, resulting from strong gradients in temperature and chemistry in the proto-planetary disk, coupled with dynamical models of early radial transport and mixing with later dispersion of the final cometary nuclei into the long-term storage reservoirs. The inclusion of material from the natal interstellar cloud is probable, for comets formed in the outer solar system.
NASA Astrophysics Data System (ADS)
Janches, D.; Pokorny, P.; Sarantos, M.; Nesvorny, D.
2017-12-01
Recent observations by the Lunar Dust Experiment (LDEX) on board NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) were perceived to indicate an unbalanced influence of meteoroids impacting from the Helion and the Anti-Helion directions. These observations were interpreted without proper consideration of the dynamical characteristics of the meteoroid environment and its spatio-temporal influence on the Moon's surface. In this work, a dynamical model of meteoroids originating from Jupiter Family Comets is utilized to model the secondary dust ejecta cloud engulfing the Moon. It is shown that the combination of the dynamical properties of these meteoroids, together with the orbital geometry of LADEE, introduce a bias in the observations and causes LADEE LDEX to be more sensitive to the Helion source. This effect must be considered in order to draw accurate conclusions regarding the meteoroid environment and its influence on the Moon's surface.
NASA Technical Reports Server (NTRS)
Weissman, Paul R.
1987-01-01
Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sending large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weissman, P.R.
1987-03-01
Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sendingmore » large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars.« less
NASA Technical Reports Server (NTRS)
Roth, Nathan X.; Gibb, Erika; Bonev, Boncho P.; Disanti, Michael A.; Mumma, Michael J.; Villanueva, Geronimo L.; Paganini, Lucas
2017-01-01
On 2014 May 22 and 24 we characterized the volatile composition of the dynamically new Oort cloud comet C2012 K1 (PanSTARRS) using the long-slit, high resolution ( lambda/delta lambda is approximately or equal to 25,000) near-infrared echelle spectrograph (NIRSPEC) at the 10 m Keck II telescope on Maunakea, Hawaii. We detected fluorescent emission from six primary volatiles (H2O, HCN, CH4, C2H6, CH3OH, and CO). Upper limits were derived for C2H2, NH3, and H2CO. We report rotational temperatures, production rates, and mixing ratios (relative to water). Compared with median abundance ratios for primary volatiles in other sampled Oort cloud comets, trace gas abundance ratios in C2012 K1 (PanSTARRS) for CO and HCN are consistent, but CH3OH and C2H6 are enriched while H2CO, CH4, and possibly C2H2 are depleted. When placed in context with comets observed in the near- infrared to date, the data suggest a continuous distribution of abundances of some organic volatiles (HCN, C2H6, CH3OH, CH4) among the comet population. The level of enrichment or depletion in a given comet does not necessarily correlate across all molecules sampled, suggesting that chemical diversity among comets may be more complex than the simple organics-enriched, organics-normal, and organics-depleted framework.
SOFIA (+FORCAST) Infrared Spectrophotometry of Comet C/2012 K1 (PanStarrs)
NASA Astrophysics Data System (ADS)
Woodward, Charles E.; Kelley, Michael S.P.; Wooden, Diane H.; Harker, David E.; De Buizer, James M.; Gicquel, Adeline
2014-11-01
Observing and modeling the properties of small, primitive bodies in the solar system whose origins lie beyond the frost line (> 5 AU) provides critical insight into the formation of the first Solar System solids and establishes observation constraints for planetary system formation invoking migration - the ‘Grand Tack’ epoch followed by the ‘Nice Model’ events - that yielded terrestrial planets in the habitable zone. The characteristics of comet dust can provide evidence to validate the new, emerging picture of small body populations - including comet families - resulting from planetary migration in the early Solar System. Here we present preliminary results of infrared 8 to 27 micron spectrophotometric observations of comet C/2012 K1 (PanStarrs), a dynamically new (1/a0 < 50e-6) Oort Cloud comet, conducted with the NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) facility during a series of three flights over the period from 2014 June 06-11 UT. During this interval comet C/2012 K1 (PanStarrs) was at a heliocentric distance of ~1.64 AU and a geocentric distance of ~1.74 AU (pre-perihelion). As a "new" comet (first inner solar system passage), the coma grain population may be extremely pristine, unencumbered by a rime and insufficiently irradiated by the Sun to carbonize its surface organics. We will discuss the derived coma grain properties inferred from modeling of the spectral energy distribution derived from the SOFIA (+FORCAST) data and highlight our preliminary conclusions. Continued observations of comets, especially dynamically young Oort Cloud targets, in the 5-37 micron infrared spectral range accessible with SOFIA (+FORCAST) will provide key observational clues to ascertaining the origins of silicates within our protoplanetary disk, and will serve to place our early disk evolution within the context of other circumstellar disks observed today that may contain the seeds of rocky, terrestrial planets.
NASA Astrophysics Data System (ADS)
Fernández, Julio A.
We analyze a sample of 58 Oort cloud comets (OCCs) (original orbital energies x in the range 0 < x < 100, in units of 10-6 AU-1), plus 45 long-period comets with negative orbital energies or poorly determined or undetermined x, discovered during the period 1999-2007. To analyze the degree of completeness of the sample, we use Everhart's (1967 Astr. J 72, 716) concept of “excess magnitude” (in magnitudes × days), defined as the integrated magnitude excess that a given comet presents over the time above a threshold magnitude for detection. This quantity is a measure of the likelihood that the comet will be finally detected. We define two sub-samples of OCCs: 1) new comets (orbital energies 0 < x < 30) as those whose perihelia can shift from outside to the inner planetary region in a single revolution; and 2) inner cloud comets (orbital energies 30 ≤ x < 100), that come from the inner region of the Oort cloud, and for which external perturbers (essentially galactic tidal forces and passing stars) are not strong enough to allow them to overshoot the Jupiter-Saturn barrier. From the observed comet flux and making allowance for missed discoveries, we find a flux of OCCs brighter than absolute total magnitude 9 of ≃0.65 ± 0.18 per year within Earth's orbit. From this flux, about two-thirds corresponds to new comets and the rest to inner cloud comets. We find striking differences in the q-distribution of these two samples: while new comets appear to follow an uniform q-distribution, inner cloud comets show an increase in the rate of perihelion passages with q.
NASA Astrophysics Data System (ADS)
Napier, W. M.; Clube, S. V. M.
1997-03-01
The encounter of a small armada of spacecraft with Halley's Comet in 1986, the disintegration and multiple impact of Comet Shoemaker - Levy 9 on Jupiter in 1994, and the application of new technologies to the detection of distant solar system bodies, have led to great revisions in the understanding of comets. Further, rapid improvements in computing power and numerical techniques have permitted the dynamical evolution of comets and asteroids to be followed far into the future and past, and the relationships between families of small interplanetary bodies to be explored. The small body environment is now generally recognized as strongly interacting with the terrestrial one, and may be hazardous on timescales of human as well as geological interest. We review our current understanding of the cometary environment, with particular regard to the hazard it presents. It appears that many comets are handed down from the Oort - Öpik cloud, which is dynamically sensitive to the galactic environment, through the planetary system into Earth-crossing orbits. Thus, the terrestrial environment is subject to stresses which vary cyclically on a number of timescales from planetary to galactic.
New orbit recalculations of comet C/1890 F1 Brooks and its dynamical evolution
NASA Astrophysics Data System (ADS)
Królikowska, Małgorzata; Dybczyński, Piotr A.
2016-08-01
C/1890 F1 Brooks belongs to a group of 19 comets used by Jan Oort to support his famous hypothesis on the existence of a spherical cloud containing hundreds of billions of comets with orbits of semi-major axes between 50 000 and 150 000 au. Comet Brooks stands out from this group because of a long series of astrometric observations as well as a nearly 2-yr-long observational arc. Rich observational material makes this comet an ideal target for testing the rationality of an effort to recalculate astrometric positions on the basis of original (comet-star) measurements using modern star catalogues. This paper presents the results of such a new analysis based on two different methods: (I) automatic re-reduction based on cometary positions and the (comet-star) measurements and (II) partially automatic re-reduction based on the contemporary data for the reference stars originally used. We show that both methods offer a significant reduction in the uncertainty of orbital elements. Based on the most preferred orbital solution, the dynamical evolution of comet Brooks during three consecutive perihelion passages is discussed. We conclude that C/1890 F1 is a dynamically old comet that passed the Sun at a distance below 5 au during its previous perihelion passage. Furthermore, its next perihelion passage will be a little closer than during the 1890-1892 apparition. C/1890 F1 is interesting also because it suffered extremely small planetary perturbations when it travelled through the planetary zone. Therefore, in the next passage through perihelion, it will once again be a comet from the Oort spike.
Inner solar system material discovered in the Oort cloud
Meech, Karen J.; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R.; Berdyugina, Svetlana; Keane, Jacqueline V.; Micheli, Marco; Morbidelli, Alessandro; Wainscoat, Richard J.
2016-01-01
We have observed C/2014 S3 (PANSTARRS), a recently discovered object on a cometary orbit coming from the Oort cloud that is physically similar to an inner main belt rocky S-type asteroid. Recent dynamical models successfully reproduce the key characteristics of our current solar system; some of these models require significant migration of the giant planets, whereas others do not. These models provide different predictions on the presence of rocky material expelled from the inner solar system in the Oort cloud. C/2014 S3 could be the key to verifying these predictions of the migration-based dynamical models. Furthermore, this object displays a very faint, weak level of comet-like activity, five to six orders of magnitude less than that of typical ice-rich comets on similar Orbits coming from the Oort cloud. For the nearly tailless appearance, we are calling C/2014 S3 a Manx object. Various arguments convince us that this activity is produced by sublimation of volatile ice, that is, normal cometary activity. The activity implies that C/2014 S3 has retained a tiny fraction of the water that is expected to be present at its formation distance in the inner solar system. We may be looking at fresh inner solar system Earth-forming material that was ejected from the inner solar system and preserved for billions of years in the Oort cloud. PMID:27386512
Inner solar system material discovered in the Oort cloud.
Meech, Karen J; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R; Berdyugina, Svetlana; Keane, Jacqueline V; Micheli, Marco; Morbidelli, Alessandro; Wainscoat, Richard J
2016-04-01
We have observed C/2014 S3 (PANSTARRS), a recently discovered object on a cometary orbit coming from the Oort cloud that is physically similar to an inner main belt rocky S-type asteroid. Recent dynamical models successfully reproduce the key characteristics of our current solar system; some of these models require significant migration of the giant planets, whereas others do not. These models provide different predictions on the presence of rocky material expelled from the inner solar system in the Oort cloud. C/2014 S3 could be the key to verifying these predictions of the migration-based dynamical models. Furthermore, this object displays a very faint, weak level of comet-like activity, five to six orders of magnitude less than that of typical ice-rich comets on similar Orbits coming from the Oort cloud. For the nearly tailless appearance, we are calling C/2014 S3 a Manx object. Various arguments convince us that this activity is produced by sublimation of volatile ice, that is, normal cometary activity. The activity implies that C/2014 S3 has retained a tiny fraction of the water that is expected to be present at its formation distance in the inner solar system. We may be looking at fresh inner solar system Earth-forming material that was ejected from the inner solar system and preserved for billions of years in the Oort cloud.
Comets, carbonaceous chondrites, and interstellar clouds: Condensation of carbon
NASA Technical Reports Server (NTRS)
Field, G. B.
1979-01-01
Comets, carbonaceous chondrites, and interstellar clouds are discussed in relation to information on interstellar dust. The formation and presence of carbon in stars, comets, and meteorites is investigated. The existence of graphite in the interstellar medium, though it is predicted from thermodynamic calculations, is questioned and the form of carbon contained in comets is considered.
Isotopic Ratios of H, C, N, O, and S in Comets C2012 F6 (lemmon) and C2014 Q2 (lovejoy) * ** ***
NASA Technical Reports Server (NTRS)
Biver, N.; Moreno, R.; Sandqvist, Aa.; Bockelee-Morvan, D.; Colom, P.; Crovisier, J.; Lis, D. C.; Bossier, J.; Debout, V.; Paubert, G.;
2016-01-01
The apparition of bright comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) in March-April 2013 and January 2015, combined with the improved observational capabilities of submillimeter facilities, offered an opportunity to carry out sensitive compositional and isotopic studies of the volatiles in their coma. We observed comet Lovejoy with the IRAM 30 meter telescope between 13 and 26 January 2015, and with the Odin submillimeter space observatory on 29 January - 3 February 2015. We detected 22 molecules and several isotopologues. The H2 O-16 and H2 O-18 production rates measured with Odin follow a periodic pattern with a period of 0.94 days and an amplitude of approximately 25 percent. The inferred isotope ratios in comet Lovejoy are O-16/O-18 = 499 +/- 24 and D/H equals 1.4 +/- 0.4 x 10(exp -4) in water, S-32/S-34 = equals 24.7 +/- 3.5 in CS, all compatible with terrestrial values. The ratio C-12/C-13 equals 109 +/- 14 in HCN is marginally higher than terrestrial and 14 N/ 15/N equals 145 +/- 12 in HCN is half the Earth ratio. Several upper limits for D/H or C-12/ C-13 in other molecules are reported. From our observation of HDO in comet C/2014 Q2 (Lovejoy), we report the first D/H ratio in an Oort Cloud comet that is not larger than the terrestrial value. On the other hand, the observation of the same HDO line in the other Oort-cloud comet, C/2012 F6 (Lemmon), suggests a D/H value four times higher. Given the previous measurements of D/H in cometary water, this illustrates that a diversity in the D/H ratio and in the chemical composition, is present even within the same dynamical group of comets, suggesting that current dynamical groups contain comets formed at very different places or times in the early solar system.
Formation of the Oort Cloud: Coupling Dynamical and Collisional Evolutions of Cometesimals
NASA Astrophysics Data System (ADS)
Charnoz, S.; Morbidelli, A.
2002-09-01
Cometesimals are thought to be born in the region of Giant Planets region and were subsequently ejected to the Oort Cloud by gravitational scattering. Some recent works (Stern & Weisman, 2001 Nature 409) have emphasized that during this phase of violent ejection, random velocities among cometesimals become so high that the majority of kilometer-sized comets might have been destroyed by multiple violent collisions before they reach the Oort Cloud, resulting in a low mass Oort Cloud. We present a new approach which allows to couple dynamical and collisional evolutions. This study focuses on cometesimals starting from the Jupiter-Saturn region. We find that the rapid depletion of the disk, due to the gravitational-scattering exerted by the giant planets, prevents a large fraction of cometesimals from rapid collisional destruction. These conclusions support the classical scenario of Oort Cloud formation.
Can comet clouds around neutron stars explain gamma-ray bursts?
NASA Technical Reports Server (NTRS)
Tremaine, S.; Zytkow, A. N.
1986-01-01
The proposal of Harwit and Salpeter (1973) that gamma-ray bursts are due to impacts of comets onto neutron stars is examined further. It is assumed that most stars are formed with comet clouds similar to the Oort comet cloud which surrounds the sun, and it is suggested that there are at least four mechanisms by wich neutron stars may be formed while retaining their comet clouds: a spherically symmetric supernova explosion in an isolated star, accretion-induced collapse of a white dwarf in a cataclysmic variable with a very low mass secondary, accretion-induced collapse of a white dwarf in a wide binary with a low-mass giant companion, and coalescence of a close binary composed of two white dwarfs. Estimates are given of the cometary impact rates for such systems. It is suggested that if the wide binary scenario is correct, optical bursts may arise from the impact of comets onto the white dwarf remnant of the giant companion.
Where is the Oort Cloud Located?
NASA Astrophysics Data System (ADS)
Fernandez, Julio
2013-05-01
Abstract (2,250 Maximum Characters): The Oort cloud is the outermost population of the solar system. Our knowledge of its size and space structure relies on the single natural probe we have so far available, namely the new comets that are steadily injected by the tidal force of the galactic disk and passing stars. To learn about the places where new comets come from, it is essential to compute good original orbits and to understand how these may be affected by nongravitational (ng) forces. Distant comets (perihelion distance q > ~3 au) are found to be little affected by ng forces, unless they are very small (radii < ~ a few tenths km) and/or hyperactive (due to a highly volatile substance like CO or CO2). We discuss these problems in this presentation, and try to assemble a consistent picture of the Oort cloud, consisting of the inner Oort cloud (IOC) and the outer Oort cloud (OOC). The distribution of original energies of distant new comets (perihelion distances q> ~3 au presumably little affected by nongravitational forces) show that the boundary between the IOC and the OOC lies around an energy 30 × 10-6 au-1 or a semimajor axis ~ 3.3 × 104 au. New comets from the OOC show an uniform distribution of perihelion distances q, as expected for a thermalized Oort cloud comet population, while comets from the IOC show an increase of the rate of perihelion passages with q, as expected for comets whose perihelion distances evolve slowly under the action of external pertubers, and have to overcome the Jupiter-Saturn barrier to reach the inner planetary region.
History of the dust released by comets
NASA Technical Reports Server (NTRS)
Jambor, B. J.
1976-01-01
The Finson-Brobstein theory is used to examine production and history of dust released from periodic comets and to compare dust size distribution in relation to the Zodiacal cloud. Results eliminate all of the bright new comets from contributors to the Zodiacal cloud. Among the periodic comets, all particles of size much smaller than 10 micrometer are also lost. Only the large particles remain as possible contributors.
The influence of Oort clouds on the mass and chemical balance of the interstellar medium
NASA Technical Reports Server (NTRS)
Stern, S. Alan; Shull, J. Michael
1990-01-01
The contribution of stellar encounters and interstellar erosion to comet cloud mass injection to the ISM is calculated. It is shown that evaporative mass loss from passing stars and SNe results in an average Galactic mass injection rate of up to 10 to the -5th solar mass/yr if such clouds are frequent around solar-type stars. Cometary erosion by interstellar grains produces an injection rate of 10 to the -5th to 10 to the -4th solar mass/yr. An injection rate of 2 x 10 to the -5th solar mass/yr is calculated. Each of these rates could be increased by a factor of about 15 if the comet clouds contain a significant amount of smaller debris. It is concluded that the total mass injection rate of material to the ISM by comet clouds is small compared to other ISM mass injection sources. Comet cloud mass loss to the ISM could be responsible for a sizeable fraction of the metal and dust abundances of the ISM if Oort clouds are common.
Structure and origin of cometary nuclei
NASA Technical Reports Server (NTRS)
Donn, B.; Rahe, J.
1981-01-01
There is strong evidence that a comet nucleus consists of a single object whose basic structure is Whipple's icy conglomerate. A number of cometary phenomena indicate that the nucleus is a low density, fragile object with a large degree of radial uniformity in structure and composition. Details of the ice-dust pattern are more uncertain. A working model is proposed which is based on theories of accumulation of larger objects from grains. This nucleus is a distorted spherical aggregate of a hierarchy of ice-dust cometesimals. These cometesimals retain some separate identity which lead to comet fragmentation when larger components break off. The outer layers of new comets were modified by cosmic ray irradiation in the Oort Cloud. The evidence for meteorite-comet association is steill controversial. Current dynamical studies do not seem to require a cometary source of meteorites.
Are comets connected to the origin of life
NASA Technical Reports Server (NTRS)
Delsemme, A. H.
1981-01-01
Possible connections between comets and the origin of life on earth are discussed. The orbital evolution of comets and their origin are considered within a framework for the origin of the solar system, with particular attention given to the origin of the biosphere, and the origin of the Oort cloud. Evidence suggesting that cometary nuclei are undifferentiated throughout is considered, and a model of the average composition of a mean new comet is obtained from observational data which is similar to that of an interstellar frost. The chemistry of the model composition giving rise to the species observed in cometary spectra is considered, as well as the relations of cometary to cosmic abundances of oxygen, carbon and sulfur. The characteristics of possible sites for prebiotic chemistry, including interstellar clouds, the protosolar nebula, comets in the Oort cloud, periodic comets and the primitive earth, are examined, and a possible role of comets in bringing the interstellar prebiotic chemistry to earth is suggested.
The simulation of the outer Oort cloud formation. The first giga-year of the evolution
NASA Astrophysics Data System (ADS)
Dybczyński, P. A.; Leto, G.; Jakubík, M.; Paulech, T.; Neslušan, L.
2008-08-01
Aims: Considering a model of an initial disk of planetesimals that consists of 10 038 test particles, we simulate the formation of distant-comet reservoirs for the first 1 Gyr. Since only the outer part of the Oort cloud can be formed within this period, we analyse the efficiency of the formation process and describe approximately the structure of the part formed. Methods: The dynamical evolution of the particles is followed by numerical integration of their orbits. We consider the perturbations by four giant planets on their current orbits and with their current masses, in addition to perturbations by the Galactic tide and passing stars. Results: In our simulation, the population size of the outer Oort cloud reaches its maximum value at about 210 Myr. After a subsequent, rapid decrease, it becomes almost stable (with only a moderate decrease) from about 500 Myr. At 1 Gyr, the population size decreases to about 40% of its maximum value. The efficiency of the formation is low. Only about 0.3% of the particles studied still reside in the outer Oort cloud after 1 Gyr. The space density of particles in the comet cloud, beyond the heliocentric distance, r, of 25 000 AU is proportional to r-s, where s = 4.08 ± 0.34. From about 50 Myr to the end of the simulation, the orbits of the Oort cloud comets are not distributed randomly, but high galactic inclinations of the orbital planes are strongly dominant. Among all of the outer perturbers considered, this is most likely caused by the dominant, disk component of the Galactic tide. Movies (cf. caption to Fig. 1) are only available at http://www.aanda.org
The destruction of an Oort Cloud in a rich stellar cluster
NASA Astrophysics Data System (ADS)
Nordlander, T.; Rickman, H.; Gustafsson, B.
2017-07-01
Context. It is possible that the formation of the Oort Cloud dates back to the earliest epochs of solar system history. At that time, the Sun was almost certainly a member of the stellar cluster where it was born. Since the solar birth cluster is likely to have been massive (103-104ℳ⊙), and therefore long-lived, an issue concerns the survival of such a primordial Oort Cloud. Aims: We have investigated this issue by simulating the orbital evolution of Oort Cloud comets for several hundred Myr, assuming the Sun to start its life as a typical member of such a massive cluster. Methods: We have devised a synthetic representation of the relevant dynamics, where the cluster potential is represented by a King model, and about 20 close encounters with individual cluster stars are selected and integrated based on the solar orbit and the cluster structure. Thousands of individual simulations are made, each including 3000 comets with orbits with three different initial semi-major axes. Results: Practically the entire initial Oort Cloud is found to be lost for our choice of semi-major axes (5000-20 000 au), independent of the cluster mass, although the chance of survival is better for the smaller cluster, since in a certain fraction of the simulations the Sun orbits at relatively safe distances from the dense cluster centre. Conclusions: For the range of birth cluster sizes that we investigate, a primordial Oort Cloud will likely survive only as a small inner core with semi-major axes ≲3000 au. Such a population of comets would be inert to orbital diffusion into an outer halo and subsequent injection into observable orbits. Some mechanism is therefore needed to accomplish this transfer, in case the Oort Cloud is primordial and the birth cluster did not have a low mass. From this point of view, our results lend some support to a delayed formation of the Oort Cloud, that occurred after the Sun had left its birth cluster.
Cometary crystalline silicate before and after perihelion passage II
NASA Astrophysics Data System (ADS)
Ootsubo, Takafumi
2014-01-01
Crystalline silicate is often observed in comets as an 11.3-micron resonant emission feature, and may be used for probing the early solar nebula. Because the formation of the crystalline silicate requires high temperature, they are thought to have been born from amorphous silicate at the inner region, and then transported toward the outer regions where comets were born. This transportation can produce the difference in the crystalline fraction in the cometary silicate dust between two dynamical types of comets, Oort-cloud comets (OCs) and Ecliptic comets (ECs), due to the different heliocentric distances of their birth places. The study of peak wavelengths in crystalline features is important to investigate the conditions of the crystalline silicate formation as well. Thus far, we don't have enough observational samples of OCs. Fortunately, we can observe comet C/2012 K1 (PanSTARRS) along with C/2013 A1 (Siding Spring) in this semester. In particular, the comet C/2012 K1 (PanSTARRS) is a bright and good target for this silicate peak feature study. Observations at pre- and post-perihelion provide us precious information on the dust evolution of the comet.
Algorithms for Stellar Perturbation Computations on Oort Cloud Comets
NASA Astrophysics Data System (ADS)
Rickman, Hans; Fouchard, Marc; Valsecchi, Giovanni B.; Froeschlé, Christiane
2005-12-01
We investigate different approximate methods of computing the perturbations on the orbits of Oort cloud comets caused by passing stars, by checking them against an accurate numerical integration using Everhart’s RA15 code. The scenario under study is the one relevant for long-term simulations of the cloud’s response to a predefined set of stellar passages. Our sample of stellar encounters simulates those experienced by the Solar System currently, but extrapolated over a time of 1010 years. We measure the errors of perihelion distance perturbations for high-eccentricity orbits introduced by several estimators including the classical impulse approximation and Dybczyński’s (1994, Celest. Mech. Dynam. Astron. 58, 1330 1338) method and we study how they depend on the encounter parameters (approach distance and relative velocity). We introduce a sequential variant of Dybczyński’s approach, cutting the encounter into several steps whereby the heliocentric motion of the comet is taken into account. For the scenario at hand this is found to offer an efficient means to obtain accurate results for practically any domain of the parameter space.
Studies of Disks Around the Sun and Other Stars
NASA Technical Reports Server (NTRS)
Stern, S. Alan (Principal Investigator)
1996-01-01
We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This two-element program consists modeling collisions in the Kuiper Disk and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper disk collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model will be used to study the evolution of surface mass density and the object-size spectrum in the disk. The observational effort focuses on obtaining submm/mm-wave flux density measurements of 25-30 IR excess stars in order to better constrain the masses, spatial extents and structure of their dust ensembles.
Comets: Data, problems, and objectives
NASA Technical Reports Server (NTRS)
Whipple, F. L.
1977-01-01
A highly abridged review of new relevant results from the observations of Comet Kohoutek is followed by an outline summary of our basic knowledge concerning comets, both subjects being confined to data related to the nature and origin of comets rather than the phenomena (for example, plasma phenomena are omitted). The discussion then centers on two likely places of cometary origin in the developing solar system, the proto-Uranus-Neptune region versus the much more distant fragmented interstellar cloud region, now frequented by comets of the Opik-Oort cloud. The Comet Kohoutek results add new insights, particularly with regard to the parent molecules and the nature of meteoric solids in comets, to restrict the range of the physical circumstances of comet formation. A few fundamental and outstanding questions are asked, and a plea made for unmanned missions to comets and asteroids in order to provide definitive answers as to the nature and origin of comets, asteroids, and the solar system generally.
Capture of the Sun's Oort cloud from stars in its birth cluster.
Levison, Harold F; Duncan, Martin J; Brasser, Ramon; Kaufmann, David E
2010-07-09
Oort cloud comets are currently believed to have formed in the Sun's protoplanetary disk and to have been ejected to large heliocentric orbits by the giant planets. Detailed models of this process fail to reproduce all of the available observational constraints, however. In particular, the Oort cloud appears to be substantially more populous than the models predict. Here we present numerical simulations that show that the Sun captured comets from other stars while it was in its birth cluster. Our results imply that a substantial fraction of the Oort cloud comets, perhaps exceeding 90%, are from the protoplanetary disks of other stars.
Does a continuous solid nucleus exist in comets.
NASA Technical Reports Server (NTRS)
Lyttleton, R. A.
1972-01-01
The implication of actual cometary observations for the physical nature of comets is briefly reviewed, bringing out the complete conflict with observation of the ice-dust solid nucleus model put forward in recent years as representing the fundamental structure of comets. That under increasing solar heat the nucleus develops an expanding atmosphere is inconsistent with the well-established phenomenon that the coma contracts with decreasing distance from the sun. Several comets remaining always beyond Mars have nevertheless been strongly active and produced fine tails. That some comets show at times a star-like point of light is readily explicable on the dust-cloud structure and by no means establishes that a solid nucleus exists. With the nucleus-area corresponding not to a small solid mass but to an optical phenomenon, there would be no reason to expect that it would describe a precise dynamical orbit. On the hypothesis of a nucleus, it is necessary to postulate further some internal jet-propulsion mechanism to account for the orbital deviations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Nathan X.; Gibb, Erika L.; Bonev, Boncho P.
On 2014 May 22 and 24 we characterized the volatile composition of the dynamically new Oort cloud comet C/2012 K1 (PanSTARRS) using the long-slit, high resolution ( λ /Δ λ ≈ 25,000) near-infrared echelle spectrograph (NIRSPEC) at the 10 m Keck II telescope on Maunakea, Hawaii. We detected fluorescent emission from six primary volatiles (H{sub 2}O, HCN, CH{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, and CO). Upper limits were derived for C{sub 2}H{sub 2}, NH{sub 3}, and H{sub 2}CO. We report rotational temperatures, production rates, and mixing ratios (relative to water). Compared with median abundance ratios for primary volatiles in other sampledmore » Oort cloud comets, trace gas abundance ratios in C/2012 K1 (PanSTARRS) for CO and HCN are consistent, but CH{sub 3}OH and C{sub 2}H{sub 6} are enriched while H{sub 2}CO, CH{sub 4}, and possibly C{sub 2}H{sub 2} are depleted. When placed in context with comets observed in the near-infrared to date, the data suggest a continuous distribution of abundances of some organic volatiles (HCN, C{sub 2}H{sub 6}, CH{sub 3}OH, CH{sub 4}) among the comet population. The level of “enrichment” or “depletion” in a given comet does not necessarily correlate across all molecules sampled, suggesting that chemical diversity among comets may be more complex than the simple organics-enriched, organics-normal, and organics-depleted framework.« less
Studies of extra-solar Oort Clouds and the Kuiper Disk
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1994-01-01
The March 1994 Semi-Annual report for Studies of Extra-Solar Oort Clouds and the Kuiper Disk is presented. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. Our three-year effort consists of two major efforts: observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and modeling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including beta Pic.
Periodic Comet Showers, Mass Extinctions, and the Galaxy
NASA Technical Reports Server (NTRS)
Rampino, M. R.; Stothers, R. B.
2000-01-01
Geologic data on mass extinctions of life and evidence of large impacts on the Earth are thus far consistent with a quasi-periodic modulation of the flux of Oort cloud comets. Impacts of large comets and asteroids are capable of causing mass extinction of species, and the records of large impact craters and mass show a correlation. Impacts and extinctions display periods in the range of approximately 31 +/- 5 m.y., depending on dating methods, published time scales, length of record, and number of events analyzed. Statistical studies show that observed differences in the formal periodicity of extinctions and craters are to be expected, taking into consideration problems in dating and the likelihood that both records would be mixtures of periodic and random events. These results could be explained by quasi-periodic showers of Oort Cloud comets with a similar cycle. The best candidate for a pacemaker for comet showers is the Sun's vertical oscillation through the plane of the Galaxy, with a half-period over the last 250 million years in the same range. We originally suggested that the probability of encounters with molecular clouds that could perturb the Oort comet cloud and cause comet showers is modulated by the Sun's vertical motion through the galactic disk. Tidal forces produced by the overall gravitational field of the Galaxy can also cause perturbations of cometary orbits. Since these forces vary with the changing position of the solar system in the Galaxy, they provide a mechanism for the periodic variation in the flux of Oort cloud comets into the inner solar system. The cycle time and degree of modulation depend critically on the mass distribution in the galactic disk. Additional information is contained in the original extended abstract.
A population of comets in the main asteroid belt.
Hsieh, Henry H; Jewitt, David
2006-04-28
Comets are icy bodies that sublimate and become active when close to the Sun. They are believed to originate in two cold reservoirs beyond the orbit of Neptune: the Kuiper Belt (equilibrium temperatures of approximately 40 kelvin) and the Oort Cloud (approximately 10 kelvin). We present optical data showing the existence of a population of comets originating in a third reservoir: the main asteroid belt. The main-belt comets are unlike the Kuiper Belt and Oort Cloud comets in that they likely formed where they currently reside and may be collisionally activated. The existence of the main-belt comets lends new support to the idea that main-belt objects could be a major source of terrestrial water.
Studies of extra-solar Oort clouds and the Kuiper disk
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1996-01-01
We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. According to 'standard' theory, both the Kuiper Belt and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This project consists of two efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Belt (KB) and similar assemblages that may reside around other stars, including beta Pic.
Gamma-ray burst constraints on the galactic frequency of extrasolar Oort Clouds
NASA Technical Reports Server (NTRS)
Shull, J. Michael; Stern, S. Alan
1995-01-01
With the strong Compton Gamma-Ray Observatory/Burst and Transient Source Experiment (CGRO/BATSE) evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approx. equals 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NSs penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequence stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on time scales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating, events. Comparing these estimates to the 3-4 soft gamma-ray repeater sources detected by BATSE, one is forced to conclude that (1) comet impacts on NSs are inefficient at producing gamma rays; or (2) the gamma rays from such events are highly beamed; or (3) the fraction of stars in the galaxy with Oort Clouds like our own is not higher than a few percent.
Gamma-ray burst constraints on the galactic frequency of extra-solar Oort clouds
NASA Technical Reports Server (NTRS)
Shull, J. Michael; Stern, S. Alan
1994-01-01
With the strong CGRO/BATSE evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approximately equals to 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NS's penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequences stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on timescales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating events. Comparing these estimates to the three to four soft gamma-ray repeater sources detected by BATSE, one is forced to conclude that (1) comet impacts on NS's are inefficient at producing gamma-rays; or (2) the gamma-rays from such events are highly beamed; or (3) the fraction of stars in the galaxy with Oort Cloud like our own is not higher than a few percent.
Impact of a Pioneer/Rindler-type acceleration on the Oort Cloud
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo
2012-01-01
According to a recent modified model of gravity at large distances, a radial constant and uniform extra-acceleration ? of Rindler type acts upon a test particle p in the static field of a central mass M if certain conditions are satisfied. Among other things, it was proposed as a potentially viable explanation of a part of the Pioneer anomaly. We study the impact that an anomalous Rindler-type term as large as ? m s-2 may have on the the orbital dynamics of a typical object of the Oort Cloud whose self-energy is quite smaller than its putative Rindler energy. By taking a typical comet moving along a highly eccentric and inclined orbit throughout the expected entire extension of the Oort Cloud (? pc), it turns out that the addition of an outward Rindler-like acceleration, that is, for ?, does not allow bound orbits. Instead, if ?, the resulting numerically integrated trajectory is limited in space, but it radically differs from the standard Keplerian ellipse. In particular, the heliocentric distance of the comet gets markedly reduced and experiences high-frequency oscillations, its speed is increased, and the overall pattern of the trajectory is quite isotropic. As a consequence, the standard picture of the Oort Cloud is radically altered since its modified orbits are much less sensitive to the disturbing actions of the Galactic tide and nearby passing stars whose effects, in the standard scenario, are responsible for the phenomenology on which our confidence in the existence of the cloud itself is based. The present analysis may be supplemented in future by further statistical Monte Carlo type investigations by randomly varying the initial conditions of the comets.
Modulating terrestrial impacts from Oort cloud comets by the adiabatically changing galactic tides
NASA Astrophysics Data System (ADS)
Matese, J. J.; Whitman, P. G.; Innanen, K. A.; Valtonen, M. J.
Time modulation of the flux of new Jupiter-dominated Oort cloud comets is the subject of interest here. The major perturbation of these comets during the present epoch is due to the tidal field of the relatively smooth distribution of matter in the galactic disk. A secondary source of the near-parabolic comet flux are stars penetrating the inner Oort cloud and providing impulses that create brief comet showers. Substantial stellar-induced showers occur approximately every 100 m.y. Less frequent (but stronger) impulses due to giant molecular clouds can also perturb comets from the inner cloud. These occur on timescales of approximately equal to 500 m.y. In contrast to these infrequent stochastic shower phenomena is the continuously varying tidal-induced flux due to the galaxy. As the Sun orbits the galactic center it undergoes quasiharmonic motion about the galactic midplane, which is superimposed on the small eccentricity, near-Keplerian motion in the plane having epicycle period approximately equal to 150 m.y. In the process the galactic tidal field on the Sun/cloud system will vary causing a modulation of the observable Oort cloud flux. We have created a model of the galactic matter distribution as it affects the solar motion over a time interval ranging from 300 m.y. in the past to 100 m.y. into the future. As constraints on the disk's compact dark matter component we require consistency with the following: (1) the observed galactic rotation curve, (2) today's flux distribution of new comets, (3) the studies of K-giant distributions, and (4) the periodicity found in the terrestrial cratering record. The adiabatically varying galactic tidal torque is then determined and used to predict the time dependence of the flux. We find that a model in which approximately half the disk matter is compact is consistent with these constraints. Under such circumstances the peak-to-trough flux variation will be approx. equal to 5:1 with a full width of 9 m.y. This variability will manifest in the terrestrial cratering record and is consistent with the observed cratering periodicity, if over half of the impacts on Earth are caused by comets or asteroids that originate in the outer Oort cloud.
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1976-01-01
The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of evolution. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tail is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1977-01-01
The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of the evolution of cometary dust. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tails is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.
Studies of extra-solar OORT clouds and the Kuiper disk
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1993-01-01
This is the second report for NAGW-3023, Studies of Extra-Solar Oort Clouds and the Kuiper Disk. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for infering the presence of planetary systems. Our three-year effort consists of two major efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including Beta Pic. These efforts are referred to as Task 1 and 2, respectively.
Studies of extra-solar Oort Clouds and the Kuiper Disk
NASA Technical Reports Server (NTRS)
Stern, Alan
1995-01-01
This is the September 1995 Semi-Annual report for Studies of Extra-Solar Oort Clouds and the Kuiper Disk. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This project consists of two major efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including beta Pic. These efforts are referred to as Task 1 and 2.
Thermal infrared and optical photometry of Asteroidal Comet C/2002 CE10
NASA Astrophysics Data System (ADS)
Sekiguchi, Tomohiko; Miyasaka, Seidai; Dermawan, Budi; Mueller, Thomas; Takato, Naruhisa; Watanabe, Junichi; Boehnhardt, Hermann
2018-04-01
C/2002 CE10 is an object in a retrograde elliptical orbit with Tisserand parameter - 0.853 indicating a likely origin in the Oort Cloud. It appears to be a rather inactive comet since no coma and only a very weak tail was detected during the past perihelion passage. We present multi-color optical photometry, lightcurve and thermal mid-IR observations of the asteroidal comet. With the photometric analysis in BVRI, the surface color is found to be redder than asteroids, corresponding to cometary nuclei and TNOs/Centaurs. The time-resolved differential photometry supports a rotation period of 8.19 ± 0.05 h. The effective diameter and the geometric albedo are 17.9 ± 0.9 km and 0.03 ± 0.01, respectively, indicating a very dark reflectance of the surface. The dark and redder surface color of C/2002 CE10 may be attribute to devolatilized material by surface aging suffered from the irradiation by cosmic rays or from impact by dust particles in the Oort Cloud. Alternatively, C/2002 CE10 was formed of very dark refractory material originally like a rocky planetesimal. In both cases, this object lacks ices (on the surface at least). The dynamical and known physical characteristics of C/2002 CE10 are best compatible with those of the Damocloids population in the Solar System, that appear to be exhaust cometary nucleus in Halley-type orbits. The study of physical properties of rocky Oort cloud objects may give us a key for the formation of the Oort cloud and the solar system.
NASA Astrophysics Data System (ADS)
Kobayashi, Hitomi; Kawakita, Hideyo; Mumma, Michael J.; Bonev, Boncho P.; Watanabe, Jun-ichi; Fuse, Tetsuharu
2007-10-01
We report the chemical composition of organic molecules in fragment B of comet 73P/Schwassmann-Wachmann 3 (SW3). Comet SW3 is a Jupiter-family comet that split into three fragments during its 1995 apparition and later into additional components. It was expected that fresh ices from deep within the presplit nucleus were exposed on the surface of each fragment. We observed SW3 with the Subaru telescope in 2006 early May when component B was disintegrating rapidly. If this exposed fresh ices from deeper layers of the original nucleus, mixing ratios obtained from our observations may reflect the pristine nature of the comet. Based on our results, comet SW3-B was depleted in C2H6 and C2H 2 with respect to most comets from the Oort Cloud reservoir, suggesting its formation region might have differed from that of the dominant Oort Cloud comets. Furthermore, the chemical composition of SW3-B was similar to that of SW3-C, suggesting that the presplit nucleus was almost homogeneous in volatile composition. The combined results demonstrate that depleted-organics comets from a common formation zone entered both reservoirs, of Jupiter-family comets and and Oort Cloud comets, but likely in different fractions. This Letter is based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. This work was financially supported by the Ministry of Education, Science, and Culture, Grant-in-Aid for Young Scientists 19740107 (H. K.).
ERIC Educational Resources Information Center
Overbye, Dennis
1984-01-01
Discusses conflicting theories that explain how and why bombardment by comets spells periodic disaster for life on earth. Dislodgment of comets occurs from a vast cloud that envelops the solar system by gravitational forces of either a companion star of the sun or a dust cloud. (BC)
Comet Impacts as a Source of Methane on Titan
NASA Astrophysics Data System (ADS)
Howard, Michael; Goldman, N.; Vitello, P. A.
2006-12-01
We model comet impacts on Titan as a possible source of atmospheric methane. That is, we study the formation of methane in comet impacts using chemical equilibrium calculations coupled with arbitrary Lagrange-Eulerian (ALE) hydrodynamics. That is, we study the chemical transformation of comet material under high pressure and temperature conditions as it impacts Titan. We assume that the comet is composed of ice, graphite, nitrogen and some hydrocarbons. For certain pressure and temperature regimes, in chemical equilibrium, a significant amount of ice and graphite can be transformed into methane. As a result, we find that a significant amount of methane can be formed in comet collisions on Titan. The methane is formed in the post-impact vapor clouds that form as the comet material expands and cools. We use molecular dynamics to construct an equation of state for the ice surface structures and the comet material. We also study kinetic processes for methane formation during the expansion and cooling phase. We discuss the implication of our results for comets as a possible source of abiotic methane on Titan and its implications on the origin of life. We also discuss the various uncertainties in our model. * This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Search for ammonia in comet C/2012 S1 (ISON)
NASA Astrophysics Data System (ADS)
Faggi, S.; Codella, C.; Tozzi, G. P.; Comoretto, G.; Crovisier, J.; Nesti, R.; Panella, D.; Boissier, J.; Brucato, J. R.; Bolli, P.; Massi, F.; Tofani, G.
2015-12-01
Comets are uniquely pristine bodies providing unique insights about the formation of our Solar System. In this work, we focus on a dynamically new comet as it enters the inner Solar System for the first time after residing for billion of years in the Oort Cloud. Such comets are particularly important because they are thought to be not differentiated by solar radiation and they are supposed to have a large quantity of organic matter close to the surface. Here we report the results of a search for NH3(1,1) emission at 23.7 GHz towards comet C/2012 S1 (ISON) using a new dual-feed K band receiver mounted on the Medicina 32-m antenna. We observed the comet close to its perihelion, from 25 to 29 November 2013, when its heliocentric distance changed from 0.25 AU to 0.03 AU. We derive an upper limit of Q(NH3) of about 2.5×1029 mol s-1 on 26 November, that is consistent with the last peak of water production rate of ∼2×1030 mol s-1 within the last few days before the perihelion.
Composition and Cosmogonic Parameters of the Chemically Distinct Comet C/2007 N3 (Lulin)
NASA Astrophysics Data System (ADS)
Gibb, Erika L.; Villanueva, G. L.; Bonev, B. P.; DiSanti, M. A.; Mumma, M. J.; Radeva, Y. L.
2012-10-01
Comets are remnants from the early solar system that retain the volatiles (ices) from the cold outer proto-planetary disk (beyond 5 AU) where they formed. Comet nuclei were among the first objects to accrete in the early solar nebula and many of them were subsequently incorporated into the growing giant planets. Gravitational scattering redistributed the remaining comet population by either sending them to the inner solar system, where they may have enriched the early biosphere, or scattering them into their present-day dynamical reservoirs. Since this early time, comets have been orbiting the Sun relatively untouched by processing mechanisms, until their orbits are perturbed towards the inner solar system. As such, they are believed to be among the most primitive objects in the solar system and may be representative of the material from which the solar system formed. Of particular interest is their icy volatile composition since other solar system objects have either lost or have had significant modifications to their volatile compositions since their formation. Many of the volatiles observed in comets are also important prebiotic species. For example, H2CO is a chemical precursor to sugars and HCN and NH3 are precursors of amino acids. Studying comets is therefore a vital link to understanding the origin and evolution of our planetary system and life on Earth. We obtained high-resolution, near-infrared spectroscopic observations of Comet C/2007 N3 (Lulin) on 30 January - 1 February 2009 with NIRSPEC on Keck II. Lulin is an Oort Cloud comet with a very large aphelion distance, suggesting that it may have been dynamically new. We report production rates of H2O, C2H6, HCN, C2H2, CH4, NH3, H2CO, CH3OH, and CO. We also report two cosmogonic parameters: D/H ratio in H2O and CH4, and isomeric spin temperatures. The implications for comet formations scenarios are discussed.
Comet Hartley 2 Looms Large in the Sky
2010-11-03
NASA EPOXI mission took this image of comet Hartley 2 on Nov. 2, 2010. The spacecraft will fly by the comet on Nov. 4, 2010. The white blob and the halo around it are the comet outer cloud of gas and dust, called a coma.
Possible Dust Models for C/2012 S1
NASA Astrophysics Data System (ADS)
Yanamandra-Fisher, P. A.
2014-12-01
Comet C/2012 S1 (ISON) provided a great opportunity to study a dynamically new Oort-cloud comet on its initial and only passage through the inner solar system. Contrary to expectations, the comet's activity fluctuated from high through a quiescent phase, and a major outburst days before its perihelion passage, ending in a dramatic race to complete disintegration on perihelion day, 28 November 2013. Amateur observations to professional ground-based, sub-orbital telescopes indicate the various changes of visible factors such as Afrho, a proxy for dust activity, and the measured production rates for water, consistent with the disintegration of the nucleus. Hines et al. (2013; ApJ Lett. 780) detected positive polarization in the inner coma and negative polarization in the outer coma, indicative of a jet, independently confirmed by Li et al. (2013, ApJ Lett., 779). Thermal emission observations of the comet pre-perihelion from NAOJ/Subaru/COMICS, a mid-infrared spectrometer, indicated a body with an equivalent brightness temperature of 265K (Ootsubo et al., 2013, ACM, Helsinki,FI); thermal observations acquired at the NASA/Infrared Telescope Facility (IRTF) with The Aerospace Corporation spectrometer (BASS, PI. R. Russell), before and after the November 12, 2013 outburst observed by the CIOC_ISON amateur network, indicates a brightness temperature of 330K and the presence, albeit weak, of the 11.3-micron crystalline silicate feature (Sitko et al., 2014, LPI abstract 1537). A Monte Carlo comet dust tail model, applied to extract the dust environment parameters of comet C/2012 S1 (ISON) from both Earth-based and Solar and Heliospheric Observatory (SOHO) calibrated observations, performed from about 6 AU (inbound), to right after perihelion passage, when just a small portion of the original comet nucleus survived in the form of a cloud of tiny particles, indicates that particles underwent disintegration and fragmentation (Moreno et al., 2014, ApJ Lett., 791). Ongoing work on possible dust models that incorporate both the observed polarization and thermal emission will be discussed.
Term Projects on Interstellar Comets
ERIC Educational Resources Information Center
Mack, John E.
1975-01-01
Presents two calculations of the probability of detection of an interstellar comet, under the hypothesis that such comets would escape from comet clouds similar to that believed to surround the sun. Proposes three problems, each of which would be a reasonable term project for a motivated undergraduate. (Author/MLH)
The mass disruption of Jupiter Family comets
NASA Astrophysics Data System (ADS)
Belton, Michael J. S.
2015-01-01
I show that the size-distribution of small scattered-disk trans-neptunian objects when derived from the observed size-distribution of Jupiter Family comets (JFCs) and other observational constraints implies that a large percentage (94-97%) of newly arrived active comets within a range of 0.2-15.4 km effective radius must physically disrupt, i.e., macroscopically disintegrate, within their median dynamical lifetime. Additional observational constraints include the numbers of dormant and active nuclei in the near-Earth object (NEO) population and the slope of their size distributions. I show that the cumulative power-law slope (-2.86 to -3.15) of the scattered-disk TNO hot population between 0.2 and 15.4 km effective radius is only weakly dependent on the size-dependence of the otherwise unknown disruption mechanism. Evidently, as JFC nuclei from the scattered disk evolve into the inner Solar System only a fraction achieve dormancy while the vast majority of small nuclei (e.g., primarily those with effective radius <2 km) break-up. The percentage disruption rate appears to be comparable with that of the dynamically distinct Oort cloud and Halley type comets (Levison, H.F., Morbidelli, A., Dones, L., Jedicke, R., Wiegert, P.A., Bottke Jr., W.F. [2002]. Science 296, 2212-2215) suggesting that all types of comet nuclei may have similar structural characteristics even though they may have different source regions and thermal histories. The typical disruption rate for a 1 km radius active nucleus is ∼5 × 10-5 disruptions/year and the dormancy rate is typically 3 times less. We also estimate that average fragmentation rates range from 0.01 to 0.04 events/year/comet, somewhat above the lower limit of 0.01 events/year/comet observed by Chen and Jewitt (Chen, J., Jewitt, D.C. [1994]. Icarus 108, 265-271).
Galalctic Tides & the Sinusoidal Potential
NASA Astrophysics Data System (ADS)
Bartlett, David F.
2011-05-01
The sinusoidal potential is a nonNewtonian alternative to dark matter. Instead of φ = -GM/r we write φ = -(GM/r) cos kor, where ko= 2π/ λo and λo = Ro/20= 400 pc. Evidence for this choice for the "wavelength” λo has been given in one article and many previous meetings of the AAS & DDA. The solar system and nearby stars are trapped in a local groove of width Δr < 400 pc. The rapid alternation of attraction and repulsion within the groove gives very strong Galactic radial tides. The epicyclic period is only 7 Myr . The Keplerian period for comets in the middle of the Oort cloud is also 7 Myr. The 1:1 resonance between material in the groove and the cloud provides a new mechanism for filling the Oort cloud. The Oort cloud is emptied by the same strong radial tides. Evidence is found in the 499 comets with calculated 1/aoriginal in the latest Catalogue of Cometary Orbits (Marsden & Williams 2008). . I separate the comets into 12 classes on the basis of Quality (4 types) and semi-major axis aoriginal . For 10 of the 12 classes radial tides dominate Z-tides. The classic Oort cloud comets (1851-1996) have a particularly strong modulation with galactic longitude. This modulation is exactly in those directions where a radial tide would be important. The equally numerous recent Oort comets (1996-2008) show a different evidence for strong radial tides. The recent comets generally have much larger perihelion distances q than the classic ones. Here the evidence is that a radial tide is removing angular momentum from the orbit and thus bringing the perihelion closer to the earth and to observers.
NASA Technical Reports Server (NTRS)
Wirstrom, E. S.; Charnley, S. B.; Cordiner, M. A.; Milam, S. N.
2012-01-01
Many meteoritic and interplanetary dust particle (IDP) samples contain bulk enhancements and hotspots rich in N-15. Similarly low C(14)N/C(15)N ratios have been observed in numerous comets, An almost constant enrichment factor in comets from disti'nct formation zones in the nebular disk (i.e. both Jupiter Family and Oort Cloud comets), strongly suggests that this fractionation is primordial and was set in the protsolar cloud core. Deuterium enrichment is observed in both meteorites and IDPs
Comet Bites the Dust Around Dead Star Artist Concept
2006-01-11
This artist concept illustrates a comet being torn to shreds around a dead star, or white dwarf, called G29-38. NASA Spitzer Space Telescope observed a cloud of dust around this white dwarf that may have been generated from comet disruption.
Orbital Evolution of Planetesimals by the Galactic Tide
NASA Astrophysics Data System (ADS)
Higuchi, A.; Kokubo, E.; Mukai, T.
2005-05-01
The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region. Here we show the orbital evolution of planetesimals by the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. The effect of the galactic tide on the planetesimals with semimajor axes of ˜ 104AU is about 10-3 of the solar gravity. The timescale of the orbital evolution is ˜ 108 years. We consider only the vertical component of the galactic tide. Under the axisymmetric potential, some planetesimals may show the librations around ω (argument of perihelion)=π /2 and 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. The secular perturbation theory demonstrates the Kozai mechanism and we can understand the motion of the planetesimals analytically. We apply the Kozai mechanism to the galactic tide and discuss the property of the Oort cloud formed by the Kozai mechanizm. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.
Evolution of the Oort Cloud under Galactic Perturbations
NASA Astrophysics Data System (ADS)
Higuchi, A.; Kokubo, E.; Mukai, T.
2005-08-01
The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region and randomize their inclinations. Here we show the orbital evolution of planetesimals due to the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. We consider only the vertical component of the galactic tide because it is dominant compared to other components. Then, under such an axi-symmetric assumption, some planetesimals may show the librations around ω (argument of perihelion)=π /2 or 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. Using the secular perturbation theory, we can understand the motion of the planetesimals analytically. We applied the Kozai mechanism to the galactic tide and found that the galactic tide raise perihelia and randomize inclinations of planetesimals with semimajor axes larger than ˜ 103 AU in 5Gyr. We take into account time evolution of the local galactic density, which is thought to be denser in the early stage of the sun than the current one. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.
NASA Technical Reports Server (NTRS)
Meech, Karen J.
1991-01-01
The question of physical aging in cometary nuclei is addressed in order to elucidate the relationship between the past conditions in the protosolar nebula and the present state of the cometary nucleus, and to understand the processes that will physically and chemically alter the nucleus as a function of time. Attention is given to some of the processes that might be responsible for causing aging in comets, namely, radiation damage in the upper layers of the nucleus during the long residences in the Oort cloud, processing from heating and collisions within the Oort cloud, loss of highly volatile species from the nucleus on the first passage through the inner solar system, buildup of a dusty mantle, which can eventually prohibit further sublimation, and a change in the porosity, and hence the thermal properties, of the nucleus. Recent observations suggest that there are distinct differences between 'fresh' Oort cloud comets and thermally processed periodic comets with respect to intrinsic brightness and rate of change of activity as a function of distance.
Optical observations of the AMPTE artificial comet and magnetotail barium releases
NASA Technical Reports Server (NTRS)
Hallinan, T. J.; Stenbaek-Nielsen, H.; Brown, N.
1985-01-01
The first AMPTE artificial comet was observed with a low light level television camera operated aboard the NASA CV990 flying out of Moffett Field, California. The comet head, neutral cloud, and comet tail were all observed for four minutes with an unifiltered camera. Brief observations at T + 4 minutes through a 4554A Ba(+) filter confirmed the identification of the structures. The ion cloud expanded along with the neutral cloud at a rate of 2.3 km/sec (diameter) until it reached a final diameter of approx. 170 km at approx. T + 90 s. It also drifted with the neutral cloud until approx. 165 s. By T + 190 s it had reached a steady state velocity of 5.4 km/sec southward. A barium release in the magnetotail was observed from the CV990 in California, Eagle, Alaska, and Fairbanks, Alaska. Over a twenty-five minute period, the center of the barium streak drifted southward (approx. 500 m/sec), upward (24 km/sec) and eastward (approx 1 km/sec) in a nonrotating reference frame. An all-sky TV at Eagle showed a single auroral arc in the far North during this period.
The Composition of the Protosolar Disk and the Formation Conditions for Comets
NASA Astrophysics Data System (ADS)
Willacy, K.; Alexander, C.; Ali-Dib, M.; Ceccarelli, C.; Charnley, S. B.; Doronin, M.; Ellinger, Y.; Gast, P.; Gibb, E.; Milam, S. N.; Mousis, O.; Pauzat, F.; Tornow, C.; Wirström, E. S.; Zicler, E.
2015-12-01
Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today.
Messengers from the Early Solar System - Comets as Carriers of Cosmic Information
NASA Technical Reports Server (NTRS)
Mumma, Michael J.
2011-01-01
Viewed from a cosmic perspective, Earth is a dry planet yet its oceans are enriched in deuterium by a large factor relative to nebular hydrogen. Can comets have delivered Earth s water? The question of exogenous delivery of water and organics to Earth and other young planets is of critical importance for understanding the origin of Earth s water, and for assessing the possible existence of exo-planets similar to Earth. Strong gradients in temperature and chemistry in the proto-planetary disk, coupled with dynamical models, imply that comets from the Oort Cloud and Kuiper Disk reservoirs should have diverse composition. The primary volatiles in comets (ices native to the nucleus) provide the preferred metric, and taxonomies based on them are now beginning to emerge [1, 2, 3]. The measurement of cosmic parameters such as the nuclear spin temperatures for H2O, NH3, and CH4, and of enrichment factors for isotopologues (D/H in water and hydrogen cyanide, N-14/N-15 in CN and hydrogen cyanide) provide additional important tests for the origin of cometary material.
Organic Chemistry in Interstellar Ices: Connection to the Comet Halley Results
NASA Technical Reports Server (NTRS)
Schutte, W. A.; Agarwal, V. K.; deGroot, M. S.; Greenberg, J. M.; McCain, P.; Ferris, J. P.; Briggs, R.
1997-01-01
Mass spectroscopic measurements on the gas and dust in the coma of Comet Halley revealed the presence of considerable amounts of organic species. Greenberg (1973) proposed that prior to the formation of the comet UV processing of the ice mantles on grains in dense clouds could lead to the formation of complex organic molecules. Theoretical predictions of the internal UV field in dense clouds as well as the discovery in interstellar ices of species like OCS and OCN- which have been formed in simulation experiments by photoprocessing of interstellar ice analogues point to the importance of such processing. We undertook a laboratory simulation study of the formation of organic molecules in interstellar ices and their possible relevance to the Comet Halley results.
Parent volatiles in comet 9P/Tempel 1: before and after impact
NASA Technical Reports Server (NTRS)
Mumma, Michael J.; DiSanti, Michael A.; Magee-Sauer, Karen; Bonev, Boncho P.; Villanueva, Geronimo L.; Kawakita, Hideyo; Dello Russo, Neil; Gibb, Erika L.; Blake, Geoffrey A.; Lyke, James E.;
2005-01-01
We quantified eight parent volatiles (H2O, C2H6, HCN, CO, CH3OH, H2CO, C2H2, and CH4) in the Jupiter-family comet Tempel 1 using high-dispersion infrared spectroscopy in the wavelength range 2.8 to 5.0 micrometers. The abundance ratio for ethane was significantly higher after impact, whereas those for methanol and hydrogen cyanide were unchanged. The abundance ratios in the ejecta are similar to those for most Oort cloud comets, but methanol and acetylene are lower in Tempel 1 by a factor of about 2. These results suggest that the volatile ices in Tempel 1 and in most Oort cloud comets originated in a common region of the protoplanetary disk.
The impactor flux in the Pluto-Charon system
NASA Technical Reports Server (NTRS)
Weissman, Paul R.; Stern, S. Alan
1994-01-01
Current impact rates of comets on Pluto and Charon are estimated. It is shown that the dominant sources of impactors are comets from the Kuiper belt and the inner Oort cloud, each of whose perihelion distribution extends across Pluto's orbit. In contrast, long-period comets from the outer Oort cloud are a negligible source of impactors. The total predicted number of craters is not sufficient to saturate the surface areas of either Pluto of Charon over the age of the Solar System. However, heavy cratering may have occurred early in the Solar System's history during clearing of planetesimals from the outer planets' zone.
The origin of comets - Implications for planetary formation
NASA Technical Reports Server (NTRS)
Weissman, P. R.
1985-01-01
Primordial and episodic theories for the origin of comets are discussed. The implications of the former type for the origin of the solar system are considered. Candidate sites for the formation of comets are compared. The possible existence of a massive inner Oort cloud is discussed.
Oort's cloud evolution under the influence of the galactic field.
NASA Astrophysics Data System (ADS)
Kiryushenkova, N. V.; Chepurova, V. M.; Shershkina, S. L.
By numerical integration (Everhart's method) of the differential equations of cometary movement in Oort's cloud an attempt was made to observe how the galactic gravitational field changes the orbital elements of these comets during three solar revolutions in the Galaxy. It is shown that the cometary orbits are more elongated, even the initially circular orbits become strongly elliptical, in the outer layers of Oort's cloud it is possible for comets to turn into hyperbolic orbits and to leave the solar system. The boundaries of the solar system have been precised.
Comet Siding Spring Mars Flyby
2017-12-08
On October 19, Comet Siding Spring will pass within 88,000 miles of Mars – just one third of the distance from the Earth to the Moon! Traveling at 33 miles per second and weighing as much as a small mountain, the comet hails from the outer fringes of our solar system, originating in a region of icy debris known as the Oort cloud. Comets from the Oort cloud are both ancient and rare. Since this is Comet Siding Spring’s first trip through the inner solar system, scientists are excited to learn more about its composition and the effects of its gas and dust on the Mars upper atmosphere. NASA will be watching closely before, during, and after the flyby with its entire fleet of Mars orbiters and rovers, along with the Hubble Space Telescope and dozens of instruments on Earth. The encounter is certain to teach us more about Oort cloud comets, the Martian atmosphere, and the solar system’s earliest ingredients. Learn more: www.youtube.com/watch?v=FG4KsatjFeI Credit: NASA’s Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
DYNAMIC DEUTERIUM ENRICHMENT IN COMETARY WATER VIA ELEY–RIDEAL REACTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Yunxi; Giapis, Konstantinos P., E-mail: giapis@cheme.caltech.edu
2017-01-20
The deuterium-to-hydrogen ratio (D/H) in water found in the coma of Jupiter family comet (JFC) 67P/Churyumov–Gerasimenko was reported to be (5.3 ± 0.7) × 10{sup −4}, the highest among comets and three times the value for other JFCs with an ocean-like ratio. This discrepancy suggests the diverse origins of JFCs and clouds the issue of the origin of Earth’s oceanic water. Here we demonstrate that Eley–Rideal reactions between accelerated water ions and deuterated cometary surface analogs can lead to instantaneous deuterium enrichment in water scattered from the surface. The reaction proceeds with H{sub 2}O{sup +} abstracting adsorbed D atoms, formingmore » an excited H{sub 2}DO* state, which dissociates subsequently to produce energetic HDO. Hydronium ions are also produced readily by the abstraction of H atoms, consistent with H{sub 3}O{sup +} detection and abundance in various comets. Experiments with water isotopologs and kinematic analysis on deuterated platinum surfaces confirmed the dynamic abstraction mechanism. The instantaneous fractionation process is independent of the surface temperature and may operate on the surface of cometary nuclei or dust grains, composed of deuterium-rich silicates and carbonaceous chondrites. The requisite energetic water ions have been detected in the coma of 67P in two populations. This dynamic fractionation process may temporarily increase the water D/H ratio, especially as the comet gets closer to the Sun. The magnitude of the effect depends on the water ion energy-flux and the deuterium content of the exposed cometary surfaces.« less
Sources of cosmic dust in the Earth's atmosphere
NASA Astrophysics Data System (ADS)
Carrillo-Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.; Plane, J. M. C.
2016-12-01
There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d-1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.
Local growth of dust- and ice-mixed aggregates as cometary building blocks in the solar nebula
NASA Astrophysics Data System (ADS)
Lorek, S.; Lacerda, P.; Blum, J.
2018-03-01
Context. Comet formation by gravitational instability requires aggregates that trigger the streaming instability and cluster in pebble-clouds. These aggregates form as mixtures of dust and ice from (sub-)micrometre-sized dust and ice grains via coagulation in the solar nebula. Aim. We investigate the growth of aggregates from (sub-)micrometre-sized dust and ice monomer grains. We are interested in the properties of these aggregates: whether they might trigger the streaming instability, how they compare to pebbles found on comets, and what the implications are for comet formation in collapsing pebble-clouds. Methods: We used Monte Carlo simulations to study the growth of aggregates through coagulation locally in the comet-forming region at 30 au. We used a collision model that can accommodate sticking, bouncing, fragmentation, and porosity of dust- and ice-mixed aggregates. We compared our results to measurements of pebbles on comet 67P/Churyumov-Gerasimenko. Results: We find that aggregate growth becomes limited by radial drift towards the Sun for 1 μm sized monomers and by bouncing collisions for 0.1 μm sized monomers before the aggregates reach a Stokes number that would trigger the streaming instability (Stmin). We argue that in a bouncing-dominated system, aggregates can reach Stmin through compression in bouncing collisions if compression is faster than radial drift. In the comet-forming region ( 30 au), aggregates with Stmin have volume-filling factors of 10-2 and radii of a few millimetres. These sizes are comparable to the sizes of pebbles found on comet 67P/Churyumov-Gerasimenko. The porosity of the aggregates formed in the solar nebula would imply that comets formed in pebble-clouds with masses equivalent to planetesimals of the order of 100 km in diameter.
Dynamics of Dust Particles Released from Oort Cloud Comets and Their Contribution to Radar Meteors
NASA Technical Reports Server (NTRS)
Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr; Janches, Diego
2012-01-01
The Oort Cloud Comets (OCCs), exemplified by the Great Comet of 1997 (Hale-Bopp), are occasional visitors from the heatless periphery of the solar system. Previous works hypothesized that a great majority of OCCs must physically disrupt after one or two passages through the inner solar system, where strong thermal gradients can cause phase transitions or volatile pressure buildup. Here we study the fate of small debris particles produced by OCC disruptions to determine whether the imprints of a hypothetical population of OCC meteoroids can be found in the existing meteor radar data. We find that OCC particles with diameters D < or approx. 10 microns are blown out from the solar system by radiation pressure, while those with D > or approx. 1 mm have a very low Earth-impact probability. The intermediate particle sizes, D approx. 100 microns represent a sweet spot. About 1% of these particles orbitally evolve by Poynting-Robertson drag to reach orbits with semimajor axis a approx. 1 AU. They are expected to produce meteors with radiants near the apex of the Earth s orbital motion. We find that the model distributions of their impact speeds and orbits provide a good match to radar observations of apex meteors, except for the eccentricity distribution, which is more skewed toward e approx. 1 in our model. Finally, we propose an explanation for the long-standing problem in meteor science related to the relative strength of apex and helion/antihelion sources. As we show in detail, the observed trend, with the apex meteors being more prominent in observations of highly sensitive radars, can be related to orbital dynamics of particles released on the long-period orbits.
NASA Investigating the Life of Comet ISON
2013-12-02
Comet ISON comes in from the bottom right and moves out toward the upper right, growing more faint, in this time-lapse image from the ESA/NASA Solar and Heliospheric Observatory. The image of the sun at the center is from NASA's Solar Dynamics Observatory. Credit: ESA/NASA/SOHO/SDO/GSFC After several days of fading, scientists continue to work to determine and to understand the fate of Comet ISON: There's no doubt that the comet shrank in size considerably as it rounded the sun and there's no doubt that something made it out on the other side to shoot back into space. The question remains as to whether the bright spot seen moving away from the sun was simply debris, or whether a small nucleus of the original ball of ice was still there. Regardless, it is likely that it is now only dust. Comet ISON, which began its journey from the Oort Cloud some 3 million years ago, made its closest approach to the sun on Nov. 28, 2013. The comet was visible in instruments on NASA's Solar Terrestrial Relations Observatory, or STEREO, and the joint European Space Agency/NASA Solar and Heliospheric Observatory, or SOHO, via images called coronagraphs. Coronagraphs block out the sun and a considerable distance around it, in order to better observe the dim structures in the sun's atmosphere, the corona. As such, there was a period of several hours when the comet was obscured in these images, blocked from view along with the sun. During this period of time, NASA's Solar Dynamics Observatory could not see the comet, leading many scientists to surmise that the comet had disintegrated completely. However, something did reappear in SOHO and STEREO coronagraphs some time later – though it was significantly less bright. Read more: 1.usa.gov/18hGYag NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
An Analytical Method To Compute Comet Cloud Formation Efficiency And Its Application
NASA Astrophysics Data System (ADS)
Brasser, Ramon; Duncan, M. J.
2007-07-01
A quick analytical method is presented for calculating comet cloud formation efficiency in the case of a single planet or multiple-planet system for planets that are not too eccentric (e_p < 0.2). A method to calculate the fraction of comets that stay under the control of each planet is also presented. The location of the planet(s) in mass-semi-major axis space to form a comet cloud is constrained based on the conditions developed by Tremaine (1993) together with estimates of the likelihood of passing comets between planets; and, in the case of a single, eccentric planet, the additional constraint that it is, by itself, able to accelerate material to lower values of Tisserand parameter within the age of the stellar system without sweeping up the majority of the material beforehand. For a single planet, it turns out the efficiency is mainly a function of planetary mass and semi-major axis of the planet and density of the stellar environment. The theory has been applied to some extrasolar systems and compared to numerical simulations for both these systems and the Solar system, as well as a diffusion scheme based on the energy kick distribution of Everhart (1968). Results agree well with analytical predictions.
MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, M.; Altwegg, K.; Dishoeck, E. F. van
2015-12-10
Recently, the ROSINA mass spectrometer suite on board the European Space Agency's Rosetta spacecraft discovered an abundant amount of molecular oxygen, O{sub 2}, in the coma of Jupiter family comet 67P/Churyumov–Gerasimenko of O{sub 2}/H{sub 2}O = 3.80 ± 0.85%. It could be shown that O{sub 2} is indeed a parent species and that the derived abundances point to a primordial origin. Crucial questions are whether the O{sub 2} abundance is peculiar to comet 67P/Churyumov–Gerasimenko or Jupiter family comets in general, and also whether Oort cloud comets such as comet 1P/Halley contain similar amounts of molecular oxygen. We investigated mass spectra obtained bymore » the Neutral Mass Spectrometer instrument during the flyby by the European Space Agency's Giotto probe of comet 1P/Halley. Our investigation indicates that a production rate of O{sub 2} of 3.7 ± 1.7% with respect to water is indeed compatible with the obtained Halley data and therefore that O{sub 2} might be a rather common and abundant parent species.« less
Ground-Based Centimeter, Millimeter, and Submillimeter Observations of Recent Comets
NASA Technical Reports Server (NTRS)
Milam, S. N.; Chuang, Y.-L.; Charnley, S. B.; Kuan, Y. -J.; Villanueva, G. L.; Coulson, I. M.; Remijan. A. R.
2012-01-01
Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth [I]. Comets are comprised of molecular ices, that may be pristine interstellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula [2]. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection [3]. In the classical picture, the long-period comets probably formed in the nebular disk across the giant planet formation region (5-40 AU) with the majority of them originating from the Uranus-Neptune region. They were subsequently scattered out to the Oort Cloud (OC) by Jupiter. The short-period comets (also known as ecliptic or Jupiter Family Comets - JFC) reside mainly in the Edgeworth-Kuiper belt where they were formed. Given the gradient in physical conditions expected across this region of the nebula, chemical diversity in this comet population is to be expected [4,5]. We have conducted observations of comets I 03P/Hartley 2 (JFC) and C/2009 PI (Garradd) (OC), at primarily millimeter and submillimeter wavelengths, to determine important cosmogonic quantities, such as the ortho:para ratio and isotope ratios, as well as probe the origin of cometary organics and if they vary between the two dynamic reservoirs.
On the present shape of the Oort cloud and the flux of ;new; comets
NASA Astrophysics Data System (ADS)
Fouchard, M.; Rickman, H.; Froeschlé, Ch.; Valsecchi, G. B.
2017-08-01
Long term evolution of an initial set of 107 Oort cloud comets is performed for the age of the solar system taking into account the action of passing stars using 10 different sequences of stellar encounters, Galactic tides and the gravity of the giant planets. The initial conditions refer to a disk-shaped Oort cloud precursor, concentrated toward the ecliptic with perihelia in the region of Uranus and Neptune. Our results show that the shape of the Oort cloud quickly reach a kind of steady state beyond a semi-major axis greater than about 2000 AU (this threshold depending on the evolution time-span), with a Boltzmann distribution of the orbital energy. The stars act in an opposite way to what was found in previous papers, that is they emptied an initial Tidal Active Zone that is overfilled with respect to the isotropic case. Consequently, the inclusion of stellar perturbations strongly affect the shape of the Oort spike. On the contrary, the Oort spike shape appears to be poorly dependent on the stellar sequences used, whereas the total flux of observable comets and the proportion of retrograde comets for the inner part of the spike are significantly dependent of it. Then it has been highlighted that the total flux, the shape of the Oort spike and the shape of the final Oort cloud are almost independent of the initial distribution of orbital energy considered.
Sources of cosmic dust in the Earth's atmosphere.
Carrillo-Sánchez, J D; Nesvorný, D; Pokorný, P; Janches, D; Plane, J M C
2016-12-16
There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d -1 ), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.
Sources of cosmic dust in the Earth's atmosphere
Carrillo‐Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.
2016-01-01
Abstract There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d−1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud. PMID:28275286
Messengers from the Early Solar System - The Similarity and Diversity of Comets
NASA Technical Reports Server (NTRS)
Mumma, Michael J.
2012-01-01
Viewed from a cosmic perspective, Earth is a dry planet yet its oceans are enriched in deuterium by a large factor relative to nebular hydrogen. Can comets have delivered Earth's water? The question of exogenous delivery of water and organics to Earth and other young planets is of critical importance for understanding the origin of Earth's water, and for assessing the possible existence of exo-planets similar to Earth. Strong gradients in temperature and chemistry in the proto-planetary disk, coupled with dynamical models, imply that comets from the Oort Cloud and Kuiper Disk reservoirs should have diverse composition. The primary volatiles in comets (ices native to the nucleus) provide the preferred metric, and taxonomies based on them are now beginning to emerge [1,2,3]. The measurement of cosmic parameters such as the nuclear spin temperatures for H2O, NH3, and CH4, and of enrichment factors for isotopologues (D/H in water and hydrogen cyanide, N-14/N-15 in CN and hydrogen cyanide provide additional important tests for the origin of cometary material. I will provide an overview of these aspects, and their implications for the origin of Earth's water and prebiotic organics.
Investigating the Use of Cloudbursts for High-Throughput Medical Image Registration
Kim, Hyunjoo; Parashar, Manish; Foran, David J.; Yang, Lin
2010-01-01
This paper investigates the use of clouds and autonomic cloudbursting to support a medical image registration. The goal is to enable a virtual computational cloud that integrates local computational environments and public cloud services on-the-fly, and support image registration requests from different distributed researcher groups with varied computational requirements and QoS constraints. The virtual cloud essentially implements shared and coordinated task-spaces, which coordinates the scheduling of jobs submitted by a dynamic set of research groups to their local job queues. A policy-driven scheduling agent uses the QoS constraints along with performance history and the state of the resources to determine the appropriate size and mix of the public and private cloud resource that should be allocated to a specific request. The virtual computational cloud and the medical image registration service have been developed using the CometCloud engine and have been deployed on a combination of private clouds at Rutgers University and the Cancer Institute of New Jersey and Amazon EC2. An experimental evaluation is presented and demonstrates the effectiveness of autonomic cloudbursts and policy-based autonomic scheduling for this application. PMID:20640235
Formation Location of Enceladus and Comets from D/H Measurements
NASA Astrophysics Data System (ADS)
Petit, J.-M.; Mousis, O.; Kavelaars, J. J.
