Science.gov

Sample records for comet nucleus samples

  1. Comet nucleus sample return mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A comet nucleus sample return mission in terms of its relevant science objectives, candidate mission concepts, key design/technology requirements, and programmatic issues is discussed. The primary objective was to collect a sample of undisturbed comet material from beneath the surface of an active comet and to preserve its chemical and, if possible, its physical integrity and return it to Earth in a minimally altered state. The secondary objectives are to: (1) characterize the comet to a level consistent with a rendezvous mission; (2) monitor the comet dynamics through perihelion and aphelion with a long lived lander; and (3) determine the subsurface properties of the nucleus in an area local to the sampled core. A set of candidate comets is discussed. The hazards which the spacecraft would encounter in the vicinity of the comet are also discussed. The encounter strategy, the sampling hardware, the thermal control of the pristine comet material during the return to Earth, and the flight performance of various spacecraft systems and the cost estimates of such a mission are presented.

  2. Comet nucleus and asteroid sample return missions

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  3. Comet nucleus and asteroid sample return missions

    NASA Astrophysics Data System (ADS)

    1992-06-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  4. Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    Chang, Sherwood (Compiler)

    1997-01-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  5. Triple F - A Comet Nucleus Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  6. Triple F - A Comet Nucleus Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Kueppers, Michael; Keller, H. U.; Kuehrt, E.; A'Hearn, M. F.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M. T.; Colangeli, L.; Davidsson, B.; Ehrenfreund, P.; Knollenberg, J.; Mottola, S.; Weiss, P.; Zolensky, M.; Akim, E.; Basilevsky, A.; Galimov, E.; Gerasimov, M.; Korablev, O.; Charnley, S.; Nittler, L. R.; Sandford, S.; Weissman, P.

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  7. Workshop on Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This volume contains abstracts that were accepted by the Program Committee for presentation at the workshop on the analysis of returned comet nucleus samples held in Milpitas, California, January 16 to 18, 1989. The abstracts deal with the nature of cometary ices, cryogenic handling and sampling equipment, origin and composition of samples, and spectroscopic, thermal and chemical processing methods of cometary nuclei. Laboratory simulation experimental results on dust samples are reported. Some results obtained from Halley's comet are also included. Microanalytic techniques for examining trace elements of cometary particles, synchrotron x ray fluorescence and instrument neutron activation analysis (INAA), are presented.

  8. Analysis of organic compounds in returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.

    1989-01-01

    Techniques for analysis of organic compounds in returned comet nucleus samples are described. Interstellar, chondritic and transitional organic components are discussed. Appropriate sampling procedures will be essential to the success of these analyses. It will be necessary to return samples that represent all the various regimes found in the nucleus, e.g., a complete core, volatile components (deep interior), and crustal components (surface minerals, rocks, processed organics such as macromolecular carbon and polymers). Furthermore, sampling, storage, return, and distribution of samples must be done under conditions that preclude contamination of the samples by terrestrial matter.

  9. Solar Sail Application to Comet Nucleus Sample Return

    NASA Technical Reports Server (NTRS)

    Taylor, Travis S.; Moton, Tryshanda T.; Robinson, Don; Anding, R. Charles; Matloff, Gregory L.; Garbe, Gregory; Montgomery, Edward

    2003-01-01

    Many comets have perihelions at distances within 1.0 Astronomical Unit (AU) from the sun. These comets typically are inclined out of the ecliptic. We propose that a solar sail spacecraft could be used to increase the inclination of the orbit to match that of these 1.0 AU comets. The solar sail spacecraft would match the orbit velocity for a short period of time, which would be long enough for a container to be injected into the comet's nucleus. The container would be extended from a long durable tether so that the solar sail would not be required to enter into the potentially degrading environment of the comet s atmosphere. Once the container has been filled with sample material, the tether is retracted. The solar sail would then lower its inclination and fly back to Earth for the sample return. In this paper, we describe the selection of cometary targets, the mission design, and the solar sailcraft design suitable for sail-comet rendezvous as well as possible rendezvous scenarios.

  10. Electron Spin Resonance (ESR) studies of returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.

    1989-01-01

    The most important objective of the Comet Nucleus Sample Returm Mission is to return samples which could reflect formation conditions and evolutionary processes in the early solar nebula. It is expected that the returned samples will consist of fine-grained silicate materials mixed with ices composed of simple molecules such as H2O, NH3, CH4 as well as organics and/or more complex compounds. Because of the exposure to ionizing radiation from cosmic-ray, gamma-ray, and solar wind protons at low temperature, free radicals are expected to be formed and trapped in the solid ice matrices. The kind of trapped radical species together with their concentration and thermal stability can be used as a dosimeter as well as a geothermometer to determine thermal and radiation histories as well as outgassing and other possible alternation effects since the nucleus material was formed. Since free radicals that are known to contain unpaired electrons are all paramagnetic in nature, they can be readily detected and characterized in their native form by the Electron Spin Resonance (ESR) method. In fact, ESR has been shown to be a non-destructive, highly sensitive tool for the detection and characterization of paramagnetic, ferromagnetic, and radiation damage centers in terrestrial and extraterrestrial geological samples. The potential use of ESR as an effective method in the study of returned comet nucleus samples, in particular, in the analysis of fine-grained solid state icy samples is discussed.

  11. Mechanical and SEM analysis of artificial comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Thiel, K.; Kochan, H.; Roessler, K.; Gruen, E.; Schwehm, G.; Hellmann, H.; Hsiung, P.; Koelzer, G.

    1989-01-01

    Since 1987 experiments dealing with comet nucleus phenomena have been carried out in the DFVLR space simulation chambers. The main objective of these experiments is a better understanding of thermal behavior, surface phenomena and especially the gas dust interaction. As a function of different sample compositions and exposure to solar irradiation (xenon-bulbs) crusts of different hardness and thickness were measured. The measuring device consists of a motor driven pressure foot (5 mm diameter), which is pressed into the sample. The applied compressive force is electronically monitored. The microstructure of the crust and dust residuals is investigated by scanning electron microscopy (SEM) techniques. Stress-depth profiles of an unirradiated and an irradiated model comet are given.

  12. Mineralogy and Petrology of COMET WILD2 Nucleus Samples

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Bland, Phil; Bradley, John; Brearley, Adrian; Brennan, Sean; Bridges, John; Brownlee, Donald; Butterworth, Anna; Dai, Zurong; Ebel, Denton

    2006-01-01

    The sample return capsule of the Stardust spacecraft will be recovered in northern Utah on January 15, 2006, and under nominal conditions it will be delivered to the new Stardust Curation Laboratory at the Johnson Space Center two days later. Within the first week we plan to begin the harvesting of aerogel cells, and the comet nucleus samples they contain for detailed analysis. By the time of the LPSC meeting we will have been analyzing selected removed grains for more than one month. This presentation will present the first results from the mineralogical and petrological analyses that will have been performed.

  13. Methods for the mineralogical and textural analysis of comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Dueren, H.; Knoelker, J.

    1989-01-01

    The objectives and instrumental requirements of a petrographic analysis of porous comet nucleus material are reviewed. Assumptions about its composition and texture, and the available techniques for the microscopic analysis of comet analogue material are investigated. New techniques required for the petrographic investigation of natural and artificial comet nucleus samples are also considered.

  14. Mechanical and SEM Analysis of Artificial Comet Nucleus Samples

    NASA Astrophysics Data System (ADS)

    Thiel, K.; Kochan, H.; Roessler, K.; Grün, E.; Schwehm, G.; Hellmann, H.; Hsiung, P.; Kölzer, G.

    1997-12-01

    In 1987 approx. 20 scientists from different disciplines started a 6 year program (KOSI) to simulate physically and chemically relevant processes of cometary nuclei. The experiments are mainly carried out in two simulation chambers of the German Aerospace Research Establishment, DLR at Cologne and FRG. Experiments in the Big Space Simulator are dedicated to effects and processes induced by artificial solar irradiation (approx. 1 solar constant) on a 30 cm diameter model comet of well-defined properties. Supporting investigations are performed in a smaller space simulation chamber with ice-dust targets of typically 10 cm diameter. Several groups of theorists who are part of the KOSI-team process the experimental results and provide relevant boundary conditions for the design of new experiments. The main objective of these studies is a better understanding of: (1) the temperature behaviour of ice-dust mixtures under given irradiation conditions; (2) the total mass and energy budget of the target; (3) the mobilization of material (dust and gas) within the target body; and (4) physical and chemical alterations of the sample as a function of the experimental parameters, especially, crust formation, gas emission, dust emission and dust properties, and gas-dust interaction. The KOSI-project is intended to allow a better interpretation of ground based and space mission gained cometary data and to support the planning of future sample return missions.

  15. Mineralogy and Petrology of Comet Wild 2 Nucleus Samples

    SciTech Connect

    Zolensky, M E; Zega, T J; Yano, H; Wirick, S; Westphal, A J; Weisberg, M K; Weber, I; Warren, J L; Velbel, M A; Tsuchiyama, A; Tsou, P; Toppani, A; Tomioka, N; Tomeoka, K; Teslich, N; Taheri, M; Susini, J; Stroud, R; Stephan, T; Stadermann, F J; Snead, C J; Simon, S B; Siminovici, A; See, T H; Robert, F; Rietmeijer, F M; Rao, W; Perronnet, M C; Papanastassiou, D A; Okudaira, K; Ohsumi, K; Ohnishi, I; Nakanura-Messenger, K; Nakamura, T; Mostefaoui, S; Mikouchi, T; Meibom, A; Matrajt, G; Marcus, M A; Leroux, H; Lemelle, L; Le, L; Lanzirotti, A; Langenhorst, F; Krot, A N; Keller, L P; Kearsley, A T; Joswiak, D; Jacob, D; Ishii, H; Harvey, R; Hagiya, K; Grossman, L; Graham, G A; Gounelle, M; Gillet, P; Genge, M J; Flynn, G; Ferrior, T; Fallon, S; Ebel, D S; Dai, Z R; Cordier, P; Chi, M; Butterworth, A L; Brownlee, D E; Bridges, J C; Brennan, S; Brearley, A; Bradley, J P; Bleuet, P; Bland, P A; Bastien, R

    2006-10-11

    The bulk of the Wild 2 samples appear to be weakly-constructed mixtures of nanometerscale grains with occasional much larger (>1{micro}m) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in Wild 2 require a wide range of formation conditions, probably reflecting different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and absence of hydrous phases indicate that Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require large-scale radial transport in the early protoplanetary disk. The nature of cometary solids is of fundamental importance to our understanding of the early solar nebula and protoplanetary history. Until now we have had to study comets from afar using spectroscopy, or settle for analyses of interplanetary dust particles (IDPs) of uncertain provenance. We report here mineralogical and petrographic analyses of particles derived directly from Comet Wild 2. All of the Wild 2 particles we have thus far examined have been modified in various ways by the capture process. All particles that may have been loose aggregates, ''traveling sand piles'', disaggregated into individual components with the larger, denser components penetrating more deeply into the aerogel. Individual grains experienced a wide range of heating effects that range from excellent preservation to melting (Fig. 1); such behavior was expected (1, 2 ,3). What is remarkable is the extreme variability of these modifications and the fact that severely modified and unmodified materials can be found within a micrometer of each other, requiring tremendous local temperature gradients. Fortunately, we have an internal gauge of impact collection heating. Fe-Ni sulfides are ubiquitous in the Wild 2 samples, are very sensitive indicators of

  16. Aerocapture guidance and navigation for the Rosetta Comet Nucleus Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Serrano-Martinez, J. B.; Hechler, M.

    The aerocapture/reentry phase of the Comet Nucleus Sample Return Mission Rosetta when returning from the Comet back to earth is discussed. The guidance and navigation process for a guided atmospheric entry to ground from an entry velocity of over 15 km/s has been simulated and the feasibility of such an entry at an entry angle of -10.5 deg, using an Apollo shape vehicle and guidance methods similar to those used for Apollo and the Shuttle Orbiter, has been demonstrated. Landing precision of less than 10 km at accelerations below 20 g can be reached. Critical areas of system design like the center of gravity location of the entry vehicle are addressed.

  17. Hummingbird Comet Nucleus Analysis Mission

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  18. Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples

    SciTech Connect

    Zolensky,M.; Zega, T.; Yano, H.; Wirick, S.; Westphal, A.; Weisberg, M.; Weber, I.; Warren, J.; Velbel, M.; et al.

    2006-01-01

    The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk

  19. Mineralogy and petrology of comet 81P/wild 2 nucleus samples

    USGS Publications Warehouse

    Zolensky, M.E.; Zega, T.J.; Yano, H.; Wirick, S.; Westphal, A.J.; Weisberg, M.K.; Weber, I.; Warren, J.L.; Velbel, M.A.; Tsuchiyama, A.; Tsou, P.; Toppani, A.; Tomioka, N.; Tomeoka, K.; Teslich, N.; Taheri, M.; Susini, J.; Stroud, R.; Stephan, T.; Stadermann, F.J.; Snead, C.J.; Simon, S.B.; Simionovici, A.; See, T.H.; Robert, F.; Rietmeijer, F.J.M.; Rao, W.; Perronnet, M.C.; Papanastassiou, D.A.; Okudaira, K.; Ohsumi, K.; Ohnishi, I.; Nakamura-Messenger, K.; Nakamura, T.; Mostefaoui, S.; Mikouchi, T.; Meibom, A.; Matrajt, G.; Marcus, M.A.; Leroux, H.; Lemelle, L.; Le, L.; Lanzirotti, A.; Langenhorst, F.; Krot, A.N.; Keller, L.P.; Kearsley, A.T.; Joswiak, D.; Jacob, D.; Ishii, H.; Harvey, R.; Hagiya, K.; Grossman, L.; Grossman, J.H.; Graham, G.A.; Gounalle, M.; Gillet, P.; Genge, M.J.; Flynn, G.; Ferroir, T.; Fallon, S.; Ebel, D.S.; Dai, Z.R.; Cordier, P.; Clark, B.; Chi, M.; Butterworth, A.L.; Brownlee, D.E.; Bridges, J.C.; Brennan, S.; Brearley, A.; Bradley, J.P.; Bleuet, P.; Bland, P.A.; Bastien, R.

    2006-01-01

    The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk.

  20. Supporting online materials for mineralogy and petrology of Comet81P/Wild 2 nucleus samples

    SciTech Connect

    Zolensky, Michael E.; Zega, Thomas J.; Yano, Hajime; Wirick, Sue; Westphal, Andrew J.; Weisberg, Mike K.; Weber, Iris; Warren, Jack L.; Velbel, Michael A.; Tsuchiyama, Akira; Tsou, Peter; Toppani, Alice; Tomioka, Naotaka; Tomeoka, Kazushige; Teslich, Nick; Taheri, Mitra; Susini, Jean; Stroud, Rhonda; Stephan, Thomas; Stadermann, Frank J.; Snead, Christopher J.; Simon, Steven B.; Simionovici, Alexandre; See,Thomas H.; Robert Francois; Rietmeijer, Frans J.M.; Rao, William; Perronnet, Murielle C.; Papanastassiou, Dimitri A.; Okudaira, Kyoko; Ohsumi, Kazumasa; Ohnishi, Ichiro; Nakamura-Messenger, Keilo; Nakamura,Tomoki; Mostefaoui, Smail; Mikouchi, Takashi; Meibom, Anders; Matrajt,Graciela; Marcus, Matthew A.; Leroux, Hugues; Lemelle, Laurence; Antonio,Loan Le; Lanzirotti, Antonio; Langenhorst, Falko; Krot, Alexander N.; Keller, Lindsay P.; Kearsley, Anton T.; Joswiak, Davis; Jacob, Damien; Ishii, Hope; Harvey, Ralph; Hagiya, Kenji; Grossman, Lawrence; Grossman,Jeffrey N.; Graham, Giles A.; Gounelle, Matthieu; Gillet, Philippe; Genge, Matthew J.; Flynn, George; Ferroir, Tristan; Fallow, Stewart; Ebel, Denton S.; Dai, Zu Rong; Cordier, Patrick; Clark, Benton; Chi,Miaofang; Butterworth, Anna L.; Brownlee, Donald E.; Bridges, John C.; Brennan, Sean; Brearley, Adrian; Bradley, John P.; Bleuet, Pierre; Bland,Phil A.; Bastien, Ron

    2006-01-01

    The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk.

  1. Retrieving samples from comet nuclei

    NASA Astrophysics Data System (ADS)

    Stuhlinger, Ernst; Bassner, Helmut; Fechtig, Hugo; Igenbergs, Eduard; Kuczera, Heribert; Loeb, Horst; Schobert, Detlef

    1987-09-01

    A comet nucleus sampling scenario is proposed. Material samples for analysis in earth-based laboratories should be collected continuously to a depth of 3 m below the surface, and at a solar distance of at least 2.5 AU where the comet surface is inactive. The spacecraft is propelled by chemical and electric thrusters. While hovering above the comet nucleus at an altitude of 500 to 1000 m, the spacecraft will dispatch a rotating drill on a tether. The drill pipe will be driven into the nucleus by a rocket-powered reaction wheel. The inner pipe of the drill, when filled with cometary material, will be withdrawn by the tether, stored on the spacecraft, and transported back to Earth.

  2. The Mineralogy of Comet Wild-2 Nucleus Samples - What We Think We Know And What We Do Not Know

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.

    2007-01-01

    The sample return capsule of the Stardust spacecraft was successfully recovered in northern Utah on January 15, 2006, and its cargo of coma grains from Comet Wild-2 has now been the subject of intense investigation by approximately 200 scientists scattered across five continents. We can now perform mineralogical and petrographic analyses of particles derived directly from the Jupiter-family Comet Wild-2

  3. Analysis of particulates of comet nucleus samples: Possible use of olivine as indicator phase

    NASA Technical Reports Server (NTRS)

    Steele, I. M.

    1989-01-01

    The electron microprobe is a proven instrument for particulate analysis and modifications are possible for in situ analysis of particulates in ice at temperatures near that of liquid nitrogen. Present sample requirements allow for polished samples with 0.25 x 0.25 dimensions to be maintained in the sample chamber of a modern electron probe (CAMECA SX-50) at a temperature of -150 C; larger samples are possible but at higher temperatures as determined by thermal conductivity. The major problem is transport and insertion of samples into the instrument through vacuum interlocks. The manufacturer of the above microprobe has designed an exchange mechanism to allow storage and transport of samples previously prepared for their sample holder which attaches to their instrument allowing extraction and insertion of samples while maintaining -150 C temperature. An important test will be the capability of preparing polished surfaces of an ice-particulate sample without loss of particles and at low temperatures. While thin sections of water ice are routine, these are not examined for particulate material and are prepared at temperatures easily obtained in room-size volumes. Anticipated problems include rounding of small grains in the relatively soft ice matrix and the technical problem of dry polishing.

  4. Nucleus model for periodic Comet Tempel 2

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1991-01-01

    Observational data obtained primarily during 1988 are analyzed and synthesized to develop a comprehensive physical model for the nucleus of Periodic Comet Tempel 2, one of the best studied members of Jupiter's family of short-period comets. It is confirmed that a previous investigation provided reliable information on the comet's spin-axis orientation, which implies and obliquity of 54 degrees of the orbit plane to the equatorial plane and which appears to have varied little - if at all - with time. This conclusion is critical for fitting a triaxial ellipsoid to approximate the figure of the nucleus.

  5. Odyssey Comet Nucleus Orbiter: The Next Step in Cometary Exploration

    NASA Astrophysics Data System (ADS)

    Weissman, P. R.; Nilsen, E. N.; Smythe, W. D.; Marriott, J.; Reinert, R.

    2001-01-01

    Cometary nuclei are the most primitive bodies in the solar system, containing a cosmo-chemical record of the primordial solar nebula. Flyby missions to comets, such as those that encountered Comet Halley in 1986, provide a glimpse at this record. However, to study a cometary nucleus in detail requires a rendezvous mission, i.e., a nucleus orbiter. Only an orbiter provides the ability to map the entire nucleus surface at high resolution, to study the complex chemistry in the cometary coma and its variation with time, and to determine the mass and bulk density of the nucleus, key parameters in understanding how small bodies first formed in the solar nebula. A nucleus orbiter also provides the opportunity to sense the nucleus surface in preparation for more ambitious landing and sample return missions in the future. Additional information is contained in the original extended abstract.

  6. Comet encke: radar detection of nucleus.

    PubMed

    Kamoun, P G; Campbell, D B; Ostro, S J; Pettengill, G H; Shapiro, I I

    1982-04-16

    The nucleus of the periodic comet Encke was detected in November 1980 with the Arecibo Observatory's radar system (wavelength, 12.6 centimeters). The echoes in the one sense of circular polarization received imply a radar cross section of 1.1 +/- 0.7 square kilometers. The estimated bandwidth of these echoes combined with an estimate of the rotation vector of Encke yields a radius for the nucleus of l.5(+2.3)(-1.0) kilometers. The uncertainties given are dependent primarily on the range of models considered for the comet and for the manner in which its nucleus backscatters radio waves. Should this range prove inadequate, the true value of the radius of the nucleus might lie outside the limits given.

  7. Nucleus of Comet P/Arend-Rigaux

    SciTech Connect

    Brooke, T.Y.; Knacke, R.F.

    1986-07-01

    Photometry data at 1-20 microns taken of Comet P/Arend-Rigaux are reported. The observations were carried out to test the possibility of observing the nuclei of low activity, nearly extinct comets at visible and IR wavelengths. The data were collected in February 1985 using the NASA 3 m IR telescope on Mauna Kea. The comet was at 1.67 AU heliocentric distance at the time. Attempts were made to detect rotation of the core on the bases of variations in the J, H and K light curves. The images obtained were those of a rotating nucleus with a radius of 4.0-6.2 km surrounded by a faint coma. The comet had a geometric albedo of 0.01-0.03 and a near-IR red slope that exhibited no evidence of the presence of ice. 32 references.

  8. SOCCER: Comet Coma Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Uesugi, K. T.; Tsou, Peter

    1994-01-01

    Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. Sample Of Comet Coma Earth Return (SOCCER), a joint effort between NASA and the Institute of Space and Astronautical Science (ISAS) in Japan, has two primary science objectives: (1) the imaging of the comet nucleus and (2) the return to Earth of samples of volatile species and intact dust. This effort makes use of the unique strengths and capabilities of both countries in realizing this important quest for the return of samples from a comet. This paper presents an overview of SOCCER's science payloads, engineering flight system, and its mission operations.

  9. Dust activity of Comet Halley's nucleus

    NASA Technical Reports Server (NTRS)

    Keller, H. U.; Delamere, W. A.; Huebner, W. F.; Reitsema, H.; Schmidt, H. U.; Schmidt, W. K. H.; Whipple, Fred L.; Wilhelm, K.

    1986-01-01

    Images obtained by the Halley multicolor camera using the clear filter with a pass band from 300 to 1000 nm were used to study dust activity in the comet nucleus. Comparisons with ground based observations confirm that dust production towards the Sun increases in activity relative to the southern background source while the Giotto spacecraft was approaching. This is in agreement with the assumption that the sunward activity becomes stronger when the source rotates towards the Sun. Estimated dust column density is 90 billion/sqm, with optical thickness less than or = 0.3. Surface reflectivity is less than 1%, indicating a very rough surface with large fractions of shadowed areas.

  10. The primordial nucleus of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Davidsson, Bjorn; Sierks, Holger; Guettler, Carsten; Marzari, Francesco; Pajola, Maurizio; Rickman, Hans; A'Hearn, Michael; Auger, Anne-Therese; El-Maarry, Mohamed; Fornasier, Sonia; Gutierrez, Pedro; Keller, Horst Uwe; Massironi, Matteo; Snodgrass, Colin; Vincent, Jean-Baptiste; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Barucci, Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Cremonese, Gabriele; Da Deppo, Vania; Debei, Stefano; De Cecco, Mariolino; Feller, Clement; Fulle, Marco; Groussin, Olivier; Hviid, Stubbe; Hoefner, Sebastian; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Joerg; Kovacs, Gabor; Kramm, Joerg-Rainer; Kuehrt, Ekkehard; Kueppers, Michael; La Forgia, Fiorangela; Lara, Luisa; Lazzarin, Monica; Lopez Moreno, Jose; Moissl-Fraund, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Thomas, Nicolas; Tubiana, Cecilia

    2015-11-01

    Observations of Comet 67P/Churyumov-Gerasimenko by Rosetta show that the nucleus is bi-lobed, extensively layered, has a low bulk density, a high dust-to-ice mass ratio (implying high porosity), and weak strength except for a thin sintered surface layer. The comet is rich in supervolatiles (CO, CO2, N2), may contain amorphous water ice, and displays little to no signs of aqueous alteration. Lack of phyllosilicates in Stardust samples from Comet 81P/Wild 2 provides further support that comet nuclei did not contain liquid water.These properties differ from those expected for 50-200 km diameter bodies in the primordial disk. We find that thermal processing due to Al-26, combined with collisional compaction, creates a population of medium-sized bodies that are comparably dense, compacted, strong, heavily depleted in supervolatiles, containing little to no amorphous water ice, and that have experienced extensive aqueous alteration. Irregular satellites Phoebe and Himalia are potential representatives of this population. Collisional rubble piles inherit these properties from their parents. We therefore conclude that observed comet nuclei are primordial rubble piles, and not collisional rubble piles.We propose a concurrent comet and TNO formation scenario that is consistent with these observations. We argue that TNOs form due to streaming instabilities at sizes of about 50-400 km and that about 350 of these grow slowly in a low-mass primordial disk to the size of Triton, causing little viscous stirring during growth. We propose a dynamically cold primordial disk, that prevents medium-sized TNOs from breaking into collisional rubble piles, and allows for the survival of primordial rubble-pile comets. We argue that comets form by hierarchical agglomeration out of material that remains after TNO formation. This slow growth is necessary to avoid thermal processing by Al-26, and to allow comet nuclei to incorporate 3 Myr old material from the inner Solar System, found in

  11. HUBBLE DETECTION OF COMET NUCLEUS AT FRINGE OF SOLAR SYSTEM

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is sample data from NASA's Hubble Space Telescope that illustrates the detection of comets in the Kuiper Belt, a region of space beyond the orbit of the planet Neptune. This pair of images, taken with the Wide Field Planetary Camera 2 (WFPC2), shows one of the candidate Kuiper Belt objects found with Hubble. Believed to be an icy comet nucleus several miles across, the object is so distant and faint that Hubble's search is the equivalent of finding the proverbial needle-in-haystack. Each photo is a 5-hour exposure of a piece of sky carefully selected such that it is nearly devoid of background stars and galaxies that could mask the elusive comet. The left image, taken on August 22, 1994, shows the candidate comet object (inside circle) embedded in the background. The right picture, take of the same region one hour forty-five minutes later shows the object has apparently moved in the predicted direction and rate of motion for a kuiper belt member. The dotted line on the images is a possible orbit that this Kuiper belt comet is following. A star (lower right corner) and a galaxy (upper right corner) provide a static background reference. In addition, other objects in the picture have not moved during this time, indicating they are outside our solar system. Through this search technique astronomers have identified 29 candidate comet nuclei belonging to an estimated population of 200 million particles orbiting the edge of our solar system. The Kupier Belt was theorized 40 years ago, and its larger members detected several years ago. However, Hubble has found the underlying population of normal comet-sized bodies. Credit: A. Cochran (University of Texas) and NASA

  12. 3200 Phaethon, Asteroid or Comet Nucleus?

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Benkhoff, Johannes

    2015-08-01

    Physico-chemical modeling is central to understand the important physical processes in small solar system bodies. We have developed a computer simulation, SUISEI, that includes the physico-chemical processes relevant to comets within a global modeling framework. Our goals are to gain valuable insights into the intrinsic properties of cometary nuclei so we can better understand observations and in situ measurements. SUISEI includes a 3-D model of gas and heat transport in porous sub-surface layers in the interior of the nucleus.We present results on the application of SUISEI to the near-Sun object, Phaethon. Discovered in 1983 and classified as an asteroid, it has recently exhibited an active dust coma. Phaethon has long been associated as the source of the Geminids meteor shower so the dust activity provides a clear link to the meteor shower. The observed dust activity would traditionally lead to Phaethon being also classified as a comet (e.g., 2060-95P/Chiron, 133P/Elst-Pizarro). This is unusual since the orbit of Phaethon has a perihelion of 0.14 AU, resulting in surface temperatures of more than 1025K, much too hot for water ice or other volatiles to exist near the surface and drive the activity. This situation and others such as the “Active Asteroids” necessitates a revision of how we understand and classify these small asteroid-comet transition objects.We conclude the following for Phaethon:1. It is likely to contain relatively pristine volatiles in its interior despite repeated near perihelion passages of 0.14 AU during its history in its present orbit,2. Steady water gas fluxes at perihelion and throughout its orbit are insufficient to entrain the currently observed dust production,3. Thermal gradients into the surface as well as those caused by diurnal rotation are consistent with the mechanism of dust release due to thermal fracture,4. The initial large gas release during the first perihelion passage may be sufficient to produce enough dust to explain

  13. Comet coma sample return instrument

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.

    1994-01-01

    The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.

  14. Odyssey: Comet Nucleus Orbiter; A Discovery 2000 Proposal

    NASA Astrophysics Data System (ADS)

    Weissman, P. R.; Nilsen, E. N.; Smythe, W. D.; Marriott, J.; Reinert, R.; Delamere, W. A.; Odyssey Science Team

    2000-10-01

    Odyssey will be NASA's first comet nucleus orbiter mission. The spacecraft will be launched in June 2006 on a Delta 2925 expendable vehicle and will use solar electric propulsion to rendezvous with periodic Comet Kopff in September 2009. Kopff is one of the most active short-period comets known, with a gas production near perihelion of 5 x 1028 molecules/sec and an estimated nucleus diameter of { ~}3.6 km. En route to Kopff, Odyssey will fly by the C-type asteroid 24 Themis, the largest asteroid ever encountered by a planetary spacecraft (d ≈ 215 km). Odyssey's scientific payload includes narrow and wide angle CCD cameras, an IR imaging radiometer, a gas chromatograph/mass spectrometer, a dust compositional analyzer, and a dust counter and accumulation sensors. The spacecraft will initially perform slow flybys of the active Kopff nucleus at distances between 500 and 100 km, and will then be placed in orbit around the nucleus at altitudes between 200 and 50 km. The in situ instruments will collect and analyze gas and dust in the cometary coma, providing elemental, molecular, isotopic, and mineralogic measurements of the cosmo-chemical record locked in comets of the origin of our solar system and the origin of life. The narrow angle camera will map the entire nucleus surface at a resolution of 1 m/pixel, providing detailed images of the nucleus topography and its change with time. The thermal imager will do the same at 21 m/pixel, providing unprecedented data on the energy balance at the surface of the cometary nucleus, key to understanding how the comet works. Odyssey will study Comet Kopff for 9 months. Extended mission options include: 1) higher resolution mapping at even lower altitudes, and 2) touch-down of the spacecraft on the nucleus surface.

  15. Hubble Imaging of the Nucleus of Comet ISON

    NASA Astrophysics Data System (ADS)

    Lamy, Philippe

    2013-10-01

    Comet C/2012 S1 {ISON} is both a new "nearly isotropic" and a sungrazing comet with anoutstanding apparition in cycle 21, passing within 0.42 AU of the Earth.We propose a 12-orbit Hubble postperihelion investigation of this comet that will provide a detailed view of its nucleus originating from the Oort cloud and of the possible consequences of its very close approach to the Sun at a perihelion distance of 0.012471 AU such as fragmentation.We will determine the size, shape, rotational period, and color {UBVRI} ofthe nucleus of C/2012 S1 or of its fragment should disruption occurs. This passage of a new "nearly isotropic" comet very close tothe Earth offers a rare opportunity to investigate this population ofobjects, and we expect many other observatories to attempt detecting itsnucleus in the mid-infrared, millimetric and centimetric domains.Combining the Hubble results with those from other observatories shouldyield a comprehensive picture of this NIC that can be compared to thedetailed data collected on ecliptic comets {ECs} during the past 3decades. The differences and similarities between NICs and ECs shouldyield valuable insights into the origin and evolution of comets.

  16. Figure Caption for pair of images of 'Comet Nucleus Q

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Figure Caption for pair of images of 'Comet Nucleus Q'. 21Jul94 Last Look at the Q-nuclei First image - March 30, 1994. Two Q-nuclei and a split nucleus, P. Second image - July 20, 1994. at T - 10 hours. Both nuclei still show no sign of further fragmentation, although the coma near each is being stretched out along the direction of motion. Both images were taken with the WFPC2 Planetary Camera using a red filter. Credit: H. A. Weaver and T. E. Smith

  17. Study of Comet Nucleus Gamma-Ray Spectrometer Penetration System

    NASA Technical Reports Server (NTRS)

    Adams, G. L.; Amundsen, R. J.; Beardsley, R. W.; Cash, R. H.; Clark, B. C.; Knight, T. C. D.; Martin, J. P.; Monti, P.; Outteridge, D. A.; Plaster, W. D.

    1986-01-01

    A penetrator system has been suggested as an approach for making in situ measurements of the composition and physical properties of the nucleus of a comet. This study has examined in detail the feasibility of implementing the penetrator concept. The penetrator system and mission designs have been developed and iterated in sufficient detail to provide a high level of confidence that the concept can be implemented within the constraints of the Mariner Mark 2 spacecraft.

  18. Sampling the stuff of a comet

    SciTech Connect

    Knacke, R.

    1987-03-01

    The composition of the clouds around Comet Halley during its perihelion passage was examined using intercept spacecraft, IUE, ICE and Pioneer Venus spacecraft, and ground-based instruments. Spectral data showed that the dust emitted in jets was mainly carbon, hydrogen, oxygen and nitrogen (CHON), with additives of Fe, Si, and Mg. The C abundance is similar to that in the sun and in the galactic stellar abundances, which supports the model of comets as proto-stellar nebula material. The nucleus was observed to shed 16 tons of water per second, a rate which at times may have doubled. Noticeably absent from the spectra were CH/sub 4/ lines, an absence common in interstellar clouds. The possibilities that the comet contains a large deuterium-hydrogen ratio and carbonaceous material are discussed.

  19. Comet assay: rapid processing of multiple samples.

    PubMed

    McNamee, J P; McLean, J R; Ferrarotto, C L; Bellier, P V

    2000-03-01

    The present study describes modifications to the basic comet protocol that increase productivity and efficiency without sacrificing assay reliability. A simple technique is described for rapidly preparing up to 96 comet assay samples simultaneously. The sample preparation technique allows thin layers of agarose-embedded cells to be prepared in multiple wells attached to a flexible film of Gelbond, which improves the ease of manipulating and processing samples. To evaluate the effect of these modifications on assay sensitivity, dose-response curves are presented for DNA damage induced by exposure of TK6 cells to low concentrations of hydrogen peroxide (0-10 microM) and for exposure of human lymphocytes to X-irradiation (0-100 cGy). The limit of detection of DNA damage induced by hydrogen peroxide in TK6 cells was observed to be 1 uM for all parameters (tail ratio, tail moment, tail length and comet length) while the limit of detection of DNA damage in human lymphocytes was 10 cGy for tail and comet length parameters, but 50 cGy for tail ratio and tail moment parameters. These results are similar to those previously reported using the conventional alkaline comet assay. The application of SYBR Gold for detection of DNA damage was compared to that of propidium iodide. Measurements of matching samples for tail length and comet length were similar using both stains. However, comets stained with SYBR Gold persisted longer and were much brighter than those obtained with propidium iodide. SYBR Gold was found to be ideal for measuring tail length and comet length but, under present assay conditions, impractical for measuring tail ratio or tail moment due to saturation of staining in the head region of the comets. PMID:10751727

  20. Calculated dynamical evolution of the nucleus of comet Hartley 2

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid

    2013-04-01

    The nucleus of comet Hartley 2 has a relatively regular dumbbell shape with unequal heads. The narrow part of elongated shape contains a relatively smooth region whose covering material is highly different in its shallow structure compared to other parts of this celestial body. The surface of crudely spherical parts of the nucleus is different from the surface of the "neck", which implies a hypothesis that the shape of the nucleus of Hartley 2 is indicative of destruction of this celestial body occurring in our days. The nucleus rotates around its axis passing through the center of mass, and centrifugal forces arise. This process is hindered by gravitation between parts of the nucleus and gradual slowing of rotation due to body lengthening because of the increase in the moment of inertia (proportional to R2) and due to friction losses in the neck material. We posed the task to determine centrifugal and gravitational forces in the neck (and, respectively, the strains of stretching and compression), the moment of inertia of the body and supply of its rotational energy E, the volume of the nucleus and its average density, and the position of the barycenter and center of rotation. It can be assumed that these forces cause slow but progressive lengthening of the neck which should eventually result in fragmentation of the nucleus. Centrifugal forces can be found as a result of summation of forces produced by parts of the body. According to the calculation model, the total stretching forces in the section passing through the narrowest cut of the neck are 1.21E6 N. The corresponding compression forces in the section passing through the narrow section are 1.04E6 N. The comparison of these values indicates a paradoxical result: stretching strains dominate in the neck, while compressions are dominant in the section passing through the common center of mass. The excess of stretching strains in the neck is 11%. The inference is as follows: the right part of the neck and the

  1. The primordial nucleus of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Davidsson, B. J. R.; Sierks, H.; Güttler, C.; Marzari, F.; Pajola, M.; Rickman, H.; A'Hearn, M. F.; Auger, A.-T.; El-Maarry, M. R.; Fornasier, S.; Gutiérrez, P. J.; Keller, H. U.; Massironi, M.; Snodgrass, C.; Vincent, J.-B.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Feller, C.; Fulle, M.; Groussin, O.; Hviid, S. F.; Höfner, S.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Moissl-Fraund, R.; Mottola, S.; Naletto, G.; Oklay, N.; Thomas, N.; Tubiana, C.

    2016-07-01

    Context. We investigate the formation and evolution of comet nuclei and other trans-Neptunian objects (TNOs) in the solar nebula and primordial disk prior to the giant planet orbit instability foreseen by the Nice model. Aims: Our goal is to determine whether most observed comet nuclei are primordial rubble-pile survivors that formed in the solar nebula and young primordial disk or collisional rubble piles formed later in the aftermath of catastrophic disruptions of larger parent bodies. We also propose a concurrent comet and TNO formation scenario that is consistent with observations. Methods: We used observations of comet 67P/Churyumov-Gerasimenko by the ESA Rosetta spacecraft, particularly by the OSIRIS camera system, combined with data from the NASA Stardust sample-return mission to comet 81P/Wild 2 and from meteoritics; we also used existing observations from ground or from spacecraft of irregular satellites of the giant planets, Centaurs, and TNOs. We performed modeling of thermophysics, hydrostatics, orbit evolution, and collision physics. Results: We find that thermal processing due to short-lived radionuclides, combined with collisional processing during accretion in the primordial disk, creates a population of medium-sized bodies that are comparably dense, compacted, strong, heavily depleted in supervolatiles like CO and CO2; they contain little to no amorphous water ice, and have experienced extensive metasomatism and aqueous alteration due to liquid water. Irregular satellites Phoebe and Himalia are potential representatives of this population. Collisional rubble piles inherit these properties from their parents. Contrarily, comet nuclei have low density, high porosity, weak strength, are rich in supervolatiles, may contain amorphous water ice, and do not display convincing evidence of in situ metasomatism or aqueous alteration. We outline a comet formation scenario that starts in the solar nebula and ends in the primordial disk, that reproduces these

  2. Comets

    NASA Astrophysics Data System (ADS)

    Brownlee, D. E.

    2003-12-01

    Comets are surviving members of a formerly vast distribution of solid bodies that formed in the cold regions of the solar nebula. Cometary bodies escaped incorporation into planets and ejection from the solar system and they have been stored in two distant reservoirs, the Oort cloud and the Kuiper Belt, for most of the age of the solar system. Observed comets appear to have formed between 5 AU and 55 AU. From a cosmochemical viewpoint, comets are particularly interesting bodies because they are preserved samples of the solar nebula's cold ice-bearing regions that occupied 99% of the areal extent of the solar nebula disk. All comets formed beyond the "snow line" of the nebula, where the conditions were cold enough for water ice to condense, but they formed from environments that significantly differed in temperature. Some formed in the comparatively "warm" regions near Jupiter where the nebular temperature may have been greater than 120 K and others clearly formed beyond Neptune where temperatures may have been less than 30 K (Bell et al., 1997). Although comets are the best-preserved materials from the early solar system, they should be a mix of nebular and presolar materials that accreted over a vast range of distances from the Sun in environments that differed in temperature, pressure, and accretional conditions such as impact speed.Comets, by conventional definition, are unstable near the Sun; they contain highly volatile ices that vigorously sublime within 2-3 AU of the Sun. When heated, they release gas and solids due to "cometary activity," a series of processes usually detected from afar by the presence of a coma of gas and dust surrounding the cometary nucleus and or elongated tails composed of dust and gas. Active comets clearly have not been severely modified by the moderate to extreme heating that has affected all other solar system materials, including planets, moons, and even the asteroids that produced the most primitive meteorites. Comets have been

  3. Comprehensive model for the nucleus of Periodic Comet Tempel 2 and its activity

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1991-01-01

    A comprehensive synergistic physical model for the nucleus of Periodic Comet Tempel 2 was developed on the basis of observations carried out in 1988. The model includes the best possible estimates of the comet's bulk properties (including the dimensions and the approximate shape), information on its state of rotation, and the characterization of its activity. The model is shown to be consistent with all lines of evidence that are currently available, including relevant information from earlier apparitions.

  4. Comets

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    2006-01-01

    Spectroscopy of comets, in the X-ray and far-ultraviolet from space, and in the near infrared and millimeter from the ground, have revealed a wealth of new information, particularly about the molecular constituents that make up the volatile fraction of the comet s nucleus. Interpretation of these data requires not only proper wavelengths for identification but also information about the photolytic and excitation processes at temperatures typical of the inner coma (70-100 K) that lead to the observed spectral signatures. Several examples, mainly from Far Ultraviolet Spectroscopic Explorer and Hubble Space Telescope spectra of comets observed during the last few years, will be given to illustrate some of the current issues.

  5. Formation of the dumbbell-like nucleus of a comet by sublimation

    NASA Astrophysics Data System (ADS)

    Vavilov, Dmitrii; Medvedev, Yurii; Zatitskiy, Pavel

    2016-10-01

    The nucleus of the comet 67P/Churyumov-Gerasimenko is an elongated body with a deep groove around the middle. There are also other comets that look like dumbbells (e.g. 103P/Hartley 2, 19P/Borrelly, 1P/Halley). Two most probable interpretations are discussed in the scientific society. The first hypothesis explains the creation of such an object as sticking of two cometesimals during the process of formation. The second one suggests that the sublimation process can change the nucleus shape and make a groove in the middle.In this work we consider the second hypothesis. It was assumed that the spin axis of the nucleus is perpendicular to the plane of the cometary orbit and that initially the nucleus shape is a sphere. Thus, the problem is represented as a differential equation, which describes the change of the cometary nucleus. We solved this equation analytically. It was shown that initially a convex cometary nucleus (e.g. a sphere), consisting of homogeneous material, can not be transformed into a dumbbell-like body by the influence of sublimation. However, assuming that the density in the centre of the nucleus is less than on the surface, a groove can arise on the equator of the cometary nucleus as a result of sublimation.

  6. Non-destructive analyses of cometary nucleus samples using synchrotron radiation

    SciTech Connect

    Flynn, G.J.; Sutton, S.R.; Rivers, M.L.

    1989-01-01

    Trace element abundances and abundance patterns in meteorites have proven to be diagnostic indicators of nebular and parent body fractionations, formation temperature, thermal metamorphism and, co-genesis. If comets are more primitive samples of the solar nebula than the meteorites, then trace element abundances in the returned comet nucleus samples should be better indicators of primitive solar nebula conditions than those of meteorites. Comet nucleus samples are likely to consist of a mixture of ices and mineral grains. To provide a complete picture of the elemental distributions, trace element abundance data on the bulk material, as well as separated mineral grains and ices, will be required. This paper discusses the present and future analytical capabilities. 22 refs., 2 figs.

  7. Comet C/2011 J2 (LINEAR) nucleus splitting: Dynamical and structural analysis

    NASA Astrophysics Data System (ADS)

    Manzini, Federico; Oldani, Virginio; Hirabayashi, Masatoshi; Behrend, Raoul; Crippa, Roberto; Ochner, Paolo; Pina, José Pablo Navarro; Haver, Roberto; Baransky, Alexander; Bryssinck, Eric; Dan, Andras; De Queiroz, Josè; Frappa, Eric; Lavayssiere, Maylis

    2016-07-01

    After the discovery of the breakup event of comet C/2011 J2 in August 2014, we followed the primary body and the main fragment B for about 120 days in the context of a wide international collaboration. From the analysis of all published magnitude estimates we calculated the comet's absolute magnitude H=10.4, and its photometric index n=1.7. We also calculated a water production of only 110 kg/s at the perihelion. These values are typical of a low-activity, long-period or new comet. Analysis of the motion of fragment B over the observation period showed that the first breakout event likely occurred between 12 July and 30 July 2014. Nucleus B remained persistently visible throughout the 4-month observation period. The projected separation velocity of nucleus B from the parent body was 4.22 m/s at the time of the breakup and 12.7 m/s at the end of the observation period, suggesting that nucleus B was subjected to a constant deceleration a = 6.87 • 10-7 m / s2 . The spin period of the main nucleus was estimated as 4.56 h±0.05 h by photometric analysis. The structural analysis of the comet showed a cohesive strength of the nucleus greater than ~0.9 kPa; assuming a bulk density of 500 kg/m3, with a rotation period of 4.56 h the cometary nucleus might have failed structurally, especially if the body was elongated. These results suggest that the nucleus of comet C/2011 J2 has an elongated shape, with a ratio of the semi-minor axis to the semi-major axis β < 0.675 ; the semi-major axis of the pristine nucleus could be larger than 8 km. From this study, we propose that rotational disruption, possibly combined with sublimation pressure, was a reasonable explanation for the breakup event in comet C/2011 J2.

  8. MRO HiRISE Observations of the Nucleus of Comet C/2013 A1 (Siding Spring)

    NASA Astrophysics Data System (ADS)

    McEwen, A. S.; Delamere, W. A.; Heyd, R.; Mattson, S.; Tamppari, L.; Zurek, R. W.; Schaller, C.; Block, K.; Polit, A. T.; Milkovich, S. M.; Hansen, C. J.; Thomas, N.; Cremonese, G.

    2014-12-01

    Comet C/2013 A1 (Siding Spring) will pass Mars at a distance of 131,000 ± 3,000 km on Oct 19, 2014. Mars Reconnaissance Orbiter (MRO) will observe the comet on multiple orbits within 2.5 days before and after closest approach. The HiRISE telescope has a 50 cm aperture and an instantaneous field of view of one micro-radian per pixel, so the best image will have a scale near 131 m/pixel. If imaging is successful (i.e., not too smeared) and if the nucleus is larger than ~200 m diameter, this will provide the first resolved images of the nucleus of a long-period comet. Previous resolved images cover the nuclei of short-period comets, whose surfaces have been processed by many close passes by the sun. The encounter velocity is 56 km/s, so the best observations of the nucleus are only possible a few hours near closest approach, as seen from portions of 3 MRO orbits. A total of 20 HiRISE observations are planned for these 3 orbits, with exposure times varying from 0.13 to 2.5 s to cover a range of potential brightness. The HiRISE CCDs are operated at much higher temperatures, 20-30C, than those used for astronomical observations, so the maximum exposure time is limited by dark current signal. HiRISE objectives are to measure the shape and dimensions of the nucleus, determine its albedo (currently unknown for long-period comets), measure the rotation period and axis, and observe the inner coma for bright jets or outbursts. The phase angles range from 90 to 107 degrees, which will make imaging the nucleus challenging. The fast relative motions and changing geometries of the comet and MRO also make it challenging to acquire unsmeared images, since the image must pass directly down the 128 lines used for time-delay integration (TDI). Although the comet's trajectory is probably well known (as nongravitational effects have not been detected), the exact timing is uncertain. Small timing errors could result in the image passing down the TDI rows at an angle, producing smeared

  9. THE NUCLEUS OF MAIN-BELT COMET 259P/GARRADD

    SciTech Connect

    MacLennan, Eric M.; Hsieh, Henry H. E-mail: emaclenn@utk.edu

    2012-10-10

    We present observations of the main-belt comet 259P/Garradd, previously known as P/2008 R1 (Garradd), obtained in 2011 and 2012 using the Gemini North Telescope on Mauna Kea in Hawaii and the SOAR telescope at Cerro Pachon in Chile, with the goal of computing the object's phase function and nucleus size. We find an absolute magnitude of H{sub R} = 19.71 {+-} 0.05 mag and slope parameter of G{sub R} = -0.08 {+-} 0.05 for the inactive nucleus, corresponding to an effective nucleus radius of r{sub e} = 0.30 {+-} 0.02 km, assuming an R-band albedo of p{sub R} = 0.05. We also revisit observations reported for 259P while it was active in 2008 to quantify the dust mass loss and compare the object with other known main-belt comets.

  10. A homogeneous nucleus for comet 67P/Churyumov-Gerasimenko from its gravity field

    NASA Astrophysics Data System (ADS)

    Pätzold, M.; Andert, T.; Hahn, M.; Asmar, S. W.; Barriot, J.-P.; Bird, M. K.; Häusler, B.; Peter, K.; Tellmann, S.; Grün, E.; Weissman, P. R.; Sierks, H.; Jorda, L.; Gaskell, R.; Preusker, F.; Scholten, F.

    2016-02-01

    Cometary nuclei consist mostly of dust and water ice. Previous observations have found nuclei to be low-density and highly porous bodies, but have only moderately constrained the range of allowed densities because of the measurement uncertainties. Here we report the precise mass, bulk density, porosity and internal structure of the nucleus of comet 67P/Churyumov-Gerasimenko on the basis of its gravity field. The mass and gravity field are derived from measured spacecraft velocity perturbations at fly-by distances between 10 and 100 kilometres. The gravitational point mass is GM = 666.2 ± 0.2 cubic metres per second squared, giving a mass M = (9,982 ± 3) × 109 kilograms. Together with the current estimate of the volume of the nucleus, the average bulk density of the nucleus is 533 ± 6 kilograms per cubic metre. The nucleus appears to be a low-density, highly porous (72-74 per cent) dusty body, similar to that of comet 9P/Tempel 1. The most likely composition mix has approximately four times more dust than ice by mass and two times more dust than ice by volume. We conclude that the interior of the nucleus is homogeneous and constant in density on a global scale without large voids. The high porosity seems to be an inherent property of the nucleus material.

  11. The nonmagnetic nucleus of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Auster, Hans-Ulrich; Apathy, Istvan; Berghofer, Gerhard; Fornacon, Karl-Heinz; Remizov, Anatoli; Carr, Chris; Güttler, Carsten; Haerendel, Gerhard; Heinisch, Philip; Hercik, David; Hilchenbach, Martin; Kührt, Ekkehard; Magnes, Werner; Motschmann, Uwe; Richter, Ingo; Russell, Christopher T.; Przyklenk, Anita; Schwingenschuh, Konrad; Sierks, Holger; Glassmeier, Karl-Heinz

    2015-07-01

    Knowledge of the magnetization of planetary bodies constrains their origin and evolution, as well as the conditions in the solar nebular at that time. On the basis of magnetic field measurements during the descent and subsequent multiple touchdown of the Rosetta lander Philae on the comet 67P/Churyumov-Gerasimenko (67P), we show that no global magnetic field was detected within the limitations of analysis. The Rosetta Magnetometer and Plasma Monitor (ROMAP) suite of sensors measured an upper magnetic field magnitude of less than 2 nanotesla at the cometary surface at multiple locations, with the upper specific magnetic moment being <3.1 × 10-5 ampere-square meters per kilogram for meter-size homogeneous magnetized boulders. The maximum dipole moment of 67P is 1.6 × 108 ampere-square meters. We conclude that on the meter scale, magnetic alignment in the preplanetary nebula is of minor importance.

  12. COSAC prepares for sampling and in situ analysis of cometary matter from comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Goesmann, F.; Raulin, F.; Bredehöft, J. H.; Cabane, M.; Ehrenfreund, P.; MacDermott, A. J.; McKenna-Lawlor, S.; Meierhenrich, U. J.; Muñoz Caro, G. M.; Szopa, C.; Sternberg, R.; Roll, R.; Thiemann, W. H.-P.; Ulamec, S.

    2014-11-01

    The comet rendezvous mission Rosetta will be the first mission to encounter and land on a comet nucleus. After a 10-year journey Rosetta is set for rendezvous with Comet 67P/Churyumov-Gerasimenko. The mission goal is: to study the origin of comets; the relationship between cometary and interstellar material and its implications for the origin of the solar system. The Rosetta spacecraft with an overall mass of about 3000 kg was launched in March 2004 and brought into cometary orbit towards comet 67P/Churyumov-Gerasimenko with 4 gravity assist maneuvers. On its way Rosetta passed and observed two asteroids, (2867) Šteins in 2008 and (21) Lutetia in 2010, respectively. In June 2011 Rosetta entered into hibernation and woke up - as planned - on January 20, 2014. In November 2014 Rosetta's Philae lander and 10 science instruments will be deployed onto the surface of comet 67P/Churyumov-Gerasimenko. This will be followed by the first ever in situ investigation of a comet nucleus. Onboard Philae is the COmetary SAmpling and Composition experiment (COSAC), one of two evolved gas analysers that will investigate organic compounds within the material of the nucleus. Data from the COSAC instrument are expected to provide important insights into the early history of our solar system and contribute to our knowledge of small bodies that may have seeded the early Earth through impacts. In this paper we review recent developments in cometary science, including data on target comet 67P/Churyumov-Gerasimenko. We report on laboratory measurements and the calibration of the COSAC instrument as well as the preparation for operations on the nucleus of comet 67P/Churyumov-Gerasimenko.

  13. Velocity of Ejection of Meteor Particle from the Nucleus of Comets

    NASA Astrophysics Data System (ADS)

    Safarov, Abduljalol; Ibadinov, Khursand

    2016-07-01

    The time and velocity of dust particles of anomalous tail of comets was determine. Velocity ejection of dust particles from the nuclei of comets C/1851 U1, C/1877 G1, C/1921 E1, C/1925 V1, C/1962 C1, C/1969 T1, C/1975 V2, 2P/1924 and 26P/1927 F1 reaching up to 0.4 km/s can be attributed to the removal of large dust particles from the surface of the icy nucleus of comet sublimating molecules. In comets C/1823 Y1, C/1844 Y1, C/1882 R1, C/1883 D1, C/1888 R1, C/1892 E1, D/1894 F1, C/1910 A1, C/1921 E1, C/1922 U1, C/1930 D1, C/1930 O1, C/1931 P1, C/1932 M1, C/1935 A1, C/1954 O1, C/1961 O1, C/1963 A1, C/1968 H1, C/1973 E1, C/1980 P1, C/1984 N2, C/1987 P1, C/1995 O1, C/1999 H1, C/1999 T2, C/1999 S4, C/2002 T7, C/2004 F4, C/2004 Q2, 6P/1950, 7P/1869 G1, 7P/1933, 10P/1930, 19P/1918, 34P/1938 J1, 35P/1939, 67P/1982, 73P/1930 J1, 96P/1986 J1 and 109P/1862 O1 ejection velocity (up to a few km/s) of the particles of anomalous tail from the nuclei significantly exceed the thermal velocity of the molecules sublimating ice nuclei. Such velocity may be explained by the removal of particles from the surface of the nucleus after the collision of the comet nucleus with meteoroids

  14. Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Davidsson, B.; El-Maarry, M. R.; Fornasier, S.; Giacomini, L.; Gracia-Berná, A. G.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kührt, E.; La Forgia, F.; Lai, I. L.; Liao, Y.; Marschall, R.; Massironi, M.; Mottola, S.; Pajola, M.; Poch, O.; Pommerol, A.; Preusker, F.; Scholten, F.; Su, C. C.; Wu, J. S.; Vincent, J.-B.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Debei, S.; de Cecco, M.; Fulle, M.; Groussin, O.; Gutierrez, P. J.; Kramm, J.-R.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Michalik, H.; Naletto, G.; Agarwal, J.; Güttler, C.; Oklay, N.; Tubiana, C.

    2015-11-01

    Context. We present an investigation of the surface properties of areas on the nucleus of comet 67P/Churyumov-Gerasimenko. Aims: We aim to show that transport of material from one part of the cometary nucleus to another is a significant mechanism that influences the appearance of the nucleus and the surface thermal properties. Methods: We used data from the OSIRIS imaging system onboard the Rosetta spacecraft to identify surface features on the nucleus that can be produced by various transport mechanisms. We used simple calculations based on previous works to establish the plausibility of dust transport from one part of the nucleus to another. Results: We show by observation and modeling that "airfall" as a consequence of non-escaping large particles emitted from the neck region of the nucleus is a plausible explanation for the smooth thin deposits in the northern hemisphere of the nucleus. The consequences are also discussed. We also present observations of aeolian ripples and ventifacts. We show by numerical modeling that a type of saltation is plausible even under the rarified gas densities seen at the surface of the nucleus. However, interparticle cohesive forces present difficulties for this model, and an alternative mechanism for the initiation of reptation and creep may result from the airfall mechanism. The requirements on gas density and other parameters of this alternative make it a more attractive explanation for the observations. The uncertainties and implications are discussed.

  15. Challenges of deflecting an asteroid or comet nucleus with a nuclear burst

    SciTech Connect

    Bradley, Paul A; Plesko, Cathy S; Clement, Ryan R. C.; Conlon, Le Ann M; Weaver, Robert P; Guzik, Joyce A; Pritchett - Sheets, Lori A; Huebner, Walter F

    2009-01-01

    There are many natural disasters that humanity has to deal with over time. These include earthquakes, tsunamis, hurricanes, floods, asteroid strikes, and so on. Some of these disasters occur slowly enough that some advance warning is possible for affected areas. In this case, the response is to evacuate the affected area and deal wilh the damage later. The Katrina and Rita hurricane evacuations on the U.S. Gulf Coasl in 2005 demonstrated the chaos that can result from such a response. In contrast with other natural disasters, it is likely that an asteroid or comet nucleus on a collision course with Earth will be detected with enough warning time to possibly deflect it away. Thanks to Near-Earth Object (NED) surveys, people are working towards a goal of cataloging at least 90% of all near-Earth objects with diameters larger than {approx} 140 meters in the next fifteen years. The important question then, is how to mitigate the threat from an asteroid or comet nucleus found to be on a collision course with Earth. In this paper. we briefly review some possible deflection methods, describe their good and bad points, and then embark on a more detailed description of using nuclear munitions in a standoff mode to deflect the asteroid or comet nucleus before it can hit Earth.

  16. The Resolved Nucleus and Coma of Comet Siding Spring from MRO Observations

    NASA Astrophysics Data System (ADS)

    Farnham, Tony L.; Delamere, W. Alan; Kelley, Michael S. P.; Heyd, Rodney; Li, Jian-Yang

    2015-11-01

    Comet Siding Spring (C/2013 A1) is a dynamically new comet discovered on January 4, 2013. On October 19, 2014, just 6 days pefore perihelion, Siding Spring made an historic close approach (C/A) to Mars, closing to a distance of only 140,500 km. We used the HiRISE camera on the Mars Reconaissance Orbiter to observe the comet from October 17-20 (C/A-60 hr to C/A+15 hrs) obtaining 122 images, primarily in broadband filters centered near 500 (BG) and 700 (RED) nm, with another filter near 900 (IR) nm added near close approach. The HiRISE pixel scale in these observations is as small as 138 m/pix, essentially making this event a fortuitous natural flyby of a dynamically new comet.Enhancement of the closest approach images using both an unsharp mask and a coma fitting and subtraction routine, reveals a sharply-defined crescent that changes its appearance as the viewing geometry varies during the comet's passage. The crescent is likely the illuminated limb of the nucleus, making this the first occasion on which the nucleus of a dynamically new comet has been resolved. Preliminary analyses indicate that the nucleus is elongated (prolate ellipsoid) with a length on the order of a kilometer.Photometric measurements of the coma in a constant 48-km radius aperture show brightness variations in the RED filter sequence, with a periodicity of 8.1 hr. Because this is a measure of dust production, the single-peaked lightcurve represents the rotation period of the nucleus. During the observations, one primary fan feature is seen in the coma. The lightcurve variations, with amplitude of ~40% (60-140%) of the average brightness in the 48 km aperture, correlate to the feature visibility, indicating that the jet that produces it is the primary source of activity. The shape and direction of the fan suggests that the source is near a pole, producing a cone of dust around the spin axis. We anticipate that the long time baseline and wide range of viewpoints covered in the MRO images will be

  17. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Filacchione, G; De Sanctis, M C; Capaccioni, F; Raponi, A; Tosi, F; Ciarniello, M; Cerroni, P; Piccioni, G; Capria, M T; Palomba, E; Bellucci, G; Erard, S; Bockelee-Morvan, D; Leyrat, C; Arnold, G; Barucci, M A; Fulchignoni, M; Schmitt, B; Quirico, E; Jaumann, R; Stephan, K; Longobardo, A; Mennella, V; Migliorini, A; Ammannito, E; Benkhoff, J; Bibring, J P; Blanco, A; Blecka, M I; Carlson, R; Carsenty, U; Colangeli, L; Combes, M; Combi, M; Crovisier, J; Drossart, P; Encrenaz, T; Federico, C; Fink, U; Fonti, S; Ip, W H; Irwin, P; Kuehrt, E; Langevin, Y; Magni, G; McCord, T; Moroz, L; Mottola, S; Orofino, V; Schade, U; Taylor, F; Tiphene, D; Tozzi, G P; Beck, P; Biver, N; Bonal, L; Combe, J-Ph; Despan, D; Flamini, E; Formisano, M; Fornasier, S; Frigeri, A; Grassi, D; Gudipati, M S; Kappel, D; Mancarella, F; Markus, K; Merlin, F; Orosei, R; Rinaldi, G; Cartacci, M; Cicchetti, A; Giuppi, S; Hello, Y; Henry, F; Jacquinod, S; Reess, J M; Noschese, R; Politi, R; Peter, G

    2016-01-21

    Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation. PMID:26760209

  18. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Filacchione, G; De Sanctis, M C; Capaccioni, F; Raponi, A; Tosi, F; Ciarniello, M; Cerroni, P; Piccioni, G; Capria, M T; Palomba, E; Bellucci, G; Erard, S; Bockelee-Morvan, D; Leyrat, C; Arnold, G; Barucci, M A; Fulchignoni, M; Schmitt, B; Quirico, E; Jaumann, R; Stephan, K; Longobardo, A; Mennella, V; Migliorini, A; Ammannito, E; Benkhoff, J; Bibring, J P; Blanco, A; Blecka, M I; Carlson, R; Carsenty, U; Colangeli, L; Combes, M; Combi, M; Crovisier, J; Drossart, P; Encrenaz, T; Federico, C; Fink, U; Fonti, S; Ip, W H; Irwin, P; Kuehrt, E; Langevin, Y; Magni, G; McCord, T; Moroz, L; Mottola, S; Orofino, V; Schade, U; Taylor, F; Tiphene, D; Tozzi, G P; Beck, P; Biver, N; Bonal, L; Combe, J-Ph; Despan, D; Flamini, E; Formisano, M; Fornasier, S; Frigeri, A; Grassi, D; Gudipati, M S; Kappel, D; Mancarella, F; Markus, K; Merlin, F; Orosei, R; Rinaldi, G; Cartacci, M; Cicchetti, A; Giuppi, S; Hello, Y; Henry, F; Jacquinod, S; Reess, J M; Noschese, R; Politi, R; Peter, G

    2016-01-21

    Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation.

  19. Crystallization, sublimation, and gas release in the interior of a porous comet nucleus

    NASA Technical Reports Server (NTRS)

    Prialnik, Dina

    1992-01-01

    A numerical code is developed for evolutionary calculations of the thermal structure and composition of a porous comet nucleus made of water ice, in amorphous or crystalline form, other volatiles, dust, and gases trapped in amorphous ice. Bulk evaporation, crystallization, gas release, and free (Knudsen) flow of gases through the pores are taken into account. The numerical scheme yields exact conservation laws for mass and energy. The code is used to study the effect of bulk evaporation of ice in the interior of a comet nucleus during crystallization. It is found that evaporation controls the temperature distribution; the vapor prevents cooling of the crystallized layer of ice, by recondensation and release of latent heat. Thus high temperatures are maintained below the surface of the nucleus and down to depths of tens or hundreds of meters, even at large heliocentric distances, as long as crystallization goes on. Gas trapped in the ice and released during the phase transition flows both toward the interior and toward the surface and out of the nucleus. The progress of crystallization is largely determined by the contribution of gas fluxes to heat transfer.

  20. I. T. - R. O. C. K. S. Comet Nuclei Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Dalcher, N.

    2009-04-01

    Ices, organics and minerals recording the chemical evolution of the outer regions of the early solar nebula are the main constituents of comets. Because comets maintain the nearly pristine nature of the cloud where they formed, the analyses of their composition, structure, thermodynamics and isotope ratios will increase our understanding of the processes that occurred in the early phases of the solar system as well as the Interstellar Medium (ISM) Cloud that predated the formation of the solar nebula [1]. While the deep impact mission aimed at determining the internal structure of comet Temple1's nuclei [e.g. 3], the stardust mission sample return has dramatically increased our understanding of comets. Its first implications indicated that some of the comet material originated in the inner solar system and was later transported outward beyond the freezing line [4]. A wide range of organic compounds identified within different grains of the aerogel collectors has demonstrated the heterogeneity in their assemblages [5]. This suggests either many histories associated with these material or possibly analytical constraints imposed by capture heating of Wild2 material in silica aerogel. The current mission ROSETTA, will further expand our knowledge about comets considerably through rigorous in situ analyses of a Jupiter Family Comet (JFC). As the next generation of comet research post ROSETTA, we present the comet nuclei sample return mission IT - ROCKS (International Team - Return Of Comet's Key Samples) to return several minimally altered samples from various locations of comet 88P/Howell, a typical JFC. The mission scenario includes remote sensing of the comet's nucleus with onboard instruments similar to the ROSETTA instruments [6, 7, 8] (VIS, IR, Thermal IR, X-Ray, Radar) and gas/dust composition measurements including a plasma science package. Additionally two microprobes [9] will further investigate the physical properties of the comet's surface. Retrieving of the

  1. Hubble Space Telescope Observations of the Nucleus of Comet 8P/Tuttle

    NASA Astrophysics Data System (ADS)

    Lamy, Philippe L.; Toth, I.; Jorda, L.; Weaver, H. A.; Groussin, O.; A'Hearn, M. F.

    2008-09-01

    We unambiguously detected the nucleus of comet 8P/Tuttle, a nearly-isotropic comet (NIC) in a 13.5 yr orbital period, during its recent close (0.25 AU) Earth encounter with the Planetary Camera 2 of the Hubble Space Telescope (HST). The observations were performed from December 10.0 to 11.2, 2007, and consisted in 12 visits extending over a 28-hour period. At the mid-point of the observing window, the comet was 1.25 AU from the Sun , 0.48 AU from the Earth and at a phase angle of 46.6 deg. During each visit corresponding to an HST orbit, typically twelve images were obtained through five broadband filters (UBVRI). The light curve exhibits a complex shape best modeled by a bilobate body as evidenced by the radar observations of Harmon et al. (2008). We determined a synodic rotational period of 11.4 hr. Assuming the same albedo of 0.04 for the two lobes, we found respective radii of 1.2 km and 2.8 km. During the HST observations, the nucleus was at an aspect angle (between spin axis and line of sight) of 65 deg.

  2. Remote sensing of a comet nucleus with Rosetta/ROSINA in-situ coma measurements.

    NASA Astrophysics Data System (ADS)

    Dhooghe, Frederik; De Keyser, Johan

    2013-04-01

    Rosetta will rendez-vous with comet 67P/Churyumov-Gerasimenko in 2014 and will, among other tasks, study the physicochemical evolution of the cometary coma from onset of activity at large solar distances through perihelion at 1.2 AU. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) allows the determination of both neutrals and positive ions in the coma. This research effort is focused on using in situ gas density measurements at small distances from the nucleus to get information about gas production rates and volatile composition at the nucleus, which reveals information about the nucleus and its origin. Furthermore, if sufficient data is available, a 2D activity map of the nucleus surface can be created and inputs concerning the nucleus surface can be valuable to assist in finding a suitable landing location for Philae, the Rosetta lander. The volatile outgassing rate and the surface composition at the nucleus can be accurately determined from in situ coma composition measurements provided accurate information is available concerning solar activity, the flow field and reactions that transform the neutral gas as it expands outward (e.g. photo-ionization). This contribution describes the principle of the data inversion technique and illustrates it with model data.

  3. HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE NUCLEUS OF COMET C/2012 S1 (ISON)

    SciTech Connect

    Lamy, Philippe L.; Toth, Imre; Weaver, Harold A.

    2014-10-10

    We report on the analysis of several sequences of broadband visible images of comet C/2012 S1 (ISON) taken with the Wide Field Camera 3 of the Hubble Space Telescope on 2013 April 10, May 8, October 9, and November 1 in an attempt to detect and characterize its nucleus. Whereas the overwhelming coma precluded the detection of the nucleus in the first two sequences, the contrast was sufficient in early October to unambiguously retrieve the signal from the nucleus. Two images taken within a few minutes led to similar V magnitudes for the nucleus of 21.97 and 22.0 with a 1σ uncertainty of 0.065. Assuming a standard value for the geometric albedo (0.04) and a linear phase function with a coefficient of 0.04 mag deg{sup –1}, these V values imply that the nucleus radius is 0.68 ± 0.02 km. Although this result does depend on these two assumptions, we argue that the radius most likely lies in the range 0.6-0.9 km. This result is consistent with the constraints derived from the water production rates reported by Combi et al. The last sequence of images in 2013 November revealed temporal variation of the innermost coma. If attributed to a single rotating jet, this coma brightness variation suggests the rotational period of the nucleus may be close to ∼10.4 hr.

  4. The nucleus of Comet Borrelly: A study of morphology and surface brightness

    USGS Publications Warehouse

    Oberst, J.; Howington-Kraus, E.; Kirk, R.; Soderblom, L.; Buratti, B.; Hicks, M.; Nelson, R.; Britt, D.

    2004-01-01

    Stereo images obtained during the DS1 flyby were analyzed to derive a topographic model for the nucleus of Comet 19P/Borrelly for morphologic and photometric studies. The elongated nucleus has an overall concave shape, resembling a peanut, with the lower end tilted towards the camera. The bimodal character of surface-slopes and curvatures support the idea that the nucleus is a gravitational aggregate, consisting of two fragments in contact. Our photometric modeling suggests that topographic shading effects on Borrelly's surface are very minor (<10%) at the given resolution of the terrain model. Instead, albedo effects are thought to dominate Borrelly's large variations in surface brightness. With 90% of the visible surface having single scattering albedos between 0.008 and 0.024, Borrelly is confirmed to be among the darkest of the known Solar System objects. Photometrically corrected images emphasize that the nucleus has distinct, contiguous terrains covered with either bright or dark, smooth or mottled materials. Also, mapping of the changes in surface brightness with phase angle suggests that terrain roughness at subpixel scale is not uniform over the nucleus. High surface roughness is noted in particular near the transition between the upper and lower end of the nucleus, as well as near the presumed source region of Borrelly's main jets. Borrelly's surface is complex and characterized by distinct types of materials that have different compositional and/or physical properties. ?? 2003 Elsevier Inc. All rights reserved.

  5. Two independent and primitive envelopes of the bilobate nucleus of comet 67P

    NASA Astrophysics Data System (ADS)

    Massironi, Matteo; Simioni, Emanuele; Marzari, Francesco; Cremonese, Gabriele; Giacomini, Lorenza; Pajola, Maurizio; Jorda, Laurent; Naletto, Giampiero; Lowry, Stephen; El-Maarry, Mohamed Ramy; Preusker, Frank; Scholten, Frank; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; A'Hearn, Michael F.; Agarwal, Jessica; Auger, Anne-Thérèse; Barucci, M. Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Besse, Sebastien; Bodewits, Dennis; Capanna, Claire; da Deppo, Vania; Davidsson, Björn; Debei, Stefano; de Cecco, Mariolino; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Groussin, Olivier; Gutiérrez, Pedro J.; Güttler, Carsten; Hviid, Stubbe F.; Ip, Wing-Huen; Knollenberg, Jörg; Kovacs, Gabor; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M.; Lazzarin, Monica; Lin, Zhong-Yi; Lopez Moreno, Josè J.; Magrin, Sara; Michalik, Harald; Mottola, Stefano; Oklay, Nilda; Pommerol, Antoine; Thomas, Nicolas; Tubiana, Cecilia; Vincent, Jean-Baptiste

    2015-10-01

    The factors shaping cometary nuclei are still largely unknown, but could be the result of concurrent effects of evolutionary and primordial processes. The peculiar bilobed shape of comet 67P/Churyumov-Gerasimenko may be the result of the fusion of two objects that were once separate or the result of a localized excavation by outgassing at the interface between the two lobes. Here we report that the comet's major lobe is enveloped by a nearly continuous set of strata, up to 650 metres thick, which are independent of an analogous stratified envelope on the minor lobe. Gravity vectors computed for the two lobes separately are closer to perpendicular to the strata than those calculated for the entire nucleus and adjacent to the neck separating the two lobes. Therefore comet 67P/Churyumov-Gerasimenko is an accreted body of two distinct objects with `onion-like' stratification, which formed before they merged. We conclude that gentle, low-velocity collisions occurred between two fully formed kilometre-sized cometesimals in the early stages of the Solar System. The notable structural similarities between the two lobes of comet 67P/Churyumov-Gerasimenko indicate that the early-forming cometesimals experienced similar primordial stratified accretion, even though they formed independently.

  6. Two independent and primitive envelopes of the bilobate nucleus of comet 67P.

    PubMed

    Massironi, Matteo; Simioni, Emanuele; Marzari, Francesco; Cremonese, Gabriele; Giacomini, Lorenza; Pajola, Maurizio; Jorda, Laurent; Naletto, Giampiero; Lowry, Stephen; El-Maarry, Mohamed Ramy; Preusker, Frank; Scholten, Frank; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; A'Hearn, Michael F; Agarwal, Jessica; Auger, Anne-Thérèse; Barucci, M Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Besse, Sebastien; Bodewits, Dennis; Capanna, Claire; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Groussin, Olivier; Gutiérrez, Pedro J; Güttler, Carsten; Hviid, Stubbe F; Ip, Wing-Huen; Knollenberg, Jörg; Kovacs, Gabor; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M; Lazzarin, Monica; Lin, Zhong-Yi; Lopez Moreno, Josè J; Magrin, Sara; Michalik, Harald; Mottola, Stefano; Oklay, Nilda; Pommerol, Antoine; Thomas, Nicolas; Tubiana, Cecilia; Vincent, Jean-Baptiste

    2015-10-15

    The factors shaping cometary nuclei are still largely unknown, but could be the result of concurrent effects of evolutionary and primordial processes. The peculiar bilobed shape of comet 67P/Churyumov-Gerasimenko may be the result of the fusion of two objects that were once separate or the result of a localized excavation by outgassing at the interface between the two lobes. Here we report that the comet's major lobe is enveloped by a nearly continuous set of strata, up to 650 metres thick, which are independent of an analogous stratified envelope on the minor lobe. Gravity vectors computed for the two lobes separately are closer to perpendicular to the strata than those calculated for the entire nucleus and adjacent to the neck separating the two lobes. Therefore comet 67P/Churyumov-Gerasimenko is an accreted body of two distinct objects with 'onion-like' stratification, which formed before they merged. We conclude that gentle, low-velocity collisions occurred between two fully formed kilometre-sized cometesimals in the early stages of the Solar System. The notable structural similarities between the two lobes of comet 67P/Churyumov-Gerasimenko indicate that the early-forming cometesimals experienced similar primordial stratified accretion, even though they formed independently.

  7. Physical Characteristics of Asteroid-like Comet Nucleus C/2001 OG108 (LONEOS)

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Fernandez, Y. R.; Pravec, P.; French, L. M.; Farnham, T. L.; Gaffey, M. J.; Hardersen, P. S.; Kusnirak, P.; Sarounova, L.; Sheppard, S. S.

    2003-01-01

    For many years several investigators have suggested that some portion of the near-Earth asteroid population may actually be extinct cometary nuclei. Evidence used to support these hypotheses was based on: observations of asteroid orbits and associated meteor showers (e.g. 3200 Phaethon and the Geminid meteor shower); low activity of short period comet nuclei, which implied nonvolatile surface crusts (e.g. Neujmin 1, Arend-Rigaux); and detections of transient cometary activity in some near-Earth asteroids (e.g. 4015 Wilson-Harrington). Recent investigations have suggested that approximately 5-10% of the near- Earth asteroid population may be extinct comets. However if members of the near-Earth asteroid population are extinct cometary nuclei, then there should be some objects within this population that are near their final stages of evolution and so should demonstrate only low levels of activity. The recent detections of coma from near-Earth object 2001 OG108 have renewed interest in this possible comet-asteroid connection. This paper presents the first high quality ground-based near-infrared reflectance spectrum of a comet nucleus combined with detailed lightcurve and albedo measurements.

  8. Two independent and primitive envelopes of the bilobate nucleus of comet 67P.

    PubMed

    Massironi, Matteo; Simioni, Emanuele; Marzari, Francesco; Cremonese, Gabriele; Giacomini, Lorenza; Pajola, Maurizio; Jorda, Laurent; Naletto, Giampiero; Lowry, Stephen; El-Maarry, Mohamed Ramy; Preusker, Frank; Scholten, Frank; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; A'Hearn, Michael F; Agarwal, Jessica; Auger, Anne-Thérèse; Barucci, M Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Besse, Sebastien; Bodewits, Dennis; Capanna, Claire; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Groussin, Olivier; Gutiérrez, Pedro J; Güttler, Carsten; Hviid, Stubbe F; Ip, Wing-Huen; Knollenberg, Jörg; Kovacs, Gabor; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M; Lazzarin, Monica; Lin, Zhong-Yi; Lopez Moreno, Josè J; Magrin, Sara; Michalik, Harald; Mottola, Stefano; Oklay, Nilda; Pommerol, Antoine; Thomas, Nicolas; Tubiana, Cecilia; Vincent, Jean-Baptiste

    2015-10-15

    The factors shaping cometary nuclei are still largely unknown, but could be the result of concurrent effects of evolutionary and primordial processes. The peculiar bilobed shape of comet 67P/Churyumov-Gerasimenko may be the result of the fusion of two objects that were once separate or the result of a localized excavation by outgassing at the interface between the two lobes. Here we report that the comet's major lobe is enveloped by a nearly continuous set of strata, up to 650 metres thick, which are independent of an analogous stratified envelope on the minor lobe. Gravity vectors computed for the two lobes separately are closer to perpendicular to the strata than those calculated for the entire nucleus and adjacent to the neck separating the two lobes. Therefore comet 67P/Churyumov-Gerasimenko is an accreted body of two distinct objects with 'onion-like' stratification, which formed before they merged. We conclude that gentle, low-velocity collisions occurred between two fully formed kilometre-sized cometesimals in the early stages of the Solar System. The notable structural similarities between the two lobes of comet 67P/Churyumov-Gerasimenko indicate that the early-forming cometesimals experienced similar primordial stratified accretion, even though they formed independently. PMID:26416730

  9. Photometry of dust grains of comet 67P and connection with nucleus regions

    NASA Astrophysics Data System (ADS)

    Cremonese, G.; Simioni, E.; Ragazzoni, R.; Bertini, I.; La Forgia, F.; Pajola, M.; Oklay, N.; Fornasier, S.; Lazzarin, M.; Lucchetti, A.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; A'Hearn, M. F.; Agarwal, J.; Barucci, M. A.; Bertaux, J.-L.; Da Deppo, V.; Davidsson, B.; De Cecco, M.; Debei, S.; Fulle, M.; Groussin, O.; Güttler, C.; Gutierrez, P. J.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kramm, J.-R.; Kueppers, M.; Kürt, E.; Lara, L. M.; Magrin, S.; Lopez Moreno, J. J.; Marzari, F.; Mottola, S.; Naletto, G.; Preusker, F.; Scholten, F.; Thomas, N.; Tubiana, C.; Vincent, J.-B.

    2016-04-01

    Aims: Multiple pairs of high-resolution images of the dust coma of comet 67P/Churyumov-Gerasimenko have been collected by OSIRIS onboard Rosetta allowing extraction and analysis of dust grain tracks. Methods: We developed a quasi automatic method to recognize and to extract dust tracks in the Osiris images providing size, FWHM and photometric data. The dust tracks characterized by a low signal-to-noise ratio were checked manually. We performed the photometric analysis of 70 dust grain tracks observed on two different Narrow Angle Camera images in the two filters F24 and F28, centered at λ = 480.7 nm and at λ = 743.7 nm, respectively, deriving the color and the reddening of each one. We then extracted several images of the nucleus observed with the same filters and with the same phase angle to be compared with the dust grain reddening. Results: Most of the dust grain reddening is very similar to the nucleus values, confirming they come from the surface or subsurface layer. The histogram of the dust grain reddening has a secondary peak at negative values and shows some grains with values higher than the nucleus, suggesting a different composition from the surface grains. One hypothesis comes from the negative values point at the presence of hydrated minerals in the comet.

  10. The Nucleus of Main-belt Comet 259P/Garradd

    NASA Astrophysics Data System (ADS)

    MacLennan, Eric M.; Hsieh, Henry H.

    2012-10-01

    We present observations of the main-belt comet 259P/Garradd, previously known as P/2008 R1 (Garradd), obtained in 2011 and 2012 using the Gemini North Telescope on Mauna Kea in Hawaii and the SOAR telescope at Cerro Pachon in Chile, with the goal of computing the object's phase function and nucleus size. We find an absolute magnitude of HR = 19.71 ± 0.05 mag and slope parameter of GR = -0.08 ± 0.05 for the inactive nucleus, corresponding to an effective nucleus radius of re = 0.30 ± 0.02 km, assuming an R-band albedo of pR = 0.05. We also revisit observations reported for 259P while it was active in 2008 to quantify the dust mass loss and compare the object with other known main-belt comets. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  11. The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites

    NASA Astrophysics Data System (ADS)

    Engrand, Cecile; Duprat, Jean; Bardin, Noemie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Rémusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin; COSIMA Team

    2015-08-01

    Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. The Rosetta mission currently carries dust analyzers capable of measuring dust flux, sizes, physical properties and compositions of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko (COSIMA, GIADA, MIDAS), as well as gas analyzers (ROSINA, PTOLEMY, COSAC). A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system. We will present the implications of the analyses of samples in the laboratory and in space to a better understanding of the early protoplanetary disk.

  12. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Filacchione, G.; de Sanctis, M. C.; Capaccioni, F.; Raponi, A.; Tosi, F.; Ciarniello, M.; Cerroni, P.; Piccioni, G.; Capria, M. T.; Palomba, E.; Bellucci, G.; Erard, S.; Bockelee-Morvan, D.; Leyrat, C.; Arnold, G.; Barucci, M. A.; Fulchignoni, M.; Schmitt, B.; Quirico, E.; Jaumann, R.; Stephan, K.; Longobardo, A.; Mennella, V.; Migliorini, A.; Ammannito, E.; Benkhoff, J.; Bibring, J. P.; Blanco, A.; Blecka, M. I.; Carlson, R.; Carsenty, U.; Colangeli, L.; Combes, M.; Combi, M.; Crovisier, J.; Drossart, P.; Encrenaz, T.; Federico, C.; Fink, U.; Fonti, S.; Ip, W. H.; Irwin, P.; Kuehrt, E.; Langevin, Y.; Magni, G.; McCord, T.; Moroz, L.; Mottola, S.; Orofino, V.; Schade, U.; Taylor, F.; Tiphene, D.; Tozzi, G. P.; Beck, P.; Biver, N.; Bonal, L.; Combe, J.-Ph.; Despan, D.; Flamini, E.; Formisano, M.; Fornasier, S.; Frigeri, A.; Grassi, D.; Gudipati, M. S.; Kappel, D.; Mancarella, F.; Markus, K.; Merlin, F.; Orosei, R.; Rinaldi, G.; Cartacci, M.; Cicchetti, A.; Giuppi, S.; Hello, Y.; Henry, F.; Jacquinod, S.; Reess, J. M.; Noschese, R.; Politi, R.; Peter, G.

    2016-01-01

    Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet’s formation.

  13. A Portrait of the Nucleus of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Lamy, Philippe L.; Toth, Imre; Davidsson, Björn J. R.; Groussin, Olivier; Gutiérrez, Pedro; Jorda, Laurent; Kaasalainen, Mikko; Lowry, Stephen C.

    2007-02-01

    In 2003, comet 67P/Churyumov Gerasimenko was selected as the new target of the Rosetta mission as the most suitable alternative to the original target, comet 46P/Wirtanen, on the basis of orbital considerations even though very little was known about the physical properties of its nucleus. In a matter of a few years and based on highly focused observational campaigns as well as thorough theoretical investigations, a detailed portrait of this nucleus has been established that will serve as a baseline for planning the Rosetta operations and observations. In this review article, we present a novel method to determine the size and shape of a cometary nucleus: several visible light curves were inverted to produce a size scale free three dimensional shape, the size scaling being imposed by a thermal light curve. The procedure converges to two solutions which are only marginally different. The nucleus of comet 67P/Churyumov Gerasimenko emerges as an irregular body with an effective radius (that of the sphere having the same volume) = 1.72 km and moderate axial ratios a/b = 1.26 and a/c = 1.5 to 1.6. The overall dimensions measured along the principal axis for the two solutions are 4.49 4.75 km, 3.54 3.77 km and 2.94 2.92 km. The nucleus is found to be in principal axis rotation with a period = 12.4 12.7 h. Merging all observational constraints allow us to specify two regions for the direction of the rotational axis of the nucleus: RA = 220°+50° -30° and Dec = -70° ± 10° (retrograde rotation) or RA = 40°+50° -30° and Dec = +70°± 10° (prograde), the better convergence of the various determinations presently favoring the first solution. The phase function, although constrained by only two data points, exhibits a strong opposition effect rather similar to that of comet 9P/Tempel 1. The definition of the disk integrated albedo of an irregular body having a strong opposition effect raises problems, and the various alternatives led to a R-band geometric albedo in the

  14. Modeling the gas flux from a Jupiter-family comet nucleus

    NASA Astrophysics Data System (ADS)

    Benkhoff, Johannes; Huebner, Walter F.