2012-04-01
The building blocks of Enceladus could have formed in Saturn's subnebula, thus bearing no connection with planetesimals condensed in Saturn's feeding zone. We have shown that the D/H ratio in H2O in Saturn's sub-nebula reaches the protosolar value in about 1,000 yr, well before ice forms again at Enceladus' location (several 10,000 yr). However, the D/H ratio measured by the Ion and Neutral Mass Spectrometer aboard the Cassini spacecraft in Saturn's satellite Enceladus is remarkably similar to the values observed in the nearly-isotropic comets. Hence the building blocks of Enceladus formed in the solar nebula. Nearly-isotropic comets originate from the Oort cloud. Delivery of material into the Oort cloud reservoir is controlled by Uranus-Neptune scattering. The D/H ratio in comets is therefore representative of that of the location of Uranus-Neptune at the time of formation of the Oort cloud. Since D/H strongly depends on heliocentric distance in the solar nebula, the similarity of D/H ratios links the primordial source region of the nearly-isotropic comets with the formation location of Enceladus. This precludes these comets from having formed beyond ~15 AU from the Sun. which in turn implies that Uranus and Neptune were originally closer to Saturn's location during the feeding of the Oort cloud, likely in the 12-15 AU region. Such a configuration is consistent with the Nice model of evolution of the outer Solar System. 103P/Hartley 2 being D-poor compared to these bodies questions the current models. A fraction of ecliptic comets could have formed at closer distances from the Sun than assumed here and has been ejected outward and then display a low R/H ratio. However, they would only represent a small fraction of all ecliptic comets. The high level of deuteration predicted in ecliptic comets from the description of the isotopic exchange between H2 and H2O in the gas phase of the disk is based on classical models of the solar nebula (the alpha-turbulent model) in which the disk's temperature, pressure and density decrease monotonically with increasing heliocentric distance. These models do not consider the possible presence of sporadic and local phenomena such as shock waves that have been invoked to speed up the formation of planetesimals and trigger the crystallization of initially amorphous silicates prior to their incorporation in comets. Shock waves in the outer nebula could have locally increased the disk's temperature and pressure conditions and might have significantly decreased the deuteration level of the H2O ice formed at this place. A possibly extended, both in time and space, major heating could have been induced by the inflow of the presolar cloud or envelop onto the outer part of the accretion disk at the time of the disk's formation. The influence of this mechanism on the outer disk's thermodynamic conditions and chemistry remains to be investigated.
Comet C/2013 US10 (CATALINA) - Dust in the Infrared with SOFIA
NASA Astrophysics Data System (ADS)
Woodward, Charles E.; Kelley, Michael S. P.; Harker, David E.; Russell, Ray W.; Kim, Daryl L.; Sitko, Michael L.; Wooden, Diane H.
2018-01-01
One of the major goals of modern astronomy is the "search for origins'' from the big bang to the development of intelligence. A key process in developing our understanding of these origins is how planetary systems are created from dusty disks around stars and evolve into planets with water and other molecules. Traces of primordial materials, and their least-processed products, are found in the outermost regions of the solar system -- the realm of comets -- in the form of ices of volatile materials (H2O, NH3, CO, CH4, and other more rare species), and more refractory dust grains. There is considerable evidence that in the cold regions where cometary material formed, existing comet bodies were mixed with refractory material processed at much higher temperatures. Remote sensing observation of comets provides a means to study the properties of this dust material to characterize the nature of refactory comet grains. These include observations of both the re-radiated thermal (spectrophotometric) and scattered light (spectrophotometric and polarimetric). The former technique provides our most direct link to the composition (mineral content) of the grains.Here we report our post-perihelion (TP = 2015 Nov 15.721 UT) infrared 2 to 31 micron spectrophotometric observations and dust thermal model analyses of comet C/2013 US10 (Catalina), a dynamically new Oort Cloud comet -- 1/aorg [reciprocal original semimajor axis ] = 0.00005339 -- conducted at two contemporaneous observational epochs near close Earth approach (Δ ≈ 0.93 AU) with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) complemented by observations from the NASA Infrared Telescope Facility (IRTF).
An analytical method to compute comet cloud formation efficiency and its application
NASA Astrophysics Data System (ADS)
Brasser, Ramon; Duncan, Martin J.
2008-01-01
A quick analytical method is presented for calculating comet cloud formation efficiency in the case of a single planet or multiple-planet system for planets that are not too eccentric ( e p ≲ 0.3). A method to calculate the fraction of comets that stay under the control of each planet is also presented, as well as a way to determine the efficiency in different star cluster environments. The location of the planet(s) in mass-semi-major axis space to form a comet cloud is constrained based on the conditions developed by Tremaine (1993) together with estimates of the likelyhood of passing comets between planets; and, in the case of a single, eccentric planet, the additional constraint that it is, by itself, able to accelerate material to relative encounter velocity U ~ 0.4 within the age of the stellar system without sweeping up the majority of the material beforehand. For a single planet, it turns out the efficiency is mainly a function of planetary mass and semi-major axis of the planet and density of the stellar environment. The theory has been applied to some extrasolar systems and compared to numerical simulations for both these systems and the Solar System, as well as a diffusion scheme based on the energy kick distribution of Everhart (Astron J 73:1039 1052, 1968). The analytic results are in good agreement with the simulations.
Meteor-Shower on Mars Indicates Cometary Activity Far Away From the Sun
NASA Astrophysics Data System (ADS)
Sekhar, Aswin; ASHER, DAVID
2015-08-01
Introduction: The close encounter of Comet C/2013 A1 (Siding Spring) with Mars on 2014 Oct 19 at 1830h (UT) generated a lot of interest and modelling work [1] [2] [3] in the solar system community. A recent (on 2014 Nov 7) press release from NASA implied that a meteor shower was detected on Mars by their space instruments some hours after the comet-Mars close encounter. Various work [4] [5] [6] has suggested that very specific meteoroid sizes and ejection conditions may be required to produce meteor phenomena at Mars at the given times.Stream dynamics: Meteoroid stream modelling and their orbital geometry calculations have gained high precision over the years. In this work, we compute in detail the structure of the cloud of meteoroids released by C/2013 A1, showing its dependence on heliocentric ejection distances, 3-dimensional ejection velocities, and particle sizes. Our calculations using numerical integrator MERCURY, [7], incorporating radiation pressure, [8], show that ejection of particles at large heliocentric distances (about 7 au to 13 au) from C/2013 A1 could lead to evolution of a dense meteoroid cloud which intersects Mars a few hours after the comet-Mars close encounter. Hence this detection of a meteor shower on Mars by space instruments is an indirect confirmation of cometary activity at large distances which has rarely been observed directly by telescopes so far. Furthermore it shows that comprehensive threat estimation needs to be done for satellites orbiting the Earth when dynamically new comets come very close to the Earth in future.References:[1] Vaubaillon J., Macquet L., Soja R. 2014. MNRAS. 439: 3294.[2] Moorhead A. V., Wiegert P. A., Cooke W. J. 2014. Icarus. 231:13.[3] Ye Q.-Z., Hui M.-T., 2014, ApJ, 787: 115.[4] Farnocchia D. et al. 2014. ApJL. 790: 114.[5] Kelley M. S. P. et al. 2014, ApJL, 792: 16.[6] Tricarico P. et al., 2014, ApJL, 787: 35.[7] Chambers J. E. 1999. MNRAS. 304: 793.[8] Burns J. A, Lamy P. L., Soter S. 1979. Icarus. 40: 1.
Studies of Disks Around the Sun and Other Stars
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1997-01-01
This is a NASA Origins of Solar Systems research program, and this NASA Headquarters grant has now been transferred to a new grant at NASA GSFC (NAG5-4082). Thus the need for this 'Final Report' on a project that is not, in fact, complete. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to "standard" theory, both the Kuiper Belt and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Our program consists of modeling collisions in the Kuiper Belt and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper Belt collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model is to be used to study the evolution of surface mass density and the object-size spectrum in the disk.
A rigorous detection of interstellar CH3NCO: An important missing species in astrochemical networks.
Cernicharo, J; Kisiel, Z; Tercero, B; Kolesniková, L; Medvedev, I R; López, A; Fortman, S; Winnewisser, M; de Lucia, F C; Alonso, J L; Guillemin, J-C
2016-03-01
The recent analysis of the composition of the frozen surface of comet 67P/Churyumov-Gerasimenko has revealed a significant number of complex organic molecules. Methyl isocyanate (CH 3 NCO) is one of the more abundant species detected on the comet surface. In this work we report extensive characterization of its rotational spectrum resulting in a list of 1269 confidently assigned laboratory lines and its detection in space towards the Orion clouds where 399 lines of the molecule have been unambiguously identified. We find that the limited mm-wave laboratory data reported prior to our work require some revision. The abundance of CH 3 NCO in Orion is only a factor of ten below those of HNCO and CH 3 CN. Unlike the molecular abundances in the coma of comets, which correlate with those of warm molecular clouds, molecular abundances in the gas phase in Orion are only weakly correlated with those measured on the comet surface. We also compare our abundances with those derived recently for this molecule towards Sgr B2 (Halfen et al. 2015). A more accurate abundance of CH 3 NCO is provided for this cloud based on our extensive laboratory work.
Cernicharo, J.; Kisiel, Z.; Tercero, B.; Kolesniková, L.; Medvedev, I.R.; López, A.; Fortman, S.; Winnewisser, M.; de Lucia, F. C.; Alonso, J. L.; Guillemin, J.-C.
2016-01-01
The recent analysis of the composition of the frozen surface of comet 67P/Churyumov-Gerasimenko has revealed a significant number of complex organic molecules. Methyl isocyanate (CH3NCO) is one of the more abundant species detected on the comet surface. In this work we report extensive characterization of its rotational spectrum resulting in a list of 1269 confidently assigned laboratory lines and its detection in space towards the Orion clouds where 399 lines of the molecule have been unambiguously identified. We find that the limited mm-wave laboratory data reported prior to our work require some revision. The abundance of CH3NCO in Orion is only a factor of ten below those of HNCO and CH3CN. Unlike the molecular abundances in the coma of comets, which correlate with those of warm molecular clouds, molecular abundances in the gas phase in Orion are only weakly correlated with those measured on the comet surface. We also compare our abundances with those derived recently for this molecule towards Sgr B2 (Halfen et al. 2015). A more accurate abundance of CH3NCO is provided for this cloud based on our extensive laboratory work. PMID:27274565
Observational Search for Cometary Aging Processes
NASA Technical Reports Server (NTRS)
Meech, Karen J.
1997-01-01
The scientific objectives of this study were (i) to search for physical differences in the behavior of the dynamically new comets (those which are entering the solar system for the first time from the Oort cloud) and the periodic comets, and (ii) to interpret these differences, if any, in terms of the physical and chemical nature of the comets and the evolutionary histories of the two comet groups. Because outer solar system comets may be direct remnants of the planetary formation processes, it is clear that the understanding of both the physical characteristics of these bodies at the edge of the planet forming zone and of their activity at large heliocentric distances, r, will ultimately provide constraints on the planetary formation process both in our Solar System and in extra-solar planetary systems. A combination of new solar system models which suggest that the protoplanetary disk was relatively massive and as a consequence comets could form at large distances from the sun (e.g. from the Uranus-Neptune region to the vicinity of the Kuiper belt), observations of activity in comets at large r, and laboratory experiments on low temperature volatile condensation, are dramatically changing our understanding of the chemical'and physical conditions in the early solar nebula. In order to understand the physical processes driving the apparent large r activity, and to address the question of possible physical and chemical differences between periodic, non-periodic and Oort comets, the PI has been undertaking a long-term study of the behavior of a significant sample of these comets (approximately 50) over a wide range of r to watch the development, disappearance and changing morphology of the dust coma. The ultimate goal is to search for systematic physical differences between the comet classes by modelling the coma growth in terms of volatile-driven activity. The systematic observations for this have been ongoing since 1986, and have been obtained over the course of approximately 300 nights using the telescopes on Mauna Kea, Kitt Peak, Cerro Tololo, the European Southern Observatory, and several other large aperture facilities. A greater than 2 TB database of broad band comet images has been obtained which follows the systematic development and fading of the cometary coma for the comets in the database. The results to date, indicate that there is a substantial difference in the brightness and the amount of dust as a function of r between the two comet classes. In addition to this major finding, the program has been responsible for several exciting discoveries, including: the P/Halley outburst at r = 14.3 AU, the discovery of Chiron's coma and modelling and observations of the gravitationally bound component, observational evidence that activity continues out beyond r = 17 AU for many dynamically new comets
Views of Hartley 2 Nucleus and Inner Coma
2010-11-18
NASA EPOXI mission spacecraft obtained these views of the icy particle cloud around comet Hartley 2. The image on the left is the full image of comet Hartley 2 for context, and the image on the right was enlarged and cropped.
The Relationship of HCN, C2H6, & H2O in Comets: A Key Clue to Origins?
NASA Astrophysics Data System (ADS)
Mumma, Michael J.; Charnley, Steven B.; Cordiner, Martin; Paganini, Lucas; Villanueva, Geronimo Luis
2017-10-01
Background: HCN, C2H6, and H2O are three of the best characterized volatiles in comets. It is often assumed that all three are primary volatiles, native to the nucleus. Here, we compare their properties in 26 comets (9 JFC and 17 Oort-cloud), making 6 points:1. Both HCN and C2H6 are poor proxies for water production. The production rate ratio (Q-ratio) of each trace gas relative to water varies by a factor of six among these comets.2. All 26 comets have Q-ratios HCN/C2H6 > 0.1. In 18 comets the Q-ratios HCN/H2O and C2H6/H2O are correlated, with a mean ratio of 0.33. In 6 comets undergoing complete disruption, this Q-ratio exceeds 0.5.3. Q-ratios HCN/C2H6 are not correlated with Q(H2O), nor are they correlated with dynamical class (Oort cloud vs. JFC).4. The nucleus-centered rotational temperatures measured for H2O and other primary species (C2H6, CH3OH) usually agree within error, but those for HCN are often slightly cooler. Could this mean that HCN is not fully developed in the warm near-nucleus region, and instead is at least in part a product species?5. With its strong dipole moment and H-bonding character, HCN should be linked more strongly in the nuclear ice to other molecules with similar properties (H2O, CH3OH), but instead its spatial release in some comets seems strongly coupled to volatiles that lack a dipole moment and thus do not form H-bonds (methane, ethane). Is HCN produced in part from an apolar precursor?6. ALMA maps of HCN and the dust continuum show a slight displacement in their centroids. Is this the signature of extended production of HCN?HCN as a product species: Points 4-6 suggest that HCN may have a significant distributed source. The astrochemical species ammonium cyanide is a strong candidate for this HCN precursor; at moderately low temperatures (< 200K) NH4CN is a stable solid, but it dissociates into HCN and NH3 when warmed. Disruption could eject macroscopic solid NH4CN into the coma where subsequent warming and release could augment the coma content of NH3 and HCN.Acknowledgments NASA’s Planetary Astronomy and Astrobiology Programs supported this work.
NASA Technical Reports Server (NTRS)
Marochnik, Leonid S.; Mukhin, Lev M.; Sagdeev, Roald Z.
1991-01-01
Views of the large-scale structure of the solar system, consisting of the Sun, the nine planets and their satellites, changed when Oort demonstrated that a gigantic cloud of comets (the Oort cloud) is located on the periphery of the solar system. The following subject areas are covered: (1) the Oort cloud's mass; (2) Hill's cloud mass; (3) angular momentum distribution in the solar system; and (4) the cometary cloud around other stars.
NASA Technical Reports Server (NTRS)
Smyth, W. H.
1980-01-01
Highly developed numerical models are applied to interpret extended-atmosphere data for the sodium cloud of Io and the hydrogen torus of Titan. Solar radiation pressure was identified and verified by model calculations as the mechanism to explain two different east-west asymmetries observed in the sodium cloud. Analysis of sodium line profile data, suggesting that a Jupiter magnetospheric wind may be responsible for high speed sodium atoms emitted from Io, and preliminary modeling of the interaction of the Io plasma torus and Io's sodium cloud are also reported. Models presented for Titan's hydrogen torus are consistent both with the recent Pioneer 11 measurements and earlier Earth-orbiting observations by the Copernicus satellite. Progress is reported on developing models for extended gas and dust atmospheres of comets.
Halogens as tracers of protosolar nebula material in comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Dhooghe, Frederik; De Keyser, Johan; Altwegg, Kathrin; Briois, Christelle; Balsiger, Hans; Berthelier, Jean-Jacques; Calmonte, Ursina; Cessateur, Gaël; Combi, Michael R.; Equeter, Eddy; Fiethe, Björn; Fray, Nicolas; Fuselier, Stephen; Gasc, Sébastien; Gibbons, Andrew; Gombosi, Tamas; Gunell, Herbert; Hässig, Myrtha; Hilchenbach, Martin; Le Roy, Léna; Maggiolo, Romain; Mall, Urs; Marty, Bernard; Neefs, Eddy; Rème, Henri; Rubin, Martin; Sémon, Thierry; Tzou, Chia-Yu; Wurz, Peter
2017-12-01
We report the first in situ detection of halogens in a cometary coma, that of 67P/Churyumov-Gerasimenko. Neutral gas mass spectra collected by the European Space Agency's Rosetta spacecraft during four periods of interest from the first comet encounter up to perihelion indicate that the main halogen-bearing compounds are HF, HCl and HBr. The bulk elemental abundances relative to oxygen are ∼8.9 × 10-5 for F/O, ∼1.2 × 10-4 for Cl/O and ∼2.5 × 10-6 for Br/O, for the volatile fraction of the comet. The cometary isotopic ratios for 37Cl/35Cl and 81Br/79Br match the Solar system values within the error margins. The observations point to an origin of the hydrogen halides in molecular cloud chemistry, with frozen hydrogen halides on dust grains, and a subsequent incorporation into comets as the cloud condensed and the Solar system formed.
Origin of the ices agglomerated by Comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Mousis, Olivier; Lunine, Jonathan I.; Luspay-Kuti, Adrienn; Guillot, Tristan; Marty, Bernard; Wurz, Peter; Ali-Dib, Mohamad; Altwegg, Kathrin; Hässig, Myrtha; Rubin, Martin; Vernazza, Pierre; Waite, Jack H.
2015-11-01
The nature of the icy material accreted by comets during their formation in the outer regions of the protosolar nebula is a major open question in planetary science. Some scenarios of comet formation predict that these bodies agglomerated from clathrates crystallized in the protosolar nebula. Concurrently, alternative scenarios suggest that comets accreted amorphous ice originating from the interstellar cloud. Here we show that the recent N2/CO and Ar/CO ratios measured in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko by the ROSINA instrument aboard the European Space Agency's Rosetta spacecraft can help disentangling between these two scenarios.
Cometary Volatiles and the Origin of Comets
NASA Technical Reports Server (NTRS)
A'Hearn, Michael F.; Feaga, Lori M.; Keller, H. Uwe; Kawakita, Hideyo; Hampton, Donald L.; Kissel, Jochen; Klaasen, Kenneth P.; McFadden, Lucy A.; Meech, Karen J.; Schultz, Peter H.;
2012-01-01
We describe recent results on the CO/C02/H2O composition of comets and compare these with models of the protoplanetary disk. We argue that the cometary observations require reactions on grain surfaces to convert CO to CO2 and also require formation between the CO and CO2 snow lines. This then requires very early mixing of cometesimals in the protoplanetary disk analogous to the mixing described for the asteroid belt by Walsh and Morbidelli. We suggest that most comets formed in the region of the giant planets. the traditional source of the Oort-cloud comets but not of the Jupiter-family comets
The boundary of the solar system
NASA Technical Reports Server (NTRS)
Smoluchowski, R.; Torbett, M.
1984-01-01
The shape of the boundary of the solar system, defined as the surface within which the gravitational attraction of the sun rather than that of the rest of the Galaxy controls the orbital motion of planets and comets, has been determined. Outside of this surface, the dominant factors are the radial tides due to the galactic center and the vertical tides caused by the galactic disk. Orbits which are direct with respect to the galactic plane have a boundary which differs from that for retrograde orbits, both being 10-20 percent oblate and both larger than the present Oort cloud. The surface may have been the boundary of the early cloud of comets which was later reduced by the passages of stars and molecular clouds.
Evolution of the Uranus-neptune Planetesimal Swarm: Consequences for the Earth
NASA Technical Reports Server (NTRS)
Shoemaker, E. M.; Wolfe, R. F.
1984-01-01
The evolution of planetesimals in the outer Solar System were evaluated, both stellar and planetary encounters. About 20% of the Uranus-Neptune planetesimals (UNP's) enter the comet cloud and are stored primarily in the region inside the observational limits of the Oort cloud. Half of the comets have suruived to the present time; the cloud now has a mass of the order of Jupiter's mass. Most UNP's are ejected from the Solar system, and about half of the planetesimal swarm is passed to the control of Jupiter prior to ejection. Jupiter's perturbations drive a large flux of these planetesimals into Earth-crossing orbits, and it now appears highly probable that UNP's account for most of the heavy bombardment of the Moon and Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jewitt, David, E-mail: jewitt@ucla.edu
Most comets are volatile-rich bodies that have recently entered the inner solar system following long-term storage in the Kuiper belt and the Oort cloud reservoirs. These reservoirs feed several distinct, short-lived “small body” populations. Here, we present new measurements of the optical colors of cometary and comet-related bodies including long-period (Oort cloud) comets, Damocloids (probable inactive nuclei of long-period comets) and Centaurs (recent escapees from the Kuiper belt and precursors to the Jupiter family comets). We combine the new measurements with published data on short-period comets, Jovian Trojans and Kuiper belt objects to examine the color systematics of the comet-relatedmore » populations. We find that the mean optical colors of the dust in short-period and long-period comets are identical within the uncertainties of measurement, as are the colors of the dust and of the underlying nuclei. These populations show no evidence for scattering by optically small particles or for compositional gradients, even at the largest distances from the Sun, and no evidence for ultrared matter. Consistent with earlier work, ultrared surfaces are common in the Kuiper belt and on the Centaurs, but not in other small body populations, suggesting that this material is hidden or destroyed upon entry to the inner solar system. The onset of activity in the Centaurs and the disappearance of the ultrared matter in this population begin at about the same perihelion distance (∼10 AU), suggesting that the two are related. Blanketing of primordial surface materials by the fallback of sub-orbital ejecta, for which we calculate a very short timescale, is the likely mechanism. The same process should operate on any mass-losing body, explaining the absence of ultrared surface material in the entire comet population.« less
Dynamics of the Oort Cloud In the Gaia Era I: Close Encounters
NASA Astrophysics Data System (ADS)
Torres, S.; Portegies Zwart, S.; Brown, A. G. A.
2018-04-01
Comets in the Oort cloud evolve under the influence of internal and external perturbations from giant planets to stellar passages, the Galactic tides, and the interstellar medium.Using the positions, parallaxes and proper motions from TGAS in Gaia DR1 and combining them with the radial velocities from the RAVE-DR5, Geneva-Copenhagen and Pulkovo catalogues, we calculated the closest encounters the Sun has had with other stars in the recent past and will have in the near future. We find that the stars with high proper motions near to the present time are missing in the Gaia-TGAS, and those to tend to be the closest ones. The quality of the data allows putting better constraints on the encounter parameters, compared to previous surveys.
How primordial is the structure of comet 67P/C-G (and of comets in general)?
NASA Astrophysics Data System (ADS)
Morbidelli, Alessandro; Jutzi, Martin; Benz, Willy; Toliou, Anastasia; Rickman, Hans; Bottke, William; Brasser, Ramon
2016-10-01
Several properties of the comet 67P-CG suggest that it is a primordial planetesimal. On the other hand, the size-frequency distribution (SFD) of the craters detected by the New Horizons missions at the surface of Pluto and Charon reveal that the SFD of trans-Neptunian objects smaller than 100km in diameter is very similar to that of the asteroid belt. Because the asteroid belt SFD is at collisional equilibrium, this observation suggests that the SFD of the trans-Neptunian population is at collisional equilibrium as well, implying that comet-size bodies should be the product of collisional fragmentation and not primordial objects. To test whether comet 67P-CG could be a (possibly lucky) survivor of the original population, we conducted a series of numerical impact experiments, where an object with the shape and the density of 67P-CG, and material strength varying from 10 to 1,000 Pa, is hit on the "head" by a 100m projectile at different speeds. From these experiments we derive the impact energy required to disrupt the body catastrophically, or destroy its bi-lobed shape, as a function of impact speed. Next, we consider a dynamical model where the original trans-Neptunian disk is dispersed during a phase of temporary dynamical instability of the giant planets, which successfully reproduces the scattered disk and Oort cloud populations inferred from the current fluxes of Jupiter-family and long period comets. We find that, if the dynamical dispersal of the disk occurs late, as in the Late Heavy Bombardment hypothesis, a 67P-CG-like body has a negligible probability to avoid all catastrophic collisions. During this phase, however, the collisional equilibrium SFD measured by the New Horizons mission can be established. Instead, if the dispersal of the disk occurred as soon as gas was removed, a 67P-CG-like body has about a 20% chance to avoid catastrophic collisions. Nevertheless it would still undergo 10s of reshaping collisions. We estimate that, statistically, the last reshaping collision should have happened 250My-1Gy ago, implying that the actual morphology of 67P-CG should be younger than this age.
Ortho-to-para abundance ratios of NH2 in 26 comets: implications for the real meaning of OPRs
NASA Astrophysics Data System (ADS)
Shinnaka, Yoshiharu; Kawakita, Hideyo; Jehin, Emmanuël; Decock, Alice; Hutsemékers, Damien; Manfroid, Jean
2016-11-01
Abundance ratios of nuclear-spin isomers for cometary molecules having identical protons, such as water and ammonia, have been measured and discussed from the viewpoint that they are primordial characters in comet. In the case of ammonia, its ortho-to-para abundance ratio (OPR) is usually estimated from OPRs of NH2 because of difficulty in measuring OPR of ammonia directly. We report our survey for OPRs of NH2 in 26 comets. A weighted mean of ammonia OPRs for the comets is 1.12 ± 0.01 and no significant difference is found between the Oort Cloud comets and the Jupiter-family comets. These values correspond to ˜30 K as nuclear-spin temperatures. The OPRs of ammonia in comets probably reflect the physicochemical conditions in coma, rather than the conditions for the molecular formation or condensation in the pre-solar molecular cloud/the solar nebula, based on comparison of OPRs (and nuclear-spin temperatures) of ammonia with those of water, 14N/15N ratios in ammonia, and D/H ratios in water. The OPRs could be reset to a nuclear-spin weights ratio in solid phase and modified by interactions with protonated ions like H3O+, water clusters (H2O)n, ice grains, and paramagnetic impurities (such as O2 molecules and grains) in the inner coma gas. Relationship between the OPRs of ammonia and water is a clue to understanding the real meaning of the OPRs.
The Rotation Temperature of Methanol in Comet 103P/Hartley 2
NASA Technical Reports Server (NTRS)
Chuang, Yo-Ling; Kuan, Yi-Jehng; Milam, Stefanie; Charnley, Steven B.; Coulson, Iain M.
2012-01-01
Considered to be relics from Solar System formation, comets may provide the vital information connecting Solar Nebula and its parent molecular cloud. Study of chemical and physical properties of comets is thus important for our better understanding of the formation of Solar System. In addition, observing organic molecules in comets may provide clues fundamental to our knowledge on the formation of prebiotically important organic molecules in interstellar space, hence, may shed light on the origin of life on the early Earth. Comet 103PIHartley 2 was fIrst discovered in 1986 and had gone through apparitions in 1991, 1997, and 2004 with an orbital period of about 6 years, before its latest return in 2010. 2010 was also a special year for Comet 103PIHartley 2 because of the NASA EPOXI comet-flyby mission.
The Role of Comets as Possible Contributors of Water and Prebiotic Organics to Terrestrial Planets
NASA Technical Reports Server (NTRS)
Mumma, Michael J.; Charnley, S. B.
2011-01-01
The question of exogenous delivery of organics and water to Earth and other young planets is of critical importance for understanding the origin of Earth's water, and for assessing the prospects for existence of Earth-like exo-planets. Viewed from a cosmic perspective, Earth is a dry planet yet its oceans are enriched in deuterium by a large factor relative to nebular hydrogen. Can comets have delivered Earth's water? The deuterium content of comets is key to ,assessing their role as contributors of water to Earth. Icy bodies today reside in two distinct reservoirs, the Oort Cloud and the Kuiper Disk (divided into the classical disk, the scattered disk, and the detached or extended disk populations). Orbital parameters can indicate the cosmic storage reservoir for a given comet. Knowledge of the diversity of comets within a reservoir assists in assessing their possible contribution to early Earth, but requires quantitative knowledge of their components - dust and ice. Strong gradients in temperature and chemistry in the proto-planetary disk, coupled with dynamical dispersion of an outer disk of icy planetesimals, imply that comets from KD and OC reservoirs should have diverse composition. The primary volatiles (native to the nucleus) provide the preferred metric for building a taxonomy for comets, and the number of comets so quantified is growing rapidly. Taxonomies based on native species (primary volatiles) are now beginning to emerge [1, 2, 3]. The measurement of cosmic parameters such as the nuclear spin temperatures for H2O, NH3 and CH4, and of enrichment factors for isotopologues (D/H in water and hydrogen cyanide, N-14/N-15 in CN and hydrogen cyanide) provide additional tests of the origin of cometary material. I will provide an overview of these aspects, and implications for the origin of Earth's water and prebiotic organics.
Oort spike comets with large perihelion distances
NASA Astrophysics Data System (ADS)
Królikowska, Małgorzata; Dybczyński, Piotr A.
2017-12-01
The complete sample of large-perihelion nearly-parabolic comets discovered during the period 1901-2010 is studied, starting with their orbit determination. Next, an orbital evolution that includes three perihelion passages (previous-observed-next) is investigated in which a full model of Galactic perturbations and perturbations from passing stars is incorporated. We show that the distribution of planetary perturbations suffered by actual large-perihelion comets during their passage through the Solar system has a deep, unexpected minimum around zero, which indicates a lack of 'almost unperturbed' comets. Using a series of simulations we show that this deep well is moderately resistant to some diffusion of the orbital elements of the analysed comets. It seems reasonable to assert that the observed stream of these large-perihelion comets experienced a series of specific planetary configurations when passing through the planetary zone. An analysis of the past dynamics of these comets clearly shows that dynamically new comets can appear only when their original semimajor axes are greater than 20 000 au. On the other hand, dynamically old comets are completely absent for semimajor axes longer than 40 000 au. We demonstrate that the observed 1/aori-distribution exhibits a local minimum separating dynamically new from dynamically old comets. Long-term dynamical studies reveal a wide variety of orbital behaviour. Several interesting examples of the action of passing stars are also described, in particular the impact of Gliese 710, which will pass close to the Sun in the future. However, none of the obtained stellar perturbations is sufficient to change the dynamical status of the analysed comets.
Extended atmospheres of outer planet satellites and comets
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Combi, M. R.
1985-01-01
Model analysis of the extended atmospheres of outer planet satellites and comets are discussed. Understanding the neutral hydrogen distribution in the Saturn system concentrated on assessing the spatial dependence of the lifetime of hydrogen atoms and on obtaining appropriately sorted Lyman ALPHA data from the Voyager 1 UVS instrument. Progress in the area of the extended cometary atmospheres included analysis of Pioneer Venus Layman alpha observations of Comet P/Encke with the fully refined hydrogen cloud model, development of the basic carbon and oxygen models, and planning for the Pioneer Venus UVS observations of Comets P/Giacobini-Zinner and P/Halley.
Complex Protostellar Chemistry
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Johnson, Natasha M.
2012-01-01
Two decades ago, our understanding chemistry in protostars was simple -- matter either fell into the central star or was trapped in planetary-scale objects. Some minor chemical changes might occur as the dust and gas fell inward, but such effects were overwhelmed by the much larger-scale processes that occurred even in bodies as small as asteroids. The chemistry that did occur in the nebula was relatively easy to model because the fall from the cold molecular cloud into the growing star was a one-way trip down a well-known temperature pressure gradient; the only free variable was time. However, just over 10 years ago it was suggested that some material could be processed in the inner nebula, flow outward, and become incorporated into comets. This outward flow was confirmed when the Stardust mission returned crystalline mineral fragments from Comet Wild 2 that must have been processed close to the Sun before they were incorporated into the comet. In this week's Science Express, Ciesla and Sandford demonstrate that even the outermost regions of the solar nebula can be a chemically active environment. Their finding could have consequences for the rest of the nebula. Our understanding of the chemistry in protostellar systems has made enormous progress over the last few decades, fueled by an increased awareness of the complex dynamics of these evolving energetic nebulae. We can no longer consider just the simple local environment to explain the composition of a planet, asteroid, or comet as was done in the past, but must now consider chemical processes that might take place within the nebula as a whole as well as the probability of transport and mixing the products of such reactions throughout the system. just as we now find it impossible to explain the complex chemistry of the terrestrial atmosphere without reference to detailed transport models that interconnect highly dissimilar chemical environments, so chemical models of protostars and of the solar nebula must eventually treat these environments as tightly coupled, interactive systems. The demonstration that the chemistry on the surfaces of outward-flowing, dynamically mixing icy grain surfaces both mimics the chemistry in cold cloud cores and strikes at the central assumption of the photochemical self-shielding model for oxygen isotopes in solar system solids only adds emphasis to this conclusion.
The origin of Halley-type comets: probing the inner Oort cloud
NASA Astrophysics Data System (ADS)
Levison, H.; Dones, L.; Duncan, M.
2000-10-01
We have integrated the orbits of 27,700 test particles initially entering the planetary system from the Oort cloud in order to study the origin of Halley-type comets (HTCs). We included the gravitational influence of the Sun, giant planets, passing stars, and galactic tides. We find that an isotropically distributed Oort cloud does not reproduce the observed orbital element distribution of the HTCs. In order to match the observations, the initial inclination distribution of the progenitors of the HTCs must be similar to the observed HTC inclination distribution. We can match the observations with an Oort cloud that consists of an isotropic outer cloud and a disk-like massive inner cloud. These idealized two-component models have inner disks with median inclinations that range from 10 to 50o. This analysis represents the first link between observations and the structure of the inner Oort cloud. HFL and LD gratefully acknowledges grants provided by the NASA Origins of Solar Systems and Planetary Geology and Geophysics Programs. MJD is grateful for the continuing financial support of the Natural Science and Engineering Research Council of Canada and for financial support for work done inthe U.S.from NASA Planetary Geology and Geophysics Programs.
A GREAT search for Deuterium in Comets
NASA Astrophysics Data System (ADS)
Mumma, Michael
2012-10-01
Comets are understood to be the most pristine bodies in the Solar System. Their compositions reflect the chemical state of materials at the very earliest evolutionary stages of the protosolar nebula and, as such, they provide detailed insight into the physical and chemical processes operating in planet-forming disks. Isotopic fractionation ratios of the molecular ices in the nucleus are regarded as signatures of formation processes. These ratios provide unique information on the natal heritage of those ices, and can also test the proposal that Earth's water and other volatiles were delivered by cometary bombardment. Measurement of deuterium fractionation ratios is thus a major goal in contemporary cometary science and the D/H ratio of water - the dominant volatile in comets - holds great promise for testing the formation history of cometary matter. The D/H ratio in cometary water has been measured in only seven comets. Six were from the Oort Cloud reservoir and the D/H ratio was about twice that of the Earth's oceans. However, the recent Herschel measurement of HDO/H2O in 103P/Hartley-2 (the first from the Kuiper Belt) was consistent with exogenous delivery of Earth's water by comets. Outstanding questions remain: are cometary HDO/H2O ratios consistent with current theories of nebular chemical evolution or with an interstellar origin? Does the HDO/H2O ratio vary substantially among comet populations? Hartley-2 is the only Kuiper Belt comet with measured HDO/H2O, are there comets with similar ratios in the Oort cloud? These questions can only be addressed by measuring HDO/H2O ratios in many more suitable bright comets. We therefore propose to measure the D/H ratio in water in a suitable target-of-opportunity comet by performing observations of HDO and OH with the GREAT spectrometer on SOFIA. A multi-wavelength, ground-based observing campaign will also be conducted in support of the airborne observations.
A GREAT search for Deuterium in Comets
NASA Astrophysics Data System (ADS)
Mumma, Michael
2013-10-01
Comets are understood to be the most pristine bodies in the Solar System. Their compositions reflect the chemical state of materials at the very earliest evolutionary stages of the protosolar nebula and, as such, they provide detailed insight into the physical and chemical processes operating in planet-forming disks. Isotopic fractionation ratios of the molecular ices in the nucleus are regarded as signatures of formation processes. These ratios provide unique information on the natal heritage of those ices, and can also test the proposal that Earth's water and other volatiles were delivered by cometary bombardment. Measurement of deuterium fractionation ratios is thus a major goal in contemporary cometary science and the D/H ratio of water - the dominant volatile in comets - holds great promise for testing the formation history of cometary matter. The D/H ratio in cometary water has been measured in only eight comets. Seven were from the Oort Cloud reservoir and the D/H ratio was about twice that of the Earth's oceans. However, the recent Herschel measurement of HDO/H2O in 103P/Hartley-2 (the first from the Kuiper Belt) was consistent with exogenous delivery of Earth's water by comets. Outstanding questions remain: are cometary HDO/H2O ratios consistent with current theories of nebular chemical evolution or with an interstellar origin? Does the HDO/H2O ratio vary substantially among comet populations? Hartley-2 is the only Kuiper Belt comet with measured HDO/H2O, are there comets with similar ratios in the Oort cloud? These questions can only be addressed by measuring HDO/H2O ratios in many more suitable bright comets. We therefore propose to measure the D/H ratio in water in a suitable target-of-opportunity comet by performing observations of HDO and OH with the GREAT spectrometer on SOFIA. A multi-wavelength, ground-based observing campaign will also be conducted in support of the airborne observations.
Spacewatch Survey of the Solar System
NASA Technical Reports Server (NTRS)
McMillan, Robert S.
2000-01-01
The purpose of the Spacewatch project is to explore the various populations of small objects throughout the solar system. Statistics on all classes of small bodies are needed to infer their physical and dynamical evolution. More Earth Approachers need to be found to assess the impact hazard. (We have adopted the term "Earth Approacher", EA, to include all those asteroids, nuclei of extinct short period comets, and short period comets that can approach close to Earth. The adjective "near" carries potential confusion, as we have found in communicating with the media, that the objects are always near Earth, following it like a cloud.) Persistent and voluminous accumulation of astrometry of incidentally observed main belt asteroids MBAs will eventually permit the Minor Planet Center (MPQ to determine the orbits of large numbers (tens of thousands) of asteroids. Such a large body of information will ultimately allow better resolution of orbit classes and the determinations of luminosity functions of the various classes, Comet and asteroid recoveries are essential services to planetary astronomy. Statistics of objects in the outer solar system (Centaurs, scattered-disk objects, and Trans-Neptunian Objects; TNOs) ultimately will tell part of the story of solar system evolution. Spacewatch led the development of sky surveying by electronic means and has acted as a responsible interface to the media and general public on this discipline and on the issue of the hazard from impacts by asteroids and comets.
Sulfur Chemistry in the Wake of Comet Shoemaker-Levy 9
NASA Technical Reports Server (NTRS)
Zahnle, Kevin; MacLow, Mordecai-Mark; Lodders, Katharina; Fegley, Bruce, Jr.
1995-01-01
A curious and unexpected result of the impact of P/Shoemaker Levy 9 with Jupiter was the production of enormous amounts of molecular sulfur (S2). Here we show that S2 is the natural product of disequilibrium chemistry at low pressures in shocked Jovian air, its formation a byproduct of hydrogen recombination. The species observed by the Hubble Space Telescope (HST) - S2, CS2, and H2S - imply that the G fragment penetrated the NH4SH cloud but did not reach the water table. A typical impact within or below the NH4SH clouds produces about 0.03 - 0.1 impactor masses of S2. Because comets are relatively hydrogen-poor, SO2, not S2, is the major product of shocking a water-rich comet, while S2, CS2 and OCS are major products of a dessicated comet. In all cases we find that as the gas cools, S2 converts to the stable low temperature allotrope S8, although other chemical fates not modeled here might intervene first.
1981-03-01
weighting factors are given in column 6 of Table 1. 4 The data for three of the programs (NZ Viscount, Comet and 707) are either not available in the...data at high altitudes. 4 REFERENCES Aplin, J. E. (1964). Atmospheric turbulence encountered by Comet 2 aircraft carrying cloud collision warning...M2/518 folio 9. Kaynes, 1. W. (1971). Gust loads on Comet aircraft. RAE TR 71165. Kaynes, i. W. (1972). A summary of the analysis of gust loads
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Woodward, Charles E.; Harker, David E.; Kelley, Michael S. P.; Sitko, Michael; Reach, William T.; De Pater, Imke; Gehrz, Robert D.; Kolokolova, Ludmilla; Cochran, Anita L.;
2013-01-01
Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our SOFIA (+FORCAST) mid- to far-IR images and spectroscopy (approx. 5-35 microns) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h approx. = 1.18 AU). Dust characteristics, identified through the 10 micron silicate emission feature and its strength, as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 microns, and near 16, 19, 23.5, 27.5, and 33 microns are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) to large and/or compact grains (e.g., C/2007 N4 (Lulin) and C/2006 P1 (McNaught)). Measurement of the crystalline peaks in contrast to the broad 10 and 20 micron amorphous silicate features yields the cometary silicate crystalline mass fraction, which is a benchmark for radial transport in our protoplanetary disk. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals. Only SOFIA can look for cometary organics in the 5-8 micron region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h< 0.4 AU, near Nov-20-Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures 4 settings: Na I, K, C2 to sample cometary organics (along with Mg I), and [OI] as a proxy for activity from water (along with Si I and Fe I). State-of-the-art instruments that will also be employed include IBIS, which is a Fabry-Perot spectral imaging system that concurrently measures lines of Na, K, Ca II, or Fe, and ROSA (CSUN/QUB), which is a rapid imager that simultaneously monitors Ca II or CN. From McMath-Pierce, the Solar-Stellar Spectrograph also will target ISON (320-900 nm, R approx. 21,000, r_h<0.3 AU). Assuming survival, the intent is to target ISON over r_h<0.4 AU, characteristic of prior Na detections.
Odin observations of H2O and O2 in comets and interstellar clouds
NASA Astrophysics Data System (ADS)
Hjalmarson, Åke; Odin Team
2002-11-01
We here report on results from single-position observations, and in some cases also mapping, of the 557 GHz ortho-H2O line in several comets and in many interstellar molecular clouds by the Odin sub-millimetre wave spectroscopy satellite. The H2O production rates have been accurately determined in four comets, C/2001 A2 (LINEAR), 19P/Borrelly, C/2000 WM1 (LINEAR), and 153P/2002 C1 (Ikeya-Zhang). In comet Ikeya-Zhang our detection at a low level of the corresponding H218O emission line verifies the H2O production rate (which depends upon the assumed radiative and collisional excitation and also upon radiative transfer modelling) and is consistent with a nearly terrestrial 16O/18O-isotope ratio. In an astrobiological context, the cometary H2O production rates are especially important as reference levels for comparison with abundances of other molecules simultaneously observed with ground-based telescopes. In interstellar clouds the observed gas-phase H2O abundances (vs H2) range from 5×10-4 in the Orion KL outflow/shock region (where essentially all oxygen is locked up in H2O) to circa 10-8 in quiescent cloud regions (where H2O) is just one of many trace molecules). From an astrobiological point of view, the molecular abundances in star forming clouds are important in terms of initial conditions for the chemistry in proto-planetary disks ("proto-solar nebulae"), the formation sites of new planetary systems. In simultaneous observations, Odin has also detected the 572 GHz ortho-NH3 line in cold and warm clouds as well as in the Orion outflow and Bar/PDR regions (an area of increased ionisation caused by the intense UV flux from newly born massive stars). In other simultaneous observations, we have performed sensitive searches for O2 at 119 GHz. Although no detection can be reported as yet, the resulting very low abundance limits (<10-7) are very intriguing when they are compared with current "standard" model expectations, which fall in the range 10-5-10-4.
Target of Opportunity - Far-UV Observations of Comet ISON with FORTIS
NASA Astrophysics Data System (ADS)
McCandliss, Stephan
The goal of this one year program is to acquire spectra and imagery of the sungrazing Oort cloud comet known as ISON in the far-UV bandpass between 800 -- 1950 Angstroms over a 1/2 degree field-of-view (FOV), during its ingress and egress from the sun. This bandpass and FOV provides access to a particularly rich set of spectral diagnostics for determining the volatile production rates of CO, H, C, C+, O and S, and to search for previously undetected atomic and molecular species such as Ar, N, N+, N2, O+ and O5+. We are particularly interested in searching for compositional changes associated with the intense heating episode at the comet's perihelion to address an outstanding question in cometary research; do Oort cloud comets carry a chemical composition similar to the proto-stellar molecular cloud from which the Solar System formed? Sounding rockets are uniquely suited to observing cometary emissions in the far-UV as they can point to within 25 degrees of the sun, whereas HST is limited to observations at angles greater than 50 degrees. The projected ephemeris of this comet shows that on ingress it is expected to reach ~ +4 mag at 25 degrees from the sun on 21 November 2013 and, should it survive its trip to within 2.7 Rsun from the sun, it is expected to reach a similar magnitude during egress at 25 degrees on 08 December 2013. This will be a reflight of the JHU sounding rocket borne spectro-telescope called FORTIS, currently scheduled to fly in May of 2013 on NASA sounding rocket 36.268 UG. The instrumental configuration of FORTIS is uniquely suited to accomplishing the goals of this task.
Dynamical fate of wide binaries in the solar neighborhood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinberg, M.D.; Shapiro, S.L.; Wasserman, I.
1987-01-01
An analytical model is presented for the evolution of wide binaries in the Galaxy. The study is pertinent to the postulated solar companion, Nemesis, which may disturb the Oort cloud and cause catastrophic comet showers to strike the earth every 26 Myr. Distant gravitational encounters are modeled by Fokker-Planck coefficients for advection and diffusion of the orbital binding energy. It is shown that encounters with passing stars cause a diffusive evolution of the binding energy and semimajor axis. Encounters with subclumps in giant molecular clouds disrupt orbits to a degree dependent on the cumulative number of stellar encounters. The timemore » scales of the vents and the limitations of scaling laws used are discussed. Results are provided from calculations of galactic distribution of wide binaries and the evolution of wide binary orbits. 38 references.« less
Cosmic impact: What are the odds?
NASA Astrophysics Data System (ADS)
Harris, A. W.
2009-12-01
Firestone et al. (PNAS 104, 16016-16021, 2007) propose that the impact of a ~4 km diameter comet (or multiple bodies making up a similar mass) led to the Younger Dryas cooling and extinction of megafauna in North America, 12,900 years ago. Even more provocatively, Firestone et al. (Cycle of Cosmic Catastrophes, Bear & Co. Books, 2006, 392pp), suggest that a nearby supernova may have produced a comet shower leading to the impact event, either by disturbing the Oort Cloud or by direct injection of 4-km comet-like bodies to the solar neighborhood. Here we show: (a) A supernova shockwave or mass ejection is not capable of triggering a shower of comets from the Oort Cloud. (b) An Oort Cloud shower from whatever cause would take 100,000 years or more for the perturbed comets to arrive in the inner solar system, and the peak flux would persist for some hundreds of thousands more years. (c) Even if all 20 solar masses or so of ejected matter from a SN were in the form of 4-km diameter balls, the probability of even one such ball hitting the Earth from an event 100 light years away would be about 3e-5. (d) A 4-km diameter ball traveling fast enough to get here from 100 LY away in some tens of thousands of years would deliver the energy of a 50 km diameter impactor traveling at typical Earth-impact velocity (~20 km/sec). We review the current impact flux on the Earth from asteroids and comets, and show that the probability of an impact of a 4-km diameter asteroid in an interval of 13,000 years is about one in a thousand, and the probability of a comet impact of that size is a few in a million. An "impact shower" caused by the injection or breakup of comets or asteroids in the inner solar system by whatever means would take tens to hundreds of thousands of years to clear out, thus the population of NEOs we see now with our telescopic surveys is what we’ve had for the last few tens of thousands of years, at least. Faced with such low odds, the evidence that such a large cosmic impact is the cause of the Younger Dryas boundary and cooling, and that there is no other possible cause, needs to be extraordinary indeed.
Impact Induced Climate Change on Venus: The Role of Large Comets
NASA Astrophysics Data System (ADS)
Grinspoon, D. H.; Bullock, M. A.
2000-10-01
The surface temperature of Venus is a sensitive function of the abundances of greenhouse gases and also of cloud structure. In previous work we have studied the climate impact of past and continued outgassing of greenhouse and cloud-forming gases (1) and tectonic signatures that may have resulted from volcanically induced climate change (2). These studies showed that in outgassing events where large amounts of both H2O and SO2 are released, the increased albedo that arises from thickening of the clouds can, to some extent, ameliorate the greenhouse warming expected from increased abundances of these IR absorbing gases. The largest warming typically arises several hundred million years after an outgassing event when most of the excess SO2 has been removed by reaction with surface minerals, but much of the atmospheric H2O remains (because it is removed by exospheric escape on longer time scales). This combination - enhanced H2O abundance with SO2 returned to 'normal' - leads to maximum warming because the cloud thickness, and thus the albedo, is limited by the availability of SO2, whereas IR absorption in CO2 windows by enhanced H2O can cause warming on the order of 100 K. It seems likely that large comet impacts should also produce such a situation. The atmosphere of Venus currently contains 7 x 1018 grams of water, about as much as in a 25 km diameter comet. Comets may have been an important contributor to the current water inventory on Venus. Much of this may have been supplied by a few large comet impacts in the last several hundred million years (3). We will report on new runs of our Venus Evolutionary Climate Model which simulate the volatile input from large comet impacts and investigate the climate effects of these events. Calculation will be done with cometary delivery alone, and in conjunction with various outgassing scenarios. This allows us to examine how the vulnerability of the Venusian climate system to impact induced climate change is affected by the relative timing of large magmatic and impact events. (1) Bullock, M.A., and D.H. Grinspoon, J. Geophys. Res. 101, 7521-7529, 1996. (2) Solomon, S.C., M. A. Bullock, and D. H. Grinspoon, Science, 286: 87-90, 1999. (3) Grinspoon, D.H. and J.S. Lewis, Icarus, 74, 21-35, 1988.
NASA Astrophysics Data System (ADS)
Altwegg, K.; Rubin, M.; Balsiger, H. R.; Jäckel, A.; Le Roy, L.; Wurz, P.; Gasc, S.; Calmonte, U.; Tzou, C. Y.; Mall, U. A.; Fiethe, B.; De Keyser, J. M.; Berthelier, J. J.; Reme, H.; Gombosi, T. I.; Fuselier, S.
2014-12-01
The European Space Agency's Rosetta spacecraft is now close in a bound orbit around comet 67P/Churyumov-Gerasimenko (67P/C-G). On board is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument suite. ROSINA consists of two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron-type Time-Of-Flight (RTOF), as well as the COmet Pressure Sensor (COPS). ROSINA is designed to detect and monitor the neutral gas and thermal plasma environment in the comet's coma by in situ investigation. The two mass spectrometers have high dynamic ranges and complement each other with high mass resolution (DFMS) and high time resolution and large mass range (RTOF). Especially the unprecedented sensitivity and mass resolution of DFMS together with the large mass range of RTOF will allow determining precisely light species (e.g. isotopologues) as well as detecting heavy organics. The pressure sensor COPS is capable to derive total gas densities, velocities, and temperatures. To date only limited data for the composition of cometary comae at heliocentric distances of more than 2.5 AU are available. The set is dominated by CO and daughter species of water from bright comets originating in the Oort cloud. While some molecules can be detected from far by remote sensing (e.g. CO) other molecules are much more difficult to observe from ground (e.g. CO2). The Rosetta mission presents a unique opportunity to directly probe the parent species in the thin cometary atmosphere of a Kuiper-belt object at more than 2.5 AU from the Sun and relate it to ground-based observations. Distances that far from the Sun are of particular interest as the comet's activity transitions from being super volatiles dominated to being water dominated. We will report on the first measurements of the volatile inventory obtained from ROSINA observations as Rosetta is following comet 67P/C-G in close vicinity.
NASA Astrophysics Data System (ADS)
Cheng, Andrew F.; Hibbitts, C. A.; Espiritu, R.; McMichael, R.; Fletcher, Z.; Bernasconi, P.; Adams, J. D.; Lisse, C. M.; Sitko, M. L.; Fernandes, R.; Young, E. F.; Kremic, T.
2017-01-01
The Balloon Observation Platform for Planetary Science (BOPPS) was launched from Fort Sumner, New Mexico on September 26, 2014 and observed Oort Cloud comets from a stratospheric balloon observatory, using a 0.8 meter aperture telescope, a pointing system that achieved < 1 arc second pointing stability, and an imaging instrument suite covering the near-ultraviolet to mid-infrared. BOPPS observed two Oort Cloud comets, C/2013 A1 (Siding Spring) and C/2014 E2 (Jacques), at the 2.7 μm wavelength of water emission. BOPPS also observed Ceres at 2.7 μm wavelength to characterize the nature of hydrated materials on Ceres. Absolute flux calibrations were made using observations of A0V stars at nearly the same elevations as each target. The Comet Siding Spring brightness in R-band was magnitude R = 10.8 in a photometric aperture of 17.4″. The inferred H2O production rate from Comet Siding Spring was 6 × 1027 s-1, assuming optically thin emissions, which may be a lower limit if optical depth effects are important. A superheat dust population was discovered at Comet Jacques, producing a bright infrared continuum without evidence for line emission. Observations of Ceres from BOPPS and from IRTF, obtained the same night, did not find evidence for a strong water vapor emission near 2.7 μm and led to an approximate upper limit < 7 × 1027 s-1 for water emission from Ceres.
Interstellar Explorer Observations of the Solar System's Debris Disks
NASA Astrophysics Data System (ADS)
Lisse, C. M.; McNutt, R. L., Jr.; Brandt, P. C.
2017-12-01
Planetesimal belts and debris disks full of dust are known as the "signposts of planet formation" in exosystems. The overall brightness of a disk provides information on the amount of sourcing planetesimal material, while asymmetries in the shape of the disk can be used to search for perturbing planets. The solar system is known to house two such belts, the Asteroid belt and the Kuiper Belt; and at least one debris cloud, the Zodiacal Cloud, sourced by planetisimal collisions and Kuiper Belt comet evaporative sublimation. However these are poorly understood in toto because we live inside of them. E.g., while we know of the two planetesimal belt systems, it is not clear how much, if any, dust is produced from the Kuiper belt since the near-Sun comet contributions dominate near-Earth space. Understanding how much dust is produced in the Kuiper belt would give us a much better idea of the total number of bodies in the belt, especially the smallest ones, and their dynamical collisional state. Even for the close in Zodiacal cloud, questions remain concerning its overall shape and orientation with respect to the ecliptic and invariable planes of the solar system - they aren't explainable from the perturbations caused by the known planets alone. In this paper we explore the possibilities of using an Interstellar Explorer telescope placed at 200 AU from the sun to observe the brightness, shape, and extent of the solar system's debris disk(s). We should be able to measure the entire extent of the inner, near-earth zodiacal cloud; whether it connects smoothly into an outer cloud, or if there is a second outer cloud sourced by the Kuiper belt and isolated by the outer planets, as predicted by Stark & Kuchner (2009, 2010) and Poppe et al. (2012, 2016; Figure 1). VISNIR imagery will inform about the dust cloud's density, while MIR cameras will provide thermal imaging photometry related to the cloud's dust particle size and composition. Observing at high phase angle by looking back towards the sun from 200 AU, we will be able to perform deep searches for the presence of rings and dust clouds around discrete sources, and thus we will be able to search for possible strong individual sources of the debris clouds - like the Haumea family collisional fragments, or the rings of the Centaur Chariklo, or dust emitted from spallation off the 6 known bodies of the Pluto system.
Dust clouds around red giant stars - Evidence of sublimating comet disks?
NASA Technical Reports Server (NTRS)
Matese, John J.; Whitmire, Daniel P.; Reynolds, Ray T.
1989-01-01
The dust production by disk comets around intermediate mass stars evolving into red giants is studied, focusing on AGB supergiants. The model of Iben and Renzini (1983) is used to study the observed dust mass loss for AGB stars. An expression is obtained for the comet disk net dust production rate and values of the radius and black body temperature corresponding to peak sublimation are calculated for a range of stellar masses. Also, the fractional amount of dust released from a cometesimal disk during a classical nova outburst is estimated.
Mid-infrared observations of sungrazing comet C/2012 S1 (ISON) with the Subaru Telescope
NASA Astrophysics Data System (ADS)
Ootsubo, T.; Usui, F.; Takita, S.; Watanabe, J.; Yanamandra-Fisher, P.; Honda, M.; Kawakita, H.; Furusho, R.
2014-07-01
Comets are the frozen reservoirs of the early solar nebula and are made of ice and dust. The determination of the properties for cometary dust provides us insight into both the early-solar-nebula environment and the formation process of the planetary system. A silicate feature is often observed in comet spectra in the mid-infrared region and may be used for probing the early history of the solar system. In most cases, the feature shows the existence of crystalline silicate (for example, 11.3 microns) together with amorphous silicate [1,2]. Since the crystallization of silicates from amorphous ones generally requires high-temperature annealing above 800 K (e.g., [3,4]), it is believed that the crystalline silicate grains produced at the inner part of the disk were transported to the outer cold regions where the comet nuclei formed. Comet C/2012 S1 (ISON) is a long-period Oort Cloud comet, discovered in September 2012. In particular, comet ISON is a sungrazing comet, which was predicted to pass close by the Sun and the Earth and becoming a bright object. Mid-infrared observations of this new comet and investigation of the 10-micron silicate feature help us understand the formation of crystalline silicate grains in the early solar nebula. We conducted observations of comet ISON in the mid-infrared wavelength region with the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on the Subaru Telescope on Mauna Kea, Hawaii [5,6,7]. The observation of comet ISON was carried out on 2013 October 19 and 21 UT. Since the weather conditions were not so good when we observed, we carried out N-band imaging observations (8.8 and 12.4 microns) and N-band low-resolution spectroscopy. The spectrum of comet ISON can be fit with the 260--265-K blackbody spectrum when we use the regions of 7.8--8.2 and 12.4--13.0 microns as the continuum. The spectrum has only a weak silicate excess feature, which may be able to attribute to small amorphous olivine grains. We could not detect a clear crystalline silicate feature in the spectrum of our observations. We will compare the spectrum with other Oort Cloud comets, such as comets C/2011 L4 (PanSTARRS) and C/2013 R1 (Lovejoy), and discuss the dust properties and the birthplace of comet ISON.
Isotope Fractionation in the Interstellar Medium
NASA Technical Reports Server (NTRS)
Charnley, Steven
2011-01-01
Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets. It is thought, in some cases, to trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. We will present the results of models of the nitrogen, oxygen, and carbon fractionation chemistry in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred. The range of fractionation ratios expected in different interstellar molecules will be discussed and compared to the ratios measured in molecular clouds, comets and meteoritic material. These models make several predictions that can be tested in the near future by molecular line observations, particularly with ALMA.
Search for water and life's building blocks in the Universe: An Introduction
NASA Astrophysics Data System (ADS)
Kwok, Sun
Water and organics are commonly believed to be the essential ingredients for life on Earth. The development of infrared and submillimeter observational techniques has resulted in the detection of water in circumstellar envelopes, interstellar clouds, comets, asteroids, planetary satellites and the Sun. Complex organics have also been found in stellar ejecta, diffuse and molecular clouds, meteorites, interplanetary dust particles, comets and planetary satellites. In this Focus Meeting, we will discuss the origin, distribution, and detection of water and other life's building blocks both inside and outside of the Solar System. The possibility of extraterrestrial organics and water on the origin of life on Earth will also be discussed.
100 and counting : SOHO's score as the world's top comet finder
NASA Astrophysics Data System (ADS)
2000-02-01
Like nearly all of SOHO's discoveries, the 100th comet showed up in images from the LASCO instrument. This is a set of coronagraphs that view the space around the Sun out to 20 million kilometres, while blotting out the bright solar disk with masks. Developed for SOHO by a multinational team led by the US Naval Research Laboratory, LASCO watches for mass ejections from the Sun that threaten to disturb the Earth's space environment. The comet discoveries are a big bonus. SOHO's experts spot many of the comets as soon as the images come in. But still pictures and movies from LASCO are freely available on the Internet to astronomers around the world, who can discover less obvious comets without leaving their desks. This was the case when Kazimieras Cernis of the Institute of Theoretical Physics and Astronomy in Vilnius, Lithuania, found SOHO-100. "On 4 February I saw the comet as a small speck of light in the previous day's LASCO images," Cernis explained. "It had no visible tail, but it was too fuzzy to be an asteroid. By the time I had seen the object moving steadily across the sky in six successive images, I was convinced it was a comet and I sent the details to the SOHO scientists for verification." The competition to find SOHO's 100th comet was keen. An amateur astronomer, Maik Meyer of Frauenstein, Germany, discovered SOHO-98 and 99. On 5 February, less than 24 hours after Cernis reported the candidate SOHO-100, Meyer found the candidate SOHO-101. On the same day and in the same LASCO images Douglas Biesecker, a member of the SOHO science team, spotted the candidate SOHO-102 travelling ahead of 101. Computations have now validated the orbits for all three candidates, and shown them to be bona fide comet discoveries. Other amateur astronomers have used the LASCO images to find comets. In the summer of 1999 Terry Lovejoy in Australia found five, and since September 1999 an amateur in England, Jonathan Shanklin, has spotted three more. "SOHO is a special chance for comet hunters," said Shanklin, who is director of the British Astronomical Association's comet section. "It allows amateurs to discover some of the smallest comets ever seen. Yet they link us to sightings of great comets going back more than 2000 years." Nine of the comets found with LASCO, including SOHO-100, 101 and 102, passed the Sun at a safe distance. SOHO-49, which showed up in LASCO images in May 1998 and was designated as Comet 1998 J1, became visible to the naked eye in the southern hemisphere. But the great majority of SOHO's comets failed to survive very close encounters with the Sun. Snowballs in hell Of the first 100 SOHO comets, 92 vaporized in the solar atmosphere. Isaac Newton suggested 300 years ago that infalling comets might supply the Sun with fuel, but no one has ever tracked a comet that definitely hit the bright surface. Near misses are well known, and 100 years ago Heinrich Kreutz in Kiel, Germany, realized that several comets seen buzzing the Sun seemed to have a common origin, because they came from the same direction among the stars. These comets are now called the Kreutz sungrazers, and the 92 vanishing SOHO comets belong to that class. They were not unexpected. Between 1979 and 1989 the P78-1 and SMM solar satellites spotted 16 comets closing with the Sun. Life is perilous for a sungrazer. The mixture of ice and dust that makes up a comet's nucleus is heated like the proverbial snowball in hell, and can survive its visit to the Sun only if it is quite large. What's more, the very strong tidal effect of the Sun's gravity can tear the loosely glued nucleus apart. The disruption that created the many SOHO sungrazers was similar to the fate of Comet Shoemaker-Levy 9, which went too close to Jupiter and broke up into many pieces that eventually fell into the massive planet in 1994. "SOHO is seeing fragments from the gradual break-up of a great comet, perhaps the one that the Greek astronomer Ephorus saw in 372 BC," commented Brian Marsden of the Center for Astrophysics in Cambridge, Massachusetts. "Ephorus reported that the comet split in two. This fits with my calculation that two comets on similar orbits revisited the Sun around AD 1100. They split again and again, producing the sungrazer family, all still coming from the same direction." The sungrazing comets slant in from the south, at 35 degrees to the plane where the Earth and the other planets orbit. As SOHO moves around the Sun, in step with the Earth, it sees the comets approaching the Sun from the east (left) in February and from the west (right) in August. In June and November the sungrazers seem to head straight up towards the Sun. "The rate at which we've discovered comets with LASCO is beyond anything we ever expected," said Douglas Biesecker, the SOHO scientist personally responsible for the greatest number of discoveries, 45. "We've increased the number of known sungrazing comets by a factor of four. This implies that there could be as many as 20,000 fragments." Their ancestor must have been enormous by cometary standards. Although SOHO's sungrazers are all too small to survive, other members of the family are still large enough to reappear, depleted but intact, after their close encounters with the Sun. Among them were the Great September Comet (1882) and Comet Ikeya-Seki (1965). The history of splitting gives clues to the strength of comets, which will be of practical importance if ever a comet seems likely to hit the Earth. And the fragments seen as SOHO comets reveal the internal composition of comets, freshly exposed, in contrast to the much-altered surfaces of objects like Halley's Comet that have visited the Sun many times. LASCO reveals how much visible dust each comet releases. Gas produced by evaporating ice is detected by another instrument on SOHO, the Ultraviolet Coronagraph Spectrometer or UVCS, and enables scientists to measure the speed of the solar wind as it emerges from the Sun. A comet spotted by its gas cloud The count of SOHO's comet discoveries would be one fewer without a recent bonus from SWAN. This instrument's name unpacks into Solar Wind Anisotropies, and it was provided by the French Service d'Aéronomie and the Finnish Meteorological Institute. SWAN looks away from the Sun to survey atomic hydrogen in the Solar System, which glows with ultraviolet light and is altered by the solar wind. The instrument also sees large clouds of hydrogen surrounding comets, produced by the break-up of water molecules evaporating from the comets' ice. In December 1999 the International Astronomical Union retrospectively credited SWAN and SOHO with finding Comet 1997 K2 in SWAN full-sky images from May to July 1997. It made number 93 on the SOHO scorecard. This comet remained outside the orbit of the Earth even at its closest approach to the Sun. Although it was presumably a small, faint comet, the gas cloud grew to a width of more than 4 million kilometres. "The discovery was a surprise," said Teemu Mäkinen, a Finnish member of the SWAN group. "Our normal procedure is to observe hydrogen clouds of comets detected by other people. In that respect, SWAN on SOHO is the most important instrument now available for routinely measuring the release of water vapour from comets." When Comet Wirtanen, the target for ESA's Rosetta mission (2003), made its most recent periodic visit to the Sun, it pumped out water vapour at a rate of 20,000 tons a day, according to the SWAN data. For the great Comet Hale-Bopp the rate reached 20 million tons a day and SWAN watched its hydrogen cloud grow to 70 million kilometres -- by far the largest object ever seen in the Solar System.
Dynamical Model for the Zodiacal Cloud and Sporadic Meteors
NASA Astrophysics Data System (ADS)
Nesvorný, David; Janches, Diego; Vokrouhlický, David; Pokorný, Petr; Bottke, William F.; Jenniskens, Peter
2011-12-01
The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving at the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer (gsim 105 yr at 1 AU) than postulated in the standard collisional models (~104 yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) × 1011 km2 and ~4 × 1019 g, respectively, in a good agreement with previous studies. The mass input required to keep the zodiacal cloud in a steady state is estimated to be ~104-105 kg s-1. The input is up to ~10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 μm and 1 cm is found to be ~15,000 tons yr-1 (factor of two uncertainty), which is a large share of the accretion flux measured by the Long Term Duration Facility. The majority of JFC particles plunge into the upper atmosphere at <15 km s-1 speeds, should survive the atmospheric entry, and can produce micrometeorite falls. This could explain the compositional similarity of samples collected in the Antarctic ice and stratosphere, and those brought from comet Wild 2 by the Stardust spacecraft. Meteor radars such as CMOR and AMOR see only a fraction of the accretion flux (~1%-10% and ~10%-50%, respectively), because small particles impacting at low speeds produce ionization levels that are below these radars' detection capabilities.
Laboratory Study on Disconnection Events in Comets
NASA Astrophysics Data System (ADS)
Li, Yan-Fei; Li, Yu-Tong; Wang, Wei-Min; Yuan, Da-Wei; et al.
2018-01-01
When comets interacting with solar wind, straight and narrow plasma tails will be often formed. The most remarkable phenomenon of the plasma tails is the disconnection event, in which a plasma tail is uprooted from the comet's head and moves away from the comet. In this paper, the interaction process between a comet and solar wind is simulated by using a laser-driven plasma cloud to hit a cylinder obstacle. A disconnected plasma tail is observed behind the obstacle by optical shadowgraphy and interferometry. Our particle-in-cell simulations show that the diference in thermal velocity between ions and electrons induces an electrostatic field behind the obstacle. This field can lead to the convergence of ions to the central region, resulting in a disconnected plasma tail. This electrostatic field-induced model may be a possible explanation for the disconnection events of cometary tails.
Comet Tempel 2: Orbit, ephemerides and error analysis
NASA Technical Reports Server (NTRS)
Yeomans, D. K.
1978-01-01
The dynamical behavior of comet Tempel 2 is investigated and the comet is found to be very well behaved and easily predictable. The nongravitational forces affecting the motion of this comet are the smallest of any comet that is affected by nongravitational forces. The sign and time history of these nongravitational forces imply (1) a direct rotation of the comet's nucleus and (2) the comet's ability to outgas has not changed substantially over its entire observational history. The well behaved dynamical motion of the comet, the well observed past apparitions, the small nongravitational forces and the excellent 1988 ground based observing conditions all contribute to relatively small position and velocity errors in 1988 -- the year of a proposed rendezvous space mission to this comet. To assist in planned ground based and earth orbital observations of this comet, ephemerides are given for the 1978-79, 1983-84 and 1988 apparitions.
Transformative Small Body Science Enabled with Pan-STARSS Survey Data
NASA Astrophysics Data System (ADS)
Meech, Karen J.; Kleyna, Jan T.; Keane, Jacqueline V.; Hainaut, Olivier R.; MIcheli, Marco
2018-01-01
In the first 5 Myr of Solar System formation, gas imprinted a local chemical signature on the planetesimals which were subsequently redistributed during planet formation. Decades-long ground- and space-based studies have tried to map our solar system’s protoplanetary disk chemistry using volatiles in comets. We now know that comet volatiles (H2O, CO, CO2 and organics) have distinct chemical classes. This data contradicts traditional ideas that all volatile-rich bodies formed in the outer disk. In-situ space comet missions have suggested, however, that comets preserve their pristine volatile inventory, and perhaps even their heritage of ices prior to the protoplanetary disk. Recently, a profusion of dynamical models has been developed that can reproduce some of the key characteristics of today’s solar system. Some models require significant giant planet migration, while others do not. The UH-led Pan-STARRS1 survey (PS1) can offer transformative insight into small bodies and the early solar system, providing a preview of LSST. In 2013 PS1 discovered an asteroidal object on a long-period comet orbit, the first of a class of tailless objects informally called Manxes. The second Manx discovered had a surface composition similar to inner solar system rocky S-type material, suggesting the intriguing possibility that we are looking at fresh inner solar system Earth-forming material, preserved for billions of years in the Oort cloud. Currently 10-15 of these objects are discovered each year, with PS1 dominating the discoveries. The number of rocky inner solar system Manx objects can be used to constrain solar system formation models. PS1 is also very good at discovering faint active objects at large distances, including the remarkable discovery of a comet active beyond 16 au from the sun. By searching the PS1 database once these discoveries are made, it is possible to extend the orbit arc backwards in time, allowing us to model the activity, and understand the chemistry and physics of ices and activity in the outer solar system. These discoveries will help us tie together chemistry and dynamics in our solar system with new resolved ALMA observations of protoplanetary disks. Support from NSF grants AST-1617015, 1413736.
Scattering of Planetesimals by a Planet
NASA Astrophysics Data System (ADS)
Higuchi, A.; Kokubo, E.; Mukai, T.
2004-05-01
We investigate the scattering process of planetesimals by a planet by numerical orbital integration, aiming at construction of theory for the comet (Oort) cloud formation. The standard scenario of the formation of the Oort cloud can be divided into three dynamical stages:(1)The eccentricity and the aphelion distance of planetesimals are increased by planetary perturbation. (2)The eccentricity is reduced and the perihelion distance is increased by the external forces such as the galactic tide. (3)The inclination is randomized also by the external forces. We model the first stage of this scenario as the restricted three-body problem and calculate the orbital evolution of planetesimals scattered by a planet. There are 4 kinds of outcomes for scattering of planetesimals by a planet: to collide with the planet, to fall onto the central star, to escape from the planetary system, and to remain in bound orbits. Here we consider the escape efficiency as the efficiency of formation of highly eccentric planetesimals, which are candidates for the members of the comet cloud. We obtain the dependence of the escape/collision probability on orbital parameters of the planetesimals and the planet. Using these results, we calculate the efficiencies of escaping from the planetary system and collision with the planet. For example, for the minimum-mass disk model, the inner and massive planet is more efficient to eject planetesimals and increase their eccentricities. Planetesimals with high eccentricities and low inclinations are easier to be ejected from the planetary system. We preset the empirical fitting formulae of these efficiencies as a function of the orbital parameters of the planetesimals and the planets. We apply the results to the solar system and discuss the efficiency of the outer giant planets.
NASA Technical Reports Server (NTRS)
Ahearn, Michael F.
1988-01-01
The IUE was used to study comets including the first dynamically new comet to approach closer than 3 AU. Differences between old and new comets are studied. Results relevant to the nature of cometary nuclei are discussed. Identification of species in the spectra; relative abundances; variability of comets; and comet mass are considered.
NASA Astrophysics Data System (ADS)
Watanabe, Jun-Ichi; Honda, Mitsuhiko; Ishiguro, Masateru; Ootsubo, Takafumi; Sarugaku, Yuki; Kadono, Toshihiko; Sakon, Itsuki; Fuse, Tetsuharu; Takato, Naruhisa; Furusho, Reiko
2009-08-01
Mid-infrared 8--25μm imaging and spectroscopic observations of the comet 17P/Holmes in the early phase of its outburst in brightness were performed on 2007 October 25--28UT using the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on the 8.2-m Subaru Telescope. We detected an isolated dust cloud that moved toward the south-west direction from the nucleus. The 11.2μm peak of a crystalline silicate feature onto a broad amorphous silicate feature was also detected both in the central condensation of the nucleus and an isolated dust cloud. The color temperature of the isolated dust cloud was estimated to be ˜200K, which is slightly higher than the black-body temperature. Our analysis of the motion indicates that the isolated cloud moved anti-sunward. We propose several possibilities for the motion of the cloud: fluffy dust particles in the isolated cloud started to depart from the nucleus due to radiation pressure almost as soon as the main outburst occurred, or dust particles moved by some other anti-sunward forces, such as a rocket effect and photophoresis when the surrounding dust coma became optically thin. The origin and the nature of the isolated dust cloud are discussed in this paper.