    1996-09-01

    Mixing ratios of sublimating gases from ices in porous bodies in the solar system are important, observable phenomena. Surface erosion and dust build-up on a comet nucleus and coma formation are processes attributable to the flux of sublimating gases. Our computer simulations focus on the gas flux from volatile, icy components in the surface layer of a porous, Jupiter-family comet in order to relate quantitatively the observed relative molecular abundances in the coma with those in the nucleus. We assume a porous body containing dust and up to four components of chemically different ices (e.g. H 2O, CO, CO 2, CH 4) and solve the mass and energy equations for the different volatiles simultaneously. The model includes inflowing and outflowing gas within the body, dust mantle build-up, depletion of the most volatile ices in outer layers, and recondensation of gases in deeper layers. The model calculations start with a homogeneously mixed body at a constant temperature and a constant mass density at aphelion of an orbit. Due to insolation and conduction the internal heat of the body increases, and as a result of sublimation of the minor, more volatile components, the initially homogeneous body differentiates into a multi-layered body. For example a dust, H 2O, CO 2, and CO ice body differentiates into a four-layer body in which the deepest layer has the original composition and the higher layers are successively more depleted of volatiles. The boundaries between the layers are sublimation fronts of the corresponding volatile phases. The depths of the sublimation fronts change with time and are on the order of tens of meters. From the calculations we obtain temperature, relative chemical abundance, porosity, and pore size distributions as a function of depth, and the gas flux into the interior and into the coma for each of the volatiles at various positions of the comet in its orbit. In this paper we explore some early steps on the way to a more comprehensive model for

  15. On the rotation of the nucleus of the Great Comet of 1744

    SciTech Connect

    Pansecchi, L.; Fulle, M. Osservatorio Astronomico, Trieste )

    1991-01-01

    Assuming that the discrete synchronic formations of the multiple tail of the Great Comet of 1744 represents repetitive ejections of material from discrete nucleus-surface sources which are active during the cometary day and diurnally dormant, an analysis is conducted of the times of ejection by comparing the Cheseaux (1744) drawing with a network of theoretical synchrones. The times thus derived are consistent with a constant rotation period of the nucleus of 4.8 + or - 0.4 days; while this result is for the case of three sources, with discontinuous activity of at least one, the alternative possibility of a single source that is active at every rotation is also considered. 17 refs.

  16. The Nucleus of Comet 9P-Tempel 1: Shape and Geology from Two Flybys

    NASA Technical Reports Server (NTRS)

    Thomas, P.; A'Hearn, M.; Belton, M. J. S.; Brownlee, D.; Carcich, B.; Hermalyn, B.; Klaasen, K.; Sackett, S.; Schultz, P. H.; Veverka, J.; Bhaskaran, S.; Bodewits, D.; Chesley, S.; Clark, B.; Farnham, T.; Groussin, O.; Harris, J.; Kissel, J.; Li, J.-Y; Meech, K.; Melosh, J.; Quick, A.; Richardson, J.; Sunshine, J.; Wellnitz, D.

    2012-01-01

    The nucleus of comet Tempel 1 has been investigated at close range during two spacecraft missions separated by one comet orbit of the Sun, 5 1/2 years. The combined imaging covers 70% of the surface of this object which has a mean radius of 2.83 +/- 0.1 km. The surface can be divided into two terrain types: rough, pitted terrain and smoother regions of varying local topography. The rough surface has round depressions from resolution limits (10 m/pixel) up to 1 km across, spanning forms from crisp steep-walled pits, to subtle albedo rings, to topographic rings, with all ranges of morphologic gradation. Three gravitationally low regions of the comet have smoother terrain, parts of which appear to be deposits from minimally modified flows, with other parts likely to be heavily eroded portions of multiple layer piles. Changes observed between the two missions are primarily due to backwasting of scarps bounding one of these probable flow deposits. This style of erosion is also suggested by remnant mesa forms in other areas of smoother terrain. The two distinct terrains suggest either an evolutionary change in processes, topographically- controlled processes, or a continuing interaction of erosion and deposition.

  17. The Nucleus of Comet 67P/Churyumov-Gerasimenko: Lots of Surprises

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Rosetta Science Working Team

    2016-10-01

    ESA's Rosetta mission has made many new and unexpected discoveries since its arrival at comet 67P/Churyumov-Gerasimenko in August 2014. The first of these was the unusual shape of the cometary nucleus. Although bilobate nuclei had been seen before, the extreme concavities on 67P were unexpected. Evidence gathered during the mission suggests that two independent bodies came together to form 67P, rather than the nucleus being a single body that was sculpted by sublimation and/or other processes. Although not a surprise, early observations showed that the nucleus rotation period had decreased by ~22 minutes since the previous aphelion passage. A similar rotation period decrease was seen post-perihelion during the encounter. These changes likely arise from asymmetric jetting forces from the irregular nucleus. Initially, Rosetta's instruments found little evidence for water ice on the surface; the presence of surface water ice increased substantially as the nucleus approached perihelion. The nucleus bulk density, 533 ± 6 kg/m3, was measured with Radio Science and OSIRIS imaging of the nucleus volume. This confirmed previous estimates based on indirect methods that the bulk density of cometary nuclei was on the order of 500-600 kg/m3 and on measurement of the density of 9P/Tempel 1's nucleus by Deep Impact. Nucleus topography proved to be highly varied, from smooth dust-covered plains to shallow circular basins, to the very rough terrain where the Philae lander came to rest. Evidence of thermal cracking is everywhere. The discovery of cylindrical pits on the surface, typically 100-200m in diameter with similar depths was a major surprise and has been interpreted as sinkholes. "Goose-bump" terrain consisting of apparently random piles of boulders 2-3 m in diameter was another unexpected discovery. Apparent layering with scales of meters to many tens of meters was seen but there was little or no evidence for impact features. Radar tomography of the interior of the "head

  18. Trajectory analysis for the nucleus and dust of comet C/2013 A1 (Siding Spring)

    SciTech Connect

    Farnocchia, Davide; Chesley, Steven R.; Chodas, Paul W.; Tricarico, Pasquale; Kelley, Michael S. P.; Farnham, Tony L.

    2014-08-01

    Comet C/2013 A1 (Siding Spring) will experience a high velocity encounter with Mars on 2014 October 19 at a distance of 135,000 km ± 5000 km from the planet center. We present a comprehensive analysis of the trajectory of both the comet nucleus and the dust tail. The nucleus of C/2013 A1 cannot impact on Mars even in the case of unexpectedly large nongravitational perturbations. Furthermore, we compute the required ejection velocities for the dust grains of the tail to reach Mars as a function of particle radius and density and heliocentric distance of the ejection. A comparison between our results and the most current modeling of the ejection velocities suggests that impacts are possible only for millimeter to centimeter size particles released more than 13 AU from the Sun. However, this level of cometary activity that far from the Sun is considered extremely unlikely. The arrival time of these particles spans a 20-minute time interval centered at 2014 October 19 at 20:09 TDB, i.e., around the time that Mars crosses the orbital plane of C/2013 A1. Ejection velocities larger than currently estimated by a factor >2 would allow impacts for smaller particles ejected as close as 3 AU from the Sun. These particles would reach Mars from 19:13 TDB to 20:40 TDB.

  19. Rotation and color properties of the nucleus of Comet 2P/Encke

    NASA Astrophysics Data System (ADS)

    Lowry, Stephen C.; Weissman, Paul R.

    2007-05-01

    We present results from CCD observations of Comet 2P/Encke acquired at Steward Observatory's 2.3 m Bok Telescope on Kitt Peak. The observations were carried out in October 2002 when the comet was near aphelion. Rotational lightcurves in B-, V-, and R-filters were acquired over two nights of observations, and analysed to study the physical and color properties of the nucleus. The average apparent R-filter magnitude across both nights corresponds to a mean effective radius of 3.95±0.06 km, and this value is similar to that found for the V- and B-filters. Taking the observed brightness range, we obtain a/b⩾1.44±0.06 for the semi-axial ratio of Encke's nucleus. Applying the axial ratio to the R-filter photometry gives nucleus semi-axes of [3.60±0.09]×[5.20±0.13] km, using the empirically-derived albedo and phase coefficient. No coma or tail was seen despite deep imaging of the comet, and flux limits from potential unresolved coma do not exceed a few percent of the total measured flux, for standard coma models. This is consistent with many other published data sets taken when the comet was near aphelion. Our data includes the first detailed time series multi-color measurements of a cometary nucleus, and significant color variations were seen on October 3, though not repeated on October 4. The average color indices across both nights are: (V-R)=0.39±0.06 and (B-V)=0.73±0.06 ( R¯=19.76±0.03). We analysed the R-filter time-series photometry using the method of Harris et al. [Harris, A.W., Young, J.W., Bowell, E., Martin, L.J., Millis, R.L., Poutanen, M., Scaltriti, F., Zappala, V., Schober, H.J., Debehogne, H., Zeigler, K.W., 1989. Icarus 77, 171-186] to constrain the rotation period of the comet's nucleus, and find that a period of ˜11.45 h will satisfy the data, however the errors bars are large. We have successfully linked our data with the September 2002 data from Fernández et al. [Fernández, Y.R., Lowry, S.C., Weissman, P.R., Mueller, B.E.A., Samarasinha

  20. Seasonal Evolution on the Nucleus of Comet C/2013 A1 (Siding Spring)

    NASA Astrophysics Data System (ADS)

    Li, Jian-Yang; Samarasinha, Nalin H.; Kelley, Michael S. P.; Farnham, Tony L.; Bodewits, Dennis; Lisse, Carey M.; Mutchler, Max J.; A'Hearn, Michael F.; Delamere, W. Alan

    2016-02-01

    We observed Comet C/Siding Spring using the Hubble Space Telescope (HST) during its close approach to Mars. The high spatial resolution images obtained through the F689M, F775W, and F845M filters reveal the characteristics of the dust coma. The dust production rate of C/Siding Spring, quantified by Afρ, is 590 ± 30, 640 ± 30, and 670 ± 30 cm in a 420 km radius aperture at a 38° solar phase angle through the three filters, respectively, consistent with other observations at a similar time and geometry, and with model predictions based on earlier measurements. The dust expansion velocity is ˜150-250 m s-1 for micron-sized dust grains, similar to the speeds found for other comets. The coma has a color slope of (5.5 ± 1.5)%/100 nm between 689 and 845 nm, similar to previous HST measurements at comparable aperture sizes, consistent with the lack of color dependence on heliocentric distance for almost all previously observed active comets. The rotational period of the nucleus of C/Siding Spring is determined from the periodic brightness variation in the coma to be 8.00 ± 0.08 hr, with no excited rotational state detected. The dust coma shows a broad and diffuse fan-shaped feature in the sunward direction, with no temporal morphological variation observed. The projected orientation of the dust feature, combined with the previous analysis of the coma morphology and other characteristics, suggests secular activity evolution of the comet in its inner solar system passage as one previously observed active region turns off whereas new regions exposed to sunlight due to seasonal illumination change.

  1. Surface of the comet 67P from PHILAE/CIVA images as clues to the formation of the comet nucleus

    NASA Astrophysics Data System (ADS)

    Poulet, Francois; Bibring, Jean-Pierre; Carter, John; Eng, Pascal; Gondet, Brigitte; Jorda, Laurent; Langevin, Yves; Le Mouélic, Stéphane; Pilorget, Cédric

    2015-04-01

    The CIVA cameras onboard PHILAE provided the first ever in situ images of the surface of a comet (Bibring et al., this conf). The panorama acquired by CIVA at the landing site reveals a rough terrain dominated by agglomerates of consolidated materials similar to cm-sized pebbles. While the composition of these materials is unknown, their nature will be discussed in relation to both endogenic and exogenic processes that may sculpted the landscape of the landing site. These processes includes erosion (spatially non-uniform) by sublimation, redeposition of particles after ejection, fluidization and transport of cometary material on the surface, sintering effect, thermal fatigue, thermal stress, size segregation due to shaking, eolian erosion due to local outflow of cometary vapor and impact cratering at various scales. Recent advancements in planet formation theory suggest that the initial planetesimals (or cometestimals) may grow directly from the gravitational collapse of aerodynamically concentrated small particles, often referred to as "pebbles" (Johansen et al. 2007, Nature 448, 1022; Cuzzi et al. 2008, AJ 687, 1432). We will then discuss the possibility that the observed pebble pile structures are indicative of the formation process from which the initial nucleus formed, and how we can use this idea to learn about protoplanetary disks and the early processes involved in the Solar System formation.

  2. Deep Impact: Working Properties for the Target Nucleus Comet 9P/Tempel 1

    NASA Astrophysics Data System (ADS)

    Belton, Michael J. S.; Meech, Karen J.; A'Hearn, Michael F.; Groussin, Olivier; McFadden, Lucy; Lisse, Carey; Fernández, Yanga R.; Pittichová, Jana; Hsieh, Henry; Kissel, Jochen; Klaasen, Kenneth; Lamy, Philippe; Prialnik, Dina; Sunshine, Jessica; Thomas, Peter; Toth, Imre

    2005-03-01

    In 1998, Comet 9P/Tempel 1 was chosen as the target of the Deep Impact mission (A’Hearn, M. F., Belton, M. J. S., and Delamere, A., Space Sci. Rev., 2005) even though very little was known about its physical properties. Efforts were immediately begun to improve this situation by the Deep Impact Science Team leading to the founding of a worldwide observing campaign (Meech et al., Space Sci. Rev., 2005a). This campaign has already produced a great deal of information on the global properties of the comet’s nucleus (summarized in Table I) that is vital to the planning and the assessment of the chances of success at the impact and encounter. Since the mission was begun the successful encounters of the Deep Space 1 spacecraft at Comet 19P/Borrelly and the Stardust spacecraft at Comet 81P/Wild 2 have occurred yielding new information on the state of the nuclei of these two comets. This information, together with earlier results on the nucleus of comet 1P/Halley from the European Space Agency’s Giotto, the Soviet Vega mission, and various ground-based observational and theoretical studies, is used as a basis for conjectures on the morphological, geological, mechanical, and compositional properties of the surface and subsurface that Deep Impact may find at 9P/Tempel 1. We adopt the following working values (circa December 2004) for the nucleus parameters of prime importance to Deep Impact as follows: mean effective radius = 3.25± 0.2 km, shape irregular triaxial ellipsoid with a/b = 3.2± 0.4 and overall dimensions of ˜14.4 × 4.4 × 4.4 km, principal axis rotation with period = 41.85± 0.1 hr, pole directions (RA, Dec, J2000) = 46± 10, 73± 10 deg (Pole 1) or 287± 14, 16.5± 10 deg (Pole 2) (the two poles are photometrically, but not geometrically, equivalent), Kron-Cousins (V-R) color = 0.56± 0.02, V-band geometric albedo = 0.04± 0.01, R-band geometric albedo = 0.05± 0.01, R-band H(1,1,0) = 14.441± 0.067, and mass ˜7×1013 kg assuming a bulk density of 500

  3. A model of dust fragmentation in near-nucleus jet-like features on Comet P/Halley

    NASA Technical Reports Server (NTRS)

    Konno, Ichishiro; Huebner, W. F.; Boice, D. C.

    1993-01-01

    A model for dusty gas flows and dust fragmentation in cometary atmospheres is developed and applied to interpret the dust intensity profiles near the nucleus of Comet P/Halley. It is found that fragmentation is not the only physical mechanism for explaining the dust intensity profiles from the 1/z dependence in the region about 1 to 40 km from the nucleus. A combination of the geometric effect and dust fragmentation is a likely explanation for the profiles.

  4. PECULIAR NEAR-NUCLEUS OUTGASSING OF COMET 17P/HOLMES DURING ITS 2007 OUTBURST

    SciTech Connect

    Qi, Chunhua; Gurwell, Mark A.; Wilner, David J.; Hogerheijde, Michiel R.; Jewitt, David

    2015-01-20

    We present high angular resolution Submillimeter Array observations of the outbursting Jupiter family comet 17P/Holmes on 2007 October 26-29, achieving a spatial resolution of 2.''5, or ∼3000 km at the comet distance. The observations resulted in detections of the rotational lines CO 3-2, HCN 4-3, H{sup 13}CN 4-3, CS 7-6, H{sub 2}CO 3{sub 1,} {sub 2}-2{sub 1,} {sub 1}, H{sub 2}S 2{sub 2,} {sub 0}-2{sub 1,} {sub 1}, and multiple CH{sub 3}OH lines, along with the associated dust continuum at 221 and 349 GHz. The continuum has a spectral index of 2.7 ± 0.3, slightly steeper than blackbody emission from large dust particles. From the imaging data, we identify two components in the molecular emission. One component is characterized by a relatively broad line width (∼1 km s{sup –1} FWHM) exhibiting a symmetric outgassing pattern with respect to the nucleus position. The second component has a narrower line width (<0.5 km s{sup –1} FWHM) with the line center redshifted by 0.1-0.2 km s{sup –1} (cometocentric frame), and shows a velocity shift across the nucleus position with the position angle gradually changing from 66° to 30° within the four days of observations. We determine distinctly different CO/HCN ratios for each of the components. For the broad-line component we find CO/HCN < 7, while in the narrow-line component, CO/HCN = 40 ± 5. We hypothesize that the narrow-line component originates from the ice grain halo found in near-nucleus photometry, believed to be created by sublimating recently released ice grains around the nucleus during the outburst. In this interpretation, the high CO/HCN ratio of this component reflects the more pristine volatile composition of nucleus material released in the outburst.

  5. EVIDENCE FOR FRESH FROST LAYER ON THE BARE NUCLEUS OF COMET HALE-BOPP AT 32 AU DISTANCE

    SciTech Connect

    Szabo, Gyula M.; Kiss, Laszlo L.; Pal, Andras; Kiss, Csaba; Sarneczky, Krisztian; Juhasz, Attila; Hogerheijde, Michiel R.

    2012-12-10

    Here, we report that the activity of comet Hale-Bopp ceased between late 2007 and 2009 March, at about 28 AU distance from the Sun. At that time, the comet resided at a distance from the Sun that exceeded the freeze-out distance of regular comets by an order of magnitude. A Herschel Space Observatory PACS scan was taken in mid-2010, in the already inactive state of the nucleus. The albedo has been found to be surprisingly large (8.1% {+-} 0.9%), which exceeds the value known for any other comets. With re-reduction of archive Hubble Space Telescope images from 1995 and 1996, we confirm that the pre-perihelion albedo resembled that of an ordinary comet and was smaller by a factor of two than the post-activity albedo. Our further observations with the Very Large Telescope also confirmed that the albedo increased significantly by the end of the activity. We explain these observations by proposing gravitational redeposition of icy grains toward the end of the activity. This is plausible for such a massive body in a cold environment, where gas velocity is lowered to the range of the escape velocity. These observations also show that giant comets are not just the upscaled versions of the comets we know but can be affected by processes that are yet to be fully identified.

  6. Evidence for Fresh Frost Layer on the Bare Nucleus of Comet Hale-Bopp at 32 AU Distance

    NASA Astrophysics Data System (ADS)

    Szabó, Gyula M.; Kiss, László L.; Pál, András; Kiss, Csaba; Sárneczky, Krisztián; Juhász, Attila; Hogerheijde, Michiel R.

    2012-12-01

    Here, we report that the activity of comet Hale-Bopp ceased between late 2007 and 2009 March, at about 28 AU distance from the Sun. At that time, the comet resided at a distance from the Sun that exceeded the freeze-out distance of regular comets by an order of magnitude. A Herschel Space Observatory PACS scan was taken in mid-2010, in the already inactive state of the nucleus. The albedo has been found to be surprisingly large (8.1% ± 0.9%), which exceeds the value known for any other comets. With re-reduction of archive Hubble Space Telescope images from 1995 and 1996, we confirm that the pre-perihelion albedo resembled that of an ordinary comet and was smaller by a factor of two than the post-activity albedo. Our further observations with the Very Large Telescope also confirmed that the albedo increased significantly by the end of the activity. We explain these observations by proposing gravitational redeposition of icy grains toward the end of the activity. This is plausible for such a massive body in a cold environment, where gas velocity is lowered to the range of the escape velocity. These observations also show that giant comets are not just the upscaled versions of the comets we know but can be affected by processes that are yet to be fully identified.

  7. Seasonal effects on the nucleus of comet 67P revealed by Rosetta/VIRTIS

    NASA Astrophysics Data System (ADS)

    Tosi, Federico; Capaccioni, Fabrizio; Filacchione, Gianrico; Erard, Stéphane; Rouseeau, Batiste; Combe, Jean-Philippe; Capria, Maria Teresa; Leyrat, Cédric; Longobardo, Andrea; Bockelée-Morvan, Dominique; Kappel, David; Arnold, Gabriele; Fonti, Sergio; Mancarella, Francesca; Kuehrt, Ekkehard; Mottola, Stefano

    2016-04-01

    We describe thermal effects on the nucleus of comet 67P. Due to the overall low thermal inertia of the nucleus surface, the surface temperature is essentially dominated by the instantaneous value of the solar incidence angle and the heliocentric distance. However, for each location, the smallest achievable value of insolation angle depends on the season and topography. Given the substantial obliquity of comet 67P, seasons are such that the northern hemisphere is mainly illuminated at aphelion while the southern hemisphere receives most insolation soon after perihelion. In addition, the heliocentric distance strongly affects the surface temperature, all other parameters being equal. This is a larger effect in comets than in asteroids, due to the wide range of heliocentric distance values spanned by comets. When Rosetta started its global mapping observation campaign, in early August 2014, hyperspectral images acquired by the VIRTIS imaging spectrometer onboard the Rosetta Orbiter covered only the northern regions of the cometary surface, and the equatorial belt became gradually unveiled, while the southern region has been revealed from 2015 onwards. In parallel, the comet's heliocentric distance has been decreasing from ˜3.6 AU down to 1.24 AU, the distance at which the perihelion passage occurred on 13 August 2015. By relating surface temperatures as measured by VIRTIS to three variables: solar incidence angle, true local solar time and heliocentric distance, we aim to separate the relative contributions due to season and to the heliocentric distance. To do this, we use both VIRTIS-M data (namely data from the mapping spectrometer covering the 1-5 μm range, available up to April 2015, i.e. before the failure of the IR cryocooler) and VIRTIS-H data (namely data from the high-resolution point spectrometer covering the 2-5 μm range), and we focus in particular on three regions: one in the northern hemisphere, one in the equatorial region and one in the southern

  8. Infrared spectrophotometry of Comet IRAS-Araki-Alcock (1983d) - A bare nucleus revealed?

    NASA Technical Reports Server (NTRS)

    Hanner, M. S.; Aitken, D. K.; Knacke, R.; Mccorkle, S.; Roche, P. F.; Tokunaga, A. T.

    1985-01-01

    Spectra of the central core and surrounding coma of Comet IRAS-Araki-Alcock (1983d) were obtained at 8-13 microns on May 11 and 2-4 microns on May 12, 1983. Spatially resolved measurements at 10 microns with a 4-arcsec beam showed that the central core was more than 100 times brighter than the inner coma only 8 arcsec away; for radially outflowing dust, the brightness ratio would be a factor of 8. The observations of the central core are consistent with direct detection of a nucleus having a radius of approximately 5 km. The temperature of the sunlit hemisphere was greater than 300 K. Spectra of the core are featureless, while spectra of the coma suggest weak silicate emission. The spectra show no evidence for icy grains. The dust production rate on May 11.4 was about 100,000 g/sec, assuming that the gas flux from the dust-producing areas on the nucleus was about 0.00001 g/sq cm per sec.

  9. Rosetta/OSIRIS: Nucleus morphology and activity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Sierks, Holger

    2015-08-01

    Introduction: The Rosetta mission of the European Space Agency arrived on August 6, 2014, at the target comet 67P/Churyumov-Gerasimenko after 10 years of cruise. OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) is the scientific imaging system onboard Rosetta. It comprises a Narrow Angle Camera (NAC) for broad-band nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field coma investigations.OSIRIS images the nucleus and the coma of comet 67P/C-G from the arrival throughout early mapping phase, PHILAE landing, and escort phase with close fly-by beginning of the year 2015.The team paper presents the surface morphology and activity of the nucleus as seen in gas, dust, and local jets and the larger scale coma studied by OSIRIS.Acknowledgements: OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politéchnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany.Additional Information: The OSIRIS team is H. Sierks, C. Barbieri, P. Lamy, R. Rodrigo, D. Koschny, H. Rickman, J. Agarwal, M. A'Hearn, I. Bertini, F. Angrilli, M. A. Barucci, J. L. Bertaux, G. Cremonese, V. Da Deppo, B. Davidsson, S. Debei, M. De Cecco, S. Fornasier, M. Fulle, O. Groussin, C. Güttler, P. Gutierrez, S. Hviid, W. Ip, L. Jorda, H. U. Keller, J. Knollenberg, R. Kramm, E. Kührt, M. Küppers, L. Lara, M. Lazzarin, J. J. Lopez, S. Lowry, S. Marchi, F. Marzari, H. Michalik, S. Mottola, G. Naletto, N. Oklay, L

  10. Millimeter and Submillimeter Observations of Comet 67P's Nucleus, Gas, and Dust with the Rosetta/MIRO Instrument

    NASA Astrophysics Data System (ADS)

    Hofstadter, Mark

    2016-04-01

    The Microwave Instrument for the Rosetta Orbiter (MIRO) has been making measurements of comet 67P/C-G since June 2014, when the comet was 3.92 AU from the Sun and Rosetta was approximately 400,000 km from the nucleus. Those first observations were spatially unresolved measurements of the 556 GHz water line, used to infer the abundance and velocity of water vapor in the coma (Gulkis et al. 2015, Science 347). In the almost two years since that time, as the spacecraft has moved closer to the nucleus and the comet has become more active (perihelion at 1.2 AU from the Sun occurred in August 2015), MIRO's submillimeter spectrometer (working at frequencies near 550 GHz, or wavelengths near 0.5 mm) has been used to determine the velocity, abundance, and spatial distribution of H216O, H217O, H218O, CH3OH, NH3, and CO in the coma as a function of time (e.g. water is discussed by Biver et al. 2015 and Lee et al. 2015, Astron. and Astrophys. 583). In addition to its submillimeter spectrometer, MIRO has two broad band continuum channels operating at wavelengths near 0.5 and 1.6 millimeter. These channels are designed to probe the nucleus ˜1 millimeter to 10 cm below the surface. Data have been used to infer properties such as thermal inertia, porosity, and ice content as functions of location, depth, and time (e.g. Schloerb et al. 2015 and Choukroun et al. 2015, Astron. and Astrophys. 583). These channels have also been used to map the distribution of relatively large dust grains (radius > ˜1 mm) in the inner coma of the comet, with the potential to constrain models of dust acceleration, cooling, and fragmentation. This talk will review the latest results from MIRO's measurements of the nucleus, coma, and dust, and discuss some of the processes that couple these components of the comet.

  11. Development of Sample Handling and Analytical Expertise For the Stardust Comet Sample Return

    SciTech Connect

    Bradley, J; Bajt, S; Brennan, S; Graham, G; Grant, P; Hutcheon, I; Ishii, H; Pianetta, P; Toppani, A; Westphal, A

    2006-02-09

    NASA's Stardust mission returned to Earth in January 2006 with ''fresh'' cometary particles from a young Jupiter family comet. The cometary particles were sampled during the spacecraft flyby of comet 81P/Wild-2 in January 2004, when they impacted low-density silica aerogel tiles and aluminum foils on the sample tray assembly at approximately 6.1 km/s. This LDRD project has developed extraction and sample recovery methodologies to maximize the scientific information that can be obtained from the analysis of natural and man-made nano-materials of relevance to the LLNL programs.

  12. An instrument for in situ comet nucleus surface density profile measurement by gamma ray attenuation

    NASA Astrophysics Data System (ADS)

    Ball, Andrew J.; Gadomski, Stanislaw; Banaszkiewicz, Marek; Spohn, Tilman; Ahrens, Thomas J.; Whyndham, Matthew; Zarnecki, John C.

    2001-08-01

    The MUPUS experiment on the Rosetta Lander will measure thermal and mechanical properties as well as the bulk density of the cometary material at and just below the surface of the nucleus of comet 46P/Wirtanen. A profile of bulk density vs. depth will be obtained by measuring the attenuation of 662 keV gamma rays emitted by a 137Cs source. Compton scattering is the dominant interaction process at this energy, the attenuation depending directly on the total number of electrons along the source-detector path. This in turn is approximately proportional to the column density. We report here on the design of the bulk density instrument and the results of related Monte Carlo simulations, laboratory tests and calculations of the instrument's performance. The 137Cs radioisotope source is mounted in the tip of the MUPUS thermal probe - a 10 mm diameter rod, to be hammered into the surface of the nucleus to a depth of ˜370 mm. Two cadmium zinc telluride (CZT) detectors mounted at the top of the probe will monitor the count rate of 662 keV photons. Due to the statistics of photon counting, the integration time required to measure column density to a particular accuracy varies with depth as well as with bulk density. The required integration time is minimised for a material thickness equal to twice the exponential attenuation length. At shallower depths the required time rises due to the smaller fractional change in count rate with varying depth, while at greater depths the reduced count rate demands longer integration times. The former effect and the fact that the first 45 mm of the source-detector path passes not through the comet but through the material of the probe, mean that the first density measurement cannot be made until the source has reached a depth of perhaps 100 mm. The laboratory experiments indicate that at this depth an integration time no less than 348 s (falling to 93.9 s at full penetration) would be required to measure a bulk density of 1000 kg m -3 to 5

  13. Estimating the strength of the nucleus material of comet 67P Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Krasil'nikov, S. S.; Shiryaev, A. A.; Mall, U.; Keller, H. U.; Skorov, Yu. V.; Mottola, S.; Hviid, S. F.

    2016-07-01

    Consideration is given to the estimates for the strength of the consolidated material forming the bulk of the nucleus of comet 67P Churyumov-Gerasimenko and those for the strength of the surface material overlying the consolidated material at the sites of the first and last contact of the Philae lander with the nucleus. The strength of the consolidated material was estimated by analyzing the terrain characteristics of the steep cliffs, where the material is exposed on the surface. Based on these estimates, the tensile strength of the material is in the range from 1.5 to 100 Pa; the shear strength, from ˜13 to ⩾30 Pa; and the compressive strength, from 30 to 150 Pa, possibly up to 1.5 kPa. These are very low strength values. Given the dependence of the measurement results on the size of the measured object, they are similar to those of fresh dry snow at -10°C. The (compressive) strength of the surface material at the site of the first touchdown of Philae on the nucleus is estimated from the measurements of the dynamics of the surface impact by the spacecraft's legs and the geometry of the impact pits as 1-3 kPa. For comparison with the measurement results for ice-containing materials in terrestrial laboratories, it needs to be taken into account that the rate of deformation by Philae's legs is four orders of magnitude higher than that in typical terrestrial measurements, leading to a possible overestimation of the strength by roughly an order of magnitude. There was an attemp to put one of the MUPUS sensors into the surface material at the site of the last contact of Philae with the nucleus. Noticeable penetration of the tester probe was not achieved that led to estimation of the minimum compressive strength of the material to be ⩾4 MPa4 This fairly high strength appears to indicate the presence of highly porous ice with grains "frozen" at contacts.

  14. Global Shape and Topography of the Nucleus of Comet 67P/C-G from ROSETTA/OSIRIS Images

    NASA Astrophysics Data System (ADS)

    Jorda, L.; Gaskell, R.; Hviid, S.; Capanna, C.; Groussin, O.; Gutierrez, P.; Lamy, P.; Scholten, F.; Preusker, F.; Kaasalainen, M.; Keller, H. U.; Knollenberg, J.; Kührt, E.; Mottola, S.; Sierks, H.; Snodgrass, C.; Thomas, N.; Toth, I.; Vincent, J.-B.

    2014-04-01

    The ROSETTA spacecraft will approach the nucleus of comet P/Churyumov-Gerasimenko in early August 2014 after a successful wake-up on January 20, 2014. The OSIRIS instrument is a set of two cameras aboard ROSETTA: the Narrow Angle Camera and the Wide Angle Camera which have fields-of-view of 2.2° and about 12° respectively. Both cameras are equipped with a 2K by 2K CCD detector. The two cameras have been successfully re-commissioned at the end of March 2014. Observations during the approach and first bound orbits in July-August 2014 will allow to map the surface of the nucleus with OSIRIS at a scale as small as 1 m/pixel. The images will be used to reconstruct the 3D global topography of the nucleus at high-resolution with a combination of two advanced reconstruction techniques: stereophotogrammetry and stereophotoclinometry. The reconstructed global shape will be used to determine the bulk density of the nucleus with an accuracy of a few percent and to localize and quantitatively characterize the main topographic features at its surface. It will also allow us to identify the different types of terrains present at the surface of the nucleus. We will describe and discuss the bulk properties of the nucleus (bulk shape, density and moments of inertia) against those of other comets observed from the ground or by previous space probes. We will also identify the main topographic features from a combined analysis of images and global digital terrain models and compare them with those identified at the surface of comets P/Borrelly, P/Wild 2 and P/Tempel 1 by previous space probes. Finally, we will propose a preliminary interpretation for the processes involved in their formation.

  15. Outgassing asymmetry of periodic Comet Encke. II - Apparitions 1868-1918 and a study of the nucleus evolution

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1988-01-01

    Directed outgassing from isolated sources on P/Encke's rotating nucleus is investigated based on observations made between 1868 and 1918. A model of a collimated particle flow which identifies a sunward fan-like coma with the emission cone described by the ejecta from a discrete active region is shown to account for physical observations of the comet's perihelion. The results support nucleus precession, with a time-variable rate averaging about 1 degree per revolution. It is suggested that wall collapse and other processes limit the lifespans of individual vents to only a few hundred years or so. Differences between new and old vents are considered.

  16. Rosetta and Comet Composition of Volatile and Refractories in the Nucleus of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Calmonte, Ursina; Alice TEam (PI Alan Stern), CONSTERT Team (PI Wlodek Kofman), COSIMA Team (PI Martin Hilchenbach), GIADA Team (PI Alessandra Rotundi), MIDAS Team (PI Mark Bentley), MIRO Team (PI Mark Hofstadter), OSIRIS Team (PI Holger Sierks), ROSINA Team (PI Kathrin Altwegg), RPC Team (PIs Hans Nilsson, James Burch, Anders Eriksson, Karl Heinz-Glassmeier, Pierre Henri, Christopher Carr), RSI Team (PI Martin Paetzold), VIRTIS Team (PI Fabrizio Capaccioni), Lander Team (Lead Scientists: Hermann Boehnhardt and Jean- Pierre Bibring), IDS Team (Eberhard Gruen, Marcello Fulchignoni, Paul Weissman), Project Scientist Team (Matt Taylor, Bonnie Buratti, Nicolas Altobelli, Mathieu Choukroun), Ground-Based Observations Team (Colin Snodgrass)

    2016-10-01

    The Rosetta mission has been taking measurements of its target comet 67P/Churyumov-Gerasimenko since early 2014 and will complete operations at the end of September 2016.The mission Science Management Plan, in 1994, laid out the five prime goals and themes of the mission.1) To study the global characterisation of the nucleus, the determination of the dynamics properties, surface morphology and composition of the comet.2) Examination of the Chemical, Mineralogical and isotopic compositions of volatiles and refractories in a cometary nucleus.3) Physical interrelation of volatiles and refractories in a cometary nucleus4) Study of the development of cometary activity and the process in the surface layer of the nucleus and in the inner coma5) The origins of comets, the relationship between cometary and interstellar material and the implications for the origin of the Solar System.To cover all aspects of the Rosetta mission in this dedicated session, this abstracts is one of 5, and focuses on theme 2:In this contribution we will focus on the highlights of the volatile and refractory inventory, the compositional evolution during orbit, and the major constraints from this to the Solar System formation. In particular we will detail the evolution of the volatile composition along the comet's orbit around the Sun ranging from beyond 3 AU to the perihelion at a heliocentric distance of 1.24 AU and back to 3.6 AU and discussion new parent molecules in the cometary volatile inventory that give new insights into the Solar System formation.

  17. Tidal Breakup of the Nucleus of Comet Shoemaker-Levy 9

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1995-01-01

    The breakup of Comet Shoemaker-Levy 9 is discussed both in the context of splitting as a cometary phenomenon and comparing it with other split comets. The physical appearance of the comet is described, diagnostic features are identified, and implications are noted for modelling the event.

  18. Comets

    NASA Video Gallery

    Did you know that comets seen streaking across the night sky may have brought the building blocks of life to our planet billions of years ago? Join NASA in learning more about these fascinating obj...

  19. The comet Giacobini-Zinner magnetotail: Axial stresses and inferred near-nucleus properties

    SciTech Connect

    McComas, D.J.; Gosling, J.T.; Bame, S.J.; Slavin, J.A.; Smith, E.J.; Steinberg, J.L.

    1986-10-01

    Utilizing the electron and magnetic field data from the ICE tail traversal of Comet Giacobini-Zinner along with the MHD equations, we have developed a steady state, stress balance model of the cometary magnetotail. With it we infer many important but unmeasured ion properties within the G-Z magnetotail both at ICE and upstream at the average point along each streamline where cometary ions are picked-up. The derived tailward ion flow speed at ICE is quite constant at approx.-20 to -30 km/sec across the entire tail. The flow velocity, ion temperature, density, and ion source rates upstream from the lobes (current sheet) at the average pickup locations are approx.-75 km/sec (approx.-12), approx.4 x 10/sup 6/ K (approx.1 x 10/sup 5/), approx.20 /cm/sup 3/ (approx.400), and approx..15 /cm/sup 3//sec (approx.3.6). Gradients in the plasma properties between these two regions are quire strong. Implications of our inferred plasma properties for the near-nucleus region and for cometary magnetotail formation are examined. 9 refs., 1 fig.

  20. Earth's 2006 Encounter with Comet 73P/Schwassmann-Wachmann: Products of Nucleus Fragmentation Seen in Closeup

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    2007-01-01

    The large numbers of nucleus fragments observed are a spectacular illustration of the process of cascading fragmentation in progress, a concept introduced to interpret the properties of the Kreutz system of sungrazers and comet D/1993 F2. The objective is to describe the fragmentation sequence and hierarchy of comet 73P, the nature of the fragmentation process and observed events, and the expected future evolution of this comet. The orbital arc populated by the fragments refers to an interval of 3.74 days in the perihelion time. This result suggests that they all could be products (but not necessarily first-generation fragments) of two 1995 events, in early September (involving an enormous outburst) and at the beginning of November. The interval of perihelion times is equivalent to a range of about 2.5 m/s in separation velocity or 0.00012 the Sun's attraction in nongravitational deceleration. Their combined effect suggests minor orbital momentum changes acquired during fragmentation and decelerations compatible with survival over two revolutions about the Sun. Fragment B is a likely first-generation product of one of the 1995 events. From the behavior of the primary fragment C, 73P is not a dying comet, even though fragment B and others were episodically breaking up into many pieces. Each episode began with the sudden appearance of a starlike nucleus condensation and a rapidly expanding outburst, followed by a development of jets, and a gradual tailward extension of the fading condensation, until the discrete masses embedded in it could be resolved. In April-May, this debris traveled first to the southwest, but models show their eventual motion toward the projected orbit. Fainter fragments were imaged over limited time, apparently because of their erratic activity (interspersed with periods of dormancy) rather than improptu disintegration. A dust trail joining the fragments and reminiscent of comet 141P/Machholz suggests that cascading fragmentation exerts itself

  1. Fireball on 6 July 2002 over the Mediterranean Sea is a fragment of the comet's nucleus

    NASA Astrophysics Data System (ADS)

    Churyumov, Klim; Kruchinenko, Vitaly G.; Churyumova, Tetyana; Mozgova, Alyona

    2015-03-01

    Today has been known for a considerable number of cases, the explosion of large meteoroids in Earth's atmosphere. This is confirmed by the data of registrations of fireballs by devices and the results of measurements in the atmosphere of bright light flashes by photodiodes Corporation ``Sandia Laboratories", which were installed on geostationary satellites of the United States, and also by data of measurements of acoustic-gravitational waves from the thermal explosions of meteoroids [ReVelle D.O. Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves, Near-Earth Objects, Ed. Remo J. Annals of the New York Academy of Sciences 882, 284-302, 1997]. The work [Brown P., Spalding R.E., ReVelle D.O. et al. The flux of small near-Earth objects colliding with the Earth, Nature 420, 314-316, 2002.] shows the results of processing the observations of flashes of large meteoroids in Earth's atmosphere, obtained with the help of geostationary satellites of the United States. Over 8.5 years (from February 1994 to September 2002) 300 such events were registered. On July 6, 2002 r over the Mediterranean Sea a bright fireball was registered. The energy of the meteoroid explosion that caused the phenomenon of the car, was 26 kilotons of TNT [Brown et al., 2002]. We believe that this energy refers to the height of the full bracking of the meteoroid. At a speed of 20.3 km/s adopted by the authors, body mass at this height is 5 × 108 g, and when entering the Earth's atmosphere, it was about 7 × 108 g. Based on the obtained values of the mass, we conclude that the exploded meteoroid, causing a phenomenon of the fireball was a fragment of the comet nucleus. In processing the density of the body were taken 1 g/cm 3 and the initial velocity (~30 km/s).

  2. Study of sampling systems for comets and Mars

    NASA Technical Reports Server (NTRS)

    Amundsen, R. J.; Clark, B. C.

    1987-01-01

    Several aspects of the techniques that can be applied to acquisition and preservation of samples from Mars and a cometary nucleus were examined. Scientific approaches to sampling, grounded in proven engineering methods are the key to achieving the maximum science value from the sample return mission. If development of these approaches for collecting and preserving does not preceed mission definition, it is likely that only suboptimal techniques will be available because of the constraints of formal schedule timelines and the normal pressure to select only the most conservative and least sophisticated approaches when development has lagged the mission milestones. With a reasonable investment now, before the final mission definition, the sampling approach can become highly developed, ready for implementation, and mature enough to help set the requirements for the mission hardware and its performance.

  3. The activity and size of the nucleus of comet Hale-Bopp (C/1995 O1) [see comment].

    PubMed

    Weaver, H A; Feldman, P D; A'Hearn, M F; Arpigny, C; Brandt, J C; Festou, M C; Haken, M; McPhate, J B; Stern, S A; Tozzi, G P

    1997-03-28

    Analysis of Hubble Space Telescope (HST) images of comet Hale-Bopp (C/1995 O1) suggests that the effective diameter of the nucleus is between 27 to 42 kilometers, which is at least three times larger than that of comet P/Halley. The International Ultraviolet Explorer and HST spectra showed emissions from OH (a tracer of H2O) and CS (a tracer of CS2) starting in April 1996, and from the CO Cameron system (which primarily traces CO2) starting in June 1996. The variation of the H2O production rate with heliocentric distance was consistent with sublimation of an icy body near its subsolar point. The heliocentric variation in the production rates of CS2 and dust was different from that of H2O, which implies that H2O sublimation did not control the CS2 or dust production during these observations. PMID:9072959

  4. The activity and size of the nucleus of comet Hale-Bopp (C/1995 O1) [see comment].

    PubMed

    Weaver, H A; Feldman, P D; A'Hearn, M F; Arpigny, C; Brandt, J C; Festou, M C; Haken, M; McPhate, J B; Stern, S A; Tozzi, G P

    1997-03-28

    Analysis of Hubble Space Telescope (HST) images of comet Hale-Bopp (C/1995 O1) suggests that the effective diameter of the nucleus is between 27 to 42 kilometers, which is at least three times larger than that of comet P/Halley. The International Ultraviolet Explorer and HST spectra showed emissions from OH (a tracer of H2O) and CS (a tracer of CS2) starting in April 1996, and from the CO Cameron system (which primarily traces CO2) starting in June 1996. The variation of the H2O production rate with heliocentric distance was consistent with sublimation of an icy body near its subsolar point. The heliocentric variation in the production rates of CS2 and dust was different from that of H2O, which implies that H2O sublimation did not control the CS2 or dust production during these observations.

  5. Modeling and Simulation of a Tethered Harpoon for Comet Sampling

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.

    2014-01-01

    This paper describes the development of a dynamic model and simulation results of a tethered harpoon for comet sampling. This model and simulation was done in order to carry out an initial sensitivity analysis for key design parameters of the tethered system. The harpoon would contain a canister which would collect a sample of soil from a cometary surface. Both a spring ejected canister and a tethered canister are considered. To arrive in close proximity of the spacecraft at the end of its trajectory so it could be captured, the free-flying canister would need to be ejected at the right time and with the proper impulse, while the tethered canister must be recovered by properly retrieving the tether at a rate that would avoid an excessive amplitude of oscillatory behavior during the retrieval. The paper describes the model of the tether dynamics and harpoon penetration physics. The simulations indicate that, without the tether, the canister would still reach the spacecraft for collection, that the tether retrieval of the canister would be achievable with reasonable fuel consumption, and that the canister amplitude upon retrieval would be insensitive to variations in vertical velocity dispersion.

  6. VIRTIS-Rosetta observations of the nucleus of 67P/Churyumov-Gerasimenko during the Comet Characterisation phase (July-August 2014)

    NASA Astrophysics Data System (ADS)

    Capaccioni, Fabrizio; Filacchione, Gianrico; Erard, Stephane; Arnold, Gabriele; Capria, Maria Teresa; De Sanctis, Maria Cristina; Bockelee-Morvan, Dominique; Tosi, Federico; Leyrat, Cedric; Tozzi, Gian Paolo; Drossart, Pierre; Ciarniello, Mauro; Raponi, Andrea; Piccioni, Giuseppe; Formisano, Michelangelo; Schmitt, Bernard; Migliorini, Alessandra; Longobardo, Andrea; Palomba, Ernesto; Kuehrt, Ekkehard; Flamini, Enrico

    2014-11-01

    The paper will describe the major results obtained during the comet nucleus characterization phase, July-August 2014, of the Rosetta Mission by the instrument VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer), the dual channel spectrometer onboard Rosetta. The nucleus observations in this phase were performed in a wide range of illumination conditions and with spatial sampling varying from the initial 500m down to 20m. VIRTIS covers the spectral range from 0.25 to 5micron with a mapping channel (VIRTIS-M) and the range 2-5micron with a High Spectral Resolution channel (VIRTIS-H). Both channels have been used to generate maps correlated to various properties (temperature, albedo, composition) of the illuminated areas. Special emphasis was placed on mapping those surface regions considered reachable areas for the Philae Lander descent, and to those area in the “neck” of the nucleus which from the very early Osiris observations did show hints of surface outgassing activity. Authors acknowledge the support from national funding agencies, ASI, DLR and CNES.

  7. Global and Spatially Resolved Photometric Properties of the Nucleus of Comet 67P/C-G from OSIRIS Images

    NASA Astrophysics Data System (ADS)

    Lamy, P.

    2014-04-01

    Following the successful wake-up of the ROSETTA spacecraft on 20 January 2014, the OSIRIS imaging system was fully re-commissioned at the end of March 2014 confirming its initial excellent performances. The OSIRIS instrument includes two cameras: the Narrow Angle Camera (NAC) and the Wide Angle Camera (WAC) with respective fieldsofview of 2.2° and 12°, both equipped with 2K by 2K CCD detectors and dual filter wheels. The NAC filters allow a spectral coverage of 270 to 990 nm tailored to the investigation of the mineralogical composition of the nucleus of comet P/Churyumov- Gerasimenko whereas those of the WAC (245-632 nm) aim at characterizing its coma [1]. The NAC has already secured a set of four complete light curves of the nucleus of 67P/C-G between 3 March and 24 April 2014 with a primary purpose of characterizing its rotational state. A preliminary spin period of 12.4 hours has been obtained, similar to its very first determination from a light curve obtained in 2003 with the Hubble space telescope [2]. The NAC and WAC will be recalibrated in the forthcoming weeks using the same stellar calibrators VEGA and the solar analog 16 Cyg B as for past inflight calibration campaigns in support of the flybys of asteroids Steins and Lutetia. This will allow comparing the pre- and post-hibernation performances of the cameras and correct the quantum efficiency response of the two CCD and the throughput for all channels (i.e., filters) if required. The accurate photometric analysis of the images requires utmost care due to several instrumental problems, the most severe and complex to handle being the presence of optical ghosts which result from multiple reflections on the two filters inserted in the optical beam and on the thick window which protects the CCD detector from cosmic ray impacts. These ghosts prominently appear as either slightly defocused images offset from the primary images or large round or elliptical halos. We will first present results on the global

  8. Suprathermal electrons near the nucleus of comet 67P/Churyumov-Gerasimenko at 3 AU: Model comparisons with Rosetta data

    NASA Astrophysics Data System (ADS)

    Madanian, H.; Cravens, T. E.; Rahmati, A.; Goldstein, R.; Burch, J.; Eriksson, A. I.; Edberg, N. J. T.; Henri, P.; Mandt, K.; Clark, G.; Rubin, M.; Broiles, T.; Reedy, N. L.

    2016-06-01

    Observations of the coma near the nucleus of comet 67P/Churyumov-Gerasimenko (67P) made by the IES (Ion and Electron Sensor) instrument onboard the Rosetta Orbiter during late 2014 showed that electron fluxes greatly exceeded solar wind electron fluxes. The IES is part of the Rosetta Plasma Consortium. This paper reports on electron energy spectra measured by IES near the nucleus as well as approximate densities and average energies for the suprathermal electrons when the comet was at a heliocentric distance of about 3 AU. Comparisons are made with electron densities measured by other instruments. The high electron densities observed (e.g., ne ≈ 10-100 cm-3) must be associated with the cometary ion density enhancement created mainly by the photoionization of cometary gas by solar radiation; there are other processes that also contribute. Quasineutrality requires that the electron and ion densities be the same, and under certain conditions an ambipolar electric field is required to achieve quasi-neutrality. We present the results of a test particle model of cometary ion pickup by the solar wind and a two-stream electron transport code and use these results to interpret the IES data. We also estimate the effects on the electron spectrum of a compression of the electron fluid parcel. The electrons detected by IES can have energies as high as about 100-200 eV near the comet on some occasions, in which case the hot electrons can significantly enhance ionization rates of neutrals via impact ionization.

  9. Comet 67P Nucleus Water Ice Distribution and Evolution Inferred from Inner Coma Structure Seen by Rosetta/MIRO

    NASA Astrophysics Data System (ADS)

    Lee, Seungwon; von Allmen, Paul; MIRO Team

    2016-10-01

    The spatial structure and temporal evolution of the inner coma of Comet 67P have been observed by Microwave Instrument on Rosetta Orbiter (MIRO) since the Rosetta Orbiter has rendezvoused with Comet 67P in August 2014. Among the several cometary gas emission lines that the MIRO spectrometer is tuned to, the water isotopologue H218O line is optically thin and is used to probe the inner coma structure as the MIRO beam scans the space near the comet nucleus. The water line area/strength shows clearly that the day side of coma has a lot more gas than the night side of coma and the summer hemisphere side of coma has a lot more gas than the winter hemisphere side of coma. These diurnal and seasonal dependencies strongly suggest that the water gas in the coma is from the sublimation of ice in the nucleus, where its rate greatly depends on the thermal condition of surface and near-surface governed by the sun illumination condition. In addition to the sun illumination condition, the water ice distribution on 67P nucleus affects the inner coma structure. We model the inner coma structures with various ice distributions and compare them with the observation. The comparison undoubtedly shows that the ice is not uniformly distributed on 67P nucleus. The observation favors the model with the ice distributed only in polar caps in both poles. The observation also shows the evidence of temporal evolution of the ice distribution. The southern polar ice cap was less active a few months before the perihelion (August 2015), became more active near the perihelion, and became less active a few months after the perihelion. Note that the ice cap activity change due to the temperature-dependent sublimation rate change is already taken into account, and does not explain the temporal variation of the inner coma structure. This result indicates that there was a change of ice distribution (polar cap size) or ice location near the surface (how deep the dust layer covers the ice).

  10. Shape, Density, and Geology of the Nucleus of Comet 103P/Hartley 2

    NASA Technical Reports Server (NTRS)

    Thomas, P.C.; A'hearn, Michael F.; Veverka, Joseph; Belton, Michael J. S.; Kissel, Jochen; Belton, Michael J. S.; Klaasen, Kenneth P.; McFadden, Lucy A.; Melosh, H. Jay; Schultz, Peter H.; Besse, Sebastien; Carcich, Brian T.; Farnham, Tony L.; Groussin, Olivier; Hermalyn, Brendan; Li, Jian-Yang; Lindler, Don J.; Lisse, Carey M.; Meech, Karen; Richardson, James E.

    2013-01-01

    Data from the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) mission show Comet 103P/Hartley 2 is a bi-lobed, elongated, nearly axially symmetric comet 2.33 km in length. Surface features are primarily small mounds <40 m across, irregularly-shaped smooth areas on the two lobes, and a smooth but variegated region forming a “waist” between the two lobes. Assuming parts of the comet body approach the shape of an equipotential surface, the mean density of Hartley 2 is modeled to be 200–400 kg /cubic m.. Such a mean density suggests mass loss per orbit of >1%. The shape may be the evolutionary product of insolation, sublimation, and temporary deposition of materials controlled by the object’s complex rotation.

  11. Ion trap mass spectrometry on a comet nucleus: the Ptolemy instrument and the Rosetta space mission.

    PubMed

    Todd, John F J; Barber, Simeon J; Wright, Ian P; Morgan, Geraint H; Morse, Andrew D; Sheridan, Simon; Leese, Mark R; Maynard, Jon; Evans, Suzanne T; Pillinger, Colin T; Drummond, Duncan L; Heys, Samantha C; Huq, S Ejaz; Kent, Barry J; Sawyer, Eric C; Whalley, Martin S; Waltham, Nicholas R

    2007-01-01

    In May 2014, the Rosetta spacecraft is scheduled to rendezvous with the comet Churyumov-Gerasimenko ('67P'). One of the instruments on board the 'Lander' which will descend on to the surface of the comet is a miniaturised GC/MS system that incorporates an ion trap mass spectrometer, specially developed for isotope ratio analysis. This article describes the development and optimisation of the ion trap for this unique application, and presents a summary of the range of pre-programmed experiments that will contribute to the characterisation of the solid and volatile cometary materials.

  12. Ion trap mass spectrometry on a comet nucleus: the Ptolemy instrument and the Rosetta space mission.

    PubMed

    Todd, John F J; Barber, Simeon J; Wright, Ian P; Morgan, Geraint H; Morse, Andrew D; Sheridan, Simon; Leese, Mark R; Maynard, Jon; Evans, Suzanne T; Pillinger, Colin T; Drummond, Duncan L; Heys, Samantha C; Huq, S Ejaz; Kent, Barry J; Sawyer, Eric C; Whalley, Martin S; Waltham, Nicholas R

    2007-01-01

    In May 2014, the Rosetta spacecraft is scheduled to rendezvous with the comet Churyumov-Gerasimenko ('67P'). One of the instruments on board the 'Lander' which will descend on to the surface of the comet is a miniaturised GC/MS system that incorporates an ion trap mass spectrometer, specially developed for isotope ratio analysis. This article describes the development and optimisation of the ion trap for this unique application, and presents a summary of the range of pre-programmed experiments that will contribute to the characterisation of the solid and volatile cometary materials. PMID:17154436

  13. Curation and Analysis of Samples from Comet Wild-2 Returned by NASA's Stardust Mission

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, Keiko; Walker, Robert M.

    2015-01-01

    The NASA Stardust mission returned the first direct samples of a cometary coma from comet 81P/Wild-2 in 2006. Intact capture of samples encountered at 6 km/s was enabled by the use of aerogel, an ultralow dense silica polymer. Approximately 1000 particles were captured, with micron and submicron materials distributed along mm scale length tracks. This sample collection method and the fine scale of the samples posed new challenges to the curation and cosmochemistry communities. Sample curation involved extensive, detailed photo-documentation and delicate micro-surgery to remove particles without loss from the aerogel tracks. This work had to be performed in highly clean facility to minimize the potential of contamination. JSC Curation provided samples ranging from entire tracks to micrometer-sized particles to external investigators. From the analysis perspective, distinguishing cometary materials from aerogel and identifying the potential alteration from the capture process were essential. Here, transmission electron microscopy (TEM) proved to be the key technique that would make this possible. Based on TEM work by ourselves and others, a variety of surprising findings were reported, such as the observation of high temperature phases resembling those found in meteorites, rarely intact presolar grains and scarce organic grains and submicrometer silicates. An important lesson from this experience is that curation and analysis teams must work closely together to understand the requirements and challenges of each task. The Stardust Mission also has laid important foundation to future sample returns including OSIRIS-REx and Hayabusa II and future cometary nucleus sample return missions.

  14. The Nucleus and Coma of Comet 67P/C-G at Millimeter and Submillimeter Wavelengths as seen by MIRO

    NASA Astrophysics Data System (ADS)

    Hofstadter, M. D.; Gulkis, S.; Allen, M.; Von Allmen, P.; Beaudin, G.; Biver, N.; Bockelée-Morvan, D.; Choukroun, M.; Crovisier, J.; Encrenaz, P.; Encrenaz, T.; Frerking, M. A.; Hartogh, P.; Ip, W. H.; Janssen, M. A.; Jarchow, C.; Keihm, S. J.; Lee, S.; Lellouch, E.; Leyrat, C.; Rezac, L.; Schloerb, F. P.; Spilker, T. R.

    2015-12-01

    The Microwave Instrument on the Rosetta Orbiter (MIRO) makes submillimeter- and millimeter-wavelength observations of Comet 67P/Churyumov-Gerasimenko. Broadband continuum measurements at wavelengths of 0.5 and 1.6 mm probe the thermal and dielectric properties of the nucleus subsurface. High-resolution spectroscopic measurements of 8 molecular lines in the submillimeter (H2O, H217O, H218O, CO, NH3, and three lines of CH3OH) constrain the abundance, velocity, and temperature of gases in the coma. These measurements allow MIRO to study the nucleus and coma as a coupled system. Using its two continuum channels, MIRO has mapped the thermal properties of the nucleus subsurface (depths from millimeters to tens of centimeters), and generally finds its properties to be consistent with very porous, dusty material. We see temperature variations due to diurnal and seasonal changes in insolation, and also see evidence for subsurface ice in some regions. This talk will provide an update on our observations of variations over time, variations with temperature, and variations in composition. We also will report on our attempts to detect the continuum thermal emission of dust in the coma. MIRO's spectroscopic observations have shown the abundance and velocity of gas as it comes off the nucleus to vary with time and location. The regions MIRO sees as particularly active are generally consistent with activity reported by other instruments. Moving away from the nucleus, MIRO is sensitive to the three-dimensional structure of the coma. We will present an update on our understanding of that structure, which is influenced by the shape of the nucleus, nucleus rotation, and processes acting within and on the coma. Our ultimate goal is to develop a coupled model of the nucleus and coma, tracing the processes by which solar heating of the surface drives sublimation of subsurface ice and generation of dust, and how gases and dust evolve in the coma. Part of this work was conducted at the Jet

  15. VIRTIS/Rosetta Observes Comet 67P/Churyumov-Gerasimenko: Nucleus and Coma Derived Composition and Physical Properties.

    NASA Astrophysics Data System (ADS)

    Capaccioni, F.; Filacchione, G.; Erard, S.; Arnold, G.; De Sanctis, M. C.; Bockelée-Morvan, D.; Leyrat, C.; Tosi, F.; Ciarniello, M.; Raponi, A.; Migliorini, A.; Quirico, E.; Rinaldi, G.; Schmitt, B.; Carlson, R. W.; Combi, M. R.; Fink, U.; Tozzi, G. P.; Palomba, E.; Longobardo, A.; Formisano, M.; Debout, V.; Drossart, P.; Piccioni, G.; Fougere, N.

    2015-12-01

    The paper will describe the major results obtained throughout the nominal mission by the instrument VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer), the dual channel spectrometer onboard Rosetta, on the surface composition and thermal properties of the nucleus of comet 67P/Churyumov-Gerasimenko and on the 2D distribution of H2O and CO2 in the coma. VIRTIS is a dual channel spectrometer; VIRTIS-M (M for Mapper) is a hyper spectral imager covering a wide spectral range from 0.25 through 5μm. VIRTIS-M uses a slit and a scan mirror to generate images with spatial resolution of 250 μrad over a FOV of 3.7°. The second channel is VIRTIS-H (H for High-resolution), a point spectrometer with high spectral resolution (λ/Δλ=3000 @3μm) in the range 2-5 μm. The nucleus observations have been performed in a wide range of conditions with best spatial resolution of 2.5m. The surface temperature has been determined since the first distant observations when the nucleus filled one single VIRTIS-M pixel and continuously monitored since. Maximum temperature determined until April 2015 are as high as 300K at the subsolar point. Modeling of the thermophysical properties allowed to derive the thermal inertia of the crust. The VIRTIS composition analysis has showed evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 μm), the spectral slopes in VIS and IR ranges (5-25 and 1.5-5 % kÅ-1) and the broad absorption feature in the 2.9-3.6 μm range present across the entire illuminated surface, are compatible with a surface crust made of a complex mixture of dark disordered poly-aromatic compounds, opaque minerals and several chemical species containing: -COOH, CH2 / CH3, -OH (in Alcohols) and possibly NH4+. Both channels are contributing to the determination of the spatial distribution of H2O and CO2 in the coma; their abundances as a function of altitude

  16. Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Hasselmann, P. H.; Barucci, M. A.; Feller, C.; Besse, S.; Leyrat, C.; Lara, L.; Gutierrez, P. J.; Oklay, N.; Tubiana, C.; Scholten, F.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Fulle, M.; Groussin, O.; Güttler, C.; Hviid, S. F.; Ip, W.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Matz, K.-D.; Michalik, H.; Moreno, F.; Mottola, S.; Naletto, G.; Pajola, M.; Pommerol, A.; Preusker, F.; Shi, X.; Snodgrass, C.; Thomas, N.; Vincent, J.-B.

    2015-11-01

    Context. The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. Aims: We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The observations presented here were performed during July and the beginning of August 2014, during the approach phase, when OSIRIS was mapping the surface of the comet with several filters at different phase angles (1.3°-54°). The resolution reached up to 2.1 m/px. Methods: The OSIRIS images were processed with the OSIRIS standard pipeline, then converted into I/F radiance factors and corrected for the illumination conditions at each pixel using the Lommel-Seeliger disk law. Color cubes of the surface were produced by stacking registered and illumination-corrected images. Furthermore, photometric analysis was performed both on disk-averaged photometry in several filters and on disk-resolved images acquired with the NAC orange filter, centered at 649 nm, using Hapke modeling. Results: The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of -0.13 ± 0.01 in the HG system formalism and an absolute magnitude Hv(1,1,0) = 15.74 ± 0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at ~290 nm that is possibly due to SO2 ice. The nucleus shows strong phase reddening, with disk-averaged spectral slopes increasing from 11%/(100 nm) to 16%/(100 nm) in the 1.3°-54° phase angle range. The geometric albedo of the comet is 6.5 ± 0.2% at 649 nm, with

  17. Studying comets with NEOWISE

    NASA Astrophysics Data System (ADS)

    Stevenson, R.; Bauer, J.; Kramer, E.; Fernández, Y.; Mainzer, A.; Grav, T.; Masiero, J.

    2014-07-01

    The Wide-Field Infrared Survey Explorer (WISE) mission detected more than 150 comets during its all-sky survey between January 2010 and February 2011. The comets were imaged at 4 infrared wavelengths (3.4, 4.6, 12, and 22 microns). The large sample of both long-period and Jupiter-family comets observed at a range of heliocentric distances allows for systematic comparison of the properties of both dynamical families. Nucleus diameters and albedos, dust comae temperatures, CO and CO_{2} emission rates, and dust tail and trail morphologies are some of the properties studied with the WISE data. This work is being continued by the reactivated NEOWISE mission [1]. In 2013, the WISE spacecraft was brought out of hibernation to resume discovering, tracking, and characterizing small bodies in the Solar System by imaging the sky at solar elongations of ˜90° at wavelengths of 3.4 and 4.6 microns. Since NEOWISE resumed its all-sky survey on December 23, 2013, 10 comets have been observed, including one previously-unknown long-period comet -- C/2014 C3 (NEOWISE). Of particular interest are the NEOWISE observations of comet C/2013 A1 (Siding Spring), which will have a close encounter with Mars in October 2014. NEOWISE observed this comet in January 2014 and will observe it twice more before the comet's close approach to Mars. NEOWISE will continue to operate until early 2017, greatly enhancing our understanding of cometary properties as studied in the infrared.

  18. The gas distribution of comet Halley and its relation to the nucleus rotation

    NASA Technical Reports Server (NTRS)

    Cochran, Anita L.; Trout, Anthony P.

    1994-01-01

    We used a set of spatially resolved spectra of comet Halley to explore whether the gas distribution profile could be inverted to yield information on the rotation of the comet. The data were obtained both pre- and post-perihelion. The pre-perihelion data showed reasonable symmetry and so were used to define the lifetimes against photodissociation of the various molecules. These lifetimes were then used to define the lifetimes against photodissociation of the various molecules. These lifetimes were then used along with a nonsteady-state vectorial model to fit the post-perihelion gas distribution profiles. The resulting molecular lightcurves are compared with the photometric lightcurves of Schlicher et al. (1990) to show that the rotational information is encoded in the observed gas distribution within the coma. The molecular lightcurves can differentiate between the preferred Schlicher et al. average period and the period they find for the same time interval as the spectra.

  19. Dynamic Acquisition and Retrieval Tool (DART) for Comet Sample Return : Session: 2.06.Robotic Mobility and Sample Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bonitz, Robert; Kulczycki, Erick; Aisen, Norman; Dandino, Charles M.; Cantrell, Brett S.; Gallagher, William; Shevin, Jesse; Ganino, Anthony; Haddad, Nicolas; Walkemeyer, Phillip; Backes, Paul; Shiraishi, Lori

    2013-01-01

    The 2011 Decadal Survey for planetary science released by the National Research Council of the National Academies identified Comet Surface Sample Return (CSSR) as one of five high priority potential New Frontiers-class missions in the next decade. The main objectives of the research described in this publication are: develop a concept for an end-to-end system for collecting and storing a comet sample to be returned to Earth; design, fabricate and test a prototype Dynamic Acquisition and Retrieval Tool (DART) capable of collecting 500 cc sample in a canister and eject the canister with a predetermined speed; identify a set of simulants with physical properties at room temperature that suitably match the physical properties of the comet surface as it would be sampled. We propose the use of a dart that would be launched from the spacecraft to impact and penetrate the comet surface. After collecting the sample, the sample canister would be ejected at a speed greater than the comet's escape velocity and captured by the spacecraft, packaged into a return capsule and returned to Earth. The dart would be composed of an inner tube or sample canister, an outer tube, a decelerator, a means of capturing and retaining the sample, and a mechanism to eject the canister with the sample for later rendezvous with the spacecraft. One of the significant unknowns is the physical properties of the comet surface. Based on new findings from the recent Deep Impact comet encounter mission, we have limited our search of solutions for sampling materials to materials with 10 to 100 kPa shear strength in loose or consolidated form. As the possible range of values for the comet surface temperature is also significantly different than room temperature and testing at conditions other than the room temperature can become resource intensive, we sought sample simulants with physical properties at room temperature similar to the expected physical properties of the comet surface material. The chosen

  20. Cometary science. On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Sierks, Holger; Barbieri, Cesare; Lamy, Philippe L; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F; Angrilli, Francesco; Auger, Anne-Therese; Barucci, M Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Besse, Sebastien; Bodewits, Dennis; Capanna, Claire; Cremonese, Gabriele; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Giacomini, Lorenza; Groussin, Olivier; Gutierrez-Marques, Pablo; Gutiérrez, Pedro J; Güttler, Carsten; Hoekzema, Nick; Hviid, Stubbe F; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, J Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M; Lazzarin, Monica; Leyrat, Cédric; Lopez Moreno, Josè J; Magrin, Sara; Marchi, Simone; Marzari, Francesco; Massironi, Matteo; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Pertile, Marco; Preusker, Frank; Sabau, Lola; Scholten, Frank; Snodgrass, Colin; Thomas, Nicolas; Tubiana, Cecilia; Vincent, Jean-Baptiste; Wenzel, Klaus-Peter; Zaccariotto, Mirco; Pätzold, Martin

    2015-01-23

    Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck. The nucleus has a bulk density less than half that of water. Activity at a distance from the Sun of >3 astronomical units is predominantly from the neck, where jets have been seen consistently. The nucleus rotates about the principal axis of momentum. The surface morphology suggests that the removal of larger volumes of material, possibly via explosive release of subsurface pressure or via creation of overhangs by sublimation, may be a major mass loss process. The shape raises the question of whether the two lobes represent a contact binary formed 4.5 billion years ago, or a single body where a gap has evolved via mass loss.

  1. On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Sierks, Holger; Barbieri, Cesare; Lamy, Philippe L.; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F.; Angrilli, Francesco; Auger, Anne-Therese; Barucci, M. Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Besse, Sebastien; Bodewits, Dennis; Capanna, Claire; Cremonese, Gabriele; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Giacomini, Lorenza; Groussin, Olivier; Gutierrez-Marques, Pablo; Gutiérrez, Pedro J.; Güttler, Carsten; Hoekzema, Nick; Hviid, Stubbe F.; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, J. Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M.; Lazzarin, Monica; Leyrat, Cédric; Lopez Moreno, Josè J.; Magrin, Sara; Marchi, Simone; Marzari, Francesco; Massironi, Matteo; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Pertile, Marco; Preusker, Frank; Sabau, Lola; Scholten, Frank; Snodgrass, Colin; Thomas, Nicolas; Tubiana, Cecilia; Vincent, Jean-Baptiste; Wenzel, Klaus-Peter; Zaccariotto, Mirco; Pätzold, Martin

    2015-01-01

    Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck. The nucleus has a bulk density less than half that of water. Activity at a distance from the Sun of >3 astronomical units is predominantly from the neck, where jets have been seen consistently. The nucleus rotates about the principal axis of momentum. The surface morphology suggests that the removal of larger volumes of material, possibly via explosive release of subsurface pressure or via creation of overhangs by sublimation, may be a major mass loss process. The shape raises the question of whether the two lobes represent a contact binary formed 4.5 billion years ago, or a single body where a gap has evolved via mass loss.

  2. Cometary science. On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Sierks, Holger; Barbieri, Cesare; Lamy, Philippe L; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F; Angrilli, Francesco; Auger, Anne-Therese; Barucci, M Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Besse, Sebastien; Bodewits, Dennis; Capanna, Claire; Cremonese, Gabriele; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Giacomini, Lorenza; Groussin, Olivier; Gutierrez-Marques, Pablo; Gutiérrez, Pedro J; Güttler, Carsten; Hoekzema, Nick; Hviid, Stubbe F; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, J Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M; Lazzarin, Monica; Leyrat, Cédric; Lopez Moreno, Josè J; Magrin, Sara; Marchi, Simone; Marzari, Francesco; Massironi, Matteo; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Pertile, Marco; Preusker, Frank; Sabau, Lola; Scholten, Frank; Snodgrass, Colin; Thomas, Nicolas; Tubiana, Cecilia; Vincent, Jean-Baptiste; Wenzel, Klaus-Peter; Zaccariotto, Mirco; Pätzold, Martin

    2015-01-23

    Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck. The nucleus has a bulk density less than half that of water. Activity at a distance from the Sun of >3 astronomical units is predominantly from the neck, where jets have been seen consistently. The nucleus rotates about the principal axis of momentum. The surface morphology suggests that the removal of larger volumes of material, possibly via explosive release of subsurface pressure or via creation of overhangs by sublimation, may be a major mass loss process. The shape raises the question of whether the two lobes represent a contact binary formed 4.5 billion years ago, or a single body where a gap has evolved via mass loss. PMID:25613897

  3. Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations

    NASA Astrophysics Data System (ADS)

    Groussin, O.; Jorda, L.; Auger, A.-T.; Kührt, E.; Gaskell, R.; Capanna, C.; Scholten, F.; Preusker, F.; Lamy, P.; Hviid, S.; Knollenberg, J.; Keller, U.; Huettig, C.; Sierks, H.; Barbieri, C.; Rodrigo, R.; Koschny, D.; Rickman, H.; A'Hearn, M. F.; Agarwal, J.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Gutiérrez, P. J.; Güttler, C.; Ip, W.-H.; Kramm, J.-R.; Küppers, M.; Lazzarin, M.; Lara, L. M.; Lopez Moreno, J. J.; Marchi, S.; Marzari, F.; Massironi, M.; Michalik, H.; Naletto, G.; Oklay, N.; Pommerol, A.; Pajola, M.; Thomas, N.; Toth, I.; Tubiana, C.; Vincent, J.-B.

    2015-11-01

    Aims: We study the link between gravitational slopes and the surface morphology on the nucleus of comet 67P/Churyumov-Gerasimenko and provide constraints on the mechanical properties of the cometary material (tensile, shear, and compressive strengths). Methods: We computed the gravitational slopes for five regions on the nucleus that are representative of the different morphologies observed on the surface (Imhotep, Ash, Seth, Hathor, and Agilkia), using two shape models computed from OSIRIS images by the stereo-photoclinometry (SPC) and stereo-photogrammetry (SPG) techniques. We estimated the tensile, shear, and compressive strengths using different surface morphologies (overhangs, collapsed structures, boulders, cliffs, and Philae's footprint) and mechanical considerations. Results: The different regions show a similar general pattern in terms of the relation between gravitational slopes and terrain morphology: i) low-slope terrains (0-20°) are covered by a fine material and contain a few large (>10 m) and isolated boulders; ii) intermediate-slope terrains (20-45°) are mainly fallen consolidated materials and debris fields, with numerous intermediate-size boulders from <1 m to 10 m for the majority of them; and iii) high-slope terrains (45-90°) are cliffs that expose a consolidated material and do not show boulders or fine materials. The best range for the tensile strength of overhangs is 3-15 Pa (upper limit of 150 Pa), 4-30 Pa for the shear strength of fine surface materials and boulders, and 30-150 Pa for the compressive strength of overhangs (upper limit of 1500 Pa). The strength-to-gravity ratio is similar for 67P and weak rocks on Earth. As a result of the low compressive strength, the interior of the nucleus may have been compressed sufficiently to initiate diagenesis, which could have contributed to the formation of layers. Our value for the tensile strength is comparable to that of dust aggregates formed by gravitational instability and tends to favor

  4. Carbon in comet dust

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.

    1990-01-01

    The association of Halley particle results with data from existing meteoritic materials that can be analyzed in the laboratory is discussed. Comet samples must exist in present collections of meteoritic materials and the Halley results provide clues for identifying them. Although it is not presently possible to positively identify cometary meteorites or cometary interplanetary dust (IDP) samples, it is possible to determine which materials are similar to Halley dust and which ones are distinctly unlike Halley. The properties of these existing Halley-compatible samples provide insight into the possible properties of cometary material. Positive identification of meteoritic comet samples or direct samples returned from a comet nucleus would of course revolutionize our ability to study carbonaceous matter in comets. Modern analytical techniques are very powerful and it is possible to perform elemental, chemical, mineralogical and even limited isotopic analysis on micron-size particles. There is an important synergism between the laboratory studies of collected samples and astronomical data from comets and interstellar grains. To fully interpret results there must be convincing methods for associating a particular class or classes of meteoritic material with comets. Ultimately this will be done by direct comet sample return such as the Rosetta mission under development by ESA. At the present time the only links that can be made involve comparison with sample properties and measurable properties of comets. Unfortunately there is at present no known unique property of cometary dust that allows its absolute identification in the laboratory. The results from Halley encounters and observation do provide much new information on cometary grains. The Halley grain compositions, density, size distribution and scattering properties all provide a basis for future investigations. Other Halley properties such as the presence of polyoxymethylene and the 3.4um emission feature could

  5. Analysis of the Touch-And-Go Surface Sampling Concept for Comet Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Mandic, Milan; Acikmese, Behcet; Bayard, David S.; Blackmore, Lars

    2012-01-01

    This paper studies the Touch-and-Go (TAG) concept for enabling a spacecraft to take a sample from the surface of a small primitive body, such as an asteroid or comet. The idea behind the TAG concept is to let the spacecraft descend to the surface, make contact with the surface for several seconds, and then ascend to a safe location. Sampling would be accomplished by an end-effector that is active during the few seconds of surface contact. The TAG event is one of the most critical events in a primitive body sample-return mission. The purpose of this study is to evaluate the dynamic behavior of a representative spacecraft during the TAG event, i.e., immediately prior, during, and after surface contact of the sampler. The study evaluates the sample-collection performance of the proposed sampling end-effector, in this case a brushwheel sampler, while acquiring material from the surface during the contact. A main result of the study is a guidance and control (G&C) validation of the overall TAG concept, in addition to specific contributions to demonstrating the effectiveness of using nonlinear clutch mechanisms in the sampling arm joints, and increasing the length of the sampling arms to improve robustness.

  6. Editorial of the special issue - "Rosetta and Philae at comet 67P/Churyumov-Gerasimenko"

    NASA Astrophysics Data System (ADS)

    Ulamec, Stephan; Taylor, Matthew G. G. T.

    2016-08-01

    Giotto, the first european/ESA - interplanetary space probe had not flown by Halley's comet, yet, when the first plans for the next mission to investigate a comet were being made. back in 1984, Rosetta became part of ESAs horizon 2000 programme, originally envisioned as a comet nucleus sample return mission.

  7. COMETARY SCIENCE. The nonmagnetic nucleus of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Auster, Hans-Ulrich; Apathy, Istvan; Berghofer, Gerhard; Fornacon, Karl-Heinz; Remizov, Anatoli; Carr, Chris; Güttler, Carsten; Haerendel, Gerhard; Heinisch, Philip; Hercik, David; Hilchenbach, Martin; Kührt, Ekkehard; Magnes, Werner; Motschmann, Uwe; Richter, Ingo; Russell, Christopher T; Przyklenk, Anita; Schwingenschuh, Konrad; Sierks, Holger; Glassmeier, Karl-Heinz

    2015-07-31

    Knowledge of the magnetization of planetary bodies constrains their origin and evolution, as well as the conditions in the solar nebular at that time. On the basis of magnetic field measurements during the descent and subsequent multiple touchdown of the Rosetta lander Philae on the comet 67P/Churyumov-Gerasimenko (67P), we show that no global magnetic field was detected within the limitations of analysis. The Rosetta Magnetometer and Plasma Monitor (ROMAP) suite of sensors measured an upper magnetic field magnitude of less than 2 nanotesla at the cometary surface at multiple locations, with the upper specific magnetic moment being <3.1 × 10(-5) ampere-square meters per kilogram for meter-size homogeneous magnetized boulders. The maximum dipole moment of 67P is 1.6 × 10(8) ampere-square meters. We conclude that on the meter scale, magnetic alignment in the preplanetary nebula is of minor importance. PMID:25873744

  8. Twentieth century light curves and the nucleus of comet P/Tempel 2

    NASA Technical Reports Server (NTRS)

    Rickman, Hans; Festou, Michel C.; Tancredi, Gonzalo; Kamel, L.

    1992-01-01

    Observations of P/Tempel 2 from 1899 to 1988 corresponding to 13 apparitions are analyzed in order to estimate the perihelion asymmetry of the gas production curve for different periods of its evolution. Using the correlation found by Festou et al. (1990) between the perihelion asymmetries and the delay in perihelion passage due to the action of nongravitational forces, we estimate the mass of the comet to be M approximately equals 1.6 plus or minus 0.5 x 10(exp 14) kg. Assuming a volume of 500 cu km, based on nuclear observations, a density of 0.3 plus or minus 0.1 g/cu cm is obtained.

  9. The 67P/Churyumov-Gerasimenko comet: colors, albedo variations and inhomogeneity of the nucleus from the ROSETTA/OSIRIS images

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Leyrat, C.; Barucci, M. A.; Hasselmann, P. H.; Thomas, N.; Kueppers, M.; Sierks, H.; Oklay, N.; Snodgrass, C.; Tubiana, C.; Vincent, J. B.; Jorda, L.; Keller, H. U.; Hviik, S.; Magrin, S.; Massironi, M.; Besse, S.; Pajola, M.

    2014-04-01

    Rosetta is the cornerstone mission of the European Space Agency devoted to the study of the minor bodies. Launched on 2 March 2004, Rosetta has as primary target the comet 67P/Churyumov-Gerasimenko, a short period comet of the Jupiter's family. On its journey to the comet, after three Earth and one Mars gravity assist manoeuvres, Rosetta flew by two selected asteroids, 2867 Steins, in September 2008, and 21 Lutetia in July 2010. In June 2011, Rosetta was placed in hibernation for 31 months to save its power resources, and it was successfully reactivated on January 2014, before the rendez-vous maneuver to the comet at 4 AU from the Sun. The spacecraft will orbit and perform long-term exploration of the cometary nucleus and coma, including its innermost part, for more than 1 year and a half, following the comet up to its perihelion at 1.37 AU and shortly after it. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are on board Rosetta, including imaging cameras, spectrometers, dust analysers, radio science experiment, and the Philae lander that will land on the nucleus in November 2014. In this work we will present the results on the 67P nucleus physical-chemical properties derived from the OSIRIS images acquired during the comet approach phase and the first bound orbits in July-August 2014. OSIRIS is constituted of aWide Angle Camera (WAC) and a Narrow Angle Camera (NAC) [1]. The NAC camera will obtain high resolution images with different filters in the near UV-near IR range. Those filters are optimised for the mineralogical studies of the nucleus. The WAC camera has a wide field of view (12×12 degrees) and narrow band filters devoted to the study of the gaseous species of the coma. In the July-August 2014 timeframe, OSIRIS will map the entire surface of the comet with several filters in the 250-1000 nm range, at different phase angles (5- 50 degrees), and with a resolution up to 1 m/px with the NAC

  10. A modified protocol for the comet assay allowing the processing of multiple samples.

    PubMed

    Zhang, Lai-Jun; Jia, Jing-Fen; Hao, Jian-Guo; Cen, Ju-Ren; Li, Tian-Ke

    2011-04-01

    In the present study, we developed a modified protocol for the basic comet assay that increased efficiency without sacrificing assay reliability. A spreader was used to spread agarose-embedded cells on a slide, making the manipulation and processing of multiple samples easier. Using this technique, we are able to rapidly prepare five or more comet assay samples on one slide. To demonstrate the effect of the protocol modifications on assay reliability, we present an example of how the comet assay was used in our laboratory to analyze the effect of melatonin (N-acetyl-5-methoxitryptamine; MEL) on the DNA repair ability of Gentiana macrophylla Pall. protoplasts after irradiation with different doses of ultraviolet-B radiation. A slight, but statistically significant (P<0.01), dose-related protective effect of MEL was observed in our experiments. The first use of the comet assay was to confirm the antioxidant and DNA repair functions of MEL in plants. The modified protocol is cost-effective and provides substantial advantages over the conventional comet assay.

  11. GIADA: shining a light on the monitoring of the comet dust production from the nucleus of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Della Corte, V.; Rotundi, A.; Fulle, M.; Gruen, E.; Weissman, P.; Sordini, R.; Ferrari, M.; Ivanovski, S.; Lucarelli, F.; Accolla, M.; Zakharov, V.; Mazzotta Epifani, E.; Lopez-Moreno, J. J.; Rodriguez, J.; Colangeli, L.; Palumbo, P.; Bussoletti, E.; Crifo, J. F.; Esposito, F.; Green, S. F.; Lamy, P. L.; McDonnell, J. A. M.; Mennella, V.; Molina, A.; Morales, R.; Moreno, F.; Ortiz, J. L.; Palomba, E.; Perrin, J. M.; Rietmeijer, F. J. M.; Rodrigo, R.; Zarnecki, J. C.; Cosi, M.; Giovane, F.; Gustafson, B.; Herranz, M. L.; Jeronimo, J. M.; Leese, M. R.; Lopez-Jimenez, A. C.; Altobelli, N.

    2015-11-01

    Context. During the period between 15 September 2014 and 4 February 2015, the Rosetta spacecraft accomplished the circular orbit phase around the nucleus of comet 67P/Churyumov-Gerasimenko (67P). The Grain Impact Analyzer and Dust Accumulator (GIADA) onboard Rosetta monitored the 67P coma dust environment for the entire period. Aims: We aim to describe the dust spatial distribution in the coma of comet 67P by means of in situ measurements. We determine dynamical and physical properties of cometary dust particles to support the study of the production process and dust environment modification. Methods: We analyzed GIADA data with respect to the observation geometry and heliocentric distance to describe the coma dust spatial distribution of 67P, to monitor its activity, and to retrieve information on active areas present on its nucleus. We combined GIADA detection information with calibration activity to distinguish different types of particles that populate the coma of 67P: compact particles and fluffy porous aggregates. By means of particle dynamical parameters measured by GIADA, we studied the dust acceleration region. Results: GIADA was able to distinguish different types of particles populating the coma of 67P: compact particles and fluffy porous aggregates. Most of the compact particle detections occurred at latitudes and longitudes where the spacecraft was in view of the comet's neck region of the nucleus, the so-called Hapi region. This resulted in an oscillation of the compact particle abundance with respect to the spacecraft position and a global increase as the comet moved from 3.36 to 2.43 AU heliocentric distance. The speed of these particles, having masses from 10-10 to 10-7 kg, ranged from 0.3 to 12.2 m s-1. The variation of particle mass and speed distribution with respect to the distance from the nucleus gave indications of the dust acceleration region. The influence of solar radiation pressure on micron and submicron particles was studied. The

  12. Coma morphology and dust-emission pattern of periodic Comet Halley. II - Nucleus spin vector and modeling of major dust features in 1910

    NASA Astrophysics Data System (ADS)

    Sekanina, Z.; Larson, S. M.

    1984-09-01

    The continuous ejection of dust from discrete emission sources on the rotating nucleus of the Comet Halley is modelled in order to explain the evolution of spiral jets which unwind from the nucleus condensation into envelopes or halos in the comet head. The model is applied to digitally processed images of three features of the comet taken from Mount Wilson plates during the 1910 fly-by. The model permits a determination of the motion and spin vector for each emission source, its cometocentric coordinates, and a function relating particle ejection velocity to the solar radiation pressure exerted on the ejecta. It is found that the obliquity of the comet orbit's plane to its equatorial plane is 45 deg, the axis of rotation period of 17.3 days. The derived function of particle ejection velocity to the solar radiation pressure implied no contribution from grains larger than 10 microns in radius. High dust loading of gas flows from the June 1910 emission sources is indicated. It is estimated that because of the favorable approach geometry of the Gioto spacecraft during its 1986 flyby, the likelihood of encountering dense jets of dust is small.

  13. Physical Properties of the Nucleus of Comet 28P/Neujmin 1

    NASA Astrophysics Data System (ADS)

    Mueller, B. E. A.; Heinrichs, A. M.; Samarasinha, N. H.

    2002-09-01

    Comet 28P/Neujmin 1 was observed in April 2002 for 4 consecutive nights at the CTIO 1.5m telescope in the broadband V, R, and I filters. The rotational lightcurve observations in R yield a preliminary rotation period of 12.7+/- 0.1 hours, in excellent agreement with determinations from Delahodde et al. (2001) and Jewitt and Meech (1988). Our observations in R cover 80% of the rotational phase for a double peaked lightcurve. The peak to peak variation in the lightcurve is 0.56 mag, giving a lower limit of the nuclear axial ratio a/b of 1.7. Our V and I observations partially cover a rotational phase and show no evidence of a variation in the V-R or R-I colors. Colors and an effective radius will also be determined. Our lightcurve analysis will be put into context with all previous data. For this purpose we will apply model simulations and will present the results at the meeting. This work was supported by a grant from the NASA Planetary Astronomy Program. AMH acknowledges funds from the NSF Research Experience for Undergraduates (REU) Program. References: Delahodde, Meech, Hainaut, & Dotto 1981. A&A 376, 672 Jewitt & Meech 1988. Ap.J. 328, 974

  14. Measurements of the near-nucleus coma of comet 67P/Churyumov-Gerasimenko with the Alice far-ultraviolet spectrograph on Rosetta

    NASA Astrophysics Data System (ADS)

    Feldman, Paul D.; A'Hearn, Michael F.; Bertaux, Jean-Loup; Feaga, Lori M.; Parker, Joel Wm.; Schindhelm, Eric; Steffl, Andrew J.; Stern, S. Alan; Weaver, Harold A.; Sierks, Holger; Vincent, Jean-Baptiste

    2015-11-01

    Aims: The Alice far-ultraviolet spectrograph onboard Rosetta is designed to observe emissions from various atomic and molecular species from within the coma of comet 67P/ Churyumov-Gerasimenko and to determine their spatial distribution and evolution with time and heliocentric distance. Methods: Following orbit insertion in August 2014, Alice made observations of the inner coma above the limbs of the nucleus of the comet from cometocentric distances varying between 10 and 80 km. Depending on the position and orientation of the slit relative to the nucleus, emissions of atomic hydrogen and oxygen were initially detected. These emissions are spatially localized close to the nucleus and spatially variable with a strong enhancement above the comet's neck at northern latitudes. Weaker emission from atomic carbon and CO were subsequently detected. Results: Analysis of the relative line intensities suggests photoelectron impact dissociation of H2O vapor as the source of the observed H i and O i emissions. The electrons are produced by photoionization of H2O. The observed C i emissions are also attributed to electron impact dissociation, of CO2, and their relative brightness to H i reflects the variation of CO2 to H2O column abundance in the coma.