Submicrometer Organic Grains: Widespread Constituents of the Early Solar System
NASA Technical Reports Server (NTRS)
Messenger, Scott; Nakamuri-Messenger, Keiko; Keller, Lindsay; Matrajt, Graciela; Clemett, Simon; Ito, Motoo
2007-01-01
Primitive meteorites and interplanetary dust particles (IDPs) contain remants of interstellar organic matter, marked by anomalous H and N isotopic ratios. These isotopic anomalies are attributed to mass fractionation during chemical reactions at cryogenic temperatures (10-100K) in a cold molecular cloud. Significant variations in the chemistry and isotopic compositions of organic compounds within and between these samples suggest varying histories of alteration and dilution of the presolar components. Recent studies have reported large H and N isotopic anomalies preserved in sub-m organic inclusions in both meteorites and IDPs. In the Tagish Lake meteorite, the largest H and N isotopic anomalies are associated with sub-m, hollow organic globules. The common physical, chemical, and isotopic characteristics of these globules suggest that they formed before being incorporated into their parent meteorite. These organic globules probably originated as organic ice coatings that formed on preexisting ice or mineral grains in a cold molecular cloud. Radiation driven photochemistry may have processed them into refractory organic grains. This model implies that submicrometer organic grains were widely distributed throughout the solar nebula during the epoch of planet formation. Submicrometer organic particles were detected by the Giotto and Vega encounters with comet Halley, termed CHON particles based on their major element chemistry. The first direct samples of cometary dust (comet Wild-2) were returned by the Stardust spacecraft in January 2006. These samples exhibit widely varying, fine grained mineralogy similar to anhydrous IDPs, including submicrometer carbonaceous grains. The submicrometer organic grains from comet Wild-2 exhibit H and N isotopic anomalies of similar magnitude to those commonly observed in primitive meteorites and IDPs. Isotopically anomalous, submicrometer organic grains have now been observed in meteorites, IDPs, the Oort-cloud comet Halley, and the Kuiper-belt comet Wild-2, suggesting that such grains were prevalent throughout the protoplanetary disk.
A new activity index for comets
NASA Technical Reports Server (NTRS)
Whipple, Fred L.
1992-01-01
An activity index, AI, is derived from observational data to measure the increase of activity in magnitudes for comets when brightest near perihelion as compared to their inactive reflective brightness at great solar distances. Because the observational data are still instrumentally limited in the latter case and because many comets carry particulate clouds about them at great solar distances, the application of the activity index is still limited. A tentative application is made for the comets observed by Max Beyer over a period of nearly 40 years, providing a uniform magnitude system for the near-perihelion observations. In all, 32 determinations are made for long-period (L-P) comets and 15 for short-period (S-P). Although the correlations are scarcely definitive, the data suggest that the faintest comets are just as active as the brightest and that the S-P comets are almost as active as those with periods (P) exceeding 10(exp 4) years or those with orbital inclinations of i less than 120 deg. Comets in the range 10(exp 2) less than P less than 10(exp 4) yr. or with i greater than 120 deg appear to be somewhat more active than the others. There is no evidence to suggest aging among the L-P comets or to suggest other than a common nature for comets generally.
The long-term dynamical behavior of short-period comets
NASA Technical Reports Server (NTRS)
Levison, Harold F.; Duncan, Martin J.
1993-01-01
The orbits of the known short-period comets under the influence of the Sun and all the planets except Mercury and Pluto are numerically integrated. The calculation was undertaken in order to determine the dynamical lifetimes for these objects as well as explaining the current orbital element distribution. It is found that a comet can move between Jupiter-family and Halley-family comets several times in its dynamical lifetime. The median lifetime of the known short-period comets from the time they are first injected into a short-period comet orbit to ultimate ejection is approximately 50,000 years. The very flat inclination distribution of Jupiter-family comets is observed to become more distended as it ages. The only possible explanation for the observed flat distribution is that the comets become extinct before their inclination distribution can change significantly. It is shown that the anomalous concentration of the argument of perihelion of Jupiter-family comets near 0 and 180 deg is a direct result of their aphelion distance being close to 5.2AU and the comet being recently perturbed onto a Jupiter-family orbit. Also the concentration of their aphelion near Jupiter's orbit is a result of the conservation of the Tisserand invariant during the capture process.
Primitive bodies - Molecular abundances in Comet Halley as probes of cometary formation environments
NASA Technical Reports Server (NTRS)
Lunine, Jonathan I.
1989-01-01
The most recent results on abundances of molecules in Halley's comet are examined in the context of various models for the environment in which comets formed. These environments include molecular clouds associated with star-forming regions, the solar nebula, gaseous disks around proto-planets, and combinations of these. Of all constituents in a cometary nucleus, the highly volatile molecules such as methane, ammonia, molecular nitrogen, and carbon monoxide are most sensitive to the final episode of cometary grain formation and incorporation in the comet's nucleus; hence they likely reflect at least some chemical processing in the solar nebula. Proper interpretation requires modeling of a number of physical processes including gas phase chemistry, chemistry on grain surfaces, and fractionation effects resulting from preferential incorporation of certain gases in proto-cometary grains. The abundance of methane in Halley's comet could be a key indicator of where that comet formed, provided the methane abundance on grains in star-forming regions can be observationally constrained.
Isotopic Fractionation in Primitive Material: Quantifying the Contribution of Interstellar Chemistry
NASA Technical Reports Server (NTRS)
Charnley, Steven
2010-01-01
Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets. It is thought, in some cases, to trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. We will present the results of models of the nitrogen, oxygen, and carbon fractionation chemistry in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred. The range of fractionation ratios expected in different interstellar molecules will be discussed and compared to the ratios measured in molecular clouds, comets and meteoritic material. These models make several predictions that can be tested in the near future by molecular line observations, particularly with ALMA.
NASA Astrophysics Data System (ADS)
Lis, D. C.; Biver, N.; Bockelée-Morvan, D.; Hartogh, P.; Bergin, E. A.; Blake, G. A.; Crovisier, J.; de Val-Borro, M.; Jehin, E.; Küppers, M.; Manfroid, J.; Moreno, R.; Rengel, M.; Szutowicz, S.
2013-09-01
We present Herschel observations of water isotopologues in the atmosphere of the Jupiter-family comet 45P/Honda-Mrkos-Pajdušáková. No HDO emission is detected, with a 3σ upper limit of 2.0 × 10-4 for the D/H ratio. This value is consistent with the earlier Herschel measurement in the Jupiter-family comet 103P/Hartley 2. The canonical value of 3 × 10-4 measured pre-Herschel in a sample of Oort-cloud comets can be excluded at a 4.5σ level. The observations presented here further confirm that a diversity of D/H ratios exists in the comet population and emphasize the need for additional measurements with future ground-based facilities, such as CCAT, in the post-Herschel era.
Images From Comet’s Mars Flyby On This Week @NASA - October 24, 2014
2014-10-24
Several Mars-based NASA spacecraft had prime viewing positions for comet Siding Spring’s October 19 close flyby of the Red Planet. Early images included a composite photo from NASA’s Hubble Space Telescope that combined shots of Mars, the comet, and a star background to illustrate Siding Spring’s distance from Mars at closest approach. Also, images from the Mars Reconnaissance Orbiter’s HiRISE camera, which represent the highest-resolution views ever acquired of a comet that came from the Oort Cloud, at the outer fringe of the solar system. The comet flyby – only about 87,000 miles from Mars – was much closer than any other known comet flyby of a planet. Also, Partial solar eclipse, Space station spacewalk, Preparing to release Dragon, Cygnus launch update, Welding begins on SLS, Astronaut class visits Glenn and more!
NEOWISE View of Comet Christensen
2015-11-23
An infrared view from NASA's NEOWISE mission of the Oort cloud comet C/2006 W3 (Christensen). The spacecraft observed this comet on April 20th, 2010 as it traveled through the constellation Sagittarius. Comet Christensen was nearly 370 million miles (600 million kilometers) from Earth at the time. The image is half of a degree of the sky on each side. Infrared light with wavelengths of 3.4, 12 and 22 micron channels are mapped to blue, green, and red, respectively. The signal at these wavelengths is dominated primarily by the comet's dust thermal emission, giving it a golden hue. The WISE spacecraft was put into hibernation in 2011 upon completing its goal of surveying the entire sky in infrared light. WISE cataloged three quarters of a billion objects, including asteroids, stars and galaxies. In August 2013, NASA decided to reinstate the spacecraft on a mission to find and characterize more asteroids. http://photojournal.jpl.nasa.gov/catalog/PIA20118
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lis, D. C.; Blake, G. A.; Biver, N.
We present Herschel observations of water isotopologues in the atmosphere of the Jupiter-family comet 45P/Honda-Mrkos-Pajdusakova. No HDO emission is detected, with a 3{sigma} upper limit of 2.0 Multiplication-Sign 10{sup -4} for the D/H ratio. This value is consistent with the earlier Herschel measurement in the Jupiter-family comet 103P/Hartley 2. The canonical value of 3 Multiplication-Sign 10{sup -4} measured pre-Herschel in a sample of Oort-cloud comets can be excluded at a 4.5{sigma} level. The observations presented here further confirm that a diversity of D/H ratios exists in the comet population and emphasize the need for additional measurements with future ground-based facilities,more » such as CCAT, in the post-Herschel era.« less
NASA Study Hints at Possible Change in Water ‘Fingerprint’ of Comet
2017-12-08
A trip past the sun may have selectively altered the production of one form of water in a comet – an effect not seen by astronomers before, a new NASA study suggests. Astronomers from NASA’s Goddard Space Flight Center in Greenbelt, Maryland, observed the Oort cloud comet C/2014 Q2, also called Lovejoy, when it passed near Earth in early 2015. Through NASA’s partnership in the W. M. Keck Observatory on Mauna Kea, Hawaii, the team observed the comet at infrared wavelengths a few days after Lovejoy passed its perihelion – or closest point to the sun. The team focused on Lovejoy’s water, simultaneously measuring the release of H2O along with production of a heavier form of water, HDO. Water molecules consist of two hydrogen atoms and one oxygen atom. A hydrogen atom has one proton, but when it also includes a neutron, that heavier hydrogen isotope is called deuterium, or the “D” in HDO. From these measurements, the researchers calculated the D-to-H ratio – a chemical fingerprint that provides clues about exactly where comets (or asteroids) formed within the cloud of material that surrounded the young sun in the early days of the solar system. Researchers also use the D-to-H value to try to understand how much of Earth’s water may have come from comets versus asteroids. Read more: go.nasa.gov/2lvd6Vt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Pozuelos, F. J.; Moreno, F.; Aceituno, F.; Casanova, V.; Sota, A.; López-Moreno, J. J.; Castellano, J.; Reina, E.; Climent, A.; Fernández, A.; San Segundo, A.; Häusler, B.; González, C.; Rodriguez, D.; Bryssinck, E.; Cortés, E.; Rodriguez, F. A.; Baldris, F.; García, F.; Gómez, F.; Limón, F.; Tifner, F.; Muler, G.; Almendros, I.; de los Reyes, J. A.; Henríquez, J. A.; Moreno, J. A.; Báez, J.; Bel, J.; Camarasa, J.; Curto, J.; Hernández, J. F.; González, J. J.; Martín, J. J.; Salto, J. L.; Lopesino, J.; Bosch, J. M.; Ruiz, J. M.; Vidal, J. R.; Ruiz, J.; Sánchez, J.; Temprano, J.; Aymamí, J. M.; Lahuerta, L.; Montoro, L.; Campas, M.; García, M. A.; Canales, O.; Benavides, R.; Dymock, R.; García, R.; Ligustri, R.; Naves, R.; Lahuerta, S.; Pastor, S.
2014-11-01
Aims: This paper is a continuation of the first paper in this series, where we presented an extended study of the dust environment of a sample of short-period comets and their dynamical history. On this occasion, we focus on comets 81P/Wild 2 and 103P/Hartley 2, which are of special interest as targets of the spacecraft missions Stardust and EPOXI. Methods: As in the previous study, we used two sets of observational data: a set of images, acquired at Sierra Nevada and Lulin observatories, and the Afρ data as a function of the heliocentric distance provided by the amateur astronomical association Cometas-Obs. The dust environment of comets (dust loss rate, ejection velocities, and size distribution of the particles) was derived from our Monte Carlo dust tail code. To determine their dynamical history we used the numerical integrator Mercury 6.2 to ascertain the time spent by these objects in the Jupiter family Comet region. Results: From the dust analysis, we conclude that both 81P/Wild 2 and 103P/Hartley 2 are dusty comets, with an annual dust production rate of 2.8 × 109 kg yr-1 and (0.4-1.5) × 109 kg yr-1, respectively. From the dynamical analysis, we determined their time spent in the Jupiter family Comet region as ~40 yr in the case of 81P/Wild 2 and ~1000 yr for comet 103P/Hartley 2. These results imply that 81P/Wild 2 is the youngest and the most active comet of the eleven short-period comets studied so far, which tends to favor the correlation between the time spent in JFCs region and the comet activity previously discussed.
NASA Astrophysics Data System (ADS)
Kelley, Michael; Feaga, Lori; Bodewits, Dennis; McKay, Adam; Snodgrass, Colin; Wooden, Diane
2014-12-01
Spacecraft missions to comets return a treasure trove of details of their targets, e.g., the Rosetta mission to comet 67P/Churyumov-Gerasimenko, the Deep Impact experiment at comet 9P/Tempel 1, or even the flyby of C/2013 A1 (Siding Spring) at Mars. Yet, missions are rare, the diversity of comets is large, few comets are easily accessible, and comet flybys essentially return snapshots of their target nuclei. Thus, telescopic observations are necessary to place the mission data within the context of each comet's long-term behavior, and to further connect mission results to the comet population as a whole. We propose a large Cycle 11 project to study the long-term activity of past and potential future mission targets, and select bright Oort cloud comets to infer comet nucleus properties, which would otherwise require flyby missions. In the classical comet model, cometary mass loss is driven by the sublimation of water ice. However, recent discoveries suggest that the more volatile CO and CO2 ices are the likely drivers of some comet active regions. Surprisingly, CO2 drove most of the activity of comet Hartley 2 at only 1 AU from the Sun where vigorous water ice sublimation would be expected to dominate. Currently, little is known about the role of CO2 in comet activity because telluric absorptions prohibit monitoring from the ground. In our Cycle 11 project, we will study the CO2 activity of our targets through IRAC photometry. In conjunction with prior observations of CO2 and CO, as well as future data sets (JWST) and ongoing Earth-based projects led by members of our team, we will investigate both long-term activity trends in our target comets, with a particular goal to ascertain the connections between each comet's coma and nucleus.
Impact cratering through geologic time
Shoemaker, E.M.; Shoemaker, C.S.
1998-01-01
New data on lunar craters and recent discoveries about craters on Earth permit a reassessment of the bombardment history of Earth over the last 3.2 billion years. The combined lunar and terrestrial crater records suggest that the long-term average rate of production of craters larger than 20 km in diameter has increased, perhaps by as much as 60%, in the last 100 to 200 million years. Production of craters larger than 70 km in diameter may have increased, in the same time interval, by a factor of five or more over the average for the preceding three billion years. A large increase in the flux of long-period comets appears to be the most likely explanation for such a long-term increase in the cratering rate. Two large craters, in particular, appear to be associated with a comet shower that occurred about 35.5 million years ago. The infall of cosmic dust, as traced by 3He in deep sea sediments, and the ages of large craters, impact glass horizons, and other stratigraphic markers of large impacts seem to be approximately correlated with the estimated times of passage of the Sun through the galactic plane, at least for the last 65 million years. Those are predicted times for an increased near-Earth flux of comets from the Oort Cloud induced by the combined effects of galactic tidal perturbations and encounters of the Sun with passing stars. Long-term changes in the average comet flux may be related to changes in the amplitude of the z-motion of the Sun perpendicular to the galactic plane or to stripping of the outer Oort cloud by encounters with large passing stars, followed by restoration from the inner Oort cloud reservoir.
Other Planetary Systems: The View From Our Neighborhood
NASA Technical Reports Server (NTRS)
Cruikshank, Dale P.; Witteborn, Fred C. (Technical Monitor)
1995-01-01
The structure and contents of the Solar System offer an initial model for other planetary systems in this and other galaxies. Our knowledge of the bodies in the Solar System and their physical conditions has grown enormously in the three decades of planetary exploration. Parallel to the uncovering of new facts has been a great expansion of our understanding of just how these conditions came to be. Telescopic studies and missions to all the planets (except Pluto) have shown spectacular and unexpected diversity among those planets, their satellites, the asteroids, and the comets. Highlights include the organic-rich crust of comets, volcanic activity on planetary satellites, randomly oriented magnetic fields of the major planets, the existence of a huge population of planetesimals just beyond Neptune, dramatic combinations of exogenic and endogenic forces shaping the solid bodies throughout the Solar System, and much more. Simultaneously, computational, laboratory, and conceptual advances have shown that the Solar System is not fully evolved either dynamically or chemically. The discovery of clearly identified interstellar (presolar) material in the meteorites and comets connects us directly with the matter in the molecular cloud from which the Solar System originated. At the same time, an increased understanding of the chemistry of comets and the impact history of the planets has demonstrated the dependence of the origin and evolution of life on Earth on powerful exogenic factors. This presentation summarizes some of the new knowledge of the Solar System and proposes specific character ist ics that may be observed in (or used as criteria for identification of) extrasolar planetary systems.
Optical image of a cometary nucleus: 1980 flyby of Comet Encke
NASA Technical Reports Server (NTRS)
Wells, W. C.; Benson, R. S.; Anderson, A. D.; Gal, G.
1974-01-01
The feasibility was investigated of obtaining optical images of a cometary nucleus via a flyby of Comet Encke. A physical model of the dust cloud surrounding the nucleus was developed by using available physical data and theoretical knowledge of cometary physics. Using this model and a Mie scattering code, calculations were made of the absolute surface brightness of the dust in the line of sight of the on-board camera and the relative surface brightness of the dust compared to the nucleus. The brightness was calculated as a function of heliocentric distance and for different phase angles (sun-comet-spacecraft angle).
Organic matter in meteorites and comets - Possible origins
NASA Technical Reports Server (NTRS)
Anders, Edward
1991-01-01
At least six extraterrestrial environments may have contributed organic compounds to meteorites and comets: solar nebula, giant-planet subnebulae, asteroid interiors containing liquid water, carbon star atmospheres, and diffuse or dark interstellar clouds. The record in meteorites is partly obscured by pervasive reheating that transformed much of the organic matter to kerogen; nonetheless, it seems that all six formation sites contributed. For comets, the large abundance of HCHO, HCN, and unsaturated hydrocarbons suggests an interstellar component of 50 percent or more, but the contributions of various interstellar processes, and of a solar-nebula component, are hard to quantify. A research program is outlined that may help reduce these uncertainties.
NASA Astrophysics Data System (ADS)
Kulyk, I.; Rousselot, P.; Korsun, P. P.; Afanasiev, V. L.; Sergeev, A. V.; Velichko, S. F.
2018-03-01
Context. The systematic investigation of comets in a wide range of heliocentric distances can contribute to a better understanding of the physical mechanisms that trigger activity at large distances from the Sun and reveals possible differences in the composition of outer solar system bodies belonging to various dynamical groups. Aims: We seek to analyze the dust environment of the selected nearly isotropic comets with a perihelion distance between 4.5 and 9.1 au, where sublimation of water ice is considered to be negligible. Methods: We present results of multicolor broadband photometric observations for 14 distant active objects conducted between 2008 and 2015 with various telescopes. Images obtained with broadband filters were used to investigate optical colors of the cometary comae and to quantify physical activity of the comet nuclei. Results: The activity level was estimated with Afρ parameters ranging between 95 ± 10 cm and 9600 ± 300 cm. Three returning comets were less active than the dynamically new comets. Dust production rates of the comet nuclei were estimated between 1 and 100 kg s-1 based on some assumptions about the physical properties of dust particles populating comae. The measured colors point out reddening of the continuum for all the comets. The mean values of a normalized reflectivity gradient within the group of the comets amount to 14 ± 2% per 1000 Å and 3 ± 2% per 1000 Å in the BV and VR spectral domains, respectively. The comae of the dynamically new comets, which were observed on their inbound legs, may be slightly redder in the blue spectral interval than comae of the comets observed after the perihelion passages. The dynamically new comets observed both pre- and post-perihelion, seem to have higher production rates post-perihelion than pre-perihelion for similar heliocentric distances.
Dynamical evolution of comet pairs
NASA Astrophysics Data System (ADS)
Sosa, Andrea; Fernández, Julio A.
2016-10-01
Some Jupiter family comets in near-Earth orbits (thereafter NEJFCs) show a remarkable similarity in their present orbits, like for instance 169P/NEAT and P/2003 T12 (SOHO), or 252P/LINEAR and P/2016 BA14 (PANSTARRS). By means of numerical integrations we studied the dynamical evolution of these objects. In particular, for each pair of presumably related objects, we are interested in assessing the stability of the orbital parameters for several thousand years, and to find a minimum of their relative spatial distance, coincident with a low value of their relative velocity. For those cases for which we find a well defined minimum of their relative orbital separation, we are trying to reproduce the actual orbit of the hypothetical fragment by modeling a fragmentation of the parent body. Some model parameters are the relative ejection velocity (a few m/s), the orbital point at which the fragmentation could have happened (e.g. perihelion), and the elapsed time since fragmentation. In addition, some possible fragmentation mechanisms, like thermal stress, rotational instability, or collisions, could be explored. According to Fernández J.A and Sosa A. 2015 (Planetary and Space Science 118,pp.14-24), some NEJFCs might come from the outer asteroid belt, and then they would have a more consolidated structure and a higher mineral content than that of comets coming from the trans-Neptunian belt or the Oort cloud. Therefore, such objects would have a much longer physical lifetime in the near-Earth region, and could become potential candidates to produce visible meteor showers (as for example 169P/NEAT which has been identified as the parent body of the alpha-Capricornid meteoroid stream, according to Jenniskens, P., Vaubaillon, J., 2010 (Astron. J. 139), and Kasuga, T., Balam, D.D., Wiegert, P.A., 2010 (Astron. J. 139).
NASA Technical Reports Server (NTRS)
Oberbeck, Verne R.; Marshall, John; Shen, Thomas
1991-01-01
The chemical evolution hypothesis of Woese (1979), according to which prebiotic reactions occurred rapidly in droplets in giant atmospheric reflux columns was criticized by Scherer (1985). This paper proposes a mechanism for prebiotic chemistry in clouds that answers Scherer's concerns and supports Woese's hypothesis. According to this mechanism, rapid prebiotic chemical evolution was facilitated on the primordial earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by, or synthesized during entry of meteorites, comets, and interplanetary dust, would have been scavenged by cloud drops containing clay condensation nuclei and would be polymerized within cloud systems during cycles of condensation, freezing, melting, and evaporation of cloud drops.
Physical characteristics of Comet Nucleus C/2001 OG 108 (LONEOS)
NASA Astrophysics Data System (ADS)
Abell, Paul A.; Fernández, Yanga R.; Pravec, Petr; French, Linda M.; Farnham, Tony L.; Gaffey, Michael J.; Hardersen, Paul S.; Kušnirák, Peter; Šarounová, Lenka; Sheppard, Scott S.; Narayan, Gautham
2005-12-01
A detailed description of the Halley-type Comet C/2001 OG 108 (LONEOS) has been derived from visible, near-infrared, and mid-infrared observations obtained in October and November 2001. These data represent the first high-quality ground-based observations of a bare Halley-type comet nucleus and provide the best characterization of a Halley-type comet other than 1P/Halley itself. Analysis of time series photometry suggests that the nucleus has a rotation period of 57.2±0.5 h with a minimum nuclear axial ratio of 1.3, a phase-darkening slope parameter G of -0.01±0.10, and an estimated H=13.05±0.10. The rotation period of C/2001 OG 108 is one of the longest observed among comet nuclei. The V- R color index for this object is measured to be 0.46±0.02, which is virtually identical to that of other cometary nuclei and other possible extinct comet candidates. Measurements of the comet's thermal emission constrain the projected elliptical nuclear radii to be 9.6±1.0 km and 7.4±1.0 km, which makes C/2001 OG 108 one of the larger cometary nuclei known. The derived geometric albedo in V-band of 0.040±0.010 is typical for comet nuclei. Visible-wavelength spectrophotometry and near-infrared spectroscopy were combined to derive the nucleus's reflectance spectrum over a 0.4 to 2.5 μm wavelength range. These measurements represent one of the few nuclear spectra ever observed and the only known spectrum of a Halley-type comet. The spectrum of this comet nucleus is very nearly linear and shows no discernable absorption features at a 5% detection limit. The lack of any features, especially in the 0.8 to 1.0 μm range such as are seen in the spectra of carbonaceous chondrite meteorites and many low-albedo asteroids, is consistent with the presence of anhydrous rather than hydrous silicates on the surface of this comet. None of the currently recognized meteorites in the terrestrial collections have reflectance spectra that match C/2001 OG 108. The near-infrared spectrum, the geometric albedo, and the visible spectrophotometry all indicate that C/2001 OG 108 has spectral properties analogous to the D-type, and possibly P-type asteroids. Comparison of the measured albedo and diameter of C/2001 OG 108 with those of Damocloid asteroids reveals similarities between these asteroids and this comet nucleus, a finding which supports previous dynamical arguments that Damocloid asteroids could be composed of cometary-like materials. These observations are also consistent with findings that two Jupiter-family comets may have spectral signatures indicative of D-type asteroids. C/2001 OG 108 probably represents the transition from a typical active comet to an extinct cometary nucleus, and, as a Halley-type comet, suggests that some comets originating in the Oort cloud can become extinct without disintegrating. As a near-Earth object, C/2001 OG 108 supports the suggestion that some fraction of the near-Earth asteroid population consists of extinct cometary nuclei.
Hill, Hugh G. M.; Grady, Carol A.; Nuth, Joseph A.; Hallenbeck, Susan L.; Sitko, Michael L.
2001-01-01
Understanding dynamic conditions in the Solar Nebula is the key to prediction of the material to be found in comets. We suggest that a dynamic, large-scale circulation pattern brings processed dust and gas from the inner nebula back out into the region of cometesimal formation—extending possibly hundreds of astronomical units (AU) from the sun—and that the composition of comets is determined by a chemical reaction network closely coupled to the dynamic transport of dust and gas in the system. This scenario is supported by laboratory studies of Mg silicates and the astronomical data for comets and for protoplanetary disks associated with young stars, which demonstrate that annealing of nebular silicates must occur in conjunction with a large-scale circulation. Mass recycling of dust should have a significant effect on the chemical kinetics of the outer nebula by introducing reduced, gas-phase species produced in the higher temperature and pressure environment of the inner nebula, along with freshly processed grains with “clean” catalytic surfaces to the region of cometesimal formation. Because comets probably form throughout the lifetime of the Solar Nebula and processed (crystalline) grains are not immediately available for incorporation into the first generation of comets, an increasing fraction of dust incorporated into a growing comet should be crystalline olivine and this fraction can serve as a crude chronometer of the relative ages of comets. The formation and evolution of key organic and biogenic molecules in comets are potentially of great consequence to astrobiology. PMID:11226213
(abstract) Cometary Particles as a Tracer of Jupiter's Stratospheric Circulation
NASA Technical Reports Server (NTRS)
West, R. A.; Friedson, A. J.
1993-01-01
The impact of fragments of comet Shoemaker-Levy 9 on Jupiter's atmosphere in July 1994 may provide an unprecedented opportunity to study Jupiter's stratospheric circulation. Recent calculations by Z. Sekanina predict that much of the comet material will be deposited in Jupiter's stratosphere. If so, and if the material is deposited in a confined region (10 000 km or less, horizontally) we can expect a situation analogous to an El Chichon or Pinatubo event for the terrestrial stratosphere. Initially the volatile material will be vaporized and will rapidly recondense. The large ice crystals and dust particles will rain out and be lost to the troposphere. The cloud of small particles which remain may have settling times of more than a year. These submicron to micron particles would probably be easily seen in methane filter images in the near-IR, and possibly in the ultraviolet. An observational program to monitor the dispersal of this cloud or clouds would reveal much about the nature of the circulation. Some predictions about the meridional evolution of the clouds can be made already, based on the meridional circulation model of West et al. unless the impact itself significantly disrupts the annual average circulation well after the initial transients die away.
Plasma waves associated with the AMPTE artificial comet
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Anderson, R. R.; Haeusler, B.; Haerendel, G.; Bauer, O. H.
1985-01-01
Numerous plasma wave effects were detected by the AMPTE/IRM spacecraft during the artificial comet experiment on December 27, 1984. As the barium ion cloud produced by the explosion expanded over the spacecraft, emissions at the electron plasma frequency and ion plasma frequency provided a determination of the local electron density. The electron density in the diamagnetic cavity produced by the ion cloud reached a peak of more than 5 x 10 to the 5th per cu cm, then decayed smoothly as the cloud expanded, varying approximately as t exp-2. As the cloud began to move due to interactions with the solar wind, a region of compressed plasma was encountered on the upstream side of the diamagnetic cavity. The peak electron density in the compression region was about 1.5 x 10 to the 4th per cu cm. Later, a very intense (140 mVolt/m) broadband burst of electrostatic noise was encountered on the sunward side of the compression region. This noise has characteristics very similar to noise observed in the earth's bow shock, and is believed to be a shocklike interaction produced by an ion beam-plasma instability between the nearly stationary barium ions and the streaming solar wind protons.
ACTIVITY OF 50 LONG-PERIOD COMETS BEYOND 5.2 au
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sárneczky, K.; Szabó, Gy. M.; Csák, B.
2016-12-01
Remote investigations of ancient matter in the solar system have traditionally been carried out through observations of long-period (LP) comets, which are less affected by solar irradiation than their short-period counterparts orbiting much closer to the Sun. Here we summarize the results of our decade-long survey of the distant activity of LP comets. We found that the most important separation in the data set is based on the dynamical nature of the objects. Dynamically new comets are characterized by a higher level of activity on average: the most active new comets in our sample can be characterized by Afρ valuesmore » >3–4, higher than those for our most active returning comets. New comets develop more symmetric comae, suggesting a generally isotropic outflow. In contrast to this, the comae of recurrent comets can be less symmetrical, ocassionally exhibiting negative slope parameters, which suggest sudden variations in matter production. The morphological appearance of the observed comets is rather diverse. A surprisingly large fraction of the comets have long, tenuous tails, but the presence of impressive tails does not show a clear correlation with the brightness of the comets.« less
Micro-ion Traps for Detection of (Pre)-Biotic Organic Compounds on Comets
NASA Technical Reports Server (NTRS)
vanAmerom, Friso H. W.; Chaudhary, A.; Short, R. T.; Brinkerhoff, William; Glavin, Daniel; Mahaffy, Paul R.; Roman, Patrick A.
2013-01-01
Comets are currently believed to be a mixture of interstellar and nebular material. Many of the volatiles in comets are attributed to interstellar chemistry, because the same species of carbonaceous compounds are also observed in ices in interstellar molecular (ISM) clouds. Comets are thus likely to be a relatively pristine reservoir of primitive material and carbonaceous compounds in our solar system. They could be a major contributor to the delivery of prebiotic organic compounds, from which life emerged through impacts on early Earth. Mass spectrometers are very powerful tools to identify unknown chemicals, and much progress bas been made in miniaturizing mas spectrometers for space applications. Most miniatu rized mass spectrometers developed to date, however, are still relatively large, power hungry, complicated to assemble, and would have significant impact on space flight vehicle total payload and resource allocations.
Triple F - A Comet Nucleus Sample Return Mission
NASA Technical Reports Server (NTRS)
Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi
2008-01-01
The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.
Triple F - A Comet Nucleus Sample Return Mission
NASA Technical Reports Server (NTRS)
Kueppers, Michael; Keller, H. U.; Kuehrt, E.; A'Hearn, M. F.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M. T.; Colangeli, L.; Davidsson, B.;
2008-01-01
The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.
Exchange of Biomaterial Between Planetary Systems
NASA Astrophysics Data System (ADS)
Napier, W. M.
2011-10-01
It is now known that dynamical highways exist along which viable microorganisms may travel between the planets of the solar system. The extension of this concept to interstellar distances is explored here. Giant molecular clouds play a significant role in the process. They stimulate exoplanetary systems by disturbing their comet clouds and enhancing planetary impact rates. Biomaterial thrown out by impacts is injected directly into their stellar nurseries, with transfer times typically 0.1-0.5 million years. With reasonably conservative assumptions it is expected that, if life started at one locality in the Galaxy 5-10 Gyr ago, it would by now occupy ecological niches throughout the habitable zone. The chief uncertainty is the proportion of planetary systems capable of receiving life, nurturing it and re-ejecting it through impacts: a critical proportion of ˜10-3 to ˜10-4 such exoplanetary systems is necessary for the diffusion of life to go critical in the solar neighbourhood. This requirement is relaxed within ˜3-5 kpc of the Galactic centre.
Clementine Observations of the Zodiacal Light and the Dust Content of the Inner Solar System
NASA Technical Reports Server (NTRS)
Hahn, Joseph M.; Zook, Herbert A.; Cooper, Bonnie; Sunkara, Bhaskar
2002-01-01
Using the Moon to occult the Sun, the Clementine spacecraft used its navigation cameras to map the inner zodiacal light at optical wavelengths over elongations of 3 approx. less than epsilon approx. less than 30 deg from the Sun. This surface brightness map is then used to infer the spatial distribution of interplanetary dust over heliocentric distances of about 10 solar radii to the orbit of Venus. The averaged ecliptic surface brightness of the zodiacal light falls off as Z(epsilon) is a member of epsilon(sup -2.45 +/- 0.05), which suggests that the dust cross-sectional density nominally falls off as sigma(r) is a member of r(sup - 1.45 +/- 0.05). The interplanetary dust also has an albedo of alpha approx. = 0.1 that is uncertain by a factor of approx. 2. Asymmetries of approx. 10% are seen in directions east-west and north-south of the Sun, and these may be due the giant planets' secular gravitational perturbations. We apply a simple model that attributes the zodiacal light as due to three dust populations having distinct inclination distributions, namely, dust from asteroids and Jupiter-family comets (JFCs) having characteristic inclinations of i approx. 7 deg, dust from Halley-type comets having i approx. 33 deg, and an isotropic cloud of dust from Oort Cloud comets. The best-fitting scenario indicates that asteroids + JFCs are the source of about 45% of the optical dust cross section seen in the ecliptic at 1 AU but that at least 89% of the dust cross section enclosed by a 1-AU-radius sphere is of a cometary origin. Each population's radial density variations can also deviate somewhat from the nominal sigma(r) is a member of r(sup -1.45). When these results are extrapolated out to the asteroid belt, we find an upper limit on the mass of the light-reflecting asteroidal dust that is equivalent to a 12-km asteroid, and a similar extrapolation of the isotropic dust cloud out to Oort Cloud distances yields a mass equivalent to a 30-km comet, although the latter mass is uncertain by orders of magnitude.
Dynamical Model for the Zodiacal Cloud and Sporadic Meteors
NASA Technical Reports Server (NTRS)
Nesvorny, David; Janches, Diego; Vokrouhlicky, David; Pokorny, Petr; Bottke, William F.; Jenniskens, Peter
2011-01-01
The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving to the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer (approx. > 10(exp 5) yr at 1 AU) than postulated in the standard collisional models (approx 10(exp 4) yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite (IRAS) to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) 10(exp 11) sq km and approx. 4 10(exp 19) g, respectively, in a good agreement with previous studies. The mass input required to keep the Zodiacal Cloud (ZC) in a steady state is estimated to be approx. 10(exp 4)-10(exp 5) kg/s. The input is up to approx 10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes, and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 micron and 1 cm is found to be approx 15,000 tons/yr (factor of 2 uncertainty), which is a large share of the accretion flux measured by the Long Term Duration Facility (LDEF). Majority of JFC particles plunge into the upper atmosphere at <15 km/s speeds, should survive the atmospheric entry, and can produce micrometeorite falls. This could explain the compositional similarity of samples collected in the Antarctic ice and stratosphere, and those brought from comet Wild 2 by the Stardust spacecraft. Meteor radars such as CMOR and AMOR see only a fraction of the accretion flux (approx 1- 10% and approx 10-50%, respectively), because small particles impacting at low speeds produce ionization levels that are below these radars detection capabilities.
DYNAMICAL MODEL FOR THE ZODIACAL CLOUD AND SPORADIC METEORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr
2011-12-20
The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving atmore » the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer ({approx}> 10{sup 5} yr at 1 AU) than postulated in the standard collisional models ({approx}10{sup 4} yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) Multiplication-Sign 10{sup 11} km{sup 2} and {approx}4 Multiplication-Sign 10{sup 19} g, respectively, in a good agreement with previous studies. The mass input required to keep the zodiacal cloud in a steady state is estimated to be {approx}10{sup 4}-10{sup 5} kg s{sup -1}. The input is up to {approx}10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 {mu}m and 1 cm is found to be {approx}15,000 tons yr{sup -1} (factor of two uncertainty), which is a large share of the accretion flux measured by the Long Term Duration Facility. The majority of JFC particles plunge into the upper atmosphere at <15 km s{sup -1} speeds, should survive the atmospheric entry, and can produce micrometeorite falls. This could explain the compositional similarity of samples collected in the Antarctic ice and stratosphere, and those brought from comet Wild 2 by the Stardust spacecraft. Meteor radars such as CMOR and AMOR see only a fraction of the accretion flux ({approx}1%-10% and {approx}10%-50%, respectively), because small particles impacting at low speeds produce ionization levels that are below these radars' detection capabilities.« less
The COMET Sleep Research Platform.
Nichols, Deborah A; DeSalvo, Steven; Miller, Richard A; Jónsson, Darrell; Griffin, Kara S; Hyde, Pamela R; Walsh, James K; Kushida, Clete A
2014-01-01
The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments-positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment.
The COMET Sleep Research Platform
Nichols, Deborah A.; DeSalvo, Steven; Miller, Richard A.; Jónsson, Darrell; Griffin, Kara S.; Hyde, Pamela R.; Walsh, James K.; Kushida, Clete A.
2014-01-01
Introduction: The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Background: Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments—positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. Discussion: The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. Conclusion: COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment. PMID:25848590
NASA Technical Reports Server (NTRS)
Wooden, D. H.; Woodward, C. E.; Harker, D. E.
2002-01-01
We report on observations and analysis of HIFOGS 10 microns spectrophotometry of short period comet 19P/Borrelly on 2003 October 13, 15 UT at the NASA IRTF. 19P/Borrelly is one of two short period comets, comet 4PIFaye being the other, to have a silicate feature detected. During Borrelly s perihelion passage in 1994 December, a silicate feature was present with a flux-to-continuum ratio of 0.25. Two apparitions later in 2003 October, the silicate feature is absent. Thermal emission modeling using amorphous olivine and amorphous carbon shows that a slight increase in grain size accounts for the disappearance of the silicate feature. Analysis of 19P/Borrelly suggests grain size, and not the absence of olivine minerals, may be responsible for the absence of silicate features in most short period comets. 19P/Borrelly is one of the more active short period comets. However, short period comets as a family are less active than long period comets. Short period comets probably originated in the Kuiper Belt and suffered collisions while in residence in the outer solar system. Upon evolution into orbits that take them through the inner solar system, the surfaces of short period comets are exposed to sunlight through their many perihelion passages. This is in contrast to long period comets which probably originated near Jupiter and were expelled to the Oort cloud where they have existed and been exposed to cosmic ray processing. By studying the grain properties in short period comets and comparing to long period comets, we compare the effects on the grain populations of different parent body evolution histories. Upcoming opportunities to study short and long period comets will be advertised.
Comet 'Bites the Dust' Around Dead Star
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Infrared Spectrometer Graph This artist's concept illustrates a comet being torn to shreds around a dead star, or white dwarf, called G29-38. NASA's Spitzer Space Telescope observed a cloud of dust around this white dwarf that may have been generated from this type of comet disruption. The findings suggest that a host of other comet survivors may still orbit in this long-dead solar system. The white dwarf G29-38 began life as a star that was about three times as massive as our sun. Its death involved the same steps that the sun will ultimately undergo billions of years from now. According to theory, the G29-38 star became brighter and brighter as it aged, until it bloated up into a dying star called a red giant. This red giant was large enough to engulf and evaporate any terrestrial planets like Earth that happened to be in its way. Later, the red giant shed its outer atmosphere, leaving behind a shrunken skeleton of star, called a white dwarf. If the star did host a planetary system, outer planets akin to Jupiter and Neptune and a remote ring of icy comets would remain. The Spitzer observations provide observational evidence for this orbiting outpost of comet survivors. Astronomers speculate that one such comet was knocked into the inner regions of G29-38, possibly by an outer planet. As the comet approached very close to the white dwarf, it may have been torn apart by the star's tidal forces. Eventually, all that would be left of the comet is a disk of dust. This illustration shows a comet in the process of being pulverized: part of it still exists as a chain of small clumps, while the rest has already spread out into a dusty disk. Comet Shoemaker-Levy 9 broke apart in a similar fashion when it plunged into Jupiter in 1994. Evidence for Comets Found in Dead Star's Dust The graph of data, or spectrum, from NASA's Spitzer Space Telescope indicates that a dead star, or white dwarf, called G29-38, is shrouded by a cloud of dust. The data also demonstrate that this dust contains some of the same types of minerals found in comet Hale-Bopp. The findings tell a possible tale of solar system survival. Though the dust seen by Spitzer is likely from a comet that recently perished, its presence suggests that an icy distant ring of comets may still orbit the dead star. These data were collected by Spitzer's infrared spectrometer, an instrument that cracks light open like a geode, revealing its coveted components. In this spectrum, light from the white dwarf is on the left, at ultraviolet and visible wavelengths. The spectrum on the right, at infrared wavelengths longer than about 2 microns, shows much more light than can be explained by a white dwarf alone. The bump seen around a wavelength of 10 microns offers a clue to the source of this excess infrared light. It signifies the presence of silicate minerals, which are found in our own solar system on Earth, in sandy beaches, and in comets and asteroids. These silicate grains appear to be very small like those in comets, so astronomers favor the theory that a comet recently broke apart around the dead star.NASA Astrophysics Data System (ADS)
Tzou, C. Y.; Altwegg, K.; Fiethe, B.; Gasc, S.; Rubin, M.
2014-12-01
Rosetta is part of the cornerstone missions executed by the European Space Agency. It is the first space mission to orbit and also land on a comet. Starting in August 2014 Rosetta will be able to carry out a close study of comet 67P/Churyumov-Gerasimenko. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) is one of the core payloads on board of the Rosetta spacecraft [Balsiger et al, 2007]. ROSINA's main objective is to determine the major atmospheric and ionospheric composition in the coma and to investigate the gas dynamics around the comet. ROSINA consists of two mass spectrometers and a pressure sensor. The Comet Pressure Sensor (COPS) includes two gauges: the "nude gauge" measures total neutral density in the coma and the "ram gauge" measures the dynamic pressure of the cometary gas flux to obtain the bulk velocity of the neutral gas. The combination of these two gauges makes COPS capable to derive the gas dynamics at the location of the spacecraft. We performed laboratory gas dynamic measurements with the identical flight-spare instrument of COPS. Using the Calibration System for The Mass Spectrometer Instrument ROSINA (CASYMIR) we produce neutral gas beams to model cometary gas jets with velocities from thermal up to 2 km/s. We expect that COPS will be able to detect the faint and expanding atmosphere of comet 67P/Churyumov-Gerasimenko as early as August 2014 when the comet is still farther than 3 AU from the Sun. We will present the first ROSINA COPS observations of the gas dynamics around the comet together with the corresponding laboratory measurements required for the interpretation of these data. Reference: Balsiger, H. et al.: ROSINA-Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Space Science Reviews, Vol. 128, 745-801, 2007.
NASA Technical Reports Server (NTRS)
Niedner, M. B., Jr.; Brandt, J. C.
1980-01-01
Photographs show that the 'Swan Cloud' observed in comet Kohoutek on January 11, 1974 was an advanced stage of a plasma tail disconnection event, of which the rejected tail appeared to decelerate as it receded from the head. The event commenced with the development of strong tail ray activity followed by the actual tail disconnection, the merging of the disconnected tail with the new tail to form the Swan and the formation of arcade loops in the space between closing tail rays. The observed morphological sequence is easily understood in the sector boundary model (Niedner et al., 1978), and the arcade loops are proposed to be reconnected flux tubes between oppositely polarized tail rays in the incipient new tail which followed the disconnection
Mass extinctions and missing matter
NASA Technical Reports Server (NTRS)
Stothers, R. B.
1984-01-01
The possible influence of 'invisible matter' on the solar system's comet halo, and therefore on quasi-periodic cometary bombardment of the earth and consequent mass extinctions, is briefly addressed. Invisible matter consisting of small or cold interstellar molecular clouds could significantly modulate the comet background flux, while invisible matter consisting of a large population of old, dead stars with a relatively small galactic concentration probably could not. It is also shown that the downward force exerted by the Galaxy will perturb the halo, but will not produce any periodicity.
NASA Astrophysics Data System (ADS)
Tzou, Chia-Yu; Altwegg, Kathrin; Fiethe, Björn; Gasc, Sébastien; Rubin, Martin
2015-04-01
Rosetta is part of the cornerstone missions executed by the European Space Agency. It is the first space mission to orbit and also land on a comet. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) is one of the core payloads on board of the Rosetta spacecraft [Balsiger et al, 2007]. ROSINA's main objective is to determine the major atmospheric and ionospheric composition in the coma and to investigate the gas dynamics around the comet. ROSINA consists of two mass spectrometers and a pressure sensor. The COmet Pressure Sensor (COPS) includes two gauges: the "nude gauge" measures total neutral density in the coma and the "ram gauge" measures the dynamic pressure of the cometary gas flux. The combination of these two gauges makes COPS capable to derive the gas dynamics (velocity and temperature) at the location of the spacecraft. Over several months Rosetta has been carrying out a close study of comet 67P/Churyumov-Gerasimenko. In early August 2014 COPS detected the faint and expanding atmosphere of the comet while it was still outside of 3.5 AU from the Sun. We will present ROSINA COPS observations of the evolution and gas dynamics of the cometary coma following these first observations until spring 2015. Reference: Balsiger, H. et al.: ROSINA-Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Space Science Reviews, Vol. 128, 745-801, 2007.
Tidal Effects on the Oort Cloud Comets and Dynamics of the Sun in the Spiral Arms of the Galaxy
NASA Astrophysics Data System (ADS)
De Biasi, Alice
2014-01-01
The Solar System presents a complex dynamical structure and is not isolated from the Galaxy. In particular the comet reservoir of our planetary system, the Oort cloud, is extremely sensitive to the the galactic environment due to its peripheral collocation inside the Solar System. In this framework, the growing evidences about a possible migration of the Sun open new research scenarios relative to the effects that such kind of migration might induce on the cometary motion. Following several previous studied, we identified the spiral arm structure as the main perturbation that is able to produce an efficient solar migration through the disk. Widening the classical model for the spiral arms, provided by Lin& Shu to a 3D formalism, we verified the compatibility between the presence of the spiral perturbation and a significant solar motion for an inner Galactic position to the current one, in agreement with the constrains in position, velocity and metallicity due to the present conditions of our star. The main perturbers of the Oort cloud, the close stellar passages and the tidal field of the Galaxy, might be both affected by the variation of Galactic environment that the solar migration entails. Despite that, in order to isolate the effects to the two different perturbators, we decided to focus our attention only on the Galactic tide. The perturbation due to the spiral structure was included in the study on the cometary motion, introducing the solar migration and adding the direct presence of the non-axisymmetric component in the Galactic potential of the tidal field. The results show a significant influence of the spiral arm in particular on cometary objects belonged to the outer shell of the Oort cloud, for which provides an injection rate three times bigger than the integration performed without the spiral arms. The introduction of the spiral perturbation seems to bolster the planar component of the tide, indeed it produces the most significant variation of the perihelion distance for moderate inclination orbits with respect to the plane. The peak for the cometary injections has been registered between 6 and 7 kpc. If this evidence will be confirmed by more realistic cometary sample, it might involve a redefinition of the habitability edges in the Galaxy (GHZ). In particular regions not precluded to the formation of life, may compromise the development of the life with a high cometary impact risk
The end states of long-period comets and the origin of Halley-type comets
NASA Astrophysics Data System (ADS)
Fernández, Julio A.; Gallardo, Tabaré; Young, Juan D.
2016-09-01
We analyse a sample of 73 old long-period comets (LPCs) (orbital periods 200 < P < 1000 yr) with perihelion distances q < 2.5 au, discovered in the period 1850-2014. We cloned the observed comets and also added fictitious LPCs with perihelia in the Jupiter's zone. We consider both a purely dynamical evolution and a physico-dynamical one with different physical lifetimes. We can fit the computed energy distribution of comets with q < 1.3 au to the observed one only within the energy range 0.01 < x < 0.04 au-1 (or periods 125 < P < 1000 yr), where the `energy' is taken as the inverse of the semimajor axis a, namely x ≡ 1/a. The best results are obtained for physical lifetimes of about 200-300 revolutions (for a comet with a standard q = 1 au). We find that neither a purely dynamical evolution, nor a physico-dynamical one can reproduce the long tail of larger binding energies (x ≳ 0.04 au-1) that correspond to most Halley-type comets (HTCs) and Jupiter-family comets. We conclude that most HTCs are not the end states of the evolution of LPCs, but come from a different source, a flattened one that we identify with the Centaurs that are scattered to the inner planetary region from the trans-Neptunian belt. These results also show that the boundary between LPCs and HTCs should be located at an energy x ˜ 0.04 au-1 (P ˜ 125 yr), rather than the conventional classical boundary at P = 200 yr.
MAVEN Ultraviolet Image of Comet Siding Spring’s Hydrogen Coma
2017-12-08
NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft obtained this ultraviolet image of hydrogen surrounding comet Siding Spring on Friday, Oct. 17, two days before the comet’s closest approach to Mars. The Imaging Ultraviolet Spectrograph (IUVS) instrument imaged the comet at a distance of 5.3 million miles (8.5 million kilometers). The image shows sunlight that has been scattered by atomic hydrogen, and is shown as blue in this false-color representation. Comets are surrounded by a huge cloud of atomic hydrogen because water (H2O) vaporizes from the icy nucleus, and solar ultraviolet light breaks it apart into hydrogen and oxygen. Hydrogen atoms scatter solar ultraviolet light, and it was this light that was imaged by the IUVS. Two observations were combined to create this image, after removing the foreground signal that results from sunlight being scattered from hydrogen surrounding Mars. The bulk of the scattered sunlight shows a cloud that was about a half degree across on the “sky” background, comparable in size to Earth’s moon as seen from Earth. Hydrogen was detected to as far as 93,000 miles (150,000 kilometers) away from the comet’s nucleus. The distance is comparable to the distance of the comet from Mars at its closest approach. Gas from the comet is likely to have hit Mars, and would have done so at a speed of 125,000 mph (56 kilometers/second. This gas may have disturbed the Mars atmosphere. Credit: Laboratory for Atmospheric and Space Physics, University of Colorado; NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs
NASA Astrophysics Data System (ADS)
Mann, Ingrid
2017-05-01
Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size. This article is part of the themed issue 'Cometary science after Rosetta'.
Laboratory Measurements of Solar-Wind/Comet X-Ray Emission and Charge Exchange Cross Sections
NASA Technical Reports Server (NTRS)
Chutjian, A.; Cadez, I.; Greenwood, J. B.; Mawhorter, R. J.; Smith, S. J.; Lozano, J.
2002-01-01
The detection of X-rays from comets such as Hyakutake, Hale-Bopp, d Arrest, and Linear as they approach the Sun has been unexpected and exciting. This phenomenon, moreover, should be quite general, occurring wherever a fast solar or stellar wind interacts with neutrals in a comet, a planetary atmosphere, or a circumstellar cloud. The process is, O(+8) + H2O --> O(+7*) + H2O(+), where the excited O(+7*) ions are the source of the X-ray emissions. Detailed modeling has been carried out of X-ray emissions in charge-transfer collisions of heavy solar-wind Highly Charged Ions (HCIs) and interstellar/interplanetary neutral clouds. In the interplanetary medium the solar wind ions, including protons, can charge exchange with interstellar H and He. This can give rise to a soft X-ray background that could be correlated with the long-term enhancements seen in the low-energy X-ray spectrum of ROSAT. Approximately 40% of the soft X-ray background detected by Exosat, ROSAT, Chandra, etc. is due to Charge Exchange (CXE): our whole heliosphere is glowing in the soft X-ray due to CXE.
Studies of extra-solar Oort Clouds and the Kuiper disk
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1992-01-01
In 1991 we detected extended 1.1 mm emission around Fomalhaut (alpha PsA) at distances in order of magnitude beyond previous detections. This emission is plausibly related to the presence of an extended comet cloud, like our Oort Cloud, and may therefore represent indirect evidence for the formation of a planetary system at Fomalhaut. We propose now to extend this work to create a map of the angular and spatial extent of this emission. Fomalhaut is the only known main-sequence, submm-resolved IR excess source besides beta Pic.
The Impact of a Large Object with Jupiter in July 2009
NASA Astrophysics Data System (ADS)
Sanchez-Lavega, Agustin; Wesley, A.; Orton, G.; Chodas, P.; Hueso, R.; Perez-Hoyos, S.; Fletcher, L.; Yanamandra-Fisher, P.; Legarreta, J.; Gomez-Forrellad, J. M.
2010-05-01
The only major impact ever observed directly in the Solar System was that of a large fragmented comet with Jupiter in July (1994) (Comet Shoemaker-Levy 9; SL9). We report here the observation of a second, single, large impact on Jupiter that occurred on 19 July 2009 at a latitude of -55° with an orthogonal entry trajectory and a lower incidence angle compared to those of SL9. The size of the initial aerosol cloud debris was 4,800 km East-West and 2,500 km North-South. Comparison its properties with those produced by the SL9 fragments, coupled with dynamical calculations of possible pre-impact orbits, indicates that the impactor was most probably an icy body with a size of 0.5-1 km. We calculate that the rate of collisions of this magnitude may be five to ten times more frequent than previously thought. The search for unpredicted impacts, such as the current one, could be best performed in the near-infrared methane absorption bands at 890 nm and in the 2.12 to 2.3 μm K methane-hydrogen absorption band, where the high-altitude aerosols detach by their brightness relative to Jupiter's primary clouds. We present measurements of the debris dispersion by Jovian winds from a long-term imaging campaign with ground-based telescopes. Ackowledgements: Work was supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07, by NASA funds to JPL, Caltech, by the NASA Postdoctoral Program at JPL, and by the Glasstone Fellowship program at Oxford.
NASA Astrophysics Data System (ADS)
DiSanti, Michael A.; Dello Russo, Neil; Bonev, Boncho P.; Gibb, Erika L.; Roth, Nathan; Vervack, Ronald J.; McKay, Adam J.; Kawakita, Hideyo; Cochran, Anita L.
2017-10-01
The period from late 2016 to mid 2017 provided unusually rich observational opportunities for compositional studies of comets using ground-based IR and optical spectroscopy. Three ecliptic comets - Jupiter-family comet (JFC) 45P/Honda-Mrkos-Pajdusakova, JFC 41P/Tuttle-Giacobini-Kresak, and 2P/Encke - as well as two moderately bright nearly istotropic comets from the Oort cloud (C/2015 ER61 PanSTARRS and C/2015 V2 Johnson) experienced highly favorable appritions.In the IR, very long on-source integration times were accumulated on all targets, primarily with the powerful new high-resolution, cross-dispersed iSHELL spectrograph at the IRTF (Rayner et al. 2016 SPIE 9908:1) but also with NIRSPEC at Keck II. This enabled accurate production rates and abundance ratios for 8-10 native ices, and spatially resolved studies of coma physics (H2O rotational temperatures and column abundances). The recent availability of iSHELL coupled with the daytime observing capability at the IRTF has opened a powerful window for conducting detailed compositional studies of comets over a range of heliocentric distances (Rh), particularly at small Rh where studies are relatively sparse. Our campaign provided detections of (or stringent abundance limits for) hyper-volatiles CO and CH4, which are severely lacking in compositional studies of JFCs.For all of these targets, optical spectra measured photo-dissociation product species using the Tull Coude spectrograph at McDonald Observatory, and ARCES at Apache Point Observatory. When possible optical and IR observations were obtained contemporaneously, with the goal of addressing potential parent-product relationships.We summarize our campaign and highlight related presentations. Prospects for investigations during the upcoming favorable apparitions of JFCs 21P/Giacobini-Zinner and 46P/Wirtanen will also be discussed, along with increased capabilities for serial studies (i.e., measurements at multiple Rh) of newly discovered (Oort cloud) comets.This work is supported through the NASA Planetary Atmospheres, Planetary Astronomy, and Astrobiology Programs, the NSF Solar and Planetary Research Program, the NASA-Postdoctoral Program, and the NASA Earth and Space Science Fellowship Program.
To Boldly Go: America's Next Era in Space. Probing the Primordial Constituents of Our Solar System
NASA Technical Reports Server (NTRS)
1995-01-01
Dr. France Cordova, NASA's Chief Scientist, chaired this, another seminar in the Administrator's Seminar Series. She introduced NASA Administrator, Daniel S. Goldin, who greeted the attendees, and noted that, from the day people first looked into the sky, they've wondered what was up there, who or what created it, is Earth unique, what shaped the solar system, what is the Kuiper Belt and why is it there, and what are the solar system's building blocks. NASA's missions may discover some of the answers. Dr. Cordova then introduced Dr. Anita Cochran, research scientist at the University of Texas. Dr. Cochran has been searching for some of this information. She is especially interested in finding out when various planets and asteroids were discovered, what their orbits are, when the solar system was formed, and more about the comets in the Kuiper Belt. Are they icy planetisimals that helped form our solar system? Dr. Toby Owen of the University of Hawaii faculty spoke next. He believes that life on Earth exists because comets brought water and a variety of light elements to Earth from the outer parts of the solar system. Without them, we couldn't exist. He noted that noble gases don't mix with other gases. Gases come to Earth via rocks and by bombardment. Ice can trap argon and carbon, but not neon. Dr. Owens concluded with comments that we need 'better numbers for the Martian atmosphere', and it would be good to get samples of material from a comet. The third speaker was Dr. Eugene Shoemaker of the Lowell Observatory and the U.S. Geological Survey. He is credited with discovering more than 800 asteroids and learning about the Oort Cloud, which is believed to be a cloud of rocks and dust that may surround our solar system and be where comets originate. Comet storms reoccur about every 30 million years. Dr. Shoemaker suggested that since we are presently in a period of comet showers, it would be good to get a comet sample. It might provide insight regarding the origin of life. Additional information is included in the original extended abstract.
Visible and Near-IR Imaging of Giant Planets: Outer Manifestations of Deeper Secrets
NASA Astrophysics Data System (ADS)
Hammel, Heidi B.
1996-09-01
Visible and near-infrared imaging of the giant planets -- Jupiter, Saturn, Uranus, and Neptune -- probes the outermost layers of clouds in these gaseous atmospheres. Not only are the images beautiful and striking in their color and diversity of detail, they also provide quantitative clues to the dynamical and chemical processes taking place both at the cloud tops and deeper in the interior: zonal wind profiles can be extracted; wavelength-dependent center-to-limb brightness variations yield valuable data for modeling vertical aerosol structure; the presence of planetary-scale atmospheric waves can sometimes be deduced; variations of cloud color and brightness with latitude provide insight into the underlying mechanisms driving circulation; development and evolution of discrete atmospheric features trace both exogenic and endogenic events. During the 1980's, our understanding of the giant planets was revolutionized by detailed visible-wavelength images taken by the Voyager spacecraft of these planets' atmospheres. However, those images were static: brief snapshots in time of four complex and dynamic atmospheric systems. In short, those images no longer represent the current appearance of these planets. Recently, our knowledge of the atmospheres of the gas giant planets has undergone major new advances, due in part to the excellent imaging capability and longer-term temporal sampling of the Hubble Space Telescope (HST) and the Galileo Mission to Jupiter. In this talk, I provide an update on our current understanding of the gas giants based on recent visible and near-infrared imaging, highlighting results from the collision of Comet Shoemaker-Levy 9 with Jupiter, Saturn's White Spots, intriguing changes in the atmosphere of Uranus, and Neptune's peripatetic clouds.
2010-11-18
This image from the High-Resolution Instrument on NASA EPOXI mission spacecraft shows part of the nucleus of comet Hartley 2. The sun is illuminating the nucleus from the right. A distinct cloud of individual particles is visible.
A dynamical study on extrasolar comets
NASA Astrophysics Data System (ADS)
Loibnegger, B.; Dvorak, R.
2017-09-01
Since the detection of absorption features in spectra of beta Pictoris varying on short time scales it is known that comets exist in other stellar systems. We investigate the dynamics of comets in two differently build systems (HD 10180 and HIP 14810). The outcomes of the scattering process, as there are collisions with the planets, captures and ejections from the systems are analysed statistically. Collisions and close encounters with the planets are investigated in more detail in order to conclude about transport of water and organic material. We will also investigate the possibility of detection of comets in other planetary systems.
Herschel/SPIRE observations of water production rates and ortho-to-para ratios in comets★
NASA Astrophysics Data System (ADS)
Wilson, Thomas G.; Rawlings, Jonathan M. C.; Swinyard, Bruce M.
2017-04-01
This paper presents Herschel/SPIRE (Spectral and Photometric Imaging Receiver) spectroscopic observations of several fundamental rotational ortho- and para-water transitions seen in three Jupiter-family comets and one Oort-cloud comet. Radiative transfer models that include excitation by collisions with neutrals and electrons, and by solar infrared radiation, were used to produce synthetic emission line profiles originating in the cometary coma. Ortho-to-para ratios (OPRs) were determined and used to derived water production rates for all comets. Comparisons are made with the water production rates derived using an OPR of 3. The OPR of three of the comets in this study is much lower than the statistical equilibrium value of 3; however they agree with observations of comets 1P/Halley and C/2001 A2 (LINEAR), and the protoplanetary disc TW Hydrae. These results provide evidence suggesting that OPR variation is caused by post-sublimation gas-phase nuclear-spin conversion processes. The water production rates of all comets agree with previous work and, in general, decrease with increasing nucleocentric offset. This could be due to a temperature profile, additional water source or OPR variation in the comae, or model inaccuracies.
HUBBLE SEES MINI-COMET FRAGMENTS FROM COMET LINEAR
NASA Technical Reports Server (NTRS)
2002-01-01
[lower right] In one stunning Hubble picture the fate of the mysteriously vanished solid nucleus of Comet LINEAR has been settled. The Hubble picture shows that the comet nucleus has been reduced to a shower of glowing 'mini-comets' resembling the fiery fragments from an exploding aerial firework. This is the first time astronomers have ever gotten a close-up look at what may be the smallest building blocks of cometary nuclei, the icy solid pieces called 'cometesimals', which are thought to be less than 100 feet across. The farthest fragment to the left, which is now very faint, may be the remains of the parent nucleus that fragmented into the cluster of smaller pieces to the right. The comet broke apart around July 26, when it made its closest approach to the Sun. The picture was taken with Hubble's Wide Field Planetary Camera 2 on August 5, 2000, when the comet was at a distance of 64 million miles (102 million kilometers) from Earth. Credit: NASA, Harold Weaver (the Johns Hopkins University), and the HST Comet LINEAR Investigation Team [upper left] A ground-based telescopic view (2.2-meter telescope) of Comet LINEAR taken on August 5, at nearly the same time as the Hubble observations. The comet appears as a diffuse elongated cloud of debris without any visible nucleus. Based on these images, some astronomers had concluded that the ices in the nucleus had completely vaporized, leaving behind a loose swarm of dust. Hubble's resolution was needed to pinpoint the remaining nuclei (inset box shows HST field of view as shown in lower right). Credit: University of Hawaii
Simulating the Solar Wind Interaction with Comet 67P/Churyumov-Gerasimenko: Latest Results
NASA Astrophysics Data System (ADS)
Deca, J.; Divin, A. V.; Henri, P.; Eriksson, A. I.; Markidis, S.; Olshevsky, V.; Goldstein, R.; Myllys, M. E.; Horanyi, M.
2017-12-01
First observed in 1969, comet 67P/Churyumov-Gerasimenko was escorted for almost two years along its 6.45-yr elliptical orbit by ESA's Rosetta orbiter spacecraft. When a comet is sufficiently close to the Sun, the sublimation of ice leads to an outgassing atmosphere and the formation of a coma, and a dust and plasma tail. Comets are critical to decipher the physics of gas release processes in space. The latter result in mass-loaded plasmas, which more than three decades after the Active Magnetospheric Particle Tracer Explorers (AMPTE) space release experiments are still not fully understood. Using a 3D fully kinetic approach, we study the solar wind interaction with comet 67P/Churyumov-Gerasimenko, focusing in particular on the ion-electron dynamics for various outgassing rates. A detailed kinetic treatment of the electron dynamics is critical to fully capture the complex physics of mass-loading plasmas and to describe the strongly inhomogeneous plasma dynamics observed by Rosetta, down to electron kinetic scales.
2010-10-26
This image from NASA EPOXI mission shows Hartley 2 moving across the background field of stars. The coma, or cloud of gas and dust around the comet, expands and brightens over this time period. Animation available at the Photojournal.
Searches for comet-induced solar flares
NASA Astrophysics Data System (ADS)
Ibadov, Subhon; Ibodov, Firuz
During the last decade we have carried out analytical consideration of the impacts of comets with the Sun: the study of passage of cometary nuclei through the solar chromosphere and photosphere was carried out taking into account aerodynamic crushing of the nucleus, transversal expansion of the crushed mass and aerodynamic deceleration of the flattening structure. The results indicate that the stopping of the hypervelocity, more than 600 km/s, comet matter near the photosphere has essentially "explosive" character and will be accompanied by generation of a strong "blast" shock wave as well as ejection of a hot plasma from a relatively very thin,"exploding", near-photosphere layer. Observational manifestations of these processes, comet-induced solar flares, CISF, will be anomalous line emission of metal atoms/ions like Fe, Si, etc. from chromosphere/corona regions and continuum emission of a high-temperature, around 10^6-10^7 K, plasma cloud near the solar surface. Space observations of the phenomena by solar telescopes, including future out-of-ecliptic ones, are of interest for the physics/prognosis of solar flares as well as physics of comets.
ISO's analysis of Comet Hale-Bopp
NASA Astrophysics Data System (ADS)
1997-03-01
The European Space Agency's Infrared Space Observatory ISO inspected Comet Hall-Bopp during the spring and autumn of 1996. The need to keep ISO's telescope extremely cold restricts the spacecraft's pointing in relation to the Sun and the Earth and it ruled out observations at other times. The analyses of the 1996 observations are not yet complete, but already they give new insight into the nature of comets. Comet Hale-Bopp is believed to be a large comet with a nucleus up to 40 kilometres wide. It was discovered in July 1995 by two American astronomers working independently, Alan Hale and Thomas Bopp. At that time, the comet was a billion kilometres away from the Sun, but 200 times brighter than Halley's Comet was, when at a comparable distance. Comet Hale-Bopp will make its closest approach to the Earth on 22 March, and its closest approach to the Sun (perihelion) on 1 April 1997. Some scientific results from ISO The discovery of Comet Hale-Bopp occurred before ISO's launch in November 1995. When first observed by ISO in March and April 1996, the comet was still 700 million kilometres from the Sun, and almost as far from the Earth and ISO. With its privileged view of infrared wavebands inaccessible from the Earth's surface, ISO's photometer ISOPHOT discovered that carbon dioxide was an important constituent of the comet's emissions of vapour.ISOPHOT measured the temperature of the dust cloud around Comet Hale-Bopp. In March 1996, when the comet was still more than 700 million kilometres from the Sun, the dust cloud was at minus 120 degrees C. When ISOPHOT made similar observations in October 1996, the comet was 420 million kilometres from the Sun, and the dust cloud had warmed to about minus 50 degrees C. Intensive observations of Comet Hale-Bopp were also made by ISO's Short-Wave Spectrometer SWS, the Long-Wave Spectrometer LWS, and the ISOPHOT spectrometer PHOT-S. Results are due for publication at the end of March. They will give details about the composition of the comet's dust and vapour, and also rates of escape of vapour, which will help in assessing the loss of material from Comet Hale-Bopp during this visit to the Sun's vicinity. "Watch out for some fascinating news," says Thijs de Graauw of Groningen University, who is in charge of the SWS instrument used in this study. "What excites me is the opportunity we shall have to compare dusty Comet Hale-Bopp, seen in the Solar System, with dusty objects far away among the stars which seem to be made of similar materials. Infrared astronomy has a special ability to unify cosmic chemistry at all scales from little dust grains in the Earth's vicinity to vast and distant galaxies." The dust itself interests the infrared astronomers, not least because their view of the Universe at large is spoiled to some extent by dust left behind by comets. Together with fine debris from asteroids, the comet dust makes a bright infrared band around the sky, which corresponds with the zodiacal light sometimes seen by eye, slanting above the horizon at twilight. ISO's predecessor, the US-Dutch-UK infrared astronomical satellite IRAS, found trails of comet dust much longer and more persistent than the familiar comet tails. ISO has seen a trail from Comet Kopff. By detecting dust grains that are typically much larger than those seen by visible light, ISO scientists hope to learn more about the dust's long-term behaviour in the Solar System. A series of images of Comet Hale-Bopp, obtained by the camera ISOCAM in October 1996, is the subject of continuing analysis. Leading this work in progress is Philippe Lamy of Marseille, France. "We hope to unveil the nucleus of the comet," Professor Lamy explains. "In principle, the Hubble Space Telescope can see finer details by visible light, but the contrast of the nucleus against the bright surrounding coma is superior at infrared wavelengths. This is because the thermal emission from the nucleus is very large and can be detected thanks to the high spatial resolution of ISO. We have a long time coverage of the comet, so we hope to determine the light-curve of the nucleus -- which, in turn, will reveal its gross shape and an estimate of its rotation period." A commanding role in comet research As comets are relics from the construction of the Solar System, and played a major role in the formation of the planets, they are a link between the Earth and the wider Universe of stars. The carbon compounds contained in comets probably contributed raw materials for the origin of life on the Earth, and according to one theory the Earth's oceans were made from comet ice. Growing knowledge of the composition and behaviour of comets is therefore crucial for a fuller understanding of our cosmic origins. ESA has a commanding role in space research on comets. Its Giotto spacecraft was the most daring of the international fleet of spacecraft that visited Halley's Comet in March 1986. Giotto obtained exceptional pictures and other data as it passed within 600 kilometres of the nucleus. Dust from the comet badly damaged the spacecraft, but in a navigational tour de force Giotto made an even closer approach to Comet Grigg-Skjellerup in July 1992. Now ESA is planning the Rosetta mission that will rendezvous with Comet Wirtanen and fly in company with it, making observations far more detailed than the fast flybys of Halley's Comet and Comet Grigg-Skjellerup could achieve. As for space astronomy, the International Ultraviolet Explorer, in which ESA was a partner, made unrivalled observations of Halley's Comet by ultraviolet light. ESA is also a partner in the Hubble Space Telescope, which saw the historic impacts of Comet Shoemaker-Levy 9 on Jupiter in July 1994, and has recently observed Comet Hyakutake as well as Hale-Bopp. The SOHO spacecraft, built by ESA for a joint ESA-NASA project to examine the Sun, has a distinctive view of comets. It has observed the hydrogen coronas of comets with its SWAN instrument. SOHO's coronagraph LASCO observed Comet Hyakutake rounding the Sun (when it was invisible to ground-based observers) and has discovered seven new comets very close to the Sun. Only ISO provides astronomers with information from comets across a very wide range of infrared wavelengths unobservable from the ground. Besides Comet Hale-Bopp, ISO has examined Comets Schwassmann-Wachmann 1, Chiron, Kopff, IRAS 1 and Wirtanen. The last of these, Comet Wirtanen, is the target of the Rosetta mission and is now making one of its six-yearly visits to the Sun's vicinity. Dietrich Lemke of Heidelberg, Germany, who is in charge of the ISOPHOT instrument in ISO, summarizes ISO's unique contribution. "By measuring the extremely weak heat rays from these frosty objects at different distances," Professor Lemke says, "we have a thermometer to gauge a comet's growing fever when it nears the Sun. As the temperature rises, first one kind of ice evaporates, and then another, producing various chemical signatures in the infrared spectrum. We can also characterize the mineral dust coming out of the comet. So ISO offers a vivid impression of comets in action which no other instrument can match." Photos are available on the ESA home page on Internet : http://www.estec.esa.nl/spdwww/iso/html/hale-bopp.htm
Chemical evolution of primitive solar system bodies
NASA Technical Reports Server (NTRS)
Oro, J.; Mills, T.
1989-01-01
Observations on organic molecules and compounds containing biogenic elements in the interstellar medium and in the primitive bodies of the solar system are reviewed. The discovery of phosphorus molecular species in dense interstellar clouds, the existence of organic ions in the dust and gas phase of the comas of Comet Halley, and the presence of presolar, deuterium-hydrogen ratios in the amino acids of carbonaceous chondrites are discussed. The relationships between comets, dark asteroids, and carbonaceous chondrites are examined. Also, consideration is given to the chemical evolution of Titan, the primitive earth, and early Mars.
NASA Astrophysics Data System (ADS)
Wooden, D. H.; Woodward, C. E.; Harker, D. E.
2003-05-01
We report on observations and analysis of HIFOGS 10 \\micron \\ spectrophotometry of short period comet 19P/Borrelly on 2003 October 13, 15 UT at the NASA IRTF. 19P/Borrelly is one of two short period comets, comet 4P/Faye being the other, to have a silicate feature detected (Hanner et al. 1996, Icarus, 124, 344). During Borrelly.s perihelion passage in 1994 December, a silicate feature was present with a flux-to-continuum ratio of 0.25. Two apparitions later in 2003 October, the silicate feature is absent. Thermal emission modeling (cf. Harker et al. 2002, ApJ, 580, 579) using amorphous olivine and amorphous carbon shows that a slight increase in grain size accounts for the disappearance of the silicate feature. Analysis of 19P/Borrelly suggests grain size, and not the absence of olivine minerals, may be responsible for the absence of silicate features in most short period comets. 19P/Borrelly is one of the more active short period comets. However, short period comets as a family are less active than long period comets. Short period comets probably originated in the Kuiper Belt and suffered collisions while in residence in the outer solar system. Upon evolution into orbits that take them through the inner solar system, the surfaces of short period comets are exposed to sunlight through their many perihelion passages. This is in contrast to long period comets which probably originated near Jupiter and were expelled to the Oort cloud where they have existed and been exposed to cosmic ray processing. By studying the grain properties in short period comets and comparing to long period comets, we compare the effects on the grain populations of different parent body evolution histories. Upcoming opportunities to study short and long period comets will be advertised. This research is supported in part by an NSF Grant to the University of Minnesota.
NASA Astrophysics Data System (ADS)
Volwerk, Martin; Goetz, Charlotte; Richter, Ingo; Delva, Magda; Ostaszewski, Katharina; Schwingenschuh, Konrad; Glassmeier, Karl-Heinz
2018-06-01
Context. The Rosetta Plasma Consortium (RPC) magnetometer (MAG) data during the tail excursion in March-April 2016 are used to investigate the magnetic structure of and activity in the tail region of the weakly outgassing comet 67P/Churyumov-Gerasimenko (67P). Aims: The goal of this study is to compare the large scale (near) tail structure with that of earlier missions to strong outgassing comets, and the small scale turbulent energy cascade (un)related to the singing comet phenomenon. Methods: The usual methods of space plasma physics are used to analyse the magnetometer data, such as minimum variance analysis, spectral analysis, and power law fitting. Also the cone angle and clock angle of the magnetic field are calculated to interpret the data. Results: It is found that comet 67P does not have a classical draped magnetic field and no bi-lobal tail structure at this late stage of the mission when the comet is already at 2.7 AU distance from the Sun. The main magnetic field direction seems to be more across the tail direction, which may implicate an asymmetric pick-up cloud. During periods of singing comet activity the propagation direction of the waves is at large angles with respect to the magnetic field and to the radial direction towards the comet. Turbulent cascade of magnetic energy from large to small scales is different in the presence of singing as without it.