  15. Infrared Spectrocopy of Comet 81P/Wild 2 Samples Returned by Stardust

    SciTech Connect

    Keller,L.; Bajt, S.; Baratta, G.; Borg, J.; Bradley, J.; Brownlee, D.; Busemann, H.; Brucato, J.; Burchell, M.; et al.

    2006-01-01

    Infrared spectra of material captured from comet 81P/Wild 2 by the Stardust spacecraft reveal indigenous aliphatic hydrocarbons similar to those in interplanetary dust particles thought to be derived from comets, but with longer chain lengths than those observed in the diffuse interstellar medium. Similarly, the Stardust samples contain abundant amorphous silicates in addition to crystalline silicates such as olivine and pyroxene. The presence of crystalline silicates in Wild 2 is consistent with mixing of solar system and interstellar matter. No hydrous silicates or carbonate minerals were detected, which suggests a lack of aqueous processing of Wild 2 dust.

  16. Infrared spectroscopy of comet 81P/Wild 2 samples returned by Stardust.

    PubMed

    Keller, Lindsay P; Bajt, Sasa; Baratta, Giuseppe A; Borg, Janet; Bradley, John P; Brownlee, Don E; Busemann, Henner; Brucato, John R; Burchell, Mark; Colangeli, Luigi; d'Hendecourt, Louis; Djouadi, Zahia; Ferrini, Gianluca; Flynn, George; Franchi, Ian A; Fries, Marc; Grady, Monica M; Graham, Giles A; Grossemy, Faustine; Kearsley, Anton; Matrajt, Graciela; Nakamura-Messenger, Keiko; Mennella, Vito; Nittler, Larry; Palumbo, Maria E; Stadermann, Frank J; Tsou, Peter; Rotundi, Alessandra; Sandford, Scott A; Snead, Christopher; Steele, Andrew; Wooden, Diane; Zolensky, Mike

    2006-12-15

    Infrared spectra of material captured from comet 81P/Wild 2 by the Stardust spacecraft reveal indigenous aliphatic hydrocarbons similar to those in interplanetary dust particles thought to be derived from comets, but with longer chain lengths than those observed in the diffuse interstellar medium. Similarly, the Stardust samples contain abundant amorphous silicates in addition to crystalline silicates such as olivine and pyroxene. The presence of crystalline silicates in Wild 2 is consistent with mixing of solar system and interstellar matter. No hydrous silicates or carbonate minerals were detected, which suggests a lack of aqueous processing of Wild 2 dust.

  17. Energy Deposition onto an Asteroid or Comet Nucleus from a Nuclear Burst

    NASA Astrophysics Data System (ADS)

    Plesko, C. S.; Weaver, R.; Huebner, W. F.

    2010-12-01

    There is substantial controversy about the potential use and efficacy of a nuclear burst for the prevention of an impact of an asteroid or cometary nucleus on the Earth. Previous papers (e.g. Holsapple 2004) have called for a more careful analysis of the physics of this process, specifically energy deposition and internal shock processes. We begin to explore this question quantitatively by modeling the deposition of energy onto materials relevant to cosmic objects from a simulated nuclear burst. We use Los Alamos National Laboratory (LANL) particle transport codes and cross-section libraries to explore the deposition of neutrons and gamma rays onto various targets. We also use LANL radiation hydrocodes, tabular equations of state and opacities to study the deposition of x-ray energy within the material. We will report the amount and spatial distribution of energy deposition and the effects of burst height, target material variation, and mesh resolution on the simulation results.

  18. Measuring the Permittivity of the Nucleus of a Comet: the PP-SESAME Experiment on Board the Philae/ROSETTA Lander

    NASA Astrophysics Data System (ADS)

    Lethuillier, A.; Le Gall, A. A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.; Seidensticker, K. J.; Fischer, H. H.

    2015-12-01

    The Permittivity Probe (SESAME-PP) on-board the Philae Lander of the ROSETTA mission was designed to constrain the complex permittivity of the first 2 m of the nucleus of comet 67P/Churyumov-Gerasimenko and to monitor its variations with time. Doing so, it is meant to provide a unique insight into the composition of the comet, and in particular, into its water content. PP-SESAME acquired data on November 13, 2015, both during Philae descent to the comet and at the surface of the nucleus. The PP-SESAME instrument is derived from the quadrupole array technique. A sinusoidal electrical current is sent into the ground through a transmitting dipole, and the induced electrical voltage on a receiving dipole is measured. The complex permittivity of the material is inferred from the mutual impedance derived from the measurements. In practice, the influence of both the electronic circuit of the instrument and the conducting elements in its close environment must be accounted for in order to best estimate both the dielectric constant and electrical conductivity of the ground. For that purpose, we have developed a method called the "capacity-influence matrix method". A replica of the instrument was recently built in LATMOS (France) in order to validate this method. In this paper, we will present the tests conducted with the replica in a controlled environment and their comparison to numerical simulations. We will also show simulations relevant to the PP-SESAME experiment on the nucleus of comet 67P/Churyumov-Gerasimenko. These simulations were run for realistic scenarios of the Philae's attitude and environment at its final landing site. We discuss their implications in terms of surface electrical and compositional properties.

  19. Infrared observations of an outburst of small dust grains from the nucleus of Comet P/Halley 1986 III at perihelion

    NASA Technical Reports Server (NTRS)

    Gehrz, R. D.; Johnson, C. H.; Magnuson, S. D.; Ney, E. P.; Hayward, T. L.

    1995-01-01

    A close examination of the 0.7- to 23-micron infrared data base acquired by Gehrz and Ney (1992), suggests that the nucleus of Comet P/Halley 1986 III emitted a burst of small dust grains during a 3-day period commencing within hours of perihelion passage on 1986 February 9.46 UT. The outburst was characterized by significant increases in the coma's grain color temperature T(sub obs), temperature excess (superheat: S = T(sub obs)/T(sub BB)), infrared luminosity, albedo, and 10-micron silicate emission feature strength. These changes are all consistent with the sudden ejection from the nucleus of a cloud of grains with radii of approximately 0.5 micron. This outburst may have produced the dust that was responsible for some of the tail streamers photographed on 1986 February 22 UT. The peak of the dust outburst occurred about 3 days before a pronounced increase in the water production rate measured by the Pioneer Venus Orbiter Ultraviolet Spectrometer. We suggest that jets that release large quantities of small particles may be largely responsible for some of the variable infrared behavior that has been reported for P/Halley and other comets during the past two decades. Such jets may also account for some of the differences IR Type I and IR Type II comets.

  20. Discrete sources of cryovolcanism on the nucleus of Comet 29P/Schwassmann-Wachmann and their origin

    NASA Astrophysics Data System (ADS)

    Miles, Richard

    2016-07-01

    Evidence for long-lived sources of cryovolcanism on the nucleus of the Comet 29P/Schwassmann-Wachmann has been found from a study of its times of outburst (t0) and the morphological development of inner coma structures. Analysis of data from the Minor Planet Center observations archive spanning 2002-2014 and other observations have yielded 64 outburst times of mainly well-observed events with a median timing uncertainty of 0.40 d. Outbursts comprise largely (i) isolated explosive events; or (ii) multiple outbursts occurring typically within 5-15 d of each other. On rare occasions, a form of continuous or gradually increasing activity is manifest, appearing to be the result of a series of mini-outbursts. Quasi-periodicity in t0 is manifested as an excess of outbursts every 52-60 d, along with a paucity of events every ∼30 d and ∼90 d. Seasonal changes in activity are evident from the temporal analysis of the outburst data. An unambiguous periodicity of 57.6 ± 0.4 d has been found in the times of 26 outbursts during 2010-2014, with all active sources at that time localised within a longitude span of ∼135-150°. Cluster analysis of t0 data for 2002-2010 and 2010-2014, and HST imaging from 1996 confirm and refine the apparent periodicity, indicating that outbursts appear to be grouped in longitude centred on at least 6 circumferential locations. Sources of activity generally persist for at least 10-20 yr, and some appear discrete in nature, able to re-outburst after a single day-night cycle. Given that outbursts are triggered by solar heating, the analysis yields a value for the mean solar day of 57.71 ± 0.06 d, equivalent to a sidereal rotation period of 57.09 ± 0.06 d, assuming the more probable prograde direction of spin. A novel outburst mechanism is outlined in which some cometary ices, principally solid CH4, confined under pressure (>12 kPa) beneath a stabilisation crust, begin to melt and absorb supervolatile gases, mainly CO and N2. These gases

  1. Aerobraking strategies for the sample of comet coma earth return mission

    NASA Technical Reports Server (NTRS)

    Abe, Takashi; Kawaguchi, Jun'ichiro; Uesugi, Kuninori; Yen, Chen-Wan L.

    1990-01-01

    The results of a study to the validate the applicability of the aerobraking concept to the SOCCER (sample of comet coma earth return) mission using a six-DOF computer simulation of the aerobraking process are presented. The SOCCER spacecraft and the aerobraking scenario and power supply problem are briefly described. Results are presented for the spin effect, payload exposure problem, and sun angle effect.

  2. Searching for Amino Acids in Meteorites and Comet Samples

    NASA Technical Reports Server (NTRS)

    Cook, Jamie Elsila

    2010-01-01

    Chemistry plays an important role in the interdisciplinary field of astrobiology, which strives to understand the origin, distribution, and evolution of life throughout the universe. Chemical techniques are used to search for and characterize the basic ingredients for life, from the elements through simple molecules and up to the more complex compounds that may serve as the ingredients for life. The Astrobiology Analytical Laboratory at NASA Goddard uses state-of-the-art laboratory analytical instrumentation in unconventional ways to examine extraterrestrial materials and tackle some of the big questions in astrobiology. This talk will discuss some of the instrumentation and techniques used for these unique samples, as well as some of our most interesting results. The talk will present two areas of particular interest in our laboratory: (1) the search for chiral excesses in meteoritic amino acids, which may help to explain the origin of homochirality in life on Earth; and (2) the detection of amino acids and amines in material returned by NASA's Stardust mission, which rendevouzed with a cornet and brought back cometary particles to the Earth.

  3. Dust environment and dynamical history of a sample of short-period comets

    NASA Astrophysics Data System (ADS)

    Pozuelos, F. J.; Moreno, F.; Aceituno, F.; Casanova, V.; Sota, A.; López-Moreno, J. J.; Castellano, J.; Reina, E.; Diepvens, A.; Betoret, A.; Häusler, B.; Gonález, C.; Rodríguez, D.; Bryssinck, E.; Cortés, E.; García, F.; García, F.; Limón, F.; Grau, F.; Fratev, F.; Baldrís, F.; Rodriguez, F. A.; Montalbán, F.; Soldán, F.; Muler, G.; Almendros, I.; Temprano, J.; Bel, J.; Sánchez, J.; Lopesino, J.; Báez, J.; Hernández, J. F.; Martín, J. L.; Ruiz, J. M.; Vidal, J. R.; Gaitán, J.; Salto, J. L.; Aymamí, J. M.; Bosch, J. M.; Henríquez, J. A.; Martín, J. J.; Lacruz, J.; Tremosa, L.; Lahuerta, L.; Reszelsky, M.; Rodríguez, M.; Camarasa, M.; Campas, M.; Canales, O.; Dekelver, P. J.; Moreno, Q.; Benavides, R.; Naves, R.; Dymoc, R.; García, R.; Lahuerta, S.; Climent, T.

    2014-08-01

    Aims: In this work, we present an extended study of the dust environment of a sample of short-period comets and their dynamical history. With this aim, we characterize the dust tails when the comets are active, and we make a statistical study to determine their dynamical evolution. The targets selected were 22P/Kopff, 30P/Reinmuth 1, 78P/Gehrels 2, 115P/Maury, 118P/Shoemaker-Levy 4, 123P/West-Hartley, 157P/Tritton, 185/Petriew, and P/2011 W2 (Rinner). Methods: We use two different observational data sets: a set of images taken at the Observatorio de Sierra Nevada and, the Afρ curves provided by the amateur astronomical association Cometas-Obs. To model these observations, we use our Monte Carlo dust tail code. From this analysis, we derive the dust parameters, which best describe the dust environment: dust loss rates, ejection velocities, and size distribution of particles. On the other hand, we use a numerical integrator to study the dynamical history of the comets, which allows us to determine with a 90% confidence level the time spent by these objects in the region of Jupiter family comets. Results: From the Monte Carlo dust tail code, we derived three categories according to the amount of dust emitted: weakly active (115P, 157P, and Rinner), moderately active (30P, 123P, and 185P), and highly active (22P, 78P, and 118P). The dynamical studies showed that the comets of this sample are young in the Jupiter family region, where the youngest ones are 22P (~100 yr), 78P (~500 yr), and 118P (~600 yr). The study points to a certain correlation between comet activity and time spent in the Jupiter family region, although this trend is not always fulfilled. The largest particle sizes are not tightly constrained, so that the total dust mass derived should be regarded as a lower limit. Appendices are available in electronic form at http://www.aanda.org

  4. The Preliminary Examination of Organics in the Returned Stardust Samples from Comet Wild 2

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Aleon, J.; Alexander, C.; Butterworth, A.; Clemett, S. J.; Cody, G.; Cooper, G.; Dworkin, J. P.; Flynn, G. J.; Gilles, M. K.

    2006-01-01

    The primary objective of STARDUST is to collect coma samples from comet 8lP/Wild 2. These samples were collected by impact onto aerogel tiles on Jan 2, 2004 when the spacecraft flew through the comet's coma at a relative velocity of about 6.1 km/sec. Measurements of dust impacts on the front of the spacecraft suggest that the aerogel particle collector was impacted by 2800 +/- 500 particles larger than 15 micron in diameter. Following recovery of the Sample Return Capsule (SRC) on Jan 15, 2006, the aerogel collector trays will be removed in a clean room at JSC. After documentation of the collection, selected aerogel tiles will be removed and aerogel and cometary samples will be extracted for study. A number of different extraction techniques will be used, each optimized for the analytical technique that is to be used. The STARDUST Mission will carry out a 6 month preliminary examination (PE) of a small portion of the returned samples. The examination of the samples will be made by a number of subteams that will concentrate on specific aspects of the samples. One of these is the Organics PE Team (see the author list above for team members). These team members will use a number of analytical techniques to produce a preliminary characterization of the abundance and nature of the organics (if any) in the returned samples.

  5. Organics in the samples returned from comet 81P/Wild 2 by the Stardust Spacecraft

    NASA Astrophysics Data System (ADS)

    Sandford, Scott A.

    2008-10-01

    The Stardust Mission collected samples from Comet 81P/Wild 2 on 2 Jan 2004 and returned these samples to Earth on 15 Jan 2006. After recovery, a six month preliminary examination was done on a portion of the samples. Studies of the organics in the samples were made by the Organics Preliminary Examination Team (PET) - a worldwide group of over 55 scientists. This paper provides a brief overview of the findings of the Organics PET. Organics in the samples were studied using a multitude of analytical techniques including spatial determination of C and heteroatom elemental abundances (STXM), functional group identification (micro-FTIR/Raman, C,N,O-XANES), and specific molecular identification of certain classes of organics (HPLC-LIF, L2MS, TOF-SIMS). Analyses were also made of spacecraft components and environmental samples collected near the recovered returned capsule to assess contamination issues. The distribution of organics (abundance, functionality, and relative elemental abundances of C,N,O) is heterogeneous both within and between particles. They are an unequilibrated reservoir that experienced little parent body processing after incorporation into the comet. Some organics look like those seen in IDPs (and to a lesser extent, meteorites), while new aromatic-poor and highly labile organics, not seen in meteoritic materials, are also present. The organics are O,N-rich compared to meteoritic organics. Some of the organics have an interstellar heritage, as evidenced by D and 15N enrichments.

  6. Halley's Comet

    NASA Technical Reports Server (NTRS)

    Newburn, R. L., Jr.; Yeomans, D. K.

    1982-01-01

    Since 240 B.C., Chinese observers have documented a nearly unbroken record of scientifically useful observations of Periodic Comet Halley (P/Halley). Investigations of the comet's motion by Western astronomers are discussed, taking into account the first successful prediction of a cometary return by Halley (1705), computations conducted by Rosenberger (1830), and studies performed by Cowell and Crommelin (1910). Comet Halley's motion and nongravitational forces are considered along with meteor showers associated with P/Halley. The physical properties of P/Halley are examined, giving attention to the visual observations, the light curve of P/Halley, the coma, the tails, direct photographs, spectrograms, and the emission spectrum of P/Halley. Other subjects explored are related to the cometary nucleus, the mass of P/Halley, the rotation period and axial inclination, the composition, a nominal model of P/Halley's coma, and plans for investigations in connection with the coming apparition of Comet Halley.

  7. Properties of the Nucleus, Dust Coma, and Gas Coma of Comet 29P/Schwassmann-Wachmann 1 As Observed By WISE/NEOWISE

    NASA Astrophysics Data System (ADS)

    Fernandez, Yanga R.; Bauer, J. M.; Lisse, C. M.; Grav, T.; Mainzer, A. K.; Masiero, J. R.; Walker, R. G.; Meech, K. J.

    2012-10-01

    We present our analysis of mid-infrared imaging of comet 29P/Schwassmann-Wachmann 1 by the Wide-field Infrared Survey Explorer (WISE) [1,2]. The comet was observed on May 3-4, 2010 - not in strong outburst - with imaging at 3.4, 4.6, 12, and 22 microns (a.k.a. bands W1, W2, W3, and W4). W1 and W2 were sensitive to the reflected-sunlight continuum and W3 and W4 to thermal emission. The comet's coma was seen in all bands, with a point-source clearly embedded in W1, W3, and W4 imaging. A coma-fitting technique [3,4] let us photometrically extract this point-source from the images, thereby letting us measure the nucleus's size, W1-band geometric albedo, and infrared beaming. The dust coma was most clearly seen at bands W1, W3, and W4, letting us estimate the dust production rate, extract spatially-resolved information about the dust albedo and color temperature, and constrain the grain composition and size distribution. W2 imaging shows a coma whose radial surface-brightness profile and photometry suggest we are seeing a gas component, specifically emission from CO and/or CO2, i.e. high-abundance species with emission lines within the bandpass. This lets us estimate 29P’s gas production rate and dust-to-gas ratio independently from earlier methods. We present a comparison of our dust, gas, and nucleus results to those from earlier studies of this comet. References: [1] E. L. Wright et al. 2010, AJ, 140, 1868. [2] A. K. Mainzer et al. 2011, ApJ, 731, 53. [3] C. M. Lisse et al. 1999, Icarus, 140, 189. [4] P. L. Lamy et al. 2004, in Comets II, pp. 223-264. Acknowledgements: This publication makes use of data products from (1) WISE, which is a joint project of UCLA and JPL/Caltech, funded by NASA; and (2) NEOWISE, which is a project of JPL/Caltech, funded by the Planetary Science Division of NASA.

  8. Short-wavelength infrared (1.3-2.6 μm) observations of the nucleus of Comet 19P/Borrelly

    USGS Publications Warehouse

    Soderblom, L.A.; Britt, D.T.; Brown, R.H.; Buratti, B.J.; Kirk, R.L.; Owen, T.C.; Yelle, R.V.

    2004-01-01

    During the last two minutes before closest approach of Deep Space 1 to Comet 19P/Borrelly, a long exposure was made with the short-wavelength infrared (SWIR) imaging spectrometer. The observation yielded 46 spectra covering 1.3–2.6 μm; the footprint of each spectrum was ∼160 m × width of the nucleus. Borrelly's highly variegated and extremely dark 8-km-long nucleus exhibits a strong red slope in its short-wavelength infrared reflection spectrum. This slope is equivalent to J–K and H–K colors of ∼0.82 and ∼0.43, respectively. Between 2.3–2.6 μm thermal emission is clearly detectable in most of the spectra. These data show the nucleus surface to be hot and dry; no trace of H2O ice was detected. The surface temperature ranged continuously across the nucleus from ⩽300 K near the terminator to a maximum of ∼340 K, the expected sub-solar equilibrium temperature for a slowly rotating body. A single absorption band at ∼2.39 μm is quite evident in all of the spectra and resembles features seen in nitrogen-bearing organic molecules that are reasonable candidates for compositional components of cometary nuclei. However as of yet the source of this band is unknown.

  9. Adaptation of G-TAG Software for Validating Touch-and-Go Comet Surface Sampling Design Methodology

    NASA Technical Reports Server (NTRS)

    Mandic, Milan; Acikmese, Behcet; Blackmore, Lars

    2011-01-01

    The G-TAG software tool was developed under the R&TD on Integrated Autonomous Guidance, Navigation, and Control for Comet Sample Return, and represents a novel, multi-body dynamics simulation software tool for studying TAG sampling. The G-TAG multi-body simulation tool provides a simulation environment in which a Touch-and-Go (TAG) sampling event can be extensively tested. TAG sampling requires the spacecraft to descend to the surface, contact the surface with a sampling collection device, and then to ascend to a safe altitude. The TAG event lasts only a few seconds but is mission-critical with potentially high risk. Consequently, there is a need for the TAG event to be well characterized and studied by simulation and analysis in order for the proposal teams to converge on a reliable spacecraft design. This adaptation of the G-TAG tool was developed to support the Comet Odyssey proposal effort, and is specifically focused to address comet sample return missions. In this application, the spacecraft descends to and samples from the surface of a comet. Performance of the spacecraft during TAG is assessed based on survivability and sample collection performance. For the adaptation of the G-TAG simulation tool to comet scenarios, models are developed that accurately describe the properties of the spacecraft, approach trajectories, and descent velocities, as well as the models of the external forces and torques acting on the spacecraft. The adapted models of the spacecraft, descent profiles, and external sampling forces/torques were more sophisticated and customized for comets than those available in the basic G-TAG simulation tool. Scenarios implemented include the study of variations in requirements, spacecraft design (size, locations, etc. of the spacecraft components), and the environment (surface properties, slope, disturbances, etc.). The simulations, along with their visual representations using G-View, contributed to the Comet Odyssey New Frontiers proposal

  10. Evolution of the ultraviolet coma of comet Austin (1982g.)

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Ahearn, M. F.; Schleicher, D. G.; Festou, M. C.; Wallis, M. K.; Burton, W. M.; Hughes, D. W.; Keller, H. U.; Benvenuti, P.

    1984-01-01

    Ultraviolet spectra of comet Austin (1982) obtained in July 1982 at heliocentric distances ranging from 1.10 to 0.81 AU preperihelion with the IUE reveal that the comet is very similar in chemical composition and appearance to comet Bradfield (1979X). In addition, the derived H2O production rate is found to vary with heliocentric distance as r to the -3.6, similar to the r to the -3.7 behavior found for comet Bradfield. It is pointed out, however, that the limited sample rate precludes the observation of the short-term variations which could be produced by a rotating nonuniform cometary nucleus.

  11. COMET C/2011 W3 (LOVEJOY): ORBIT DETERMINATION, OUTBURSTS, DISINTEGRATION OF NUCLEUS, DUST-TAIL MORPHOLOGY, AND RELATIONSHIP TO NEW CLUSTER OF BRIGHT SUNGRAZERS

    SciTech Connect

    Sekanina, Zdenek; Chodas, Paul W. E-mail: Paul.W.Chodas@jpl.nasa.gov

    2012-10-01

    We describe the physical and orbital properties of C/2011 W3. After surviving perihelion passage, the comet was observed to undergo major physical changes. The permanent loss of the nuclear condensation and the formation of a narrow spine tail were observed first at Malargue, Argentina, on December 20 and then systematically at Siding Spring, Australia. The process of disintegration culminated with a terminal fragmentation event on December 17.6 UT. The postperihelion dust tail, observed for {approx}3 months, was the product of activity over <2 days. The nucleus' breakup and crumbling were probably caused by thermal stress due to the penetration of the intense heat pulse deep into the nucleus' interior after perihelion. The same mechanism may be responsible for cascading fragmentation of sungrazers at large heliocentric distances. The delayed response to the hostile environment in the solar corona is at odds with the rubble-pile model, since the residual mass of the nucleus, estimated at {approx}10{sup 12} g (equivalent to a sphere 150-200 m across) just before the terminal event, still possessed nontrivial cohesive strength. The high production rates of atomic oxygen, observed shortly after perihelion, are compatible with a subkilometer-sized nucleus. The spine tail-the product of the terminal fragmentation-was a synchronic feature, whose brightest part contained submillimeter-sized dust grains, released at velocities of up to 30 m s{sup -1}. The loss of the nuclear condensation prevented an accurate orbital-period determination by traditional techniques. Since the missing nucleus must have been located on the synchrone, whose orientation and sunward tip have been measured, we compute the astrometric positions of this missing nucleus as the coordinates of the points of intersection of the spine tail's axis with the lines of forced orbital-period variation, derived from the orbital solutions based on high-quality preperihelion astrometry from the ground. The

  12. Comet C/2011 W3 (Lovejoy): Orbit Determination, Outbursts, Disintegration of Nucleus, Dust-tail Morphology, and Relationship to New Cluster of Bright Sungrazers

    NASA Astrophysics Data System (ADS)

    Sekanina, Zdenek; Chodas, Paul W.

    2012-10-01

    We describe the physical and orbital properties of C/2011 W3. After surviving perihelion passage, the comet was observed to undergo major physical changes. The permanent loss of the nuclear condensation and the formation of a narrow spine tail were observed first at Malargue, Argentina, on December 20 and then systematically at Siding Spring, Australia. The process of disintegration culminated with a terminal fragmentation event on December 17.6 UT. The postperihelion dust tail, observed for ~3 months, was the product of activity over <2 days. The nucleus' breakup and crumbling were probably caused by thermal stress due to the penetration of the intense heat pulse deep into the nucleus' interior after perihelion. The same mechanism may be responsible for cascading fragmentation of sungrazers at large heliocentric distances. The delayed response to the hostile environment in the solar corona is at odds with the rubble-pile model, since the residual mass of the nucleus, estimated at ~1012 g (equivalent to a sphere 150-200 m across) just before the terminal event, still possessed nontrivial cohesive strength. The high production rates of atomic oxygen, observed shortly after perihelion, are compatible with a subkilometer-sized nucleus. The spine tail—the product of the terminal fragmentation—was a synchronic feature, whose brightest part contained submillimeter-sized dust grains, released at velocities of up to 30 m s-1. The loss of the nuclear condensation prevented an accurate orbital-period determination by traditional techniques. Since the missing nucleus must have been located on the synchrone, whose orientation and sunward tip have been measured, we compute the astrometric positions of this missing nucleus as the coordinates of the points of intersection of the spine tail's axis with the lines of forced orbital-period variation, derived from the orbital solutions based on high-quality preperihelion astrometry from the ground. The resulting orbit gives 698

  13. The comet rendezvous asteroid flyby mission

    NASA Technical Reports Server (NTRS)

    Morrison, David; Neugebauer, Marcia; Weissman, Paul R.

    1989-01-01

    The Comet Rendezvous Asteroid Flyby (CRAF) mission is designed to answer the many questions raised by the Halley missions by exploring a cometary nucleus in detail, following it around its orbit and studying its changing activity as it moves closer to and then away from the Sun. In addition, on its way to rendezvous with the comet, CRAF will fly by a large, primitive class main belt asteroid and will return valuable data for comparison with the comet results. The selected asteroid is 449 Hamburga with a diameter of 88 km and a surface composition of carbonaceous chondrite meteorites. The expected flyby date is January, 1998. The CRAF spacecraft will continue to make measurements in orbit around the cometary nucleus as they both move closer to the Sun, until the dust and gas hazard becomes unsafe. At that point the spacecraft will move in and out between 50 and 2,500 kilometers to study the inner coma and the cometary ionosphere, and to collect dust and gas samples for onboard analysis. Following perihelion, the spacecraft will make a 50,000 km excursion down the comet's tail, further investigating the solar wind interaction with the cometary atmosphere. The spacecraft will return to the vicinity of the nucleus about four months after perihelion to observe the changes that have taken place. If the spacecraft remains healthy and adequate fuel is still onboard, an extended mission to follow the comet nucleus out to aphelion is anticipated.

  14. Morphology of the nucleus of Comet 67P/Churyumov--Gerasimenko from stereo and high spatial resolution OSIRIS-NAC images

    NASA Astrophysics Data System (ADS)

    Lamy, P. L.; Groussin, O.; Romeuf, D.; Auger, A. T.; Jorda, L.; Capanna, C.; Faury, G.

    2015-12-01

    The Narrow Angle Camera (NAC) of the OSIRIS imaging system aboard ESA's Rosetta spacecraft has acquired images of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko at scales down to 0.2 m/pixel. We employ a variety of techniques to characterize its morphology. Digital terrain modeling (DTM), indispensable for quantitative morphological analysis is performed using stereophotoclinometry (SPC). Depending upon the observational coverage, the resolution of the DTMs exceeds 1 m in the most favorable cases. The ultimate stereographic analysis is performed by exploiting pairs of images able to produce anaglyphs whose spatial resolution surpasses that of the DTMs. Digital image filtering and contrast enhancement techniques are applied on the original images as appropriate. We first concentrate on the dust covered terrains possibly resulting from airfall deposits, on the quasi circular depressions or basins possibly connected to collapses of the underground terrain, and on large scarps that suggest extensive mass disruption. We pay special attention to lithologies that may give clues to the subsurface structure of the nucleus. Our ultimate goal is to understand the processes at work on the nucleus, directly or indirectly connected to its activity as there appears to a variety of processes far beyond what was classically considered in the past, for instance airfall deposits, surface dust transport, mass wasting, and insolation weathering.

  15. Morphology of the nucleus of Comet 67P/Churyumov-Gerasimenko from stereo and high spatial resolution OSIRIS-NAC images

    NASA Astrophysics Data System (ADS)

    Lamy, Philippe; Groussin, Olivier; Romeuf, David; Thomas, Nicolas; Auger, Anne-Thérèse; Jorda, Laurent; Gaskell, Robert; Capanna, Claire; Llebaria, Antoine

    2015-04-01

    The Narrow Angle Camera (NAC) of the OSIRIS imaging system aboard ESA's Rosetta spacecraft has acquired images of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko at scales down to 0.2 m/pixel. We employ a variety of techniques to characterize its morphology. Digital terrain modeling (DTM), indispensable for quantitative morphological analysis is performed using stereophotoclinometry (SPC). Depending upon the observational coverage, the resolution of the DTMs exceed 1 m in the most favorable cases. The ultimate stereographic analysis is performed by exploiting pairs of images able to produce anaglyphs whose spatial resolution surpasses that of the DTMs. Digital image filtering and contrast enhancement techniques are applied on the original images as appropriate. We first concentrate on the dust covered terrains possibly resulting from airfall deposits, on the quasi-circular depressions or basins possibly connected to collapses of the underground terrain, and on large scarps that suggest extensive mass disruption. We pay special attention to lithologies that may give clues to the subsurface structure of the nucleus. Our ultimate goal is to understand the processes at work on the nucleus, directly or indirectly connected to its activity as there appears to a variety of processes far beyond what was classicaly considered in the past, for instance airfall deposits, surface dust transport, mass wasting, and insolation weathering.

  16. Modeling the nucleus and jets of comet 81P/Wild 2 based on the Stardust encounter data.

    PubMed

    Sekanina, Zdenek; Brownlee, Donald E; Economou, Thanasis E; Tuzzolino, Anthony J; Green, Simon F

    2004-06-18

    We interpret the nucleus properties and jet activity from the Stardust spacecraft imaging and the onboard dust monitoring system data. Triangulation of 20 jets shows that 2 emanate from the nucleus dark side and 16 emanate from sources that are on slopes where the Sun's elevation is greater than predicted from the fitted triaxial ellipsoid. Seven sources, including five in the Mayo depression, coincide with relatively bright surface spots. Fitting the imaged jets, the spikelike temporal distribution of dust impacts indicates that the spacecraft crossed thin, densely populated sheets of particulate ejecta extending from small sources on the rotating nucleus, consistent with an emission cone model.

  17. Modeling the nucleus and jets of comet 81P/Wild 2 based on the Stardust encounter data

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek; Brownlee, Donald E.; Economou, Thanasis E.; Tuzzolino, Anthony J.; Green, Simon F.

    2004-01-01

    We interpret the nucleus properties and jet activity from the Stardust spacecraft imaging and the onboard dust monitoring system data. Triangulation of 20 jets shows that 2 emanate from the nucleus dark side and 16 emanate from sources that are on slopes where the Sun's elevation is greater than predicted from the fitted triaxial ellipsoid. Seven sources, including five in the Mayo depression, coincide with relatively bright surface spots. Fitting the imaged jets, the spikelike temporal distribution of dust impacts indicates that the spacecraft crossed thin, densely populated sheets of particulate ejecta extending from small sources on the rotating nucleus, consistent with an emission cone model.

  18. The Light Curve Of The Dust Cloud Ejected By The Collision Between The Deep Impact Projectile And The Nucleus Of Comet 9P/Tempel 1

    NASA Astrophysics Data System (ADS)

    Kueppers, Michael; Rengel, M.; Keller, H. U.; Gutiérrez, P. J.; Hviid, S. F.

    2007-10-01

    When Deep Impact fired its projectile into the nucleus of comet 9P/Tempel 1, a cloud made of dust and icy grains was ejected from the impact crater. The dust was subsequently accelerated by gas drag. About a week after the impact event, the dust cloud had dispersed due to its expansion and the force exerted by solar radiation pressure. The light curve of the dust cloud contains information about its formation and evolution: The time scale of production of impact created material can be derived from the time scale of the brightness increase. The velocity distribution of the cloud is indicative of acceleration processes in the inner coma of the comet. Finally, the abundance of large dust particles created by the impact can be estimated from the brightness of the cloud several days after the impact when small particles have been pushed away by radiation pressure. Here we analyze data obtained by the Narrow Angle Camera (NAC) of OSIRIS onboard the ESA spacecraft Rosetta to derive the velocity distribution of the dust cloud from an inversion of its light curve. OSIRIS observed comet Tempel 1 near-continuously for more than two weeks around the impact. A model of the expansion of the ejecta is compared to the light curve seen by the NAC. We derive a broad velocity distribution of the dust particles, which peaks at around 225 m/s, in good agreement with published estimates. The velocities suggest that the impact ejecta were quickly accelerated by gas in the cometary coma. We will discuss implications of our results for the evolution of the dust cloud during the first hours after the impact and provide estimates of the released dust mass. OSIRIS is funded by the agencies ASI, CNES, DLR, the Spanish Space Program (Ministerio de Educación y Ciencia), SNSB, and ESA.

  19. Chemical abundance of comets

    NASA Technical Reports Server (NTRS)

    Wyckoff, Susan; Wehinger, Peter

    1988-01-01

    Observations of NH2, (OI) and molecular ion spectra in comets represent virtually all of the volatile fraction of a comet nucleus. Their study leads to the N2, NH3, H2O, CO2, CO content of the nucleus, and thus to important constraints on models of comet formation and chemical processing in the primitive solar nebula. The observations of Comet Halley provide the opportunity for the first comprehensive determination of the abundances in a comet nucleus. The carbon isotope abundance ratio 12 C/13 C = 65 plus or minus 8 has been determined for Comet Halley from resolved rotational line structure in the CN B-X (0,0) band. The ratio is approximately 30 pct lower than the solar system value, 89, indicating either an enhancement of 13CN or a depletion of 12CN in the comet. Scenarios consistent with the observed carbon isotope ratio are: (1) formation of the comet at the periphery of the solar nebula in a fractionation-enriched 13CN region, or hidden from 12CN enrichment sources, and (2) capture of an interestellar comet. Long-slit charge coupled device (CCD) spectra obtained at the time of the spacecraft encounter of Comet Halley have also been analyzed. Scale lengths, production rates and column densities of CH, CN, C2 and NH2 were determined.

  20. Detection of changes of the surface morphology of the nucleus of comet 67P/Churyumov-Gerasimenko - Implications for the erosion

    NASA Astrophysics Data System (ADS)

    Lamy, Philippe; Groussin, Olivier; El-Maarry, M. R.; Faury, Guillaume; Auger, Anne-Thérèse

    2016-07-01

    Search for morphological changes at the surface of the nucleus of comet 67P/Churyumov-Gerasimenko (67/P C-G) since its perihelion passage in August 2015 has been a major objective of the OSIRIS team in order to understand the erosion processes. At time of writing, the changes detected so far at a distance of 48 km (that is a pixel scale of 90 cm for the OSIRIS Narrow Angle Camera) are subtle even in regions which were the most exposed to solar illumination around perihelion time: Imhotep, Khonsu and Khepry. In this presentation, we will concentrate on the Khepry region where several changes of different kinds have been positively detected: disappearance of several bright spots, localized receding of a large part (roughly 40 x 130 m) of the surface by approximately 12 m (that could result from either erosion or localized collapse), and appearance of several new boulders. As the Rosetta-comet distance will keep decreasing, we hope to report further changes at the COSPAR conference. We will finally confront quantitative estimates of the putative eroded mass with independent evidences coming from in-situ as well as remote-sensing observations carried over several past apparitions.

  1. Cloud condensation nucleus counter by impactor sampling technique

    NASA Technical Reports Server (NTRS)

    Ohtake, T.

    1981-01-01

    Unlike typical CCN counters, this device counts the numbers of water droplets condensed on aerosol particles sampled on a microcover glass at various different relative humidities. The relative humidities ranged from 75 percent to a calculated value of 110 percent. A schematic of the apparatus is shown. The individual CCN can be identified in an optical micrograph and scanning electron micrograph and may be inspected for their chemical composition later.

  2. Bright ice spots on the nucleus of comet 67P/Churyumov-Gerasimenko as observed by Rosetta OSIRIS and VIRTIS instruments

    NASA Astrophysics Data System (ADS)

    Barucci, Maria Antonietta; Fulchignoni, Marcello; Pommerol, Antoine; Erard, Stéphane; Oklay, Nilda; Tosi, Federico; Capaccioni, Fabrizio; Sierks, Holger; Filacchione, Gianrico; Bockelee-Morvan, Dominique; Guettler, Carsten; Fornasier, Sonia; Raponi, Andrea; Deshapriya, J. D. P.; Feller, Clement; Ciarniello, Mauro; Leyrat, Cedric

    2016-07-01

    Since the Rosetta mission arrived at the comet 67P/Churyumov-Gerasimenko (67/P C-G) on August 2014, the comet nucleus has been mapped by both OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System), and VIRTIS (Visible Infrared Thermal Imaging Spectrometer) acquiring a huge quantity of surface's images and spectra, producing the most detailed maps at the highest spatial resolution of a cometary nucleus. The OSIRIS imaging system (NAC & WAC) has a set of filters at different wavelengths from the ultraviolet (269 nm) to the near-infrared (989 nm). The OSIRIS imaging system has been the first instrument with the capability to map a comet surface at a high resolution reaching a maximum resolution of 11cm/px during the closest fly-by on February 14, 2015 at a distance of about 6 km from the nucleus surface while the VIRTIS spectro-imager (with two channels M and H) operates from 0.25 to 5m with medium and high spectral resolution. The spectral analysis on global scale from the VIRTIS data indicates that the nucleus presents different terrains covered by a very dark and dehydrated organic-rich material [1]. OSIRIS images indicate a morphologically complex and dark surface with a variety of terrain types and several intricate features [2]. The surface shows albedo variation and from the spectrophotometric analysis a large heterogeneity on the surface properties [3, 4, 5]. Limited evidences of exposed H2O ice have been found on the surface of 67/P C-G up to now [6, 7, 8], even though ices are considered to be a major constituent of cometary nuclei. The aim of this work is, taking advantage of the high resolution of the OSIRIS images, i) to detect the bright spots at all dimensions by albedo and spectral slope analyses, ii) to select those spots which could be resolved by VIRTIS and iii ) to deeply analyse the corresponding spectra. The OSIRIS analysis has been carried out on the colours and spectrophotometry of the whole 67/P C-G nucleus from images acquired

  3. Distribution of water around the nucleus of comet 67P/Churyumov-Gerasimenko at 3.4 AU from the Sun as seen by the MIRO instrument on Rosetta

    NASA Astrophysics Data System (ADS)

    Biver, N.; Hofstadter, M.; Gulkis, S.; Bockelée-Morvan, D.; Choukroun, M.; Lellouch, E.; Schloerb, F. P.; Rezac, L.; Ip, W. H.; Jarchow, C.; Hartogh, P.; Lee, S.; von Allmen, P.; Crovisier, J.; Leyrat, C.; Encrenaz, P.

    2015-11-01

    The Microwave Instrument on the Rosetta Orbiter (MIRO) has been observing the coma of comet 67P/Churyumov-Gerasimenko almost continuously since June 2014 at wavelengths near 0.53 mm. We present here a map of the water column density in the inner coma (within 3 km from nucleus center) when the comet was at 3.4 AU from the Sun. Based on the analysis of the HO and HO (110-101) lines, we find that the column density can vary by two orders of magnitude in this region. The highest column density is observed in a narrow region on the dayside, close to the neck and north pole rotation axis of the nucleus, while the lowest column density is seen against the nightside of the nucleus where outgassing seems to be very low. We estimate that the outgassing pattern can be represented by a Gaussian distribution in a solid angle with FWHM ≈ 80°.

  4. Constraints on the subsurface structure and density of the nucleus of Comet 67P/Churyumov-Gerasimenko from Arecibo radar observations

    NASA Astrophysics Data System (ADS)

    Kamoun, P.; Lamy, P. L.; Toth, I.; Herique, A.

    2014-08-01

    Context. Little is known about the internal structure of cometary nuclei. In addition to understanding their accretion in the early solar nebula and their subsequent evolution in the solar system, we find this question to be of acute and timely interest in the case of 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) due to be visited by the Rosetta spacecraft in the second half of 2014. In particular, the successful landing of the Philae surface module depends critically upon the bulk density of the nucleus and the structure of its surface layer. Aims: In addition to fostering our general knowledge of these properties, it is important to exploit all possible information to assist in preparing the delivery of Philae. Methods: We performed an in-depth analysis of the observations done with the radar system of the Arecibo Observatory in November 1982 when comet 67P/C-G had a close encounter with Earth at a geocentric distance of 0.4AU taking our present knowledge of the properties of its nucleus (size, rotational state) into account. Results: In the absence of a detectable radar echo, we determined a maximum radar cross section of 0.7 km2, leading to a maximum radar albedo of 0.05. This low albedo probably results from a combination of a low radar reflectivity material and a lightly packed upper layer of the nucleus with substantial roughness (rms slope of ≈55°), consistent with its low thermal inertia. Based on radar observations of other cometary nuclei and asteroids, it is unlikely that the albedo can be lower than 0.04 so that we were able to constrain the dielectric permittivity of the subsurface layer to a narrow range of 1.9 to 2.1. Laboratory measurements and our modeling of mixtures of ice and dust have led to a porosity in the range of approximately 55 to 65% and a density in the range of ≈600 to ≈1000 kg m-3 for the top ≈2.5 m layer of the nucleus. This would be the bulk density range for a homogeneous nucleus and would place the success of the

  5. Application of Solar Electric Propulsion to a Comet Surface Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Cupples, Mike; Coverstone, Victoria; Woo, Byoungsam

    2004-01-01

    Current NSTAR (planned for the Discovery Mission: Dawn) and NASA's Evolutionary Xenon Thruster based propulsion systems were compared for a comet surface sample return mission to Tempe1 1. Mission and systems analyses were conducted over a range of array power for each propulsion system with an array of 12 kW EOL at 1 AU chosen for a baseline. Engine configurations investigated for NSTAR included 4 operational engines with 1 spare and 5 operational engines with 1 spare. The NEXT configuration investigated included 2 operational engines plus 1 spare, with performance estimated for high thrust and high Isp throttling modes. Figures of merit for this comparison include Solar Electric Propulsion dry mass, average engine throughput, and net non-propulsion payload returned to Earth flyby.