Chasing Manxes: Long-Period Comets Without Tails
NASA Astrophysics Data System (ADS)
Stephens, Haynes; Meech, Karen Jean; Kleyna, Jan; Keane, Jacqueline; Hainaut, Olivier; Yang, Bin; Wainscoat, Richard J.; Micheli, Marco; Bhatt, Bhuwan; Sahu, Devendra
2017-10-01
A Manx is a minor body on a long-period comet orbit that is inactive or minimally active at small perihelion distances (where water would be expected to be strongly sublimating), resulting in the lack of a significant tail. These objects are being discovered at a rate of about a dozen per year from large all-sky surveys, and the Pan-STARRS1 telescope in Hawai'i is the most prolific at discovering these weakly active objects. Manxes are theorized to be planetesimals that formed in the inner solar system, perhaps some even in the Earth-forming region, that were subsequently ejected out into the Oort cloud due to the migration of Jupiter and Saturn as the Solar System evolved. We use spectral reflectivities obtained with the Gemini North 8m telescope and ESO's Very Large Telescope to determine the surface composition of these objects. The observed Manxes exhibit a wide variety of surface properties, from primitive materials (i.e. C-, P- or D-types) to anhydrous materials (i.e. S-types). The relative numbers of objects with surface materials that are consistent with relatively dry, rocky inner solar system material may be used to constrain dynamical solar system formation models which make different predictions about the amount and sources of material that gets ejected to the Oort cloud. To date, we have observed 27 Manxes from 2013-2017. Here, we present preliminary results from this survey of spectral reflectivities for various Manxes. In addition, for some of the objects, we have sufficient heliocentric photometry to model the activity in terms of water-ice sublimation and can obtain estimates of the amount of near-surface water in comparison to comets. This work is supported in part by an NSF award AST-1617015, and is based in part on observations obtained at the Gemini Observatory acquired through the Gemini Observatory Archive (GN2015A-FT18, GN2016A-Q15, GN2016A-FT22, GN2016B-Q19, GN-2016B-FT-24, GN-2017A-Q-14) and the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 098.C-0303 and 099.C-0787.
NASA Astrophysics Data System (ADS)
Dello Russo, Neil; DiSanti, Michael A.; Kawakita, Hideyo; Shinnaka, Yoshiharu; Vervack, Ronald J.; Bonev, Boncho P.; Gibb, Erika L.; Roth, Nathan; McKay, Adam J.; Weaver, Harold A.; Cochran, Anita L.
2017-10-01
Two major shortcomings in chemically classifying comets at infrared wavelengths are a lack of hypervolatile (CO and CH4) detections in Jupiter-family comets and incomplete temporal coverage of comet chemistry, particularly at small heliocentric distances (Rh). We report post-perihelion volatile abundances in comet 45P/Honda-Mrkos-Pajdusakova with the high-resolution infrared spectrometer iSHELL at the NASA/IRTF on UT 6 - 8 January when Rh = 0.55 AU (DiSanti et al. 2017, Astron. J., in press), and with NIRSPEC at the Keck Observatory on UT 13 and 19 February when Rh = 1.0 and 1.1 AU, respectively. Favorable comet geocentric velocities enabled the detection of CO and CH4 in early January and 19 February. The relative abundance of CO is severely depleted whereas CH4 is typical to enriched in 45P when compared to comets from the Oort cloud. Significant differences are seen in relative abundances of species between January and February, notably in the ratio of C2H2/HCN. We explore whether the heliocentric distances of the measurements or seasonal changes primarily cause these differences by comparing to observations of C/2012 S1 ISON obtained over a similar range of heliocentric distances. NASA and NSF research grants support this work. We also acknowledge the expert support of the IRTF and Keck support staffs during these observations.
Substellar fragmentation in self-gravitating fluids with a major phase transition
NASA Astrophysics Data System (ADS)
Füglistaler, A.; Pfenniger, D.
2015-06-01
Context. The observation of various ices in cold molecular clouds, the existence of ubiquitous substellar, cold H2 globules in planetary nebulae and supernova remnants, or the mere existence of comets suggest that the physics of very cold interstellar gas might be much richer than usually envisioned. At the extreme of low temperatures (≲10 K), H2 itself is subject to a phase transition crossing the entire cosmic gas density scale. Aims: This well-known, laboratory-based fact motivates us to study the ideal case of a cold neutral gaseous medium in interstellar conditions for which the bulk of the mass, instead of trace elements, is subject to a gas-liquid or gas-solid phase transition. Methods: On the one hand, the equilibrium of general non-ideal fluids is studied using the virial theorem and linear stability analysis. On the other hand, the non-linear dynamics is studied using computer simulations to characterize the expected formation of solid bodies analogous to comets. The simulations are run with a state-of-the-art molecular dynamics code (LAMMPS) using the Lennard-Jones inter-molecular potential. The long-range gravitational forces can be taken into account together with short-range molecular forces with finite limited computational resources, using super-molecules, provided the right scaling is followed. Results: The concept of super-molecule, where the phase transition conditions are preserved by the proper choice of the particle parameters, is tested with computer simulations, allowing us to correctly satisfy the Jeans instability criterion for one-phase fluids. The simulations show that fluids presenting a phase transition are gravitationally unstable as well, independent of the strength of the gravitational potential, producing two distinct kinds of substellar bodies, those dominated by gravity (planetoids) and those dominated by molecular attractive force (comets). Conclusions: Observations, formal analysis, and computer simulations suggest the possibility of the formation of substellar H2 clumps in cold molecular clouds due to the combination of phase transition and gravity. Fluids presenting a phase transition are gravitationally unstable, independent of the strength of the gravitational potential. Arbitrarily small H2 clumps may form even at relatively high temperatures up to 400-600 K, according to virial analysis. The combination of phase transition and gravity may be relevant for a wider range of astrophysical situations, such as proto-planetary disks. Figures 33-44 are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Królikowska, Małgorzata; Dybczyński, Piotr A.
2013-10-01
Dynamics of a complete sample of small perihelion distance near-parabolic comets discovered in the years 2006-2010 are studied (i.e. of 22 comets of qosc < 3.1 au). First, osculating orbits are obtained after a very careful positional data inspection and processing, including where appropriate, the method of data partitioning for determination of pre- and post-perihelion orbit for tracking then its dynamical evolution. The non-gravitational acceleration in the motion is detected for 50 per cent of investigated comets, in a few cases for the first time. Different sets of non-gravitational parameters are determined from pre- and post-perihelion data for some of them. The influence of the positional data structure on the possibility of the detection of non-gravitational effects and the overall precision of orbit determination is widely discussed. Secondly, both original and future orbits were derived by means of numerical integration of swarms of virtual comets obtained using a Monte Carlo cloning method. This method allows us to follow the uncertainties of orbital elements at each step of dynamical evolution. The complete statistics of original and future orbits that includes significantly different uncertainties of 1/a-values is presented, also in the light of our results obtained earlier. Basing on 108 comets examined by us so far, we conclude that only one of them, C/2007 W1 Boattini, seems to be a serious candidate for an interstellar comet. We also found that 53 per cent of 108 near-parabolic comets escaping in the future from the Solar system, and the number of comets leaving the Solar system as so called Oort spike comets (i.e. comets suffering very small planetary perturbations) is 14 per cent. A new method for cometary orbit quality assessment is also proposed by means of modifying the original method, introduced by Marsden, Sekanina & Everhart. This new method leads to a better diversification of orbit quality classes for contemporary comets.
Synthesis of Molecular Oxygen via Irradiation of Ice Grains in the Protosolar Nebula
NASA Astrophysics Data System (ADS)
Mousis, O.; Ronnet, T.; Lunine, J. I.; Maggiolo, R.; Wurz, P.; Danger, G.; Bouquet, A.
2018-05-01
Molecular oxygen has been detected in the coma of comet 67P/Churyumov–Gerasimenko with a mean abundance of 3.80 ± 0.85% by the ROSINA mass spectrometer on board the Rosetta spacecraft. To account for the presence of this species in comet 67P/Churyumov–Gerasimenko, it has been shown that the radiolysis of ice grain precursors of comets is a viable mechanism in low-density environments, such as molecular clouds. Here, we investigate the alternative possibility that the icy grains present in the midplane of the protosolar nebula were irradiated during their vertical transport between the midplane and the upper layers over a large number of cycles, as a result of turbulent mixing. Consequently, these grains spent a non-negligible fraction of their lifetime in the disk’s upper regions, where the irradiation by cosmic rays was strong. To do so, we used a coupled disk-transport-irradiation model to calculate the time evolution of the molecular oxygen abundance radiolytically produced in ice grains. Our computations show that, even if a significant fraction of the icy particles has followed a back and forth cycle toward the upper layers of the disk over tens of millions of years, a timespan far exceeding the formation timescale of comet 67P/Churyumov–Gerasimenko, the amount of produced molecular oxygen is at least two orders of magnitude lower than the Rosetta observations. We conclude that the most likely scenario remains the formation of molecular oxygen in low-density environments, such as the presolar cloud, prior to the genesis of the protosolar nebula.
The study of the physics of cometary nuclei
NASA Technical Reports Server (NTRS)
Whipple, F. L.
1985-01-01
The development and utilization of an optimized computer program to analyze orbital stabilization by repeated calculations is presented. The stability of comets in the Opik-Oort Cloud about the Sun against perturbations by the Galactic center involve the same basic type of calculation. The supposed persistence of these bodies in orbits over the life of the solar system, depends upon the stability of bodies of negligible mass in orbits around a body whose mass is small compared to the central mass about which they revolve. The question remains of preferential orientation of extremely eccentric comet orbits, possibly to explain the asymmetry observed among new comet motions. A third application of the computing programs is suited to meteoroids that may exist in orbits about asteroids and that may endanger science spacecraft making flybys too near to asteroids. As in the double-comet case, solar activity and solar gravitational perturbations limit the attendance to an asteroid by small meteroids in their orbits. It is found that the mass distances planned for asteroid fly-bys are adequate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hines, Dean C.; Mutchler, Max; Hammer, Derek
2014-01-10
We present polarization images of Comet ISON (C/2012 S1) taken with the Hubble Space Telescope (HST) on UTC 2013 May 8 (r {sub h} = 3.81 AU, Δ = 4.34 AU), when the phase angle was α ≈ 12.°16. This phase angle is approximately centered in the negative polarization branch for cometary dust. The region beyond 1000 km (∼0.32 arcsec ≈ 6 pixels) from the nucleus shows a negative polarization amplitude of p% ∼ –1.6%. Within 1000 km of the nucleus, the polarization position angle rotates to be approximately perpendicular to the scattering plane, with an amplitude p% ∼ +2.5%. Such positive polarization has been observedmore » previously as a characteristic feature of cometary jets, and we show that Comet ISON does indeed harbor a jet-like feature. These HST observations of Comet ISON represent the first visible light, imaging polarimetry with subarcsecond spatial resolution of a Nearly Isotropic Comet beyond 3.8 AU from the Sun at a small phase angle. The observations provide an early glimpse of the properties of the cometary dust preserved in this Oort-Cloud comet.« less
Mysterious eclipses in the light curve of KIC8462852: a possible explanation
NASA Astrophysics Data System (ADS)
Neslušan, L.; Budaj, J.
2017-04-01
Context. Apart from thousands of "regular" exoplanet candidates, Kepler satellite has discovered a small number of stars exhibiting peculiar eclipse-like events. They are most probably caused by disintegrating bodies transiting in front of the star. However, the nature of the bodies and obscuration events, such as those observed in KIC 8462852, remain mysterious. A swarm of comets or artificial alien mega-structures have been proposed as an explanation for the latter object. Aims: We explore the possibility that such eclipses are caused by the dust clouds associated with massive parent bodies orbiting the host star. Methods: We assumed a massive object and a simple model of the dust cloud surrounding the object. Then, we used the numerical integration to simulate the evolution of the cloud, its parent body, and resulting light-curves as they orbit and transit the star. Results: We found that it is possible to reproduce the basic features in the light-curve of KIC 8462852 with only four objects enshrouded in dust clouds. The fact that they are all on similar orbits and that such models require only a handful of free parameters provides additional support for this hypothesis. Conclusions: This model provides an alternative to the comet scenario. With such physical models at hand, at present, there is no need to invoke alien mega-structures for an explanation of these light-curves.
Discovery of Main-Belt Comet P/2006 VW139 by Pan-STARRS1
NASA Astrophysics Data System (ADS)
Hsieh, H. H.; Yang, B.; Haghighipour, N.; Kaluna, H. M.; Fitzsimmons, A.; Denneau, L.; Novakovic, B.; Jedicke, R.; Wainscoat, R. J.; Armstrong, J. D.; Duddy, S. R.; Lowry, S. C.; Trujillo, C. A.; Micheli, M.; Keane, J. V.; Urban, L.; Riesen, T.; Meech, K. J.; Abe, S.; Cheng, Y. C.; Chen, W. P.; Granvik, M.; Grav, T.; Ip, W. H.; Kinoshita, D.; Kleyna, J.; Lacerda, P.; Lister, T.; Milani, A.; Tholen, D. J.; Veres, P.; Lisse, C. M.; Kelley, M. S.; Fernandez, Y. R.; Bhatt, B. C.; Sahu, D. K.; Kaiser, N.; Chambers, K. C.; Hodapp, K. W.; Magnier, E. A.; Price, P. A.; Tonry, J. L.
2012-05-01
We describe the discovery of comet-like activity in main-belt asteroid (300163) 2006 VW139 (later re-designated as Comet P/2006 VW139) by Pan-STARRS1. We also detail follow-up photometric, spectroscopic, and dynamical analyses of the object.
Public Engagement for the U.S. Rosetta Project using Interactive Multimedia
NASA Astrophysics Data System (ADS)
Smith, H.; Graham, S.; Alexander, C. J.
2009-12-01
The U.S. Rosetta Project is NASA contribution to the International Rosetta Mission. The mission is a long-duration mission to explore a comet and escort the nucleus from deep space around the Sun and for a portion of its outbound trajectory. The Rosetta stone, the symbol of the mission, is the inspiration for the mission’s name. As stated on by the European Space Agency, Rosetta is expected to provide the keys to the primordial solar system the way the original Rosetta Stone provided a key to ancient language. Four interactives serve as key components of the website portion of the project's public engagement efforts. This first is a presentation of the mission timeline using an interactive that resembles an iTunes front page. The second is a presentation of the space between Earth (Jupiter) and the next star (Proxima Centauri), in which the comet home of the Kuiper Belt with several of the planet-sized object embedded there, the Heliosphere, the comet home of the Oort Cloud, and other interstellar clouds are presented. The third is a presentation of ancient languages (still under development) - space terminology translated into Native American languages as part of the project's outreach to the Native American community. In the fourth interactive we have taken the relatively sophisticated scientific comet environment model, one that was produced on a super computer, and worked the output into 'representations' of how a comet changes as it moves around the Sun, with definitions of the scientific regions that evolve. Still under development, this interactive is expected to be a key component of explaining to the public what the instruments expect to measure and encounter as the target changes in time. A fifth animated component is addressed to informal education with younger audience members in the form of cartoon characters and their adventures on a comet. In this talk we will showcase these pieces and discuss how these interactives are intended for teaching and learning in (mostly informal) education. Work at the Jet Propulsion Laboratory, California Institute of Technology, was supported by NASA. The Rosetta mission is a cooperative project of NASA and the European Space Agency.
C/2013 R1 (Lovejoy) at IR wavelengths and the variability of CO abundances among Oort Cloud comets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paganini, L.; Mumma, M. J.; Villanueva, G. L.
2014-08-20
We report production rates, rotational temperatures, and related parameters for gases in C/2013 R1 (Lovejoy) using the Near InfraRed SPECtrometer at the Keck Observatory, on six UT dates spanning heliocentric distances (R{sub h} ) that decreased from 1.35 AU to 1.16 AU (pre-perihelion). We quantified nine gaseous species (H{sub 2}O, OH*, CO, CH{sub 4}, HCN, C{sub 2}H{sub 6}, CH{sub 3}OH, NH{sub 3}, and NH{sub 2}) and obtained upper limits for two others (C{sub 2}H{sub 2} and H{sub 2}CO). Compared with organics-normal comets, our results reveal highly enriched CO, (at most) slightly enriched CH{sub 3}OH, C{sub 2}H{sub 6}, and HCN, andmore » CH{sub 4} consistent with {sup n}ormal{sup ,} yet depleted, NH{sub 3}, C{sub 2}H{sub 2}, and H{sub 2}CO. Rotational temperatures increased from ∼50 K to ∼70 K with decreasing R{sub h} , following a power law in R{sub h} of –2.0 ± 0.2, while the water production rate increased from 1.0 to 3.9 × 10{sup 28} molecules s{sup –1}, following a power law in R{sub h} of –4.7 ± 0.9. The ortho-para ratio for H{sub 2}O was 3.01 ± 0.49, corresponding to spin temperatures (T {sub spin}) ≥ 29 K (at the 1σ level). The observed spatial profiles for these emissions showed complex structures, possibly tied to nucleus rotation, although the cadence of our observations limits any definitive conclusions. The retrieved CO abundance in Lovejoy is more than twice the median value for comets in our IR survey, suggesting this comet is enriched in CO. We discuss the enriched value for CO in comet C/2013 R1 in terms of the variability of CO among Oort Cloud comets.« less
Comet C2012 S1 (ISON)s Carbon-rich and Micron-size-dominated Coma Dust
NASA Technical Reports Server (NTRS)
Wooden, D.; De Buizer, J.; Kelley, M.; Sitko, M.; Woodward, C.; Harker, D.; Reach, W.; Russell, R.; Kim, D.; Yanamadra-Fisher, P.;
2014-01-01
Comet C/2012 S1 (ISON) was unique in that it was a dynamically new comet derived from the Nearly Isotropic Oort cloud reservoir of comets with a sun-grazing orbit. We present thermal models for comet ISON (rh approx.1.15 AU, 2013-Oct-25 11:30 UT) that reveal comet ISON's dust was carbon-rich and dominated by a narrow size distribution dominated by approx. micron-sized grains. We constrained the models by our SOFIA FORCAST photometry at 11.1, 19.7 and 31.5 microns and by a silicate feature strength of approx.1.1 and an 8-13microns continuum greybody color temperature of approx. 275-280 K (using Tbb ? r-0.5 h and Tbb approx. 260-265 K from Subaru COMICS, 2013-Oct-19 UT)[1,2]. N-band spectra of comet ISON with the BASS instrument on the NASA IRTF (2013-Nov-11-12 UT) show a silicate feature strength of approx. 1.1 and an 11.2microns forsterite peak.[3] Our thermal models yield constraints the dust composition as well as grain size distribution parameters: slope, peak grain size, porosity. Specifically, ISON's dust has a low silicate-to- amorphous carbon ratio (approx. 1:9), and the coma size distribution has a steep slope (N4.5) such that the coma is dominated by micron-sized, moderately porous, carbon-rich dust grains. The N-band continuum color temperature implies submicronto micron-size grains and the steep fall off of the SOFIA far-IR photometry requires the size distribution to have fewer relative numbers of larger and cooler grains compared to smaller and hotter grains. A proxy for the dust production rate is f? approx.1500 cm, akin to Af?. ISON has a moderate-to-low dust-to-gas ratio. Comet ISON's dust grain size distribution does not appear similar to the few well-studied long-period Nearly Isotropic Comets (NICs), namely C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) that had smaller and/or more highly porous grains and larger sizes, or C/2007 N4 (Lulin) and C/2006 P1 (McNaught) that had large and/or compact grains. Radial transport to comet-forming disk distances (= 20 AU) is easier for smaller grains (=1 micron) than for larger grains (approx. 20 microns like Stardust terminal particles). The presence of predominantly micron-sized and smaller grains suggests comet ISON may have formed either earlier in disk evolution whereby larger grains did not have the time to be transported to distances beyond Neptune, or the comet formed so far out in the disk that larger grains did not traverse such large radial distances. The high carbon-content of ISON's refractory dust appears to be complimented by the presence of limitedlifetime organic (CHON-like) grain materials: preliminary analyses of near-IR and high-resolution optical spectra indicate that gas-phase daughter molecules C2, CN, and CH were more abundant than their parent molecules (C2H2, C2H6, measured in the near- IR). Dust composition as well as grain size distribution parameters (slope, peak grain size, and porosity) give clues to comet origins.
The intermediate comets and nongravitational effects
NASA Technical Reports Server (NTRS)
Yeomans, D. K.
1986-01-01
The motions of the intermediate-period comets Pons-Brooks, Olbers, Brorsen-Metcalf, and Westphal are investigated over their observed intervals. The three apparitions of comets Pons-Brooks and Olbers were successfully linked, using the now standard nongravitational-force model. The two apparitions of Comet Brorsen-Metcalf were successfully linked without the need for nongravitational effects. For the 1852 and 1913 apparitions of Comet Westphal, complete success was not achieved in modeling the comet's motion either with or without nongravitational effects. However, by including these effects, the comet's astrometric observations could be represented significantly better than if they were assumed inoperative. Comet Westphal's dynamic and photometric behavior suggests its complete disintegration before reaching perihelion in 1913. If the very large radial nongravitational parameter determined for Comet Westphal is due to the comet's disintegration into dust, then the resultant dust-particle size is of the order of 0.8 mm.
The natural history of Halley's comet
NASA Astrophysics Data System (ADS)
McLaughlin, W. I.
1981-07-01
The 1986 apparition of Halley's comet will be the subject of numerous space probes, planned to determine the chemical nature and physical structure of comet nuclei, atmospheres, and ionospheres, as well as comet tails. The problems of cometary origin remain inconclusive, with theories ranging from a purely interstellar origin to their being ejecta from the Galilean satellites of Jupiter. Comets can be grouped into one of two classes, depending on their periodicity, and statistical mechanics of the entire Jovian family of comets can be examined under the equilibrium hypothesis. Comet anatomy estimations have been determined, and there is speculation that comet chemistry may have been a factor in the origin of life on earth. Halley's comet was first noted using Newton's dynamical methods, and Brady (1972) attempted to use the comet as a gravitational probe in search of a trans-Plutonian planet. Halley's orbit is calculated by combination of ancient observations and modern scientific methods.
Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs.
Mann, Ingrid
2017-07-13
Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).
Dynamical model for the toroidal sporadic meteors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokorný, Petr; Vokrouhlický, David; Nesvorný, David
More than a decade of radar operations by the Canadian Meteor Orbit Radar have allowed both young and moderately old streams to be distinguished from the dispersed sporadic background component. The latter has been categorized according to broad radiant regions visible to Earth-based observers into three broad classes: the helion and anti-helion source, the north and south apex sources, and the north and south toroidal sources (and a related arc structure). The first two are populated mainly by dust released from Jupiter-family comets and new comets. Proper modeling of the toroidal sources has not to date been accomplished. Here, wemore » develop a steady-state model for the toroidal source of the sporadic meteoroid complex, compare our model with the available radar measurements, and investigate a contribution of dust particles from our model to the whole population of sporadic meteoroids. We find that the long-term stable part of the toroidal particles is mainly fed by dust released by Halley type (long period) comets (HTCs). Our synthetic model reproduces most of the observed features of the toroidal particles, including the most troublesome low-eccentricity component, which is due to a combination of two effects: particles' ability to decouple from Jupiter and circularize by the Poynting-Robertson effect, and large collision probability for orbits similar to that of the Earth. Our calibrated model also allows us to estimate the total mass of the HTC-released dust in space and check the flux necessary to maintain the cloud in a steady state.« less
Research amateur astronomy; Proceedings of the Symposium, La Paz, Mexico, July 7-12, 1991
NASA Technical Reports Server (NTRS)
Edberg, Stephen J. (Editor)
1992-01-01
The present volume on amateur astronomy deals with solar observations; planet, asteroid, and comet studies; photometry; education and communication; and history and sociology. Particular attention is given to the observation of the 1984 annular eclipse in Mexico, amateur solar astronomy in Germany, the Ashen Light of Venus, dust clouds on Mars in 1990, and the importance of comets Encke and Machholz. Also discussed are a UBVRI and occultation photometry acquisition and reduction software package for PC-based observatories, a Skyweek weekly newsletter on astronomy and spaceflight, and the Hubble Space Telescope and the Goddard High Resolution Spectrograph.
Laboratory Gas Dynamic Measurements of the Comet Pressure Sensor COPS on the Rosetta Spacecraft
NASA Astrophysics Data System (ADS)
Tzou, Chia-Yu; Altwegg, Kathrin; Gasc, Sébastien; Rubin, Martin
2014-05-01
Rosetta is part of the cornerstone missions executed by the European Space Agency (ESA). It is the first space mission to orbit and also land on a comet. By the end of July 2014 Rosetta will be able to carry out a close study of comet 67P/Churyumov-Gerasimenko. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) is one of the core payloads on board of the Rosetta spacecraft [Balsiger et al, 2007]. ROSINA's main objective is to determine the major atmospheric and ionospheric composition in the coma and to investigate the gas dynamics around the comet. ROSINA consists of two mass spectrometers and a pressure sensor. The Comet Pressure Sensor (COPS) is not only a pressure sensor but also plays the role of a safety instrument for Rosetta by providing high-density alerts to the other payload instruments. It includes two gauges: the "nude gauge" measures total neutral density in the coma and the "ram gauge" measures the dynamic pressure of the cometary gas flux to obtain the bulk velocity of the neutral gas. The combination of these two gauges makes COPS capable to derive the gas dynamics in the coma. We recently performed laboratory gas dynamic measurements with the identical flight-spare instrument of COPS. Using the Calibration System for The Mass Spectrometer Instrument ROSINA (CASYMIR) we produce neutral gas beams to model cometary gas jets with velocities from thermal to 2 km/s. For COPS calibration we measure gas beams with different incident angles to derive the velocity and the temperature of the gas using different mixtures expected at the comet. We demonstrate that COPS will be ready for the prime mission and it will be fascinating to compare COPS measurements with numerous observation results and computer models starting in summer 2014 to gain new insights into the gas dynamics around a comet. Reference: Balsiger, H. et al.: ROSINA-Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Space Science Reviews, Vol. 128, 745-801, 2007.
The morphology of cometary nuclei
NASA Astrophysics Data System (ADS)
Keller, H. U.; Jorda, L.
The sudden appearance of a bright comet stretching over a large part of the night sky must have been one of the most awesome phenomena for early humans watching the sky. The nature of comets remained obscure well into the Middle Ages. Only with the introduction of astronomical techniques and analyses in Europe was the parallax of a comet determined by Tycho Brahe for the first time. He proved that comets are not phenomena of the Earth's atmosphere but are farther away than the Moon; in other words they are interplanetary objects. Later Kepler first predicted that comets follow straight lines, then Hevelius suggested parabolic orbits roughly a hundred years later. It was Halley who suggested that the comets of the years 1531, 1607 and 1682 were apparitions of one and the same comet that would return again in 1758. The success of this prediction made it clear that comets are members of our Solar System. While it was now established that periodic comets are objects of the planetary system, their origin and nature continued to be debated. Were they formed together with the planets from the solar nebula (Kant) or were they of extrasolar origin as suggested by Laplace? This debate lasted for 200 years until well into the second half of the last century. Öpik (1932) suggested that a cloud of comets surrounded our Solar System. This hypothesis was quantified and compared to the observed distribution of orbital parameters (essentially the semi-major axes) of new comets by Oort (1950) (Section 2.1). Comets are scattered into the inner Solar System by perturbations caused by galactic tides, passing stars and large molecular clouds. The Oort cloud would have a radius of 2 105AU, a dimension comparable to the distances of stars in our neighbourhood. The lifetime (limited by decay due to activity and by perturbations caused by encounters with planets) even of the new comets on almost parabolic orbits and typical periods of the order of 106 years is short compared to the age of the planetary system (4.5 Gy). Therefore, observed comets could only recently have arrived on their orbits dipping inside the inner Solar System. This reservoir of comets must have been established during the formation process of the planetary system itself. Cometesimals were agglomerated from interstellar/interplanetary gas and dust and scattered out of the inner Solar System by the giant outer planets (Section 2.3). This scheme implies that a central part of a comet, its nucleus, is stable enough to survive these perturbations. It must also be stable enough to pass the vicinity of the sun for many times in the case of a short-period comet. Comets are bright and large when they are close to the sun and fade quickly when they recede beyond about 2AU. Only with the advent of photography and large astronomical telescopes could a comet be followed until it becomes a starlike point source. What makes comets active near the Sun, blowing their appearances up to the order of 105 km? Bright comets often develop tails two orders of magnitude longer. In an attempt to explain the cometary appearance, Bredichin (1903) introduced a mechanical model where repulsive forces drive the particles away from a central condensation. Spectroscopy revealed that dust grains reflect the solar irradiation. In addition, simple molecules, radicals and ions were found as constituents of the cometary coma and tail. The nature of the central condensation remained mysterious for a long time because of the observational dilemma. When the comet is close to the Earth and therefore to the Sun the dense coma obscures the view into its centre. When activity recedes the comet is too far away and too dim for detailed observations of its central condensation. During the middle of the nineteenth century the connection between comets and meteor streams was established. Schiaparelli (1866) calculated the dispersion of cometary dust within the orbital plane. From this time on the perception that the central condensations of comets were agglomerations of dust particles prevailed for about a century. The gas coma was explained by desorption of molecules from dust particles with large surfaces (Levin 1943). The storage of highly reactive radicals (most observed species (CN, CH, NH2, etc.) were of this category) posed a major difficulty to be explained. The inference that these radicals should be dissociation products of stable parent molecules (such as (CN)2, CH4, NH3, etc.) by Wurm (1934, 1935, 1943) led to our present understanding that these molecules are stored as ices within the central nucleus of a comet. Whipple (1950a,b) combined the astrometrical observations of changes of the orbital periods of comets with the existence of an icy cometary nucleus. The sublimation of ices cause reactive (rocket) non-gravitational forces that increase or decrease the orbital period of an active comet according to the sense of rotation of its nucleus. Evidence in support of the icy conglomerate nucleus became more and more compelling by the derived high gas production rates that could not be stored by adsorption on dust grains (Biermann and Trefftz 1964, Huebner 1965, Keller 1976a,b) and by the same account by the large quantities of dust moving into the cometary tail (Finson and Probstein 1968b). The `sand bank' model (Lyttleton 1953) was clearly dismissed in favour of a solid icy nucleus. Its formation and origin could now be explored. While there was some knowledge about the chemical composition of the nucleus, its physical properties, even the basic ones like size, shape and mass, remained largely unknown because the nucleus could not be observed. Early attempts to derive the nucleus size from the `nuclear' magnitudes of comets at large heliocentric distances while they are inactive (Roemer 1966a,b) led to a systematic overestimation of the size because their residual activity could not be eliminated. The advent of modern detectors and large ground-based telescopes revealed that most comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of the Rosetta comet rendezvous mission) to about 50 km (comet Hale- Bopp, comet P/Schwassman-Wachmann 1). Their albedos are very low, about 0.04. Their shapes are irregular, axes ratios of 2:1 are often derived. Even though comets are characterized by their activity, in most cases only a small fraction of the nuclear surface (in some cases less than 1%) is active. An exception seems to be comet P/Wirtanen where all its surface is required to be active in order to explain its production rates (Rickman and Jorda 1998). The detection of trans-Neptunian objects (TNOs) in the Kuiper belt (Jewitt and Luu 1993) reveals a new population of cometary bodies with dimensions an order of magnitude bigger (100 km and larger) than the typical comet observed in the inner planetary system. Little is known about the extent, density, size distribution and physical characteristics of these objects. This region is supposedly the reservoir for short-period comets, manly those controlled by Jupiter (Jupiter family comets). Our present concept of a cometary nucleus has been strongly influenced by the first pictures of the nucleus of comet Halley achieved during the Giotto flyby in 1986. While this revelation seems to be confirmed as typical by modern observations it carries the danger of prototyping new observational results and inferences. Missions and spacecraft are already on their way (Deep Space, Contour, Stardust, Deep Impact) or in preparation (Rosetta) to diversify our knowledge. The morphology of cometary nuclei is determined by their formation process in the early solar nebula, their dynamics and evolution. The physics of the processes leading to their apparent activity while approaching the Sun are still obscure in many details but determine the small- and intermediate-scale morphology. The large-scale morphology, the shape, of a cometary nucleus is determined by its fragility and inner structure and by its generally complex rotational state. These topics will be reviewed in the following sections. Chemical and compositional aspects will be only discussed where they are important in the framework of the physical evolution of cometary nuclei. More details are given in Chapter 53. A brief survey of the current modelling efforts is given. The fate of cometary nuclei and their decay products follows. A summary and outlook ends this chapter on the morphology of cometary nuclei.
Is life the rule or the exception? The answer may be in the interstellar clouds
NASA Astrophysics Data System (ADS)
2002-05-01
Credits: ESA 2002. Illustration by Medialab Did the main ingredients for life come from outer space? In addition to forming in comets and asteroids, amino acids, the 'building blocks' of life, may form in dust grains in the space between the stars Rosetta artist view hi-res Size hi-res: 397 kb Credits: ESA Rosetta’s mission to a comet An artist's impression of the Rosetta spacecraft, its target Comet 67P/Churyumov-Gerasimenko, and the Philae lander being delivered onto its surface. Rosetta’s 11-year expedition began in March 2004, with an Ariane 5 launch from Kourou in French Guiana, and the spacecraft was then sent towards the outer Solar System. The long journey includes three gravity assists at Earth (2004, 2007, 2009), one at Mars (2007), and two asteroid encounters: (2867) Steins (2008) and (21) Lutetia (2010). Rosetta will reach Comet 67/P Churyumov-Gerasimenko in 2014, and will be the first mission ever to orbit a comet’s nucleus and to deliver a lander, called Philae, on its surface. Artist's Impression of the Herschel Spacecraft hi-res Size hi-res: 138 Kb Artist's Impression of the Herschel Spacecraft Herschel is the only space facility dedicated to the submillimetre and far infrared part of the spectrum. Its vantage point in space provides several decisive advantages, including a low and stable background and full access to this part of the spectrum. Herschel has the potential of discovering the earliest epoch proto-galaxies, revealing the cosmologically evolving AGN-starburst symbiosis, and unraveling the mechanisms involved in the formation of stars and planetary system bodies. The key science objectives emphasise specifically the formation of stars and galaxies, and the interrelation between the two, but also includes the physics of the interstellar medium, astrochemistry, and solar system studies. Herschel will carry a 3.5 metre diameter passively cooled telescope. The science payload complement - two cameras/medium resolution spectrometers (PACS and SPIRE) and a very high resolution heterodyne spectrometer (HIFI) - will be housed in a superfluid helium cryostat. Herschel will be placed in a transfer trajectory towards its operational orbit around the Earth-Sun L2 point by an Ariane 5 (shared with Planck) in early 2007. Once operational FIRST will offer a minimum of 3 years of routine observations; roughly 2/3 of the available observing time is open to the general astronomical community through a standard competitive proposal procedure. This result is consistent with (although of course does not prove) the theory that the main ingredients for life came from outer space, and therefore that chemical processes leading to life are likely to have occurred elsewhere. This reinforces the interest in an already 'hot' research field, astrochemistry. ESA's forthcoming missions Rosetta and Herschel will provide a wealth of new information for this topic. Amino acids are the 'bricks' of the proteins, and proteins are a type of compound present in all living organisms. Amino acids have been found in meteorites that have landed on Earth, but never in space. In meteorites amino acids are generally thought to have been produced soon after the formation of the Solar System, by the action of aqueous fluids on comets and asteroids - objects whose fragments became today's meteorites. However, new results published recently in Nature by two independent groups show evidence that amino acids can also form in space. Between stars there are huge clouds of gas and dust, the dust consisting of tiny grains typically smaller than a millionth of a millimetre. The teams reporting the new results, led by a United States group and a European group, reproduced the physical steps leading to the formation of these grains in the interstellar clouds in their laboratories, and found that amino acids formed spontaneously in the resulting artificial grains. The researchers started with water and a variety of simple molecules that are known to exist in the 'real' clouds, such as carbon monoxide, carbon dioxide, ammonia and hydrogen cyanide. Although these initial ingredients were not exactly the same in each experiment, both groups 'cooked' them in a similar way. In specific chambers in the laboratory they reproduced the common conditions of temperature and pressure known to exist in interstellar clouds, which is, by the way, quite different from our 'normal' conditions. Interstellar clouds have a temperature of 260 °C below zero, and the pressure is also very low (almost zero). Great care was taken to exclude contamination. As a result, grains analogous to those in the clouds were formed. The researchers illuminated the artificial grains with ultraviolet radiation, a process that typically triggers chemical reactions between molecules and that also happens naturally in the real clouds. When they analysed the chemical composition of the grains, they found that amino acids had formed. The United States team detected glycine, alanine and serine, while the European team listed up to 16 amino acids. The differences are not considered relevant since they can be attributed to differences in the initial ingredients. According to the authors, what is relevant is the demonstration that amino acids can indeed form in space, as a by-product of chemical processes that take place naturally in the interstellar clouds of gas and dust. Max P. Bernstein from the United States team points out that the gas and dust in the interstellar clouds serve as 'raw material' to build stars and planetary systems such as our own. These clouds "are thousands of light years across; they are vast, ubiquitous, chemical reactors. As the materials from which all stellar systems are made pass through such clouds, amino acids should have been incorporated into all other planetary systems, and thus been available for the origin of life." The view of life as a common event would therefore be favoured by these results. However, many doubts remain. For example, can these results really be a clue to what happened about four billion years ago on the early Earth? Can researchers be truly confident that the conditions they recreate are those in the interstellar space? Guillermo M. Muñoz Caro from the European team writes "several parameters still need to be better constrained (...) before a reliable estimation on the extraterrestrial delivery of amino acids to the early Earth can be made. To this end, in situ analysis of cometary material will be performed in the near future by space probes such as Rosetta ..." The intention for ESA's spacecraft Rosetta is to provide key data for this question. Rosetta, to be launched next year, will be the first mission ever to orbit and land on a comet, namely Comet 46P/Wirtanen. Starting in 2011, Rosetta will have two years to examine in deep detail the chemical composition of the comet. As Rosetta's project scientist Gerhard Schwehm has stated, "Rosetta will carry sophisticated payloads that will study the composition of the dust and gas released from the comet's nucleus and help to answer the question: did comets bring water and organics to Earth?" If amino acids can also form in the space amid the stars, as the new evidence suggests, research should also focus on the chemistry in the interstellar space. This is exactly one of the main goals of the astronomers preparing for ESA's space telescope Herschel. Herschel, with its impressive mirror of 3.5 metres in diameter (the largest of any imaging space telescope) is due to be launched in 2007. One of its strengths is that it will 'see' a kind of radiation that has never been detected before. This radiation is far-infrared and submillimetre light, precisely what you need to detect if you are searching for complex chemical compounds such as the organic molecules.
Disruption of giant comets in the solar system and around other stars
NASA Technical Reports Server (NTRS)
Whitmire, D. P.; Matese, J. J.
1988-01-01
In a standard cometary mass distribution (dN/dM) alpha M(-a), a = 1.5 to 2.0) most of the mass resides in the largest comets. The maximum mass M sub max for which this distribution holds uncertain but there are theoretical and observational indications that M sub max is at least approx. 10(23)g. Chiron, although formally classified as an asteroid, is most likely a giant comet in this mass range. Its present orbit is unstable and it is expected to evolve into a more typical short period comet orbit on a timescale of approx. 10(6) to 10(7)yr. The breakup of a chiron-like comet of mass approx. 10(23)g could in principle produce approx. 10(5) Halley-size comets, or a distribution with an even larger number. If a giant comet was in a typical short period comet orbit, such a breakup could result in a relatively brief comet shower (duration approx. less than 10(6)yr) with some associated terrestrial impacts. However, the most significant climatic effects may not in general be due to the impacts themselves but to the greatly enhanced zodiacal dust cloud in the inner Solar System. (Although this is probably not the case for the unique K-T impact). Researchers used a least Chi square program with error analysis to confirm that the 2 to 5 micrometer excess spectrum of Giclas 29 to 38 can be adequately fitted with either a disk of small inefficient (or efficient) grains or a single temperature black body. Further monitoring of this star may allow discrimination between these two models.
Dynamical evolution and disintegration of comets
NASA Astrophysics Data System (ADS)
Kresak, L.
Current concepts of the origin and evolution of comets are reviewed. The place of their formation from which they have been delivered into the Oort reservoir is still an open problem, but the region of the outermost planets appears most probable. The interplay of stellar and planetary perturbations can be traced by model computations which reveal both the general trends and the variety of individual evolutionary paths. The present structure of the system of comets is controlled by the dynamical evolution of its individual members, limited by their physical aging by disintegration. Where the lifetimes are short, as in the Jupiter family of short-period comets, an equilibrium between elimination and replenishment is established. The role of different destructive processes and the resulting survival times are discussed.
Potential Jupiter-Family comet contamination of the main asteroid belt
NASA Astrophysics Data System (ADS)
Hsieh, Henry H.; Haghighipour, Nader
2016-10-01
We present the results of "snapshot" numerical integrations of test particles representing comet-like and asteroid-like objects in the inner Solar System aimed at investigating the short-term dynamical evolution of objects close to the dynamical boundary between asteroids and comets as defined by the Tisserand parameter with respect to Jupiter, TJ (i.e., TJ = 3). As expected, we find that TJ for individual test particles is not always a reliable indicator of initial orbit types. Furthermore, we find that a few percent of test particles with comet-like starting elements (i.e., similar to those of Jupiter-family comets) reach main-belt-like orbits (at least temporarily) during our 2 Myr integrations, even without the inclusion of non-gravitational forces, apparently via a combination of gravitational interactions with the terrestrial planets and temporary trapping by mean-motion resonances with Jupiter. We estimate that the fraction of real Jupiter-family comets occasionally reaching main-belt-like orbits on Myr timescales could be on the order of ∼ 0.1-1%, although the fraction that remain on such orbits for appreciable lengths of time is certainly far lower. For this reason, the number of JFC-like interlopers in the main-belt population at any given time is likely to be small, but still non-zero, a finding with significant implications for efforts to use apparently icy yet dynamically asteroidal main-belt comets as tracers of the primordial distribution of volatile material in the inner Solar System. The test particles with comet-like starting orbital elements that transition onto main-belt-like orbits in our integrations appear to be largely prevented from reaching low eccentricity, low inclination orbits, suggesting that the real-world population of main-belt objects with both low eccentricities and inclinations may be largely free of this potential occasional Jupiter-family comet contamination. We therefore find that low-eccentricity, low-inclination main-belt comets may provide a more reliable means for tracing the primordial ice content of the main asteroid belt than the main-belt comet population as a whole.
Indicators of exotic biology in the K/T transition
NASA Astrophysics Data System (ADS)
Wallis, K.; Ramadurai, S.
1 than particular fungi and gave rise to competitive evolution of the ordinary and alien organisms until resistant species (including mammals) won through or symbiotic relationships with the fungal invaders developed. Why would the invaders have come from the inner Oort cloud just beyond Uranus? The probability of the solar system catching an interstellar comet is low. But also their exotic biology was not highly different, as AIB forms an alpha-helix and peptaibols comprise mainly ordinary (protein) aminoacids. Judging by locational variations in AIB abundance, the invaders were not globally overwhelmingly successful and may have depended on repeated reinvasions over at least 100,000 years. Why do virulent invaders arrive every million years with each fragmenting giant comet? Maybe interplanetary debris prevents the isolation of EK-Comets so that biologies rarely evolve sufficiently divergent over the billion years time-scale.
Infrared Spectroscopy of Parent Volatiles in Comets: Implications for Astrobiology
NASA Technical Reports Server (NTRS)
DiSanti, Michael A.
2010-01-01
Current cometary orbits provide information on their recent dynamical history. However, determining a given comet's formation region from its current dynamical state alone is complicated by radial migration in the proto-planetary disk and by dynamical interactions with the growing giant planets. Because comets reside for long periods of time in the outer Solar System, the ices contained in their nuclei (native ices) retain a relatively well-preserved footprint of when and where they formed, and this in turn can provide clues to conditions in the formation epoch. As a comet approaches the Sun, sublimation of its native ices releases parent volatiles into the coma where they can be measured spectroscopically. The past to - 15 years have seen the advent of infrared spectrometers with high sensitivity between about 2.8 and 5.0 micron, enabling a taxonomy among comets based on abundances of parent volatiles (e.g., H2O, CO, CH4, C2H6, HCN, CH30H, H2CO, NH3). Such molecules are of keen interest to Astrobiology, as they include important pre-biotic species that likely were required for the emergence of life on Earth and perhaps elsewhere. Approximately 20 comets have thus far been characterized, beginning with C/1996 82 (Hyakutake) in 1996. Molecular production rates are established through comparison of observed emission line intensities with those predicted by quantum mechanical fluorescence models. Abundances of parent volatiles (relative to H2O) vary among even the relatively small number of comets sampled, with the most volatile species (CO and CH4) displaying the largest variations. Techniques developed for measuring parent volatile abundances in comets will be discussed, as will possible implications for their formation.
Comet 252P/LINEAR: Born (Almost) Dead?
NASA Astrophysics Data System (ADS)
Ye, Quan-Zhi; Brown, Peter G.; Wiegert, Paul A.
2016-02-01
Previous studies have revealed Jupiter-family comet 252P/LINEAR as a comet that was recently transported into the near-Earth object (NEO) region in ∼1800 AD yet only being weakly active. In this Letter, we examine the “formed (almost) dead” hypothesis for 252P/LINEAR using both dynamical and observational approaches. By statistically examining the dynamical evolution of 252P/LINEAR over a period of 107 years, we find the median elapsed residency in the NEO region to be 4 × 102 years, which highlights the likelihood of 252P/LINEAR as an (almost) first-time NEO. With available cometary and meteor observations, we find the dust production rate of 252P/LINEAR to be on the order of 106 kg per orbit since its entry to the NEO region. These two lines of evidence support the hypothesis that the comet was likely to have formed in a volatile-poor environment. Cometary and meteor observations during the comet's unprecedented close approach to the Earth around 2016 March 21 would be useful for understanding of the surface and evolutionary properties of this unique comet.
Comet Siding Spring Seen Next to Mars
2017-12-08
This composite NASA Hubble Space Telescope Image captures the positions of comet Siding Spring and Mars in a never-before-seen close passage of a comet by the Red Planet, which happened at 2:28 p.m. EDT October 19, 2014. The comet passed by Mars at approximately 87,000 miles (about one-third of the distance between Earth and the Moon). At that time, the comet and Mars were approximately 149 million miles from Earth. The comet image shown here is a composite of Hubble exposures taken between Oct. 18, 8:06 a.m. EDT to Oct. 19, 11:17 p.m. EDT. Hubble took a separate photograph of Mars at 10:37 p.m. EDT on Oct. 18. The Mars and comet images have been added together to create a single picture to illustrate the angular separation, or distance, between the comet and Mars at closest approach. The separation is approximately 1.5 arc minutes, or one-twentieth of the angular diameter of the full Moon. The background starfield in this composite image is synthesized from ground-based telescope data provided by the Palomar Digital Sky Survey, which has been reprocessed to approximate Hubble’s resolution. The solid icy comet nucleus is too small to be resolved in the Hubble picture. The comet’s bright coma, a diffuse cloud of dust enshrouding the nucleus, and a dusty tail, are clearly visible. This is a composite image because a single exposure of the stellar background, comet Siding Spring, and Mars would be problematic. Mars is actually 10,000 times brighter than the comet, and so could not be properly exposed to show detail in the Red Planet. The comet and Mars were also moving with respect to each other and so could not be imaged simultaneously in one exposure without one of the objects being motion blurred. Hubble had to be programmed to track on the comet and Mars separately in two different observations. The images were taken with Hubble’s Wide Field Camera 3. Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA
Dynamical and collisional evolution of Halley-type comets
NASA Astrophysics Data System (ADS)
van der Helm, E.; Jeffers, S. V.
2012-03-01
The number of observed Halley-type comets is hundreds of times less than predicted by models (Levison, H.F., Dones, L., Duncan, M.J. [2001]. Astron. J. 121, 2253-2267). In this paper we investigate the impact of collisions with planetesimals on the evolution of Halley-type comets. First we compute the dynamical evolution of a sub-set of 21 comets using the MERCURY integrator package over 100 Myr. The dynamical lifetime is determined to be of the order of 105-106 years in agreement with previous work. The collisional probability of Halley-type comets colliding with known asteroids, a simulated population of Kuiper-belt objects, and planets, is calculated using a modified, Öpik-based collision code. Our results show that the catastrophic disruption of the cometary nucleus has a very low probability of occurring, and disruption through cumulative minor impacts is concluded to be negligible. The dust mantle formed from ejected material falling back to the comet’s surface is calculated to be less than a few centimeters thick, which is insignificant compared to the mantle formed by volatile depletion, while planetary encounters were found to be a negligible disruption mechanism.
An analysis of the BVRI colors of 22 active comets
NASA Astrophysics Data System (ADS)
Betzler, A. S.; Almeida, R. S.; Cerqueira, W. J.; Araujo, L. A.; Prazeres, C. J. M.; Jesus, J. N.; Bispo, P. A. S.; Andrade, V. B.; Freitas, Y. A. S.; Betzler, L. B. S.
2017-08-01
Our aim was to analyze the variation of Johnson-Kron-Cousins BVRI color indexes of a sample with 22 active comets of various dynamic groups with the time, geometrical, observational and dynamical parameters. We performed photometric observations of 16 comets between 2010 and 2014, using robotic telescopes in three continents. In addition to the sample, we used data of six comets available in the literature. A statistical comparison between the distributions of color indexes was performed using the Kruskal-Wallis H-test. The color indexes of active comets can vary a few tenths up to a magnitude on time scales that range from hours to weeks. Using the B-V colors of the observed comets, we generated a relationship that correlates the cometary visual and CCD magnitudes. We did not identify any relationship between B-V and V-R colors with heliocentric distance and phase angle. The color B-V is correlated with the photometric aperture that can be described by a logarithmic function. We did not identify any differences in the distribution of B-V color among the comets analyzed at a confidence level equal to or greater than 95%. The mean color of active comets are B-R = 1.20 ± 0.24 , B-V = 0.76 ± 0.16 and V-R = 0.42 ± 0.16 . Active comets with V-R colors outside the three standard deviation interval can be considered objects with unusual physical characteristics.
Observing team from the University of Wyoming
NASA Technical Reports Server (NTRS)
2002-01-01
July 19, 1994An observing team from the University of Wyoming , the University of Rochester, and the University of Minnesota is obtaining infrared images of the recent comet impacts on Jupiter. The observations are being made with the Wyoming Infrared Observatory 2.3-meter telescope near Laramie, using an infrared camera developed at Rochester. The accompanying image of Jupiter, obtained on the evening of Sunday July 17, shows three bright spots near the lower left. These are the impact sites of (from left to right) fragments C, A, and E. The other features visible are the bright polar and equatorial regions, and also the Great Red Spot, located below the equator and somewhat to the right.At this relatively short infrared wavelength (2.2 micrometers) the planet it mostly dark because the methane in the Jupiter atmosphere absorbs any sunlight which passes through a significant depth of that atmosphere. Bright regions usually correspond to high altitude clouds which reflect the sunlight before it can penetrate the deeper atmosphere and be absorbed. The bright nature of the impact spots therefore indicates the presence of high altitude haze or clouds -- material carried up from the lower atmosphere by the fireball and plume from the comet impact. More detailed measurements at a variety of wavelengths should reveal the chemical composition of the haze material. The observing team will be continuing their work throughout the comet impact period and expect to obtain images of the plumes from the other comet fragments which will be striking Jupiter later this week.Co ntact: Robert R. Howell Department of Physics and Astronomy University of Wyoming Laramie, WY 82070 307-766-6150
Asteroid and comet flux in the neighborhood of the earth
NASA Technical Reports Server (NTRS)
Shoemaker, Eugene M.; Shoemaker, Carolyn S.; Wolfe, Ruth F.
1988-01-01
Significant advances in the knowledge and understanding of the flux of large solid objects in the neighborhood of Earth have occurred. The best estimates of the collision rates with Earth of asteroids and comets and the corresponding production of impact craters are presented. Approximately 80 Earth-crossing asteroids were discovered through May 1988. Among 42 new Earth-crossing asteroids found in the last decade, two-thirds were discovered from observations at Palomar Observatory and 15 were discovered or independently detected in dedicated surveys with the Palomar Observatory and 15 were discovered or independently detected in dedicated surveys with the Palomar 46 cm Schmidt. Probabilities of collision with Earth have been calculated for about two-thirds of the known Earth-crossing asteroids. When multiplied by the estimated population of Earth-crossers, this yields an estimated present rate of collision about 65 pct higher than that previously reported. Spectrophotometric data obtained chiefly in the last decade show that the large majority of obvserved Earth-crossers are similar to asteroids found in the inner part of the main belt. The number of discovered Earth-crossing comets is more than 4 times greater than the number of known Earth-crossing asteroids, but reliable data on the sizes of comet nuclei are sparse. The flux of comets almost certainly was highly variable over late geologic time, owing to the random perturbation of the Oort comet cloud by stars in the solar neighborhood.
Physical characteristics of cometary dust from dynamical studies - A review
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1980-01-01
Progress made in the determination of the physical characteristics of cometary dust particles from studies of dust tail dynamics is reviewed. Applications of the combined dynamical photometric approach of Finson and Probstein (1968) to studies of cometary tails exhibiting continuous light intensity variations are discussed, with attention given to determinations of the particle-size-related distribution function of the solar radiation pressure exerted on the particles, the contribution of comets to the interplanetary dust, calculations of dust ejection rates and a Monte Carlo approach to the analysis of dust tails. Investigations of dust streamers and striae, which are believed to be related to comet outbursts entailing brief but sharp enhancements of dust production, are then reviewed, with particular attention given to observations of Comet West 1976 VI. Finally, the question of cometary particle type is addressed, and it is pointed out that the presence of submicron absorbing particles in the striae of Comet West is not incompatible with the presence of micron-size dielectric particles in the inner coma.
Report on the search for atmospheric holes using airs image data
NASA Technical Reports Server (NTRS)
Reinleitner, Lee A.
1991-01-01
Frank et al (1986) presented a very controversial hypothesis which states that the Earth is being bombarded by water-vapor clouds resulting from the disruption and vaporization of small comets. This hypothesis was based on single-pixel intensity decreases in the images of the earth's dayglow emissions at vacuum-ultraviolet (VUV) wavelengths using the DE-1 imager. These dark spots, or atmospheric holes, are hypothesized to be the result of VUV absorption by a water-vapor cloud between the imager and the dayglow-emitting region. Examined here is the VUV data set from the Auroral Ionospheric Remote Sensor (AIRS) instrument that was flown on the Polar BEAR satellite. AIRS was uniquely situated to test this hypothesis. Due to the altitude of the sensor, the holes should show multi-pixel intensity decreases in a scan line. A statistical estimate indicated that sufficient 130.4-nm data from AIRS existed to detect eight to nine such holes, but none was detected. The probability of this occurring is less than 1.0 x 10(exp -4). A statistical estimate indicated that sufficient 135.6-nm data from AIRS existed to detect approx. 2 holes, and two ambiguous cases are shown. In spite of the two ambiguous cases, the 135.6-nm data did not show clear support for the small-comet hypothesis. The 130.4-nm data clearly do not support the small-comet hypothesis.
Capture of exocomets and the erosion of the Oort cloud due to stellar encounters in the Galaxy
NASA Astrophysics Data System (ADS)
Hanse, J.; Jílková, L.; Portegies Zwart, S. F.; Pelupessy, F. I.
2018-02-01
The Oort cloud (OC) probably formed more than 4 Gyr ago and has been moving with the Sun in the Galaxy since, exposed to external influences, most prominently to the Galactic tide and passing field stars. Theories suggest that other stars might possess exocomets distributed similarly to our OC. We study the erosion of the OC and the possibility for capturing exocomets during the encounters with such field stars. We carry out simulations of flybys, where both stars are surrounded by a cloud of comets. We measure how many exocomets are transferred to the OC, how many OC's comets are lost, and how this depends on the other star's mass, velocity and impact parameter. Exocomets are transferred to the OC only during relatively slow (≲0.5 km s-1) and close (≲105 au) flybys and these are expected to be extremely rare. Assuming that all passing stars are surrounded by a cloud of exocomets, we derive that the fraction of exocomets in the OC has been about 10-5-10-4. Finally, we simulate the OC for the whole lifetime of the Sun, taking into account the encounters and the tidal effects. The OC has lost 25-65 per cent of its mass, mainly due to stellar encounters, and at most 10 per cent (and usually much less) of its mass can be captured. However, exocomets are often lost shortly after the encounter that delivers them, due to the Galactic tide and consecutive encounters.
Destruction of Sun-Grazing Comet C-2011 N3 (SOHO) Within the Low Solar Corona
NASA Technical Reports Server (NTRS)
Schrijver, C. J.; Brown, J. C.; Battams, K.; Saint-Hilaire, P.; Liu, W.; Hudson, H.; Pesnell, W. D.
2012-01-01
Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Suns inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solarradius (100,000 kilometers) of the solar surface before its EUV signal disappeared.
Migration of comets to the terrestrial planets
NASA Astrophysics Data System (ADS)
Ipatov, Sergei I.; Mather, John C.
2007-05-01
The orbital evolution of 30,000 objects with initial orbits close to those of Jupiter-family comets (JFCs) and also of 15,000 dust particles was integrated [1-3]. For initial orbital elements close to those of Comets 2P, 10P, 44P, and 113P, a few objects got Earth-crossing orbits with semi-major axes a<2 AU and aphelion distances Q<4.2 AU, or even got inner-Earth (Q<0.983 AU), Aten, or typical asteroidal orbits, and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Most of former trans-Neptunian objects that have typical near-Earth object (NEO) orbits moved in such orbits for Myrs, so during most of this time they were extinct comets. From a dynamical point of view, the fraction of extinct comets among NEOs can exceed several tens of percent, but, probably, many extinct comets disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes were large. The probability of the collision of Comet 10P with the Earth during a dynamical lifetime of the comet was P[E]≈1.4•10-4, but 80% of this mean probability was due only to one object among 2600 considered objects with orbits close to that of Comet 10P. For runs for Comet 2P, P[E]≈(1-5)•10-4. For most other considered JFCs, 10-6 < P[E] < 10-5. For Comets 22P and 39P, P[E]≈ (1-2)•10-6; and for Comets 9P, 28P and 44P, P[E]≈(2-5)•10-6. For all considered JFCs, P[E]>4•10-6. The Bulirsh-Stoer method of integration and a symplectic method gave similar results. In our runs the probability of a collision of one object with the Earth could be greater than the sum of probabilities for thousands of other objects. The ratios of probabilities of collisions of JFCs with Venus and Mars to the mass of a planet usually were not smaller than that for Earth. For dust particles started from comets and asteroids, P[E ]was maximum for diameters d~100 μm. These maximum values of P [E] were usually (exclusive for 2P) greater at least by an order of magnitude than the values for parent comets. [1] Ipatov S.I. and Mather J.C. (2004) Annals of the New York Acad. of Sci., v. 1017, 46-65. [2] Ipatov S.I. et al. (2004) Annals of the New York Acad. of Sci., v. 1017, 66-80. [3] Ipatov S.I. and Mather J.C. (2006) Adv. in Space Res., v. 37, N 1, 126-137.
NASA Technical Reports Server (NTRS)
Mendis, A.; Alfven, H.
1976-01-01
Physico-chemical processes leading to the dynamic formation and physical evolution of comets are reviewed in relationship to the various theories that propose solar origins, protoplanetary origins, planetary origins and interstellar origins. Evidence points to the origins of comets by the growth and agglomeration of small particles from gas and dust at very low temperatures at undetermined regions in space.
Dormant Comets in the Near-Earth Asteroid Population
NASA Astrophysics Data System (ADS)
Mommert, Michael; Harris, Alan W.; Mueller, Michael; Hora, Joseph L.; Trilling, David E.; Knight, Matthew; Bottke, William F.; Thomas, Cristina; Delbo', Marco; Emery, Josh P.; Fazio, Giovanni; Smith, Howard A.
2015-11-01
The population of near-Earth objects comprises active comets and asteroids, covering a wide range of dynamical parameters and physical properties. Dormant (or extinct) comets, masquerading as asteroids, have long been suspected of supplementing the near-Earth asteroid (NEA) population. We present a search for asteroidal objects of cometary origin based on dynamical and physical considerations. Our study is based on albedos derived within the ExploreNEOs program and is extended by adding data from NEOWISE and the Akari asteroid catalog. We use a statistical approach to identify asteroids on orbits that resemble those of short-period near-Earth comets using the Tisserand parameter with respect to Jupiter, the aphelion distance, and the minimum orbital intersection distance with respect to Jupiter. We identify a total of 23 near-Earth asteroids from our sample that are likely to be dormant short-period near-Earth comets and, based on a de-biasing procedure applied to the cryogenic NEOWISE survey, estimate both magnitude-limited and size-limited fractions of the NEA population that are dormant short-period comets. We find that 0.3-3.3% of the NEA population with H <= 21, and 9(+2/-5)% of the population with diameters d >= 1 km, are dormant short-period near-Earth comets. We also present an observation program that utilizes the 1.8m Vatican Advanced Technology Telescope (VATT) on Mt. Graham, AZ, to identify dormant comet candidates and search for activity in these objects. Our targets are NEAs on comet-like orbits, based on the dynamical criteria derived in the above study, that are accessible with the VATT (V <= 22). We identify dormant comets based on their optical spectral slope, represented by V-R color measurements, as albedo measurements for most of these objects are not available. For each target we measure and monitor its V magnitude in order to reveal activity outbreaks. We also search for extended emission around our targets using deep imaging and a point-spread-function subtraction technique that allows us to obtain an upper limit on the dust production rate in each target. We present preliminary results from this program. This work is supported in part by funding from the Spitzer Science Center.
NASA Technical Reports Server (NTRS)
Nuth, J. A.; Brearley, A. J.; Scott, E. R. D.
2004-01-01
Comets, fine-grained matrices of chondrites, and chondritic interplanetary dust particles (IDPs) are each composed of both crystalline and amorphous silicates. The primitive solar nebula, in which comets and asteroids accreted, was formed from the collapsed core of a Giant Molecular Cloud, that, in turn, condensed from materials present in the interstellar medium (ISM). Despite observations that reveal the presence of crystalline magnesium silicate minerals in the shells of very high mass-loss-rate stars [1,2], typical silicate grains in the ISM are most likely to be amorphous, given their relatively long residence time in such a high radiation environment. An upper limit of 3% crystalline grains can be derived from their non-detection in spectra of ISM solids [3]. If the vast majority of grains that enter the primitive solar nebula are amorphous, then the observation of crystalline dust in comets and primitive chondrite matrices indicates the action of specific processes required to transform the amorphous starting materials into the crystals that are observed.
Impact contribution of prebiotic reactants to Earth
NASA Technical Reports Server (NTRS)
Aggarwal, Hans R.
1992-01-01
It is proposed that the AIB amino acids at the K/T boundary were synthesized during entry of a comet. However, whether they were synthesized or supplied directly from space, the concentration of amino acids in the shallow K/T sea would have been about 10(exp -7) M. It is probable that clays were the dominant sinks for the amino acids in the K/T sea and in the primordial ocean. Because clay removed amino from the sea so quickly, we must study the amino acid contribution from individual comets in order to evaluate the effectiveness of comets for chemical evolution. Such an evaluation shows that comets would have produced amino acid concentrations higher than equilibrium concentrations of amino acids from corona discharge at all times preceding the age of the oldest fossils. The preferred sites for chemical evolution of cometary amino acids are in cloud drops and tide pools where the concentration of amino acids would have been the highest. Life could have originated at the surface even during periods of intense bombardment of the earth before 3.8 billion years ago.
Impact contribution of prebiotic reactants to Earth
NASA Technical Reports Server (NTRS)
Aggarwal, Hans R.
1992-01-01
It is proposed that the AIB amino acid at the K/T boundary were synthesized during entry of a comet. However, whether they were synthesized or supplied directly from space, the concentration of amino acids in the shallow K/T sea would have been about 10(exp -7) M. It is probable that clays were the dominant sinks for the amino acids in the K/T sea and in the primordial ocean. Because clay removed amino acids from sea water quickly, the amino acid contribution must be studied from individual comets in order to evaluate the effectiveness of comets for chemical evolution. Such an evaluation shows that comets would have produced amino acid concentration higher than equilibrium concentrations of amino acid from corona discharge at all times preceding the age of the oldest fossils. The perferred sites for chemical evolution of cometary amino acids are in cloud drops and tide pools where the concentration of amino acids would have been the highest. Life could have originated at the surface even during periods of intense bombardment of the earth before 3.8 billion years ago.
Shock Effects on Cometary-Dust Simulants
NASA Technical Reports Server (NTRS)
Lederer, Susan M.; Jensen, Elizabeth; Wooden, Diane H.; Lindsay, Sean S.; Smith, Douglas H.; Nakamura-Messenger, Keiko; Keller, Lindsay P.; Cardenas, Francisco; Cintala, Mark J.; Montes, Roland
2014-01-01
While comets are perhaps best known for their ability to put on spectacular celestial light shows, they are much more than that. Composed of an assortment of frozen gases mixed with a collection of dust and minerals, comets are considered to be very primitive bodies and, as such, they are thought to hold key information about the earliest chapters in the history of the solar system. (The dust and mineral grains are usually called the "refractory" component, indicating that they can survive much higher temperatures than the ices.) It has long been thought, and spacecraft photography has confirmed, that comets suffer the effects of impacts along with every other solar system body. Comets spend most of their lifetimes in the Kuiper Belt, a region of the solar system between 30 and 50 times the average distance of the Earth from the Sun, or the Oort Cloud, which extends to approximately 1 light year from the Sun. Those distances are so far from the Sun that water ice is the equivalent of rock, melting or vaporizing only through the action of strong, impact-generated shock waves.
Asteroid Family Associations of Main-Belt Comets
NASA Astrophysics Data System (ADS)
Hsieh, Henry H.; Novakovic, Bojan; Kim, Yoonyoung; Brasser, Ramon
2016-10-01
We present a population-level analysis of the asteroid family associations of known main-belt comets or main-belt comet candidates (which, to date, have largely just been analyzed on individual bases as they have been discovered). In addition to family associations that have already been reported in the literature, we have identified dynamical relationships between 324P/La Sagra and the Alauda family, P/2015 X6 (PANSTARRS) and the Aeolia family, and P/2016 G1 (PANSTARRS) and the Adeona family. We will discuss the overall implications of these family associations, particularly as they pertain to the hypothesis that members of primitive asteroid family members may be more susceptible to producing observable sublimation-driven dust emission activity, and thus becoming main-belt comets. We will also discuss the significance of other dynamical and physical properties of a family or sub-family as they relate to the likelihood of that family containing one or more currently active main-belt comets.
The Rosetta Mission to Comet 67P/ Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Buratti, Bonnie J.
2017-06-01
As remnant bodies left over from the formation of the Solar System, comets offer clues to the physical conditions and architecture of the protosolar nebula. The Rosetta spacecraft, which included an orbiter and a lander that were built and managed by the European Space Agency with NASA contributing four instruments and scientific expertise, was the first mission to orbit and study a comet through a perihelion passage. The targeted Jupiter-family comet 67P/ Churyumov-Gerasimenko, is seemingly two distinct planetesimals stuck together. The comet has not melted or been processed substantially, except for its outer layers, which consist of reaccreted dust and a crust of heated, devolatized, and annealed refractory materials and organics. The exceptionally low density (0.53 gm/cc) of 67P/ implies it is a rubble pile. The comet also appears to contain a hierarchy of building blocks: smaller spherically shaped meter-sized bodies can be seen in its interior, and even smaller cm-sized pebbles were imaged by the camera as the spacecraft made a soft crash landing on the comet’s surface on 30 September 2016. The unexpected discovery of molecular oxygen, nitrogen, and hydrogen imply that 67P/ was formed under cold conditions not exceeding 30K. The discovery of many organic compounds, including the amino acid glycine, lends support to the idea that comets, which originate in the Kuiper Belt and the Oort Cloud, brought the building blocks of life to Earth. More laboratory data on organic compounds would help to identify additional organic compounds on the comet. The differences between cometary and terrestrial D/H ratios suggest that comets are not the primary source of terrestrial water, although data on more comets is needed to confirm this result.Besides being primordial objects offering a window into the formation of solar systems, comets are astrophysical laboratories, ejecting dust and charged particles into the plasma comprising the solar wind. Several unusual phenomena were observed, such as magnetic cavities surrounding the comet, and oscillations in its magnetic field, which led 67P/ to be nicknamed the “singing comet”.NASA funding acknowledged.
Structure and dynamics of the umagnetized plasma around comet 67P/CG
NASA Astrophysics Data System (ADS)
Henri, P.; Vallières, X.; Gilet, N.; Hajra, R.; Moré, J.; Goetz, C.; Richter, I.; Glassmeier, K. H.; Galand, M. F.; Heritier, K. L.; Eriksson, A. I.; Nemeth, Z.; Tsurutani, B.; Rubin, M.; Altwegg, K.
2016-12-01
At distances close enough to the Sun, when comets are characterised by a significant outgassing, the cometary neutral density may become large enough for both the cometary plasma and the cometary gas to be coupled, through ion-neutral and electron-neutral collisions. This coupling enables the formation of an unmagnetised expanding cometary ionosphere around the comet nucleus, also called diamagnetic cavity, within which the solar wind magnetic field cannot penetrate. The instruments of the Rosetta Plasma Consortium (RPC), onboard the Rosetta Orbiter, enable us to better constrain the structure, dynamics and stability of the plasma around comet 67P/CG. Recently, magnetic field measurements (RPC-MAG) have shown the existence of such a diamagnetic region around comet 67P/CG [Götz et al., 2016]. Contrary to a single, large scale, diamagnetic cavity such as what was observed around comet Halley, Rosetta have crossed several diamagnetic structures along its trajectory around comet 67P/CG. Using electron density measurements from the Mutual Impedance Probe (RPC-MIP) during the different diamagnetic cavity crossings, identified by the flux gate magnetometer (RPC-MAG), we map the unmagnetised plasma density around comet 67P/CG. Our aims is to better constrain the structure, dynamics and stability of this inner cometary plasma layer characterised by cold electrons (as witnessed by the Langmuir Probes RPC-LAP). The ionisation ratio in these unmagnetised region(s) is computed from the measured electron (RPC-MIP) and neutral gas (ROSINA/COPS) densities. In order to assess the importance of solar EUV radiation as a source of ionisation, the observed electron density will be compared to a the density expected from an ionospheric model taking into account solar radiation absorption. The crossings of diamagnetic region(s) by Rosetta show that the unmagnetised cometary plasma is particularly homogeneous, compared to the highly dynamical magnetised plasma observed in adjacent magnetised regions. Moreover, during the crossings of multiple, successive diamagnetic region(s) over time scales of tens of minutes or hours, the plasma density is almost identical in the different unmagnetised regions, suggesting that these unmagnetised regions may be a single diamagnetic structure crossed several times by Rosetta.
NASA's Solar Observing Fleet Watch Comet ISON's Journey Around the Sun
2013-11-22
Comet ISON makes its appearance into the higher-resolution HI-1 camera on the STEREO-A spacecraft. The dark "clouds" coming from the right are density enhancements in the solar wind, causing all the ripples in comet Encke's tail. These kinds of solar wind interactions give us valuable information about solar wind conditions near the sun. Note: the STEREO-A spacecraft is currently located on the other side of the Sun, so it sees a totally different geometry to what we see from Earth. Credit: Karl Battams/NASA/STEREO/CIOC NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Charnley, Steven
2009-01-01
Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.
Warsaw Catalogue of cometary orbits: 119 near-parabolic comets
NASA Astrophysics Data System (ADS)
Królikowska, Małgorzata
2014-07-01
Context. The dynamical evolution of near-parabolic comets strongly depends on the starting values of the orbital elements derived from the positional observations. In addition, when drawing conclusions about the origin of these objects, it is crucial to control the uncertainties of orbital elements at each stage of the dynamical evolution. Aims: I apply a completely homogeneous approach to determine the cometary orbits and their uncertainties. The resulting catalogue is suitable for the investigation of the origin and future of near-parabolic comets. Methods: First, osculating orbits were determined on the basis of positional data. Second, the dynamical calculations were performed backwards and forwards up to 250 au from the Sun to derive original and future barycentric orbits for each comet. In the present investigation of dynamical evolution, the numerical calculations for a given object start from the swarm of virtual comets constructed using the previously determined osculating (nominal) orbit. In this way, the uncertainties of orbital elements were derived at the end of numerical calculations. Results: Homogeneous sets of orbital elements for osculating, original and future orbits are given. The catalogue of 119 cometary orbits constitutes about 70 per cent of all the first class so-called Oort spike comets discovered during the period 1801-2010 and about 90 per cent of those discovered in 1951-2010, for which observations were completed at the end of 2013. Non-gravitational (NG) orbits are derived for 45 comets, including asymmetric NG solution for six of them. Additionally, the new method for cometary orbit-quality assessment is applied for all these objects. The catalogue is available at http://ssdp.cbk.waw.pl/LPCs and also at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/567/A126
A Multi-Wavelength Study of Parent Volatile Abundances in Comet C/2006 M4 (SWAN)
NASA Technical Reports Server (NTRS)
DiSanti, Michael A.; Villanueva, Geronimo L.; Milam, Stefanie N.; Zack, Lindsay N.; Bonev, Boncho P.; Mumma, Michael; Ziurys, Lucy M.; Anderson, William M.
2009-01-01
Volatile organic emissions were detected post-perihelion in the long period comet C/2006 M4 (SWAN) in October and November 2006. Our study combines target-of-opportunity, observations using the infrared Cryogenic Echelle Spectrometer (CSHELL) at the NASA-IRTF 3-m telescope, and millimeter wavelength observations using the Arizona Radio Observatory (ARO) 12-m telescope. Five parent volatiles were measured with CSHELL (H2O, CO, CH3OH, CH4, and C2H6), and two additional species (HCN and CS) were measured with the ARID 12-m. These revealed highly depleted CO and somewhat enriched CH3OH compared with abundances observed in the dominant group of long-period (Oort cloud) comets in our sample and similar to those observed recently in Comet 8P/Tuttle. This may indicate highly efficient H-atom addition to CO at very low temperature (approx.10-20 K) on the surfaces of interstellar (pre-cometary) grains. Comet C12006 M4 had nearly "normal" C2H6, and CH4, suggesting a processing history similar to that experienced by the dominant group. When compared with estimated water production at the time of the millimeter observations, HCN was slightly depleted compared with the normal abundance in comets based on 1R observations but was consistent with the majority of values from the millimeter. The ratio CS/HCN in C/2006 M4 was within the range measured in ten comets at millimeter wavelengths. The higher apparent H-atom conversion efficiency compared with most comets may indicate that the icy grains incorporated into C/2006 M4 were exposed to higher H-atom densities, or alternatively to similar densities but for a longer period of time.
Dust environment and dynamical history of a sample of short-period comets
NASA Astrophysics Data System (ADS)
Pozuelos, F. J.; Moreno, F.; Aceituno, F.; Casanova, V.; Sota, A.; López-Moreno, J. J.; Castellano, J.; Reina, E.; Diepvens, A.; Betoret, A.; Häusler, B.; Gonález, C.; Rodríguez, D.; Bryssinck, E.; Cortés, E.; García, F.; García, F.; Limón, F.; Grau, F.; Fratev, F.; Baldrís, F.; Rodriguez, F. A.; Montalbán, F.; Soldán, F.; Muler, G.; Almendros, I.; Temprano, J.; Bel, J.; Sánchez, J.; Lopesino, J.; Báez, J.; Hernández, J. F.; Martín, J. L.; Ruiz, J. M.; Vidal, J. R.; Gaitán, J.; Salto, J. L.; Aymamí, J. M.; Bosch, J. M.; Henríquez, J. A.; Martín, J. J.; Lacruz, J.; Tremosa, L.; Lahuerta, L.; Reszelsky, M.; Rodríguez, M.; Camarasa, M.; Campas, M.; Canales, O.; Dekelver, P. J.; Moreno, Q.; Benavides, R.; Naves, R.; Dymoc, R.; García, R.; Lahuerta, S.; Climent, T.
2014-08-01
Aims: In this work, we present an extended study of the dust environment of a sample of short-period comets and their dynamical history. With this aim, we characterize the dust tails when the comets are active, and we make a statistical study to determine their dynamical evolution. The targets selected were 22P/Kopff, 30P/Reinmuth 1, 78P/Gehrels 2, 115P/Maury, 118P/Shoemaker-Levy 4, 123P/West-Hartley, 157P/Tritton, 185/Petriew, and P/2011 W2 (Rinner). Methods: We use two different observational data sets: a set of images taken at the Observatorio de Sierra Nevada and, the Afρ curves provided by the amateur astronomical association Cometas-Obs. To model these observations, we use our Monte Carlo dust tail code. From this analysis, we derive the dust parameters, which best describe the dust environment: dust loss rates, ejection velocities, and size distribution of particles. On the other hand, we use a numerical integrator to study the dynamical history of the comets, which allows us to determine with a 90% confidence level the time spent by these objects in the region of Jupiter family comets. Results: From the Monte Carlo dust tail code, we derived three categories according to the amount of dust emitted: weakly active (115P, 157P, and Rinner), moderately active (30P, 123P, and 185P), and highly active (22P, 78P, and 118P). The dynamical studies showed that the comets of this sample are young in the Jupiter family region, where the youngest ones are 22P (~100 yr), 78P (~500 yr), and 118P (~600 yr). The study points to a certain correlation between comet activity and time spent in the Jupiter family region, although this trend is not always fulfilled. The largest particle sizes are not tightly constrained, so that the total dust mass derived should be regarded as a lower limit. Appendices are available in electronic form at http://www.aanda.org
Techniques for Examining Drop Size Spectra in Water Sprays and Clouds
1979-04-01
surface perpendicular to the air stream was essential to avoid elliptical or comet -like impressions. 5.1.2 Oil Wetted Slides While, with this technique...55 Commonwealth Aircraft Corporation, Library 56 Hawker de Havilland Pty Ltd, Librarian, Bankstown 57 Hawker de Havilland Pty Ltd, Manager, Lidcombe 58
VizieR Online Data Catalog: Stellar encounters with long-period comets (Feng+, 2015)
NASA Astrophysics Data System (ADS)
Feng, F.; Bailer-Jones, C. A. L.
2016-07-01
We have conducted simulations of the perturbation of the Oort cloud in order to estimate the significance of known encounters in generating long-period comets. We collected the data of stellar encounters from three sources: (Bailer-Jones, 2015, Cat. J/A+A/575/A35, hereafter BJ15), Dybczynski & Berski (2015MNRAS.449.2459D), and Mamajek et al. (2015ApJ...800L..17M). Following BJ15, we use the term 'object' to refer to each encountering star in our catalogue. A specific star may appear more than once but with different data, thus leading to a different object. (1 data file).
Dynamical and Physical Models of Ecliptic Comets
NASA Astrophysics Data System (ADS)
Dones, L.; Boyce, D. C.; Levison, H. F.; Duncan, M. J.
2005-08-01
In most simulations of the dynamical evolution of the cometary reservoirs, a comet is removed from the computer only if it is thrown from the Solar System or strikes the Sun or a planet. However, ejection or collision is probably not the fate of most active comets. Some, like 3D/Biela, disintegrate for no apparent reason, and others, such as the Sun-grazers, 16P/Brooks 2, and D/1993 F2 Shoemaker-Levy 9, are pulled apart by the Sun or a planet. Still others, like 107P/Wilson Harrington and D/1819 W1 Blanpain, are lost and then rediscovered as asteroids. Historically, amateurs discovered most comets. However, robotic surveys now dominate the discovery of comets (http://www.comethunter.de/). These surveys include large numbers of comets observed in a standard way, so the process of discovery is amenable to modeling. Understanding the selection effects for discovery of comets is a key problem in constructing models of cometary origin. To address this issue, we are starting new orbital integrations that will provide the best model to date of the population of ecliptic comets as a function of location in the Solar System and the size of the cometary nucleus, which we expect will vary with location. The integrations include the gravitational effects of the terrestrial and giant planets and, in some cases, nongravitational jetting forces. We will incorporate simple parameterizations for mantling and mass loss based upon detailed physical models. This approach will enable us to estimate the fraction of comets in different states (active, extinct, dormant, or disintegrated) and to track how the cometary size distribution changes as a function of distance from the Sun. We will compare the results of these simulations with bias-corrected models of the orbital and absolute magnitude distributions of Jupiter-family comets and Centaurs.
Secular orbital evolution of Jupiter family comets
NASA Astrophysics Data System (ADS)
Rickman, H.; Gabryszewski, R.; Wajer, P.; Wiśniowski, T.; Wójcikowski, K.; Szutowicz, S.; Valsecchi, G. B.; Morbidelli, A.
2017-02-01
Context. The issue of the long term dynamics of Jupiter family comets (JFCs) involves uncertain assumptions about the physical evolution and lifetimes of these comets. Contrary to what is often assumed, real effects of secular dynamics cannot be excluded and therefore merit investigation. Aims: We use a random sample of late heavy bombardment cometary projectiles to study the long-term dynamics of JFCs by a Monte Carlo approach. In a steady-state picture of the Jupiter family, we investigate the orbital distribution of JFCs, including rarely visited domains like retrograde orbits or orbits within the outer parts of the asteroid main belt. Methods: We integrate 100 000 objects over a maximum of 100 000 orbital revolutions including the Sun, a comet, and four giant planets. Considering the steady-state number of JFCs to be proportional to the total time spent in the respective orbital domain, we derive the capture rate based on observed JFCs with small perihelia and large nuclei. We consider a purely dynamical model and one where the nuclei are eroded by ice sublimation. Results: The JFC inclination distribution is incompatible with our erosional model. This may imply that a new type of comet evolution model is necessary. Considering that comets may live for a long time, we show that JFCs can evolve into retrograde orbits as well as asteroidal orbits in the outer main belt or Cybele regions. The steady-state capture rate into the Jupiter family is consistent with 1 × 109 scattered disk objects with diameters D > 2 km. Conclusions: Our excited scattered disk makes it difficult to explain the JFC inclination distribution, unless the physical evolution of JFCs is more intricate than assumed in standard, erosional models. Independent of this, the population size of the Jupiter family is consistent with a relatively low-mass scattered disk.
NASA Technical Reports Server (NTRS)
Irvine, William M.; Schloerb, F. Peter
1997-01-01
The basic theme of this program is the study of molecular complexity and evolution in interstellar clouds and in primitive solar system objects. Research has included the detection and study of a number of new interstellar molecules and investigation of reaction pathways for astrochemistry from a comparison of theory and observed molecular abundances. The latter includes studies of cold, dark clouds in which ion-molecule chemistry should predominate, searches for the effects of interchange of material between the gas and solid phases in interstellar clouds, unbiased spectral surveys of particular sources, and systematic investigation of the interlinked chemistry and physics of dense interstellar clouds. In addition, the study of comets has allowed a comparison between the chemistry of such minimally thermally processed objects and that of interstellar clouds, shedding light on the evolution of the biogenic elements during the process of solar system formation.
Comet Gas and Dust Dynamics Modeling
NASA Technical Reports Server (NTRS)
Von Allmen, Paul A.; Lee, Seungwon
2010-01-01
This software models the gas and dust dynamics of comet coma (the head region of a comet) in order to support the Microwave Instrument for Rosetta Orbiter (MIRO) project. MIRO will study the evolution of the comet 67P/Churyumov-Gerasimenko's coma system. The instrument will measure surface temperature, gas-production rates and relative abundances, and velocity and excitation temperatures of each species along with their spatial temporal variability. This software will use these measurements to improve the understanding of coma dynamics. The modeling tool solves the equation of motion of a dust particle, the energy balance equation of the dust particle, the continuity equation for the dust and gas flow, and the dust and gas mixture energy equation. By solving these equations numerically, the software calculates the temperature and velocity of gas and dust as a function of time for a given initial gas and dust production rate, and a dust characteristic parameter that measures the ability of a dust particle to adjust its velocity to the local gas velocity. The software is written in a modular manner, thereby allowing the addition of more dynamics equations as needed. All of the numerical algorithms are added in-house and no third-party libraries are used.
Comet nucleus sample return mission
NASA Technical Reports Server (NTRS)
1983-01-01
A comet nucleus sample return mission in terms of its relevant science objectives, candidate mission concepts, key design/technology requirements, and programmatic issues is discussed. The primary objective was to collect a sample of undisturbed comet material from beneath the surface of an active comet and to preserve its chemical and, if possible, its physical integrity and return it to Earth in a minimally altered state. The secondary objectives are to: (1) characterize the comet to a level consistent with a rendezvous mission; (2) monitor the comet dynamics through perihelion and aphelion with a long lived lander; and (3) determine the subsurface properties of the nucleus in an area local to the sampled core. A set of candidate comets is discussed. The hazards which the spacecraft would encounter in the vicinity of the comet are also discussed. The encounter strategy, the sampling hardware, the thermal control of the pristine comet material during the return to Earth, and the flight performance of various spacecraft systems and the cost estimates of such a mission are presented.
A white paper on dusty plasmas
NASA Technical Reports Server (NTRS)
Whipple, E. C. (Compiler)
1986-01-01
Dusty plasmas is the name given to plasmas heavily laden with charged dust grains which together with the surrounding ions and electrons constitute a kind of plasma regime. This field of study is receiving increased attention because of the observation of dust during recent spacecraft missions to the planets and comets, together with the dawning recognition that the evolution of dusty plasma clouds in space may be quite different from that of nondusty clouds. Recent work in this field is reviewed and recommendations are made on the kind of research that is needed in the immediate future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarugaku, Yuki; Ueno, Munetaka; Ishiguro, Masateru
We report contemporaneous imaging observations of the short-period comet 2P/Encke in infrared and optical wavelengths during the 2003 return. Both images show the same unique morphology consisting of a spiky dust cloud near the nucleus and a dust trail extending along the orbit. We conducted a dynamical simulation of dust particles to characterize the morphology and found that dust particles were ejected intensively for a short duration (≲10 days) a few days after perihelion passage. The maximum particle size is at least on the order of 1 cm in radius following a differential power-law size distribution with an index ofmore » −3.2 to −3.6. The total mass ejected in the 2003 return is at least 1.5 × 10{sup 9}–1.2 × 10{sup 10} kg, which corresponds to 0.003%–0.03% of the nucleus mass. We derived the albedo of the dust cloud as 0.01–0.04 at a solar phase angle of 26.°2, which is consistent with or possibly greater than that of the nucleus. We suppose that impulsive activity such as an outburst is a key to understanding the peculiar appearance of 2P/Encke.« less
Hubble's Last Look at Comet ISON Before Perihelion
2013-11-22
As of mid-November, ISON is officially upon us. Using Hubble, we've taken our closest look yet at the innermost region of the comet, where geysers of sublimating ice are fueling a spectacular tail. Made from observations on November 2nd, the image combines pictures of ISON taken through blue and red filters. As we expect, the round coma around ISON's nucleus is blue and the tail has a redder hue. Ice and gas in the coma reflect blue light from the Sun, while dust grains in the tail reflect more red light than blue light. This is the most color separation we've seen so far in ISON -- that's because the comet, nearer than ever to the Sun, is brighter and more structured than ever before. We've certainly come a long way since Hubble started observing Comet ISON, way back in April. Of course, our eight-month retrospective pales in comparison with ISON's own journey, which started some 10,000 years ago in the Oort cloud. ISON will come closest to the Sun on November 28, a point in its orbit known as perihelion. What's remarkable here is that the entire ISON, this awesome, shimmery space tadpole, is being produced from a dusty ball of ice estimated to be a few kilometers in diameter. Compared to ISON's full extent, Hubble's latest image is tiny. It only shows the very base of the tail. Yet even in this closest closeup we've ever had, a single pixel spans 24 km across the comet. Now that Comet ISON is close, amateur astromers rule the day. But Hubble observations, including this latest image, are still providing key insights into the science and spectacle of a comet we hope will continue to impress. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is
NASA Astrophysics Data System (ADS)
Wooden, D. H.; Woodward, C. E.; Harker, D. E.; Kelley, M. S.; Sitko, M.; Reach, W. T.; De Pater, I.; Gehrz, R. D.; Kolokolova, L.; Cochran, A. L.; McKay, A. J.; Reardon, K.; Cauzzi, G.; Tozzi, G.; Christian, D. J.; Jess, D. B.; Mathioudakis, M.; Lisse, C. M.; Morgenthaler, J. P.; Knight, M. M.
2013-12-01
Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our early results. SOFIA (+FORCAST [1]) mid- to far-IR images and spectroscopy (~5-35 μm) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h≈1.18 AU). Dust characteristics, identified through the 10 μm silicate emission feature and its strength [2], as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 μm, and near 16, 19, 23.5, 27.5, and 33 μm are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) [3,4,5] and C/2001 Q4 (NEAT) [6]) to large and/or compact grains (e.g., C/2007 N4 (Lulin) [7] and C/2006 P1 (McNaught) [8]). Measurement of the crystalline peaks in contrast to the broad 10 and 20 μm amorphous silicate features yields the cometary silicate crystalline mass fraction [9], which is a benchmark for radial transport in our protoplanetary disk [10]. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals [11]. Only SOFIA can look for cometary organics in the 5-8 μm region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h< 0.4 AU, near Nov-20--Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) [12,13] suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures 4 settings: Na I, K, C2 to sample cometary organics (along with Mg I), and [O I] as a proxy for activity from water [14] (along with Si I and Fe I). State-of-the-art instruments that will also be employed include IBIS [15], which is a Fabry-Perot spectral imaging system that concurrently measures lines of Na, K, Ca II, or Fe, and ROSA (CSUN/QUB) [16], which is a rapid imager that simultaneously monitors Ca II or CN. From McMath-Pierce, the Solar-Stellar Spectrograph also will target ISON (320-900 nm, R~21,000, r_h<0.3 AU). Assuming survival, the intent is to target ISON over r_h<0.4 AU, characteristic of prior Na detections [12,13,17,18,19]. References: [1] Adams, J.D., et al. 2012, SPIE, 8446, 16; [2] Kelley, M.S., Wooden, D.H. 2009, PSS, 57, 1133; [3] Harker et al. 2002, ApJ, 580, 579; [4] Hayward et al. 2000, ApJ, 538, 428; [5] Hadamcik, E., Levasseur-Regourd, A.C. 2003, JQSRT, 79-80, 661; [6] Wooden, D.H. 2004, ApJL, 612, L77; [7] Woodward et al. 2011, AJ, 141, 181; [8] Kelley et al. 2010, LPSC, 41, #2375; [9] Kelley, M.S. et al. 2011, AAS, 211, 560; [10] Wooden, D.H. 2008, SSRv, 138, 75; [11] Lindsay et al. 2013, ApJ, 766, 54; [12] Preston, G. W. 1967, ApJ, 147, 718; [13] Slaughter, C.D. 1969, AJ, 74, 929; [14] McKay et al. 2012, Icarus, 222, 684; [15] Cavallini, F., 2006, Solar Phys., 236, 415; [16] Jess et al., 2010, Solar Phys, 261, 363; [17] Watanabe, J-I. et al. 2003, ApJ, 585, L159; [18] Leblanc, F. et al. 2008, A&A, 482, 293; [19] Fulle, M. et al. 2013, ApJL, 771, L21
NASA Technical Reports Server (NTRS)
Messenger, Scott; Nguyen, Ann
2017-01-01
Comets and asteroids may have contributed much of the Earth's water and organic matter. The Earth accretes approximately 4x10(exp 7) Kg of dust and meteorites from these sources every year. The least altered meteorites contain complex assemblages of organic compounds and abundant hydrated minerals. These carbonaceous chondrite meteorites probably derive from asteroids that underwent hydrothermal processing within the first few million years after their accretion. Meteorite organics show isotopic and chemical signatures of low-T ion-molecule and grain-surface chemistry and photolysis of icy grains that occurred in cold molecular clouds and the outer protoplanetary disk. These signatures have been overprinted by aqueously mediated chemistry in asteroid parent bodies, forming amino acids and other prebiotic molecules. Comets are much richer in organic matter but it is less well characterized. Comet dust collected in the stratosphere shows larger H and N isotopic anomalies than most meteorites, suggesting better preservation of primordial organics. Rosetta studies of comet 67P coma dust find complex organic matter that may be related to the macromolecular material that dominates the organic inventory of primitive meteorites. The exogenous organic material accreting on Earth throughout its history is made up of thousands of molecular species formed in diverse processes ranging from circumstellar outflows to chemistry at near absolute zero in dark cloud cores and the formative environment within minor planets. NASA and JAXA are currently flying sample return missions to primitive, potentially organic-rich asteroids. The OSIRIS-REx and Hayabusa2 missions will map their target asteroids, Bennu and Ryugu, in detail and return regolith samples to Earth. Laboratory analyses of these pristine asteroid samples will provide unprecedented views of asteroidal organic matter relatively free of terrestrial contamination within well determined geological context. Studies of extraterrestrial materials and returned samples are essential to understand the origins of Solar System organic material and the roles of comets and asteroids to providing the starting materials for the emergence of life.
NASA Technical Reports Server (NTRS)
Neufeld, David
2005-01-01
The research conducted during the reporting period is grouped into three sections: 1) Warm molecular gas in the interstellar medium (ISM); 2) Absorption line studies of "cold" molecular clouds; 3) Vaporization of comets around the AGB star IRC+10216.
A Brief Glossary of Commonly Used Astronomical Terms.
ERIC Educational Resources Information Center
Harrington, Sherwood
A glossary of 50 astronimical terms is presented. Among terms included are: Asteroid; Big Bang; Binary Star; Black Hole; Comet; Constellation; Eclipse; Equinox; Galaxy; Globular Cluster; Local Group; Magellanic Clouds; Nebula; Neutron Star; Nova; Parsec; Quasar; Radio Astronomy; Red Giant; Red Shift; S.E.T.I.; Solstice; Supernova; and White Dwarf.…
Life and the Universe: From Astrochemistry to Astrobiology
NASA Technical Reports Server (NTRS)
Allamandola, Louis J.
2013-01-01
Great strides have been made in our understanding of interstellar material thanks to advances in infrared astronomy and laboratory astrophysics. Ionized polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier astrochemical standards, are widespread and very abundant throughout much of the cosmos. In cold molecular clouds, the birthplace of planets and stars, interstellar atoms and molecules freeze onto extremely cold dust and ice particles forming mixed molecular ices dominated by simple species such as water, methanol, ammonia, and carbon monoxide. Within these clouds, and especially in the vicinity of star and planet forming regions, these ices and PAHs are processed by ultraviolet light and cosmic rays forming hundreds of far more complex species, some of biogenic interest. Eventually, these are delivered to primordial planets by comets and meteorites. As these materials are the building blocks of comets and related to carbonaceous micrometeorites, they are likely to be important sources of complex organic materials delivered to habitable planets (including the primordial Earth) and their composition may be related to the origin of life. This talk will focus on the chemical evolution of these cosmic materials and their relevance to astrobiology.
Revised models of interstellar nitrogen isotopic fractionation
NASA Astrophysics Data System (ADS)
Wirström, E. S.; Charnley, S. B.
2018-03-01
Nitrogen-bearing molecules in cold molecular clouds exhibit a range of isotopic fractionation ratios and these molecules may be the precursors of 15N enrichments found in comets and meteorites. Chemical model calculations indicate that atom-molecular ion and ion-molecule reactions could account for most of the fractionation patterns observed. However, recent quantum-chemical computations demonstrate that several of the key processes are unlikely to occur in dense clouds. Related model calculations of dense cloud chemistry show that the revised 15N enrichments fail to match observed values. We have investigated the effects of these reaction rate modifications on the chemical model of Wirström et al. (2012) for which there are significant physical and chemical differences with respect to other models. We have included 15N fractionation of CN in neutral-neutral reactions and also updated rate coefficients for key reactions in the nitrogen chemistry. We find that the revised fractionation rates have the effect of suppressing 15N enrichment in ammonia at all times, while the depletion is even more pronounced, reaching 14N/15N ratios of >2000. Taking the updated nitrogen chemistry into account, no significant enrichment occurs in HCN or HNC, contrary to observational evidence in dark clouds and comets, although the 14N/15N ratio can still be below 100 in CN itself. However, such low CN abundances are predicted that the updated model falls short of explaining the bulk 15N enhancements observed in primitive materials. It is clear that alternative fractionating reactions are necessary to reproduce observations, so further laboratory and theoretical studies are urgently needed.
Search for Dormant Comets in Near-Earth Space
NASA Astrophysics Data System (ADS)
Kim, Yoonyoung
2013-06-01
It is considered that comets have been injected into near-Earth space from outer region (e.g. Kuiper-belt region), providing rich volatile and organic compounds to the earth. Some comets are still active while most of them are dormant with no detectable tails and comae. Here we propose to make a multi-band photometric observation of near-Earth objects (NEOs) with comet-like orbits. We select our targets out of infrared asteroidal catalogs based on AKARI and WISE observations. With a combination of taxonomic types by Subaru observation and albedos by AKARI or WISE, we aim to dig out dormant comet candidates among NEOs. Our results will provide valuable information to figure out the dynamical evolution and fate of comets. We would like to emphasize that this is the first taxonomic survey of dormant comets to utilize the infrared data archive with AKARI and WISE.
NASA Astrophysics Data System (ADS)
Michel, P.
2008-09-01
The population of Near-Earth Objects (NEOs) is composed of small bodies of various origins. Groundbased observational programs have been developed to perform their inventory and to determine their physical properties. However, these observations contain many biases and the total population of NEOs with diameters down to a few hundreds of meters has not been identified yet. In recent years, the main sources of NEOs have been characterized [1]. Most of these bodies come from the asteroid main belt and the Jupiter-family comets and their source regions are linked to transport mechanisms (mean motion and secular resonances, slow diffusion mechanisms) to the NEO-space. It has then been possible to construct a complete model of the steady-state orbital, size and albedo distribution of NEOs and to determine the level of contribution of each of their sources, including the contribution of Jupiter-family comets. However, nothing is known regarding the contribution of longperiod comets. Physical observations have been conducted in order to identify potential dormant or extinct comets among small bodies in the NEO population and to determine the fraction of "comet candidates within the total NEO population. Combining the results of these observations with our model of NEO population to evaluate source region probabilities [1], it was found that 8 +/- 5% of the total asteroid-like NEO population may have originated as comets from the outer Solar System [2]. In the population of Main Belt (MB) asteroids, three members are known to display transient comet-like physical characteristics, including prolonged periods of dust emission leading to the formation of radiation pressure-swept tails [3]. These physical properties are most naturally explained as the result of sub-limation of near-surface ice from what are, dynamically, mainbelt asteroids (hence the name "main-belt comets" (MBCs) or, equivalently "icy asteroids"). No pausible dynamical path to the asteroid belt from the cometary reservoirs in the Oort cloud or Kuiper belt has been established. Thus, we may have an unsuspected icy region closer to the Sun than expected. However, it has also been suggested that numerous comets may have been captured during a violent period of planetary orbital evolution in the early stages of our Solar System [4]. Most of these bodies experience collisions during their lifetime, which can either disrupt them or modify their physical properties. In particular, collisions are suspected to be the triggering mechanism for the activation of MBCs. Thus the collisional process needs a good understanding in order to determine its contribution in the evolution of these small bodies, as a function of their physical properties. We have recently made a major improvement in the simulations of a small body disruption by introducing a model of fragmentation of porous material which will allows us to study the impact process on cometary bodies [5]. Moreover, for bodies dominated by gravity, our simulations includes the explicit computation of the formation of aggregates during the gravitational reaccumulation of small fragments, allowing us to obtain information on their spin, the number of boulders composing them or lying on their surface, and their shape. We will present the first and preliminary results of this process taking as examples some asteroid families that we reproduced successfully with our previous simulations [6], [7], [8], [9], [10], and their possible implications on the properties of small bodies generated by a disruption. Such information can for instance be compared with data provided by the Japanese space mission Hayabusa of the asteroid Itokawa, a body now understood to be a fragment of a larger parent body. For the population of comets, improving our understanding of their collisional response can then allow us to better characterize their collisional evolution, lifetime and other properties [11] which can have some implications on their contribution in "asteroidal" populations. It is also clear that future space missions to small bodies devoted to precise insitu analysis and sample return will allow us to improve our understanding on the physical properties of these objects, and to check whether our theoretical and numerical works are valid.
Comet C/2012 S1 (ISON)'s carbon-rich and micron-size-dominated coma dust
NASA Astrophysics Data System (ADS)
Wooden, D.; De Buizer, J.; Kelley, M.; Sitko, M.; Woodward, C.; Harker, D.; Reach, W.; Russell, R.; Kim, D.; Yanamadra-Fisher, P.; Lisse, C.; de Pater, I.; Gehrz, R.; Kolokolova, L.
2014-07-01
Comet C/2012 S1 (ISON) was unique in that it was a dynamically new comet derived from the Nearly Isotropic Oort cloud reservoir of comets with a sun-grazing orbit. We present thermal models for comet ISON (r_h ˜ 1.15 au, 2013-Oct-25 11:30 UT) that reveal comet ISON's dust was carbon-rich and dominated by a steep (and therefor narrow) grain size distribution (GSD) dominated by ˜ micron-sized grains. We constrained the models by our SOFIA FORCAST photometry at 11.1, 19.7 and 31.5 μ m and by a silicate feature strength of ˜1.1 and an 8-13 μ m continuum greybody color temperature of ˜275-280 K (using T_{bb}∝ {r}_h^{-0.5} and T_{bb}˜260-265 K from Subaru+COMICS, 2013-Oct-19 UT) [1,2]. Spectra of comet ISON with IRTF+BASS (2013-Nov-11-12 UT) also show a silicate feature strength of ˜1.1 as well as an 11.2 μ m forsterite peak [3]. Our thermal models [6], which employ 0.1-1000 μ m grains, yield constraints for the dust composition as well as GSD parameters of slope, peak grain size, porosity: ISON's dust has a low silicate-to-amorphous carbon ratio (˜1:9), the GSD has a steep slope (N≃4.5), a peak grain radius of ˜0.7 μ m, and moderately porous grains. Specifically, the 8-13 μ m continuum color temperature implies submicron- to micron-size grains and the steep fall off of the SOFIA far-IR photometry requires the GSD to have fewer relative numbers of larger and cooler grains compared to smaller and hotter grains. A IR proxy for the dust production rate is ɛ f ρ ˜ 1500 cm [4], which is akin to but larger than Afρ in scattered light (2013-Oct-20 UT, Afρ=796 cm(±5 %) in V-band from Swift) [5]. Also, ISON had a moderate-to-low dust-to-gas ratio [6]. Comet ISON's dust composition and GSD properties are distinct from the few well-studied long-period Nearly Isotropic Comets (NICs) that all had 'typical' GSD slopes (3.4≤N≤3.7) and silicate-to-amorphous carbon ratios ≫1 as well as the following properties: C/1995 O1 (Hale-Bopp)[7,8,9,10] and C/2001 Q4 (NEAT)[11] had smaller and highly porous grains, whereas C/2007 N4 (Lulin)[12] and C/2006 P1 (McNaught)[13] had larger and compact porous grains. Radial transport to comet-forming disk distances (≥ 20 au) is easier for smaller grains than for larger grains (≤ 1 μ m vs.˜20 μ m-like Stardust terminal particles) [14]. Perhaps Comet ISON formed either earlier in disk evolution whereby larger grains did not have the time to be transported to distances beyond Neptune, or the comet formed so far out in the disk that larger grains did not traverse such large radial distances. The high carbon-content of ISON's refractory dust appears to be complimented by the presence of limited-lifetime organic (CHON-like) grain materials: preliminary analyses of near-IR and high-resolution optical spectra indicate that gas-phase daughter molecules C_2, CN, and CH were more abundant than their parent molecules (HCN, C_2H_2, C_2H_6, measured in the near-IR) [15]. Dust composition as well as grain size distribution parameters (slope, peak grain size, and porosity) give clues to comet origins [16,17].
Scenarios for the dynamics of comet 67P/Churyumov-Gerasimenko over the past 500 kyr
NASA Astrophysics Data System (ADS)
Guzzo, Massimiliano; Lega, Elena
2017-07-01
The complex dynamics of 67P has the typical uncertainties of the Jupiter-family comets. The Rosetta mission provided a unique opportunity to dissipate them with fresh experimental data. We aim to constrain the residence time of the comet in a dynamics dominated by Jupiter and Saturn by comparing statistics of large sets of numerical integrations with assumptions on the erosion experienced by the comet. We integrated backward for 150 kyr 2000 clones of 67P selected from preliminary integrations of 500 000 clones. We find that the clones that did not arrive from hyperbolic/parabolic orbits have been mostly in the region dominated by Jupiter and Saturn in the last 150 kyr; they transit easily between dynamics dominated by Jupiter, dynamics also dominated by Saturn and, with smaller probability, by Saturn alone. Many clones were injected in the Jupiter family from hyperbolic orbits and orbits of large periods P > 500 yr, but none of the clones was injected from a Uranus-dominated dynamics through sequences of planetary scatterings, while 5 per cent of the clones were injected on this route in 500 kyr. 60 per cent of the clones had already been in an orbit with q < 1.5 au before 1959. Compatible with the uncertainties on the long-term model of non-gravitational forces, we conclude that 67P was injected from a cometary reservoir into a dynamics dominated by Jupiter and Saturn at an epoch that we estimate as being in between 30 and 150 kyr ago; this interval should be extended by considering periods of dormancies.
Episodic Aging and End States of Comets
NASA Technical Reports Server (NTRS)
Sekanina, Zdenek
2008-01-01
It is known that comets are aging very rapidly on cosmic scales, because they rapidly shed mass. The processes involved are (i) normal activity - sublimation of ices and expulsion of dust from discrete emission sources on and/or below the surface of a comet's nucleus, and (ii) nuclear fragmentation. Both modes are episodic in nature, the latter includes major steps in the comet's life cycle. The role and history of dynamical techniques used are described and results on mass losses due to sublimation and dust expulsion are reviewed. Studies of split comets, Holmes-like exploding comets, and cataclysmically fragmenting comets show that masses of 10 to 100 million tons are involved in the fragmentation process. This and other information is used to investigate the nature of comets' episodic aging. Based on recent advances in understanding the surface morphology of cometary nuclei by close-up imaging, a possible mechanism for large-scale fragmentation events is proposed and shown to be consistent with evidence available from observations. Strongly flattened pancake-like shapes appear to be required for comet fragments by conceptual constraints. Possible end states are briefly examined.
Geochemical evidence for a comet shower in the late Eocene
Farley, K.A.; Montanari, A.; Shoemaker, E.M.; Shoemaker, C.S.
1998-01-01
Analyses of pelagic limestones indicate that the flux of extraterrestrial helium-3 to Earth was increased for a 2.5-million year (My) period in the late Eocene. The enhancement began ~1 My before and ended ~1.5 My after the major impact events that produced the large Popigai and Chesapeake Bay craters ~36 million years ago. The correlation between increased concentrations of helium-3, a tracer of fine-grained interplanetary dust, and large impacts indicates that the abundance of Earth-crossing objects and dustiness in the inner solar system were simultaneously but only briefly enhanced. These observations provide evidence for a comet shower triggered by an impulsive perturbation of the Oort cloud.
The study of the physics of cometary nuclei
NASA Technical Reports Server (NTRS)
Whipple, Fred L.
1987-01-01
The numerical calculations of stability for many possible orbits of the double nucleus for P/Holmes showed that the likelihood of such a precollision history was quite high. A number of investigations were made of hypothetical orbits for particles about the asteroid Amphitrite to test for stability. The purpose was to establish more favorable fly-by orbits close to the asteroid for the Galileo missions en-route to Jupiter, reducing the collisional hazards. A statistical study was made of the orbits of long-period comets with small original semi-major axes recently perturbed from the great Opik-Oort Cloud. The results from the space missions to Halley's comet are partially reported in the two papers in the appendices.
Glycolaldehyde and Ethylene Glycol on Nearly Isotropic Comets
NASA Astrophysics Data System (ADS)
Butler, Jayden; Zellner, Nicolle; McCaffrey, Vanessa
2017-01-01
The delivery of glycolaldehyde (GLA) and ethylene glycol (EG) could be could be important for understanding the origin of life. GLA, the simplest sugar, is a building block for ribose, the backbone of RNA; EG is a reduced alcohol variant of GLA, found to be created by the impact of GLA under simulated cometary impact conditions (McCaffrey et al. 2014). GLA and EG have been found in regions of the interstellar medium and recently on nearly isotropic comets (NICs), which originate in the Oort Cloud. NICs are long period comets (P > 200 years) and have orbits that are nearly randomly inclined to the ecliptic plane (Mumma & Charnley et al. 2011). Based on impact experiments that assess survivability of these molecules (McCaffrey et al. 2014), we aim to determine the mass of GLA and EG that could have been delivered on comets since the formation of the Solar System. The focus of the current study is to determine the abundances of GLA and EG on C/1995 O1 (Hale-Bopp), C/2012 F6 (Lemmon), C/2013 R1 (Lovejoy 2013), and C/2014 Q2 (Lovejoy 2014), all of which have been found to possess at least one of these molecules. Using published values of observed production rates of water, GLA, and EG (e.g., Biver et al. 2015), we have estimated a range of masses of these molecules of interest on their host comets. Even with a high degree of uncertainty in comet diameters and volumes, we estimate that 109 to 1017 kg of these molecules could be delivered by a single comet, and that 108 to 1017 kg could have survived the impact.
NASA Technical Reports Server (NTRS)
Mumma, M. J.; {agamomo. :/; Vo; DiSanti, M. A.; Bonev, B. P.; Lippi, M.; Boehnhardt, H.; Keane, J. V.; Meech, K. J.; Blake, G. A.
2012-01-01
We quantified primary volatiles in comet C/2009 Pl (Garradd) through pre- and post-perihelion observations acquired during its apparition in 2011-12 [1,2,3]. Detected volatiles include H2O, CO, CH4, C2H2, C2H6, HCN, NH3, H2CO, and CH3OH. We present production rates and chemical abundance ratios (relative to water) for all species, and I-D spatial profiles for multiple primary volatiles. We discuss these findings in the context of an emerging taxonomy based on primary volatiles in comets [4]. We used three spectrometer/telescope combinations. On UT 20ll August 7 (Rh 2.4 AU) and September 17-21 (Rh 2.0 AU), we used CRIRES at ESO's Very Large Telescope (VLT) [1]. On September 8 and 9 (Rh 2.1 AU), we used NIRSPEC at Keck-2 and CSHELL at IRTF [2]. Using NIRSPEC on October 13 and 2012 January 08 (Rh 1.83 and 1.57 AU, respectively), we detected nine primary volatiles pre-perihelion, and six post-perihelion [3]. CO was enriched in Garradd while C2H2 was strongly depleted. C2H6 and CH3OH displayed abundances close to those measured for the majority of Oort cloud comets observed to date. The high fractional abundance of CO identifies comet C12009 P1 as a CO-rich comet. Spatial profiles revealed notable differences among individual primary species. Given the relatively large heliocentric distance of C/2009 Pl, we explored the effect of water not being fully sublimated within our field of view and we identi$, the "missing" water fraction needed to reconcile the retrieved abundance ratios with the mean values found for "organics-normal" comets.
THE INNER COMA OF COMET C/2012 S1 (ISON) AT 0.53 AU AND 0.35 AU FROM THE SUN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonev, Boncho P.; Villanueva, Geronimo L.; Paganini, Lucas
2014-11-20
Using long-slit spectroscopy at the NASA Infrared Telescope Facility, we extracted H{sub 2}O production rates and spatial profiles of gas rotational temperature and molecular column abundance in comet C/2012 S1 ISON, observed at heliocentric distances of 0.53 and 0.35 AU. These measurements uniquely probed the physical environment in the inner collisional coma of this comet during its first (and last) approach to the Sun since being emplaced in the Oort Cloud some 4.5 billion years ago. Our observations revealed a comet evolving on various timescales, both over hours and days. At 0.35 AU, ISON showed a considerable decrease in water production ratemore » in less than 2 hr, likely declining from a major outburst. Our measured temperature spatial distributions reflect the competition between the processes that cause heating and cooling in the coma, and also provide insight about the prevalent mechanism(s) of releasing gas-phase H{sub 2}O. The observed temperatures suggest that the comet was likely ejecting icy material continuously, which sublimated in the coma and heated the ambient gas, augmenting fast H-atoms produced by H{sub 2}O photolysis. ISON adds to the very limited sample of comets for which spatial-spectral studies of water temperatures have been conducted. These studies are now feasible and can be extended to comets having a variety of gas production rates. Continued synergy of such observations with both space missions like Rosetta and with physical models is strongly encouraged in order to gain a deeper understanding of the processes in the inner collisional zone of the cometary coma.« less
Resonance and Capture of Jupiter Comets
NASA Astrophysics Data System (ADS)
Koon, W. S.; Lo, M. W.; Marsden, J. E.; Ross, S. D.
A number of Jupiter family comets such as Oterma and Gehrels 3 make a rapid transition from heliocentric orbits outside the orbit of Jupiter to heliocentric orbits inside the orbit of Jupiter and vice versa. During this transition, the comet can be captured temporarily by Jupiter for one to several orbits around Jupiter. The interior heliocentric orbit is typically close to the 3:2 resonance while the exterior heliocentric orbit is near the 2:3 resonance. An important feature of the dynamics of these comets is that during the transition, the orbit passes close to the libration points L_1 and L_2, two of the equilibrium points for the restricted three-body problem for the Sun-Jupiter system. Studying the libration point invariant manifold structures for L_1 and L_2 is a starting point for understanding the capture and resonance transition of these comets. For example, the recently discovered heteroclinic connection between pairs of unstable periodic orbits (one around the L_1 and the other around L_2) implies a complicated dynamics for comets in a certain energy range. Furthermore, the stable and unstable invariant manifold `tubes' associated to libration point periodic orbits, of which the heteroclinic connections are a part, are phase space conduits transporting material to and from Jupiter and between the interior and exterior of Jupiter's orbit.
The impact of comet Shoemaker-Levy 9 on the Jovian magnetosphere
NASA Technical Reports Server (NTRS)
Herbert, Floyd
1994-01-01
By the time of the impact of comet P/Shoemaker-Levy 9 with Jupiter, the freshly-broken surfaces of the accompanying rubble will have been outgassing for about two years, and will have produced an expanding and co-moving cloud of gas hundreds of R(sub J) across. Much of this gas, escaping from the cometary fragments at low (equal to or less than 1 km/s) speed, will arrive in the Jovian magnetopshere contemporaneously with the comet and drift through the magnetosphere. This gas, as it is photoionized, will be picked up primarily in the outer magnetosphere and the resulting high-energy ions should intensify magnetospheric processes, such as Io plasma torus and auroral emissions, that are thought to be powered by outer magnetospheric mass loading. If the composition of the comet is similar to that of P/Halley, the power available from mass loading should be comparable to that driving the aurora (10(exp 14) W) and at least an order of magnitude larger than that exciting the plasma torus for several weeks or months. Measurement of these emissions during and after the cometary encounter may constrain the mechanisms for energization of magnetospheric charged particle populations and magnetospheric transport processes.
COMETWATCHERS: Bringing Research into the Undergraduate Astronomy Curriculum
NASA Astrophysics Data System (ADS)
Womack, M.
2000-05-01
Integrating research with education has been an evolving process for me and the "Cometwatchers", the students with whom I work. What started as a totally extracurricular activity, has become well-integrated into St. Cloud State Univerity's upper-division courses on Solar System Astronomy and Observational Astronomy. Maintaining a collaboration with six to eight students is a challenge that is made easier and more efficient when we modularize the projects, utilize each person's expertise, hold weekly meetings, require students to write guides and manuals to instruct others, and require students to write up and present their work at meetings. This also helps students to identify and evaluate their contributions to the research. Here I profile the research component in two courses at SCSU that use a student-run optical observatory equipped with a 0.4-m telescope, CCD, UBVRI photometry filters and a fiber-optic spectrograph. Results from some focused research projects are also discussed, including an optical imaging archive of Comet Hale-Bopp, derivation of dust expansion velocities from comet images, analysis of the visible light-curve of comet Hale-Bopp, spectral analysis of millimeter-wavelength ``datacubes" of HCO+ and of other carbon-bearing molecular spectra in comet Hale-Bopp.
Using the EUV to Weigh a Sun-Grazing Comet as it Disappears in the Solar Corona
NASA Technical Reports Server (NTRS)
Pesnell, William Dean; Schrijiver, Carolus J.; Brown, John C.; Battams, Karl; Saint-Hilaire, Pascal; Hudson Hugh S.; Lui, Wei
2012-01-01
On July 6,2011, the Atmospheric Imaging Assembly (AlA) on the Solar Dynamics Observatory (SDO) observed a comet in most of its EUY passbands. The comet disappeared while moving through the solar corona. The comet penetrated to 0.146 solar radii ($\\simapprox.100,000 km) above the photosphere before its EUY faded. Before then, the comet's coma and a tail were observed in absorption and emission, respectively. The material in the variable tail quickly fell behind the nucleus. An estimate of the comet's mass based on this effect, one derived from insolation, and one using the tail's EUY brightness, all yield $\\sim 50$ giga-grams some 10 minutes prior to the end of its visibility. These unique first observations herald a new era in the study of Sun-grazing comets close to their perihelia and of the conditions in the solar corona and solar wind. We will discuss the observations and interpretation of the comet by SDO as well as the coronagraph observations from SOHO and STEREO. A search of the SOHO comet archive for other comets that could be observed in the SDO; AlA EUY channels will be described
Interstellar and Solar Nebula Materials in Cometary Dust
NASA Technical Reports Server (NTRS)
Messenger, Scott; Nakamura-Messenger, Keiko; Keller, Lindsay; Nguyen, Ann; Clemett, Simon
2017-01-01
Laboratory studies of cometary dust collected in the stratosphere and returned from comet 81P/Wild 2 by the Stardust spacecraft have revealed ancient interstellar grains and molecular cloud organic matter that record a range of astrophysical processes and the first steps of planetary formation. Presolar materials are rarer meteorites owing to high temperature processing in the solar nebula and hydrothermal alteration on their asteroidal parent bodies. The greater preservation of presolar materials in comets is attributed to their low accretion temperatures and limited planetary processing. Yet, comets also contain a large complement of high temperature materials from the inner Solar System. Owing to the limited and biased sampling of comets to date, the proportions of interstellar and Solar System materials within them remains highly uncertain. Interstellar materials are identified by coordinated isotopic, mineralogical, and chemical measurements at the scale of individual grains. Chondritic porous interplanetary dust particles (CP IDPs) that likely derive from comets are made up of 0.1 - 10 micron-sized silicates, Fe-Ni-sulfides, oxides, and other phases bound by organic material. As much as 1% of the silicates are interstellar grains that have exotic isotopic compositions imparted by nucleosynthetic processes in their parent stars. Crystalline silicates in CP IDPs dominantly have normal isotopic compositions and probably formed in the Solar System. 81P samples include isotopically normal refractory minerals that resemble Ca-Al rich inclusions and chondrules common in meteorites. The origins of sub-micron amorphous silicates in IDPs are not certain, but at least a few % of them are interstellar grains. The remainder have isotopic compositions consistent with Solar System origins and elemental compositions that are inconsistent with interstellar grain properties, thus favoring formation in the solar nebula [4]. The organic component in comets and primitive meteorites has large enrichments in D/H and N-15/N-14 relative to terrestrial materials. These isotopic signatures are probably due to low temperature chemical processes in cold molecular clouds or the outermost reaches of the protoplanetary disk. The greatest isotopic anomalies are found in sub-micron organic nanoglobules that show chemical signatures of interstellar chemistry. The observation that cometary dust is mostly composed of isotopically normal minerals within isotopically anomalous organic matter is difficult to reconcile with the formation models of each component. The mineral component likely formed in high temperature processes in the inner Solar System, while the organic fraction shows isotopic and chemical signatures of formation near 10 K. Studying more primitive remnants of the Solar System starting materials would help in resolving this paradox. Comets formed across a vast expanse of the outer disk under differing thermal and collisional regimes, and some are likely to be better preserved than others. Finding truly pristine aggregates of presolar materials may require return of a pristine sample of comet nucleus material.
Prediction of meteor shower of comet 161P/2004 V2
NASA Astrophysics Data System (ADS)
Tomko, D.; Neslušan, L.
2014-07-01
We deal with theoretical meteoroid stream of Halley-type comet 161P/2004 V2. For two perihelion passages in the far past, we model the stream and follow its dynamical evolution until the present. We predict the characteristics of potential meteor showers according to the dynamical properties of artificial particles currently approaching the orbit of the Earth. Our dynamical study reveals that the comet 161P/2004 V2 could have an associated Earth-observable meteor shower, although no significant number of artificial particles are identified with real, photographic, video, or radar meteors. However, the mean radiant of the shower is predicted on the southern sky (its declination is about -23 grad) where a relatively low number of real meteors has been detected and, therefore, recorded in the databases used. The shower of 161P has a compact radiant area and a relatively large geocentric velocity of ~ 53 km/s.
Comets: Dirty snowballs or icy dirtballs
NASA Astrophysics Data System (ADS)
Keller, H. U.
1989-12-01
The observations of comet Halley show that the non-volatile (dust) component of the cometary nucleus has become more dominant if compared to the perception based on the icy conglomerate nucleus. The in-situ observations on the Giotto spacecraft revealed an excess of large dust particles that dominate the mass distribution. Even larger particles were derived from the attitude changes of the spacecraft bridging the gap to the cloud of particles observed by radar techniques. A dust to gas ratio larger than one was derived for comet Halley. The importance of dust for the structure of the nucleus is corroborated by the amount of particles and their lifetime in meteor streams. Fireballs show that large (meter size) objects separate from the nucleus and are stable enough to survive hundreds of orbital periods. From the various lines of evidence it is concluded that the structure of cometary nuclei is determined by the non-volatile component rather than by ice or snow. Laboratory models based on icy agglomerations do not seem realistic as nucleus analogs.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The sun rises behind Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., where the Boeing Delta II rocket carrying the Deep Impact spacecraft waits for launch. Gray clouds above the horizon belie the favorable weather forecast for the afternoon launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
Sources of Water for Oceans on Planets
NASA Astrophysics Data System (ADS)
Owen, T. C.
2001-12-01
Studies of D/H in the H2O carried by three Oort cloud comets have shown that such comets could not have contributed all of the water in the Earth's oceans. The extent of the cometary contribution depends on the value of D/H in water brought directly to the planet as hydrous minerals or adsorbed solar nebula H2O. That some cometary water was in fact delivered to the inner planets is strongly suggested by the value of D/H in Shergottite minerals when viewed in the context of other isotope geochemistry on Mars (Owen and Bar-Nun, FARADAY DISCUSSIONS 109, 453-462 (1998)). This scenario is also consistent with noble gas and siderophile element abundances on Earth. The identification of comet-produced water vapor around the aging carbon star IRC +10216 (Melnick et al., NATURE 412, 160-163 (2001)) provides concrete support for the widely held assumption that a cometary reservoir for the irrigation of inner planets should be a common feature of planetary systems throughout the galaxy.
Continued Investigations of the Accretion History of Extraterrestrial Matter over Geologic Time
NASA Technical Reports Server (NTRS)
Farley, Kenneth
2001-01-01
This grant supported our ongoing project to characterize the accretion rate of interplanetary dust particles (IDPs) to Earth over geologic time using He-3 as a tracer. IDPs are derived from collisions in the asteroid belt and from disaggregation of active comets. Owing to their small size (few to few hundred micrometers diameter) these particles spiral into the sun under Poynting-Robertson drag typically in less than a few tens of kyrs. Thus IDPs must be continually resupplied to the zodiacal cloud, and because the processes of IDP production are likely to be sporadic, time variation in the IDP accretion rate to Earth is likely to be time-varying. For example, major asteroidal collisions and comet showers should greatly enhance the IDP accretion rate. Our ultimate objective (still ongoing) is to document this time variance so as to better understand the history of the solar system, the source of IDPs accreting to Earth, and the details of the mechanism by which particles are captured by Earth. To document variations in IDP accretion rate through time we use He-3 as a tracer. This isotope is in extremely low abundance in terrestrial matter, but IDPs have very high concentrations of He-3 from implantation of solar wind ions. By measuring He-3 in seafloor sediments, we can estimate the IDP accretion rate for at least the last few hundred Myrs. Under an earlier NASA grant we identified the existence of a large increase in He-3 flux in the Late Eocene (35 Myr ago), coincident with the two largest impact craters of the Cenozoic Era. The simplest interpretation of this observation is the occurrence of a shower of long period comets at that time, simultaneously increasing the impact cratering probability and accretion rate of IDPs to Earth (Farley et al., 1998). Comet showers produced by stellar perturbation of the Oort cloud should be fairly common in the geologic record, so this is not an unreasonable interpretation of our observations.
A Protosolar Nebula Origin for the Ices Agglomerated by Comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Mousis, O.; Lunine, J. I.; Luspay-Kuti, A.; Guillot, T.; Marty, B.; Ali-Dib, M.; Wurz, P.; Altwegg, K.; Bieler, A.; Hässig, M.; Rubin, M.; Vernazza, P.; Waite, J. H.
2016-03-01
The nature of the icy material accreted by comets during their formation in the outer regions of the protosolar nebula (PSN) is a major open question in planetary science. Some scenarios of comet formation predict that these bodies agglomerated from crystalline ices condensed in the PSN. Concurrently, alternative scenarios suggest that comets accreted amorphous ice originating from the interstellar cloud or from the very distant regions of the PSN. On the basis of existing laboratory and modeling data, we find that the N2/CO and Ar/CO ratios measured in the coma of the Jupiter-family comet 67P/Churyumov-Gerasimenko by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument on board the European Space Agency’s Rosetta spacecraft match those predicted for gases trapped in clathrates. If these measurements are representative of the bulk N2/CO and Ar/CO ratios in 67P/Churyumov-Gerasimenko, it implies that the ices accreted by the comet formed in the nebula and do not originate from the interstellar medium, supporting the idea that the building blocks of outer solar system bodies have been formed from clathrates and possibly from pure crystalline ices. Moreover, because 67P/Churyumov-Gerasimenko is impoverished in Ar and N2, the volatile enrichments observed in Jupiter’s atmosphere cannot be explained solely via the accretion of building blocks with similar compositions and require an additional delivery source. A potential source may be the accretion of gas from the nebula that has been progressively enriched in heavy elements due to photoevaporation.
Are There Many Inactive Jupiter-Family Comets among the Near-Earth Asteroid Population?
NASA Astrophysics Data System (ADS)
Fernández, Julio A.; Gallardo, Tabaré; Brunini, Adrián
2002-10-01
We analyze the dynamical evolution of Jupiter-family (JF) comets and near-Earth asteroids (NEAs) with aphelion distances Q>3.5 AU, paying special attention to the problem of mixing of both populations, such that inactive comets may be disguised as NEAs. From numerical integrations for 2×10 6 years we find that the half lifetime (where the lifetime is defined against hyperbolic ejection or collision with the Sun or the planets) of near-Earth JF comets (perihelion distances q<1.3 AU) is about 1.5×10 5 years but that they spend only a small fraction of this time (˜ a few 10 3 years) with q<1.3 AU. From numerical integrations for 5×10 6 years we find that the half lifetime of NEAs in "cometary" orbits (defined as those with aphelion distances Q>4.5 AU, i.e., that approach or cross Jupiter's orbit) is 4.2×10 5 years, i.e., about three times longer than that for near-Earth JF comets. We also analyze the problem of decoupling JF comets from Jupiter to produce Encke-type comets. To this end we simulate the dynamical evolution of the sample of observed JF comets with the inclusion of nongravitational forces. While decoupling occurs very seldom when a purely gravitational motion is considered, the action of nongravitational forces (as strong as or greater than those acting on Encke) can produce a few Enckes. Furthermore, a few JF comets are transferred to low-eccentricity orbits entirely within the main asteroid belt ( Q<4 AU and q>2 AU). The population of NEAs in cometary orbits is found to be adequately replenished with NEAs of smaller Q's diffusing outward, from which we can set an upper limit of ˜20% for the putative component of deactivated JF comets needed to maintain such a population in steady state. From this analysis, the upper limit for the average time that a JF comet in near-Earth orbit can spend as a dormant, asteroid-looking body can be estimated to be about 40% of the time spent as an active comet. More likely, JF comets in near-Earth orbits will disintegrate once (or shortly after) they end their active phases.
The Dynamical Classification of Centaurs which Evolve into Comets
NASA Astrophysics Data System (ADS)
Wood, Jeremy R.; Horner, Jonathan; Hinse, Tobias; Marsden, Stephen; Swinburne University of Technology
2016-10-01
Centaurs are small Solar system bodies with semi-major axes between Jupiter and Neptune and perihelia beyond Jupiter. Centaurs can be further subclassified into two dynamical categories - random walk and resonance hopping. Random walk Centaurs have mean square semi-major axes (< a2 >) which vary in time according to a generalized diffusion equation where < a2 > ~t2H. H is the Hurst exponent with 0 < H < 1, and t is time. The behavior of < a2 > for resonance hopping Centaurs is not well described by generalized diffusion.The aim of this study is to determine which dynamical type of Centaur is most likely to evolve into each class of comet. 31,722 fictional massless test particles were integrated for 3 Myr in the 6-body problem (Sun, Jovian planets, test particle). Initially each test particle was a member of one of four groups. The semi-major axes of all test particles in a group were clustered within 0.27 au from a first order, interior Mean Motion resonance of Neptune. The resonances were centered at 18.94 au, 22.95 au, 24.82 au and 28.37 au.If the perihelion of a test particle reached < 4 au then the test particle was considered to be a comet and classified as either a random walk or resonance hopping Centaur. The results showed that over 4,000 test particles evolved into comets within 3 Myr. 59% of these test particles were random walk and 41% were resonance hopping. The behavior of the semi-major axis in time was usually well described by generalized diffusion for random walk Centaurs (ravg = 0.98) and poorly described for resonance hopping Centaurs (ravg = 0.52). The average Hurst exponent was 0.48 for random walk Centaurs and 0.20 for resonance hopping Centaurs. Random walk Centaurs were more likely to evolve into short period comets while resonance hopping Centaurs were more likely to evolve into long period comets. For each initial cluster, resonance hopping Centaurs took longer to evolve into comets than random walk Centaurs. Overall the population of random walk Centaurs averaged 143 kyr to evolve into comets, and the population of resonance hopping Centaurs averaged 164 kyr.
NASA Astrophysics Data System (ADS)
Dybczyński, Piotr A.; Królikowska, Małgorzata
2015-03-01
In the first part of this research we extensively investigated and carefully determined osculating, original (when entering Solar system) and future (when leaving it), orbits of 22 near-parabolic comets with small perihelion distance (qosc < 3.1 au), discovered in years 2006-2010. Here, we continue this research with a detailed study of their past and future motion during previous and next orbital periods under the perturbing action of our Galactic environment. At all stages of our dynamical study, we precisely propagate in time the observational uncertainties of cometary orbits. For the first time in our calculations, we fully take into account individual perturbations from all known stars or stellar systems that closely (less than 3.5 pc) approach the Sun during the cometary motion in the investigated time interval of several million years. This is done by means of a direct numerical integration of the N-body system comprising of a comet, the Sun and 90 potential stellar perturbers. We show a full review of various examples of individual stellar action on cometary motion. We conclude that perturbations from all known stars or stellar systems do not change the overall picture of the past orbit evolution of long-period comets. Their future motion might be seriously perturbed during the predicted close approach of Gliese 710 star but we do not observe significant energy changes. The importance of stellar perturbations is tested on the whole sample of 108 comets investigated by us so far and our previous results, obtained with only Galactic perturbations included, are fully confirmed. We present how our results can be used to discriminate between dynamically new and old near-parabolic comets and discuss the relevance of the so-called Jupiter-Saturn barrier phenomenon. Finally, we show how the Oort spike in the 1/a-distribution of near-parabolic comets is built from both dynamically new and old comets. We also point out that C/2007 W1 seems to be the first serious candidate for interstellar provenance.
The evolving activity of the dynamically young comet C/2009 P1 (Garradd)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodewits, D.; Farnham, T. L.; A'Hearn, M. F.
2014-05-01
We used the Ultraviolet-Optical Telescope on board Swift to observe the dynamically young comet C/2009 P1 (Garradd) from a heliocentric distance of 3.5 AU pre-perihelion until 4.0 AU outbound. At 3.5 AU pre-perihelion, comet Garradd had one of the highest dust-to-gas ratios ever observed, matched only by comet Hale-Bopp. The evolving morphology of the dust in its coma suggests an outburst that ended around 2.2 AU pre-perihelion. Comparing slit-based measurements and observations acquired with larger fields of view indicated that between 3 AU and 2 AU pre-perihelion a significant extended source started producing water in the coma. We demonstrate thatmore » this source, which could be due to icy grains, disappeared quickly around perihelion. Water production by the nucleus may be attributed to a constantly active source of at least 75 km{sup 2}, estimated to be >20% of the surface. Based on our measurements, the comet lost 4 × 10{sup 11} kg of ice and dust during this apparition, corresponding to at most a few meters of its surface. Even though this was likely not the comet's first passage through the inner solar system, the activity of Garradd was complex and changed significantly during the time it was observed.« less
Inner mean-motion resonances with eccentric planets: a possible origin for exozodiacal dust clouds
NASA Astrophysics Data System (ADS)
Faramaz, V.; Ertel, S.; Booth, M.; Cuadra, J.; Simmonds, C.
2017-02-01
High levels of dust have been detected in the immediate vicinity of many stars, both young and old. A promising scenario to explain the presence of this short-lived dust is that these analogues to the zodiacal cloud (or exozodis) are refilled in situ through cometary activity and sublimation. As the reservoir of comets is not expected to be replenished, the presence of these exozodis in old systems has yet to be adequately explained. It was recently suggested that mean-motion resonances with exterior planets on moderately eccentric (ep ≳ 0.1) orbits could scatter planetesimals on to cometary orbits with delays of the order of several 100 Myr. Theoretically, this mechanism is also expected to sustain continuous production of active comets once it has started, potentially over Gyr time-scales. We aim here to investigate the ability of this mechanism to generate scattering on to cometary orbits compatible with the production of an exozodi on long time-scales. We combine analytical predictions and complementary numerical N-body simulations to study its characteristics. We show, using order of magnitude estimates, that via this mechanism, low-mass discs comparable to the Kuiper belt could sustain comet scattering at rates compatible with the presence of the exozodis which are detected around Solar-type stars, and on Gyr time-scales. We also find that the levels of dust detected around Vega could be sustained via our proposed mechanism if an eccentric Jupiter-like planet were present exterior to the system's cold debris disc.
NASA Astrophysics Data System (ADS)
Tenishev, V.; Fougere, N.; Rubin, M.; Tzou, C. Y.; Combi, M. R.; Altwegg, K.; Gombosi, T. I.; Shou, Y.; Huang, Z.; Hansen, K. C.; Toth, G.
2017-12-01
A cometary coma is a unique phenomenon in the Solar system that represents an example of a planetary atmosphere influenced by little or no gravity. Due to the negligible gravity of a comet's nucleus, a coma has a characteristic size that exceeds that of the nucleus itself by many orders of magnitude. An extended dusty gas cloud that forms a coma is affected mainly by molecular collisions, radiative cooling, and photolytic, charge-exchange, and impact-ionization reactions. Such an environment has been extensively observed during the recent Rosetta mission, which was the first mission that escorts a comet along its way through the Solar system for an extended amount of time with the main scientific objectives of characterizing comet's nucleus, determining the surface composition, and studying the comet's activity development. The ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) Comet Pressure Sensor (COPS) onboard the Rosetta spacecraft has performed one of the most exciting observations of the innermost coma during the spacecraft descend maneuver during the last ten hours of the mission when the random and outflow directed pressures in the coma have been measured all the way down to the comet's surface. Performed at such close proximity to the nucleus, these observations can help to characterize effects due to topological features and/or the gas local conditions at the surface of the nucleus. The major focus of the presented study is analyzing of the end-of-mission pressure measurements by the ROSINA/COPS instrument. Because the coma at a heliocentric distance of 3.8 AU was in a collisionless regime, it can be described by solving the Liouville equation, as we have done in our analysis. We have used the SHAP5 nucleus model to account for the topology of the volatile source. Spacecraft trajectory and the instrument pointing with respect to the comet's nucleus have been obtained with the SPICE library. Here, we present results of our analysis and discuss the effects of the surface topology and that of the local surface volatile injection on the distribution of gas in the innermost coma of comet 67P/Churyumov-Gerasimenko.
Ziurys, L M; Halfen, D T; Geppert, W; Aikawa, Y
2016-12-01
The chemical history of carbon is traced from its origin in stellar nucleosynthesis to its delivery to planet surfaces. The molecular carriers of this element are examined at each stage in the cycling of interstellar organic material and their eventual incorporation into solar system bodies. The connection between the various interstellar carbon reservoirs is also examined. Carbon has two stellar sources: supernova explosions and mass loss from evolved stars. In the latter case, the carbon is dredged up from the interior and then ejected into a circumstellar envelope, where a rich and unusual C-based chemistry occurs. This molecular material is eventually released into the general interstellar medium through planetary nebulae. It is first incorporated into diffuse clouds, where carbon is found in polyatomic molecules such as H 2 CO, HCN, HNC, c-C 3 H 2 , and even C 60 + . These objects then collapse into dense clouds, the sites of star and planet formation. Such clouds foster an active organic chemistry, producing compounds with a wide range of functional groups with both gas-phase and surface mechanisms. As stars and planets form, the chemical composition is altered by increasing stellar radiation, as well as possibly by reactions in the presolar nebula. Some molecular, carbon-rich material remains pristine, however, encapsulated in comets, meteorites, and interplanetary dust particles, and is delivered to planet surfaces. Key Words: Carbon isotopes-Prebiotic evolution-Interstellar molecules-Comets-Meteorites. Astrobiology 16, 997-1012.
NASA Astrophysics Data System (ADS)
Fernández, Julio A.; Brunini, Adrián
2000-06-01
We simulate numerically the buildup of a comet reservoir around the early Sun assumed to be still immersed in the placental molecular gas that gave birth to it, and to be gravitationally bound to other young stars formed out of the same gas. We show that under certain reasonable assumptions about the early galactic environment of the Sun, an inner core of the Oort cloud of radius from a few 10 2 AU to a few 10 3 AU forms on a time scale of a few million year. Jupiter and Saturn are the main scatterers of matter to this inner core, though a significant fraction of the matter scattered by these two planets (perhaps more than 50%) might originally come from the accretion zones of Uranus and Neptune. If the formation process of the jovian planets left unaccreted an amount of solid material of the same order of their own planet masses (the rock-icy cores for the cases of Jupiter and Saturn), then a few M ⊕ of the scattered solid material might have been trapped in the Oort reservoir, most of it in the inner core.
The Encounter of P/Shoemaker-Levy 9 with the Jovian Plasma and Extended Sodium Cloud
NASA Technical Reports Server (NTRS)
Niciejewski, R. J.
1997-01-01
The encounter of comet P/Shoemaker-Levy 9 with Jupiter during July, 1994, provided an unprecedented opportunity to observe any potential perturbations in the Jovian plasma torus and extended sodium cloud as the comet entered the planet's atmosphere. Though the most obvious affect of the encounter was the distinctive response of the visible disk to the impact of the cometary fragments, the potential disruptions to the extended Jovian atmosphere and the restoration of the system to equilibrium also provided a test for the current interpretation of the Jovian plasma torus and sodium magneto-nebula. The observations that were performed for this grant were made by a complementary group of researchers and could not have been made if the individuals worked singly. In a sense, the exciting opportunity provided by this astronomical event also provided a mechanism to test the potential of pooling limited resources from several sources to construct a state-of-the-art spectrally resolving instrument, to acquire the necessary time and resources from institutions that maintain world-class optical telescopes, to perform the observations with the assistance of students, and to analyze the data sets.
Chaotic dynamics around cometary nuclei
NASA Astrophysics Data System (ADS)
Lages, José; Shevchenko, Ivan I.; Rollin, Guillaume
2018-06-01
We apply a generalized Kepler map theory to describe the qualitative chaotic dynamics around cometary nuclei, based on accessible observational data for five comets whose nuclei are well-documented to resemble dumb-bells. The sizes of chaotic zones around the nuclei and the Lyapunov times of the motion inside these zones are estimated. In the case of Comet 1P/Halley, the circumnuclear chaotic zone seems to engulf an essential part of the Hill sphere, at least for orbits of moderate to high eccentricity.
A Stellar Appulse by Exploding Comet 17P/Holmes
NASA Astrophysics Data System (ADS)
Lacerda, Pedro; Jewitt, D.
2012-10-01
Comet 17P/Holmes suffered a massive outburst in October 2007. Its total brightness increased from about 17th to 2nd magnitude over a period of only two days as 17P released about 1-10% of its mass into space in the form of dust. Several theories have been proposed to explain the event but the exact cause for the outburst remains unknown. 17P had suffered a similar outburst more than one century ago, which led to its discovery. These unusual and violent explosions have rendered this otherwise unremarkable Jupiter family comet an interesting target of study, because it may provide clues to the activity in other comets. On 29 October 2007, the optocenter of outbursting 17P passed within 1" of a background star. We used observations taken at the Univ. of Hawaii 2.2m telescope located atop Mauna Kea to measure the brightness of the star as it crossed the coma of 17P in an attempt to estimate the optical depth of the dust. The time sampling was 10-15 min. In addition, we used two-band photometry to look for colour variation as the star crossed the dust cloud. These measurements place the most stringent constraints on the extinction optical depth of any cometary coma.
Comet Borrelly Slows Solar Wind
NASA Technical Reports Server (NTRS)
2001-01-01
Over 1300 energy spectra taken on September 22, 2001 from the ion and electron instruments on NASA's Deep Space 1 span a region of 1,400,000 kilometers (870,000 miles) centered on the closest approach to the nucleus of comet Borrelly. A very strong interaction occurs between the solar wind (horizontal red bands to left and right in figure) and the comet's surrounding cloud of dust and gas, the coma. Near Deep Space 1's closest approach to the nucleus, the solar wind picked up charged water molecules from the coma (upper green band near the center), slowing the wind sharply and creating the V-shaped energy structure at the center.
Deep Space 1 completed its primary mission testing ion propulsion and 11 other advanced, high-risk technologies in September 1999. NASA extended the mission, taking advantage of the ion propulsion and other systems to undertake this chancy but exciting, and ultimately successful, encounter with the comet. More information can be found on the Deep Space 1 home page at http://nmp.jpl.nasa.gov/ds1/ .Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, D.C. The California Institute of Technology manages JPL for NASA.Origins of Solar Systems Workshop: The Origin, Evolution, and Detectability of Short Period Comets
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1993-01-01
The origin of the short period comets (SPC) (periods less than 200 years), the dynamical formation of their present reservoir(s), the cause and rate of their transport to the inner planetary region where they can be detected, and the magnitude of selection effects in their discovery are important research questions directly coupled to the goals of understanding the origin and evolution of the Solar System. To address these questions in an intensive way, an interdisciplinary, five month long Workshop from Jan. to May 1993 at Southwest Research Institute (SwRI) in San Antonio was convened. The goal of this Workshop was to advance the state of understanding about the origins, dynamical evolution, and present location of short period comets and their reservoir(s).
Terrestrial record of the solar system's oscillation about the galactic plane
NASA Technical Reports Server (NTRS)
Stothers, R. B.
1985-01-01
A new study is presented of the observational evidence pertaining to the theory which attributes the episodic component of the earth's impact cratering record over the past 600 Myr to gravitational encounters between the solar system and interstellar clouds that cause comets to fall into the solar system and impact the earth. Contrary to a claim by Thaddeus and Chanan (1985), the vertical scale height of the clouds seems to be sufficently small and the sun's vertical trajectory sufficiently large for the modulating effect of the sun's galactovertical motion to be detectable in the terrestrial record of impact cratering with at least a 50 percent a priori probability.
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Bonitz, Robert; Kulczycki, Erick; Aisen, Norman; Dandino, Charles M.; Cantrell, Brett S.; Gallagher, William; Shevin, Jesse; Ganino, Anthony; Haddad, Nicolas;
2013-01-01
The 2011 Decadal Survey for planetary science released by the National Research Council of the National Academies identified Comet Surface Sample Return (CSSR) as one of five high priority potential New Frontiers-class missions in the next decade. The main objectives of the research described in this publication are: develop a concept for an end-to-end system for collecting and storing a comet sample to be returned to Earth; design, fabricate and test a prototype Dynamic Acquisition and Retrieval Tool (DART) capable of collecting 500 cc sample in a canister and eject the canister with a predetermined speed; identify a set of simulants with physical properties at room temperature that suitably match the physical properties of the comet surface as it would be sampled. We propose the use of a dart that would be launched from the spacecraft to impact and penetrate the comet surface. After collecting the sample, the sample canister would be ejected at a speed greater than the comet's escape velocity and captured by the spacecraft, packaged into a return capsule and returned to Earth. The dart would be composed of an inner tube or sample canister, an outer tube, a decelerator, a means of capturing and retaining the sample, and a mechanism to eject the canister with the sample for later rendezvous with the spacecraft. One of the significant unknowns is the physical properties of the comet surface. Based on new findings from the recent Deep Impact comet encounter mission, we have limited our search of solutions for sampling materials to materials with 10 to 100 kPa shear strength in loose or consolidated form. As the possible range of values for the comet surface temperature is also significantly different than room temperature and testing at conditions other than the room temperature can become resource intensive, we sought sample simulants with physical properties at room temperature similar to the expected physical properties of the comet surface material. The chosen DART configuration, the efforts to identify a test simulant and the properties of these simulants, and the results of the preliminary testing will be described in this paper.
Deuterated Water in Comet C/1996 B2 (Hyakutake) and its Implications for the Origin of Comets
NASA Technical Reports Server (NTRS)
Bockelee-Morvan, D.; Gautier, D.; Lis, D. C.; Young, K.; Keene, J.; Phillips, T. G.; Owen, T.; Crovisier, J.; Goldsmith, P. F.; Bergin, E. A.;
1998-01-01
The close approach to the Earth of comet C/1996 B2 (Hyakutake) in March 1996 allowed searches for minor volatile species outgassing from the nucleus. We report the detection of deuterated water (HDO) through its 1(sub 01)-0(sub 00) rotational transition at 464.925 GHz using the Caltech Submillimeter Observatory. We also present negative results of a sensitive research for the J(5-4) line of deuterated hydrogen cyanide (DCN) at 362.046 GHz. Simultaneous observations of two rotational lines of methanol together with HDO in the same spectrum allow us to determine the average gas temperature within the telescope beam to be 69 +/- 10 K. We are thus able to constrain the excitation conditions in the inner coma and determine reliably the HDO production rate as (1.20 +/- 0.28) x 10(exp 26)/s on March 23-24, 1996. Available IR, UV and radio measurements lead to a water production rate of (2.1 +/- 0.5) x 10(exp 29)/s at the time of our HDO observations. The resulting D/H ratio in cometary water is thus (29 +/- 10) x 10(exp -5) in good agreement with the values of (30.8(sub - 5.3, sup +3.8) (Balsiger et al. 1995) and (31.6 +/- 3.4) x 10(exp -5) (Eberhardt et al. 1995) determined in comet P/Halley from in situ ion mass spectra. The inferred 3 a upper limit for the D/H ratio in HCN is 1%. Deuterium abundance is a key parameter for studying the origin and the early evolution of the Solar System and of its individual bodies. Our HDO measurement confirms that, in cometary water, deuterium is enriched by a factor of at least 10 relative to the protosolar ratio, namely the D/H ratio in H2 in the primitive Solar Nebula which formed from the collapse of the protosolar cloud. This indicates that cometary water has preserved a major part of the high D/H ratio acquired in this protosolar cloud through ion-molecule isotopic exchanges or grain-surface reactions and was not re-equilibrated with H2 in the Solar Nebula. Scenarios of formation of comets consistent with these results are discussed.
A PROTOSOLAR NEBULA ORIGIN FOR THE ICES AGGLOMERATED BY COMET 67P/CHURYUMOV–GERASIMENKO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mousis, O.; Vernazza, P.; Lunine, J. I.