  6. LCOGT Network observations of spacecraft target comets

    NASA Astrophysics Data System (ADS)

    Lister, Tim; Knight, Matthew M.; Snodgrass, Colin; Samarasinha, Nalin H.

    2015-01-01

    Las Cumbres Observatory Global Telescope (LCOGT) network currently has 12 telescopes at 6 locations in the northern and southern hemispheres with expansion plans for more. This network is versatile and can respond rapidly to target of opportunity events and also perform long term monitoring of slowly changing astronomical phenomena.We have been using the LCOGT Network to perform photometric monitoring of comet 67P/Churyumov-Gerasimenko to support the ESA Rosetta comet mission and of C/2013 A1 (Siding Spring) as part of the ground-based observation teams for these important comets. This broadband photometry will allow a vital link between the detailed in-situ measurements made by the spacecraft and the global properties of the coma, at a time when the comet is only visible for short periods from single sites. The science we can extract includes the rotational state of the nucleus, characterization of the nucleus' activity, gas and dust properties in the coma (e.g., outflow velocities), chemical origin of gas species in the coma, and temporal behavior of the coma structure when the comet is close to the sun. Comet Siding Spring is a dynamically new comet on its first approach to the Sun that will pass close to Mars, so we can directly sample the composition of an original unaltered remnant of the protoplanetary disc. We will also be making use of specialized comet filters available at LCOGT's 2-m Faulkes Telescope North (FTN) to obtain a unique data set on comet C/2013 A1 (Siding Spring), as part of a large worldwide campaign. As one of only two robotic telescope equipped with cometary narrowband filters in the Northern hemisphere and having the largest aperture plus a high quality site, FTN can provide critical regular monitoring that cannot be achieved by any other single facility in the campaign.

  7. Stardust Curation at Johnson Space Center: Photo Documentation and Sample Processing of Submicron Dust Samples from Comet Wild 2 for Meteoritics Science Community

    NASA Astrophysics Data System (ADS)

    Nakamura-Messenger, K.; Zolensky, M. E.; Bastien, R.; See, T. H.; Warren, J. L.; Bevill, T. J.; Cardenas, F.; Vidonic, L. F.; Hörz, F.; McNamara, K. M.; Allen, C. C.; Westphal, A. J.; Snead, C.; Ishii, H. A.; Brownlee, D.

    2007-03-01

    The Stardust curation team at NASA Johnson Space Center plays a major role in the photo documentation and sample preparations of comet 81P/Wild 2 precious samples. Cool facts will be shown in our poster; we also invite you to visit our website at http://c

  8. Gas chromatography for space exploration : application to the in situ analysis of Titan's atmosphere, comets nucleus and martian soil

    NASA Astrophysics Data System (ADS)

    Sternberg, R.; Szopa, C.; Buch, A.; Mettetal, F.; Coscia, D.; Coll, P.; Cabane, M.; Rodier, C.; Vidal-Madjar, C.; Raulin, F.

    Gas chromatography is one of the most powerful technique for the in situ chemical investigation of extraterrestrial environments Its successful use in past planetary missions to Mars 1976-78 and Venus 1978-85 made it the main method selected for the in situ molecular characterization of the Titan s atmosphere comets and the Martian soil Indeed gas chromatography fully meet the severe constraints required in space instrumentation such as small weight and size low power consumption high mechanical strength and resistance to deep space conditions vacuum cosmic rays This paper presents the gas chromatographic subsystems which have been developed at LISA and SA respectively for the Huygens probe of the Cassini-Huygens mission to Titan 1 the Philae probe of the Rosetta mission to a comet 2 and the future landing probe of the MSL 2009 mission to Mars 3 The coupling of these GC subsystems with pyrolysis and chemical derivatization techniques allows the chemical analysis of a wide range of molecules including non-volatiles complex organics such as aminoacides and nucleobases the search of wich is of particular interest for exobiology The analytical capabilities of these subsystems with a particular emphasis of their exobiological aspects and implications are described 1 G Israel C Szopa F Raulin M Cabane P Coll R Sternberg et al Nature vol438 796-799 2005 2 C Szopa R Sternberg F Raulin and H Rosenbauer PSS 863-877 2003 3 Cabane M P Coll C Szopa G Isra e l F Raulin

  9. Water and carbon dioxide sources on comet 67P nucleus as measured from the VIRTIS-H instrument aboard Rosetta

    NASA Astrophysics Data System (ADS)

    Bockelee-Morvan, D.; . Debout, V.; Erard, S.; Leyrat, C.; Capaccioni, F.; Filacchione, G.; Drossart, P.; Fougere, N.; Combi, M.; Arnold, G.; Biver, N.; Crovisier, J.; Encrenaz, T.; Schmitt, B.; Virtis Team

    2015-10-01

    Using the high spectral-resolution channel of the Visible InfraRed Thermal Imaging Spectrometer (VIRTIS-H) onboard Rosetta, we observed the n3 vibrational bands of H2O and CO2 at 2.67 and 4.27 μm in comet 67P/Churyumov-Gerasimenko [1]. Observations were undertaken in limb viewing geometry with various line-of-sight (LOS) orientations in the body-fixed frame. A geometry tool is used to characterize the position of the LOS with respect to geomorphologic regions [6] and the illumination properties of these regions. We will present the heliocentric evolution, diurnal variations and distribution of H2O and CO2 production. Inhomogeneities in the CO2/H2O relative production rates will be discussed

  10. THE NUCLEUS OF COMET 10P/TEMPEL 2 IN 2013 AND CONSEQUENCES REGARDING ITS ROTATIONAL STATE: EARLY SCIENCE FROM THE DISCOVERY CHANNEL TELESCOPE

    SciTech Connect

    Schleicher, David G.; Knight, Matthew M.; Levine, Stephen E.

    2013-11-01

    We present new lightcurve measurements of Comet 10P/Tempel 2 carried out with Lowell Observatory's Discovery Channel Telescope in early 2013 when the comet was at aphelion. These data represent some of the first science obtained with this new 4.3 m facility. With Tempel 2 having been observed to exhibit a small but ongoing spin-down in its rotation period for over two decades, our primary goals at this time were two-fold. First, to determine its current rotation period and compare it to that measured shortly after its most recent perihelion passage in 2010, and second, to disentangle the spin-down from synodic effects due to the solar day and Earth's orbital motion and to determine the sense of rotation, i.e., prograde or retrograde. At our midpoint of 2013 February 24, the observed synodic period is 8.948 ± 0.001 hr, exactly matching the predicted prograde rotation solution based on 2010 results, and yields a sidereal period of the identical value due to the solar and Earth synodic components just canceling out during the interval of the 2013 observations. The retrograde solution is ruled out because the associated sidereal periods in 2010 and 2013 are quite different even though we know that extremely little outgassing, needed to produce torques, occurred in this interval. With a definitive sense of rotation, the specific amounts of spin-down to the sidereal period could be assessed. The nominal values imply that the rate of spin-down has decreased over time, consistent with the secular drop in water production since 1988. Our data also exhibited an unexpectedly small lightcurve amplitude which appears to be associated with viewing from a large, negative sub-Earth latitude, and a lightcurve shape deviating from a simple sinusoid implying a highly irregularly shaped nucleus.

  11. Comet radar explorer

    NASA Astrophysics Data System (ADS)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet

  12. Comet composition and density analyzer

    NASA Technical Reports Server (NTRS)

    Clark, B. C.

    1982-01-01

    Distinctions between cometary material and other extraterrestrial materials (meteorite suites and stratospherically-captured cosmic dust) are addressed. The technique of X-ray fluorescence (XRF) for analysis of elemental composition is involved. Concomitant with these investigations, the problem of collecting representative samples of comet dust (for rendezvous missions) was solved, and several related techniques such as mineralogic analysis (X-ray diffraction), direct analysis of the nucleus without docking (electron macroprobe), dust flux rate measurement, and test sample preparation were evaluated. An explicit experiment concept based upon X-ray fluorescence analysis of biased and unbiased sample collections was scoped and proposed for a future rendezvous mission with a short-period comet.

  13. Autonomous Onboard Science Data Analysis for Comet Missions

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Tran, Daniel Q.; McLaren, David; Chien, Steve A.; Bergman, Larry; Castano, Rebecca; Doyle, Richard; Estlin, Tara; Lenda, Matthew

    2012-01-01

    Coming years will bring several comet rendezvous missions. The Rosetta spacecraft arrives at Comet 67P/Churyumov-Gerasimenko in 2014. Subsequent rendezvous might include a mission such as the proposed Comet Hopper with multiple surface landings, as well as Comet Nucleus Sample Return (CNSR) and Coma Rendezvous and Sample Return (CRSR). These encounters will begin to shed light on a population that, despite several previous flybys, remains mysterious and poorly understood. Scientists still have little direct knowledge of interactions between the nucleus and coma, their variation across different comets or their evolution over time. Activity may change on short timescales so it is challenging to characterize with scripted data acquisition. Here we investigate automatic onboard image analysis that could act faster than round-trip light time to capture unexpected outbursts and plume activity. We describe one edge-based method for detect comet nuclei and plumes, and test the approach on an existing catalog of comet images. Finally, we quantify benefits to specific measurement objectives by simulating a basic plume monitoring campaign.

  14. Ultraviolet observations of comets

    NASA Technical Reports Server (NTRS)

    Code, A. D.; Houck, T. E.; Lillie, C. F.

    1972-01-01

    The first observations of a comet in the vacuum ultraviolet were obtained on January 14, 1970, when OAO-2 recorded the spectrum of the bright comet Tago-Sato-Kosaka (1969g). The observations revealed, among other things, the predicted extensive hydrogen Lyman alpha halo. OAO-2 continued to collect spectrophotometric measurements of this comet throughout January of that year; a photograph of the nucleus in Lyman alpha revealed finer scale structures. In February of 1970, the bright comet Bennet (1969i) became favorable for space observations. On the basis of the OAO discovery, OGO-V made several measurements of comet Bennet with low spatial resolution photometers. Comet Enke was detected by OGO in January of 1971 at a large heliocentric distance from its Lyman alpha emission.

  15. Comet disintegration and meteor streams

    NASA Astrophysics Data System (ADS)

    Guliyev, Ayyub S.; Poladova, Ulviyya J.

    2013-01-01

    The possibilities for disintegration of a cometary nucleus by collision with meteoroid streams, pre- dicted by one of authors (Guliyev, 2010) are considered in three zones of the Solar System. A list of disintegrating comets consisting of 118 cases has been made by the authors. The list contains data about observed cases of comet splitting, comet twins, and data about disappeared comets. Testing the comet parameters by applying the methods of mathematical statistics confirms the hypothesis underlying this article. The frequency of passing through the three zones where there might be a collapse of a proto-comet is rather high for the proto-comets of the Sun-grazer group. The results of the statistical analysis of comet outbursts yields additional arguments in favor of our hypothesis.

  16. The impact of lymphocyte isolation on induced DNA damage in human blood samples measured by the comet assay.

    PubMed

    Bausinger, Julia; Speit, Günter

    2016-09-01

    The comet assay is frequently used in human biomonitoring for the detection of exposure to genotoxic agents. Peripheral blood samples are most frequently used and tested either as whole blood or after isolation of lymphocytes (i.e. peripheral blood mononuclear cells, PBMC). To investigate a potential impact of lymphocyte isolation on induced DNA damage in human blood samples, we exposed blood ex vivo to mutagens with different modes of genotoxic action. The comet assay was performed either directly with whole blood at the end of the exposure period or with lymphocytes isolated directly after exposure. In addition to the recommended standard protocol for lymphocyte isolation, a shortened protocol was established to optimise the isolation procedure. The results indicate that the effects of induced DNA strand breaks and alkali-labile sites induced by ionising radiation and alkylants, respectively, are significantly reduced in isolated lymphocytes. In contrast, oxidative DNA base damage (induced by potassium bromate) and stable bulky adducts (induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide; BPDE) seem to be less affected. Our findings suggest that in vivo-induced DNA damage might also be reduced in isolated lymphocytes in comparison with the whole blood depending of the types of DNA damage induced. Because only small genotoxic effects can generally be expected in human biomonitoring studies with the comet assay after occupational and environmental exposure to genotoxic agents, any loss might be relevant and should be avoided. The possibility of such effects and their potential impact on variability of comet assay results in human biomonitoring should be considered when performing or evaluating such kind of studies.

  17. Carbon XANES Data from Six Aerogel Picokeystones Cut from the Top and Bottom Sides of the Stardust Comet Sample Tray

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Frank, D.; Sandford, S. A.; Zolensky, M. E.; Tsou, P.; Peltzer, C.; Jacobsen, C.

    2009-01-01

    Great care and a large effort was made to minimize the amount of organic matter contained within the flight aerogel used to collect Comet 81P/Wild 2 samples. Even so, by the very nature of the production process and silica aerogel s affinity for volatile organics keeping silica aerogel free from organics is a monumental task. Silica aerogel from three production batches was flown on the Stardust sample return mission. All 3 types had layered densities varying from 5mg/ml to 50 mg/ml where the densest aerogel was farthest away from the collection area. A 2 step gelation process was used to make the flight aerogel and organics used in this process were tetraethylorthosilicate, ethanol and acetonitrile. Both ammonium hydroxide and nitric acid were also used in the aerogel production process. The flight aerogel was baked at JPL at 300 C for 72 hours, most of the baking was done at atmosphere but twice a day the oven was pumped to 10 torr for hour [1]. After the aerogel was baked it was stored in a nitrogen purged cabinet until flight time. One aerogel cell was located in the SRC away from any sample collection area as a witness to possible contamination from out gassing of the space craft, re-entry gases and any other organic encounter. This aerogel was aerogel used in the interstellar collection sample tray and is the least dense of the 3 batches of aerogel flown. Organics found in the witness tile include organics containing Si-CH3 bonds, amines and PAHS. Besides organic contamination, hot spots of calcium were reported in the flight aerogel. Carbonates have been detected in comet 81P/Wild2 samples . During preflight analyses, no technique was used to analyze for carbonates in aerogel. To determine if the carbonates found in 81P/Wild2 samples were from the comet, it is necessary to analyze the flight aerogel for carbonate as well as for organics.

  18. Dust environment and dynamical history of a sample of short-period comets . II. 81P/Wild 2 and 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Pozuelos, F. J.; Moreno, F.; Aceituno, F.; Casanova, V.; Sota, A.; López-Moreno, J. J.; Castellano, J.; Reina, E.; Climent, A.; Fernández, A.; San Segundo, A.; Häusler, B.; González, C.; Rodriguez, D.; Bryssinck, E.; Cortés, E.; Rodriguez, F. A.; Baldris, F.; García, F.; Gómez, F.; Limón, F.; Tifner, F.; Muler, G.; Almendros, I.; de los Reyes, J. A.; Henríquez, J. A.; Moreno, J. A.; Báez, J.; Bel, J.; Camarasa, J.; Curto, J.; Hernández, J. F.; González, J. J.; Martín, J. J.; Salto, J. L.; Lopesino, J.; Bosch, J. M.; Ruiz, J. M.; Vidal, J. R.; Ruiz, J.; Sánchez, J.; Temprano, J.; Aymamí, J. M.; Lahuerta, L.; Montoro, L.; Campas, M.; García, M. A.; Canales, O.; Benavides, R.; Dymock, R.; García, R.; Ligustri, R.; Naves, R.; Lahuerta, S.; Pastor, S.

    2014-11-01

    Aims: This paper is a continuation of the first paper in this series, where we presented an extended study of the dust environment of a sample of short-period comets and their dynamical history. On this occasion, we focus on comets 81P/Wild 2 and 103P/Hartley 2, which are of special interest as targets of the spacecraft missions Stardust and EPOXI. Methods: As in the previous study, we used two sets of observational data: a set of images, acquired at Sierra Nevada and Lulin observatories, and the Afρ data as a function of the heliocentric distance provided by the amateur astronomical association Cometas-Obs. The dust environment of comets (dust loss rate, ejection velocities, and size distribution of the particles) was derived from our Monte Carlo dust tail code. To determine their dynamical history we used the numerical integrator Mercury 6.2 to ascertain the time spent by these objects in the Jupiter family Comet region. Results: From the dust analysis, we conclude that both 81P/Wild 2 and 103P/Hartley 2 are dusty comets, with an annual dust production rate of 2.8 × 109 kg yr-1 and (0.4-1.5) × 109 kg yr-1, respectively. From the dynamical analysis, we determined their time spent in the Jupiter family Comet region as ~40 yr in the case of 81P/Wild 2 and ~1000 yr for comet 103P/Hartley 2. These results imply that 81P/Wild 2 is the youngest and the most active comet of the eleven short-period comets studied so far, which tends to favor the correlation between the time spent in JFCs region and the comet activity previously discussed.

  19. Application of solar electric propulsion to comet and asteroid rendezvous and docking /CARD/ missions with sample return.

    NASA Technical Reports Server (NTRS)

    Odom, P. R.; Cikanek, H. A.; Allen, L. C.

    1972-01-01

    Summary of a feasibility study of CARD mission/system concepts for comet Encke and asteroid Eros missions in the late 1970s. A common planetary vehicle employing a modular SEP (solar electric propulsion) system and a direct rendezvous/docking mode with a staged science/sampling module appears feasible based on 1973 technology. The SEP system utilizes 3.5-kW, 3500-sec Isp mercury ion thrusters and rollout solar arrays sized at 36 (Encke) and 13 (Eros) kW based on the Titan III family launch vehicles. Science payloads, sampling concepts, and supporting spacecraft subsystems are defined. Problem areas are identified, and programmatic considerations are discussed.

  20. Collecting Comet Samples by ER-2 Aircraft: Cosmic Dust Collection During the Draconid Meteor Shower in October 2012

    NASA Technical Reports Server (NTRS)

    Bastien, Ron; Burkett, P. J.; Rodriquez, M.; Frank, D.; Gonzalez, C.; Robinson, G.-A.; Zolensky, M.; Brown, P.; Campbell-Brown, M.; Broce, S.; Kapitzke, M.; Moes, T.; Steel, D.; Williams, T.; Gearheart, D.

    2014-01-01

    Many tons of dust grains, including samples of asteroids and comets, fall from space into the Earth's atmosphere each day. NASA periodically collects some of these particles from the Earth's stratosphere using sticky collectors mounted on NASA's high-flying aircraft. Sometimes, especially when the Earth experiences a known meteor shower, a special opportunity is presented to associate cosmic dust particles with a known source. NASA JSC's Cosmic Dust Collection Program has made special attempts to collect dust from particular meteor showers and asteroid families when flights can be planned well in advance. However, it has rarely been possible to make collections on very short notice. In 2012, the Draconid meteor shower presented that opportunity. The Draconid meteor shower, originating from Comet 21P/Giacobini-Zinner, has produced both outbursts and storms several times during the last century, but the 2012 event was not predicted to be much of a show. Because of these predictions, the Cosmic Dust team had not targeted a stratospheric collection effort for the Draconids, despite the fact that they have one of the slowest atmospheric entry velocities (23 km/s) of any comet shower, and thus offer significant possibilities of successful dust capture. However, radar measurements obtained by the Canadian Meteor Orbit Radar during the 2012 Draconids shower indicated a meteor storm did occur October 8 with a peak at 16:38 (+/-5 min) UTC for a total duration of approximately 2 hours.

  1. Comet formation

    NASA Astrophysics Data System (ADS)

    Blum, J.

    2014-07-01

    There has been vast progress in our understanding of planetesimal formation over the past decades, owing to a number of laboratory experiments as well as to refined models of dust and ice agglomeration in protoplanetary disks. Coagulation rapidly forms cm-sized ''pebbles'' by direct sticking in collisions at low velocities (Güttler et al. 2010; Zsom et al. 2010). For the further growth, two model approaches are currently being discussed: (1) Local concentration of pebbles in nebular instabilities until gravitational instability occurs (Johansen et al. 2007). (2) A competition between fragmentation and mass transfer in collisions among the dusty bodies, in which a few ''lucky winners'' make it to planetesimal sizes (Windmark et al. 2012a,b; Garaud et al. 2013). Predictions of the physical properties of the resulting bodies in both models allow a distinction of the two formation scenarios of planetesimals. In particular, the tensile strength (i.e, the inner cohesion) of the planetesimals differ widely between the two models (Skorov & Blum 2012; Blum et al. 2014). While model (1) predicts tensile strengths on the order of ˜ 1 Pa, model (2) results in rather compactified dusty bodies with tensile strengths in the kPa regime. If comets are km-sized survivors of the planetesimal-formation era, they should in principle hold the secret of their formation process. Water ice is the prime volatile responsible for the activity of comets. Thermophysical models of the heat and mass transport close to the comet-nucleus surface predict water-ice sublimation temperatures that relate to maximum sublimation pressures well below the kPa regime predicted for formation scenario (2). Model (1), however, is in agreement with the observed dust and gas activity of comets. Thus, a formation scenario for cometesimals involving gravitational instability is favored (Blum et al. 2014).

  2. Characterizing water/rock interaction in simulated comet nuclei via calorimetry: Tool for in-situ science, laboratory analysis, and sample preservation

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Gooding, James L.

    1991-01-01

    Although results from the Giotto and Vega spacecraft flybys of comet P/Halley indicate a complex chemistry for both the ices and dust in the nucleus, carbonaceous chondrite meteorites are still regarded as useful analogs for the rocky components. Carbonaceous chondrites mixed with water enable simulation of water/rock interactions which may occur in cometary nuclei. Three general types of interactions can be expected between water and minerals at sub-freezing temperatures: heterogeneous nucleation of ice by insoluble minerals; adsorption of water vapor by hygroscopic phases; and freezing and melting point depression of liquid water sustained by soluble minerals. Two series of experiments were performed in a differential scanning calorimeter (DSC) with homogenized powders of the following whole-rock meteorites and comparison samples: Allende (CV3), Murchison (CM2), Orgueil (CI), Holbrook (L6), and Pasamonte (eucrite) meteorites as well as on peridotite (PCC-1, USGS), saponite (Sap-Ca-1, CMS), montmorillonite (STx-1, CMS), and serpentine (Franciscan Formation, California). Results are briefly discussed.

  3. Comet Halley and nongravitational forces

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1977-01-01

    The motion of comet Halley is investigated over the 1607-1911 interval. The required nongravitational-force model was found to be most consistent with a rocket-type thrust from the vaporization of water ice in the comet's nucleus. The nongravitational effects are time-independent over the investigated interval.

  4. Observations of Periodic Comet 2P/Encke: Physical Properties of the Nucleus and First Visual-Wavelength Detection of Its Dust Trail

    NASA Technical Reports Server (NTRS)

    Lowry, Stephen C.; Weissman, Paul R.; Sykes, Mark V.; Reach, William T.

    2003-01-01

    We are conducting an observational program designed to determine the overall distributions of size, shape, rotation period, and surface characteristics of cometary nuclei. Here, we present results from a study of the Jupiter- family comet 2P/Encke based on observations from Steward Observatory's 2.3m Bok Telescope at Kitt Peak. This comet has been observed extensively in the past and was one of the primary flyby targets of the recently failed CONTOUR mission.

  5. Elemental Compositions of Comet 81P/Wild 2 Samples Collected by Stardust

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Bleuet, P.; Borg, J.; Bradley, J.; Brenker, F.; Brennan, S.; Bridges, J.; Brownlee, D. E.; Bullock, E.; Clark, B. C.; Papanastassiou, D. A.; Schwandt, C. S.; See, T. H.; Taylor, S.; Tsou, P.

    2006-01-01

    We measured the chemical compositions of material from 23 particles in aerogel and residue in 7 craters in aluminum foil, collected during passage of the Stardust spacecraft through the coma of Comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size-scale analyzed, 180 nanograms. The mean chemical composition of this Wild 2 material agrees with the CI meteorite composition for the refractory elements Mg, Si, Cr, Fe, and Ni to 35%, and for Ca and Mn to 50%. The data suggest the moderately volatile elements Cu, Zn, and Ga may be enriched in this Wild 2 material.

  6. The gas production rate of periodic comet d'Arrest

    NASA Technical Reports Server (NTRS)

    Festou, Michel C.; Feldman, Paul D.; Ahearn, Michael F.

    1992-01-01

    Comet P/d'Arrest is a potential target for a rendezvous mission to a short period comet. Its light curve is rather peculiar, the comet being active only after perihelion passage. One apparition out of two is easy to observe from the ground. The 1995 apparition of the comet will offer a unique opportunity to characterize the outgassing properties of its nucleus.

  7. EPOXI at Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    A'Hearn, Michael F.; Belton, Michael J. S.; Delamere, W. Alan; Feaga, Lori M.; Hampton, Donald; Kissel, Jochen; Klaasen, Kenneth P.; McFadden, Jessica M.; Meech, Karen J.; Melosh, H. Jay; Schultz, Peter H.; Sunshine, Jessica M.; Thomas, Peter C.; Veverka, Joseph; Wellnitz, Dennis D.; Yeomans, Donald K.; Besse, Sebastien; Bodewits, Dennis; Bowling, Timothy J.; Carcish, Brian T.; Collins, Steven M.; Farnham, Tony F.; Groussin, Oliver; Hermalyn, Brendan; Kelley, Michael S.

    2011-01-01

    Understanding how comets work, i,e., what drives their activity, is crucial to using comets to study the early solar system. EPOXI flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus. taking both images and spectra. Unlike large, relatively inactive nuclei, this nncleus is outgassing primarily due to CO2, which drags chnnks of ice out of the nnclens. It also shows significant differences in the relative abundance of volatiles from various parts of the nucleus.

  8. Comet encounters

    SciTech Connect

    Birmingham, T. J.; Dessler, A. J.

    1988-01-01

    Data from spacecraft encounters with comets and the implications of these data for theoretical models are discussed in a collection of reviews and reports (all published after 1985). Topics addressed include mass loading effects in the unshocked solar wind (particles, waves, and fluctuations), boundaries, the shocked solar wind and the ionosphere, tail phenomena, remote observations at encounter, and dust. Extensive diagrams, graphs, and sample images are provided.

  9. Elemental Compositions of Comet 81P/Wild 2 Samples Collected by Stardust

    SciTech Connect

    Flynn,G.; Bleuet, P.; Borg, J.; Bradley, J.; Brenker, F.; Brennan, S.; Bridges, J.; Brownlee, D.; Bullock, E.; et al.

    2006-01-01

    We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ({approx}180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements.

  10. Elemental compositions of comet 81P/Wild 2 samples collected by Stardust.

    PubMed

    Flynn, George J; Bleuet, Pierre; Borg, Janet; Bradley, John P; Brenker, Frank E; Brennan, Sean; Bridges, John; Brownlee, Don E; Bullock, Emma S; Burghammer, Manfred; Clark, Benton C; Dai, Zu Rong; Daghlian, Charles P; Djouadi, Zahia; Fakra, Sirine; Ferroir, Tristan; Floss, Christine; Franchi, Ian A; Gainsforth, Zack; Gallien, Jean-Paul; Gillet, Philippe; Grant, Patrick G; Graham, Giles A; Green, Simon F; Grossemy, Faustine; Heck, Philipp R; Herzog, Gregory F; Hoppe, Peter; Hörz, Friedrich; Huth, Joachim; Ignatyev, Konstantin; Ishii, Hope A; Janssens, Koen; Joswiak, David; Kearsley, Anton T; Khodja, Hicham; Lanzirotti, Antonio; Leitner, Jan; Lemelle, Laurence; Leroux, Hugues; Luening, Katharina; Macpherson, Glenn J; Marhas, Kuljeet K; Marcus, Matthew A; Matrajt, Graciela; Nakamura, Tomoki; Nakamura-Messenger, Keiko; Nakano, Tsukasa; Newville, Matthew; Papanastassiou, Dimitri A; Pianetta, Piero; Rao, William; Riekel, Christian; Rietmeijer, Frans J M; Rost, Detlef; Schwandt, Craig S; See, Thomas H; Sheffield-Parker, Julie; Simionovici, Alexandre; Sitnitsky, Ilona; Snead, Christopher J; Stadermann, Frank J; Stephan, Thomas; Stroud, Rhonda M; Susini, Jean; Suzuki, Yoshio; Sutton, Stephen R; Taylor, Susan; Teslich, Nick; Troadec, D; Tsou, Peter; Tsuchiyama, Akira; Uesugi, Kentaro; Vekemans, Bart; Vicenzi, Edward P; Vincze, Laszlo; Westphal, Andrew J; Wozniakiewicz, Penelope; Zinner, Ernst; Zolensky, Michael E

    2006-12-15

    We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ( approximately 180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements.

  11. Elemental composition of Comet 81P/Wild2 samples collected byStardust

    SciTech Connect

    Flynn, G.J.; Bleuet, P.; Borg, J.; Bradley, J.P.; Brenker, F.E.; Brennan, S.; Bridges, J.; Brownlee, D.E.; Bullock, E.S.; Burghammer,Manfred; Clark, B.C.; Dai, Zu Rong; Daghlian, C.P.; Djouadi, Z.; Fakra,S; Ferroir, T.; Floss, C.; Franchi, I.A.; Gainsforth, Z.; Gallien, J.P.; Gillet, P.; Grant, P.G.; Graham, G.A.; Green, S.F.; Grossemy, F.; Heck,P.R.; Herzog, G.F.; Hoppe, P.; Horz, F.; Huth, J.; Ignatyev, K.; Ishii,H.A.; Janssens, K.; Joswiak, D.; Kearsley, A.T.; Khodja, H.; Lanzirotti,A.; Leitner, J.; Lemelle, L.; Leroux, H.; Luening, K.; MacPherson, G.J.; Marhas, K.K.; Marcus, M.A.; Matrajt, G.; Nakamura, T.; Nakamura-Messenger, K.; Nakano, T.; Newville, M.; Papanastassiou, D.A.; Pianette, P.; Rao, William; Riekel, C.; Rietmeijer, F.J.M.; Rost, D.; Schwandt, C.S.; See, T.H.; Sheffield-Parker, J.; Simionovici, A.; Sitnitsky, Ilona; Snead, C.J.; Stadermann, F.J.; Stephan, T.; Stroud,R.M.; Susini, J.; Suzuki, Y.; Sutton, S.R.; Taylor, S.; Teslich, N.; Troadec, D.; Tsou, P.; Tsuchiyama, A.; Uesugi, K.; Vekemans, B.; Vicenzi,E.P.; Vincze, L.; Westphal, A.J.; Wozniakiewicz, P.; Zinner, E.; Zolensky, M.E.

    2006-01-01

    We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ({approx}180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements.

  12. Physical aging in comets

    NASA Technical Reports Server (NTRS)

    Meech, Karen J.

    1991-01-01

    The question of physical aging in cometary nuclei is addressed in order to elucidate the relationship between the past conditions in the protosolar nebula and the present state of the cometary nucleus, and to understand the processes that will physically and chemically alter the nucleus as a function of time. Attention is given to some of the processes that might be responsible for causing aging in comets, namely, radiation damage in the upper layers of the nucleus during the long residences in the Oort cloud, processing from heating and collisions within the Oort cloud, loss of highly volatile species from the nucleus on the first passage through the inner solar system, buildup of a dusty mantle, which can eventually prohibit further sublimation, and a change in the porosity, and hence the thermal properties, of the nucleus. Recent observations suggest that there are distinct differences between 'fresh' Oort cloud comets and thermally processed periodic comets with respect to intrinsic brightness and rate of change of activity as a function of distance.

  13. Why did Halley hiccup?. [increased luminosity of comet

    NASA Technical Reports Server (NTRS)

    Weissman, Paul

    1991-01-01

    The outburst of Halley comet that occurred in February 1991 when the comet was over 14 AU from the sun, between the orbits of Saturn and Uranus, is described. This region of the solar system was known to be so cold that a comet nucleus would be totally inert there. On February 12th, 1991 Halley brightened by a factor of about 300, and a dust coma was observed around the nucleus. Different explanations of the comet's strange behavior are suggested.

  14. Piece of a Comet

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image shows a comet particle collected by the Stardust spacecraft. The particle is made up of the silicate mineral forsterite, also known as peridot in its gem form. It is surrounded by a thin rim of melted aerogel, the substance used to collect the comet dust samples. The particle is about 2 micrometers across.

  15. HUBBLE SEES MINI-COMET FRAGMENTS FROM COMET LINEAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [lower right] In one stunning Hubble picture the fate of the mysteriously vanished solid nucleus of Comet LINEAR has been settled. The Hubble picture shows that the comet nucleus has been reduced to a shower of glowing 'mini-comets' resembling the fiery fragments from an exploding aerial firework. This is the first time astronomers have ever gotten a close-up look at what may be the smallest building blocks of cometary nuclei, the icy solid pieces called 'cometesimals', which are thought to be less than 100 feet across. The farthest fragment to the left, which is now very faint, may be the remains of the parent nucleus that fragmented into the cluster of smaller pieces to the right. The comet broke apart around July 26, when it made its closest approach to the Sun. The picture was taken with Hubble's Wide Field Planetary Camera 2 on August 5, 2000, when the comet was at a distance of 64 million miles (102 million kilometers) from Earth. Credit: NASA, Harold Weaver (the Johns Hopkins University), and the HST Comet LINEAR Investigation Team [upper left] A ground-based telescopic view (2.2-meter telescope) of Comet LINEAR taken on August 5, at nearly the same time as the Hubble observations. The comet appears as a diffuse elongated cloud of debris without any visible nucleus. Based on these images, some astronomers had concluded that the ices in the nucleus had completely vaporized, leaving behind a loose swarm of dust. Hubble's resolution was needed to pinpoint the remaining nuclei (inset box shows HST field of view as shown in lower right). Credit: University of Hawaii

  16. Stardust Curation at Johnson Space Center: Photo Documentation and Sample Processing of Submicron Dust Samples from Comet Wild 2 for Meteoritics Science Community

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Zolensky, M. E.; Bastien, R.; See, T. H.; Warren, J. L.; Bevill, T. J.; Cardenas, F.; Vidonic, L. F.; Horz, F.; McNamara, K. M.; Allen, C. C.; Westphal, A. J.; Snead, C.; Ishii, H. A.; Brownlee, D.

    2007-01-01

    Dust particles released from comet 81P/Wild-2 were captured in silica aerogel on-board the STARDUST spacecraft and successfully returned to the Earth on January 15, 2006. STARDUST recovered thousands of particles ranging in size from 1 to 100 micrometers. The analysis of these samples is complicated by the small total mass collected ( < 1mg), its entrainment in the aerogel collection medium, and the fact that the cometary dust is comprised of submicrometer minerals and carbonaceous material. During the six month Preliminary Examination period, 75 tracks were extracted from the aerogel cells , but only 25 cometary residues were comprehensively studied by an international consortium of 180 scientists who investigated their mineralogy/petrology, organic/inorganic chemistry, optical properties and isotopic compositions. These detailed studies were made possible by sophisticated sample preparation methods developed for the STARDUST mission and by recent major advances in the sensitivity and spatial resolution of analytical instruments.

  17. Sensor system for comet approach and landing

    NASA Astrophysics Data System (ADS)

    Bonsignori, Roberto; Maresi, Luca

    1991-07-01

    This paper describes the overall configuration and performance of a comet approach and landing system (CALS), a space-borne sensor package for navigation toward a low-gravity celestial body in an interplanetary environment. The sensor system is aimed at satisfying the requirements of the Rosetta/CNSR (comet nucleus sample return) mission, whose objective is to land on a cometary surface and to retrieve samples that will be analyzed on the ground after Earth re-entry. Several constraints at the mission and spacecraft level make the configuration of a suitable sensor package a quite complex problem. The baseline system includes the following sensors, all mounted on a high-precision gimballed platform: (1) high-resolution camera, for detection of the comet at large distance and mapping at medium/short distance for ground-assisted landing site selection; (2) wide-angle camera with data processing equipment (star and target tracker), able to track simultaneously the irregular comet image and the surrounding stars for autonomous navigation; (3) laser topographic mapper for autonomous topography-assisted navigation in the final descent phase; (4) multitask radar altimeter for the on-board measurement of range, attitude, 3-axis velocity and surface roughness, with a microwave sounder section for the determination of subsurface structure and composition.

  18. A Creaking and Cracking Comet

    NASA Astrophysics Data System (ADS)

    Faurschou Hviid, Stubbe; Hüttig, Christian; Groussin, Olivier; Mottola, Stefano; Keller, Horst Uwe; OSIRIS Team

    2016-10-01

    Since the middle of 2014 the OSIRIS cameras on the ESA Rosetta mission have been monitoring the evolution of the comet 67P/Churyumov-Gerasimenko as it passed through perihelion. During the perihelion passage several change events have been observed on the nucleus surface. For example existing large scale cracks have expanded and new large scale cracks have been created. Also several large scale "wave pattern" like change events have been observed in the Imhotep and Hapi regions. These are events not directly correlated with any normal visible cometary activity. One interpretation is that these are events likely caused by "seismic" activity. The seismic activity is created by the self-gravity stress of the non-spherical comet nucleus and stress created by the non-gravitational forces acting on the comet. The non-gravitational forces are changing the rotation period of the comet (~20min/perihelion passage) which induces a changing mechanical stress pattern through the perihelion passage. Also the diurnal cycle with its changing activity pattern is causing a periodic wobble in the stress pattern that can act as a trigger for a comet quake. The stress pattern has been modeled using a finite element model that includes self-gravity, the comet spin and the non-gravitational forces based on a cometary activity model. This paper will discuss what can be learned about the comet nucleus structure and about the cometary material properties from these events and from the FEM model.

  19. Spectroscopy of comets

    NASA Technical Reports Server (NTRS)

    Wyckoff, S.; Wehinger, P. A.

    1986-01-01

    Comets constitute the most accessible samples of the outer solar system in its most primitive state. The physical and chemical properties of comet nuclei were determined to infer the conditions and processes related to the origin and evolution of the outer solar system. The procedure is to acquire and analyze digital spectra of a sample of comets covering a large range in heliocentric distance. During 1984 to 1986 the emphasis has been on Comet P/Halley (1982i). Large ground-based telescopes and state-of-the-art detectors were used to observe Comet P/Halley pre- and post-perihelion, covering a heliocentric distance range, 0.9 to 6.1 AU.

  20. DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES

    SciTech Connect

    Salvato, M.; Hasinger, G.; Ilbert, O.; Rau, A.; Brusa, M.; Bongiorno, A.; Civano, F.; Elvis, M.; Zamorani, G.; Vignali, C.; Comastri, A.; Bardelli, S.; Bolzonella, M.; Cappelluti, N.; Aussel, H.; Le Floc'h, E.; Mainieri, V.; Capak, P.; Caputi, K.; and others

    2011-12-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy {sigma}{sub {Delta}z/(1+z{sub s{sub p{sub e{sub c)}}}}}{approx}0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg{sup 2} of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by {Delta}z > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H{sub AB} = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.

  1. Nitrogen abundance in Comet Halley

    NASA Technical Reports Server (NTRS)

    Wyckoff, Susan; Tegler, Stephen C.; Engel, Lisa

    1991-01-01

    Data on the nitrogen-containing compounds that observed spectroscopically in the coma of Comet Halley are summarized, and the elemental abundance of nitrogen in the Comet Halley nucleus is derived. It is found that 90 percent of elemental nitrogen is in the dust fraction of the coma, while in the gas fraction, most of the nitrogen is contained in NH3 and CN. The elemental nitrogen abundance in the ice component of the nucleus was found to be deficient by a factor of about 75, relative to the solar photosphere, indicating that the chemical partitioning of N2 into NH3 and other nitrogen compounds during the evolution of the solar nebula cannot account completely for the low abundance ratio N2/NH3 = 0.1, observed in the comet. It is suggested that the low N2/NH3 ratio in Comet Halley may be explained simply by physical fractionation and/or thermal diffusion.

  2. A Post-Stardust Mission View of Jupiter Family Comets

    NASA Technical Reports Server (NTRS)

    Zolensky, M.

    2011-01-01

    Before the Stardust Mission, many persons (including the mission team) believed that comet nuclei would be geologically boring objects. Most believed that comet nucleus mineralogy would be close or identical to the chondritic interplanetary dust particles (IDPs), or perhaps contain mainly amorphous nebular condensates or that comets might even be composed mainly of preserved presolar material [1]. Amazingly, the results for Comet Wild 2 (a Jupiter class comet) were entirely different. Whether this particular comet will ultimately be shown to be typical or atypical will not be known for a rather long time, so we describe our new view of comets from the rather limited perspective of this single mission.

  3. CO2 Orbital Trends in Comets

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Feaga, Lori; Bodewits, Dennis; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2014-12-01

    Spacecraft missions to comets return a treasure trove of details of their targets, e.g., the Rosetta mission to comet 67P/Churyumov-Gerasimenko, the Deep Impact experiment at comet 9P/Tempel 1, or even the flyby of C/2013 A1 (Siding Spring) at Mars. Yet, missions are rare, the diversity of comets is large, few comets are easily accessible, and comet flybys essentially return snapshots of their target nuclei. Thus, telescopic observations are necessary to place the mission data within the context of each comet's long-term behavior, and to further connect mission results to the comet population as a whole. We propose a large Cycle 11 project to study the long-term activity of past and potential future mission targets, and select bright Oort cloud comets to infer comet nucleus properties, which would otherwise require flyby missions. In the classical comet model, cometary mass loss is driven by the sublimation of water ice. However, recent discoveries suggest that the more volatile CO and CO2 ices are the likely drivers of some comet active regions. Surprisingly, CO2 drove most of the activity of comet Hartley 2 at only 1 AU from the Sun where vigorous water ice sublimation would be expected to dominate. Currently, little is known about the role of CO2 in comet activity because telluric absorptions prohibit monitoring from the ground. In our Cycle 11 project, we will study the CO2 activity of our targets through IRAC photometry. In conjunction with prior observations of CO2 and CO, as well as future data sets (JWST) and ongoing Earth-based projects led by members of our team, we will investigate both long-term activity trends in our target comets, with a particular goal to ascertain the connections between each comet's coma and nucleus.

  4. Metallic atoms and ions in comets: Comet Halley 1986 3

    NASA Technical Reports Server (NTRS)

    Ibadov, S.

    1992-01-01

    The origin of metallic atoms and ions in the cometary comae is investigated theoretically. Two effects are revealed in the comas of bright comets: (1) the Na anomalous type effect is possible within the gas-dust jets of comet P/Halley 1986 3 due to cooling cometary dust by cryogenic gas flow from the nucleus; and (2) the production of ions of refractory elements (Fe(+), Si(+), etc.) at large heliocentric distances is possible in the comas of the Halley type dusty comets due to high-velocity impacts between cometary and zodiacal dust particles. Spectral observations of comets with high sensitivity and spatial resolution are important for studying both comets and interplanetary dust.