The nature of the icy material accreted by comets during their formation in the outer regions of the protosolar nebula (PSN) is a major open question in planetary science. Some scenarios of comet formation predict that these bodies agglomerated from crystalline ices condensed in the PSN. Concurrently, alternative scenarios suggest that comets accreted amorphous ice originating from the interstellar cloud or from the very distant regions of the PSN. On the basis of existing laboratory and modeling data, we find that the N{sub 2}/CO and Ar/CO ratios measured in the coma of the Jupiter-family comet 67P/Churyumov–Gerasimenko by the Rosetta Orbitermore » Spectrometer for Ion and Neutral Analysis instrument on board the European Space Agency’s Rosetta spacecraft match those predicted for gases trapped in clathrates. If these measurements are representative of the bulk N{sub 2}/CO and Ar/CO ratios in 67P/Churyumov–Gerasimenko, it implies that the ices accreted by the comet formed in the nebula and do not originate from the interstellar medium, supporting the idea that the building blocks of outer solar system bodies have been formed from clathrates and possibly from pure crystalline ices. Moreover, because 67P/Churyumov–Gerasimenko is impoverished in Ar and N{sub 2}, the volatile enrichments observed in Jupiter’s atmosphere cannot be explained solely via the accretion of building blocks with similar compositions and require an additional delivery source. A potential source may be the accretion of gas from the nebula that has been progressively enriched in heavy elements due to photoevaporation.« less
PHOTO ILLUSTRATION OF COMET P/SHOEMAKER-LEVY 9 and PLANET JUPITER
NASA Technical Reports Server (NTRS)
2002-01-01
This is a composite photo, assembled from separate images of Jupiter and comet P/Shoemaker-Levy 9, as imaged by the Wide Field and Planetary Camera-2 (WFPC-2), aboard NASA's Hubble Space Telescope (HST). Jupiter was imaged on May 18, 1994, when the giant planet was at a distance of 420 million miles (670 million km) from Earth. This 'true-color' picture was assembled from separate HST exposures in red, blue, and green light. Jupiter's rotation between exposures creates the blue and red fringe on either side of the disk. HST can resolve details in Jupiter's magnificent cloud belts and zones as small as 200 miles (320 km) across (wide field mode). This detailed view is only surpassed by images from spacecraft that have traveled to Jupiter. The dark spot on the disk of Jupiter is the shadow of the inner moon Io. This volcanic moon appears as an orange and yellow disk just to the upper right of the shadow. Though Io is approximately the size of Earth's Moon (but 2,000 times farther away), HST can resolve surface details. When the comet was observed on May 17, its train of 21 icy fragments stretched across 710 thousand miles (1.1 million km) of space, or 3 times the distance between Earth and the Moon. This required six WFPC exposures along the comet train to include all the nuclei. The image was taken in red light. The apparent angular size of Jupiter relative to the comet, and its angular separation from the comet when the images were taken, have been modified for illustration purposes. Credit: H.A. Weaver, T.E. Smith (Space Telescope Science Institute) and J.T. Trauger, R.W. Evans (Jet Propulsion Laboratory), and NASA
Dynamic unmagnetized plasma in the diamagnetic cavity around comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Hajra, Rajkumar; Henri, Pierre; Vallières, Xavier; Moré, Jerome; Gilet, Nicolas; Wattieaux, Gaetan; Goetz, Charlotte; Richter, Ingo; Tsurutani, Bruce T.; Gunell, Herbert; Nilsson, Hans; Eriksson, Anders I.; Nemeth, Zoltan; Burch, James L.; Rubin, Martin
2018-04-01
The Rosetta orbiter witnessed several hundred diamagnetic cavity crossings (unmagnetized regions) around comet 67P/Churyumov-Gerasimenko during its two year survey of the comet. The characteristics of the plasma environment inside these diamagnetic regions are studied using in situ measurements by the Rosetta Plasma Consortium instruments. Although the unmagnetized plasma density has been observed to exhibit little dynamics compared to the very dynamical magnetized cometary plasma, we detected several localized dynamic plasma structures inside those diamagnetic regions. These plasma structures are not related to the direct ionization of local cometary neutrals. The structures are found to be steepened, asymmetric plasma enhancements with typical rising-to-descending slope ratio of ˜2.8 (±1.9), skewness ˜0.43 (±0.36), mean duration of ˜2.7 (±0.9) min and relative density variation ΔN/N of ˜0.5 (±0.2), observed close to the electron exobase. Similar steepened plasma density enhancements were detected at the magnetized boundaries of the diamagnetic cavity as well as outside the diamagnetic region. The plausible scalelength and propagation direction of the structures are estimated from simple plasma dynamics considerations. It is suggested that they are large-scale unmagnetized plasma enhancements, transmitted from the very dynamical outer magnetized region to the inner magnetic field-free cavity region.
Photometric follow-up of sungrazing comet C/2012 S1 ISON from OAdM and other observatories
NASA Astrophysics Data System (ADS)
Trigo-Rodríguez, J. M.; Moyano-Cambero, C. E.; Meech, K. J.; Rodríguez, D.; Sánchez, A.; Lacruz, J.
2013-09-01
Comet C/2012 S1 ISON was discovered on Sept. 21st, 2012 by Russian amateur astronomers Vitaly Nevski and Artyom Novichonok in the framework of a monitoring program called the International Scientific Optical Network (giving the acronym ISON from which the comet has been named). At discovery the comet was at a heliocentric distance of 6.29 A.U. and its magnitude was +18.8, but the computed orbit indicated that the comet was following a nearly parabolic orbit. The current orbit brings C/2012 S1 ISON to an extremely small perihelion distance of about 1 milion km on Nov. 28th, 2013. We have set up a multiband photometric monitoring of this sungrazing comet using 0.8m Telescope Joan Oró of the Montsec Astronomical Observatory (OAdM: www.oadm.cat) and several medium-size amateur telescopes with dedicated experience in cometary photometry [1, 2]. Comet sungrazers are interesting objects as they probably originate from the dynamical evolution of long period comets that typically end their lives colliding with the Sun [3]. They are though to be fragments of primitive ice-rich bodies gravitationally dispersed during the early stages of solar system evolution [4].
The evolution of volatile production in C/2009 P1 (Garradd) during its 2011-2012 apparition
NASA Astrophysics Data System (ADS)
Gicquel, A.; Milam, S.; Cordiner, M.; Villanueva, G.; Charnley, S.; Coulson, I.; Remijan, A.; DiSanti, M.; Mumma, M.; Szutowicz, S.
2014-07-01
Comets are likely to be the most pristine objects in our Solar System. They provide a record of the physical and chemical conditions in the protosolar nebula between about 5 and 40 au during the epoch when the distinct cometary populations were being assembled (Festou et al. 2004; Jewitt 2004; Mumma & Charnley 2011). Cometary nuclei today reside in (at least) two distinct reservoirs, the Oort Cloud (OC) and the Kuiper Belt (KB). Past observations have shown that comets appear to contain a mixture of products from both interstellar and nebular chemistries and could also have been important for initiating prebiotic chemistry on the early Earth (Ehrenfreund & Charnley 2000). Although there are some differences, the volatile composition of cometary ices is generally similar to the inventory of molecules detected in the ices and gas of dense molecular clouds. Given the gradient in physical conditions expected across the proto-Solar nebula, chemical diversity in the comet population is to be expected. Here we report an analysis of long-term ground-based radio observations towards comet C/2009 P1 (Garradd). Comet C/2009 P1 Garradd is an OC comet that reached perihelion (at heliocentric distance R_h = 1.55 au) in late December 2011 and had its closest approach to the Earth on 5 March 2012. Like C/1995 O1 (Hale-Bopp) at 7.2 au, Garradd exhibited unusual activity at large R_h (8.68 au), displaying a 15'' diameter circular coma (IAUC 9062). It is well known that some comets exhibit volatile activity at large heliocentric distances, where water ice cannot sublime efficiently. Infrared (IRTF/CSHELL, Keck 2/NIRSPEC, and VLT/CRIRES) spectroscopy of Garradd showed clear CO (R1 & R2) emission near λ = 4.7 μ m (2150 cm^{-1}), as well as a suite of molecules (e.g., C_2H_6, CH_4, CH_3OH, H_2CO, HCN, C_2H_2, NH_3) that were also detected near or beyond R_h = 2 au (Villanueva et al. 2012; Paganini et al. 2012; DiSanti et al. 2014). We monitored the abundance of parent volatiles in Garradd at multiple epochs around the time of its closest approach to the Earth, using multiple facilities: the Arizona Radio Observatory's 12-m telescope, Kitt Peak, the SubMillimeter Telescope, the James Clerk Maxwell Telescope, and the Greenbank 100-m telescope (GBT), covering wavelengths of 20 cm, 3 cm, and 0.8-3 mm. Observations were taken between 28 December 2011 (R_h = 1.55 au, Δ = 1.97 au) and 28 November 2012 (R_h = 4.27 au, Δ = 4.26 au). GBT monitored OH as a proxy for H_2O activity, while the other facilities were used to study the primary volatiles (e.g., CH_3OH, H_2CO, HCN, HNC, CS, CO). The full analysis of these data, including the determination of the rotational temperatures, abundances, and the variation of given species with time, will be presented. Also, comparisons with other comets will be shown in order to constrain the chemical history on comets and add to the statistics for a taxonomic classification of these objects.
Dynamical Modeling of Comet Dust: The STARDUST and ROSETTA Mission Targets
NASA Astrophysics Data System (ADS)
Kelley, M. S.; Reach, W. T.
2003-12-01
Comets 81P/Wild 2 and 67P/Churyumov-Gerasimenko are the respective targets for the NASA STARDUST and ESA ROSETTA missions. As such, the dust environment of each comet is of particular importance, simultaneously being a key to mission success (e.g. dust collection) and a possible spacecraft hazard (impacts with large particles). We present dynamical modeling of the comae and dust trails of comets 81P/Wild 2 and 67P/Churyumov-Gerasimenko and compare these models to ground-based observations. At the heart of our code is the 15th order integrator described by Everhart (1985, IAU Colloq. 83, 185-202). We integrate the radiation and gravitational forces acting on a dust particle due to the Sun and planets to determine a released particle's position relative to the parent comet at the time of an observation (either by telescope or spacecraft). Comparing zero ejection velocity syndyne curves to observations we obtain a first order estimate of the dust trail particle sizes, which typically range near the millimeter sizes or larger. If we input best guesses for ejection velocities, sizes, and emission histories into a Monte-Carlo integration we can simulate a coma and provide a particle size distribution estimate for various spacecraft impact parameters on large scales.
Atmospheric Impacts of a Close Cometary Encounter
NASA Astrophysics Data System (ADS)
Aylett, Tasha; Chipperfield, Martyn; Diego Carrillo Sánchez, Juan; Feng, Wuhu; Forster, Piers; Plane, John
2017-04-01
Although a close encounter with a comet is extremely unlikely, a significant perturbation to the flux of Earth-bound dust from a comet's close passage could have huge implications for both the chemistry of the atmosphere and climate. For example, following the close passage of Comet Halley to Earth in A.D. 536, dark skies, reduced day lengths and a protracted global cooling were reported [1], for which an extraterrestrial disturbance is likely to be at least partly responsible. Indeed, the recent encounter of Comet Siding Spring with Mars provided evidence that the risks posed by such an event are significant [2]. We have run sensitivity simulations using the Whole Atmosphere Community Climate Model (WACCM) with an elevated Meteoric Input Function (MIF) to investigate such an encounter - specifically, Comet Halley in A.D. 536. The simple analytical model developed by Moorhead et al. [3] has been incorporated into an atmospheric chemical ablation model to provide the MIF of several meteoric species (Na, Fe, Si, Mg and S) in the mesosphere and lower thermosphere (70-120 km) for input into WACCM. Key effects of this additional input on the chemistry of the upper atmosphere and the metal layers have been explored in the simulations and effects on mesospheric and stratospheric ozone chemistry have been assessed. In addition to any effects on atmospheric chemistry, WACCM will also be used to provide insight into the impacts of a high dust flux on the Earth's climate. References [1] Stothers, R. B. (1984), Mystery Cloud of Ad-536, Nature, 307(5949), 344-345. [2] Schneider, N. M., et al. (2015), MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars, Geophys Res Lett, 42(12), 4755-4761. [3] Moorhead, A. V., P. A. Wiegert, and W. J. Cooke (2014), The meteoroid fluence at Mars due to Comet C/2013 A1 (Siding Spring), Icarus, 231, 13-21.
An early look of comet C/2013 A1 (Siding Spring): Breathtaker or nightmare?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Quan-Zhi; Hui, Man-To, E-mail: qye22@uwo.ca
The dynamically new comet, C/2013 A1 (Siding Spring), is to make a close approach to Mars on 2014 October 19 at 18:30 UT at a distance of 40 ± 1 Martian radii. Such an extremely rare event offers a precious opportunity for the spacecrafts on Mars to closely study a dynamically new comet itself as well as the planet-comet interaction. Meanwhile, the high-speed meteoroids released from C/Siding Spring also pose a threat to physically damage the spacecrafts. Here we present our observations and modeling results of C/Siding Spring to characterize the comet and assess the risk posed to the spacecraftsmore » on Mars. We find that the optical tail of C/Siding Spring is dominated by larger particles at the time of the observation. Synchrone simulation suggests that the comet was already active in late 2012 when it was more than 7 AU from the Sun. By parameterizing the dust activity with a semi-analytic model, we find that the ejection speed of C/Siding Spring is comparable to comets such as the target of the Rosetta mission, 67P/Churyumov-Gerasimenko. Under a nominal situation, the simulated dust cone will miss the planet by about 20 Martian radii. At the extreme ends of uncertainties, the simulated dust cone will engulf Mars, but the meteoric influx at Mars is still comparable to the nominal sporadic influx, seemly indicating that an intense and enduring meteoroid bombardment due to C/Siding Spring is unlikely. Further simulation also suggests that gravitational disruption of the dust tail may be significant enough to be observable at Earth.« less
NASA Astrophysics Data System (ADS)
Sosa, A.; Fernández, J. A.; Pais, P.
2012-12-01
We study the dynamical evolution of the near-Earth Jupiter family comets (NEJFCs) that came close to or crossed the Earth's orbit at the epoch of their discovery (perihelion distances qdisc < 1.3 AU). We found a minimum in the time evolution of the mean perihelion distance bar{q} of the NEJFCs at the discovery time of each comet (taken as t = 0) and a past-future asymmetry of bar{q} in an interval -1000 yr, +1000 yr centred on t = 0, confirming previous results. The asymmetry indicates that there are more comets with greater q in the past than in the future. For comparison purposes, we also analysed the population of near-Earth asteroids in cometary orbits (defined as those with aphelion distances Q > 4.5 AU) and with absolute magnitudes H < 18. We found some remarkable differences in the dynamical evolution of both populations that argue against a common origin. To further analyse the dynamical evolution of NEJFCs, we integrated in time a large sample of fictitious comets, cloned from the observed NEJFCs, over a 20 000 yr time interval and started the integration before the comet's discovery time, when it had a perihelion distance q > 2 AU. By assuming that NEJFCs are mostly discovered when they decrease their perihelion distances below a certain threshold qthre = 1.05 AU for the first time during their evolution, we were able to reproduce the main features of the observed bar{q} evolution in the interval [-1000, 1000] yr with respect to the discovery time. Our best fits indicate that 40% of the population of NEJFCs would be composed of young, fresh comets that entered the region q < 2 AU a few hundred years before decreasing their perihelion distances below qthre, while 60% would be composed of older, more evolved comets, discovered after spending at least 3000 yr in the q < 2 AU region before their perihelion distances drop below qthre. As a byproduct, we put some constraints on the physical lifetime τphys of NEJFCs in the q < 2 AU region. We found a lower limit of a few hundreds of revolutions and an upper limit of about 10 000-12 000 yr, or about 1600-2000 revolutions, somewhat longer than some previous estimates. These constraints are consistent with other estimates of τphys, based either on mass loss (sublimation, outbursts, splittings) or on the extinction rate of Jupiter family comets (JFCs).
Radioastronomical Searches for Instellar Biomolecules
NASA Technical Reports Server (NTRS)
Kuan, Y.-J.; Huang, H.-C.; Charnley, S. B.; Markwick, A.; Botta, O.; Ehrenfreund, P.; Kisiel, Z.; Butner, H. M.
2003-01-01
Impacts of comets and asteroids could have delivered large amounts of organic matter to the early Earth. to retain a significant interstellar signature; observations of recent bright comets indicate that they have a molecular inventory consistent with their ices being largely unmodified interstellar material. Many simple organic molecules with biochemical significance observed in circumstellar envelopes and in molecular clouds, similar to that from which the Solar System formed, may have acted as the precursors of the more complex organics found in meteorites. Therefore, there is potentially a strong link between interstellar organics and prebiotic chemical evolution. Radioastronomical observations, particularly at millimeter wavelengths, allow us to determine the chemical composition and characteristics of the molecular inventory in interstellar space. Here we report some of our recent results from extensive astronomical searches for astrobiologically-important interstellar organics.
Electron energetics in the inner coma of Comet Halley
NASA Astrophysics Data System (ADS)
Gan, L.; Cravens, T. E.
1990-05-01
A quasi-two-dimensional model of the spatial and energy distribution of electrons in the inner coma of Comet Halley has been constructed from a spherically symmetric ion density profile based on Giotto measurements, using the two-stream electron transport method and the time-dependent electron energy equation. A sharp jump in the electron temperature was found to be present at a cometocentric distance of about 15,000 km. This thermal boundary separates an inner region where cooling processes are dominant from an outer region where heat transport is more important. Both thermal and suprathermal electron populations exist inside the thermal boundary with comparable kinetic pressures. Outside the thermal boundary, a cloud electron population does not exist, and the electrons are almost isothermal along the magnetic field lines.
The near ultraviolet spectra of comets P/Brorsen-Metcalf and Austin
NASA Technical Reports Server (NTRS)
Cochran, William D.; Odell, C. R.; Miller, C. O.; Cochran, Anita L.; Opal, C. B.; Valk, D.; Barker, E. S.
1990-01-01
Results are reported on spectrophotometric observations of comets P/Brorsen-Metcalf and Austin from 3000 to 3600 A at a spectral resolution of about 1.8 A. The strongest features are the OH(A-X) 0-0 and 1-1 bands, and the NH(A-X) 0-0 bands. For the first time, the OH(A-X) 0-1 band was clearly found. The existence of the CN(B-X) 2-1 and 3-2 bands were verified and measured. A feature at 3258 A that was first seen in uncalibrated spectra was detected, and was identified as the NH singlet (c-a) 0-0 transition. The CO2(+) features at 3378, 3504, and 3512 A were also firmly identified. This ion was reported as being present in the tail of Comet Bester (1984 I) by Swings and Page (1950). The identification of a weak feature at 3547 A was proposed as the fundamental transition of H2CO, which would make this the first optical cometary detection of this molecule which is very abundant in giant molecular clouds.
Migration of Matter from the Edgeworth-Kuiper and Main Asteroid Belts to the Earth
NASA Technical Reports Server (NTRS)
Ipatov. S. I.; Oegerle, William (Technical Monitor)
2002-01-01
The main asteroid belt (MAB), the Edgeworth-Kuiper belt (EKB), and comets belong to the main sources of dust in the Solar System. Most of Jupiter-family comets came from the EKB. Comets can be distracted due to close encounters with planets and the Sun, collisions with small bodies, a nd internal forces. We support the Eneev's idea that the largest objects in the ELB and MAB could be formed directly by the compression of rarefied dust condensations of the protoplanetary cloud but not by the accretion of small (for example, 1-km) planetesimals. The total mass of planetesimals that entered the EKB from the feeding zone of the giant planets during their accumulation could exceed tens of Earth's masses. These planetesimals increased eccentricities of 'local' trans-Neptunian objects (TNOs) and swept most of these TNOs. A small portion of such planetesimals could left beyond Neptune's orbit in highly eccentric orbits. The results of previous investigations of migration and collisional evolution of minor bodies were summarized. Mainly our recent results are presented.
NASA Technical Reports Server (NTRS)
Disanti, M. A.; Bonev, B. P.; Gibb, L. E.; Paganini, L.; Villanueva, G.; Mumma, M. J.; Keane, J. V.; Blake, G. A.; Dello Russo, N.; Meech, K. J.;
2016-01-01
We report production rates for H2O and eight trace molecules (CO, C2H6, CH4, CH3OH, NH3, H2CO, HCN, C2H2) in the dynamically new, Sun-grazing Comet C2012 S1 (ISON), using high-resolution spectroscopy at Keck II and the NASA IRTF on 10pre-perihelion dates encompassing heliocentric distances Rh1.210.34 AU. Measured water production rates spanned two orders of magnitude, consistent with a long-term heliocentric power law Q(H2O) Rh-3.10.1). Abundance ratios for CO, C2H6, and CH4 with respect to H2O remained constant with Rh and below their corresponding mean values measured among a dominant sample of Oort Cloud comets. CH3OH was also depleted for Rh 0.5 AU, but was closer to its mean value for Rh0.5 AU. The remaining four molecules exhibited higher abundance ratios within 0.5 AU: for Rh 0.8 AU, NH3 and C2H2 were consistent with their mean values while H2CO and HCN were depleted. For Rh 0.5 AU, all four were enriched, with NH3, H2CO, and HCN increasing most. Spatial profiles of gas emission in ISON consistently peaked sunward of the dust continuum, which was asymmetric antisunward and remained singly peaked for all observations. NH3 within 0.5 AU showed a broad spatial distribution, possibly indicating its release in the coma provided that optical depth effects were unimportant. The column abundance ratio NH2H2O at 0.83 AU was close to the typical NHOH from optical wavelengths, but was higher within 0.5 AU. Establishing its production rate and testing its parentage (e.g., NH3) require modeling of coma outflow.
NASA Technical Reports Server (NTRS)
Combi, Michael R.
2004-01-01
In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic (MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important. At the University of Michigan we have an established base of experience and expertise in numerical simulations based on particle codes which address these physical regimes. The Principal Investigator, Dr. Michael Combi, has over 20 years of experience in the development of particle-kinetic and hybrid kinetichydrodynamics models and their direct use in data analysis. He has also worked in ground-based and space-based remote observational work and on spacecraft instrument teams. His research has involved studies of cometary atmospheres and ionospheres and their interaction with the solar wind, the neutral gas clouds escaping from Jupiter s moon Io, the interaction of the atmospheres/ionospheres of Io and Europa with Jupiter s corotating magnetosphere, as well as Earth s ionosphere. This report describes our progress during the year. The contained in section 2 of this report will serve as the basis of a paper describing the method and its application to the cometary coma that will be continued under a research and analysis grant that supports various applications of theoretical comet models to understanding the inner comae of comets (grant NAGS- 13239 from the Planetary Atmospheres program).
The Evolution of Volatile Production in Comet C-2009 P1(Garradd) During its 2011-2012 Apparition
NASA Technical Reports Server (NTRS)
Gicquel, A.; Milam, S. N.; Coulson, I. M.; Villaneuva, G. L.; Cordiner, M. A.; Charnley, S. B.; DiSanti, M. A.; Mumma, M. J.; Szutowicz, S.
2015-01-01
We report observations at millimeter and submillimeter wavelengths of comet C/2009 P1 (Garradd) from 2011 December 28 to 2012 April 24, using the Arizona Radio Observatory submillimeter telescope (SMT) and the James Clerk Maxwell Telescope (JCMT). Garradd is a dynamically young long-period comet from the Oort Cloud, with a periodicity of 127,000 years, that reached perihelion on 2011 December 23 (at Heliocentric distance (Rh) = 1.55 Astronomical Units and delta = 20.1 Astronomical Units ) and made its closest approach to the Earth on 2012 March 05 (at Heliocentric distance (Rh) = 1.84 Astronomical Units and delta = 1.26 Astronomical Units). We obtained gas production rates, and molecular abundances relative to water for HCN, ortho-H2CO, CS, CO and CH3OH. A rotational temperature, T (sub rot) approximately equal to 50 degrees Kelvin, was determined by observing multiple methanol lines with the JCMT. By averaging the abundance ratio relative to water from the SMT and the JCMT we derive: CO: 7.03 plus or minus 1.84 percent, HCN: 0.04 plus or minus 0.01 percent, ortho H2CO: 0.14 plus or minus 0.03 percent as a parent molecule (and 0.28 plus or minus 0.06 percent as an extended source), CS: 0.03 plus or minus 0.01 percent and CH3OH: 3.11 for a range from plus 1:86 to minus 0.51 percent. We concluded that Garradd is normal in CH3OH, depleted in HCN, ortho-H2CO and CS and slightly enriched in CO with respect to typically observed cometary mixing ratios. We also studied the temporal evolution of HCN and CO and find that the production of HCN has a trend similar to water (but with short-term variation), with a decrease after perihelion, while that of CO shows contrary behavior: remaining constant or increasing after perihelion.
Three dimensional Particle-in-Cell (PIC) simulations of the 67P environment
NASA Astrophysics Data System (ADS)
Divin, Andrey; Deca, Jan; Henri, Pierre; Horanyi, Mihaly; Markidis, Stefano; Lapenta, Giovanni; Olshevsky, Vyacheslav; Eriksson, Anders
2017-04-01
ESA's Rosetta orbiter spacecraft escorted comet 67P/Churyumov-Gerasimenko for two years, carrying 21 scientific instruments. Five of those were dedicated to plasma measurements. The mission revealed for the first time, and in unprecedented detail, the fascinating evolution of a comet and its interaction with our Sun as it races along its 6.45yr elliptical orbit around the Sun. Using a self-consistent 3-D fully kinetic electromagnetic particle-in-cell approach, we focus on the global cometary environment and, in particular, on the collisionless electron-kinetic interaction. We include cometary ions and electrons produced by the ionization of the outgassing cometary atmosphere in addition to the solar wind ion and electron plasma flow. We approximate mass-loading of the cold cometary ion and electron populations using a 1/r relation with distance to the comet with a total neutral production rate of Q = 1026 s-1. Our simulation results disentangle for the first time the kinetic ion and electron dynamics of the solar wind interaction with a weakly outgassing comet. The simulated global structure of the solar wind-comet interaction confirms the results reported in hybrid simulations of the induced cometary magnetosphere. Moreover, we show that cometary and solar wind electrons neutralize the solar wind protons and cometary ions, respectively, in the region of influence around the comet, representing to first order a four-fluid behavior. The electron energy distribution close to the comet is shown to be a mix of cometary and solar wind electrons that appear as, respectively, a thermal and a suprathermal components. Analyzing ion and electron energy distribution functions, and comparing with plasma measurements from ESA's Rosetta mission to comet 67P/Churyumov-Gerasimenko, we conclude that a detailed kinetic treatment of the electron dynamics is critical to fully capture the complex physics of mass-loading plasmas.
NASA Astrophysics Data System (ADS)
Carrillo-Sánchez, J. D.; Plane, J. M. C.; Withers, P.; Fallows, K.; Nesvorny, D.; Pokorný, P.
2016-12-01
Sporadic metal layers have been detected in the Martian atmosphere by radio occultation measurements using the Mars Express Orbiter and Mars Global Surveyor spacecraft. More recently, metallic ion layers produced by the meteor storm event following the close encounter between Comet Siding Spring (C/2013 A1) and Mars were identified by the Imaging UltraViolet Spectrograph (IUVS) and the Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Work is now in progress to detect the background metal layers produced by the influx of sporadic meteors. In this study we predict the likely appearance of these layers. The Zodiacal Dust Cloud (ZDC) model for particle populations released by asteroids (AST), and dust grains from Jupiter Family Comets (JFCs) and Halley-Type Comets (HTCs) has been combined with a Monte Carlo sampling method and the Chemical ABlation MODel (CABMOD) to predict the ablation rates of Na, K, Fe, Si, Mg, Ca and Al above 40 km altitude in the Martian atmosphere. CABMOD considers the standard treatment of meteor physics, including the balance of frictional heating by radiative losses and the absorption of heat energy through temperature increases, melting phase transitions and vaporization, as well as sputtering by inelastic collisions with the air molecules. The vertical injection profiles are input into the Leeds 1-D Mars atmospheric model which includes photo-ionization, and gas-phase ion-molecule and neutral chemistry, in order to explore the evolution of the resulting metallic ions and atoms. We conclude that the dominant contributor in the Martian's atmosphere is the JFCs over other sources. Finally, we explore the changes of the neutral and ionized Na, Mg and Fe layers over a diurnal cycle.
MEST- avoid next extinction by a space-time effect
NASA Astrophysics Data System (ADS)
Cao, Dayong
2013-03-01
Sun's companion-dark hole seasonal took its dark comets belt and much dark matter to impact near our earth. And some of them probability hit on our earth. So this model kept and triggered periodic mass extinctions on our earth every 25 to 27 million years. After every impaction, many dark comets with very special tilted orbits were arrested and lurked in solar system. When the dark hole-Tyche goes near the solar system again, they will impact near planets. The Tyche, dark comet and Oort Cloud have their space-time center. Because the space-time are frequency and amplitude square of wave. Because the wave (space-time) can make a field, and gas has more wave and fluctuate. So they like dense gas ball and a dark dense field. They can absorb the space-time and wave. So they are ``dark'' like the dark matter which can break genetic codes of our lives by a dark space-time effect. So the upcoming next impaction will cause current ``biodiversity loss.'' The dark matter can change dead plants and animals to coal, oil and natural gas which are used as energy, but break our living environment. According to our experiments, which consciousness can use thought waves remotely to change their systemic model between Electron Clouds and electron holes of P-N Junction and can change output voltages of solar cells by a life information technology and a space-time effect, we hope to find a new method to the orbit of the Tyche to avoid next extinction. (see Dayong Cao, BAPS.2011.APR.K1.17 and BAPS.2012.MAR.P33.14) Support by AEEA
A study of ion composition and dynamics at Comet Halley
NASA Technical Reports Server (NTRS)
Shelley, E. G.; Fuselier, S. A.
1991-01-01
This report details the participation by Lockheed co-investigators in the reduction, analysis, and interpretation of data obtained by the Ion Mass Spectrometer onboard the Giotto mission to Comet Halley. The data analysis activities and much of the scientific collaboration was shared by this team. One objective of the effort under this contract was to use data obtained by the Giotto Ion Mass Spectrometer (IMS) during the encounter with comet Halley for the purpose of advancing our understanding of the chemistry and physics of the interaction of the solar wind with comets and obtaining new information on the comet's composition. An additional objective was to make this unique data set available in a format which can be easily used by the reset of the cometary science community for other analysis in the future. The IMS has two sensors: the High Intensity Spectrometer (HIS) and the High Energy Range Spectrometer (HERS).
The International VEGA "Venus-Halley" (1984-1986) Experiment: Description and Scientific Objectives
NASA Technical Reports Server (NTRS)
1985-01-01
The Venus-Halley (Vega) project will provide a unique opportunity to combine a mission over Venus with a transfer flight to Halley's comet. This project is based on three research goals: (1) to study the surface of Venus; (2) to study the air circulation on Venus and its meteorological parameters; and (3) to study Halley's comet. The objective of the study of Halley's comet is to: determine the physical characteristics of its nucleus; define the structure and dynamics of the coma around the nucleus; define the gas composition near the nucleus; investigate the dust particle distribution as a function of mass at various distances from the nucleus; and investigate the solar wind interaction with the atmosphere and ionosphere of the comet.
Chaotic dynamics of Comet 1P/Halley: Lyapunov exponent and survival time expectancy
NASA Astrophysics Data System (ADS)
Muñoz-Gutiérrez, M. A.; Reyes-Ruiz, M.; Pichardo, B.
2015-03-01
The orbital elements of Comet Halley are known to a very high precision, suggesting that the calculation of its future dynamical evolution is straightforward. In this paper we seek to characterize the chaotic nature of the present day orbit of Comet Halley and to quantify the time-scale over which its motion can be predicted confidently. In addition, we attempt to determine the time-scale over which its present day orbit will remain stable. Numerical simulations of the dynamics of test particles in orbits similar to that of Comet Halley are carried out with the MERCURY 6.2 code. On the basis of these we construct survival time maps to assess the absolute stability of Halley's orbit, frequency analysis maps to study the variability of the orbit, and we calculate the Lyapunov exponent for the orbit for variations in initial conditions at the level of the present day uncertainties in our knowledge of its orbital parameters. On the basis of our calculations of the Lyapunov exponent for Comet Halley, the chaotic nature of its motion is demonstrated. The e-folding time-scale for the divergence of initially very similar orbits is approximately 70 yr. The sensitivity of the dynamics on initial conditions is also evident in the self-similarity character of the survival time and frequency analysis maps in the vicinity of Halley's orbit, which indicates that, on average, it is unstable on a time-scale of hundreds of thousands of years. The chaotic nature of Halley's present day orbit implies that a precise determination of its motion, at the level of the present-day observational uncertainty, is difficult to predict on a time-scale of approximately 100 yr. Furthermore, we also find that the ejection of Halley from the Solar system or its collision with another body could occur on a time-scale as short as 10 000 yr.
Evolution of Interstellar Grains
NASA Technical Reports Server (NTRS)
Allamandola, Lou J.; DeVincenzi, Donald L. (Technical Monitor)
1998-01-01
During the past two decades observations combined with laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the raw materials from which planets, comets and stars form. Most interstellar material is concentrated in large molecular clouds where simple molecules are formed by dust-grain and gas-phase reactions. Gaseous species striking the cold (10K) dust stick, forming an icy grain mantle. This accretion, coupled with UV photolysis, produces a complex chemical mixture containing volatile, non-volatile, and isotopically fractionated species. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, H2, and perhaps some NH3 and H2CO, as well as more complex species. The evidence for these compounds, as well as carbon-rich materials, will be reviewed and the possible connections with comets and meteorites will be presented in the first part of the talk . The second part of the presentation will focus on interstellar/precometary ice photochemical evolution and the species likely to be found in comets. The chemical composition and photochemical evolution of realistic interstellar/pre-cometary ice analogs will be discussed. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and more complex molecules. When ices representative of interstellar grains and comets are exposed to UV radiation at low temperature a series of moderately complex organic molecules are formed in the ice including: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C=N (nitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. After warming to room temperature an organic residue remains. This is composed primarily of hexamethylenetetramine (HMT, C6H12N4), with lesser amounts of polyoxymethylene-related species (POMs), amides, and ketones. This is in sharp contrast to the organic residues produced by irradiating unrealistic interstellar ice analogs or thermally promoted polymerization-type reactions in unirradiated realistic ice mixtures.
NASA Astrophysics Data System (ADS)
Dlugach, Janna M.; Ivanova, Oleksandra V.; Mishchenko, Michael I.; Afanasiev, Viktor L.
2018-01-01
We summarize unique aperture data on the degree of linear polarization observed for distant comets C/2010 S1, C/2010 R1, C/2011 KP36, C/2012 J1, C/2013 V4, and C/2014 A4 with heliocentric distances exceeding 3 AU. Observations have been carried out at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (Nizhnij Arkhyz, Russia) during the period from 2011 to 2016. The measured negative polarization proves to be significantly larger in absolute value than what is typically observed for comets close to the Sun. We compare the new observational data with the results of numerical modeling performed with the T-matrix and superposition T-matrix methods. In our computer simulations, we assume the cometary coma to be an optically thin cloud containing particles in the form of spheroids, fractal aggregates composed of spherical monomers, and mixtures of spheroids and aggregate particles. We obtain a good semi-quantitative agreement between all polarimetric data for the observed distant comets and the results of numerical modeling for the following models of the cometary dust: (i) a mixture of submicrometer water-ice oblate spheroids with aggregates composed of submicrometer silicate monomers; and (ii) a mixture of submicrometer water-ice oblate spheroids and aggregates consisting of both silicate and organic monomers. The microphysical parameters of these models are presented and discussed.
NASA Technical Reports Server (NTRS)
Gehrz, R. D.; Johnson, C. H.; Magnuson, S. D.; Ney, E. P.; Hayward, T. L.
1995-01-01
A close examination of the 0.7- to 23-micron infrared data base acquired by Gehrz and Ney (1992), suggests that the nucleus of Comet P/Halley 1986 III emitted a burst of small dust grains during a 3-day period commencing within hours of perihelion passage on 1986 February 9.46 UT. The outburst was characterized by significant increases in the coma's grain color temperature T(sub obs), temperature excess (superheat: S = T(sub obs)/T(sub BB)), infrared luminosity, albedo, and 10-micron silicate emission feature strength. These changes are all consistent with the sudden ejection from the nucleus of a cloud of grains with radii of approximately 0.5 micron. This outburst may have produced the dust that was responsible for some of the tail streamers photographed on 1986 February 22 UT. The peak of the dust outburst occurred about 3 days before a pronounced increase in the water production rate measured by the Pioneer Venus Orbiter Ultraviolet Spectrometer. We suggest that jets that release large quantities of small particles may be largely responsible for some of the variable infrared behavior that has been reported for P/Halley and other comets during the past two decades. Such jets may also account for some of the differences IR Type I and IR Type II comets.
ORIGIN OF MOLECULAR OXYGEN IN COMET 67P/CHURYUMOV–GERASIMENKO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mousis, O.; Ronnet, T.; Brugger, B.
2016-06-01
Molecular oxygen has been detected in the coma of comet 67P/Churyumov–Gerasimenko with abundances in the 1%–10% range by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis-Double Focusing Mass Spectrometer instrument on board the Rosetta spacecraft. Here we find that the radiolysis of icy grains in low-density environments such as the presolar cloud may induce the production of large amounts of molecular oxygen. We also show that molecular oxygen can be efficiently trapped in clathrates formed in the protosolar nebula (PSN), and that its incorporation as crystalline ice is highly implausible, because this would imply much larger abundances of Armore » and N{sub 2} than those observed in the coma. Assuming that radiolysis has been the only O{sub 2} production mechanism at work, we conclude that the formation of comet 67P/Churyumov–Gerasimenko is possible in a dense and early PSN in the framework of two extreme scenarios: (1) agglomeration from pristine amorphous icy grains/particles formed in ISM and (2) agglomeration from clathrates that formed during the disk’s cooling. The former scenario is found consistent with the strong correlation between O{sub 2} and H{sub 2}O observed in comet 67P/Churyumov-Gerasimenko’s coma while the latter scenario requires that clathrates formed from ISM icy grains that crystallized when entering the PSN.« less
The number of Jupiter family comets as a constraint on the transneptunian population
NASA Astrophysics Data System (ADS)
Tancredi, G.; et al.
Several duynamical studies point out that the comets of the Jupiter family were originated in a flat belt in the transneptunian region. The Jupiter family is a transient dynamical state between the injection from the outer region and i) the ejection out of the Solar System, ii) the collision against one of its members or iii) the desintegration into a meteor stream. It has been generally assumed that the Jupiter family (JF) is in a steady state; i.e. the injection is balanced by the ejection+collision+ desintegration. Knowing the duration of a typical visit into the Jupiter family and the number of JF comets we could infer the injection rate. The rate of escapes from the transneptunian region and the fraction that reach the Jupiter family can be computed from massive integrations of particles starting in the outer region. An estimate of the required population of transneptunian objects can then be inferred from these numbers. There have been published several estimates of the dynamical parameters mentioned above but the total number of JF comets has been difficult to estimate. Based on a compilation of all the reported nuclear magnitudes of JF comets, we derive the total number of objects in the cometary population. The observed population (~ 200) is a tiny fraction of the total population (several thousands). Compiling all these numbers, we then derive the required trasneptunian population.
2013-11-22
Comet ISON shines brightly in this image taken on the morning of 19 Nov. 2013. This is a 10-second exposure taken with the Marshall Space Flight Center 20" telescope in New Mexico. The camera there is black and white, but the smaller field of view allows for a better "zoom in" on the comet's coma, which is essentially the head of the comet. Credit: NASA/MSFC/MEO/Cameron McCarty -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on April 30 Hubble View of ISON
2013-11-22
On April 30, NASA's Hubble Space Telescope observed Comet ISON again. The comet is in the upper middle, showing the long tail. Various galaxies and stars appear behind it. In this image, Hubble trained its telescope on the stars instead of following the comet. The result is that the comet appears fuzzier, but the stars and galaxies are more detailed and precise. These dimmer features don't pop out if the camera is moving, following along with ISON. To see them, you really need to dwell in one place until they emerge from the noise. Credit: NASA/ESA/STScI/AURA -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Dlugach, Janna M.; Mishchenko, Michael I.
2017-01-01
In this paper, we discuss some aspects of numerical modeling of electromagnetic scattering by discrete random medium by using numerically exact solutions of the macroscopic Maxwell equations. Typical examples of such media are clouds of interstellar dust, clouds of interplanetary dust in the Solar system, dusty atmospheres of comets, particulate planetary rings, clouds in planetary atmospheres, aerosol particles with numerous inclusions and so on. Our study is based on the results of extensive computations of different characteristics of electromagnetic scattering obtained by using the superposition T-matrix method which represents a direct computer solver of the macroscopic Maxwell equations for an arbitrary multisphere configuration. As a result, in particular, we clarify the range of applicability of the low-density theories of radiative transfer and coherent backscattering as well as of widely used effective-medium approximations.
Sources of zodiacal dust particles
NASA Astrophysics Data System (ADS)
Ipatov, S. I.; Mather, J. C.
2007-08-01
The orbital evolution of dust particles produced by asteroids, comets, and trans- Neptunian objects was integrated [1-3]. Analysis of results of these integrations testify in favor of a considerable fraction of particles produced by comets among overall zodiacal dust particles, but it does not contradict to >30% of asteroidal dust needed for explanation of formation of dust bands. Fractions of asteroidal particles, particles originating beyond Jupiter's orbit (including trans-Neptunian particles), and cometary particles originating inside of Jupiter's orbit are estimated to be about 1/3 each, with a possible deviation from 1/3 up to 0.1-0.2. Comparison of the plots of the number density vs. the distance R from the Sun obtained for particles produced by different small bodies with the plots based on observations shows that asteroidal and trans- Neptunian particles alone can not explain the observed almost constant number density at R ∼3-18 AU and a lot of particles must be produced by comets at R ∼5-10 AU [2-3]. Comparison of the WHAM (Wisconsin H-Alpha Mapper spectrometer) observations of spectra of zodiacal light with our models showed [4-5] that a significant fraction of particles produced by short-period comets is required to fit the observations of the width and velocity of the Mg I line. Comparison of the observations of the number density inside Jupiter's orbit with the number density of particles produced by different small bodies leads to the same conclusion about a considerable fraction of cometary particles. This comparison does not make limitations on cometary particles produced beyond Jupiter's orbit, but it shows that the fraction of particles produced by Encke-type comets (with eccentricities ∼0.8-0.9) does not exceed 0.15 of the overall population. The estimated fraction of particles produced by long-period and Halley-type comets among zodiacal dust also does not exceed 0.1-0.15. Though trans-Neptunian particles fit different observations of dust inside Jupiter's orbit, they can not be dominant in the zodiacal cloud because they can not be dominant between orbits of Jupiter and Saturn. The conclusion on a considerable fraction of cometary dust is also in an agreement with our studies [6] of the dynamics of Jupiter-family comets, which showed that some former cometary objects could get high eccentric orbits located entirely inside of Jupiter's orbit and stay in these orbits for a long time. Some of these objects could disintegrate producing a substantial amount of dust. [1] Ipatov S.I., Mather J.C., and Taylor P. (2004) Annals of the New York Acad. of Sciences, 1017, 66-80. [2] Ipatov S.I. and Mather J.C. (2006) Advances in Space Research, 37, 126-137. [3] Ipatov S.I. and Mather J.C., (2007) Dust in Planetary Systems, ed. by H. Krüger and A. Graps, ESA Publications, SP-643, p. 91-94. [4] Ipatov S.I. et al. (2006) 37th LPSC, #1471. [5] Ipatov S.I. et al., astro-ph/0608141. [6] Ipatov S.I. and Mather J.C. (2004) Annals of the New York Acad. of Sciences, 1017, 66-80.
NASA Astrophysics Data System (ADS)
Behar, E.; Tabone, B.; Nilsson, H.
2018-05-01
When interacting, the solar wind and the ionised atmosphere of a comet exchange energy and momentum. Our aim is to understand the influence of the average Parker spiral configuration of the solar wind magnetic field on this interaction. We compare the theoretical expectations of an analytical generalised gyromotion with Rosetta observations at comet 67P/Churyumov-Gerasimenko. A statistical approach allows one to overcome the lack of upstream solar wind measurement. We find that additionally to their acceleration along (for cometary pick-up ions) or against (for solar wind ions) the upstream electric field orientation and sense, the cometary pick-up ions are drifting towards the dawn side of the coma, while the solar wind ions are drifting towards the dusk side of the coma, independent of the heliocentric distance. The dynamics of the interaction is not taking place in a plane, as often assumed in previous works.
I. T. - R. O. C. K. S. Comet Nuclei Sample Return Mission
NASA Astrophysics Data System (ADS)
Dalcher, N.
2009-04-01
Ices, organics and minerals recording the chemical evolution of the outer regions of the early solar nebula are the main constituents of comets. Because comets maintain the nearly pristine nature of the cloud where they formed, the analyses of their composition, structure, thermodynamics and isotope ratios will increase our understanding of the processes that occurred in the early phases of the solar system as well as the Interstellar Medium (ISM) Cloud that predated the formation of the solar nebula [1]. While the deep impact mission aimed at determining the internal structure of comet Temple1's nuclei [e.g. 3], the stardust mission sample return has dramatically increased our understanding of comets. Its first implications indicated that some of the comet material originated in the inner solar system and was later transported outward beyond the freezing line [4]. A wide range of organic compounds identified within different grains of the aerogel collectors has demonstrated the heterogeneity in their assemblages [5]. This suggests either many histories associated with these material or possibly analytical constraints imposed by capture heating of Wild2 material in silica aerogel. The current mission ROSETTA, will further expand our knowledge about comets considerably through rigorous in situ analyses of a Jupiter Family Comet (JFC). As the next generation of comet research post ROSETTA, we present the comet nuclei sample return mission IT - ROCKS (International Team - Return Of Comet's Key Samples) to return several minimally altered samples from various locations of comet 88P/Howell, a typical JFC. The mission scenario includes remote sensing of the comet's nucleus with onboard instruments similar to the ROSETTA instruments [6, 7, 8] (VIS, IR, Thermal IR, X-Ray, Radar) and gas/dust composition measurements including a plasma science package. Additionally two microprobes [9] will further investigate the physical properties of the comet's surface. Retrieving of the samples will be performed by touch and go manoeuvres and a penetrator device [10]. Solar arrays are used as energy source and additional cooling is required to keep the samples at low temperatures (<135K) to prevent them from alteration during return [11]. The return of the samples will be performed by a re-entry capsule similar to that used in the stardust mission. A combined propulsion method of solar electric and chemical propulsion was chosen and an Ariane 5 ECB will be used as launching vehicle due to the payload of nearly 5.5 tons. The overall mission time is about 9 years and it will operate after 2025. The total costs will exceed 2000 million Euro. The amount of material returned (at least 15 g in total) will enable a wide range of scientific analyses techniques. For future analyses on Earth, in laboratories capable of more sophisticated techniques, a certain amount (1/4 of total mass) of the samples will be stored under a sufficient protective environment which includes cooling systems, clean rooms and high vacuum conditions. Different experimental techniques non-, semi-, and completely destructive will be applied to the samples including XRD, IR-VIS spectroscopy for mineralogical analysis, X-Ray tomography for physical properties, SEM, TEM for imaging, TOF-SIMS, Nano-SIMS for isotopic composition and Nano-SIMS, Raman-Spectroscopy for organic analyses . This will aid us with understanding the nature of comets, the isotopic composition of presolar grains and the role comets played in delivering water and organics to Earth [2] and other celestial bodies. [1] Irvine W. and Lunine J., The cycle of matter in the galaxy. In Comets II (M. Festou et al., eds.), p. 25. University of Arizona, Tucson (2005). [2] Sagan C. And Druyan A., Comets, revised. First Ballantine Books Edition (1997). [3] The shape, topography, and geology of Tempel 1 from Deep Impact observations Thomas P.C., Veverka J., Belton M.J.S., Hidy A., A'Hearn M.F., Farnham T.L., Groussin O., Li J.-Y., McFadden L.A., Sunshine J., Wellnitz D., Lisse C., Schultz P., Meech K. J., Delamere W. A. Icarus 187,4-15 (2007). [4] Simon S.B., Joswiak D.J., Ishii H.A., Bradley J.P., Chi M., Grossman L., Aléon J., Brownlee D.E., Fallon S., Hutcheon I.D., Matrajt G., Mckeegan K.D.: Refractory Inclusion Returned by Stardust from Comet P81/Wild 2. Meteoritics and Planetary Science (2007). [5] George D. Cody, Harald Ade, Conel M. O'D. Alexander, Tohru Araki, Anna Butterworth, Holger Fleckenstein, George Flynn, Mary K. Gilles, Chris Jacobsen, A.L. D. Kilcoyne, Keiko Messenger, Scott A. Sandford, Tolek Tyliszczak, Andrew J.Westphal4, Susan Wirick, and Hikaru Yabuta. Quantitative Organic and Light Element analysis of Comet 81P/Wild 2 particles using C-, N-, and O- µ-XANES, Meteoretics and Planetary Science: In Press. [6] Stern, S. et al. Alice: The Rosetta Ultraviolet Imaging Spectrograph. Space Science Reviews 128, 507-527 (2007). [7] Balsiger, H. et al. Rosina-Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Space Science Reviews 128, 745-801 (2007). [8] Colangeli, L. et al. The Grain Impact Analyser and Dust Accumulator (GIADA) Experiment for the Rosetta Mission: Design, Performances and First Results. Space Science Reviews 128, 803-821 (2007). [9] Yoshimitsu, T., Kubota, T., Nakatani, I., Adachi, T. & Saito, H. Micro-hopping robot for asteroid exploration. Acta Astronautica 52, 441-446 (2003). [10] Lorenz, R. et al. Demonstration of comet sample collection by penetrator. ESA SP-542, 387-393 (2003). [11] Küppers et al. Triple F—a comet nucleus sample return mission. Experimental Astronomy, Online First (2008).
Study of Comets Composition and Structure
NASA Astrophysics Data System (ADS)
Khalaf, S. Z.; Selman, A. A.; Ali, H. S.
2008-12-01
The present paper focuses on the nature of the different interactions between cometary nucleus and tail with solar wind. The dynamics of the comet will impose many features that provide unique behavior of the comet when entering the solar system. These features are reviewed in this paper and few investigations are made. The calculations made in this work represent the analysis and interpretation of the different features of the comet, such as perihelion and eccentricity dependence on the gas production rate, and the dependence of the latter on the composition of the comet nucleus. The dependences of the heliocentric, bow shock, contact surface, and stand-off distances with gas production rate for many types of comets that cover linear and non-linear types are studied in this work. Important results are obtained which indicated the different physical interactions between cometary ions and solar wind. Furthermore, the important relation between mean molecular weight and gas production rate are analyzed and studied in this work and a conclusion is made that, as the gas production rate increases, the mean molecular weight will decrease exponentially. A detailed discussion for this unique relation is given.
NASA Astrophysics Data System (ADS)
Guliyev, Ayyub; Nabiyev, Shaig
2017-07-01
This paper presents the results of a statistical analysis of the dynamic parameters of 300 comets that have osculating hyperbolic orbits. It is shown that such comets differ from other comets by their large perihelion distances and by a predominance of retrograde motion. It is shown that the values of i, the inclination of the hyperbolic comets, are in comparative excess over the interval 90-120°. The dominance by q, the perihelion distance, renders it difficult to suggest that the excess hyperbolic velocity of these comets can be the result of physical processes that take place in their nuclei. Aspects of the following working hypothesis, that the hyperbolic excess of parameter e might be formed after comets pass through meteoroid streams, are also studied. To evaluate this hypothesis, the distribution of the orbits of hyperbolic comets relative to the plane of motion of 112 established meteoroid streams are analyzed. The number (N) of orbit nodes for hyperbolic comets with respect to the plane of each stream at various distances is calculated. To determine the degree of redundancy of N, a special computing algorithm was applied that provided the expected value nav as well as the standard deviation σ for the number of cometary nodes at the plane of each stream. A comparative analysis of the N and nav values that take σ into account suggests an excess in 40 stream cases. This implies that the passage of comets through meteoroid streams can lead to an acceleration of the comets' heliocentric velocity.
Comments on the Rotational State and Non-Gravitational Forces of Comet 46/WIRTANEN. Revised
NASA Technical Reports Server (NTRS)
Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Belton, Michael J. S.
1995-01-01
We apply our experience of modeling the rotational state and non-gravitational forces of comet 1 P/Halley and other comets to comet 46P/Wirtanen. While the paucity of physical data on 46P/Wirtanen makes this process somewhat speculative, this comet's place as target for the important Rosetta mission gives significance to such a study. Our arguments are based on the summary of observational data provided by Jorda and Rickman (1995) and a comparative study of the behavior of other periodic comets. We find 46P/Wirtanen to have a level of surface activity relative to its mass that is dynamically more akin to that found in comet 1 P/Halley than in a typical periodic comet. We show through an illustrative numerical example that this apparent fact should likely lead to an excited spin state for this comet and that significant changes in the spin period could occur in a single pass through perihelion. We argue that the available observations are not sufficient to substantiate the claim of Jorda and Rickman (1995) that the nucleus is undergoing retrograde rotation and it is possible that the rotation is either prograde as well as retrograde. The substantial requirements that must be placed on any future observing program necessary to determine the precise rotational state are outlined. We advocate an extended (approx. two month) southern hemisphere observing campaign to determine the nuclear rotational state in 1996 if possible before activity turns on.
An open source platform for multi-scale spatially distributed simulations of microbial ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segre, Daniel
2014-08-14
The goal of this project was to develop a tool for facilitating simulation, validation and discovery of multiscale dynamical processes in microbial ecosystems. This led to the development of an open-source software platform for Computation Of Microbial Ecosystems in Time and Space (COMETS). COMETS performs spatially distributed time-dependent flux balance based simulations of microbial metabolism. Our plan involved building the software platform itself, calibrating and testing it through comparison with experimental data, and integrating simulations and experiments to address important open questions on the evolution and dynamics of cross-feeding interactions between microbial species.
Chemical Evolution of Interstellar Dust into Planetary Materials
NASA Technical Reports Server (NTRS)
Fomenkova, M. N.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)
1995-01-01
Comets are believed to retain some interstellar materials, stored in fairly pristine conditions since-their formation. The composition and properties of cometary dust grains should reflect those of grains in the outer part of the protosolar nebula which, at least in part, were inherited from the presolar molecular cloud. However, infrared emission features in comets differ from their interstellar counterparts. These differences imply processing of interstellar material on its way to incorporation in comets, but C and N appear to be retained. Overall dust evolution from the interstellar medium (ISM) to planetary materials is accompanied by an increase in proportion of complex organics and a decrease in pure carbon phases. The composition of cometary dust grains was measured in situ during fly-by missions to comet Halley in 1986. The mass spectra of about 5000 cometary dust grains with masses of 5 x 10(exp -17) - 5 x 10(exp -12) g provide data about the presence and relative abundances of the major elements H, C, N, O,Na, Mg, Al, Si, S, Cl, K, Ca, Ti, Cr, Fe, Ni. The bulk abundances of major rock-forming elements integrated over all spectra were found to be solar within a factor of 2, while the volatile elements H, C, N, O in dust are depleted in respect to their total cosmic abundances. The abundances of C and N in comet dust are much closer to interstellar than to meteoritic and are higher than those of dust in the diffuse ISM. In dense molecular clouds dust grains are covered by icy mantles, the average composition of which is estimated to be H:C:N:O = 96:14:1:34. Up to 40% of elemental C and O may be sequestered in mantles. If we use this upper limit to add H, C, N and O as icy mantle material to the abundances residing in dust in the diffuse ISM, then the resulting values for H. C, and N match cometary abundances. Thus, ice mantles undergoing chemical evolution on grains in the dense ISM appear to have been transformed into less volatile and more complex organic residues wherein the H, C and N are largely retained and ultimately accreted in cometary dust. The abundance of O is about the same for cometary dust, meteorites and interstellar dust. In all these samples, most of O in a solid phase is bonded to silicates. In dense molecular clouds, the abundance of O in dust+mantles is significantly higher then in cometary dust. This difference may reflect the greater lability of oxygenated species toward astrophysical processing. Laboratory studies show that O-bearing functional groups in organic compounds tend to be relatively easily removed by heating and/or UV and particle irradiation . In Halley's coma, O-containing organic grains, being unstable, were located closest to the nucleus. The decomposition of the organic grain component in the coma provided a significant extended source contribution to O-containing gaseous species such as CO and H2CO.
Submillimetric Spectroscopic Observations of Volatiles in Comet C-2004 Q2 (Machholz)
NASA Technical Reports Server (NTRS)
DeVal-Borro, M.; Hartogh, P.; Jarchow, C.; Rengel, M.; Villanueva, G. L.; Kueppers, M.; Biver, N.; Bockelee-Morvan, D.; Crovisier, J.
2012-01-01
Submillimeter spectroscopic observations of comets provide an important tool for understanding their chemical composition and enable a taxonomic classification. Aims. We aim to determine the production rates of several parent- and product volatiles and the C-12/C-13 isotopic carbon ratio in the long-period comet C/2004 Q2 (Machholz), which is likely to originate from the Oort Cloud. Methods. The line emission from several molecules in the coma was measured with high signal-to-noise ratio in January 2005 at heliocentric distance of 1.2 AU by means of high-resolution spectroscopic observations using the Submillimeter Telescope (SMT) at the Arizona Radio Observatory (ARO). Results. We have obtained production rates of several volatiles (CH3OH, HCN, H(sup 13)CN, HNC, H2CO, CO, and CS) by comparing the observed and simulated line-integrated intensities. We calculated the synthetic profiles using a radiative transfer code that includes collisions between neutrals and electrons, and the effects of radiative pumping of the fundamental vibrational levels by solar infrared radiation. Furthermore, multiline observations of the CH3OH J = 7-6 series allow us to estimate the rotational temperature using the rotation diagram technique. We find that the CH3OH population distribution of the levels sampled by these lines can be described by a rotational temperature of 40 +/- 3 K. Derived mixing ratios relative to hydrogen cyanide are CO/CH3OH/H2CO/CS/HNC/HC-13N/HCN= 30.9/24.6/4.8/0.57/0.031/0.013/1 assuming a pointing offset of 8" due to the uncertain ephemeris at the time of the observations and the telescope pointing error. Conclusions. The measured relative molecular abundances in C/2004 Q2 (Machholz) are between low- to typical values of those obtained in Oort Cloud comets, suggesting that it has visited the inner solar system previously and undergone thermal processing. The HNC/HCN abundance ratio of approx 3.1% is comparable to that found in other comets, accounting for the dependence on the heliocentric distance, and could possibly be explained by ion-molecule chemical processes in the low-temperature atmosphere. From a tentative HC-13N detection, the measured value of 97 +/- 30 for the HC-12N/HC-13N isotopologue pair is consistent with a telluric value. The outgassing variability observed in the HCN production rates over a period of two hours is consistent with the rotation of the nucleus derived using different observational techniques.
Comet ISON Passes Through Virgo
2013-11-22
Date: 8 Nov 2013 - Comet ISON shines in this five-minute exposure taken at NASA's Marshall Space Flight Center on Nov. 8, 2013.. The image was captured using a color CCD camera attached to a 14" telescope located at Marshall. At the time of this picture, comet ISON was 97 million miles from Earth, moving ever closer toward the sun. Credit: NASA/MSFC/Aaron Kingery -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2013-11-22
Taken on 19 Nov. 2013, this image shows a composite "stacked" image of comet ISON. These five stacked images of 10 seconds each were taken with the 20" Marshall Space Flight Center telescope in New Mexico. This technique allows the comet's sweeping tail to emerge with more detail. Credit: NASA/MSFC/MEO/Cameron McCarty -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Space Science Reference Guide, 2nd Edition
NASA Technical Reports Server (NTRS)
Dotson, Renee (Editor)
2003-01-01
This Edition contains the following reports: GRACE: Gravity Recovery and Climate Experiment; Impact Craters in the Solar System; 1997 Apparition of Comet Hale-Bopp Historical Comet Observations; Baby Stars in Orion Solve Solar System Mystery; The Center of the Galaxy; The First Rock in the Solar System; Fun Times with Cosmic Rays; The Gamma-Ray Burst Next Door; The Genesis Mission: An Overview; The Genesis Solar Wind Sample Return Mission; How to Build a Supermassive Black Hole; Journey to the Center of a Neutron Star; Kepler's Laws of Planetary Motion; The Kuiper Belt and Oort Cloud ; Mapping the Baby Universe; More Hidden Black Hole Dangers; A Polarized Universe; Presolar Grains of Star Dust: Astronomy Studied with Microscopes; Ring Around the Black Hole; Searching Antarctic Ice for Meteorites; The Sun; Astrobiology: The Search for Life in the Universe; Europa and Titan: Oceans in the Outer Solar System?; Rules for Identifying Ancient Life; Inspire ; Remote Sensing; What is the Electromagnetic Spectrum? What is Infrared? How was the Infrared Discovered?; Brief History of Gyroscopes ; Genesis Discovery Mission: Science Canister Processing at JSC; Genesis Solar-Wind Sample Return Mission: The Materials ; ICESat: Ice, Cloud, and Land Elevation Satellite ICESat: Ice, Cloud, and Land; Elevation Satellite ICESat: Ice, Cloud, and Land Elevation Satellite ICESat: Ice, Cloud, and Land Elevation Satellite ICESat: Ice, Cloud, and Land Elevation Satellite Measuring Temperature Reading; The Optical Telescope ; Space Instruments General Considerations; Damage by Impact: The Case at Meteor Crater, Arizona; Mercury Unveiled; New Data, New Ideas, and Lively Debate about Mercury; Origin of the Earth and Moon; Space Weather: The Invisible Foe; Uranus, Neptune, and the Mountains of the Moon; Dirty Ice on Mars; For a Cup of Water on Mars; Life on Mars?; The Martian Interior; Meteorites from Mars, Rocks from Canada; Organic Compounds in Martian Meteorites May be Terrestrial Contaminants; Bands on Europa;Big Mountain, Big Landslide on Jupiter's Moon, Io; Cratering of the Moon; Europa's Salty Surface; The Europa Scene in the Voyager-Galileo Era; Explosive Volcanic Eruptions on the Moon; Ice on the Bone Dry Moon; Jupiter's Hot, Mushy Moon; The Moon Beyond 2002 ; Phases of the Moon; The Ph-D Project: Manned Expedition to the Moons of Mars; and Possible Life in a Europan Ocean.
NASA Astrophysics Data System (ADS)
Vedernikov, Andrei; Blum, Jurgen; Ingo Von Borstel, Olaf; Schraepler, Rainer; Balapanov, Daniyar; Cecere, Anselmo
2016-07-01
Nanometre and micrometre-sized solid particles are ubiquitous in space and on Earth - from galaxies, interstellar space, protoplanetary and debris disks to planetary rings and atmospheres, planetary surfaces, comets, interplanetary space, Earth's atmosphere. Apparently, the most intriguing problem in the picture of the formation of planets is the transition from individual microscopic dust grains to kilometre-sized planetesimals. Revealing the mechanisms of this transition is one of the main tasks of the European Space Agency's project Interaction in Cosmic and Atmospheric Particle Systems (ICAPS). It was found that Brownian motion driven agglomeration could not provide the transition within reasonable time scale. As a result, at this stage top scientific goals shifted towards forced agglomeration and concentration of particles, targeting revealing the onset of compaction, experimental study of the evolution of fractal dimensions, size and mass distribution, occurrence of bouncing. The main tasks comprise 1) development of the rapid agglomeration model 2) development of the experimental facilities creating big fractal-type agglomerates from 10 to 1000 μm from a cloud of micrometre-size grains; 3) experimental realization of the rapid agglomeration in microgravity and ground conditions; and 4) in situ investigation of the morphology, mobility, mechanical and optical properties of the free-floating agglomerates, including investigation of thermophoresis, photophoresis of the agglomerates and of the two-phase flow phenomena. To solve the experimental part of the tasks we developed a Cloud Manipulation System, realized as a breadboard (CMS BB) for long duration microgravity platforms and a simplified laboratory version (CMS LV) mostly oriented on short duration microgravity and ground tests. The new system is based on the use of thermophoresis, most favourable for cloud manipulation without creating additional particle-particle forces in the cloud with a possibility of growing single agglomerate out of the whole cloud. The cloud manipulation system additionally provides temperature stabilization or, on the contrary, high temperature variation in the observation volume; formation of controlled temperature gradients, intensive three-dimensional periodic shear flow or three-dimensional gas density pulsations of the contraction-expansion type; application of electrostatic gradients including electro dynamic balancing; imposing of photophoretic force, etc. Their choice and/or combination depend upon particular experimental task. Experiments on forced agglomeration in short duration microgravity conditions of the Bremen drop tower succeeded in rapid growth of extended agglomerates, formation of complex three-dimensional cloud patterns, allowed observing controlled cloud displacement, cloud trapping, particle separation with respect to their electrical charge. The breadboard (CMS BB) and the laboratory version of the Cloud Manipulation System (CMS LV) are new types of scientific instrument with high scientific potential. ESA PRODEX program, the Belgian Federal Science Policy Office, DLR project 50WM1223, ZARM Drop Tower Operation and Service Company Ltd. are greatly acknowledged.
Long-term orbital evolution of short-period comets found in Project Cosmo-DICE
NASA Technical Reports Server (NTRS)
Nakamura, Tsuko; Yoshikawa, Makoto
1992-01-01
Orbital evolutions of about 160 short-period (SP) comets are numerically integrated for 4400 years in the framework of a realistic dynamical model. By the round-trip error in closure test, a reliable time space of the integrated orbits is estimated for each comet. Majority of the SP comets with their Tisserand's constant(J) between 2.8 and 3.1 are found to evolve within the past 1000-2000 years from the orbits whose perihelia are near the Jovian orbit to the orbits with perihelia of 1-2 AU. This evolution is much more rapid than that expected from Monte Carlo simulations based on symmetric distribution of planetary perturbations, thus suggesting that asymmetry of perturbation distribution play an important role in cometary evolution. Several comets are shown to evolve from the near-Saturn orbits and then to be handed over under the control of Jupiter. We also find that a few comets were captured from long-period orbits (a = 75-125 AU) via only a few close encounters with Jupiter. It is confirmed that the captured SP comets of low-inclination with 2.7 less than J less than 3.1 show more or less strong chaotic behavior. On the other hand, comets with longer orbital period and/or of high inclination reveal slow or quasi-periodic orbital evolution.
NASA Astrophysics Data System (ADS)
Heggy, E.; Palmer, E. M.; Kofman, W. W.; Herique, A.; El Maarry, M. R.
2017-12-01
Rosetta's two-year orbital mission at comet 67P/Churyumov-Gerasimenko significantly improved our understanding of the Radar properties of cometary bodies and how they can be used to constrain the ambiguities associated to the dynamical formation of 67P by setting an upper limit on the size of the comet's initial building blocks using the CONSERT, VIRTIS and OSIRIS observations. We present here in an updated post-rendezvous three-dimensional dielectric, textural and structural model of the comet's surface and subsurface at VHF-, X- and S-band radar frequencies. We assess the radar properties of potential structural heterogeneities observed in the upper meters of the shallow subsurface as well as deeper structures across the comet head. We use CONSERT's bistatic radar sounding measurements of the nucleus `head' interior to constrain the dielectric properties and structure of the interior; VIRTIS' multi-spectral observations to constrain the surface mineralogy and the distribution of water-ice on the surface and the implications of the above on the spatial variability of the surface and shallow subsurface dielectric properties. Surface and shallow subsurface structural elements are derived from the OSIRIS' images of exposed outcrops and pit walls. Our dielectric analysis showing the lack of sufficient dielectric contrast correlated with the lack of signal broadening in the 90-MHz radar echoes observed by CONSERT suggests that the the apparent meter-sized inhomogeneities in the walls of deep pits originally interpreted as cometesimals forming the comet's primordial blocks, could be localized evolutionary features of high centered polygons caused by seasonal modifications to the near-subsurface ice formed through thermal expansion and contraction and may not be continuous through the head. Considering the three-dimensional dielectric variability of 67P as derived from CONSERT, VIRTIS, Arecibo observations and laboratory measurement we set an upper limit on the size of the comet's initial building blocks.
The resolved nucleus of Comet Siding Spring (C/2013 A1) in MRO HiRISE images
NASA Astrophysics Data System (ADS)
Farnham, Tony; Kelley, Michael S.; Bodewits, Dennis; Bauer, James M.
2017-10-01
Comet Siding Spring (C/2013 A1) passed within 140,000 km of Mars on 19 Oct 2014. The MRO spacecraft, in orbit around Mars, used its HiRISE camera to monitor the comet during the encounter, obtaining the first resolved images of the nucleus of a dynamically new comet.MRO observed Siding Spring from 60 hr before, to 15 hr after close approach, obtaining 122 images in three different color filters. Close approach images, with a spatial scale as small as 138 m/pix, reveal an elongated crescent that changes shape over the course of the sequence, indicating that we are seeing a ~1 km non-spherical body from different viewpoints as the comet rapidly sweeps past. To better constrain the characteristics of the nucleus, we are performing detailed analyses, including modeling of the inner coma to separate its flux contribution from that of the nucleus. In conjunction with the coma removal, we will model the nucleus as a prolate/triaxial ellipsoid and, combined with the known illumination and viewing conditions, will use the changing aspect in the images to constrain the size, shape, orientation, albedo and possibly the phase dependence of the nucleus.In addition to the close approach observations, the images before and after close approach capture the coma structure and brightness. The photometric lightcurve from these images shows variability with an 8.1 hr period, which is presumed to be the rotational modulation of the coma activity. The observed morphology changes as well, promising to provide a measure of the nucleus' spin axis orientation.We will report on the results from our analyses, and provide the first direct measurements of the nucleus of a dynamically new comet.
Midcourse Space Experiment Observations of Small Solar System Bodies
NASA Astrophysics Data System (ADS)
Kraemer, Kathleen E.; Lisse, C. M.; Price, Stephan D.; Mizuno, D.; Walker, R. G.; Farnham, T. L.; Mäkinen, T.
2005-11-01
Eight comets, two transition objects (extinct comet candidates), and two near-Earth asteroids were imaged in four infrared bands with the SPIRIT III instrument on the Midcourse Space Experiment, namely, C/1996 B2 (Hyakutake), C/1995 O1 (Hale-Bopp), C/1996 Q1 (Tabur), 126P/IRAS, 22P/Kopff, 46P/Wirtanen, (3200) Phaethon, (4015) 107P/Wilson-Harrington, (4179) Toutatis, (4197) 1982 TA, 125P/Spacewatch, and 55P/Tempel-Tuttle. We present maps of each object detected and a description of their characteristics. Five of the comets had extended dust tails, all of which show evidence for silicate emission in the 8.3 μm band. The comet C/Hyakutake had a strong secondary dust tail along the direction of the comet's motion, which the dynamical models showed was consistent with emission from large particles. The dust trail from P/Kopff was detected more than 2° from the coma in three of the four bands and is probably composed of large particles emitted during the 1996 apparition.
Composition/Structure/Dynamics of comet and planetary satellite atmospheres
NASA Technical Reports Server (NTRS)
Combi, Michael R. (Principal Investigator)
1995-01-01
This research program addresses two cases of tenuous planetary atmospheres: comets and Io. The comet atmospheric research seeks to analyze a set of spatial profiles of CN in comet Halley taken in a 7.4-day period in April 1986; to apply a new dust coma model to various observations; and to analyze observations of the inner hydrogen coma, which can be optically thick to the resonance scattering of Lyman-alpha radiation, with the newly developed approach that combines a spherical radiative transfer model with our Monte Carlo H coma model. The Io research seeks to understand the atmospheric escape from Io with a hybrid-kinetic model for neutral gases and plasma given methods and algorithms developed for the study of neutral gas cometary atmospheres and the earth's polar wind and plasmasphere. Progress is reported on cometary Hydrogen Lyman-alpha studies; time-series analysis of cometary spatial profiles; model analysis of the dust comae of comets; and a global kinetic atmospheric model of Io.
NASA Technical Reports Server (NTRS)
Cameron, A. G. W.
1988-01-01
The current status of the classical model of solar-system formation is surveyed, reviewing the results of recent observational and theoretical investigations. Topics addressed include interstellar clouds, the collapse of interstellar gas, the primitive solar nebula, the formation of the sun, planetesimal accumulation, planetary accumulation, major planetary collisions, the development of planetary atmospheres, and comets. The relative merits of conflicting theories on many key problems are indicated, with reference to more detailed reviews in the literature.
Sources of Terrestrial Volatiles
NASA Technical Reports Server (NTRS)
Zahnle, K. J.; Dones, L.
1998-01-01
Atmospheres are found enveloping those planets and satellites best able to hold them. The obvious conclusion is that volatile escape must have played nearly as great a role as volatile supply. A consequence of this view is that volatile supplies were probably much greater than the atmospheres that remain. The likeliest candidates are sources associated with the main events of planetary accretion itself such as volatile-rich planetesimals, or direct gravitational capture of nebular gases. Late asteroidal or cometary volatile-rich veneers are attractive, but they present quantitative difficulties. Comets in particular are inadequate, because the associated mass of stray comets that would have been scattered to the Oort Cloud or beyond is excessive. This difficulty applies to Uranus-Neptune planetesimals as well as to a putative massive early Kuiper Belt. Another potential problem with comets is that the D/H ratio in the three comets for which this has been measured is about twice that of Earth's oceans. Objects falling from a much augmented ancient asteroid belt remain a viable option, but timing is an issue: Can the depopulation of the asteroid belt be delayed long enough that it makes sense to talk of asteroids as a late veneer? Early accretion of asteroids as objects scattered into the maw of infant Earth makes more sense. Another appealing candidate population of volatile-rich objects for the inner solar system would be scattered planetesimals associated with the accretion of Jupiter, for two reasons: (1) Before there was Jupiter, there was no object in the solar system capable of expelling comets efficiently, and (2) the cross section of the inner solar system to stray objects was Greater when there were m many planetesimals.
Investigating the Spatial Structure of HCN Emission in Comet C/2012 F6 (Lemmon)
NASA Astrophysics Data System (ADS)
Booth, Shawn; Burkhardt, Andrew; Corby, Joanna; Dollhopf, Niklaus; Rawlings, Mark; Remijan, Anthony
2015-11-01
Comets are of particular interest in the field of Astrochemistry as they can be used as a direct probe of formation chemistry of the Solar System. Originating in the Oort Cloud reservoir, these long period objects experience relatively limited solar influence. The majority of cometary material (water, methane and ammonia ices) has remained in the same state as when it formed. These ices are precursors to more complex molecules which have been shown to form amino acids that are crucial for the development of life. HCN, or hydrogen cyanide, is of particular interest because it can form the nucleobase adenine (C5H5N5). The goals of this project are to map the HCN distribution of Comet C/2012 F6 (Lemmon) and to show the simultaneous observation capabilities of the Atacama Large Millimeter/Submillimeter Array (ALMA), which allows the extraction of 7-m array, 12-m array and single dish observation data. On UT 2013 May 11, Comet Lemmon was observed using ALMA. The Cycle 1 configuration was used with the Band 6 receivers, with a 1.5 GHz range centered on the HCN transition at 265.86 GHz, which gave a spectral resolution of 0.07 km/s. We show that Comet Lemmon has both a compact HCN region (found with the 12-m array) and also an extended component, forming a tail-like structure in the anti-motion direction (found with the 7-m array). We were also able to extract the autocorrelation data (single dish) and show that it is viable. This project was supported and funded by NRAO in conjunction with the National Science Foundation (NSF), with special thanks to the Astronomy Department at University of Virginia.
1994-07-07
This is a composite photo, assembled from separate images of Jupiter and Comet P/Shoemaker-Levy 9 as imaged by the Wide Field & Planetary Camera-2 (WFPC-2), aboard NASA's Hubble Space Telescope (HST). Jupiter was imaged on May 18, 1994, when the giant planet was at a distance of 420 million miles (670 million KM) from Earth. This 'true-color' picture was assembled from separate HST exposures in red, blue, and green light. Jupiter's rotation between exposures creates the blue and red fringe on either side of the disk. HST can resolve details in Jpiter's magnifient cloud belts and zones as small as 200 miles (320 km) across (wide field mode). This detailed view is only surpassed by images from spacecraft that have traveled to Jupiter. The dark spot on the disk of Jupiter is the shadow of the inner moon Io. This volcanic moon appears as an orange and yellow disk just to the upper right of the shadow. Though Io is approximately the size of Earth's Moon (but 2,000 times farther away), HST can resolve surface details. When the comet was observed on May 17, its train of 21 icy fragments stretched across 710 thousand miles (1.1 million km) of space, or 3 times the distance between Earth and the Moon. This required six WFPC exposures along the comet train to include all the nuclei. The image was taken in red light. The apparent angular size of Jupiter relative to the comet, and its angular separation from the comet when the images were taken, have been modified for illustration purposes. CREDIT: H.A. Weaver, T.E. Smith (Space Telescope Science Institute (STSI)) and J.T. Tranuger, R.W. Evans (Jet Propulsion Laboratory (JPL)) and NASA. (HST ref: STSci-PR94-26a)
The fluid dynamics of atmospheric clouds
NASA Astrophysics Data System (ADS)
Randall, David A.