  5. Comet LINEAR Splits Further

    NASA Astrophysics Data System (ADS)

    2001-05-01

    Third Nucleus Observed with the VLT Summary New images from the VLT show that one of the two nuclei of Comet LINEAR (C/2001 A2), now about 100 million km from the Earth, has just split into at least two pieces . The three fragments are now moving through space in nearly parallel orbits while they slowly drift apart. This comet will pass through its perihelion (nearest point to the Sun) on May 25, 2001, at a distance of about 116 million kilometres. It has brightened considerably due to the splitting of its "dirty snowball" nucleus and can now be seen with the unaided eye by observers in the southern hemisphere as a faint object in the southern constellation of Lepus (The Hare). PR Photo 18a/01 : Three nuclei of Comet LINEAR . PR Photo 18b/01 : The break-up of Comet LINEAR (false-colour). Comet LINEAR splits and brightens ESO PR Photo 18a/01 ESO PR Photo 18a/01 [Preview - JPEG: 400 x 438 pix - 55k] [Normal - JPEG: 800 x 875 pix - 136k] ESO PR Photo 18b/01 ESO PR Photo 18b/01 [Preview - JPEG: 367 x 400 pix - 112k] [Normal - JPEG: 734 x 800 pix - 272k] Caption : ESO PR Photo 18a/01 shows the three nuclei of Comet LINEAR (C/2001 A2). It is a reproduction of a 1-min exposure in red light, obtained in the early evening of May 16, 2001, with the 8.2-m VLT YEPUN (UT4) telescope at Paranal. ESO PR Photo 18b/01 shows the same image, but in a false-colour rendering for more clarity. The cometary fragment "B" (right) has split into "B1" and "B2" (separation about 1 arcsec, or 500 km) while fragment "A" (upper left) is considerably fainter. Technical information about these photos is available below. Comet LINEAR was discovered on January 3, 2001, and designated by the International Astronomical Union (IAU) as C/2001 A2 (see IAU Circular 7564 [1]). Six weeks ago, it was suddenly observed to brighten (IAUC 7605 [1]). Amateurs all over the world saw the comparatively faint comet reaching naked-eye magnitude and soon thereafter, observations with professional telescopes indicated

  6. Anatomy of a Busted Comet

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Poster Version (Figure 1)

    NASA's Spitzer Space Telescope captured the picture on the left of comet Holmes in March 2008, five months after the comet suddenly erupted and brightened a millionfold overnight. The contrast of the picture has been enhanced on the right to show the anatomy of the comet.

    Every six years, comet 17P/Holmes speeds away from Jupiter and heads inward toward the sun, traveling the same route typically without incident. However, twice in the last 116 years, in November 1892 and October 2007, comet Holmes mysteriously exploded as it approached the asteroid belt. Astronomers still do not know the cause of these eruptions.

    Spitzer's infrared picture at left hand side of figure 1, reveals fine dust particles that make up the outer shell, or coma, of the comet. The nucleus of the comet is within the bright whitish spot in the center, while the yellow area shows solid particles that were blown from the comet in the explosion. The comet is headed away from the sun, which lies beyond the right-hand side of figure 1.

    The contrast-enhanced picture on the right shows the comet's outer shell, and strange filaments, or streamers, of dust. The streamers and shell are a yet another mystery surrounding comet Holmes. Scientists had initially suspected that the streamers were small dust particles ejected from fragments of the nucleus, or from hyerpactive jets on the nucleus, during the October 2007 explosion. If so, both the streamers and the shell should have shifted their orientation as the comet followed its orbit around the sun. Radiation pressure from the sun should have swept the material back and away from it. But pictures of comet Holmes taken by Spitzer over time show the streamers and shell in the same configuration, and not pointing away from the sun. The observations have left astronomers stumped.

    The horizontal line seen in the contrast-enhanced picture is a trail of debris

  7. The TRAPPIST comet survey

    NASA Astrophysics Data System (ADS)

    Jehin, E.; Opitom, C.; Manfroid, J.; Hutsemékers, D.; Gillon, M.

    2014-07-01

    distribution of several species among which OH, NH, CN, C2 and C3 as well as ions like CO+. The dust production rates (Afrho) and color of the dust are determined through four dust continuum bands (UC, BC, GC, RC). Such regular measurements are rare because of the lack of observing time on larger telescopes. Yet they are very valuable as they show how the gas production rate of each species evolves with respect to the distance to the Sun. Those observations allow to determine the composition of the comets and the chemical class to which they belong (rich or poor in carbon for instance [3]), possibly revealing the origin of those classes but also if there are some changes of the abundance ratios along the orbit (evolutionary effects). Indeed with half a dozen of comets observed each year --- and as long as possible along their orbit --- this program will provide a good statistical sample after a few years. We will present the results of this monitoring after three years of operations. Thanks to the way the telescope is operated, follow-up of split comets and of special outburst events is possible right after an alert is given and can bring important information on the nature of comets. In addition to providing the productions rates of the different species through a proper photometric calibration, image analysis can reveal coma features (jets, fans, tails), that can lead to the detection of active regions and measure the rotation period of the nucleus. The monitoring is also useful to assess the gas and dust activity of a given comet in order to prepare more detailed observations with larger telescopes. Such data can be obtained at any time under request. Finally a dozen of faint comets (V < 20) are monitored once a week through B, V, Rc, Ic filters and magnitudes and positions are sent to the MPC.

  8. Atlas of Great Comets

    NASA Astrophysics Data System (ADS)

    Stoyan, Ronald; Dunlop, Storm

    2015-01-01

    Foreword; Using this book; Part I. Introduction: Cometary beliefs and fears; Comets in art; Comets in literature and poetry; Comets in science; Cometary science today; Great comets in antiquity; Great comets of the Middle Ages; Part II. The 30 Greatest Comets of Modern Times: The Great Comet of 1471; Comet Halley 1531; The Great Comet of 1556; The Great Comet of 1577; Comet Halley, 1607; The Great Comet of 1618; The Great Comet of 1664; Comet Kirch, 1680; Comet Halley, 1682; The Great Comet of 1744; Comet Halley, 1759; Comet Messier, 1769; Comet Flaugergues, 1811; Comet Halley, 1835; The Great March Comet of 1843; Comet Donati, 1858; Comet Tebbutt, 1861; The Great September Comet of 1882; The Great January Comet of 1910; Comet Halley, 1910; Comet Arend-Roland, 1956; Comet Ikeya-Seki, 1965; Comet Bennett, 1970; Comet Kohoutek, 1973-4; Comet West, 1976; Comet Halley, 1986; Comet Shoemaker-Levy 9, 1994; Comet Hyakutake, 1996; Comet Hale-Bopp, 1997; Comet McNaught, 2007; Part III. Appendices; Table of comet data; Glossary; References; Photo credits; Index.

  9. A Comet's Missing Light

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    comets experienced very similar radiation fields as they passed perihelion. They also show that the properties of the Suns corona experienced by each comet like its density and magnetic field topology were roughly the same.Bryans and Pesnell argue that, as both comets appear to have encountered similar solar conditions, the most likely explanation for ISONs lack of detectable EUV emission is that it didnt deposit as much material in its orbit as Lovejoy did. They show that this would happen if ISONs nucleus were four times smaller in radius than Lovejoys, spanning a mere 5070 meters in comparison to Lovejoys 200300 meters.This conclusion is consistent with white-light observations of ISON that suggest that, though it might have started out significantly larger than Lovejoy, ISON underwent dramatic mass loss as it approached the Sun. By the time it arrived at perihelion, it was likely no longer large enough to create a strong EUV signal resulting in the non-detection of this elusive comet with SDO and other telescopes.CitationPaul Bryans and W. Dean Pesnell 2016 ApJ 822 77. doi:10.3847/0004-637X/822/2/77

  10. Approaches to Exploration, Sample Return, and In Situ Resource Utilization on Comets, Asteroids and Small Moons

    NASA Astrophysics Data System (ADS)

    Zacny, K.

    2015-01-01

    Over the past decades, Honeybee Robotics and its partners has been developing technologies for exploration and utilization of small bodies. We present example of several technologies for sample return, volatiles capture and strength determination.

  11. Maverick Comet Splits during Dramatic Outburst

    NASA Astrophysics Data System (ADS)

    1996-01-01

    this process is almost always accompanied by a significant brightening. For instance, the nucleus of comet Shoemaker-Levy 9 broke up into at least 21 individual pieces when it passed very close to Jupiter on July 8, 1992; this was the reason that it became bright enough to be detected some eight months later. In the case of SW-3, the opening of rifts and the subsequent splitting took place far from any planet and must in some way have been caused by increased solar heating. Nevertheless, it is not yet known exactly which physical and chemical processes are involved. It will now be interesting to continue the observations of the individual nuclei as long as possible. From accurate positional measurements, it may later become possible to perform a backwards extrapolation and determine the exact conditions of the splitting process (time, involved forces) and thereby cast more light on the physical aspects of this event. SW-3: Still a Possible Rosetta Target? The break-up of a solar system object is a dramatic and relatively rare event. We are here directly witnessing the ageing of a comet, perhaps even the prelude to its death. Earlier measurements indicate that the diameter of SW-3's nucleus is smaller than about 3 kilometres, but since we do not know the size of the pieces that broke off (this may be indicated by how long they will remain active), nor their number (we may only see the largest), we cannot yet determine with any certainty the remaining lifetime of the main nucleus. At the first glance, this seems to indicate that SW-3 must be removed from the list of potential targets for the Rosetta mission - we cannot risk that it no longer exists when the space probe arrives ! On the other hand, due to the break-up there is now a lot of ``fresh'' cometary material on the surface of the nucleus and around it, i.e. matter that has remained unchanged since the beginning of the solar system, some 4,500 million years ago. The possibility to gain direct access to a sample of

  12. Comets - Chemistry and chemical evolution

    NASA Technical Reports Server (NTRS)

    Donn, B.

    1982-01-01

    Research on the chemical composition and conditions in comets and their possible role in the origin of life on earth is surveyed. The inorganic and organic compounds and ions indicated in the ultraviolet and visible spectra of comets are noted, and evidence for the existence of at least a small proportion of complex organic molecules in comets is presented. It is then pointed out that while cometary material could have reached the earth and provided volatile elements from which biochemical compounds could have formed, it is unlikely that a cometary nucleus could have withstood the temperatures and pressures necessary to sustain an environment in which life could have originated.

  13. Laboratory Studies of Cometary Materials - Continuity Between Asteroid and Comet

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Walker, Robert M.

    2015-01-01

    Laboratory analysis of cometary samples have been enabled by collection of cometary dust in the stratosphere by high altitude aircraft and by the direct sampling of the comet Wild-2 coma by the NASA Stardust spacecraft. Cometary materials are composed of a complex assemblage of highly primitive, unprocessed interstellar and primordial solar system materials as well as a variety of high temperature phases that must have condensed in the inner regions of the protoplanetary disk. These findings support and contradict conclusions of comet properties based solely on astronomical observations. These sample return missions have instead shown that there is a continuity of properties between comets and asteroids, where both types of materials show evidence for primitive and processed materials. Furthermore, these findings underscore the importance and value of direct sample return. There will be great value in comparing the findings of the Stardust cometary coma sample return mission with those of future asteroid surface sample returns OSIRIS-REx and Hayabusa II as well as future comet nucleus sample returns.

  14. Great Comets

    NASA Astrophysics Data System (ADS)

    Burnham, Robert

    2000-05-01

    Spectacular and mysterious objects that come and go in the night sky, comets have dwelt in our popular culture for untold ages. As remnants from the formation of the Solar system, they are objects of key scientific research and space missions. As one of nature's most potent and dramatic dangers, they pose a threat to our safety--and yet they were the origin of our oceans and perhaps even life itself. This beautifully illustrated book tells the story of the biggest and most awe-inspiring of all comets: those that have earned the title "Great." Robert Burnham focuses on the Great comets Hyakutake in 1996 and Hale-Bopp in 1997, which gripped attention worldwide because, for many, they were the first comets ever seen. He places these two recent comets in the context of their predecessors from past ages, among them the famous Comet Halley. Great Comets explains the exciting new discoveries that have come from these magnificent objects and profiles the spaceprobes to comets due for launch in the next few years. The book even takes a peek behind Hollywood's science-fiction fantasies to assess the real risks humanity faces from potential impacts of both comets and asteroids. For everyone interested in astronomy, this exciting book reveals the secrets of the Great Comets and provides essential tools for keeping up to date with comet discoveries in the future. Robert Burnham has been an amateur astronomer since the mid-1950s. He has been a senior editor of Astronomy magazine (1986-88) and is the author of many books and CD-ROMS, including Comet Hale-Bopp: Find and Enjoy the Great Comet and Comet Explorer.

  15. Spectroscopy of comets

    NASA Technical Reports Server (NTRS)

    Wyckoff, Susan

    1991-01-01

    Observations of NH2, OI, CH, CO(+), CO2(+), H2O(+), and N2(+) in optical spectra of comets represent ionization and dissociation product abundances of N2, NH3, H2O, CH4, CO2, and CO. The primary objectives are to determine: (1) accurate production rates for the observed species, and (2) accurate relative abundances of condensates in a sample of comet nuclei. The ultimate goal is to constrain models of comet formation and chemical processing in the outer primordial solar nebula.

  16. CO2 Orbital Trends in Comets

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Bodewits, Dennis; Feaga, Lori; Knight, Matthew; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2016-08-01

    Carbon dioxide is a primary volatile in comet nuclei, and potentially a major contributor to comet activity (i.e., the process of mass loss). However, CO2 cannot be observed directly from the ground, and past surveys of this molecule in comets were limited to space-borne snapshot observations. This situation limits our understanding of the behavior of CO2 in comets, and its role in driving comet mass loss. To address this deficiency, we were awarded a Cy11 Spitzer program designed to quantify the production rate of CO2 on >month-long timescales for 21 comets. We request an additional 269~hr in Cy13 to complete the Spitzer portion of our survey, and to add three more comets (46P/Wirtanen and 2 Target of Opportunity Oort cloud comets). Our survey is designed to probe the orbital trends of CO2 production in the comet population. We aim to: 1) examine the role of CO2 in the persistent post-perihelion activity observed in Jupiter-family comets; 2) measure the seasonal variations of CO2/H2O as a proxy for nucleus heterogeneity, when possible; 3) search for orbital trends sensitive to cumulative insolation as a proxy for nucleus layering; and 4) examine how Oort cloud comets evolve by comparing dynamically new and old targets. The final data set will allow us to investigate the effects of heating on the evolution of comets, if nucleus structures can be inferred through activity, and set the stage for JWST investigations into comet activity and composition.

  17. Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    NASA Astrophysics Data System (ADS)

    Salvato, M.; Ilbert, O.; Hasinger, G.; Rau, A.; Civano, F.; Zamorani, G.; Brusa, M.; Elvis, M.; Vignali, C.; Aussel, H.; Comastri, A.; Fiore, F.; Le Floc'h, E.; Mainieri, V.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; Cappelluti, N.; Carollo, C. M.; Contini, T.; Garilli, B.; Iovino, A.; Fotopoulou, S.; Fruscione, A.; Gilli, R.; Halliday, C.; Kneib, J.-P.; Kakazu, Y.; Kartaltepe, J. S.; Koekemoer, A. M.; Kovac, K.; Ideue, Y.; Ikeda, H.; Impey, C. D.; Le Fevre, O.; Lamareille, F.; Lanzuisi, G.; Le Borgne, J.-F.; Le Brun, V.; Lilly, S.; Maier, C.; Manohar, S.; Masters, D.; McCracken, H.; Messias, H.; Mignoli, M.; Mobasher, B.; Nagao, T.; Pello, R.; Puccetti, S.; Perez-Montero, E.; Renzini, A.; Sargent, M.; Sanders, D. B.; Scodeggio, M.; Scoville, N.; Shopbell, P.; Silvermann, J.; Taniguchi, Y.; Tasca, L.; Tresse, L.; Trump, J. R.; Zucca, E.

    2011-12-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy \\sigma _{\\Delta z/(1+z_{spec})}\\sim 0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H AB = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band. Based on observations by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under

  18. Vaporization in comets - The icy grain halo of Comet West

    NASA Technical Reports Server (NTRS)

    Ahearn, M. F.; Cowan, J. J.

    1980-01-01

    The variation with heliocentric distance of the production rates of various species in Comet West (1975n = 1976 VI) is explained with a cometary model consisting of a CO2 dominated nucleus plus a halo of icy grains of H2O or clathrate hydrate. It is concluded that the parents of CN and C3 are released primarily from the nucleus but that the parent of C2 is released primarily from the halo of icy grains.

  19. Stardust Encounters Comet 81P/Wild 2

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Brownlee, D. E.; Anderson, J. D.; Bhaskaran, S.; Cheuvront, A. R.; Clark, B. C.; Duxbury, T.; Economou, T.; Green, S. F.; Hanner, M. S.; Horz, F.; Kissel, J.; McDonnell, J. A. M.; Newburn, R. L.; Ryan, R. E.; Sandford, S. A.; Sekanina, Z.; Tuzzolino, A. J.; Vellinga, J. M.; Zolensky, M. E.

    2004-01-01

    Stardust successfully encountered comet 81P/Wild 2 on 2 January 2004 at a distance of 236.4 +/- 1 km. All encounter investigations acquired valuable new and surprising findings. The time-of-flight spectrometer registered 29 spectra during flyby and measured the first negative ion mass spectra of cometary particles. The dust detectors recorded particles over a broad mass range, 10(exp -11) to 10(exp -4) g. Unexpectedly, the dust distribution along Stardust's flight path was far from uniform, but instead occurred in short 'bursts', suggesting in-flight breakup of fragments ejected from the nucleus. High-resolution, stunning images of the Wild 2 surface show a diverse and complex variety of landforms not seen from comets 1P/Halley and 19P/Borrelly or icy satellites of the outer solar system. Longer-exposure images reveal large numbers of jets projected nearly around the entire perimeter of the nucleus, many of which appear to be highly collimated. A triaxial ellipsoidal fit of the Wild 2 nucleus images yields the principal nucleus radii of 1.65 X 2.00 X2.75 km (+/- 0.05 km). The orientations and source locations on the nucleus surface of 20 highly collimated and partially overlapping jets have been traced. There is every indication that the expected samples were successfully collected from the Wild 2 coma and are poised for a return to Earth on 15 January 2006.

  20. Optical Studies of Active Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1998-01-01

    This grant was to support optical studies of comets close enough to the sun to be outgassing. The main focus of the observations was drawn to the two extraordinarily bright comets Hyakutake and Hale-Bopp, but other active comets were also studied in detail during the period of funding. Major findings (all fully published) under this grant include: (1) Combined optical and submillimeter observations of the comet/Centaur P/Schwassmann-Wachmann 1 were used to study the nature of mass loss from this object. The submillimeter observations show directly that the optically prominent dust coma is ejected by the sublimation of carbon monoxide. Simultaneous optical-submillimeter observations allowed us to test earlier determinations of the dust mass loss rate. (2) We modelled the rotation of cometary nuclei using time-resolved images of dust jets as the primary constraint. (3) We obtained broad-band optical images of several comets for which we subsequently attempted submillimeter observations, in order to test and update the cometary ephemerides. (4) Broad-band continuum images of a set of weakly active comets and, apparently, inactive asteroids were obtained in BVRI using the University of Hawaii 2.2-m telescope. These images were taken in support of a program to test the paradigm that many near-Earth asteroids might be dead or dormant comets. We measured coma vs. nucleus colors in active comets (finding that coma particle scattering is different from, and cannot be simply related to, nucleus color). We obtained spectroscopic observations of weakly active comets and other small bodies using the HIRES spectrograph on the Keck 10-m telescope. These observation place sensitive limits to outgassing from these bodies, aided by the high (40,000) spectral resolution of HIRES.

  1. Rosetta following a living comet

    NASA Astrophysics Data System (ADS)

    Accomazzo, Andrea; Ferri, Paolo; Lodiot, Sylvain; Pellon-Bailon, Jose-Luis; Hubault, Armelle; Porta, Roberto; Urbanek, Jakub; Kay, Ritchie; Eiblmaier, Matthias; Francisco, Tiago

    2016-09-01

    The International Rosetta Mission was launched on 2nd March 2004 on its 10 year journey to rendezvous with comet 67P Churyumov-Gerasimenko. Rosetta performed comet orbit insertion on the 6th of August 2014, after which it characterised the nucleus and orbited it at altitudes as low as a few kilometres. In November 2014 Rosetta delivered the lander Philae to perform the first soft landing ever on the surface of a comet. The critical landing operations have been conducted with remarkable accuracy and will constitute one of the most important achievements in the history of spaceflight. After this critical operation, Rosetta began the escort phase of the comet in its journey in the Solar System heading to the perihelion, reached in August 2015. Throughout this period, the comet environment kept changing with increasing gas and dust emissions. A first phase of bound orbits was followed by a sequence of complex flyby segments which allowed the scientific instruments to perform in depth investigation of the comet environment and nucleus. The unpredictable nature of the comet activity forced the mission control team to implement unplanned changes to the flight plan prepared for this mission phase and to plan the whole mission in a more dynamic way than originally conceived. This paper describes the details of the landing operations and of the main comet escort phase. It also includes the mission status as achieved after perihelion and the findings about the evolution of the comet and its environment from a mission operations point of view. The lessons learned from this unique and complex operations phase and the plans for the next mission phases, which include a mission extension into 2016, are also described.

  2. ESA Unveils Its New Comet Chaser.

    NASA Astrophysics Data System (ADS)

    1999-07-01

    into the surface immediately on impact. By this time, the warmth of the Sun will probably have begun to vapourise parts of the nucleus, initiating some form of surface outgassing. For a period of about a month, data from the lander's eight experiments will be relayed to Earth via the orbiter. They will send back unique information on the nature and composition of the nucleus. Samples for chemical analysis will be taken of the organic crust and ices to a depth of at least 20 cm. Other instruments will measure characteristics such as near-surface strength, density, texture, porosity and thermal properties. Meanwhile, as Comet Wirtanen approaches the Sun, the Rosetta orbiter will fly alongside it, mapping its surface and studying changes in its activity. As its icy nucleus evaporates, 12 experiments on the orbiter will map its surface and study the dust and gas particles it ejects. For the first time, scientists will be able to monitor at close quarters the dramatic changes which take place as a comet plunges sunwards at a speed of 46,000 kph. The stream of data will include a mass of new information about the comet's changes in behaviour as it approaches the Sun, including: * variations in the temperature of the nucleus, * changing intensity and location of gas and dust jets on the nucleus, * the amount of gas and dust emitted from the nucleus, * the size, composition and impact velocity of dust particles, * the nature of the comet's interaction with the charged particles of the solar wind. By mission's end in July 2013, Rosetta will have spent almost two years chasing the comet for millions of kilometres through space. It will also have returned a treasure trove of data, which will enable us to learn more about how the planets formed and where we came from. Why Rosetta? Space exploration is all about discovering the unknown. Just as, 200 years ago, the discovery of the Rosetta Stone eventually enabled Champollion to unravel the mysteries of ancient Egyptian

  3. Infrared imaging of the coma of Comet Wilson

    SciTech Connect

    Campins, H.; Lien, D.J.; Decher, R.; Telesco, C.M.; Clifton, K.S.; Kansas State Univ., Manhattan; NASA, Marshall Space Flight Center, Huntsville, AL )

    1989-08-01

    The brightness of the nuclear condensation noted in March 13-15, 1987 thermal IR images of Comet Wilson did not vary, in contrast to Comet Halley's behavior; a dynamical analysis of the dust coma/tail structure establishes that the particle size distribution in this comet, while different from that of Comet Giacobini-Zinner, is nevertheless more similar to that in Comet Halley. The nonisotropic character of the dust ejection is taken to be evidence for prograde rotation of the nucleus, and it is speculated that Comet Wilson is too young to have developed a dust mantle; this would account for the lack of short time scale variability. 25 refs.

  4. Observations performed by the SESAME/Permittivity Probe during the descent and after the landing of Philae upon the nucleus of Comet Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Schmidt, Walter; Le Gall, Alice; Hamelin, Michel; Caujolle-Bert, Sylvain; Lethuillier, Anthony; Ciarletti, Valerie; Grard, Réjean

    2015-04-01

    The Permittivity Probe (PP), a component of the SESAME instrument on board Rosetta's Lander Philae, was operated prior to the separation of Philae from Rosetta, during the descent and at the location of the final landing site. The working principle of PP consists in measuring, with a receiving dipole, the voltage induced in the medium by a current of known phase and amplitude injected by a transmitting antenna. The primary objective of PP is to analyse the electrical properties of the comet surface material down to a depth of about 2 m, and to record their variations with temperature, solar illumination and heliocentric distance. These observations are particularly sensitive to the concentration of water ice at the landing site. The second objective of the instrument is to monitor the spectrum of the electromagnetic and electrostatic waves generated by the interaction between the comet and the solar wind at frequencies of up to 20 kHz. The measurements performed during the descent were mainly devoted to the calibration of the instrument in its nominal configuration, with deployed landing gear and away from the Rosetta spacecraft influence, in an environment of known permittivity, either a vacuum or a plasma whose density and temperature would have been derived from the LAP and MIP data. This approach is unfortunately invalidated owing to the fact the PP receiver was most of the time saturated by the operation of the CONSERT radar during the descent, an interference which seemed to have been minimized during in-flight interference tests, but which was significantly stronger after separation of Philae from Rosetta. Nevertheless, it was possible to recover some information about the instrument's transmitter and receiver performances then used during the analysis of the data measured on the cometary surface. Undisturbed measurements were fortunately performed at the landing site, under various solar illuminations, using the three feet of Philae as transmitting and

  5. Submillimeter Studies of Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David; Morgan, Thomas (Technical Monitor)

    2002-01-01

    This proposal supported observations of comets at submillimeter wavelengths. The prime science objectives were to use rotational transitions in molecules to measure the compositions and outgassing rates of the comets. The second science objectives focussed on the use of the submillimeter continuum radiation to provide a measure of the solid particle content and production rate in the comets. Both quantities provide fundamental constraints on the nature of these primitive bodies. The gas and dust measurements provide context for NASA's on-going and future studies of comets using in-situ spacecraft. Submillimeter continuum data, in particular, samples the largest particles in the cometary dust grain size distribution. These particles contain the bulk of the mass and present potential hazards to spacecraft when inside the dust coma.

  6. Gas, Dust, and Nuclei: Cometary Types in the Largest IR Survey of Comets.

    NASA Astrophysics Data System (ADS)

    Bauer, James; Kramer, Emily; Mainzer, Amy; Grav, Tommy; Masiero, Joseph; Stevenson, Rachel; Nugent, Carrie; Sonnett, Sarah

    2015-08-01

    Space-based infrared (IR) surveys of objects have the potential to yield rich data sets for any particular class of small body. Thermal IR measurements often yield the most fundamental of astrophysical properties, the object’s size. When these data are synergistically combined with shorter-wavelength observations, the albedos of these bodies can be determined. The interpretation of IR observations of cometary bodies are more complicated, since their activity may obscure the bare surfaces of their nuclei. Yet space-based IR surveys provide the opportunity to observe this emitted dust and gas at wavelengths and sensitivities not possible from the ground.With the 163 comets detected during the WISE prime mission, and the more than 60 comets seen in the first year of data since the NEOWISE reactivated mission, the combined sample represents the largest survey of comets in the mid-IR. These data of over 200 comets provide dust particle size constraints and dust reflectance measurements, as well as nucleus size measurements. They are sensitive to the presence of the rarely observed gas species, CO2, directly detectable only from above the Earth’s atmosphere, and to the presence of CO emission, which is difficult to view from the ground. The data contain large samples of major cometary types (long-period and short-period comets), as well as smaller samples of Halley-type comets, Main Belt comets, and Near Earth comets, observed at multiple epochs, and so provide an unprecedentedly comprehensive view of the different comet populations.

  7. Gas phase chemistry in comets

    NASA Technical Reports Server (NTRS)

    Oppenheimer, M.

    1976-01-01

    The significance of gas phase reactions in determining the nuclear structure of comets is discussed. The sublimation of parent molecules such as H2O, CH4, CO2, and NH3 from the surface of the nucleus and their subsequent photodissociation and ionization in forming observed cometary molecular species are elaborated.

  8. Comet Borrelly's Varied Landscape

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In this Deep Space 1 image of comet Borrelly, sunlight illuminates the bowling-pin shaped nucleus from directly below. At this distance, many features are become vivid on the surface of the nucleus, including a jagged line between day and night on the comet, rugged terrain on both ends with dark patches, and smooth, brighter terrain near the center. The smallest discernable features are about 110 meters (120 yards) across.

    Deep Space 1 completed its primary mission testing ion propulsion and 11 other advanced, high-risk technologies in September 1999. NASA extended the mission, taking advantage of the ion propulsion and other systems to undertake this chancy but exciting, and ultimately successful, encounter with the comet. More information can be found on the Deep Space 1 home page at http://nmp.jpl.nasa.gov/ds1/ .

    Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, D.C. The California Institute of Technology manages JPL for NASA.

  9. Halley's Comet.

    ERIC Educational Resources Information Center

    Carey, Tom

    1985-01-01

    Provides tips for viewing Comet Halley in the Northeast including best viewing dates from November 1985-January 1986. Discusses going south to view the comet in March-April 1986 and gives specific information about accommodations for the Halley Rally in Everglades National Park, southernmost site in the contiguous 48 states. (JHZ)

  10. In-situ chemical and isotopic analysis of a comet by Ptolemy

    NASA Astrophysics Data System (ADS)

    Morse, A. D.; Barber, S. J.; Leese, M. R.; Morgan, G. H.; Sheridan, S.; Wright, I. P.; Zarnecki, J. C.; Pillinger, C. T.

    2003-04-01

    Ptolemy is a Gas Chromatograph - Mass Spectrometer, one of the instruments on board the Rosetta Lander, intended to land on comet Wirtanen. Ptolemy is designed to measure the composition and isotope ratios of gases released from comet samples during pyrolysis or combustion. The total mass of the instrument is 4.6 kg and it fits into a space of 33 x 25 x 11 cm. Following touchdown on the comet nucleus, comet samples are obtained by the SD2 instrument, which drills a core sample and loads it into one of 26 ovens on a carousel. One of the ovens already contains a molecular sieve absorbent so that the comet "atmosphere" can also be sampled. The sample is then heated by the oven and the gases released are transferred to the Ptolemy instrument. Within Ptolemy, the raw sample gases can be chemically processed to convert them into molecules suitable for isotopic analysis. The processed sample mixture gas is injected into one of three GC columns to separate it into its constituent components before analysis by the mass spectrometer. An ion trap mass spectrometer has been used as this gives considerable reduction of mass, power and volume, compared to standard magnetic sector mass spectrometers normally used for isotopic analysis. Laboratory experiments have shown that an ion trap is capable of measuring carbon and nitrogen isotope ratios to a precision of +/- 20 per mil or better. We will present data from the Flight instrument plus results of ongoing characterisation studies using the identical Qualification Model.

  11. The 2009 Apparition of methuselah comet 107P/Wilson-Harrington: A case of comet rejuvenation?

    NASA Astrophysics Data System (ADS)

    Ferrín, Ignacio; Hamanowa, Hiromi; Hamanowa, Hiroko; Hernández, Jesús; Sira, Eloy; Sánchez, Albert; Zhao, Haibin; Miles, Richard

    2012-09-01

    detectors than on 1949. This is good evidence to conclude that this object is very near extinction and belongs to the graveyard of comets. In a Remaining Revolutions vs. Water-Budget Age plot, we have identified the region of the graveyard, and 107P is a member of this group. (8) Using the amplitude of the secular light curve (ASEC) vs. Diameter (DEFFE) diagram (Fig. 15), we show that 107P is the most evolved object in the current data base of comets. In the classification scheme of Ferrín (PSS, 58, 365-391, 2010), 107P is a methuselah comet (WB-AGE=7800>100 comet years), medium size (1.4nucleus, fast rotating (PROT=6.093 h<7 h), belonging to the graveyard of comets (the region with ASEC<1 mag in Fig. 15 or 1.000 cycomet is temporarily being rejuvenated due to a trend of apparitions with decreasing perihelion distances. (9) Since the general flow of the sample is down and to the left in the ASEC vs. DEFFE diagram, and since this flow has been going on for centuries, and since dwarf comets evolve much more rapidly than large comets, the existence of a significant population of dormant and extinct comets located in the lower left region of the diagram is predicted. This is the graveyard. Three comets have been identified as members of the graveyard, 107P, 133P and D/1891W1 Blanpain.

  12. Comets at radio wavelengths

    NASA Astrophysics Data System (ADS)

    Crovisier, Jacques; Bockelée-Morvan, Dominique; Colom, Pierre; Biver, Nicolas

    2016-11-01

    Comets are considered as the most primitive objects in the Solar System. Their composition provides information on the composition of the primitive solar nebula, 4.6 Gyr ago. The radio domain is a privileged tool to study the composition of cometary ices. Observations of the OH radical at 18 cm wavelength allow us to measure the water production rate. A wealth of molecules (and some of their isotopologues) coming from the sublimation of ices in the nucleus have been identified by observations in the millimetre and submillimetre domains. We present an historical review on radio observations of comets, focusing on the results from our group, and including recent observations with the Nançay radio telescope, the IRAM antennas, the Odin satellite, the Herschel space observatory, ALMA, and the MIRO instrument aboard the Rosetta space probe. xml:lang="fr"

  13. Radar observations of Comet Halley

    NASA Technical Reports Server (NTRS)

    Campbell, D. B.; Harmon, J. K.; Shapiro, I. I.

    1989-01-01

    Five nights of Arecibo radar observations of Comet Halley are reported which reveal a feature in the overall average spectrum which, though weak, seems consistent with being an echo from the comet. The large radar cross section and large bandwidth of the feature suggest that the echo is predominantly from large grains which have been ejected from the nucleus. Extrapolation of the dust particle size distribution to large grain sizes gives a sufficient number of grains to account for the echo. The lack of a detectable echo from the nucleus, combined with estimates of its size and rotation rate from spacecraft encounters and other data, indicate that the nucleus has a surface of relatively high porosity.

  14. Detecting active comets with SDSS

    SciTech Connect

    Solontoi, Michael; Ivezic, Zeljko; West, Andrew A.; Claire, Mark; Juric, Mario; Becker, Andrew; Jones, Lynne; Hall, Patrick B.; Kent, Steve; Lupton, Robert H.; Quinn, Tom; /Washington U., Seattle, Astron. Dept. /Princeton U. Observ.

    2010-12-01

    Using a sample of serendipitously discovered active comets in the Sloan Digital Sky Survey (SDSS), we develop well-controlled selection criteria for greatly increasing the efficiency of comet identification in the SDSS catalogs. After follow-up visual inspection of images to reject remaining false positives, the total sample of SDSS comets presented here contains 19 objects, roughly one comet per 10 million other SDSS objects. The good understanding of selection effects allows a study of the population statistics, and we estimate the apparent magnitude distribution to r {approx} 18, the ecliptic latitude distribution, and the comet distribution in SDSS color space. The most surprising results are the extremely narrow range of colors for comets in our sample (e.g. root-mean-square scatter of only {approx}0.06 mag for the g-r color), and the similarity of comet colors to those of jovian Trojans. We discuss the relevance of our results for upcoming deep multi-epoch optical surveys such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope (LSST), and estimate that LSST may produce a sample of about 10,000 comets over its 10-year lifetime.

  15. Craters on comets

    NASA Astrophysics Data System (ADS)

    Vincent, Jean-Baptiste; Oklay, Nilda; Marchi, Simone; Höfner, Sebastian; Sierks, Holger

    2015-03-01

    This paper reviews the observations of crater-like features on cometary nuclei. We compare potential crater sizes and morphologies, and we discuss the probability of impacts between small asteroids in the Main Belt and a comet crossing this region of the Solar System. Finally, we investigate the fate of the impactor and its chances of survival on the nucleus. We find that comets do undergo impacts although the rapid evolution of the surface erases most of the features and make craters difficult to detect. In the case of a collision between a rocky body and a highly porous cometary nucleus, two specific crater morphologies can be formed: a central pit surrounded by a shallow depression, or a pit, deeper than typical craters observed on rocky surfaces. After the impact, it is likely that a significant fraction of the projectile will remain in the crater. During its two years long escort of comet 67P/Churyumov-Gerasimenko, ESA's mission Rosetta should be able to detect specific silicates signatures at the bottom of craters or crater-like features, as evidence of this contamination. For large craters, structural changes in the impacted region, in particular compaction of material, will affect the local activity. The increase of tensile strength can extinct the activity by preventing the gas from lifting up dust grains. On the other hand, material compaction can help the heat flux to travel deeper in the nucleus, potentially reaching unexposed pockets of volatiles, and therefore increasing the activity. Ground truth data from Rosetta will help us infer the relative importance of those two effects.

  16. ISO's analysis of Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    1997-03-01

    The European Space Agency's Infrared Space Observatory ISO inspected Comet Hall-Bopp during the spring and autumn of 1996. The need to keep ISO's telescope extremely cold restricts the spacecraft's pointing in relation to the Sun and the Earth and it ruled out observations at other times. The analyses of the 1996 observations are not yet complete, but already they give new insight into the nature of comets. Comet Hale-Bopp is believed to be a large comet with a nucleus up to 40 kilometres wide. It was discovered in July 1995 by two American astronomers working independently, Alan Hale and Thomas Bopp. At that time, the comet was a billion kilometres away from the Sun, but 200 times brighter than Halley's Comet was, when at a comparable distance. Comet Hale-Bopp will make its closest approach to the Earth on 22 March, and its closest approach to the Sun (perihelion) on 1 April 1997. Some scientific results from ISO The discovery of Comet Hale-Bopp occurred before ISO's launch in November 1995. When first observed by ISO in March and April 1996, the comet was still 700 million kilometres from the Sun, and almost as far from the Earth and ISO. With its privileged view of infrared wavebands inaccessible from the Earth's surface, ISO's photometer ISOPHOT discovered that carbon dioxide was an important constituent of the comet's emissions of vapour.ISOPHOT measured the temperature of the dust cloud around Comet Hale-Bopp. In March 1996, when the comet was still more than 700 million kilometres from the Sun, the dust cloud was at minus 120 degrees C. When ISOPHOT made similar observations in October 1996, the comet was 420 million kilometres from the Sun, and the dust cloud had warmed to about minus 50 degrees C. Intensive observations of Comet Hale-Bopp were also made by ISO's Short-Wave Spectrometer SWS, the Long-Wave Spectrometer LWS, and the ISOPHOT spectrometer PHOT-S. Results are due for publication at the end of March. They will give details about the composition

  17. Vaporization in Comets; outbursts from Comet Schwassmann-Wachmann 1

    NASA Technical Reports Server (NTRS)

    Cowan, J. J.; Ahearn, M. F.

    1982-01-01

    Revised estimates are presented which show that the total mass and kinetic energy in a typical Comet P/Schassmann-Wachmann 1 outburst are lower than previously estimated, and that this mass is comparable to the mass of gas vaporized, as inferred from recent observations of CO(+) in this comet. The storage of energy suggested by many authors is therefore not neccessary. A simple equilibrium vaporization of CO2 or CO which is suddenly exposed, on a nucleus that is otherwise primarily composed of H2O, is proposed. Under these conditions, calculations of the variation of vaporization with rotational phase indicate that the mechanism can quantitatively produce outbursts of the size observed.

  18. Photographic observations of comets at Lowell Observatory. [Halley's comet

    NASA Technical Reports Server (NTRS)

    Giclas, H. L.

    1981-01-01

    Observations of Halley's comet at Lowell Observatory cover a period from November 10, 1909 to May 17, 1911: 334 direct photographs were taken, 118 objective prism spectra, and 32 slit spectrograms of the nucleus, many of them including 5 arc minutes of the surrounding coma. Just one morning's observations are illustrated as an example of utilizing every possible resource available at the Observatory at the time. Observational improvements developed since then are described and some suggestions for the coming return of Halley's comet are made.

  19. Physics of comets

    SciTech Connect

    Swamy, K.S.K.

    1986-01-01

    This book deals systematically with the physics of comets in the light of our present knowledge about various aspects of cometary phenomena and the problems that require further attention. The basic aspects, methods and models that have been used extensively at the present time for the interpretation of cometary observations are fully discussed. Contents: General Introduction; Orbital Dynamics; Atomic Physics; Spectra; Spectra of Coma; Gas Production Rates; Dust Tail; Light Scattering Theory; Nature of the Dust Particle; Ion Tails; Nucleus; Origins; Problems and Prospects.

  20. Comet culture

    NASA Astrophysics Data System (ADS)

    Lusher, Rebekah

    2011-10-01

    Rebekah Lusher describes an exhibition in the new Caroline Lucretia Gallery at the Herschel Museum of Astronomy in Bath: Omens and Inspirations: Ice, Dust and Fire - the Story of the Great Comet of 1811.

  1. Assessment and Control of Organic and Other Contaminants Associated with the Stardust Sample Return from Comet 81P/Wild 2

    SciTech Connect

    Sanford, S.; Bajt, S; Clemett, S; Cody, G; Cooper, G; Degregorio, B; DeVera, V; Dworkin, J; Elsila, J; et al.

    2010-01-01

    Numerous potential sources of organic contaminants could have greatly complicated the interpretation of the organic portions of the samples returned from comet 81P/Wild 2 by the Stardust spacecraft. Measures were taken to control and assess potential organic (and other) contaminants during the design, construction, and flight of the spacecraft, and during and after recovery of the sample return capsule. Studies of controls and the returned samples suggest that many of these potential sources did not contribute any significant material to the collectors. In particular, contamination from soils at the recovery site and materials associated with the ablation of the heatshield do not appear to be significant problems. The largest source of concern is associated with the C present in the original aerogel. The relative abundance of this carbon can vary between aerogel tiles and even within individual tiles. This C was fortunately not distributed among a complex mixture of organics, but was instead largely present in a few simple forms (mostly as Si-CH{sub 3} groups). In most cases, the signature of returned cometary organics can be readily distinguished from contaminants through their different compositions, nonterrestrial isotopic ratios, and/or association with other cometary materials. However, some conversion of the carbon indigenous to the flight aerogel appears to have happened during particle impact, and some open issues remain regarding how this C may be processed into new forms during the hypervelocity impact collection of the comet dust.

  2. Assessment and Control of Organic and other Contaminants Associated with the Stardust Sample Return from Comet 81P/Wild 2

    SciTech Connect

    Sandford, S.; Bajt, S; Clemett, S; Cody, G; Cooper, G; Degregorio, B; de Vera, V; Dworkin, J; Flynn, G; et al.

    2010-01-01

    Numerous potential sources of organic contaminants could have greatly complicated the interpretation of the organic portions of the samples returned from comet 81P/Wild 2 by the Stardust spacecraft. Measures were taken to control and assess potential organic (and other) contaminants during the design, construction, and flight of the spacecraft, and during and after recovery of the sample return capsule. Studies of controls and the returned samples suggest that many of these potential sources did not contribute any significant material to the collectors. In particular, contamination from soils at the recovery site and materials associated with the ablation of the heatshield do not appear to be significant problems. The largest source of concern is associated with the C present in the original aerogel. The relative abundance of this carbon can vary between aerogel tiles and even within individual tiles. This C was fortunately not distributed among a complex mixture of organics, but was instead largely present in a few simple forms (mostly as Si-CH{sub 3} groups). In most cases, the signature of returned cometary organics can be readily distinguished from contaminants through their different compositions, nonterrestrial isotopic ratios, and/or association with other cometary materials. However, some conversion of the carbon indigenous to the flight aerogel appears to have happened during particle impact, and some open issues remain regarding how this C may be processed into new forms during the hypervelocity impact collection of the comet dust.