2017-11-01
Clouds of many types are of leading-order importance for Earth's weather and climate. This importance is most often discussed in terms of the effects of clouds on radiative transfer, but the fluid dynamics of clouds are at least equally significant. Some very small-scale cloud fluid-dynamical processes have significant consequences on the global scale. These include viscous dissipation near falling rain drops, and ``buoyancy reversal'' associated with the evaporation of liquid water. Major medium-scale cloud fluid-dynamical processes include cumulus convection and convective aggregation. Planetary-scale processes that depend in an essential way on cloud fluid dynamics include the Madden-Julian Oscillation, which is one of the largest and most consequential weather systems on Earth. I will attempt to give a coherent introductory overview of this broad range of phenomena.
MULTI-WAVELENGTH OBSERVATIONS OF COMET C/2011 L4 (PAN-STARRS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bin; Keane, Jacqueline; Meech, Karen
2014-04-01
The dynamically new comet C/2011 L4 (Pan-STARRS) is one of the brightest comets observed since the great comet C/1995 O1 (Hale-Bopp). Here, we present our multi-wavelength observations of C/2011 L4 during its in-bound passage to the inner solar system. A strong absorption band of water ice at 2.0 μm was detected in the near-infrared spectra, obtained with the 8 m Gemini-North and 3 m Infrared Telescope Facility Telescopes. The companion 1.5 μm band of water ice, however, was not observed. Spectral modeling shows that the absence of the 1.5 μm feature can be explained by the presence of sub-micron-sized fine ice grains.more » No gas lines (i.e., CN, HCN, or CO) were observed pre-perihelion in either the optical or the submillimeter. We derived 3σ upper limits for the CN and CO production rates. The comet exhibited a very strong continuum in the optical and its slope seemed to become redder as the comet approached the Sun. Our observations suggest that C/2011 L4 is an unusually dust-rich comet with a dust-to-gas mass ratio >4.« less
Arrhenius reconsidered: astrophysical jets and the spread of spores
NASA Astrophysics Data System (ADS)
Sheldon, Malkah I.; Sheldon, Robert B.
2015-09-01
In 1871, Lord Kelvin suggested that the fossil record could be an account of bacterial arrivals on comets. In 1903, Svante Arrhenius suggested that spores could be transported on stellar winds without comets. In 1984, Sir Fred Hoyle claimed to see the infrared signature of vast clouds of dried bacteria and diatoms. In 2012, the Polonnaruwa carbonaceous chondrite revealed fossilized diatoms apparently living on a comet. However, Arrhenius' spores were thought to perish in the long transit between stars. Those calculations, however, assume that maximum velocities are limited by solar winds to ~5 km/s. Herbig-Haro objects and T-Tauri stars, however, are young stars with jets of several 100 km/s that might provide the necessary propulsion. The central engine of bipolar astrophysical jets is not presently understood, but we argue it is a kinetic plasma instability of a charged central magnetic body. We show how to make a bipolar jet in a belljar. The instability is non-linear, and thus very robust to scaling laws that map from microquasars to active galactic nuclei. We scale up to stellar sizes and recalculate the viability/transit-time for spores carried by supersonic jets, to show the viability of the Arrhenius mechanism.
Complex Protostellar Chemistry
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Johnson, Natasha M.
2012-01-01
Two decades ago, our understanding of the chemistry in protostars was simple-matter either fell into the central star or was trapped in planetary-scale objects. Some minor chemical changes might occur as the dust and gas fell inward, but such effects were overwhelmed by the much larger scale processes that occurred even in bodies as small as asteroids. The chemistry that did occur in the nebula was relatively easy to model because the fall from the cold molecular cloud into the growing star was a one-way trip down a well-known temperature-pressure gradient; the only free variable was time. However, just over 10 years ago it was suggested that some material could be processed in the inner nebula, flow outward, and become incorporated into comets (1, 2). This outward flow was confirmed when the Stardust mission returned crystalline mineral fragments (3) from Comet Wild 2 that must have been processed close to the Sun before they were incorporated into the comet. In this week's Science Express, Ciesla and Sandford (4) demonstrate that even the outermost regions of the solar nebula can be a chemically active environment. Their finding could have consequences for the rest of the nebula.
Global environmental effects of impact-generated aerosols: Results from a general circulation model
NASA Technical Reports Server (NTRS)
Covey, Curt; Ghan, Steven J.; Walton, John J.; Weissman, Paul R.
1989-01-01
Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to the three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans, not included in the one-dimensional model, substantially mitigates land surface cooling. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stages of cooling than in the one-dimensional model study. GCM-simulated climatic changes in the scenario of asteroid/comet winter are more severe than in nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects could also lead to dramatic, though of course less severe, climatic changes, according to the GCM. An asteroid or comet impact would not lead to anything approaching complete global freezing, but quite reasonable to assume that impacts would dramatically alter the climate in at least a patchy sense.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodewits, Dennis; Kelley, Michael S. P.; Farnham, Tony L.
We used the UltraViolet-Optical Telescope on board Swift to systematically follow the dynamically new comet C/2013 A1 (Siding Spring) on its approach to the Sun. The comet was observed from a heliocentric distance of 4.5 AU pre-perihelion to its perihelion at 1.4 AU. From our observations, we estimate that the water production rate during closest approach to Mars was 1.5 ± 0.3 × 10{sup 28} molecules s{sup −1}, that peak gas delivery rates where between 4.5 and 8.8 kg s{sup −1}, and that in total between 3.1 and 5.4 × 10{sup 4} kg cometary gas was delivered to the planet.more » Seasonal and evolutionary effects on the nucleus govern the pre-perihelion activity of comet Siding Spring. The sudden increase of its water production between 2.46 and 2.06 AU suggests the onset of the sublimation of icy grains in the coma, likely driven by CO{sub 2}. As the comet got closer to the Sun, the relative contribution of the nucleus’ water production increased, while CO{sub 2} production rates decreased. The changes in the comet’s activity can be explained by a depletion of CO{sub 2}, but the comet’s high mass loss rate suggests they may reflect primordial heterogeneities in the nucleus.« less
Outer satellite atmospheres: Their nature and planetary interactions
NASA Technical Reports Server (NTRS)
Smyth, W. H.
1981-01-01
Modeling capabilities and initial model calculations are reported for the peculiar directional features of the Io sodium cloud discovered by Pilcher and the extended atomic oxygen atmosphere of Io discovered by Brown. Model results explaining the directional feature by a localized emission from the satellite are encouraging, but as yet, inconclusive; whereas for the oxygen cloud, an escape rate of 1 to 2 x 10 to the 27th power atoms/sec or higher from Io is suggested. Preliminary modeling efforts were also initiated for the extended hydrogen ring-atmosphere of Saturn detected by the Voyager spacecraft and for possible extended atmospheres of some of the smaller satellites located in the E-ring. Continuing research efforts reported for the Io sodium cloud include further refinement in the modeling of the east-west asymmetry data, the asymmetric line profile shape, and the intersection of the cloud with the Io plasma torus. In addition, the completed pre-Voyager modeling of Titan's hydrogen torus is included and the near completed model development for the extended atmosphere of comets is discussed.
AceCloud: Molecular Dynamics Simulations in the Cloud.
Harvey, M J; De Fabritiis, G
2015-05-26
We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.
Where are the mini Kreutz-family comets?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Quan-Zhi; Wiegert, Paul A.; Hui, Man-To
The Kreutz family of sungrazing comets contains over 2000 known members, many of which are believed to be under ∼100 m sizes (mini comets) and have only been studied at small heliocentric distances (r {sub H}) with space-based SOHO/STEREO spacecraft. To understand the brightening process of mini Kreutz comets, we conducted a survey using CFHT/MegaCam at moderate r {sub H} guided by SOHO/STEREO observations. We identify two comets that should be in our search area but are not detected, indicating that the comets have either followed a steeper brightening rate within the previously reported rapid brightening stage (the brightening burst),more » or the brightening burst starts earlier than expected. We present a composite analysis of the pre-perihelion light curves of five Kreutz comets that cover to ∼1 AU. We observe significant diversity in the light curves that can be used to grossly classify them into two types: C/Ikeya-Seki and C/SWAN follow the canonical r{sub H}{sup −4} while the others follow r{sub H}{sup −7}. In particular, C/SWAN seems to have undergone an outburst (Δm > 5 mag) or a rapid brightening (n ≳ 11) between r {sub H} = 1.06 AU and 0.52 AU, and shows hints of structural/compositional differences compared to other bright Kreutz comets. We also find evidence that the Kreutz comets as a population lose their mass less efficiently than the dynamically new comet, C/ISON, and are relatively devoid of species that drive C/ISON's activity at large r {sub H}. Concurrent observations of C/STEREO in different wavelengths also suggest that a blueward species such as CN may be the main driver for brightening bursts, instead of sodium as previously thought.« less
Rosetta following a living comet
NASA Astrophysics Data System (ADS)
Accomazzo, Andrea; Ferri, Paolo; Lodiot, Sylvain; Pellon-Bailon, Jose-Luis; Hubault, Armelle; Porta, Roberto; Urbanek, Jakub; Kay, Ritchie; Eiblmaier, Matthias; Francisco, Tiago
2016-09-01
The International Rosetta Mission was launched on 2nd March 2004 on its 10 year journey to rendezvous with comet 67P Churyumov-Gerasimenko. Rosetta performed comet orbit insertion on the 6th of August 2014, after which it characterised the nucleus and orbited it at altitudes as low as a few kilometres. In November 2014 Rosetta delivered the lander Philae to perform the first soft landing ever on the surface of a comet. The critical landing operations have been conducted with remarkable accuracy and will constitute one of the most important achievements in the history of spaceflight. After this critical operation, Rosetta began the escort phase of the comet in its journey in the Solar System heading to the perihelion, reached in August 2015. Throughout this period, the comet environment kept changing with increasing gas and dust emissions. A first phase of bound orbits was followed by a sequence of complex flyby segments which allowed the scientific instruments to perform in depth investigation of the comet environment and nucleus. The unpredictable nature of the comet activity forced the mission control team to implement unplanned changes to the flight plan prepared for this mission phase and to plan the whole mission in a more dynamic way than originally conceived. This paper describes the details of the landing operations and of the main comet escort phase. It also includes the mission status as achieved after perihelion and the findings about the evolution of the comet and its environment from a mission operations point of view. The lessons learned from this unique and complex operations phase and the plans for the next mission phases, which include a mission extension into 2016, are also described.
Hubble Sees a “Behemoth” Bleeding Atmosphere Around a Warm Exoplanet
2015-06-24
Astronomers using NASA’s Hubble Space Telescope have discovered an immense cloud of hydrogen dubbed “The Behemoth” bleeding from a planet orbiting a nearby star. The enormous, comet-like feature is about 50 times the size of the parent star. The hydrogen is evaporating from a warm, Neptune-sized planet, due to extreme radiation from the star. This phenomenon has never been seen around an exoplanet so small. It may offer clues to how other planets with hydrogen-enveloped atmospheres could have their outer layers evaporated by their parent star, leaving behind solid, rocky cores. Hot, rocky planets such as these that roughly the size of Earth are known as Hot-Super Earths. “This cloud is very spectacular, though the evaporation rate does not threaten the planet right now,” explains the study’s leader, David Ehrenreich of the Observatory of the University of Geneva in Switzerland. “But we know that in the past, the star, which is a faint red dwarf, was more active. This means that the planet evaporated faster during its first billion years of existence because of the strong radiation from the young star. Overall, we estimate that it may have lost up to 10 percent of its atmosphere over the past several billion years.” Caption: This artist's concept shows "The Behemoth," an enormous comet-like cloud of hydrogen bleeding off of a warm, Neptune-sized planet just 30 light-years from Earth. Also depicted is the parent star, which is a faint red dwarf named GJ 436. The hydrogen is evaporating from the planet due to extreme radiation from the star. A phenomenon this large has never before been seen around any exoplanet. Credits: NASA, ESA, and G. Bacon (STScI)
Solar wind mass-loading at Comet Halley - A lesson from Venus?
NASA Astrophysics Data System (ADS)
Breus, T. K.; Krymskii, A. M.; Luhmann, J. G.
1987-05-01
Recent observations at comet Halley show that the region within which cometary ions become the dominant component lies outside of the magnetic field-free cavity. This behavior resembles that found at Venus under conditions where the incident solar wind dynamic pressure exceeds the ionospheric pressure. On these occasions the magnetosheath magnetic field is found well inside of the region where planetary ions are observed. Although scaling and the details of formation of the inner boundary of the magnetic field are different for these two objects, the processes by which the interplanetary magnetic field penetrates into the ionospheres at Venus and at comet Halley are in many ways analogous.
NASA Astrophysics Data System (ADS)
Rubin, M.; Altwegg, K.; Balsiger, H. R.; Berthelier, J. J.; Calmonte, U.; De Keyser, J.; Fiethe, B.; Fuselier, S. A.; Gasc, S.; Gombosi, T. I.; Hässig, M.; Jäckel, A.; Le Roy, L.; Mall, U. A.; Rème, H.; Sémon, T.; Tzou, C. Y.; Wurz, P.
2015-12-01
The European Space Agency's Rosetta spacecraft is in close proximity of comet 67P/Churyumov-Gerasimenko for well over a year now. During this time Rosetta followed the comet from almost 3.5 AU through perihelion at 1.25 AU and away from the Sun again. Part of the scientific payload scrutinizing the comet is the ROSINA experiment, the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. The suite of instruments consists of the Double Focusing Mass Spectrometer DFMS, the Reflectron Time-Of-Flight mass spectrometer RTOF, and the COmet Pressure Sensor COPS. From the combined measurements by ROSINA, the composition and dynamics of the volatiles in the coma of the comet are derived. On 13 August 2015, comet 67P/Churyumov-Gerasimenko reached perihelion, the point along its orbits that is closest to the Sun. Furthermore equinox occurred in May 2015 leading to a change in season - the previous summer hemisphere is now in winter and vice versa. One of the goals of ROSINA is to track the activity of the comet during its apparition and to investigate potential changes in the chemical composition as the spacecraft orbits around the nucleus. In this presentation we will summarize some key findings obtained during the first year and a half of the nominal mission and present first results comparing the pre- and post perihelion neutral gas coma. The goal of these observations is to gather information about the formation and the composition of the comet and ultimately our early Solar System.
WILL COMET ISON (C/2012 S1) SURVIVE PERIHELION?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Matthew M.; Walsh, Kevin J., E-mail: knight@lowell.edu
2013-10-10
On 2013 November 28 Comet ISON (C/2012 S1) will pass by the Sun with a perihelion distance of 2.7 solar radii. Understanding the possible outcomes for the comet's response to such a close passage by the Sun is important for planning observational campaigns and for inferring ISON's physical properties. We present new numerical simulations and interpret them in context with the historical track record of comet disruptions and of sungrazing comet behavior. Historical data suggest that sizes below ∼200 m are susceptible to destruction by sublimation driven mass loss, while we find that for ISON's perihelion distance, densities lower thanmore » 0.1 g cm{sup –3} are required to tidally disrupt a retrograde or non-spinning body. Such low densities are substantially below the range of the best-determined comet nucleus densities, though dynamically new comets such as ISON have few measurements of physical properties. Disruption may occur for prograde rotation at densities up to 0.7 g cm{sup –3}, with the chances of disruption increasing for lower density, faster prograde rotation, and increasing elongation of the nucleus. Given current constraints on ISON's nucleus properties and the typically determined values for these properties among all comets, we find tidal disruption to be unlikely unless other factors (e.g., spin-up via torquing) affect ISON substantially. Whether or not disruption occurs, the largest remnant must be big enough to survive subsequent mass loss due to sublimation in order for ISON to remain a viable comet well after perihelion.« less
High-molecular-weight organic matter in the particles of comet 67P/Churyumov-Gerasimenko.
Fray, Nicolas; Bardyn, Anaïs; Cottin, Hervé; Altwegg, Kathrin; Baklouti, Donia; Briois, Christelle; Colangeli, Luigi; Engrand, Cécile; Fischer, Henning; Glasmachers, Albrecht; Grün, Eberhard; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Jessberger, Elmar K; Koch, Andreas; Krüger, Harald; Langevin, Yves; Lehto, Harry; Lehto, Kirsi; Le Roy, Léna; Merouane, Sihane; Modica, Paola; Orthous-Daunay, François-Régis; Paquette, John; Raulin, François; Rynö, Jouni; Schulz, Rita; Silén, Johan; Siljeström, Sandra; Steiger, Wolfgang; Stenzel, Oliver; Stephan, Thomas; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Wanczek, Karl-Peter; Zaprudin, Boris; Kissel, Jochen; Hilchenbach, Martin
2016-10-06
The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula-the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization. Many gaseous organic molecules, however, have been observed; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov-Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites' parent bodies. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.
A new model of physical evolution of Jupiter-family comets
NASA Astrophysics Data System (ADS)
Rickman, H.; Szutowicz, S.; Wójcikowski, K.
2014-07-01
We aim to find the statistical physical lifetimes of Jupiter Family comets. For this purpose, we try to model the processes that govern the dynamical and physical evolution of comets. We pay special attention to physical evolution; attempts at such modelling have been made before, but we propose a more accurate model, which will include more physical effects. The model is tested on a sample of fictitious comets based on real Jupiter Family comets with some orbital elements changed to a state before the capture by Jupiter. We model four different physical effects: erosion by sublimation, dust mantling, rejuvenation (mantle blow-off), and splitting. While for sublimation and splitting there already are some models, like di Sisto et. al. (2009), and we only wish to make them more accurate, dust mantling and rejuvenation have not been included in previous, statistical physical evolution models. Each of these effects depends on one or more tunable parameters, which we establish by choosing the model that best fits the observed comet sample in a way similar to di Sisto et. al. (2009). In contrast to di Sisto et. al., our comparison also involves the observed active fractions vs. nuclear radii.
Comet ISON Seen Coming and Going
2013-11-30
"Timelapse" series of images of comet ISON as viewed by ESA/NASA's Solar and Heliospheric Observatory, or SOHO. This image is a composite, with the sun imaged by NASA's Solar Dynamics Observatory in the center, and SOHO's two coronagraphs showing the solar atmosphere, the corona. The most recent image in this is from 5:30 p.m. EST on Nov. 29, 2013. Continuing a history of surprising behavior, material from Comet ISON appeared on the other side of the sun on the evening on Nov. 28, 2013, despite not having been seen in observations during its closest approach to the sun. The question remains whether it is merely debris from the comet, or if some portion of the comet's nucleus survived, but late-night analysis from scientists with NASA's Comet ISON Observing Campaign suggest that there is at least a small nucleus intact. Image Credit:ESA&NASA/SOHO/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
The EUV Emission in Comet-Solar Corona Interactions
NASA Technical Reports Server (NTRS)
Bryans, Paul; Pesnell, William Dean; Schrijver, Carolus J.; Brown, John C.; Battams, Karl; Saint-Hilaire, Pasal; Liu, Wei; Hudson, Hugh S.
2011-01-01
The Atmospheric Imaging Assembly (AlA) on the Solar Dynamics Observatory (SDO) viewed a comet as it passed through the solar corona on 2011 July 5. This was the first sighting of a comet by a EUV telescope. For 20 minutes, enhanced emission in several of the AlA wavelength bands marked the path of the comet. We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Water ice in the comet rapidly sublimates as it approaches the Sun. This water vapor is then photodissociated, primarily by Ly-alpha, by the solar radiation field to create atomic Hand O. Other molecules present in the comet also evaporate and dissociate to give atomic Fe and other metals. Subsequent ionization of these atoms can be achieved by a number of means, including photoionization, electron impact, and charge exchange with coronal protons and other highly-charged species. Finally, particles from the cometary atmosphere are thermalized to the background temperature of the corona. Each step could cause emission in the AlA bandpasses. We will report here on their relative contribution to the emission seen in the AlA telescopes.
Comet ISON Streaks Toward the Sun
2013-11-22
Date: 19 Nov 2013 Comet ISON shows off its tail in this three-minute exposure taken on 19 Nov. 2013 at 6:10 a.m. EST, using a 14-inch telescope located at the Marshall Space Flight Center. The comet is just nine days away from its close encounter with the sun; hopefully it will survive to put on a nice show during the first week of December. The star images are trailed because the telescope is tracking on the comet, which is now exhibiting obvious motion with respect to the background stars over a period of minutes. At the time of this image, Comet ISON was some 44 million miles from the sun -- and 80 million miles from Earth -- moving at a speed of 136,700 miles per hour. Credit: NASA/MSFC/Aaron Kingery -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Oct. 9 Hubble View of ISON
2013-11-22
On Oct. 9, 2013, Hubble observed comet ISON once again, when it was inside the orbit of Mars, about 177 million miles from Earth. This image shows that the comet was still intact despite some predictions that the fragile icy nucleus might disintegrate closer to the sun. The comet will pass closest to the sun on Nov. 28, 2013. If the nucleus had broke apart then Hubble would have likely seen evidence of multiple fragments. Moreover, the coma, or head, surrounding the comet's nucleus is symmetric and smooth. This would probably not be the case if clusters of smaller fragments were flying along. This color composite image was assembled using two filters. The comet's coma appears cyan, a greenish-blue color due to gas, while the tail is reddish due to dust streaming off the nucleus. The tail forms as dust particles are pushed away from the nucleus by the pressure of sunlight. Credit: NASA -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Modeled Image of ISON
2013-11-22
In this modeled image of ISON, the coma has been subtracted, leaving behind the nucleus. Credit: NASA, ESA, the Hubble Heritage Team (AURA/STScI) and Jian-Yang Li (Planetary Science Institute) -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Russell, Ray W.
1988-01-01
Laboratory studies related to cometary grains and the nuclei of comets can be broken down into three areas which relate to understanding the spectral properties, the formation mechanisms, and the evolution of grains and nuclei: (1) Spectral studies to be used in the interpretation of cometary spectra; (2) Sample preparation experiments which may shed light on the physical nature and history of cometary grains and nuclei by exploring the effects on grain emissivities resulting from the ways in which the samples are created; and (3) Grain processing experiments which should provide insight on the interaction of cometary grains with the environment in the immediate vicinity of the cometary nucleus as the comet travels from the Oort cloud through perihelion, and perhaps even suggestions regarding the relationship between interstellar grains and cometary matter. A summary is presented with a different view of lab experiments than is found in the literature, concentrating on measurement techniques and sample preparations especially relevant to cometary dust.
Cometary material and the origins of life on earth
NASA Technical Reports Server (NTRS)
Lazcano-Araujo, A.; Oro, J.
1981-01-01
The role of cometary material in determining the environmental conditions of the prebiotic earth is reviewed. The organic synthesis pathways that occur in dense interstellar clouds and in comets are examined, and complex organic molecules believed to exist (amino acids, carboxylic acids, purines, pyrimidines and hydrocarbons) based on spectral detections of degradation products are noted. Estimates of the amount of terrestrial volatiles of cometary origin that may have been acquired in collisions during the early history of the earth are considered, and shown to dominate any estimated contributions to terrestrial carbon from other extraterrestrial sources. Current evidence that the origin and early evolution of life began about four billion years ago is discussed in relation to the cometary bombardment processes occurring at the time and the resultant shock waves, reducing atmospheres and reactive chemical species. It is thus concluded that comets contributed significantly to the processes of chemical evolution necessary for the emergence of life on earth.
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Sandford, S. A.; Valero, G. J.
1990-01-01
During the past 15 years considerable progress in observational techniques has been achieved in the middle infrared (5000 to 500 cm(-1), 2 to 20 microns m), the spectral region most diagnostic of molecular vibrations. Spectra of many different astronomical infrared sources, some deeply embedded in dark molecular clouds, are now available. These spectra provide a powerful probe, not only for the identification of interstellar molecules in both the gas solid phases, but also of the physical and chemical conditions which prevail in these two very different domains. By comparing these astronomical spectra with the spectra of laboratory ices one can determine the composition and abundance of the icy materials frozen on the cold (10K) dust grains present in the interior of molecular clouds. These grains and their ice mantles may well be the building blocks from which comets are made. As an illustration of the processes which can take place as an ice is irradiated and subsequently warmed, researchers present the infrared spectra of the mixture H2O:CH3OH:CO:NH3:C6H14 (100:50:10:10:10). Apart from the last species, the ratio of these compounds is representative of the simplest ices found in interstellar clouds. The last component was incorporated into this particular experiment as a tracer of the behavior of a non-aromatic hydrocarbon. The change in the composition that results from ultraviolet photolysis of this ice mixture using a UV lamp to simulate the interstellar radiation field is shown. Photolysis produces CO, CO2, CH4, HCO, H2CO, as well as a family of moderately volatile hydrocarbons. Less volatile carbonaceous materials are also produced. The evolution of the infrared spectrum of the ice as the sample is warmed up to room temperature is illustrated. Researchers believe that the changes are similar to those which occur as ice is ejected from a comet and warmed up by solar radiation. The warm-up sequence shows that the nitrile or iso-nitrile bearing compound produced during photolysis evaporates between 200 and 250K, suggesting that it is carried by a small molecular species. These molecules could be similar to the source material in Comet Halley that is ejected in grains into the coma, freed by sublimation, and photolyzed by solar radiation to produce the observed jets.
NASA Technical Reports Server (NTRS)
Dworkin, Jason P.; Sandford, Scott A.; Deamer, David W.; Gillette, J. Seb; Zare, Richard N.; Allamandola, Louis J. (Technical Monitor)
1999-01-01
The combination of realistic laboratory simulations and infrared observations have revolutionized our understanding of interstellar dust and ice-the main component of comets. Since comets and carbonaceous micrometeorites may have been important sources of volatiles and carbon compounds on the early Earth, their organic composition may be related to the origin of life. Ices on grains in molecular clouds contain a variety of simple molecules. The D/H ratios of the comets Hale-Bopp and Hyakutake are consistent with a primarily interstellar ice mixture. Within the cloud and especially in the presolar nebula through the early solar system, these icy grains would have been photoprocessed by the ultraviolet producing more complex species such as hexamethylenetetramine, polyoxymethylenes, and simple keones. We reported at the 1999 Bioastronomy meeting laboratory simulations studied to identify the types of molecules which could have been generated in pre-cometary ices. Experiments were conducted by forming a realistic interstellar mixed-molecular ice (H2O, CH3OH, NH3 and CO) at approximately 10 K under high vacuum irradiated with UV light from a hydrogen plasma lamp. The gas mixture was typically 100:50:1:1, however when different ratios were used material with similar characteristics was still produced. The residue that remained after warming to room temperature was analyzed by HPLC, and by several mass spectrometric methods. This material contains a rich mixture of complex compounds with mass spectral profiles resembling those found in IDPs and meteorites. Surface tension measurements show that an amphiphilic component is also present. These species do not appear in various controls or in unphotolyzed samples. Residues from the simulations were also dispersed in aqueous media for microscopy. The organic material forms 10-40 gm diameter droplets that fluoresce at 300-450 nm under UV excitation. These droplets have a morphology and internal structure which appear strikingly similar to those produced by extracts of the Murchison meteorite. Together, these results suggest a link between organic material photochemically synthesized on the cold grains in dense, interstellar molecular clouds and compounds that may have contributed to the organic inventory of the primitive Earth. For example, the amphiphilic properties of such compounds permit self-assembly into the membranous boundary structures that required for the first forms of cellular life.
In-situ investigations of the ionosphere of comet 67P
NASA Astrophysics Data System (ADS)
Eriksson, A. I.; Edberg, N. J. T.; Odelstad, E.; Vigren, E.; Engelhardt, I.; Henri, P.; Lebreton, J.-P.; Galand, M.; Carr, C. M.; Koenders, C.; Nilsson, H.; Broiles, T.; Rubin, M.
2015-10-01
Since arrival of Rosetta at its target comet 67P/Churyumov-Gerasimenko in August 2014, the plasma environment has been dominated by ionized gas emanating from the comet nucleus rather than by solar wind plasma. This was evident early on from the strong modulation seen with Rosetta's position in a reference frame fixed to the rotating nucleus, with higher plasma densities observed when the spacecraft is above the neck region and when the comet exposes maximum area to the sun. In this respect, Rosetta is inside the comet ionosphere, providing excellent in situ investigation opportunities for the instruments of the Rosetta Plasma Consortium (RPC). In contrast to the often modelled scenario for a very active comet, the Langmuir probe instrument (RPC-LAP) finds electron temperatures mainly in the range of tens of thousand kelvin around this less active comet. This can be attributed to the lower density of neutral gas, meaning little cooling of recently produced electrons. A side effect of this is that the spacecraft charges negatively when within about 100 km from the nucleus. Interesting in itself, this also may point to similar charging for dust grains in the coma, with implications for the detection of the smallest particles and possibly for processes like electrostatic fragmentation. The inner coma also proves to be very dynamic, with large variations not only with latitude and longitude in a comet frame, but also with the solar wind and various wave phenomena.
The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites
NASA Astrophysics Data System (ADS)
Engrand, Cécile; Duprat, Jean; Bardin, Noémie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Remusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin
2016-10-01
Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. Analyses of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko by the dust analyzers on Rosetta orbiter (COSIMA, GIADA, MIDAS) suggest a relationship to interplanetary dust/micrometeorites. A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system.
The Origin of Pluto's Orbit: Implications for the Solar System Beyond Neptune
NASA Technical Reports Server (NTRS)
Malhotra, Renu
1995-01-01
The origin of the highly eccentric, inclined, and resonance-locked orbit of Pluto has long been a puzzle. A possible explanation has been proposed recently which suggests that these extraordinary orbital properties may be a natural consequence of the formation and early dynamical evolution of the outer solar system. A resonance capture mechanism is possible during the clearing of the residual planetesimal debris and the formation of the Oort Cloud of comets by planetesimal mass loss from the vicinity of the giant planets. If this mechanism were in operation during the early history of the planetary system, the entire region between the orbit of Neptune and approximately 50 AU would have been swept by first-order mean motion resonances. Thus, resonance capture could occur not only for Pluto, but quite generally for other trans-Neptunian small bodies. Some consequences of this evolution for the present-day dynamical structure of the trans-Neptunian region are (1) most of the objects in the region beyond Neptune and up to approximately 50 AU exist in very narrow zones located at orbital resonances with Neptune (particularly the 3:2 and the 2:1 resonances); and (2) these resonant objects would have significantly large eccentricities. The distribution of objects in the Kuiper Belt as predicted by this theory is presented here.
Trojan Asteroid Lightcurves: Probing Internal Structure and the Origins
NASA Astrophysics Data System (ADS)
Ryan, E. L.
2017-12-01
Studies of the small bodies of the solar system reveal important clues about the condensation and formation of planetesimal bodies, and ultimately planets in planetary systems. Dynamics of small bodies have been utilized to model giant planet migration within our solar system, colors have been used to explore compositional gradients within the protoplanetary disk, & studies of the size-frequency distribution of main belt asteroids may reveal compositional dependences on planetesimal strength limiting models of planetary growth from collisional aggregration. Studies of the optical lightcurves of asteroids also yield important information on shape and potential binarity of asteroidal bodies. The K2 mission has allowed for the unprecedented collection of Trojan asteroid lightcurves on a 30 minute cadence for baselines of 10 days, in both the L4 and L5 Trojan clouds. Preliminary results from the K2 mission suggest that Trojan asteroids have bulk densities of 1 g/cc and a binary fraction ≤ 33 percent (Ryan et al., 2017, Astronomical Journal, 153, 116), however Trojan lightcurve data is actively being collected via the continued K2 mission. We will present updated results of bulk density and binary fraction of the Trojan asteroids and compare these results to other small body populations, including Hilda asteroids, transNeptunian objects and comet nuclei to test dynamical models of the origins of these populations.
NASA Astrophysics Data System (ADS)
Sagan, C.; Druyan, A.
1989-04-01
Consideration is given to the Kant-Laplace hypothesis that the sun once had a ring system from which the planets condensed. It is suggested that the theory is supported by the IRAS observation of an accretion disk around Vega, which implies that ordinary stars are surrounded by a disk during and immediately after formation. A model for planetary formation from a disk is presented. The possibility that cometary bodies may have been ejected into the Oort Cloud during planetary formation is examined.
1985-03-02
Artist: Gebing Artist's conception of a newborne star, still hidden in visible light by the dust clouds within which it formed, shows matter in orbit around the rotating star. Such leftover debris may eventually form comets, planets, satellites, and asteroids. Material squeezed out by the formation process is thought to be ejected along the star's rotation axis in relatively narrow, high-velocity streams of matter. (ref: SIRTF borchure 'A Window on Cosmic Birth 1987) -- Milky Way with Black hole
NASA Technical Reports Server (NTRS)
Mumma, M. J.; DiSanti, M. A.; Dello Russo, N.; Fomenkova, M.; Magee-Sauer, K.; Kaminski, C. D.; Xie, D. X.
1996-01-01
The saturated hydrocarbons ethane (C2H6) and methane (CH4) along with carbon monoxide (CO) and water (H2O) were detected in comet C/1996 B2 Hyakutake with the use of high-resolution infrared spectroscopy at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. The inferred production rates of molecular gases from the icy, cometary nucleus (in molecules per second) are 6.4 X 10(26) for C2H6, 1.2 X 10(27) for CH4, 9.8 X 10(27) for CO, and 1.7 X 10(29) for H2O. An abundance of C2H6 comparable to that of CH4 implies that ices in C/1996 B2 Hyakutake did not originate in a thermochemically equilibrated region of the solar nebula. The abundances are consistent with a kinetically controlled production process, but production of C2H6 by gas-phase ion molecule reactions in the natal cloud core is energetically forbidden. The high C2H6/CH4 ratio is consistent with production of C2H6 in icy grain mantles in the natal cloud, either by photolysis of CH4-rich ice or by hydrogen-addition reactions to acetylene condensed from the gas phase.
Temporary satellite capture of comets by Jupiter
NASA Astrophysics Data System (ADS)
Emel'yanenko, N. Yu.
2012-05-01
This paper studies the dynamical evolution of 97 Jupiter-family comets over an 800-year time period. More than two hundred encounters with Jupiter are investigated, with the observed comets moving during a certain period of time in an elliptic jovicentric orbit. In most cases this is an ordinary temporary satellite capture of a comet in Everhart's sense, not associated with a transition of the small body into Jupiter's family of satellites. The phenomenon occurs outside the Hill sphere with comets with a high Tisserand constant relative to Jupiter; the comets' orbits have a small inclination to the ecliptic plane. An analysis of 236 encounters has allowed the determination within the planar pair two-body problem of a region of orbits in the plane ( a, e) whose semimajor axes and eccentricities contribute to the phenomenon under study. Comets with orbits belonging to this region experience a temporary satellite capture during some of their encounters; the jovicentric distance function has several minima; and the encounters are characterized by reversions of the line of apsides and some others features of their combination that are intrinsic to comets in this region. Therefore, this region is called a region of comets with specific features in their encounters with Jupiter. Twenty encounters (out of 236), whereby the comet enters an elliptic jovicentric orbit in the Hill sphere, are identified and investigated. The size and shape of the elliptic heliocentric orbits enabling this transition are determined. It is found that in 11 encounters the motion of small bodies in the Hill sphere has features the most important of which is multiple minima of the jovicentric distance function. The study of these 20 encounters has allowed the introduction of the concept of temporary gravitational capture of a small body into the Hill sphere. An analysis of variations in the Tisserand constant in these (20) encounters of the observable comets shows that their motion is unstable in Hill's sense.
The dynamics behind Titan's methane clouds.
Mitchell, Jonathan L; Pierrehumbert, Raymond T; Frierson, Dargan M W; Caballero, Rodrigo
2006-12-05
We present results of an axisymmetric global circulation model of Titan with a simplified suite of atmospheric physics forced by seasonally varying insolation. The recent discovery of midlatitude tropospheric clouds on Titan has caused much excitement about the roles of surface sources of methane and the global circulation in forming clouds. Although localized surface sources, such as methane geysers or "cryovolcanoes," have been invoked to explain these clouds, we find in this work that clouds appear in regions of convergence by the mean meridional circulation and over the poles during solstices, where the solar forcing reaches its seasonal maximum. Other regions are inhibited from forming clouds because of dynamical transports of methane and strong subsidence. We find that for a variety of moist regimes, i.e., with the effect of methane thermodynamics included, the observed cloud features can be explained by the large-scale dynamics of the atmosphere. Clouds at the solsticial pole are found to be a robust feature of Titan's dynamics, whereas isolated midlatitude clouds are present exclusively in a variety of moist dynamical regimes. In all cases, even without including methane thermodynamics, our model ceases to produce polar clouds approximately 4-6 terrestrial years after solstices.
Radio Observations of Organics in Comets
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.; Charnley, Steven B.; Kuan, Yi-Jehng; Chuang, Yo-Ling; Villanueva, Geronimo; Coulson, Iain; Remijan, Anthony J.
2012-01-01
A major observational challenge in cometary science is to quantify the extent to which chemical compounds can be linked to either interstellar or nebular chemistry. Recently, there have been complimentary observations from multiple facilities to try to unravel the chemical complexity of comets and their origins. Incorporating results from various techniques can gain further insight into the abundances, production rates, distributions, and formation mechanisms of molecules in these objects [I]. Such studies have provided great detail towards molecules with a-typical chemistries, such as H2CO [2]. We report multiwavelength spectral observations of comets from two dynamical families including the JFC 103P/Hartley 2 and a long period comet C/2009 PI (Garradd) with the Arizona Radio Observatory's SMT and 12-m telescopes, as well as the NRAO Greenbank telescope, and the James Clerk Maxwell Telescope. Multiple parent volatiles (e.g. HCN, CH30H, CO) as well as daughter products (e.g, CS and 01-1) have been detected in these objects. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition. Previous work has revealed a range of abundances of parent species (from "organics-poor" to "organics-rich") with respect to water among comets [3,4,5], however the statistics are not well constrained.
Exo-comet Detection in Debris Disks Around Young A-type Stars
NASA Astrophysics Data System (ADS)
Welsh, Barry; Montgomery, S. L.
2013-01-01
We present details of the successful search for comet-like bodies (i.e. exo-comets) in orbit around several nearby stars. These objects have been found in young stellar systems that are in the transitional stage of evolution between possession of a gaseous protoplanetary disk to that of a dust-rich debris disk. During this period it is thought that large planetesimals of ~ 1000 km diameter may cause dynamical perturbations in the population of smaller bodies (such as asteroids and comets), such that they are sent on highly eccentric orbits towards their parent star resulting in the liberation of large amounts of evaporating gas and dust. By observing the varying spectral absorption signature of the CaII K-line at 3933Å due to this liberated gas, we have been able to track the trajectory of these exo-comets over a time-frame of several nights as they approach (and sometimes pass around) the central star. The youngest debris disks (1 - 50 Myr) are thought to represent the last stage in the formation of planetary systems and they may resemble our solar system’s own debris disk at the time of the Late Heavy Bombardment when the terrestrial worlds were subject to frequent collisions with asteroids and comets. Collisions with water-rich comets from the outer regions of our solar system may have delivered water to thee Earth’s oceans.
2013-11-22
These images from NASA's Spitzer Space Telescope of Comet ISON were taken on June 13, 2013, when ISON was about 310 million miles from the sun. The image on the left shows light in the near infrared wavelengths of 3.6 microns. It shows a tail of fine, rocky dust issuing from the comet and blown back by the pressure of sunlight as the comet speeds towards the sun. The image on the right side shows light with a wavelength of 4.5 microns. It reveals a very different round structure -- the first detection of a neutral gas atmosphere surrounding ISON. In this case, it is most likely created by carbon dioxide that is "fizzing" from the surface of the comet at a rate of about 2.2 million pounds a day. Credit: NASA/JPL-Caltech/JHUAPL/UCF -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Distant Comets in the Early Solar System
NASA Technical Reports Server (NTRS)
Meech, Karen J.
2000-01-01
The main goal of this project is to physically characterize the small outer solar system bodies. An understanding of the dynamics and physical properties of the outer solar system small bodies is currently one of planetary science's highest priorities. The measurement of the size distributions of these bodies will help constrain the early mass of the outer solar system as well as lead to an understanding of the collisional and accretional processes. A study of the physical properties of the small outer solar system bodies in comparison with comets in the inner solar system and in the Kuiper Belt will give us information about the nebular volatile distribution and small body surface processing. We will increase the database of comet nucleus sizes making it statistically meaningful (for both Short-Period and Centaur comets) to compare with those of the Trans-Neptunian Objects. In addition, we are proposing to do active ground-based observations in preparation for several upcoming space missions.
A STUDY OF DUST AND GAS AT MARS FROM COMET C/2013 A1 (SIDING SPRING)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, Michael S. P.; Farnham, Tony L.; Bodewits, Dennis
Although the nucleus of comet C/2013 A1 (Siding Spring) will safely pass Mars in 2014 October, the dust in the coma and tail will more closely approach the planet. Using a dynamical model of comet dust, we estimate the impact fluence. Based on our nominal model no impacts are expected at Mars. Relaxing our nominal model's parameters, the fluence is no greater than ∼10{sup –7} grains m{sup –2} for grain radii larger than 10 μm. Mars-orbiting spacecraft are unlikely to be impacted by large dust grains, but Mars may receive as many as ∼10{sup 7} grains, or ∼100 kg of total dust.more » We also estimate the flux of impacting gas molecules commonly observed in comet comae.« less
Extraterrestrial organic matter: a review
NASA Technical Reports Server (NTRS)
Irvine, W. M.
1998-01-01
We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an increasingly debated topic over the last several years. The principal source for such intact organics was probably accretion of interplanetary dust particles of cometary origin.
Dust as the cause of spots on Jupiter
NASA Technical Reports Server (NTRS)
Field, G. B.; Tozzi, G. P.; Stanga, R. M.
1995-01-01
The long-lived spots caused by the impact of fragments of Comet S-L 9 on Jupiter can be understood if clouds of dust are produced by the impact. These clouds reside in the stratosphere, where they absorb visible light that would ordinarily reflect from the cloud deck below, and reflect radiation at infrared wavelengths that would ordinarily be absorbed by atmospheric methane. Here we show that, provided that the nucleus of a fragment is composed substantially of silicates and has a diameter greater than about 0.4 km, dust in the required amounts will condense from the hot gas composed of cometary and Jovian material ejected from the site where the fragment entered, and the dust will be suspended in the stratosphere for long periods. Particles about 1 micron in radius can explain both the optical properties and longevities of the spots. According to our model, a silicate band should be present in the 10 - micron spectra of the spots.
Laboratory study of orographic cloud-like flow
NASA Astrophysics Data System (ADS)
Singh, Kanwar Nain; Sreenivas, K. R.
2013-11-01
Clouds are one of the major sources of uncertainty in climate prediction, listed in ``the most urgent scientific problems requiring attention'' IPCC. Also, convective clouds are of utmost importance to study the dynamics of tropical meteorology and therefore, play a key role in understanding monsoons. The present work is to study the dynamics of orographic clouds. Parameterization of these clouds will help in forecasting the precipitation accurately. Also, one could validate laboratory results from our study by actually measuring cloud development along a sloping terrain. In this context a planar buoyant turbulent wall jet is considered as an appropriate low order fluid-dynamical model for studying the turbulence and entrainment in orographic-clouds. Flow is volumetrically heated to mimic the latent heat release due to condensation in an actual cloud. This is the first step in studying the entrainment dynamics of the evolving orographic cloud. We are going to present some results on the cloud development using techniques that allows us to construct a 3-dimensional flow field at each instance and its development over the time. By combining velocity field from PIV and flow volume from PLIF at successive instances, we estimate the entrainment coefficient. Since the life-cycle of a cloud is determined by the entrainment of ambient air, these results could be extremely helpful in understanding the dynamics of the clouds. Detailed results will be presented at the conference.
Coupling the nongravitational forces and modified Newton dynamics for cometary orbits
NASA Astrophysics Data System (ADS)
Maquet, Lucie; Pierret, Frédéric
2015-04-01
In recent work [L. Blanchet and J. Novak, Mon. Not. R. Astron. Soc. 412, 2530 (2011); L. Blanchet and J. Novak, Testing MOND in the Solar System (2011); and M. Milgrom, Mon. Not. R. Astron. Soc. 399, 474 (2009)], the authors showed that modified Newton dynamics (MOND) has a non-negligible secular perturbation effect on planets with large semimajor axes (gaseous planets) in the Solar System. Some comets also have a very eccentric orbit with a large semimajor axis (Halley family comets) going far away from the Sun (more than 15 AU) in a low acceleration regime where they would be subject to MOND perturbation. They also approach the Sun very closely (less than 3 AU) and are affected by the sublimation of ices from their nucleus, triggering so-called nongravitational forces. The main goal of this paper is to investigate the effect of MOND perturbation on three comets with various orbital elements (2 P /Encke , 1 P /Halley and 153 P /Ikeya-Zhang ) and then compare it to the nongravitational perturbations. It is motivated by the fact that when fitting an outgassing model for a comet, we have to take into account all of the small perturbing effects to avoid absorbing these effects into the nongravitational parameters. Otherwise, we could derive a completely wrong estimation of the outgassing. For this work, we use six different forms of MOND functions and compute the secular variations of the orbital elements due to MOND and nongravitational perturbations. We show that, for comets with large semimajor axis, the MONDian effects are not negligible compared to the nongravitational perturbations.
NASA Astrophysics Data System (ADS)
Clark, G.; Broiles, T. W.; Burch, J. L.; Collinson, G. A.; Cravens, T.; Frahm, R. A.; Goldstein, J.; Goldstein, R.; Mandt, K.; Mokashi, P.; Samara, M.; Pollock, C. J.
2015-11-01
Context. The Rosetta spacecraft is currently escorting comet 67P/Churyumov-Gerasimenko until its perihelion approach at 1.2 AU. This mission has provided unprecedented views into the interaction of the solar wind and the comet as a function of heliocentric distance. Aims: We study the interaction of the solar wind and comet at large heliocentric distances (>2 AU) using data from the Rosetta Plasma Consortium Ion and Electron Sensor (RPC-IES). From this we gain insight into the suprathermal electron distribution, which plays an important role in electron-neutral chemistry and dust grain charging. Methods: Electron velocity distribution functions observed by IES fit to functions used to previously characterize the suprathermal electrons at comets and interplanetary shocks. We used the fitting results and searched for trends as a function of cometocentric and heliocentric distance. Results: We find that interaction of the solar wind with this comet is highly turbulent and stronger than expected based on historical studies, especially for this weakly outgassing comet. The presence of highly dynamical suprathermal electrons is consistent with observations of comets (e.g., Giacobinni-Zinner, Grigg-Skjellerup) near 1 AU with higher outgassing rates. However, comet 67P/Churyumov-Gerasimenko is much farther from the Sun and appears to lack an upstream bow shock. Conclusions: The mass loading process, which likely is the cause of these processes, plays a stronger role at large distances from the Sun than previously expected. We discuss the possible mechanisms that most likely are responsible for this acceleration: heating by waves generated by the pick-up ion instability, and the admixture of cometary photoelectrons.
Asteroid-comet continuum objects in the solar system.
Hsieh, Henry H
2017-07-13
In this review presented at the Royal Society meeting, 'Cometary science after Rosetta', I present an overview of studies of small solar system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). Sometimes referred to as 'transition objects', these bodies are perhaps more appropriately described as 'continuum objects', to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of small solar system bodies that happen to exhibit a continuous range of observational, physical and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g. relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the solar system that would otherwise be inaccessible), while allowing us to study regions of the solar system that are not sampled by classical comets.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).
A comparison between VEGA 1, 2 and Giotto flybys of comet 1P/Halley: implications for Rosetta
NASA Astrophysics Data System (ADS)
Volwerk, M.; Glassmeier, K.-H.; Delva, M.; Schmid, D.; Koenders, C.; Richter, I.; Szegö, K.
2014-11-01
Three flybys of comet 1P/Halley, by VEGA 1, 2 and Giotto, are investigated with respect to the occurrence of mirror mode waves in the cometosheath and field line draping in the magnetic pile-up region around the nucleus. The time interval covered by these flybys is approximately 8 days, which is also the approximate length of an orbit or flyby of Rosetta around comet 67P/Churyumov-Gerasimenko. Thus any significant changes observed around Halley are changes that might occur for Rosetta during one pass of 67P/CG. It is found that the occurrence of mirror mode waves in the cometosheath is strongly influenced by the dynamical pressure of the solar wind and the outgassing rate of the comet. Field line draping happens in the magnetic pile-up region. Changes in nested draping regions (i.e. regions with different Bx directions) can occur within a few days, possibly influenced by changes in the outgassing rate of the comet and thereby the conductivity of the cometary ionosphere.
A comparison between VEGA 1, 2 and Giotto flybys of comet 1P/Halley: Implications for Rosetta
NASA Astrophysics Data System (ADS)
Volwerk, Martin; Glassmeier, Karl-Heinz; Delva, Magda; Schmid, Daniel; Koenders, Christoph; Richter, Ingo; Szegö, Karoly
2015-04-01
Three flybys of comet 1P/Halley, by VEGA 1, 2 and Giotto, are investigated with respect to the occurrence of mirror mode waves in the cometosheath and field line draping in the magnetic pile-up region around the nucleus. The time interval covered by these flybys is approximately 8 days, which is also the approximate length of an orbit or flyby of Rosetta around comet 67P/Churyumov-Gerasimenko. Thus any significant changes observed around Halley are changes that might occur for Rosetta during one pass of 67P/CG. It is found that the occurrence of mirror mode waves in the cometosheath is strongly influenced by the dynamical pressure of the solar wind and the outgassing rate of the comet. Field line draping happens in the magnetic pile-up region. Changes in nested draping regions (i.e. regions with different Bx-directions) can occur within a few days, possibly in fluenced by changes in the outgassing rate of the comet and thereby the conductivity of the cometary ionosphere.
2013-11-22
Superficially resembling a skyrocket, Comet ISON is hurtling toward the Sun at a whopping 48,000 miles per hour. Its swift motion is captured in this image taken May 8, 2013, by NASA's Hubble Space Telescope. At the time the image was taken, the comet was 403 million miles from Earth, between the orbits of Mars and Jupiter. Unlike a firework, the comet is not combusting, but in fact is pretty cold. Its skyrocket-looking tail is really a streamer of gas and dust bleeding off the icy nucleus, which is surrounded by a bright, star-like-looking coma. The pressure of the solar wind sweeps the material into a tail, like a breeze blowing a windsock. As the comet warms as it moves closer to the Sun, its rate of sublimation will increase. The comet will get brighter and the tail grows longer. The comet is predicted to reach naked-eye visibility in November. The comet is named after the organization that discovered it, the Russia-based International Scientific Optical Network. This false-color, visible-light image was taken with Hubble's Wide Field Camera 3. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scienti
2013-11-22
This NASA Hubble Space Telescope image of Comet (C/2012 S1) ISON was photographed on April 10, 2013, when the comet was slightly closer than Jupiter's orbit at a distance of 394 million miles from Earth. Even at that great distance the comet is already active as sunlight warms the surface and causes frozen volatiles to boil off. Astronomers used such early images to try to measure the size of the nucleus, in order to predict whether the comet would stay intact when it slingshots around the sun -- at 700,000 miles above the sun's surface -- on Nov. 28, 2013. The comet's dusty coma, or head of the comet, is approximately 3,100 miles across, or 1.2 times the width of Australia. A dust tail extends more than 57,000 miles, far beyond Hubble's field of view. This image was taken in visible light. The blue false color was added to bring out details in the comet structure. Credit: NASA/ ESA/STScI/AURA -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on April 10 Hubble View of ISON
2013-11-22
This NASA Hubble Space Telescope image of Comet (C/2012 S1) ISON was photographed on April 10, 2013, when the comet was slightly closer than Jupiter's orbit at a distance of 394 million miles from Earth. Even at that great distance the comet is already active as sunlight warms the surface and causes frozen volatiles to boil off. Astronomers used such early images to try to measure the size of the nucleus, in order to predict whether the comet would stay intact when it slingshots around the sun -- at 700,000 miles above the sun's surface -- on Nov. 28, 2013. The comet's dusty coma, or head of the comet, is approximately 3,100 miles across, or 1.2 times the width of Australia. A dust tail extends more than 57,000 miles, far beyond Hubble's field of view. This image was taken in visible light. The blue false color was added to bring out details in the comet structure. Credit: NASA/ ESA/STScI/AURA -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Study of the coma of comet 67P/Churyumov-Gerasimenko based on the ROSINA/RTOF instrument onboard Rosetta
NASA Astrophysics Data System (ADS)
Hoang, M.; Garnier, P.; Rème, H.; Altwegg, K.; Balsiger, H.; Calmonte, U.; Fiethe, B.; Galli, A.; Gasc, S.; Jäckel, A.; Mall, U.; Le Roy, L.; Rubin, M.; Tzou, C.-Y.; Waite, J. H.; Wurz, P.
2015-10-01
The Rosetta ESA mission investigates the environment of the comet 67P / Churyumov- Gerasimenko since August 2014. Among the experiments onboard the satellite, the ROSINA experiment (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) includes two mass spectrometers (DFMS and RTOF) to analyze the composition of neutrals and ions, and an instrument (COPS) to monitor the density and velocity of neutrals in the coma [1]. We will here analyze and discuss the data of the ROSINA/RTOF instrument during the comet escort phase. A detailed description of the main volatiles (H2O, CO2, CO) dynamics and of the heterogeneities of the coma will be provided.
NASA Technical Reports Server (NTRS)
Chubb, T. A.
1986-01-01
The observations of transient decreases or holes in the EUV dayglow reported by Frank et al. (1986) and attributed to an influx of small comets into the earth atmosphere are discussed critically. The techniques used in acquiring and analyzing the observational data are examined, and it is argued that the decreases are probably instrument artifacts. A critique of the geophysical basis of the comet hypothesis is also included. In a reply by Frank et al., the instrument-artifact argument is rejected, in part on the basis of the statistical properties of the holes observed. Additional observational data are presented in graphs and dynamics Explorer 1 images are analyzed in detail.
The Extreme-ultraviolet Emission from Sun-grazing Comets
NASA Technical Reports Server (NTRS)
Bryans, Paul; Pesnell, William D.
2012-01-01
The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory has observed two Sun-grazing comets as they passed through the solar atmosphere. Both passages resulted in a measurable enhancement of extreme-ultraviolet (EUV) radiance in several of the AIA bandpasses.We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Molecules in the comet rapidly sublimate as it approaches the Sun. They are then photodissociated by the solar radiation field to create atomic species. Subsequent ionization of these atoms produces a higher abundance of ions than normally present in the corona and results in EUV emission in the wavelength ranges of the AIA telescope passbands.
NASA Technical Reports Server (NTRS)
Irvine, William M.
1999-01-01
The basic theme of this program was the study of molecular complexity and evolution for the biogenic elements and compounds in interstellar clouds and in primitive solar system objects. Research included the detection and study of new interstellar and cometary molecules and investigation of reaction pathways for astrochemistry from a comparison of theory and observed molecular abundances. The latter includes studies of cold, dark clouds in which ion-molecule chemistry should predominate, searches for the effects of interchange of material between the gas and solid phases in interstellar clouds, unbiased spectral surveys of particular sources, and systematic investigation of the interlinked chemistry and physics of dense interstellar clouds. In addition, the study of comets has allowed a comparison between the chemistry of such minimally thermally processed objects and that of interstellar clouds, shedding light on the evolution of the biogenic elements during the process of solar system formation. One PhD dissertation on this research was completed by a graduate student at the University of Massachusetts. An additional 4 graduate students at the University of Massachusetts and 5 graduate students from other institutions participated in research supported by this grant, with 6 of these thus far receiving PhD degrees from the University of Massachusetts or their home institutions. Four postdoctoral research associates at the University of Massachusetts also participated in research supported by this grant, receiving valuable training.
NASA Astrophysics Data System (ADS)
Ruzmaikina, T. V.
2000-12-01
Precise measurements of D/H in Halley and Hyakutake reveal larger excess of D than in Uranus and Neptune. This might imply that at least a fraction of Oort cloud comets have been accumulated in a cooler environment beyond the planetary system. This paper suggests that the scattering of planetesimals from the periphery of the protoplanetary disk by a passing star might have included them in the populating of the Oort cloud. The probability of the necessary close encounter is very small in the present Galactic environment of the solar system. However it might be relatively high if the solar system was formed in a denser environment, like the Rho Ophiuchus star-forming region or a small and dense cloud core which fragmented during the collapse to form a small group of stars. Outcomes of a passage of a star with mass 1 to 0.3 solar masses were studied numerically by Everhart method. Disk penetrating or disk grazing encounters revealed that planetesimals closest to the stellar trajectory can be ejected from the solar system or sent on highly eccentric bound orbits. Some planetesimals acquire orbits with perihelion distances larger than planet orbits, i.e., become immediate members of the Oort cloud. For others, external pertubations cause stochastic growth of perihelion distances and decoupling from the planetary system, transferring them into the Oort cloud. These Oort cloud bodies could be accumulated well beyond the planetary system, and preserve higher D/H, CO ice, etc.
Interstellar Isotopes: Prospects with ALMA
NASA Technical Reports Server (NTRS)
Charnley Steven B.
2010-01-01
Cold molecular clouds are natural environments for the enrichment of interstellar molecules in the heavy isotopes of H, C, N and O. Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets, that may trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. Models of the fractionation chemistry of H, C, N and O in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred, make several predictions that can be tested in the near future by molecular line observations. The range of fractionation ratios expected in different interstellar molecules will be discussed and the capabilities of ALMA for testing these models (e.g. in observing doubly-substituted isotopologues) will be outlined.
Cometary evidence for a solar companion?
NASA Technical Reports Server (NTRS)
Delsemme, A. H.
1986-01-01
It is demonstrated that a large anisotropy exists in a set of 126 cometary orbits that is manifested in a plane almost perpendicular to the ecliptic. This anisotropy would dissipate by orbital diffusion in 10 to 20 Myr, and thus must be due to a recent impulsive event in the Oort cloud. It is shown that this anisotropy cannot be due to gravitational perturbations from fast-moving stars or molecular clouds. A massive body slow enough to be bound to the solar system is the probable cause. The strip of sky centered on its presumed orbit reveals large anomalies in the ratio of retrograde to prograde comets which suggest the position of the perihelion of an eccentric orbit. It is proposed that the massive body is the solar companion Nemesis; other possibilities are discussed.
NASA Astrophysics Data System (ADS)
Lindsay, Sean Stephen
The shape, size, and composition of crystalline silicates observed in comet comae and external proto-planetary disks are indicative of the formation and evolution of the dust grains during the processes of planetary formation. In this dissertation, I present the 3 -- 40 mum absorption efficiencies( Qabs) of irregularly shaped forsterite crystals computed with the discrete dipole approximation (DDA) code DDSCAT developed by Draine and Flatau and run on the NASA Advanced Supercomputing facility Pleiades. An investigation of grain shapes ranging from spheroidal to irregular indicate that the strong spectral features from forsterite are sensitive to grain shape and are potentially degenerate with the effects of crystal solid state composition (Mg-content). The 10, 11, 18, 23, and 33.5 mum features are found to be the most crystal shape sensitive and should be avoided in determining Mg-content. The distinct spectral features for the three shape classes are connected with crystal formation environment using a condensation experiment by (Kobatake et al., 2008). The condensation experiment demonstrates that condensed forsterite crystal shapes are dependent on the condensation environmental temperature. I generate DDSCAT target analog shapes to the condensed crystal shapes. These analog shapes are represented by the three shape classes: 1) equant, 2) a, c-columns, and 3) b-shortened platelets. Each of these shape classes exhibit distinct spectral features that can be used to interpret grain shape characteristics from 8 --- 40 mum spectroscopy of astronomical objects containing crystalline silicates. Synthetic spectral energy distributions (SEDs) of the coma of Hale-Bopp at rh = 2.8 AU are generated by thermally modeling the flux contributions of 5 mineral species present in comets. The synthetic SEDs are constrained using a chi2- minimization technique. The mineral species are amorphous carbon, amorphous pyroxene, amorphous olivine, crystalline enstatite, and crystalline forsterite. Using the DDSCAT computed absorption efficiencies for a large variety of forsterite crystal shapes, which are computed for 66 grain sizes between 0.1 -- 5.0 mum, the flux contribution of irregularly shaped forsterite is computed. The forsterite flux contribution is then summed with the amorphous and crystalline enstatite contributions to generate the total synthetic SED. The DDSCAT forsterite grain shape synthetic SEDs reveal that the crystalline silicates in the coma of Hale-Bopp are irregular in shape with two distinct shape characteristics related to specific formation mechanisms: 1) equant grains with sharp ( ≲ 90°) angles between the faces, edges, and vertices that formed as high temperature condensates in the inner 1 -- 3 AU radial region of the Solar System's protoplanetary disk; and 2) c-shortened platelet shapes that likely formed from collisional processing of the crystals. The 8 -- 40 mum silicate spectral features of Hale-Bopp's coma are compared to the silicate spectral features of the comae of 17P/Holmes during 2007 outburst and 9P/Tempel 1 during the Deep Impact experiment to show that the silicate features with crystalline resonances are remarkably similar. The similarity in silicate spectral features suggests that the grain populations in the comae of these comets are similar in shape, size, and compositon. However, Hale-Bopp is a nearly isotropic comet (NIC) that dynamically came from the Oort cloud, and 17P and 9P are ecliptic comets (ECs) that dynamically came from the Scattered Disk. The different dynamical source regions yet similar silicate (amorphous and crystalline) grain populations suggest that ECs and NICs innately have similar grains and that the typically weaker silicate features of ECs are an effect of the surface grains becoming compacted with numerous perihelion passages. Hence, the differences in silicate between ECs and NICs are the result of grain structure and not grain composition. (Abstract shortened by UMI.)
Modelling of the sublimation of icy grains in the coma of comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Gicquel, A.; Vincent, J.-B.; Shi, X.; Sierks, H.; Rose, M.; Güttler, C.; Tubiana, C.
2015-10-01
The ESA (European Space Agency) Rosetta spacecraft was launched on 2 March 2004, to reach comet 67P/Churyumov-Gerasimenko in August 2014. Since March 2014, images of the nucleus and the coma (gas and dust) of the comet have been acquired by the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) camera system [1] using both, the wide angle camera (WAC) and the narrow angle camera (NAC). The orbiter will be maintained in the vicinity of the comet until perihelion (Rh=1.3 AU) or even until Rh=1.8 AU post-perihelion (December 2015). Nineteen months of uninterrupted, close-up observations of the gas and dust coma will be obtained and will help to characterize the evolution of comet gas and dust activity during its approach to the Sun. Indeed, for the first time, we will follow the development of a comet's coma from a close distance. Also the study of the dust-gas interaction in the coma will highlight the sublimation of icy grains. Even if the sublimation of icy grains is known, it is not yet integrated in a complete dust-gas model. We are using the Direct Simulation Monte Carlo (DSMC) method to study the gas flow close to the nucleus. The code called PI-DSMC (www.pidsmc. com) can simulate millions of molecules for multiple species.When the gas flow is simulated, we inject the dust particle with a zero velocity and we take into account the 3 forces acting on the grains in a cometary environment (drag force, gravity and radiative pressure). We used the DLL (Dynamic Link Library) model to integrate the sublimation of icy grains in the gas flowand allow studying the effect of the additional gas on the dust particle trajectories. For a quantitative analysis of the sublimation of icy, outflowing grains we will consider an ensemble of grains of various radii with different compositions [2] The evolution of the grains, once they are ejected into the coma, depends on their initial size, their composition and the heliocentric distance (because the temperature of the grain is higher close to the Sun). The grain temperatures will be derived by assuming equilibrium between the energy absorbed from the Sun, the energy re-radiated in the infrared, and the cooling by sublimation. We will use Mie theory [3, 4] to compute the scattering properties of an assumed grain (grain size, shape and composition, including mineralogy and porosity). We follow the evolution of grains until the icy layer sublimates completely. Once ejected in the gas flow, the generated molecules have no preferred direction. First results highlighted that the sublimation has a significant influence on the dust trajectories and generates a gas cloud that moves with the velocity of the icy grains. Our model can produce artificial images for a wide range of parameters, including outgassing rate, surface temperature, dust properties and sublimation of icy grains. The results of this model will be compared to the images obtained with OSIRIS camera and to the published data from other instruments.
Assessing the physical nature of near-Earth asteroids through their dynamical histories
NASA Astrophysics Data System (ADS)
Fernández, Julio A.; Sosa, Andrea; Gallardo, Tabaré; Gutiérrez, Jorge N.
2014-08-01
We analyze a sample of 139 near-Earth asteroids (NEAs), defined as those that reach perihelion distances q<1.3 au, and that also fulfill the conditions of approaching or crossing Jupiter’s orbit (aphelion distances Q>4.8 au), having Tisserand parameters 2
Modeling the Thermodynamic Properties of the Inner Comae of Comets
NASA Astrophysics Data System (ADS)
Boice, Daniel C.
2017-10-01
Introduction: Modeling is central to understand the important properties of the cometary environment. We have developed a comet model, SUISEI, that self-consistently includes the relevant physicochemical processes within a global modeling framework, from the porous subsurface layers of the nucleus to the interaction with the solar wind. Our goal is to gain valuable insights into the intrinsic properties of cometary nuclei so we can better understand observations and in situ measurements. SUISEI includes a multifluid, reactive gas dynamics simulation of the dusty coma (ComChem) and a suite of other coupled numerical simulations. This model has been successfully applied to a variety of comets in previous studies over the past three decades. We present results from a quantitative study of the thermodynamic properties and chemistry of cometary comae as a function of cometocentric and heliocentric distance to aid in interpretation of observations and in situ measurements of comets.Results and Discussion: ComChem solves the fluid dynamic equations for the mass, momentum, and energy of three neutral fluids (H, H2, and the heavier bulk fluid), ions, and electrons. In the inner coma, the gas expands, cools, accelerates, and undergoes many photolytic and gas-phase chemical reactions tracking hundreds of sibling species. The code handles the transition to free molecular flow and describes the spatial distribution of species in the coma of a comet. Variations of neutral gas temperature and velocity with cometocentric distance and heliocentric distance for a comet approaching the Sun from 2.5 to 0.3 AU are presented. Large increases in the gas temperatures (>400 K) due to photolytic heating in the coma within ~0.5 AU are noted, with dramatic effects on the chemistry, optical depth, and other coma properties. Results are compared to observations when available.Conclusions: SUISEI has proven to be a unique and valuable model to understand the relevant physical processes and properties of small Solar System bodies, including near-Sun comets and asteroids.Acknowledgments: This work was supported by FAPESP under Grant No. 2015/03176-8 and the National Science Foundation Planetary Astronomy Program Grant No. 0908529.
Thermal alteration in carbonaceous chondrites and implications for sublimation in rock comets
NASA Astrophysics Data System (ADS)
Springmann, Alessondra; Lauretta, Dante S.; Steckloff, Jordan K.
2015-11-01
Rock comets are small solar system bodies in Sun-skirting orbits (perihelion q < ~0.15 AU) that form comae rich in mineral sublimation products, but lack typical cometary ice sublimation products (H2O, CO2, etc.). B-class asteroid (3200) Phaethon, considered to be the parent body of the Geminid meteor shower, is the only rock comet currently known to periodically eject dust and form a coma. Thermal fracturing or thermal decomposition of surface materials may be driving Phaethon’s cometary activity (Li & Jewitt, 2013). Phaethon-like asteroids have dynamically unstable orbits, and their perihelia can change rapidly over their ~10 Myr lifetimes (de León et al., 2010), raising the possibility that other asteroids may have been rock comets in the past. Here, we propose using spectroscopic observations of mercury (Hg) as a tracer of an asteroid’s thermal metamorphic history, and therefore as a constraint on its minimum achieved perihelion distance.B-class asteroids such as Phaethon have an initial composition similar to aqueously altered primitive meteorites such as CI- or CM-type meteorites (Clark et al., 2010). Laboratory heating experiments of ~mm sized samples of carbonaceous chondrite meteorites from 300K to 1200K at a rate of 15K/minute show mobilization and volatilization of various labile elements at temperatures that could be reached by Mercury-crossing asteroids. Samples became rapidly depleted in labile elements and, in particular, lost ~75% of their Hg content when heated from ~500-700 K, which corresponds to heliocentric distances of ~0.15-0.3 au, consistent with our thermal models. Mercury has strong emission lines in the UV (~ 185 nm) and thus its presence (or absence) relative to carbonaceous chondrite abundances would indicate if these bodies had perihelia in their dynamical histories inside of 0.15 AU, and therefore may have previously been Phaethon-like rock comets. Future space telescopes or balloon-borne observing platforms equipped with a UV spectrometer could potentially detect the presence or absence of strong ultraviolet mercury lines on rock comets or rock comet candidates.
Will comet 209P/LINEAR generate the next meteor storm?
NASA Astrophysics Data System (ADS)
Ye, Quanzhi; Wiegert, Paul A.
2014-02-01
Previous studies have suggested that comet 209P/LINEAR may produce strong meteor activity on Earth on 2014 May 24; however, exact timing and activity level is difficult to estimate due to the limited physical observations of the comet. Here, we reanalyse the optical observations of 209P/LINEAR obtained during its 2009 apparition. We find that the comet is relatively depleted in dust production, with Afρ at 1 cm level within eight months around its perihelion. This feature suggested that this comet may be currently transitioning from a typical comet to a dormant comet. Syndyne simulation shows that the optical cometary tail is dominated by larger particles with β ˜ 0.003. Numerical simulations of the cometary dust trails confirm the arrival of particles on 2014 May 24 from some of the 1798-1979 trails. The nominal radiant is at RA 122° ± 1°, Dec. 79° ± 1° (J2000) in the constellation of Camelopardalis. Given that the comet is found to be depleted in dust production, we concluded that a meteor storm (ZHR ≥ 1000) may be unlikely. However, our simulation also shows that the size distribution of the arrived particles is skewed strongly to larger particles. Coupling with the result of syndyne simulation, we think that the event, if detectable, may be dominated by bright meteors. We encourage observers to monitor the expected meteor event as it will provide us with rare direct information on the dynamical history of 209P/LINEAR which is otherwise irretrievably lost.
Multi-fluid model of a sun-grazing comet in the rapidly ionizing, magnetized low corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Y.-D.; Russell, C. T.; Liu, W.
2014-11-20
Two Sun-grazing comets were recently imaged in the low solar corona by space telescopes in unprecedented detail, revealing a wide range of new phenomena. This sparked growing interest in the interaction of comets with the coronal plasma and magnetic field and their diagnostic potential as solar probes. However, interpretation of such rich observational data requires profound understanding of relevant physical processes in an unexplored regime. Here advanced numerical modeling can provide critical clues. To this end, we present a prototype, multi-fluid, magnetohydrodynamic model of a steady-state comet in the low solar corona. These simulation results are compared with previously modeledmore » comets in the solar wind environment. By inspecting their projection and column densities, we find a dominance of O{sup 6+} ions in the cometary tail, which can explain the observed extreme ultraviolet emission. The tail is found to be comparable to recent EUV images of these comets. In addition, the comet tail appears wider when the observer's line of sight is perpendicular rather than parallel to the local magnetic field. This is opposite to the trend in the interplanetary space permeated in the solar wind, because the ratio between dynamic pressure and magnetic pressure is an order of magnitude smaller than at 1 AU. On the other hand, we find that iron ions in the comet head build up to a density comparable to that of oxygen ions, but are unlikely to form a visible tail because of the shorter mean free paths of the neutrals.« less
The control of satellites with microgravity constraints: The COMET Control System
NASA Astrophysics Data System (ADS)
Grossman, Walter; Freesland, Douglas
1994-05-01
The COMET attitude determination and control system, using inverse dynamics and a novel torque distribution/momentum management technique, has shown great flexibility, performance, and robustness. Three-axis control with two wheels is an inherent consequence of inverse dynamics control which allows for reduction in spacecraft weight and cost, or alternatively, provides a simple means of failure-redundancy for three-wheel spacecraft. The control system, without modification, has continued to perform well in spite of large changes in spacecraft mass properties and mission orbit altitude that have occurred during development. This flexibility has obviated imposition of early stringent ADACS design constraints and has greatly reduced commonly incurred ADACS modification costs and delay associated with program maturation.
The control of satellites with microgravity constraints: The COMET Control System
NASA Technical Reports Server (NTRS)
Grossman, Walter; Freesland, Douglas
1994-01-01
The COMET attitude determination and control system, using inverse dynamics and a novel torque distribution/momentum management technique, has shown great flexibility, performance, and robustness. Three-axis control with two wheels is an inherent consequence of inverse dynamics control which allows for reduction in spacecraft weight and cost, or alternatively, provides a simple means of failure-redundancy for three-wheel spacecraft. The control system, without modification, has continued to perform well in spite of large changes in spacecraft mass properties and mission orbit altitude that have occurred during development. This flexibility has obviated imposition of early stringent ADACS design constraints and has greatly reduced commonly incurred ADACS modification costs and delay associated with program maturation.
Planetary Science with Balloon-Borne Telescopes
NASA Technical Reports Server (NTRS)
Kremic, Tibor; Cheng, Andy; Hibbitts, Karl; Young, Eliot
2015-01-01
The National Aeronautics and Space Administration (NASA) and the planetary science community have recently been exploring the potential contributions of stratospheric balloons to the planetary science field. A study that was recently concluded explored the roughly 200 or so science questions raised in the Planetary Decadal Survey report and found that about 45 of those questions are suited to stratospheric balloon based observations. In September of 2014, a stratospheric balloon mission called BOPPS (which stands for Balloon Observation Platform for Planetary Science) was flown out of Fort Sumner, New Mexico. The mission had two main objectives, first, to observe a number of planetary targets including one or more Oort cloud comets and second, to demonstrate the applicability and performance of the platform, instruments, and subsystems for making scientific measurements in support planetary science objectives. BOPPS carried two science instruments, BIRC and UVVis. BIRC is a cryogenic infrared multispectral imager which can image in the.6-5 m range using an HgCdTe detector. Narrow band filters were used to allow detection of water and CO2 emission features of the observed targets. The UVVis is an imager with the science range of 300 to 600 nm. A main feature of the UVVis instrument is the incorporation of a guide camera and a Fine Steering Mirror (FSM) system to reduce image jitter to less than 100 milliarcseconds. The BIRC instrument was used to image targets including Oort cloud comets Siding Spring and Jacques, and the dwarf planet 1 Ceres. BOPPS achieved the first ever earth based CO2 observation of a comet and the first images of water and CO2 of an Oort cloud comet (Jacques). It also made the first ever measurement of 1Ceres at 2.73 m to refine the shape of the infrared water absorption feature on that body. The UVVis instrument, mounted on its own optics bench, demonstrated the capability for image correction both from atmospheric disturbances as well as some of the residual motion from the gondola that was not addressed by the gondolas coarse pointing systems. The mission met its primary science and engineering objectives. The results of the BOPPS mission will feed into the body of science knowledge but also feed into future planning for more science from balloon-borne platforms. A notional platform called Gondola for High-Altitude Planetary Science (GHAPS) has been explored and this concept platform can address a number of important decadal questions. This paper provides a summary of the assessment of potential balloon borne observations for planetary science purposes including where potential science contributions can be expected, the necessary performance characteristics of the platform, and other features required or desired. The BOPPS mission is summarized including descriptions of the main elements and key science and engineering results. The paper then briefly describes GHAPS, and the salient features that can make it a valuable tool for future planetary observations.
15N Fractionation in Star-Forming Regions and Solar System Objects
NASA Technical Reports Server (NTRS)
Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin
2015-01-01
A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.
Life from the stars?. [extraterrestrial sources contributing to chemical evolution on Earth
NASA Technical Reports Server (NTRS)
Pendleton, Yvonne J.; Cruikshank, Dale P.
1994-01-01
Scientists are now seriously considering the possibility that organic matter from interstellar space could have influenced, or even spurred, the origin of life on Earth. Various aspects of chemical evolution are discussed along with possible extraterrestrial sources responsible for contributing to Earth's life-producing, chemical composition. Specific topics covered include the following: interstellar matter, molecular clouds, asteroid dust, organic molecules in our solar system, interplanetary dust and comets, meteoritic composition, and organic-rich solar-system bodies.
Studies of radiative transfer in planetary atmospheres
NASA Technical Reports Server (NTRS)
Irvine, W. M.; Schloerb, F. P.
1984-01-01
Progress is reported in modeling cometary emission in the 18-cm OH transition with specific application and predictions for Comet Halley. Radiative transfer is also being studied in rough and porous media. The kinematics of the cold, dark interstellar cloud Li34N were examined, and CO monitoring of Venus and Mars continues. Analysis of 3.4 mm maps of the lunar surface shows thermal anomalies associated with such surface features as the Crater Copernicus, Mare Imbrium, Mare Nubium, Mare Serenitatis, and Mare Tranquillatis.
Small-scale dust structures in Halley's coma. II. Disintegration of large dust bodies
NASA Astrophysics Data System (ADS)
Oberc, P.
2004-10-01
Small-scale dust structures, SDSs, altogether ˜35 events with extent ˜30-220 km, have been recognized owing to electric field records, mostly near the closest approach of Vega-2 to Halley's nucleus. Several (8-9) morphological forms of SDS have been identified, and all they make one family. Among the family members, the key form (with respect to which, all other forms can be regarded as degenerate) is a sequence of 3-5 dust clouds. The morphological forms represent various Vega-2 passes through SDSs at different stages of development. SDSs observable as the key form consisted of several fairly regularly spaced dust subpopulations, whose plane of symmetry was parallel to the comet orbit plane. That regularity together with specific features of morphological forms strongly constrain disintegration scenarios and dynamics of fragments, and allow to draw a number of conclusions, the main of which are: SDS parent bodies were ice-free dust aggregates lifted from the nucleus near the comet perihelion, whose masses were in the range ˜0.1-1 of the biggest emitted mass (mass of a body accelerated to the escape velocity, i.e., ˜300-1500 kg); the disintegration scenario comprised a few steps, and the first-step disintegration consisted mainly in consecutive detachments of biggest first-step fragments (BF-SFs) from the parent body; a SDS observable as the key form included the dust minitail of parent body and a few BF-SF minitails, the former one being longer than the latter ones; SDS parent bodies had a fractal-like internal structure, and the BF-SF mass was a few percent of the parent body mass; the thermal conductivity of SDS parent body was less than ˜0.4 W m -1 K -1 or so, while the latent heat of gluing organics was roughly 80 kJ mol -1; the disintegration mechanism was a combination of sintering and sublimation of organics. The multistep disintegration of SDS parent bodies can be reconciled with the basically one-step disintegration of aggregates responsible for the dust boundary (Oberc, P., Icarus 1996, 124, 195-208). The fractal-like structure and the relation between BF-SF mass and parent body mass are in agreement with predictions from the Weidenschilling model of comet formation. Large ice-free dust bodies, in particular SDS parent bodies, can be identified with refractory boulders postulated by some comet nucleus models.
Interplanetary dust. [survey of last four years' research
NASA Technical Reports Server (NTRS)
Brownlee, D. E.
1979-01-01
Progress in the study of interplanetary dust during the past four years is reviewed. Attention is given to determinations of the relative contributions of interstellar dust grains, collisional debris from the asteroid belt and short-period comets to the interplanetary dust cloud. Effects of radiation pressure and collisions on particle dynamics are discussed, noting the discovery of the variation of the orbital parameters of dust particles at 1 AU with size and in situ measurements of dust density between 0.3 and 5 AU by the Helios and Pioneer spacecraft. The interpretation of the zodiacal light as produced by porous absorbing particles 10 to 100 microns in size is noted, and measurements of the Doppler shift, light-producing-particle density, UV spectrum, photometric axis and angular scattering function of the zodiacal light are reported. Results of analyses of lunar rock microcraters as to micrometeoroid density, flux rate, size distribution and composition are indicated and interplanetary dust particles collected from the stratosphere are discussed. Findings concerning the composition of fragile meteoroid types found as cosmic spherules in deep sea sediments are also presented.
Ground-based Detection of Deuterated Water in Comet C/2014 Q2 (Lovejoy) at IR Wavelengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paganini, L.; Mumma, M. J.; Villanueva, G. L.
2017-02-20
We conducted a deep search for deuterated water (HDO) in the Oort Cloud comet C/2014 Q2 (Lovejoy), through infrared (IR) spectroscopy with NIRSPEC at the Keck Observatory. In this Letter, we present our detections of HDO and water (H{sub 2}O) in comet Lovejoy on 2015 February 4 (post-perihelion) after 1 hr integration on source. The IR observations allowed simultaneous detection of H{sub 2}O and HDO, yielding production rates of 5.9 ± 0.13 × 10{sup 29} and 3.6 ± 1.0 × 10{sup 26} molecules s{sup −1}, respectively. The simultaneous detection permitted accurate determination of the isotopic ratio (D/H) in water ofmore » 3.02 ± 0.87 × 10{sup −4}, i.e., larger than the value for water in terrestrial oceans (or Vienna Standard Mean Ocean Water, VSMOW) by a factor of 1.94 ± 0.56. This D/H ratio in water exceeds the value obtained independently at millimeter wavelengths (0.89 ± 0.25 VSMOW; pre-perihelion). We discuss these parameters in the context of origins and emphasize the need for contemporaneous measurements of HDO and H{sub 2}O.« less
Dimensions and Fragmentation of the Nuclei of Comet Shoemaker-Levi 9
NASA Technical Reports Server (NTRS)
Sekanina, Zdenek
1994-01-01
Central regions on the digital maps of 13 nuclear condensations of Comet Shoemaker-Levi 9, obtained with the Planetary Camera of the Hubble Space Telescope on January 27, March 30, and July 4, 1994, have been analyzed with the aim to identify the presence of distinct, major fragments in each condensation, to deconvolve their contributions to the signal that also includes the contribution from a surrounding cloud of dust (modeled as an extended source, using two different laws), to estimate the dimensions of the fragments and to study their temporal variations, and to determine the spatial distributions of the fragments as projected on to the plane of the sky. The deconvolution method applied is described and the results of the analysis are summarized, including the finding that sizable fragments did survive until the time of atmospheric entry. This result does not contradict evidence of the comet's continuing, apparently spontaneous fragmentation, which still went on long after the extremely close approach to Jupiter in July 1992 and which, because of the Jovian tidal effects, may have intensified in the final days before the crash on Jupiter. Since the developed approach is based on certain premises and involves approximations, the results should be viewed as preliminary and the problem should be the subject of further investigation.
NASA Astrophysics Data System (ADS)
Brownlee, D. E.
2003-12-01
Comets are surviving members of a formerly vast distribution of solid bodies that formed in the cold regions of the solar nebula. Cometary bodies escaped incorporation into planets and ejection from the solar system and they have been stored in two distant reservoirs, the Oort cloud and the Kuiper Belt, for most of the age of the solar system. Observed comets appear to have formed between 5 AU and 55 AU. From a cosmochemical viewpoint, comets are particularly interesting bodies because they are preserved samples of the solar nebula's cold ice-bearing regions that occupied 99% of the areal extent of the solar nebula disk. All comets formed beyond the "snow line" of the nebula, where the conditions were cold enough for water ice to condense, but they formed from environments that significantly differed in temperature. Some formed in the comparatively "warm" regions near Jupiter where the nebular temperature may have been greater than 120 K and others clearly formed beyond Neptune where temperatures may have been less than 30 K (Bell et al., 1997). Although comets are the best-preserved materials from the early solar system, they should be a mix of nebular and presolar materials that accreted over a vast range of distances from the Sun in environments that differed in temperature, pressure, and accretional conditions such as impact speed.Comets, by conventional definition, are unstable near the Sun; they contain highly volatile ices that vigorously sublime within 2-3 AU of the Sun. When heated, they release gas and solids due to "cometary activity," a series of processes usually detected from afar by the presence of a coma of gas and dust surrounding the cometary nucleus and or elongated tails composed of dust and gas. Active comets clearly have not been severely modified by the moderate to extreme heating that has affected all other solar system materials, including planets, moons, and even the asteroids that produced the most primitive meteorites. Comets have been widely described as the most primitive solar system materials, preserved at cryogenic temperature and low pressure since the formation of the Sun. This is likely to be true, in general, but there is a growing body of recent evidence suggesting that comets are both more physically complex and have had more complex histories than formerly believed. They formed over an order of magnitude range of distances from the Sun; some are fragments of relatively large bodies and collisional effects must have processed at least some comets, as they have processed asteroids (McSween and Weissman, 1989).Comet-like materials are presumed to be the building blocks of Uranus and Neptune (the ice giants); they may have played a role in the formation of Jupiter and Saturn (the gas giants) and they also played some role in transporting outer solar system volatile materials to inner planets (Delsemme, 2000). The inner solar system flux of comets may have been much higher in the past and comets may have played a role in producing the late heavy bombardment on terrestrial planets ( Levison et al., 2001). Comets also exist outside the solar system and there is good evidence that they orbit a major fraction of Sun-like stars. Circumstellar dust, which appears to have been generated by comets, is detected as thermal infrared emission and sometimes as scattered starlight ( Backman et al., 1997; Weissman, 1984; Jewitt and Luu, 1995). It is particularly interesting that the amount of dust around stars declines with stellar age and is highest around stars younger than a few hundred million years. The common presence of what appears to be comet-generated dust around other stars suggests that comet formation is a normal and common consequence of star formation ( Figure 1). (6K)Figure 1. The ratio of infrared excess/stellar luminosity is a measure of the fraction of starlight absorbed by circumstellar dust and re-radiated in the infrared. The plot from Spangler et al. (2001) shows the temporal decline of dust around "Vega-like" stars (points) and stars in clusters with measured ages (circles). At least for the longer ages, the dust is most probably generated by comets.
Formation and past evolution of the showers of 96P/Machholz complex
NASA Astrophysics Data System (ADS)
Abedin, Abedin; Wiegert, Paul; Janches, Diego; Pokorný, Petr; Brown, Peter; Hormaechea, Jose Luis
2018-01-01
In this work we model the dynamical evolution of meteoroid streams of comet 96P/Machholz, and the largest member of the Marsden sunskirters, comet P/1999 J6. We simultaneously fit the characteristics of eight meteor showers which have been proposed to be linked to the complex, using observations from a range of techniques - visual, video, TV and radar. The aim is to obtain a self-consistent scenario of past capture of a large comet into a short-period orbit, and its subsequent fragmentation history. Moreover, we also aim to constrain the dominant parent of these showers. The fit of our simulated shower characteristics to observations is consistent with the scenario of a capture of a proto-comet 96P/Machholz by Jupiter circa 20000 BCE, and a subsequent major breakup around 100-950 CE which resulted in the formation of the Marsden group of comets. We find that the Marsden group of comets are not the immediate parents of the daytime Arietids and Northern and Southern δ-Aquariids, as previously suggested. In fact, the hypothesis that the Northern δ-Aquariids are related to the Marsden group of comets is not supported by this study. The bulk of the observational characteristics of all eight showers can be explained by meteoroid ejection primarily from comet 96P/Machholz between 10000 BCE and 20000 BCE. Assuming the Marsden group of comets originated between 100 CE-950 CE, we conclude that sunskirting comets contribute mainly to the meteoroid stream near the time of the peak of the daytime Arietids, Southern δ-Aquariids, κ-Velids. Finally, we find that the meteor showers identified by Babadzhanov and Obrubov (1992) as the α-Cetids, the Ursids and Carinids correspond to the daytime λ-Taurids, the November ι-Draconids or December α-Draconids and the θ-Carinids.
G-DYN Multibody Dynamics Engine
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Blackmore, James C.; Broderick, Daniel
2011-01-01
G-DYN is a multi-body dynamic simulation software engine that automatically assembles and integrates equations of motion for arbitrarily connected multibody dynamic systems. The algorithm behind G-DYN is based on a primal-dual formulation of the dynamics that captures the position and velocity vectors (primal variables) of each body and the interaction forces (dual variables) between bodies, which are particularly useful for control and estimation analysis and synthesis. It also takes full advantage of the spare matrix structure resulting from the system dynamics to numerically integrate the equations of motion efficiently. Furthermore, the dynamic model for each body can easily be replaced without re-deriving the overall equations of motion, and the assembly of the equations of motion is done automatically. G-DYN proved an essential software tool in the simulation of spacecraft systems used for small celestial body surface sampling, specifically in simulating touch-and-go (TAG) maneuvers of a robotic sampling system from a comet and asteroid. It is used extensively in validating mission concepts for small body sample return, such as Comet Odyssey and Galahad New Frontiers proposals.
NASA Astrophysics Data System (ADS)
Moreno, F.; Pozuelos, F.; Aceituno, F.; Casanova, V.; Duffard, R.; López-Moreno, J. J.; Molina, A.; Ortiz, J. L.; Santos-Sanz, P.; Sota, A.; Diepvens, A.; Segundo, A. S.; Bell, C.; Labordena, C.; Bryssinck, E.; Cortés, E.; Reina, E.; García, F.; Gómez, F.; Limón, F.; Soldán, F.; Tifner, F.; Muler, G.; Almendros, I.; Aledo, J.; Bel, J.; Carrillo, J.; Castellano, J.; Curto, J.; Gaitan, J.; Salto, J. L.; Lopesino, J.; Lozano, J.; Hernández, J. F.; González, J. J.; Martín, J. L.; Aymamí, J. M.; Bosch, J. M.; Fernández, J. M.; Vidal, J. R.; Montoro, L.; Tremosa, L.; Campas, M.; Canales, O.; Dekelver, P. J.; Benavides, R.; Naves, R.; Castillo, R.; Climent, T.; Cupillari, T.; Yanamandra-Fisher, P.
2014-08-01
A Monte Carlo dust tail model has been applied to extract the dust environment parameters of the comet C/2012 S1 (ISON) from both Earth-based and SOHO LASCO C3 observations, performed from about six astronomical units (AU) inbound, to just after perihelion passage, when only a small portion of the original comet nucleus has survived in the form of a cloud of tiny particles. The early Afρ and image data are consistent with particle ejection from an extended active area located at latitudes 35°N to 90°N (for a prograde rotating nucleus), with the spin axis having a large obliquity (I ~ 70°). This configuration nicely fits the early images and Afρ data until 3.9 AU inbound, when the emission should become isotropic in order to fit the data. The analysis of LASCO images reveals that, assuming an original nucleus of RN = 500 m with ρ = 1000 kg m-3, at least half of its mass was vaporized when the comet was at about 17 R ⊙ inbound. We conclude that at that time the nucleus suffered a cataclysmic fragmentation releasing a huge amount of material of 2.3 ×1011 kg, equivalent to a sphere of 380 m in radius with density 1000 kg m-3. The surviving material after perihelion passage consists of very small dust particles of 0.1-50 μm in radius with a total mass of just 6.7×108 kg.
MEST-Tyche will take its dark comets to impact our solar system in 20 years
NASA Astrophysics Data System (ADS)
Cao, Dayong
2012-03-01
Tyche has many dark comets like Oort cloud. It went near our solar system every 25-27 million years. It could take its dark comets to impact our earth. Tyche and its dark comet absorb light like a dark light which is a negative black-body radiation. (1) Eddν=-c1dνd^3dνe^c2dνd/Td-1. Among it, Ed: the dark energy, νd: the dark frequence, Td: the dark temperature, c1d,c2d: the constant. So when they go near us, their wave has a against Doppler redshift as 0.000165. And they will inbreak solar system at the rate of 99AU/y, from the distance of 1,500AU and in 20 years. It can cause the broken ozonosphere, the lithosphere to crack, many big activity volcanic and the continental drift. And it can darked the light and colded the climate to the Great Ice Age. Not only it will break our environment by a special ``nuclear explosion'' under low temperature, but also the dark life will change the Genetic code of our life. So it will kill many lives and will produce new life. So it could trigger the Mass Extinction. We can bulid up a new pair of nuclear reactor (include dark nuclear energy) to drive a universal craft and can change the orbit of our earth for evading the impaction. We need a new life-information technology to develop our life and consciousness.
The terminal Velocity of the Deep Impact dust Ejecta
NASA Astrophysics Data System (ADS)
Rengel, M.; Küppers, M.; Keller, H. U.; Gutierrez, P.; Hviid, S. F.
2009-05-01
The collision of the projectile released from NASA Deep Impact spacecraft on the nucleus of comet 9P/Tempel 1 generated a hot plume. Afterwards ejecta were created, and material moved slowly in a form of a dust cloud, which dissipated during several days after the impact. Here we report a study about the distribution of terminal velocities of the particles ejected by the impact. This is performed by the development and application of an ill-conditioned inverse problem approach. We model the light-curves as seen by the Narrow Angle Camera (NAC) of OSIRIS onboard the ESA spacecraft Rosetta, and we compare them with the OSIRIS observations. Terminal velocities are derived using a maximum likelihood estimator. The dust velocity distribution is well constrained, and peaks at around 220 m s^{-1}, which is in good agreement with published estimates of the expansion velocities of the dust cloud. Measured and modeled velocity of the dust cloud suggests that the impact ejecta were quickly accelerated by the gas in the cometary coma. This analysis provides a more thorough understanding of the properties (velocity and mass of dust) of the Deep Impact dust cloud.
Search for molecular absorptions with the Fourier Transform Spectrometer
NASA Technical Reports Server (NTRS)
Knacke, Roger F.
1995-01-01
The objective of this research was a search for water molecules in the gas phase in molecular clouds. Water should be among the most abundant gases in the clouds and is of fundamental importance in gas chemistry, cloud cooling, shock wave chemistry, and gas-grain interactions of interstellar dust. Detection of water in Comet Halley in the 2.7 micron v(3) band in 1986 had shown that airborne H2O observations are feasible (ground-based observations of H2O are impossible because of the massive water content of the atmosphere). We planned to observe the v(3) band in interstellar clouds where a number of lines of this band should be in absorption. The search for H2O commenced in 1988 with a two flight program on the KAO. this resulted in a detection of interstellar H2O with S/N of 2-4 in the v(3) 1(01)-2(02) line at 3801.42/cm. A subsequent flight series of two flights in 1989 resulted in confirmation to the 3801.42/cm line detection and the detection of altogether four strong lines in the 000-001 v(3) vibration-rotation band of H2O.
iWander: Dynamics of interstellar wanderers
NASA Astrophysics Data System (ADS)
Zuluaga, Jorge I.; Sanchez-Hernandez, Oscar; Sucerquia, Mario; Ferrin, Ignacio
2018-01-01
iWander assesses the origin of interstellar small bodies such as asteroids and comets. It includes a series of databases and tools that can be used in general for studying the dynamics of an interstellar vagabond object (small‑body, interstellar spaceship and even stars).
NASA Astrophysics Data System (ADS)
Tzou, Chia-Yu; altwegg, kathrin; Bieler, Andre; Calmonte, Ursina; Gasc, Sébastien; Le Roy, Léna; Rubin, Martin
2016-10-01
ROSINA is the in situ Rosetta Orbiter Spectrometer for Ion and Neutral Analysis on board of Rosetta, one of the corner stone missions of the European Space Agency (ESA) to land and orbit the Jupiter family comet 67P/Churyumov-Gerasimenko (67P). ROSINA consists of two mass spectrometers and a pressure sensor. The Reflectron Time of Flight Spectrometer (RTOF) and the Double Focusing Mass Spectrometer (DFMS) complement each other in mass and time resolution.The Comet Pressure Sensor (COPS) provides density measurements of the neutral molecules in the cometary coma of 67P. COPS has two gauges, a nude gauge that measures the total neutral density and a ram gauge that measures the dynamic pressure from the comet. Combining the two COPS is also capable of providing gas dynamic information such as gas velocity and gas temperature of the coma.While Rosetta started orbiting around 67P in August 2014, COPS observed diurnal and seasonal variations of the neutral gas density in the coma. Surprisingly, additional to these major density variation patterns, COPS occasionally observed small spikes in the density that are associated with dust. These dust signals can be interpreted as a result of cometary dust releasing volatiles while heated up near COPS. A statistical analysis of dust signals detected by COPS will be presented.
NASA Technical Reports Server (NTRS)
Smyth, William H.
2001-01-01
This project has two overall objectives. One objective is to advance our general understanding of both the comet neutral atmosphere and the cometary plasma in the atmosphere and ion tall. The other objective is to obtain specific key information about comet Hale-Bopp that is generally important for Hale-Bopp studies. The primary emphasis in this project is to analyze, in a self-consistent manner, excellent quality high resolution image and line profile observations obtained by the University of Wisconsin for H, O, OH, and H2O+ emissions from the inner coma, outer coma, and ion tail of Hale-Bopp. The information on the spatial and velocity distributions of H2O neutral and ionized photo-products in the inner coma, outer coma, and in the H2O+ ion tail is of substantial and direct importance in the development of an integrated understanding of the complex structure and dynamics of the neutral and plasma species in the atmosphere of Hale-Bopp in particular and comets in general. The H2O production rate of Hale-Bopp is determined and, together with the other information related to the structure and dynamics of the neutral and plasma atmospheres obtained in this study, provide critical information important for a wide variety of research conducted by other groups.
Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust
NASA Technical Reports Server (NTRS)
Messenger, Scott; Nakamura-Messenger, Keiko
2015-01-01
Interplanetary dust particles (IDPs) collected in the Earth's stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (less than um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission.
Dust ablation on the giant planets: Consequences for stratospheric photochemistry
NASA Astrophysics Data System (ADS)
Moses, Julianne I.; Poppe, Andrew R.
2017-11-01
Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe et al., 2016), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0-0.7+2.2 ×107 O atoms cm-2 s-1 to Jupiter, 7.4-5.1+16 ×104 cm-2 s-1 to Saturn, 8.9-6.1+19 ×104 cm-2 s-1 to Uranus, and 7.5-5.1+16 ×105 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.
Exploring the fission and reconfiguration cycle of comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Scheeres, Daniel J.; Hirabayashi, Masatoshi; Chesley, Steven R.; McMahon, Jay W.
2016-10-01
In Hirabayashi et al. (Nature, 2016) the nucleus of comet 67P/Churyumov-Gerasimenko (67P) is studied with a focus on the straight cracks observed on the Hapi region. These cracks were shown to have formed during a period of fast rotation and led to a proposed evolutionary scenario in which the nuclei may eventually split into two components and recombine to create a new bilobate configuration. Other bilobate nuclei should be subject to such a reconfiguration process, based on the relative sizes of the components, suggesting that this evolutionary scenario may be common for bilobate nuclei which comprise the majority of comet nuclei observed at high spatial resolution. Such reconfigurations could explain the observed occurrence of comet nucleus splitting and brightening events, which still lack a definitive geophysical understanding. Motivated by the proposed theory in Hirabayashi et al., the current work explores the dynamics of the 67P nucleus' rotation rate, fission limits, and subsequent dynamics. One aspect of the theory posits that the comet's distant Jupiter flybys will cause the latitude of the sub-solar point at perihelion to vary chaotically, leading to periods of net positive and negative torques and causing the nucleus to spin-up and spin-down in a random fashion. We analyze the current 67P nucleus shape and orbit to estimate the characteristic time-scale of this rotational evolution, providing an estimate of the current nucleus lifetime in its current configuration. Once the nucleus reaches a spin period shorter than ~7 hours the components will fission into a bound orbit, with the components subsequently reimpacting at speeds less than local escape speed (about 0.4 m/s). The current study extends Hirabayashi et al., explicitly modeling the mutual gravity and orbital dynamics of the head and body, assuming that the head and body rest on each other with the current shape of the 67P nucleus. The results show that when the components are released at a spin period between 6.5 hr and 7 hr, the components will separate and subsequently collide with a low impact speed. The orbital and rotational dynamics of the system components after fission are explored as a function of the initial spin rate at fission.
Rapid evolution of the spin state of comet 41P/Tuttle-Giacobini-Kresak
NASA Astrophysics Data System (ADS)
Bodewits, Dennis; Farnham, Tony; Knight, Matthew M.; Kelley, Michael S.
2017-10-01
Comet nuclei are small, dynamic objects influenced strongly by their individual history, orbit, rotation and inhomogeneity. Mass loss due to sublimation can exert a profound influence on the physical nature of the cometary nucleus, changing the shape, size, and rotation (Jewitt, in Comets II, 2004). The Rosetta mission to comet 67P showed that these effects are all interrelated (Sierks et al., Science 347, 2015).Comet 41P/Tuttle-Giacobini-Kresak passed Earth as close as 0.142 au in April 2017, allowing observations of the inner coma and an assessment of the rotational state of the nucleus. We acquired observations of comet 41P between March and May 2017 using the 4.3-m Discovery Channel Telescope and the UltraViolet-Optical Telescope (UVOT) on board the Earth-orbiting Swift Gamma Ray Burst Mission.Using CN narrowband imaging and aperture photometry we found that the apparent rotation period of comet 41P more than doubled between March and May 2017, increasing from 20 hours to 50 hours. Measurements of the periodicity in late-March by Knight et al. (CBET 4377, 2017) are consistent with this rate of increase. Comet 41P is the ninth comet for which a rotation period change has been observed (c.f. Samarasinha et al., in Comets II, 2004), but both the fractional change and the rate of change of the period far exceed those observed in the other comets. It is presumably the combination of a long rotation period, high surface activity, and a small nucleus that makes 41P highly susceptible to changes in its rotational state.Extrapolating the comet’s rotation period using its current gas production rates and a simple activity model suggests that the nucleus will continue to spin down, possibly leading to an excited spin state in the next few apparitions. Finally, 41P is known for its large outbursts, and our extrapolation suggest that the comet’s rotation period may have been close to the critical period for splitting in 2001, when it exhibited two significant outbursts.
Dynamic access control model for privacy preserving personalized healthcare in cloud environment.
Son, Jiseong; Kim, Jeong-Dong; Na, Hong-Seok; Baik, Doo-Kwon
2015-01-01
When sharing and storing healthcare data in a cloud environment, access control is a central issue for preserving data privacy as a patient's personal health data may be accessed without permission from many stakeholders. Specifically, dynamic authorization for the access of data is required because personal health data is stored in cloud storage via wearable devices. Therefore, we propose a dynamic access control model for preserving the privacy of personal healthcare data in a cloud environment. The proposed model considers context information for dynamic access. According to the proposed model, access control can be dynamically determined by changing the context information; this means that even for a subject with the same role in the cloud, access permission is defined differently depending on the context information and access condition. Furthermore, we experiment the ability of the proposed model to provide correct responses by representing a dynamic access decision with real-life personalized healthcare system scenarios.
NASA Astrophysics Data System (ADS)
Coates, Andrew
2005-10-01
Up until the dark ages, humankind knew of six planets including our own. The invention of the telescope, and the beginnings of scientific thought on orbits and planetary motion, were in the seventeenth century. The next three centuries added Uranus, Neptune and Pluto to the known list as well as the many moons, asteroids and comets that we know today. It is only in the latter part of the 20th century that we have been privileged to carry out in-situ exploration of the planets, comets and the solar wind's realm and to begin to understand the special conditions on Earth which meant that life started here. This is leading to a detailed view of the processes which have shaped our solar system. Here, we briefly review our current knowledge of the solar system we inhabit. We discuss the current picture of how the solar system began. Important processes at work, such as collisions and volcanism, and atmospheric evolution, are discussed. The planets, comets and asteroids are all discussed in general terms, together with the important discoveries from space missions which have led to our current views. For each of the bodies we present the current understanding of the physical properties and interrelationships and present questions for further study. The significance of recent results, such as proof that there were one standing bodies of water on Mars, and the discovery of what appears to be an Oort cloud comet, are put into context. What is in store for planetary exploration and discoveries in the future? Already a sequence of Mars exploration missions, a landing on a comet, further exploration of Saturn and the Jovian system and the first flyby of Pluto are planned. We examine the major scientific questions to be answered. We also discuss the prospects for finding other Earth-like planets elsewhere, and for finding extraterrestrial life both within and beyond our own solar system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paganini, L.; Mumma, M. J.; Villanueva, G. L.
2015-07-20
We observed comet C/2003 K4 (LINEAR) using NIRSPEC at the Keck Observatory on UT 2004 November 28, when the comet was at 1.28 AU from the Sun (post-perihelion) and 1.38 AU from Earth. We detected six gaseous species (H{sub 2}O, OH*, C{sub 2}H{sub 6}, CH{sub 3}OH, CH{sub 4}, and HCN) and obtained upper limits for three others (H{sub 2}CO, C{sub 2}H{sub 2}, and NH{sub 3}). Our results indicate a water production rate of (1.72 ± 0.18) × 10{sup 29} molecules s{sup −1}, in reasonable agreement with production rates from SOHO (on the same day), Odin (one day earlier), and Nançaymore » (about two weeks earlier). We also report abundances (relative to water) for seven trace species: CH{sub 3}OH (∼1.8%), CH{sub 4} (∼0.9%), and C{sub 2}H{sub 6} (∼0.4%) that were consistent with mean values among Oort cloud (OC) comets, while NH{sub 3} (<0.55%), HCN (∼0.07%), H{sub 2}CO (<0.07%), and C{sub 2}H{sub 2} (<0.04%) were “lower” than the mean values in other OC comets. We extracted inner-coma rotational temperatures for four species (H{sub 2}O, C{sub 2}H{sub 6}, CH{sub 3}OH, and CH{sub 4}), all of which are consistent with 70 K (within 1σ). The extracted ortho-para ratio for water was 3.0 ± 0.15, corresponding to spin temperatures larger than 39 K (at the 1σ level) and agreeing with those obtained with the Spitzer Space Telescope at the 2σ level.« less
A preliminary model of the coma of 2060 Chiron
NASA Technical Reports Server (NTRS)
Boice, Daniel C.; Konno, I.; Stern, S. Alan; Huebner, Walter F.
1992-01-01
We have included gravity in our fluid dynamic model with chemical kinetics of dusty comet comae and applied it with two dust sizes to 2060 Chiron. A progress report on the model and preliminary results concerning gas/dust dynamics and chemistry is given.
NASA Astrophysics Data System (ADS)
Ip, W.-H.; Lai, I.-L.; Lee, J.-C.; Cheng, Y.-C.; Li, Y.; Lin, Z.-Y.; Vincent, J.-B.; Besse, S.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Güttler, C.; Hviid, S. F.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lara, L. M.; Lazzarin, M.; López-Moreno, J. J.; Lowry, S.; Marchi, S.; Marzari, F.; Michalik, H.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Thomas, N.; Toth, E.; Tubiana, C.
2016-06-01
Aims: We aim to characterize the circular depressions of comet 67P/Churyumov-Gerasimenko and investigate whether such surface morphology of a comet nucleus is related to the cumulative sublimation effect since becoming a Jupiter family comet (JFC). Methods: The images from the Rosetta/OSIRIS science camera experiment are used to construct size frequency distributions of the circular depression structures on comet 67P and they are compared with those of the JFCs 81P/Wild 2, 9P/Tempel 1, and 103P/Hartley 2. The orbital evolutionary histories of these comets over the past 100 000 yr are analyzed statistically and compared with each other. Results: The global distribution of the circular depressions over the surface of 67P is charted and classified. Descriptions are given to the characteristics and cumulative size frequency distribution of the identified features. Orbital statistics of the JFCs visited by spacecraft are derived. Conclusions: The size frequency distribution of the circular depressions is found to have a similar power law distribution to those of 9P/Tempel 1 and 81P/Wild 2. This might imply that they could have been generated by the same process. Orbital integration calculation shows that the surface erosion histories of 81P/Wild 2, and 9P/Tempel 1 could be shorter than those of 67P, 103 P/Hartley 2 and 19P/Borrelly. From this point of view, the circular depressions could be dated back to the pre-JFC phase or the transneptunian phase of these comets. The north-south asymmetry in the distribution of the circular depressions could be associated with the heterogeneous structure of the nucleus of comet 67P and/or the solar insolation history.
Comets 169P/NEAT and P/2003 T12 (SOHO): Two possible fragments of a common ancestor?
NASA Astrophysics Data System (ADS)
Sosa, Andrea; Fernández, Julio Angel
2015-08-01
In a recent work we analyzed the orbit evolution of Jupiter family comets in near-Earth orbits, and found some comets moving on highly stable orbits, like the near-Earth asteroids (Fernández & Sosa 2015). Two of them actually show almost identical orbits; they are the comets 169P/NEAT and P/2003 T12 (SOHO). Comet 169P seems to be a few km-sized, almost inactive body, while P/2003 T12 would be a very small comet, with a sub-km radius nucleus. We performed extended orbital integrations for the past 100,000 yr to further study their dynamical evolution. We found that the orbital parameters remain stable for several thousand years, with a well defined absolute minimum of their relative spatial distance around 2900 yr in the past, coincident with a low value of the relative velocity. This spatial minimum is in a remarkable good agreement with the results obtained by means of other methods to study common origins between pairs of asteroids (Vokrouhlicky & Nesvorny 2008, Southworth & Hawkins 1963), and to test a comet-meteor shower association (Drummond 1981). Our results support the hypothesis of a breakup of a parent body, that ocurred about 2900 yr ago, as the most probable origin for the studied pair of comets. Possible fragmentation mechanisms, like thermal stress, rotational instability, or colisions, are briefly discussed.References:Drumond J.D. 1981. Icarus 45, 545-553.Fernández J.A., & Sosa A. 2015. Submitted to Planetary & Space Science.Southworth R.B., & Hawkins, G.S. 1963. Smithson. Contrib. Astrophys. 7, 261-285Vokrouhlicky D., & Nesvorny D. 2008. Astron. J. 136, 280-290.
NASA Astrophysics Data System (ADS)
Combi, M. R.; Mäkinen, T. T.; Bertaux, J.-L.; Quémerais, E.; Ferron, S.; Avery, M.; Wright, C.
2018-01-01
Nine recently discovered long-period comets were observed by the Solar Wind Anisotropies (SWAN) Lyman-alpha all-sky camera on board the Solar and Heliosphere Observatory (SOHO) satellite during the period of 2013 to 2016. These were C/2012 K1 (PanSTARRS), C/2013 US10 (Catalina), C/2013 V5 (Oukaimeden), C/2013 R1 (Lovejoy), C/2014 E2 (Jacques), C/2014 Q2 (Lovejoy), C/2015 G2 (MASTER), C/2014 Q1 (PanSTARRS) and C/2013 XI (PanSTARRS). Of these 9 comets 6 were long-period comets and 3 were possibly dynamically new. Water production rates were calculated from each of the 885 images using our standard time-resolved model that accounts for the whole water photodissociation chain, exothermic velocities and collisional escape of H atoms. For most of these comets there were enough observations over a broad enough range of heliocentric distances to calculate power-law fits to the variation of production rate with heliocentric distances for pre- and post-perihelion portions of the orbits. Comet C/2014 Q1 (PanSTARRS), with a perihelion distance of only ∼0.3 AU, showed the most unusual variation of water production rate with heliocentric distance and the resulting active area variation, indicating that when the comet was within 0.7 AU its activity was dominated by the continuous release of icy grains and chunks, greatly increasing the active sublimation area by more than a factor of 10 beyond what it had at larger heliocentric distances. A possible interpretation suggests that a large fraction of the comet's mass was lost during the apparition.
Autonomous Navigation Performance During The Hartley 2 Comet Flyby
NASA Technical Reports Server (NTRS)
Abrahamson, Matthew J; Kennedy, Brian A.; Bhaskaran, Shyam
2012-01-01
On November 4, 2010, the EPOXI spacecraft performed a 700-km flyby of the comet Hartley 2 as follow-on to the successful 2005 Deep Impact prime mission. EPOXI, an extended mission for the Deep Impact Flyby spacecraft, returned a wealth of visual and infrared data from Hartley 2, marking the fifth time that high-resolution images of a cometary nucleus have been captured by a spacecraft. The highest resolution science return, captured at closest approach to the comet nucleus, was enabled by use of an onboard autonomous navigation system called AutoNav. AutoNav estimates the comet-relative spacecraft trajectory using optical measurements from the Medium Resolution Imager (MRI) and provides this relative position information to the Attitude Determination and Control System (ADCS) for maintaining instrument pointing on the comet. For the EPOXI mission, AutoNav was tasked to enable continuous tracking of a smaller, more active Hartley 2, as compared to Tempel 1, through the full encounter while traveling at a higher velocity. To meet the mission goal of capturing the comet in all MRI science images, position knowledge accuracies of +/- 3.5 km (3-?) cross track and +/- 0.3 seconds (3-?) time of flight were required. A flight-code-in-the-loop Monte Carlo simulation assessed AutoNav's statistical performance under the Hartley 2 flyby dynamics and determined optimal configuration. The AutoNav performance at Hartley 2 was successful, capturing the comet in all of the MRI images. The maximum residual between observed and predicted comet locations was 20 MRI pixels, primarily influenced by the center of brightness offset from the center of mass in the observations and attitude knowledge errors. This paper discusses the Monte Carlo-based analysis that led to the final AutoNav configuration and a comparison of the predicted performance with the flyby performance.
The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites
NASA Astrophysics Data System (ADS)
Engrand, Cecile; Duprat, Jean; Bardin, Noemie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Rémusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin; COSIMA Team
2015-08-01
Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. The Rosetta mission currently carries dust analyzers capable of measuring dust flux, sizes, physical properties and compositions of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko (COSIMA, GIADA, MIDAS), as well as gas analyzers (ROSINA, PTOLEMY, COSAC). A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system. We will present the implications of the analyses of samples in the laboratory and in space to a better understanding of the early protoplanetary disk.
D/H Measurements in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Keane, Jacqueline
2007-05-01
It is generally accepted that a considerable fraction of early Earths water was delivered by asteroids, comets, and planetesimals. The local planets and comets were assembled from the material in circumstellar disks, which in turn evolved from the envelopes and clouds surrounding protostars. Here at the University of Hawaii-NASA Astrobiology Institute the key research goal is to connect the major aspects of starformation and planetary water, in effect aiming to understand the terms of a "watery Drake Equation". To achieve this goal, we use the infrared and submillimeter telescopes on Mauna Kea to survey several molecules in a variety of starforming clouds. Observations show that water is the most common interstellar ice component. Moreover, there is evidence for enhanced water ice formation in the inner parts of protostellar envelopes. Simple molecules form on the icy grain mantles from surface reactions or thermal annealing of the ice, in turn these molecules drive a rich gas phase chemistry that produces more complex prebiotic molecules. Ice bands, therefore, serve as unique tracers of the chemical and thermal history of circumstellar environments. Here we will discuss constraints on the reservoirs of water and organic molecules in starforming regions, taking in to account the latest observational and theoretical measurements. Recent observations of a number of deuterated molecules, including water, will be discussed in terms of grain surface chemistry and its role in driving the enhanced fractionation of methanol like species, while at the same time inhibiting the deuteration of water.
Dynamic molecular oxygen production in cometary comae.
Yao, Yunxi; Giapis, Konstantinos P
2017-05-08
Abundant molecular oxygen was discovered in the coma of comet 67P/Churyumov-Gerasimenko. Its origin was ascribed to primordial gaseous O 2 incorporated into the nucleus during the comet's formation. This thesis was put forward after discounting several O 2 production mechanisms in comets, including photolysis and radiolysis of water, solar wind-surface interactions and gas-phase collisions. Here we report an original Eley-Rideal reaction mechanism, which permits direct O 2 formation in single collisions of energetic water ions with oxidized cometary surface analogues. The reaction proceeds by H 2 O + abstracting a surface O-atom, then forming an excited precursor state, which dissociates to produce O 2 - . Subsequent photo-detachment leads to molecular O 2 , whose presence in the coma may thus be linked directly to water molecules and their interaction with the solar wind. This abiotic O 2 production mechanism is consistent with reported trends in the 67P coma and raises awareness of the role of energetic negative ions in comets.
NASA Technical Reports Server (NTRS)
Bockelee-Morvan, D.; Crovisier, J.; Baudry, A.; Despois, D.; Perault, M.; Irvine, W. M.; Schloerb, F. P.; Swade, D.
1984-01-01
The HCN emission of the pure rotation and rotation/vibration lines in comet IRAS-Araki-Alcock 1983d is examined. The prevailing excitation mechanism for the emissions was the excitation of the nu-2, 2 nu-2, and nu-3 vibrational bands by the solar infrared field. For the description of inner coma, a dynamical excitation model is presented which includes collisions. It is predicted on the basis of the model that HCN molecules in rotation and rotation vibration lines of IRAS-Araki-Alcock 1983d would be detectable with a large-millimeter wave telescope, and that the strongest infrared lines would be observable from space observatories. Subsequent searches for the J = 1-0 HCN radio lines in comet 1983d with the Five College Radio Astronomy Observatory (FCRAO) proved unsuccessful. An extremely low upper limit was found for HCN production which suggests that HCN might not be the only parent of planetary cometary CN.
Dynamic molecular oxygen production in cometary comae
NASA Astrophysics Data System (ADS)
Yao, Yunxi; Giapis, Konstantinos P.
2017-05-01
Abundant molecular oxygen was discovered in the coma of comet 67P/Churyumov-Gerasimenko. Its origin was ascribed to primordial gaseous O2 incorporated into the nucleus during the comet's formation. This thesis was put forward after discounting several O2 production mechanisms in comets, including photolysis and radiolysis of water, solar wind-surface interactions and gas-phase collisions. Here we report an original Eley-Rideal reaction mechanism, which permits direct O2 formation in single collisions of energetic water ions with oxidized cometary surface analogues. The reaction proceeds by H2O+ abstracting a surface O-atom, then forming an excited precursor state, which dissociates to produce O2-. Subsequent photo-detachment leads to molecular O2, whose presence in the coma may thus be linked directly to water molecules and their interaction with the solar wind. This abiotic O2 production mechanism is consistent with reported trends in the 67P coma and raises awareness of the role of energetic negative ions in comets.
2003-12-13
Mie Crater, a large basin formed by asteroid or comet impact in Utopia Planitia, lies at the center of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) red wide angle image. The crater is approximately 104 km (65 mi) across. To the east and southeast (toward the lower right) of Mie, in this 5 December 2003 view, are clouds of dust and water ice kicked up by local dust storm activity. It is mid-winter in the northern hemisphere of Mars, a time when passing storms are common on the northern plains of the red planet. Sunlight illuminates this image from the lower left; Mie Crater is located at 48.5°N, 220.3°W. Viking 2 landed west/southwest of Mie Crater, off the left edge of this image, in September 1976. http://photojournal.jpl.nasa.gov/catalog/PIA04930
NASA Technical Reports Server (NTRS)
Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.
2015-01-01
Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.
Capture of Small Bodies After Tidal Disruption
NASA Astrophysics Data System (ADS)
Ershova, A.; Medvedev, Yu.
2017-09-01
The subject of the current work is the phisical and dynamical evolution of the small comets group formed by tidal disruption of the protocomet while passing near the large body (Sun, Jupiter). The equations of motion were integrated numericaly. In case of the Sun the evolution of the sun-grazing orbits were discussed and the typical lifetime of such comets was estimated. Nongravitational acceleration and the size reduction of fragments due to sublimation were taking into account using the Marsden formula.
Dynamically correlated minor bodies in the outer Solar system
NASA Astrophysics Data System (ADS)
de la Fuente Marcos, C.; de la Fuente Marcos, R.
2018-02-01
The organization of the orbits of most minor bodies in the Solar system seems to follow random patterns, the result of billions of years of chaotic dynamical evolution. Much as heterogeneous orbital behaviour is ubiquitous, dynamically coherent pairs and groups of objects are also present everywhere. Although first studied among the populations of asteroids and comets that inhabit or traverse the inner Solar system, where they are very numerous, at least one asteroid family has been confirmed to exist in the outer Solar system and two other candidates have been proposed in the literature. Here, we perform a systematic search for statistically significant pairs and groups of dynamically correlated objects through those with semimajor axis greater than 25 au, applying a novel technique that uses the angular separations of orbital poles and perihelia together with the differences in time of perihelion passage to single out pairs of relevant objects. Our analysis recovers well-known, dynamically coherent pairs and groups of comets and trans-Neptunian objects and uncovers a number of new ones, prime candidates for further spectroscopic study.
Indian Summer Monsoon Drought 2009: Role of Aerosol and Cloud Microphysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, Anupam; Taraphdar, Sourav; Halder, Madhuparna
2013-07-01
Cloud dynamics played a fundamental role in defining Indian summer monsoon (ISM) rainfall during drought in 2009. The anomalously negative precipitation was consistent with cloud properties. Although, aerosols inhibited the growth of cloud effective radius in the background of sparse water vapor, their role is secondary. The primary role, however, is played by the interactive feedback between cloud microphysics and dynamics owing to reduced efficient cloud droplet growth, lesser latent heating release and shortage of water content. Cloud microphysical processes were instrumental for the occurrence of ISM drought 2009.
NASA Technical Reports Server (NTRS)
Brownlee, D. E.; Joswiak, D. J.; Bradley, J. P.; Matrajt, G.; Wooden, D. H.
2005-01-01
The comparison of interstellar, circumstellar and primitive solar nebula silicates has led to a significant conundrum in the understanding of the nature of solid materials that begin the planet forming processes. Crystalline silicates are found in circumstellar regions around young stars and also evolved stars ejecting particles into the interstellar medium (ISM) but they are not seen in the interstellar medium itself, the source material for star and planet formation. Crystalline silicates are minor to major components of all known early solar system materials that have been examined as meteorites or interplanetary dust samples. The strong presence of Mg-rich crystalline silicates in Oort cloud comets and their minor presence in some Kuiper belt comets is also indicated by 11.2 m peak in approx. 10 microns "silicate" infrared feature. This evidence strongly indicates that Mg-rich crystalline silicates were abundant components of the solar nebula disk out to at least 10 AU, and present out to 30 AU.
Holmlid, Leif
2009-01-01
Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.
NASA Astrophysics Data System (ADS)
Holmlid, Leif
2009-08-01
Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.
Impact of cloud timing on surface temperature and related hydroclimatic dynamics
NASA Astrophysics Data System (ADS)
Porporato, A. M.; Yin, J.
2015-12-01
Cloud feedbacks have long been identified as one of the largest source of uncertainty in climate change predictions. Differences in the spatial distribution of clouds and the related impact on surface temperature and climate dynamics have been recently emphasized in quasi-equilibrium General Circulation Models (GCM). However, much less attention has been paid to the temporal variation of cloud presence and thickness. Clouds in fact shade the solar radiation during the daytime, but also acts as greenhouse gas to reduce the emission of longwave radiation to the outer space anytime of the day. Thus it is logical to expect that even small differences in timing and thickness of clouds could result in very different predictions in GCMs. In this study, these two effects of cloud dynamics are analyzed by tracking the cloud impacts on longwave and shortwave radiation in a minimalist transient thermal balance model of the land surface. The marked changes in surface temperature due to alterations in the timing of onset of clouds demonstrate that capturing temporal variation of cloud at sub-daily scale should be a priority in cloud parameterization schemes in GCMs.
Cloud and ice in the planetary scale circulation and in climate
NASA Technical Reports Server (NTRS)
Herman, G. F.; Houghton, D. D.; Kutzbach, J. E.; Suomi, V. E.
1984-01-01
The roles of the cryosphere, and of cloud-radiative interactions are investigated. The effects clouds and ice have in the climate system are examined. The cloud radiation research attempts explain the modes of interaction (feedback) between raditive transfer, cloud formation, and atmospheric dynamics. The role of sea ice in weather and climate is also discussed. Models are used to describe the ice and atmospheric dynamics under study.
To Which Extent can Aerosols Affect Alpine Mixed-Phase Clouds?
NASA Astrophysics Data System (ADS)
Henneberg, O.; Lohmann, U.
2017-12-01
Aerosol-cloud interactions constitute a high uncertainty in regional climate and changing weather patterns. Such uncertainties are due to the multiple processes that can be triggered by aerosol especially in mixed-phase clouds. Mixed-phase clouds most likely result in precipitation due to the formation of ice crystals, which can grow to precipitation size. Ice nucleating particles (INPs) determine how fast these clouds glaciate and form precipitation. The potential for INP to transfer supercooled liquid clouds to precipitating clouds depends on the available humidity and supercooled liquid. Those conditions are determined by dynamics. Moderately high updraft velocities result in persistent mixed-phase clouds in the Swiss Alps [1], which provide an ideal testbed to investigate the effect of aerosol on precipitation in mixed-phase clouds. To address the effect of aerosols in orographic winter clouds under different dynamic conditions, we run a number of real case ensembles with the regional climate model COSMO on a horizontal resolution of 1.1 km. Simulations with different INP concentrations within the range observed at the GAW research station Jungfraujoch in the Swiss Alps are conducted and repeated within the ensemble. Microphysical processes are described with a two-moment scheme. Enhanced INP concentrations enhance the precipitation rate of a single precipitation event up to 20%. Other precipitation events of similar strength are less affected by the INP concentration. The effect of CCNs is negligible for precipitation from orographic winter clouds in our case study. There is evidence for INP to change precipitation rate and location more effectively in stronger dynamic regimes due to the enhanced potential to transfer supercooled liquid to ice. The classification of the ensemble members according to their dynamics will quantify the interaction of aerosol effects and dynamics. Reference [1] Lohmann et al, 2016: Persistence of orographic mixed-phase clouds, GRL
Implications of the Small Spin Changes Measured for Large Jupiter-Family Comet Nuclei
NASA Astrophysics Data System (ADS)
Kokotanekova, R.; Snodgrass, C.; Lacerda, P.; Green, S. F.; Nikolov, P.; Bonev, T.
2018-06-01
Rotational spin-up due to outgassing of comet nuclei has been identified as a possible mechanism for considerable mass-loss and splitting. We report a search for spin changes for three large Jupiter-family comets (JFCs): 14P/Wolf, 143P/Kowal-Mrkos, and 162P/Siding Spring. None of the three comets has detectable period changes, and we set conservative upper limits of 4.2 (14P), 6.6 (143P) and 25 (162P) minutes per orbit. Comparing these results with all eight other JFCs with measured rotational changes, we deduce that none of the observed large JFCs experiences significant spin changes. This suggests that large comet nuclei are less likely to undergo rotationally-driven splitting, and therefore more likely to survive more perihelion passages than smaller nuclei. We find supporting evidence for this hypothesis in the cumulative size distributions of JFCs and dormant comets, as well as in recent numerical studies of cometary orbital dynamics. We added 143P to the sample of 13 other JFCs with known albedos and phase-function slopes. This sample shows a possible correlation of increasing phase-function slopes for larger geometric albedos. Partly based on findings from recent space missions to JFCs, we hypothesise that this correlation corresponds to an evolutionary trend for JFCs. We propose that newly activated JFCs have larger albedos and steeper phase functions, which gradually decrease due to sublimation-driven erosion. If confirmed, this could be used to analyse surface erosion from ground and to distinguish between dormant comets and asteroids.
From Interstellar PAHs and Ices to the Origin of Life
NASA Technical Reports Server (NTRS)
Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In dense molecular clouds, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier interstellar chemistry standards, is widespread throughout the Universe. The first part of this lecture will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, concentrations, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the solar nebula during the star and planet formation stage, the materials frozen into interstellar/precometary ices are photoprocessed by ultraviolet light, producing more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the early Earth. As these materials are thought to be the building blocks of comets and related to the carbonaceous components of micrometeorites, they are likely to have been important sources of complex organic materials on the early Earth and their composition may be related to the origin of life.
Trajectories of charged dust grains in the cometary environment
NASA Astrophysics Data System (ADS)
Horanyi, M.; Mendis, D. A.
1985-07-01
Using a simple model of the particles and fields environment of a comet, the trajectories of the smallest (micron- and submicron-sized) dust grains that are expected to be released from a cometary nucleus are calculated. It is shown that electromagnetic forces play a crucial role in the dynamics of these particles. The present calculations indicate not only the asymmetry of the sunward dust envelopes that have been suggested earlier by other authors, but they also indicate the possible existence of wavy dust features far down the tail, reminiscent of the peculiar wavy dust feature observed in the dust tail of Comet Ikeya-Seki 1965f. The importance of these findings in studying the lower end of the cometary dust mass spectrum during the forthcoming fly-by missions to Comet Halley is underscored.
Proof of Concept for a Simple Smartphone Sky Monitor
NASA Astrophysics Data System (ADS)
Kantamneni, Abhilash; Nemiroff, R. J.; Brisbois, C.
2013-01-01
We present a novel approach of obtaining a cloud and bright sky monitor by using a standard smartphone with a downloadable app. The addition of an inexpensive fisheye lens can extend the angular range to the entire sky visible above the device. A preliminary proof of concept image shows an optical limit of about visual magnitude 5 for a 70-second exposure. Support science objectives include cloud monitoring in a manner similar to the more expensive cloud monitors in use at most major astronomical observatories, making expensive observing time at these observatories more efficient. Primary science objectives include bright meteor tracking, bright comet tracking, and monitoring the variability of bright stars. Citizen science objectives include crowd sourcing of many networked sky monitoring smartphones typically in broader support of many of the primary science goals. The deployment of a citizen smartphone array in an active science mode could leverage the sky monitoring data infrastructure to track other non-visual science opportunities, including monitoring the Earth's magnetic field for the effects of solar flares and exhaustive surface coverage for strong seismic events.
Physical properties of asteroids in comet-like orbits in the infrared asteroidal survey catalogs
NASA Astrophysics Data System (ADS)
Kim, Y.; Ishiguro, M.; Usui, F.
2014-07-01
Dormant comet and Infrared Asteroidal Survey Catalogs. Comet nucleus is a solid body consisting of dark refractory material and ice. Cometary volatiles sublimate from subsurface layer by solar heating, leaving behind large dust grains on the surface. Eventually, the appearance could turn into asteroidal rather than cometary. It is, therefore, expected that there would be ''dormant comets'' in the list of known asteroids. Over past decade, several ground-based studies have been performed to dig out such dormant comets. One common approach is applying a combination of optical and dynamical properties learned from active comet nucleus to the list of known asteroids. Typical comet nucleus has (i) Tisserand parameter with respect to Jupiter, T_{J}<3, (ii) low geometric albedo, p_{v}<0.1 and (iii) reddish or neutral spectra, similar to P, D, C-type asteroids. Following past ground-based surveys, infrared space missions gave us an opportunity to work on further study of dormant comets. To the present, three infrared asteroidal catalogs taken with IRAS[1], AKARI[2] and WISE[3] are available, providing information of sizes and albedos which are useful to study the physical properties of dormant comets as well as asteroids. Usui et al. (2014) merged three infrared asteroidal catalogs with valid sizes and albedos into single catalog, what they called I-A-W[4]. We applied a huge dataset of asteroids in I-A-W to investigate the physical properties of asteroids in comet-like orbits (ACOs, whose orbits satisfy Q>4.5 au and T_{J}<3). Here we present a study of ACOs in infrared asteroidal catalogs taken with AKARI, IRAS and WISE. In this presentation, we aim to introduce albedo and size properties of ACOs in infrared asteroidal survey catalogs, in combination with orbital and spectral properties from literature. Results and Implications. We summarize our finding and implication as followings: - are 123 ACOs (Q>4.5 au and T_J<3) in I-A-W catalog after rejection of objects with large orbital uncertainties. - Majority (˜80 %) of ACOs have low albedo (p_{v}<0.1), showing similar albedo distribution to active comet nuclei. - Low-albedo ACOs have the cumulative size distribution shallower than that of active comet nuclei. - High-albedo (p_{v}≥0.1) ACOs consist of small (D<3 km) bodies are concentrated in near-Earth space. - We suggest that such high-albedo, small near-Earth asteroids are susceptible to Yarkovsky effect and injected into comet-like orbits.
A Secure and Efficient Audit Mechanism for Dynamic Shared Data in Cloud Storage
2014-01-01
With popularization of cloud services, multiple users easily share and update their data through cloud storage. For data integrity and consistency in the cloud storage, the audit mechanisms were proposed. However, existing approaches have some security vulnerabilities and require a lot of computational overheads. This paper proposes a secure and efficient audit mechanism for dynamic shared data in cloud storage. The proposed scheme prevents a malicious cloud service provider from deceiving an auditor. Moreover, it devises a new index table management method and reduces the auditing cost by employing less complex operations. We prove the resistance against some attacks and show less computation cost and shorter time for auditing when compared with conventional approaches. The results present that the proposed scheme is secure and efficient for cloud storage services managing dynamic shared data. PMID:24959630
A secure and efficient audit mechanism for dynamic shared data in cloud storage.
Kwon, Ohmin; Koo, Dongyoung; Shin, Yongjoo; Yoon, Hyunsoo
2014-01-01
With popularization of cloud services, multiple users easily share and update their data through cloud storage. For data integrity and consistency in the cloud storage, the audit mechanisms were proposed. However, existing approaches have some security vulnerabilities and require a lot of computational overheads. This paper proposes a secure and efficient audit mechanism for dynamic shared data in cloud storage. The proposed scheme prevents a malicious cloud service provider from deceiving an auditor. Moreover, it devises a new index table management method and reduces the auditing cost by employing less complex operations. We prove the resistance against some attacks and show less computation cost and shorter time for auditing when compared with conventional approaches. The results present that the proposed scheme is secure and efficient for cloud storage services managing dynamic shared data.
CHANDRA OBSERVATIONS OF COMETS C/2012 S1 (ISON) AND C/2011 L4 (PanSTARRS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snios, Bradford; Kharchenko, Vasili; Lisse, Carey M.
2016-02-20
We present our results on the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer (ACIS) observations of the bright Oort Cloud comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS). ISON was observed between 2013 October 31–November 06 during variable speed solar wind (SW), and PanSTARRS was observed between 2013 April 17–23 during fast SW. ISON produced an extended parabolic X-ray morphology consistent with a collisionally thick coma, while PanSTARRS demonstrated only a diffuse X-ray-emitting region. We consider these emissions to be from charge exchange (CX) and model each comet's emission spectrum from first principles accordingly. Our model agrees with the observationalmore » spectra and also generates composition ratios for heavy, highly charged SW ions interacting with the cometary atmosphere. We compare our derived SW ion compositions to observational data and find a strong agreement between them. These results further demonstrate the utility of CX emissions as a remote diagnostics tool of both astrophysical plasma interaction and SW composition. In addition, we observe potential soft X-ray emissions via ACIS around 0.2 keV from both comets that are correlated in intensity to the hard X-ray emissions between 0.4–1.0 keV. We fit our CX model to these emissions, but our lack of a unique solution at low energies makes it impossible to conclude if they are cometary CX in origin. Finally, we discuss probable emission mechanism sources for the soft X-rays and explore new opportunities these findings present in understanding cometary emission processes via Chandra.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, F.; Pozuelos, F.; Aceituno, F.
2014-08-20
A Monte Carlo dust tail model has been applied to extract the dust environment parameters of the comet C/2012 S1 (ISON) from both Earth-based and SOHO LASCO C3 observations, performed from about six astronomical units (AU) inbound, to just after perihelion passage, when only a small portion of the original comet nucleus has survived in the form of a cloud of tiny particles. The early Afρ and image data are consistent with particle ejection from an extended active area located at latitudes 35°N to 90°N (for a prograde rotating nucleus), with the spin axis having a large obliquity (I ∼more » 70°). This configuration nicely fits the early images and Afρ data until 3.9 AU inbound, when the emission should become isotropic in order to fit the data. The analysis of LASCO images reveals that, assuming an original nucleus of R{sub N} = 500 m with ρ = 1000 kg m{sup –3}, at least half of its mass was vaporized when the comet was at about 17 R {sub ☉} inbound. We conclude that at that time the nucleus suffered a cataclysmic fragmentation releasing a huge amount of material of 2.3 ×10{sup 11} kg, equivalent to a sphere of 380 m in radius with density 1000 kg m{sup –3}. The surviving material after perihelion passage consists of very small dust particles of 0.1-50 μm in radius with a total mass of just 6.7×10{sup 8} kg.« less
Small is different: RPC observations of a small scale comet interacting with the solar wind
NASA Astrophysics Data System (ADS)
Nilsson, Hans; Burch, James L.; Carr, Christopher M.; Eriksson, Anders I.; Glassmeier, Karl-Heinz; Henri, Pierre; Rosetta Plasma Consortium Team
2016-10-01
Rosetta followed comet 67P from low activity at more than 3 AU heliocentric distance to peak activity at perihelion and then out again. We study the evolution of the dynamic plasma environment using data from the Rosetta Plasma Consortium (RPC). Observations of cometary plasma began in August 2014, at a distance of 100 km from the comet nucleus and at 3.6 AU from the Sun. As the comet approached the Sun, outgassing from the comet increased, as did the density of the cometary plasma. Measurements showed a highly heterogeneous cold ion environment, permeated by the solar wind. The solar wind was deflected due to the mass loading from newly added cometary plasma, with no discernible slowing down. The magnetic field magnitude increased significantly above the background level, and strong low frequency waves were observed in the magnetic field, a.k.a. the "singing comet". Electron temperatures were high, leading to a frequently strongly negative spacecraft potential. In mid to late April 2015 the solar wind started to disappear from the observation region. This was associated with a solar wind deflection reaching nearly 180°, indicating that mass loading became efficient enough to form a solar wind-free region. Accelerated water ions, moving mainly in the anti-sunward direction, kept being observed also after the solar wind disappearance. Plasma boundaries began to form and a collisionopause was tentatively identified in the ion and electron data. At the time around perihelion, a diamagnetic cavity was also observed, at a surprisingly large distance from the comet. In late 2016 the solar wind re-appeared at the location of Rosetta, allowing for studies of asymmetry of the comet ion environment with respect to perihelion. A nightside excursion allowed us to get a glimpse of the electrodynamics of the innermost part of the plasma tail. Most of these phenomena are dependent on the small-scale physics of comet 67P, since for most of the Rosetta mission the solar wind - comet atmosphere interaction region is smaller than the pickup ion gyroradius in the undisturbed solar wind.
Are Comets 42P/Neujmin 3 and 53P/Van Biesbroeck Parts of one Comet?
NASA Astrophysics Data System (ADS)
Pittichova, J.; Meech, K. J.; Valsecchi, G. B.; Pittich, E. M.
2003-05-01
We want to present preliminary results of the observations of the physical parameters of comets 42P/Neujmin 3 and 53P/Van Biesbroeck: brightness, nucleus activity, rotation period, light-curve and color changes from our first three optical observing runs (March, and May 2003) at Mauna Kea, using UH 2.2m telescope and Tek2048 CCD camera. Comets 42P/Neujmin 3 and 53P/Van Biesbroeck have very well determined orbits, and their orbital histories are very interesting. Their current orbits are not very similar to each other; however, numerical integrations have shown that both comets had a rather close approach to Jupiter in January 1850, and that, before 1850, the two orbits were nearly identical. Given the extremely low probability of a chance coincidence of the six orbital elements at a given time, the natural conclusion is that the two objects are fragments of a single comet that split sometime in the late 1849 or early 1850. Among the known cases of split periodic comets, this one is peculiar for a number of reasons: 1. the splitting was probably not due to tidal stresses, since the 1850 encounter with Jupiter took place well outside the Roche lobe; 2. it is the only case discovered through a dynamical study; 3. in the only other case of splitting of a Jupiter family comet, that of 3D/Biela, the fragments did not survive for more than a couple of revolutions, whereas in the present case both fragments have passed perihelion more than ten times since the splitting. If these two comets are fragments of a single parent body, then they should show a certain degree of physical and chemical similarity, which we would like to obtain from spectroscopic observation in 2004, when both comets are close to their perihelion. Acknowledgments: Support for this work was provided by NASA Grant No. NAG5-12236 and Scientific Grant Agency VEGA of the Slovak Academy of Sciences, grant No. 2/1005/21.
New catalogue of single-apparition comets discovered in the years 1901-1950. Part I
NASA Astrophysics Data System (ADS)
Królikowska, M.; Sitarski, G.; Pittich, E.; Szutowicz, S.; Ziołkowski, K.; Rickman, H.; Gabryszewski, R.; Rickman, B.
2014-07-01
A new catalogue of cometary orbits derived using a completely homogeneous method of data treatment, accurate methods of numerical integration, and modern model of the Solar System is presented. We constructed a sample of near-parabolic comets from the first half of the twentieth century with original reciprocals of semimajor axes less than 0.000130 au^{-1} in the Marsden and Williams Catalogue of Cometary Orbits (2008, hereafter MW08), i.e., comets of original semimajor axes larger than 7700 au. We found 38 such comets in MW08, where 32 have first-quality orbits (class 1A or 1B) and the remaining 6 have second-quality orbits (2A or 2B). We presented satisfactory non-gravitational (hereafter NG) models for thirteen of the investigated comets. The four main features, distinguishing this catalogue of orbits of single- apparition comets discovered in the early twentieth century from other catalogues of orbits of similarly old objects, are the following. 1. Old cometary positional observations require a very careful analysis. For the purpose of this new catalogue, great emphasis has been placed in collecting sets of observations as complete as possible for the investigated comets. Moreover, for many observations, comet-minus-star-type measurements were also available. This type of data was particularly valuable as the most original measurements of comet positions and has allowed us to recalculate new positions of comets using the PPM star catalogue. 2. Old cometary observations were prepared by observers usually as apparent positions in Right Ascension and Declination or as reduced positions for the epoch of the beginning of the year of a given observation. This was a huge advantage of these data, because this allows us to uniformly take into account all necessary corrections associated with the data reduction to the standard epoch. 3. The osculating orbits of single-apparition comets discovered more than sixty years ago have been formerly determined with very different numerical methods and assumptions on the model of the Solar System, including the number of planets taken into account. This new catalogue changes this situation. We offer a new catalogue of cometary orbits derived using completely homogeneous methods of data treatment, accurate methods of numerical integration, and a modern model of the Solar System. 4. The osculating, original, and future sets of orbits are presented for each catalogue comet. In the case of a comet with detectable NG effects, we give both types of orbit: purely gravitational and non- gravitational. We concluded, however, that all thirteen NG orbital solutions given in the catalogue better represent the actual motions of the investigated comets. Surprisingly, the NG effects were detectable in data for five comets of second-quality-class orbits. Among these five are three comets with hyperbolic original, barycentric GR orbits. This publication will be accompanied by an online catalogue available at ssdp.cbk.waw.pl/LPCs, providing entries to orbital elements of considered comets as well as to full swarms of original and future virtual comets that formed the basis for the further analysis of dynamical evolution.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-05-01
On 28 November 2013, comet C/2012 S1 better known as comet ISON should have passed within two solar radii of the Suns surface as it reached perihelion in its orbit. But instead of shining in extreme ultraviolet (EUV) wavelengths as it grazed the solar surface, the comet was never detected by EUV instruments. What happened to comet ISON?Missing EmissionWhen a sungrazing comet passes through the solar corona, it leaves behind a trail of molecules evaporated from its surface. Some of these molecules emit EUV light, which can be detected by instruments on telescopes like the space-based Solar Dynamics Observatory (SDO).Comet ISON, a comet that arrived from deep space and was predicted to graze the Suns corona in November 2013, was expected to cause EUV emission during its close passage. But analysis of the data from multiple telescopes that tracked ISON in EUV including SDO reveals no sign of it at perihelion.In a recent study, Paul Bryans and DeanPesnell, scientists from NCARs High Altitude Observatory and NASA Goddard Space Flight Center, try to determine why ISON didnt display this expected emission.Comparing ISON and LovejoyIn December 2011, another comet dipped into the Suns corona: comet Lovejoy. This image, showingthe orbit Lovejoy took around the Sun, is a composite of SDO images of the pre- and post-perihelion phases of the orbit. Click for a closer look! The dashed part of the curve represents where Lovejoy passed out of view behind the Sun. [Bryans Pesnell 2016]This is not the first time weve watched a sungrazing comet with EUV-detecting telescopes: Comet Lovejoy passed similarly close to the Sun in December 2011. But when Lovejoy grazed the solar corona, it emitted brightly in EUV. So why didnt ISON? Bryans and Pesnell argue that there are two possibilities:the coronal conditions experienced by the two comets were not similar, orthe two comets themselves were not similar.To establish which factor is the most relevant, the authors first demonstrate that both comets experienced very similar radiation fields as they passed perihelion. They also show that the properties of the Suns corona experienced by each comet like its density and magnetic field topology were roughly the same.Bryans and Pesnell argue that, as both comets appear to have encountered similar solar conditions, the most likely explanation for ISONs lack of detectable EUV emission is that it didnt deposit as much material in its orbit as Lovejoy did. They show that this would happen if ISONs nucleus were four times smaller in radius than Lovejoys, spanning a mere 5070 meters in comparison to Lovejoys 200300 meters.This conclusion is consistent with white-light observations of ISON that suggest that, though it might have started out significantly larger than Lovejoy, ISON underwent dramatic mass loss as it approached the Sun. By the time it arrived at perihelion, it was likely no longer large enough to create a strong EUV signal resulting in the non-detection of this elusive comet with SDO and other telescopes.CitationPaul Bryans and W. Dean Pesnell 2016 ApJ 822 77. doi:10.3847/0004-637X/822/2/77
Dynamic Extension of a Virtualized Cluster by using Cloud Resources
NASA Astrophysics Data System (ADS)
Oberst, Oliver; Hauth, Thomas; Kernert, David; Riedel, Stephan; Quast, Günter
2012-12-01
The specific requirements concerning the software environment within the HEP community constrain the choice of resource providers for the outsourcing of computing infrastructure. The use of virtualization in HPC clusters and in the context of cloud resources is therefore a subject of recent developments in scientific computing. The dynamic virtualization of worker nodes in common batch systems provided by ViBatch serves each user with a dynamically virtualized subset of worker nodes on a local cluster. Now it can be transparently extended by the use of common open source cloud interfaces like OpenNebula or Eucalyptus, launching a subset of the virtual worker nodes within the cloud. This paper demonstrates how a dynamically virtualized computing cluster is combined with cloud resources by attaching remotely started virtual worker nodes to the local batch system.
Scattering by ensembles of small particles experiment, theory and application
NASA Technical Reports Server (NTRS)
Gustafson, B. A. S.
1980-01-01
A hypothetical self consistent picture of evolution of prestellar intertellar dust through a comet phase leads to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of (ALPHA)-meteoroids is also predicted.
Are periodic bombardments real?
NASA Technical Reports Server (NTRS)
Weissman, Paul R.
1990-01-01
Consideration is given to the hypothesis that showers of comets or asteroids strike the earth every 26 m yrs, causing climatic castastrophes and mass extinctions (Raup and Sepkoski, 1984). Possible explanations for the alleged periodicity are discussed, including the possibility that the sun has a small faint companion star and perturbations of the Oort cloud as the solar system passes through the Galactic plane. Also, the possible causes of the extinction at the K-T boundary are examined. The implications of these theories are noted and evidence suggesting that impacts do not have periodicity is presented.
The molecular universe: from astronomy to laboratory astrophysics and back
NASA Astrophysics Data System (ADS)
van Dishoeck, Ewine
2015-08-01
Molecules are found in a wide range of astronomical environments, fromour Solar System to distant starburst galaxies at the highest redshifts. Thanks to the opening up of the infrared and (sub)millimeter wavelength regime, culminating with Herschel and ALMA, more than 180 different species have now been found throughout the various stages of stellar birth and death: diffuse and dense interstellar clouds, protostars and disks, the envelopes of evolved stars and planetary nebulae, and exo-planetary atmospheres. Molecules and solid-state features are now also routinely detected in the interstellar medium of external galaxies, near and far.There are many motivations for studying this molecular universe. From the chemical perspective, interstellar space provides a unique laboratory to study basic molecular processes under very different conditions from those normally found in a laboratory on Earth. For astronomers, molecules are unique probes of the many environments where they are found, providing information on density, temperature, dynamics, ionization fractions and magnetic fields. Molecules also play an important role in the cooling of clouds allowing them to collapse, including the formation of the very first stars and galaxies. Finally, the molecular composition is sensitive to the history of the material, and ultimately provides critical information on our origins.This talk will summarize a number of recent observational highlights and provide examples of cases where the availability of new laboratory data proved crucial in the analysis. This includes basic data such as spectroscopy and collisional rate coefficients, but also an improved understanding of photoprocesses in the gaseous and solid state. Much of the chemistry in star- and planet-forming regions is now thought to be driven by gas-grain chemistry rather than pure gas-phase chemistry, and a few examples of the close link between models and laboratory experiments will be given. In spite of lingering uncertainties, the future of molecular astrophysics is bright and will allow increased understanding of the journey of gas and solids from clouds to comets and planets.
NASA Astrophysics Data System (ADS)
Schmidt, Carl; Johnson, Robert E.; Baumgardner, Jeffrey; Mendillo, Michael
2014-11-01
At a solar distance of 0.44 AU, Oort cloud comet C/2012 S1 (ISON) exhibited an outburst phase that was observed by small telescopes at the McDonald Observatory. In conjunction with narrow-band (14Å) imaging over a wide-field, an image-slicer spectrograph ( 20,000) simultaneously measured the spatial distribution of ISON’s coma over a 1.6 x 2.7 arcminute field made up of 246 individual spectra. More than fifty emission lines from C2, NH2, CO, H2O+ and Na were observed within a single Echelle order spanning 5868Å to 5930Å. Spatial reconstructions of these species reveal that ISON’s coma was quite elongated several thousand km along the axis perpendicular to its motion. The ion tail appeared distinctly broader than the neutral Na tail, providing strong evidence that Na in the coma did not originate by dissociative recombination of a sodium bearing molecular ion. Production rates increased from 1.6 ± 0.3 x 1023 to 5.8 ± 1 x 1023 Na atoms/s within 24 hours, outgassing much less than comparable comets relative to ISON’s water production. The anti-sunward Na tail was imaged >106 km from the nucleus. Its distribution indicates origins both near the nucleus and in the dust tail, with the ratio of these Na sources varying on hourly timescales due to outburst activity.
NASA Astrophysics Data System (ADS)
Faggi, S.; Villanueva, G. L.; Mumma, M. J.; Brucato, J. R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A.
2016-10-01
We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1-2.5 μm region. Spectral lines from eight ro-vibrational bands of H2O were detected, six of them for the first time. We quantified the water production rate [Q(H2O), (3.11 ± 0.14) × 1029 s-1] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H2O. The production rates of ortho-water [Q(H2O)ORTHO, (2.33 ± 0.11) × 1029 s-1] and para-water [Q(H2O)PARA, (0.87 ± 0.21) × 1029 s-1] provide a measure of the ortho-to-para ratio (2.70 ± 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.