  3. Assessment and control of organic and other contaminants associated with the Stardust sample return from comet 81P/Wild 2

    NASA Astrophysics Data System (ADS)

    Sandford, Scott A.; Bajt, Saša; Clemett, Simon J.; Cody, George D.; Cooper, George; Degregorio, Bradley T.; de Vera, Vanessa; Dworkin, Jason P.; Elsila, Jamie E.; Flynn, George J.; Glavin, Daniel P.; Lanzirotti, Antonio; Limero, Thomas; Martin, Mildred P.; Snead, Christopher J.; Spencer, Maegan K.; Stephan, Thomas; Westphal, Andrew; Wirick, Sue; Zare, Richard N.; Zolensky, Michael E.

    2010-03-01

    Numerous potential sources of organic contaminants could have greatly complicated the interpretation of the organic portions of the samples returned from comet 81P/Wild 2 by the Stardust spacecraft. Measures were taken to control and assess potential organic (and other) contaminants during the design, construction, and flight of the spacecraft, and during and after recovery of the sample return capsule. Studies of controls and the returned samples suggest that many of these potential sources did not contribute any significant material to the collectors. In particular, contamination from soils at the recovery site and materials associated with the ablation of the heatshield do not appear to be significant problems. The largest source of concern is associated with the C present in the original aerogel. The relative abundance of this carbon can vary between aerogel tiles and even within individual tiles. This C was fortunately not distributed among a complex mixture of organics, but was instead largely present in a few simple forms (mostly as Si-CH3 groups). In most cases, the signature of returned cometary organics can be readily distinguished from contaminants through their different compositions, nonterrestrial isotopic ratios, and/or association with other cometary materials. However, some conversion of the carbon indigenous to the flight aerogel appears to have happened during particle impact, and some open issues remain regarding how this C may be processed into new forms during the hypervelocity impact collection of the comet dust.

  4. Comet Halley - The orbital motion

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1977-01-01

    The orbital motion of Comet Halley is investigated over the interval from A.D. 837 to 2061. Using the observations from 1607 through 1911, least-squares differential orbit corrections were successfully computed using the existing model for the nongravitational forces. The nongravitational-force model was found to be consistent with the outgassing-rocket effect of a water-ice cometary nucleus and, prior to the 1910 return, these forces are time-independent for nearly a millennium. For the 1986 return, viewing conditions are outlined for the comet and the related Orionid and Eta Aquarid meteor showers.

  5. An inside look at Halley's comet

    NASA Astrophysics Data System (ADS)

    Beatty, J. K.

    1986-05-01

    The 1985-1986 emergence of Halley's comet, the first since the advent of the space age, was explored by a variety of spacecraft. The Vega 1, launched by the USSR together with the Eastern-block alliance, passed 5523 miles from the comet's nucleus at 7:20:06 Universal time. It indicated that the comet was about 300 miles closer to the sun than had been predicted. The Japanese spacecraft, Suisei, was created to map the distribution of neutral hydrogen atoms outside Halley's visible coma. Its pictures indicated that the comet's output of water varied between 25 and 60 tons per second. Five days after the Vega 2's passage through the comet, the Giotto (sponsored by the European Space Agency) probe appeared. Giotto's close approach took place 3.1 minutes after midnight UT on March 14th; the craft had passed 376 miles from its target. Giotto's data indicated that the nucleus was bigger than expected, and that the comet was composed primarily of water, CO2 and N2. The Vegas and Giotto found that as the solar wind approaches Halley, it slows gradually and the solar magnetic lines embedded in the wind begin to pile up. Pick-up ions, from the comet's halo of neutral hydrogen, were found in this solar wind. Sensors on the Vega spacecraft found a variety of plasma waves propagating inside the bow wave. In order to synthesize all the results, a conference on the exploration of Halley's comet will be held this October.

  6. Comet Schwassmann-Wachmann I

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    NASA's new Spitzer Space Telescope has captured an image of an unusual comet that experiences frequent outbursts, which produce abrupt changes in brightness. Periodic comet Schwassmann-Wachmann I (P/SW-1) has a nearly circular orbit just outside that of Jupiter, with an orbital period of 14.9 years. It is thought that the outbursts arise from the build-up of internal gas pressure as the heat of the Sun slowly evaporates frozen carbon dioxide and carbon monoxide beneath the blackened crust of the comet nucleus. When the internal pressure exceeds the strength of the overlying crust, a rupture occurs, and a burst of gas and dust fragments is ejected into space at speeds of 450 miles per hour (200 meters per second).

    This 24-micron image of P/SW-1 was obtained with the multiband imaging photometer for Spitzer. The image shows thermal infrared emission from the dusty coma and tail of the comet. The nucleus of the comet is about 18 miles (30 kilometers) in diameter and is too small to be resolved by Spitzer. The micron-sized dust grains in the coma and tail stream out away from the Sun. The dust and gas comprising the comet's nucleus is part of the same primordial materials from which the Sun and planets were formed billions of years ago. The complex carbon-rich molecules they contain may have provided some of the raw materials from which life originated on Earth.

    Schwassmann-Wachmann 1 is thought to be a member of a relatively new class of objects called 'Centaurs,' of which 45 objects are known. These are small icy bodies with orbits between those of Jupiter and Neptune. Astronomers believe that Centaurs are recent escapees from the Kuiper Belt, a zone of small bodies orbiting in a cloud at the distant reaches of the solar system.

    Two asteroids, 1996 GM36 (left) and 5238 Naozane (right) were serendipitously captured in the comet image. Because they are closer to us than the comet and have faster orbital

  7. Nucleus-nucleus potentials

    SciTech Connect

    Satchler, G.R.

    1983-01-01

    The significance of a nucleus-nucleus potential is discussed. Information about such potentials obtained from scattering experiments is reviewed, including recent examples of so-called rainbow scattering that probe the potential at smaller distances. The evidence for interactions involving the nuclear spins is summarized, and their possible origin in couplings to non-elastic channels. Various models of the potentials are discussed.

  8. Aggregate dust particles at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Bentley, Mark S.; Schmied, Roland; Mannel, Thurid; Torkar, Klaus; Jeszenszky, Harald; Romstedt, Jens; Levasseur-Regourd, Anny-Chantal; Weber, Iris; Jessberger, Elmar K.; Ehrenfreund, Pascale; Koeberl, Christian; Havnes, Ove

    2016-09-01

    Comets are thought to preserve almost pristine dust particles, thus providing a unique sample of the properties of the early solar nebula. The microscopic properties of this dust played a key part in particle aggregation during the formation of the Solar System. Cometary dust was previously considered to comprise irregular, fluffy agglomerates on the basis of interpretations of remote observations in the visible and infrared and the study of chondritic porous interplanetary dust particles that were thought, but not proved, to originate in comets. Although the dust returned by an earlier mission has provided detailed mineralogy of particles from comet 81P/Wild, the fine-grained aggregate component was strongly modified during collection. Here we report in situ measurements of dust particles at comet 67P/Churyumov-Gerasimenko. The particles are aggregates of smaller, elongated grains, with structures at distinct sizes indicating hierarchical aggregation. Topographic images of selected dust particles with sizes of one micrometre to a few tens of micrometres show a variety of morphologies, including compact single grains and large porous aggregate particles, similar to chondritic porous interplanetary dust particles. The measured grain elongations are similar to the value inferred for interstellar dust and support the idea that such grains could represent a fraction of the building blocks of comets. In the subsequent growth phase, hierarchical agglomeration could be a dominant process and would produce aggregates that stick more easily at higher masses and velocities than homogeneous dust particles. The presence of hierarchical dust aggregates in the near-surface of the nucleus of comet 67P also provides a mechanism for lowering the tensile strength of the dust layer and aiding dust release.

  9. Aggregate dust particles at comet 67P/Churyumov–Gerasimenko

    NASA Astrophysics Data System (ADS)

    Bentley, Mark S.; Schmied, Roland; Mannel, Thurid; Torkar, Klaus; Jeszenszky, Harald; Romstedt, Jens; Levasseur-Regourd, Anny-Chantal; Weber, Iris; Jessberger, Elmar K.; Ehrenfreund, Pascale; Koeberl, Christian; Havnes, Ove

    2016-09-01

    Comets are thought to preserve almost pristine dust particles, thus providing a unique sample of the properties of the early solar nebula. The microscopic properties of this dust played a key part in particle aggregation during the formation of the Solar System. Cometary dust was previously considered to comprise irregular, fluffy agglomerates on the basis of interpretations of remote observations in the visible and infrared and the study of chondritic porous interplanetary dust particles that were thought, but not proved, to originate in comets. Although the dust returned by an earlier mission has provided detailed mineralogy of particles from comet 81P/Wild, the fine-grained aggregate component was strongly modified during collection. Here we report in situ measurements of dust particles at comet 67P/Churyumov–Gerasimenko. The particles are aggregates of smaller, elongated grains, with structures at distinct sizes indicating hierarchical aggregation. Topographic images of selected dust particles with sizes of one micrometre to a few tens of micrometres show a variety of morphologies, including compact single grains and large porous aggregate particles, similar to chondritic porous interplanetary dust particles. The measured grain elongations are similar to the value inferred for interstellar dust and support the idea that such grains could represent a fraction of the building blocks of comets. In the subsequent growth phase, hierarchical agglomeration could be a dominant process and would produce aggregates that stick more easily at higher masses and velocities than homogeneous dust particles. The presence of hierarchical dust aggregates in the near-surface of the nucleus of comet 67P also provides a mechanism for lowering the tensile strength of the dust layer and aiding dust release.

  10. Aggregate dust particles at comet 67P/Churyumov-Gerasimenko.

    PubMed

    Bentley, Mark S; Schmied, Roland; Mannel, Thurid; Torkar, Klaus; Jeszenszky, Harald; Romstedt, Jens; Levasseur-Regourd, Anny-Chantal; Weber, Iris; Jessberger, Elmar K; Ehrenfreund, Pascale; Koeberl, Christian; Havnes, Ove

    2016-01-01

    Comets are thought to preserve almost pristine dust particles, thus providing a unique sample of the properties of the early solar nebula. The microscopic properties of this dust played a key part in particle aggregation during the formation of the Solar System. Cometary dust was previously considered to comprise irregular, fluffy agglomerates on the basis of interpretations of remote observations in the visible and infrared and the study of chondritic porous interplanetary dust particles that were thought, but not proved, to originate in comets. Although the dust returned by an earlier mission has provided detailed mineralogy of particles from comet 81P/Wild, the fine-grained aggregate component was strongly modified during collection. Here we report in situ measurements of dust particles at comet 67P/Churyumov-Gerasimenko. The particles are aggregates of smaller, elongated grains, with structures at distinct sizes indicating hierarchical aggregation. Topographic images of selected dust particles with sizes of one micrometre to a few tens of micrometres show a variety of morphologies, including compact single grains and large porous aggregate particles, similar to chondritic porous interplanetary dust particles. The measured grain elongations are similar to the value inferred for interstellar dust and support the idea that such grains could represent a fraction of the building blocks of comets. In the subsequent growth phase, hierarchical agglomeration could be a dominant process and would produce aggregates that stick more easily at higher masses and velocities than homogeneous dust particles. The presence of hierarchical dust aggregates in the near-surface of the nucleus of comet 67P also provides a mechanism for lowering the tensile strength of the dust layer and aiding dust release. PMID:27582221

  11. High Resolution 3D Radar Imaging of Comet Interiors

    NASA Astrophysics Data System (ADS)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  12. Coordinated analysis of Comet 81P/Wild-2 dust samples: Nanoscale measurements of its organic/ inorganic chemical and isotopic composition and optical properties

    NASA Astrophysics Data System (ADS)

    Messenger, K. N.; Messenger, S. R.; Clemett, S. J.; Keller, L. P. Class='hr'>; Zolensky, M. E.

    2006-12-01

    Dust particles released from comet 81P/Wild-2 were captured in silica aerogel on-board the STARDUST spacecraft and successfully returned to the Earth on January 15, 2006. This is the first sample of extraterrestrial materials returned from beyond the moon. STARDUST recovered thousands of particles ranging in size from 1 to 100 micrometers. The analysis of these samples is complicated by the small total mass collected (< 1 mg), its entrainment in the aerogel collection medium, and the fact that the cometary dust is comprised of submicrometer minerals and carbonaceous material. During the six month preliminary examination period, 75 tracks were extracted from the aerogel cells and 25 cometary grains were fully studied by an international collaboration among 150 scientists who investigated their mineralogy/petrology, organic/inorganic chemistry, optical properties and isotopic compositions. This scientific consortium was made possible by sophisticated sample preparation methods developed for the STARDUST mission and by recent major advances in the sensitivity and spatial resolution of analytical instruments. Coordinated and replicate analyses of the samples were made possible by subdividing individual particles into 50 nm-thick sections by ultramicrotomy, providing up to 100 sections from a 20 um particle. We present results of a coordinated study of comet Wild 2 dust samples in which individual particles were analyzed by FTIR microspectroscopy, field emission scanning-transmission electron microscopy (STEM), and isotopic measurements with a NanoSIMS 50L ion microprobe. The STEM is equipped with a thin window energy- dispersive X-ray (EDX) spectrometer that was used to acquire spectrum images that contained a high count- rate EDX spectrum in each pixel, enabling the determination of the nm-scale spatial distribution of quantitative element abundances. These samples were later analyzed by the JSC NanoSIMS 50L ion microprobe, which acquired 100 nm spatial resolution C

  13. Physical processes in comets

    NASA Technical Reports Server (NTRS)

    Newburn, Ray L., Jr.

    1991-01-01

    Post-Halley comets are known to be irregular objects with most nucleus activity very localized and with the dust coma capable of fragmentation and apparently being a source of gas. Older, 1-D strategies which assume steady isotropic outflow of material can give poor time-and-space averaged results, at best. With 2-D data, images through interference filters, it is hoped that: dust structures can be seen that give evidence of the proper geometry for data reduction; gradients along the axes of symmetry and evidence of fragmentation can be studied; and that evidence for gas abundance gradients associated with the dust can be found. High quality data from brighter comets can then be used to suggest improved data reduction procedures for fainter ones. To obtain such data, large image-quality interference filters were procured for use with a charge coupled device (CCD) camera at Lick Observatory, where the scale of the 1 m Nickel reflector is ideal for brighter comets. Whenever possible, data is taken simultaneously with other telescopes and equipment, especially spectroscopy at the Lick 3 m or infrared photometry at the Infrared Telescope Facility (IRTF) on Mauna Kea.

  14. A Comet Engulfs Mars: MAVEN Observations of Comet Siding Spring's Influence on the Martian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Espley, Jared R.; Dibraccio, Gina A.; Connerney, John E. P.; Brain, David; Gruesbeck, Jacob; Soobiah, Yasir; Halekas, Jasper S.; Combi, Michael; Luhmann, Janet; Ma, Yingjuan

    2015-01-01

    The nucleus of comet C/2013 A1 (Siding Spring) passed within 141,000?km of Mars on 19 October 2014. Thus, the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the Martian magnetosphere and upper atmosphere. We present observations from Mars Atmosphere and Volatile EvolutioN's (MAVEN's) particles and field's instruments that show the Martian magnetosphere was severely distorted during the comet's passage. We note four specific major effects: (1) a variable induced magnetospheric boundary, (2) a strong rotation of the magnetic field as the comet approached, (3) severely distorted and disordered ionospheric magnetic fields during the comet's closest approach, and (4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet produced effects comparable to that of a large solar storm (in terms of incident energy) and that our results are therefore important for future studies of atmospheric escape, MAVEN's primary science objective.

  15. A comet engulfs Mars: MAVEN observations of comet Siding Spring's influence on the Martian magnetosphere

    NASA Astrophysics Data System (ADS)

    Espley, Jared R.; DiBraccio, Gina A.; Connerney, John E. P.; Brain, David; Gruesbeck, Jacob; Soobiah, Yasir; Halekas, Jasper; Combi, Michael; Luhmann, Janet; Ma, Yingjuan; Jia, Yingdong; Jakosky, Bruce

    2015-11-01

    The nucleus of comet C/2013 A1 (Siding Spring) passed within 141,000 km of Mars on 19 October 2014. Thus, the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the Martian magnetosphere and upper atmosphere. We present observations from Mars Atmosphere and Volatile EvolutioN's (MAVEN's) particles and field's instruments that show the Martian magnetosphere was severely distorted during the comet's passage. We note four specific major effects: (1) a variable induced magnetospheric boundary, (2) a strong rotation of the magnetic field as the comet approached, (3) severely distorted and disordered ionospheric magnetic fields during the comet's closest approach, and (4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet produced effects comparable to that of a large solar storm (in terms of incident energy) and that our results are therefore important for future studies of atmospheric escape, MAVEN's primary science objective.

  16. The Comet Halley archive: Summary volume

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek (Editor); Fry, Lori (Editor)

    1991-01-01

    The contents are as follows: The Organizational History of the International Halley Watch; Operations of the International Halley Watch from a Lead Center Perspective; The Steering Group; Astrometry Network; Infrared Studies Network; Large-Scale Phenomena Network; Meteor Studies Network; Near-Nucleus Studies Network; Photometry and Polarimetry Network; Radio Science Network; Spectroscopy and Spectrophotometry Network; Amateur Observation Network; Use of the CD-ROM Archive; The 1986 Passage of Comet Halley; and Recent Observations of Comet Halley.

  17. 'Kosi' comet simulation experiment at DFVLR - Sample preparation and the evolution of the (0-18)/(0-16) and the D/H ratio in the icy component

    NASA Astrophysics Data System (ADS)

    Klinger, J.; Eich, G.; Bischoff, A.; Joo, F.; Kochan, H.; Roessler, K.; Stichler, W.; Stoffler, D.

    Based on the results of the observation campaign of Comet Halley, ice-mineral mixtures were produced with a mean density of 300 to 500 kg/cu m and an albedo between about 0.05 and 0.2. The samples were prepared by spraying different water-mineral mixtures into liquid nitrogen. Nitrogen or carbon dioxide were used as a propellant. During the freezing, a slight enrichment in 0-18 and deuterium was produced. After the irradiation with an artificial sun, the uppermost layers of the sample showed an important enrichment of heavy isotopes. This was also observed in the lowest layers whereas the intermediate layer showed no isotope fractionation.

  18. Interstellar and cometary ices: Molecular emission from comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; DeVries, C. H.; Dickens, J. E.; Lovell, A. J.; Schloerb, F. P.; Senay, M.; Jewitt, D.; Matthews, H. E.

    1997-01-01

    Observations of rotational translations of neutral molecules, radicals and ions in the comet Hale-Bopp are reported on. Sample spectra and maps of the emission for the J = 1 to 0 transition of HCN, the J = 2 to 1 transition of CS and the J = 1 to 0 transition of HCO+ are presented. While the emission from HCN is typically centered on the position of the nucleus and is symmetric, the emission from HCO+ exhibits multiple peaks, together with evidence for acceleration away from the nucleus.

  19. Thermal modeling of Halley's comet

    USGS Publications Warehouse

    Weissman, P.R.; Kieffer, H.H.

    1984-01-01

    The comet thermal model of Weissman and Kieffer is used to calculate gas production rates and other parameters for the 1986 perihelion passage of Halley's Comet. Gas production estimates are very close to revised pre-perihelion estimates by Newburn based on 1910 observations of Halley; the increase in observed gas production post-perihelion may be explained by a variety of factors. The energy contribution from multiply scattered sunlight and thermal emission by coma dust increases the total energy reaching the Halley nucleus at perihelion by a factor of 2.4. The high obliquity of the Halley nucleus found by Sekanina and Larson may help to explain the asymmetry in Halley's gas production rates around perihelion. ?? 1984.

  20. The C-12/C-13 abundance ratio in Comet Halley

    SciTech Connect

    Wyckoff, S.; Lindholm, E.; Wehinger, P.A.; Peterson, B.A.; Zucconi, J.M.

    1989-04-01

    The individual (C-13)N rotational lines in Comet Halley are resolved using high-resolution spectra of the CN B2Sigma(+)-X2Sigma(+) (0,0) band. The observe C-12/C-13 abundance ratio excludes a site of origin for the comet near Uranus and Neptune and suggests a condensation environment quite distinct from other solar system bodies. Two theories are presented for the origin of Comet Halley. One theory suggest that the comet originated 4.5 Gyr ago in an inner Oort cloud at a heliocentric distance greater than 100 AU where chemical fractionation led to the C-13 enrichment in the CN parent molecule prior to condensation of the comet nucleus. According to the other, more plausible theory, the comet nucleus condensed relatively recently from the interstellar medium which has become enriches in C-13 and was subsequently gravitationally captured by the solar system. 107 refs.

  1. TASS reports VEGAS-1 encounter with Halley's Comet

    NASA Astrophysics Data System (ADS)

    1986-09-01

    The Soviet automatic station Vega-1, whose flight is taking place within the framework of the multipurpose international project Venera-kometa Galleya, has successfully performed its program of research of Halley's Comet. On March 6, 1986, the Vega-1 station passed through the comet's gas and dust shell at a distance of about 9,000 kilometers from its nucleus and performed comprehensive scientific studies of this heavenly body for the first time. With the aid of apparatus developed jointly by scientists and specialists of the USSR, Austria, Bulgaria, the German Democratic Republic, Poland, France, the Federal Republic of Germany, and Czechoslovakia, large-scale pictures of the comet nucleus were obtained, and measurements were made of the temperature and other physical chemistry characteristics of the comet. The chemical composition of gas and dust component substances of the comet were analyzed, and studies were made of the electromagnetic fields around the comet and of physical processes taking place in its shell.

  2. The C-12/C-13 abundance ratio in Comet Halley

    NASA Technical Reports Server (NTRS)

    Wyckoff, Susan; Lindholm, Eric; Wehinger, Peter A.; Peterson, Bruce A.; Zucconi, Jean-Marc

    1989-01-01

    The individual (C-13)N rotational lines in Comet Halley are resolved using high-resolution spectra of the CN B2Sigma(+)-X2Sigma(+) (0,0) band. The observe C-12/C-13 abundance ratio excludes a site of origin for the comet near Uranus and Neptune and suggests a condensation environment quite distinct from other solar system bodies. Two theories are presented for the origin of Comet Halley. One theory suggest that the comet originated 4.5 Gyr ago in an inner Oort cloud at a heliocentric distance greater than 100 AU where chemical fractionation led to the C-13 enrichment in the CN parent molecule prior to condensation of the comet nucleus. According to the other, more plausible theory, the comet nucleus condensed relatively recently from the interstellar medium which has become enriches in C-13 and was subsequently gravitationally captured by the solar system.

  3. Comet Tails of Type 2

    NASA Technical Reports Server (NTRS)

    Probstein, R. F.

    1972-01-01

    A summary is presented of a theory for the head and tail regions of Type 2 (dust) comets, wherein dust particles having a wide distribution of sizes are assumed to be released from the comet nucleus in an essentially continuous manner in time during the period of distinctive cometary phenomena. The dust particles are assumed to be accelerated radially outward from the nucleus as a result of a drag interaction with the expanding gas in the comet head. In the tail region the only significant forces assumed to act on the dust particles are solar gravity and the force of solar radiation pressure. It is shown how results describing the surface density in the tail are obtained and how by matching calculated distributions with measured ones it is possible to determine the dust and head-gas emission rates as a function of time, the distribution of dust particle sizes, and the emission velocity from the inner head region as a function of particle size and time. The results of matching calculated density distributions with light intensity measurements from Comet Arend-Roland 1956h are summarized.

  4. Comet Siding Spring at Mars: Using MRO to Interpret HST Imaging of Comets

    NASA Astrophysics Data System (ADS)

    Li, Jian-Yang

    2014-10-01

    Comet C/Siding Spring is a dynamically new (DN) comet, and will approach Mars to within 135,000 km on October 19, 2014. This encounter presents the first ever opportunity for us to observe a DN comet from close distances. The planned observations from the Mars Reconnaissance Orbiter (MRO) can potentially resolve the nucleus to 140 m/pix, and trace the dust and gas activity to their sources on the nucleus. This "natural flyby" will allow us to directly compare a DN comet with previous comet flyby mission targets (all highly evolved comets), and generalize those mission results to more comets. We propose to observe C/Siding Spring with seven HST orbits during its Mars encounter. These observations will take advantage of this rare opportunity to study the evolution of C/Siding Spring, use the MRO observations to help us interpret HST observations of comets in general, and put the MRO observations into a broader context. We plan to image the dust coma with filters F689M and F845M, and the cyanogen coma with filter FQ387N. Comparisons with previous HST observations when the comet was far from the Sun, combined with MRO observations, will allow us to study the evolution of the coma of C/Siding Spring, and tie it to the sources on the nucleus. Putting MRO and HST observations together, we can reconstruct the 3-D structure in the inner coma, and study the possible chemical heterogeneity on the nucleus. HST is needed because of the unfavorable observing conditions from the ground, the specific timing of our observations, and its high resolution and high sensitivity. This proposal is part of a coordinated observing campaign of C/Siding Spring both from the ground and from space.

  5. Physical Properties of Bright Comets

    NASA Astrophysics Data System (ADS)

    Pittichová, J.; Meech, K. J.

    2002-09-01

    We will show preliminary results from a program of long-term observation of the dust coma activity of bright comets. One and half years of observation of 32 selected comets in B, V, R, I filters are used for the study of the physical properties and the dust activity of their comae at a range of heliocentric distances from 0.99 to 8.61 AU. This enables us to compare the activity of different cometary nuclei at similar solar radiation conditions. As shown in the Table, the selected comets belong to different cometary populations from the point of view of their active age (near parabolic orbits versus short-period orbits, outbursts of brightness, disruption of nuclei) and orbital parameters (the eccentricity from 0.04 to 1.01 AU, the perihelion distance from 0.34 to 8.24 AU). The knowledge of physical properties of cometary nuclei and coma are very important to our understanding of the environment in the outer solar system during the era of formation. The comet dataset of 1128 images will enable us to study thermal evolution of the small dust particles, their dynamical parameters and size distribution as a function of time and grain size at different heliocentric distances. Our future goal is to model the near-nucleus particle region using a Finston-Probstein dust model. Since our observations are still in progress at this time we will present only preliminary results of brightness and color changes for several selected bright comets.

  6. Comets: chemistry and chemical evolution.

    PubMed

    Donn, B

    1982-01-01

    Lasting commitment to cosmic chemistry and an awareness of the fascinating role of comets in that study was a consequence of an association with Harold Urey early in my astronomical career. Urey's influence on cometary research spread as colleagues with whom I was associated, in turn, developed their own programs in cometary chemistry. One phase of the Chicago research shows that Whipple's icy nucleus would be below about 250 K. This property, combined with their small internal pressure, means cometary interiors remain essentially unchanged during their lifetime. Observations of cometary spectra indicate that they are rich in simple organic species. Experiments on comet-like ice mixture suggests that the extensive array of interstellar molecules also may be found in comets. The capture of cometary debris by the earth or the impact of comets would have been an early source of biochemically significant molecules. Recent hypotheses on radiogenic heating and melting of water ice in the central zone of nuclei do not seem consistent with recent observations or ideas of structure. Thus comets are not a likely place for life to develop. PMID:7097774

  7. Comets: chemistry and chemical evolution.

    PubMed

    Donn, B

    1982-01-01

    Lasting commitment to cosmic chemistry and an awareness of the fascinating role of comets in that study was a consequence of an association with Harold Urey early in my astronomical career. Urey's influence on cometary research spread as colleagues with whom I was associated, in turn, developed their own programs in cometary chemistry. One phase of the Chicago research shows that Whipple's icy nucleus would be below about 250 K. This property, combined with their small internal pressure, means cometary interiors remain essentially unchanged during their lifetime. Observations of cometary spectra indicate that they are rich in simple organic species. Experiments on comet-like ice mixture suggests that the extensive array of interstellar molecules also may be found in comets. The capture of cometary debris by the earth or the impact of comets would have been an early source of biochemically significant molecules. Recent hypotheses on radiogenic heating and melting of water ice in the central zone of nuclei do not seem consistent with recent observations or ideas of structure. Thus comets are not a likely place for life to develop.

  8. Overview of the Results of the Organics PET Study of the Cometary Samples from Comet Wild 2 by the Stardust Mission

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Aleon, J.; Alexander, C. M. O'D.; Araki, T.; Bajt, S.; Baratta, G. A.; Borg, J.; Bradley J. P.; Brownlee, D. E.; Brucato, J. R.; Burchell, M. J.; Busemann, H.; Butterworth, A.; Clemett, S. J.; Cody, G.; Colangeli, L.; Cooper, G.

    2007-01-01

    STARDUST is the first mission designed to bring samples back to Earth from a known comet. The captured samples were successfully returned to Earth on 15 Jan 2006, after which they were subjected to a preliminary examination by a number of teams of scientists from around the world. This abstract describes the efforts of the Organics Preliminary Examination Team (PET). More detailed discussions of specific analyses of the samples can be found in other papers presented at this meeting by individual members of the Organics PET (see the author list above for team members). The studied Wild 2 gas and dust samples were collected by impact onto aerogel tiles and Al foils when the spacecraft flew through the coma of 81P/Wild 2 on 2 Jan 2004 at a relative velocity of approx.6.1 kilometers per second. After recovery of the Sample Return Capsule (SRC) on 15 Jan 2006, the aerogel collector trays were removed in a clean room at JSC. After documentation of the collection, selected aerogel tiles and aluminum foils were removed and aerogel and cometary samples extracted for study.

  9. Comet explorer spacecraft design project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The small, chemically primitive objects of the solar system, comets and asteroids, are one of the most important frontiers remaining for future planetary exploration. So stated the Solar System Exploration Committee of the NASA Advisory Council in its 1986 report 'Planetary Exploration Through the Year 2000.' The Halley's comet flyby missions completed last spring raised more questions than were answered about the nature of comets. The next mission to a comet must be able to explore some of these questions. In the late 1990's, a spacecraft might be built to explore the hazardous area surrounding a comet nucleus. Rigorous pointing requirements for remote sensing instruments will place a considerable burden on their attendant control systems. To meet these requirements we have pursued the initial design and analysis of a multi-bodied comet explorer spacecraft. Sized so as to be built on-orbit after the space station is operational, the spacecraft is comprised of Orbit Replaceable Unit (ORU) subsystems, packaged into two major components: a three-axis controlled instrument platform and a spinning, detached comet dust shield. Such a configuration decouples the dynamics of dust impaction from the stringent pointing out requirements of the imaging experiments. At the same time, it offers an abundance of simple analysis problems that may be carried out by undergraduates. These problems include the following: Selection of subsystem components, sizing trade studies, investigation of three-axis and simple spin dynamics, design of simple control systems, orbit determination, and intercept trajectory generation. Additionally, such topics as proposal writing project management, human interfacing, and costing have been covered. A new approach to design teaching has been taken, whereby students will 'learn by teaching.' They are asked to decompose trade options into a set of 'if-then' rules, which then 'instruct' the Mechanically Intelligent Designer (MIND) expert design system

  10. Transition Elements between Comets and Asteroids

    NASA Astrophysics Data System (ADS)

    Coradini, A.; Capaccioni, F.; Capria, M. T.; De Sanctis, M. C.; Espinasse, S.; Orosei, R.; Salomone, M.; Federico, C.

    1997-10-01

    In this paper we study the evolution of a comet nucleus taking into account its orbital evolution. It is assumed that the nucleus undergoes several close encounters with Giant Planets and its final orbit is that of the near-Earth object 4015 Wilson-Harrington. In paper I we presented results of a comet evolution model establishing the conditions under which the nucleus becomes dormant or extinct; we also identified a range of physical conditions leading to long-lasting activity that inexorably lead to the consumption of the icy material. The assumption in paper I was that the nucleus model is composed of a mixture of ices of water, CO2, and CO and dust particles; the H2O ice is initially crystalline. In this paper we analyze if the initial status of ice, the presence of CO, and the spin period affect the evolutionary history of the body, and if part of the original material is preserved in the inner part of the nucleus when the comet becomes a short-period comet.

  11. Comet and Asteroid Missions in NASA's New Millennium Program

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    2000-01-01

    NASA's New Millennium Program (NMP) is designed to develop, test, and flight validate new, advanced technologies for planetary and Earth exploration missions, using a series of low cost spacecraft. Two of NMP's current missions include encounters with comets and asteroids. The Deep Space 1 mission was launched on October 24, 1998 and will fly by asteroid 1992 KD on July 29, 1999, and possibly Comet Wilson-Harrington and/or Comet Borrelly in 2001. The Space Technology 4/Champollion mission will be launched in April, 2003 and will rendezvous with, orbit and land on periodic Comet Tempel 1 in 2006. ST-4/Champollion is a joint project with CNES, the French space agency. The DS-1 mission is going well since launch and has already validated several major technologies, including solar electric propulsion (SEP), solar concentrator arrays, a small deep space transponder, and autonomous navigation. The spacecraft carries two scientific instruments: MICAS, a combined visible camera and UV and IR spectrometers, and PEPE, an ion and electron spectrometer. Testing of the science instruments is ongoing. Following the asteroid encounter in July, 1999, DS-1 will go on to encounters with one or both comets if NASA approves funding for an extended mission. The ST-4/Champollion mission will use an advanced, multi-engine SEP system to effect a rendezvous with Comet P/Tempel 1 in February, 2006, after a flight time of 2.8 years. After orbiting the comet for several months in order to map its surface and determine its gravity field, ST-4/Chainpollion will descend to the comet's surface and will anchor itself with a 3-meter long harpoon. Scientific experiments include narrow and wide angle cameras for orbital mapping, panoramic and near-field cameras for landing site mapping, a gas chromatograph/mass spectrometer, a combined microscope and infrared spectrometer, and physical properties probes. Cometary samples will be obtained from depths up to 1.4 meters. The spacecraft is solar powered

  12. Episodic Aging and End States of Comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    2008-01-01

    It is known that comets are aging very rapidly on cosmic scales, because they rapidly shed mass. The processes involved are (i) normal activity - sublimation of ices and expulsion of dust from discrete emission sources on and/or below the surface of a comet's nucleus, and (ii) nuclear fragmentation. Both modes are episodic in nature, the latter includes major steps in the comet's life cycle. The role and history of dynamical techniques used are described and results on mass losses due to sublimation and dust expulsion are reviewed. Studies of split comets, Holmes-like exploding comets, and cataclysmically fragmenting comets show that masses of 10 to 100 million tons are involved in the fragmentation process. This and other information is used to investigate the nature of comets' episodic aging. Based on recent advances in understanding the surface morphology of cometary nuclei by close-up imaging, a possible mechanism for large-scale fragmentation events is proposed and shown to be consistent with evidence available from observations. Strongly flattened pancake-like shapes appear to be required for comet fragments by conceptual constraints. Possible end states are briefly examined.

  13. Multispecies Sublimation of a Comet Including the Influence of the Gas-Phase on Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Alexander, C. J.; Gombosi, T. I.

    1996-01-01

    The heat tranfer process that results from gaseous diffusion through the nucleus is shown to play a significant role in modeling comet nulei. In this paper, a comprehensive comet nucleus model is presented which simulates the efflux of gas from surface and interior layers.

  14. The Composition of Comets

    NASA Astrophysics Data System (ADS)

    Cochran, Anita L.; Levasseur-Regourd, Anny-Chantal; Cordiner, Martin; Hadamcik, Edith; Lasue, Jérémie; Gicquel, Adeline; Schleicher, David G.; Charnley, Steven B.; Mumma, Michael J.; Paganini, Lucas; Bockelée-Morvan, Dominique; Biver, Nicolas; Kuan, Yi-Jehng

    2015-12-01

    This paper is the result of the International Cometary Workshop, held in Toulouse, France in April 2014, where the participants came together to assess our knowledge of comets prior to the ESA Rosetta Mission. In this paper, we look at the composition of the gas and dust from the comae of comets. With the gas, we cover the various taxonomic studies that have broken comets into groups and compare what is seen at all wavelengths. We also discuss what has been learned from mass spectrometers during flybys. A few caveats for our interpretation are discussed. With dust, much of our information comes from flybys. They include in situ analyses as well as samples returned to Earth for laboratory measurements. Remote sensing IR observations and polarimetry are also discussed. For both gas and dust, we discuss what instruments the Rosetta spacecraft and Philae lander will bring to bear to improve our understanding of comet 67P/Churyumov-Gerasimenko as "ground-truth" for our previous comprehensive studies. Finally, we summarize some of the initial Rosetta Mission findings.

  15. Three predictions: Comet 67P/Churyumov-Gerasimenko, comet C/2012 K1 PANSTARRS, and comet C/2013 V5 Oukaimeden

    NASA Astrophysics Data System (ADS)

    Ferrín, Ignacio

    2014-09-01

    We make the following predictions: (1) The secular light curve (SLC) of comet 67P/Churyumov-Gerasimenko exhibits a photometric anomaly in magnitude that is present in 1982, 1996, 2002 and 2009. Thus it must be real. We interpret this anomaly as a topographic feature on the surface of the nucleus that may be a field of debris, a region made only of dust or an area of solid stones but in any case it is depleted in volatiles. We predict that images taken by spacecraft Rosetta will show a region morphologically different to the rest of the nucleus, at the pole pointing to the Sun near perihelion. (2) Comet C/2012 K1 PANSTARRS exhibits the same Slope Discontinuity Event (SDE)+magnitude dip after the event than other comets listed in Table 1 most of which disintegrated. This group includes comet C/2012 S1 ISON. Thus, it is reasonable to expect that this comet may disintegrate too. The probability of disintegration of this comet is 27%. (3) Comet C/2013 V5 Oukaimeden exhibits the same SDE+standstill signature exhibited by other comets in Table 1. We predict that there is a 93% probability that this comet will disintegrate. (4) Another purpose of this work is to present evidence to conclude that the SLCs have predictive power.

  16. Disequilibrium Chemistry in the Solar Nebula and Early Solar System: Implications for the Chemistry of Comets

    NASA Astrophysics Data System (ADS)

    Fegley, Bruce, Jr.

    1997-12-01

    that polyoxymethylene (polymerized formaldehyde or POM) is a constituent of the C- H-O-N particles emitted from comet P/Halley (e.g., Huebner 1987; Huebner et aL 1987; Mitchell et al. 1987). If actually present in the C-H-O-N particles, POM is also a product of disequilibrating processes which took place in the solar nebula and/or in a presolar environment. Taken together, the observations listed above indicate that a variety of disequilibrating processes such as the kinetic inhibition of thermochemical reactions, grain catalyzed chemistry, lightning induced shock chemistry, and photochemistry played an important role in establishing the chemistry and molecular composition of comet P/Halley in particular and presumably cometary material in general. However, the observational data do not by themselves constrain the timing and/or location of these various processes. This paper reviews the relevant observational data and attempts to quantify as far as possible by using current theoretical models and experimental data the relative importance of equilibrium and disequilibrium processes for the chemistry of comets. "Key" experimental and observational measurements which are important for better constraints on cometary origins are proposed. Finally, important measurements to be made by a comet nucleus sample return mission such as Rosetta are also suggested.

  17. Evolution of the ion environment of comet 67P

    NASA Astrophysics Data System (ADS)

    Nilsson, H.; Behar, E.; Stenberg Wieser, G.

    2015-10-01

    The Rosetta mission has been designed to rendezvous with and escort comet 67P/Churyumov-Gerasimenko from a heliocentric distance of 3.6 AU, when the comet still has a low activity level, until perihelion passage at 1.25 AU where the comet reaches the maximum of its activity. During the initial low activity stage the solar wind permeates the thin comet atmosphere that has just begun to form from sublimation. Eventually the size and plasma pressure of the ionized atmosphere leads to the formation of plasma boundaries: a magnetosphere is born. Using the Rosetta Plasma Consortium Ion Composition Analyzer, we study the gradual evolution of the comet ion environment as the comet activity increases. Mass loading caused by picked-up comet ions deflect the solar wind. Charge exchange between the solar wind and comet atmosphere gradually increases with comet activity, leading to a situation where a significant fraction of the solar wind has charge-exchanged close to the comet nucleus. Pick up ions created upstream of the comet nucleus are accelerated by the solar wind electric field and are seen with energies up to a few keV as they move back towards the nucleus. Locally produced water ions are seen moving with velocities similar to the neutral outgassing velocity of the order of 1 km/s (10 eV), but with their direction and speed influenced by the solar wind electric field. High charge state solar wind ions (O6+, O5+) are also seen at times. We quantify the ion environment near a low activity comet and show how it depends on the solar wind intensity and the distance to the sun.

  18. Will Comet ISON (C/2012 S1) Survive Perihelion?

    NASA Astrophysics Data System (ADS)

    Knight, Matthew M.; Walsh, Kevin J.

    2013-10-01

    On 2013 November 28 Comet ISON (C/2012 S1) will pass by the Sun with a perihelion distance of 2.7 solar radii. Understanding the possible outcomes for the comet's response to such a close passage by the Sun is important for planning observational campaigns and for inferring ISON's physical properties. We present new numerical simulations and interpret them in context with the historical track record of comet disruptions and of sungrazing comet behavior. Historical data suggest that sizes below ~200 m are susceptible to destruction by sublimation driven mass loss, while we find that for ISON's perihelion distance, densities lower than 0.1 g cm-3 are required to tidally disrupt a retrograde or non-spinning body. Such low densities are substantially below the range of the best-determined comet nucleus densities, though dynamically new comets such as ISON have few measurements of physical properties. Disruption may occur for prograde rotation at densities up to 0.7 g cm-3, with the chances of disruption increasing for lower density, faster prograde rotation, and increasing elongation of the nucleus. Given current constraints on ISON's nucleus properties and the typically determined values for these properties among all comets, we find tidal disruption to be unlikely unless other factors (e.g., spin-up via torquing) affect ISON substantially. Whether or not disruption occurs, the largest remnant must be big enough to survive subsequent mass loss due to sublimation in order for ISON to remain a viable comet well after perihelion.

  19. Onset of sublimation in comet P/Halley (1982i)

    NASA Technical Reports Server (NTRS)

    Wyckoff, S.; Wagner, R. M.; Wehinger, P. A.; Schleicher, D. G.; Festou, M. C.

    1985-01-01

    The first direct evidence for the onset of sublimation of a comet nucleus is reported. Emission due to CN observed in spectra of the comet P/Halley provides evidence for the development of the gas coma. Broad-band photometric observations of the comet indicate that the dust coma developed near a preperihelion heliocentric distance r of about 6 AU. Rates of gas production and brightening for the comet have been derived at r of 4-6 AU. The mean preperihelion nuclear magnitude derived for the comet was used to calculate an effective radius of the nucleus, which for plausible values of the geometric albedo lies in the range 1-4 km.

  20. Evaporation of ices from Comet West

    NASA Technical Reports Server (NTRS)

    Ahearn, M. F.; Thurber, C. H.; Millis, R. L.

    1977-01-01

    Postperihelion narrow-band filter photometry has been used to derive gas and dust production rates for Comet West. For heliocentric distances less than 1.25 AU, C2 and CN vary as the -2.8 power of distance, while C3 and OH (based on published measurements) vary as -2.1 power. C3 production closely parallels dust production. It is concluded that OH and C3 parents are produced at the nucleus, while CN and C2 parents are produced from the icy-grain halo. It is also found that Comet West is one of the dustiest and most productive of the recent comets, being exceeded only by Comet Bennett.

  1. Hubble Witnesses Comet Crash

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Quick Time Movie for PIA02122 Hubble Witnesses Comet Crash

    [figure removed for brevity, see original site] Figure 1: Hubble Witnesses Comet Crash

    These pictures of comet Tempel 1 were taken by NASA's Hubble Space Telescope. They show the comet before and after it ran over NASA's Deep Impact probe.

  2. Comet tail formation: Giotto observations

    SciTech Connect

    Wilken, B.; Jockers, K.; Johnstone, A.; Coates, A.; Heath, J.; Formisano, V.; Amata, E.; Winningham, J.D.; Thomsen, M.; Bryant, D.A.

    1986-01-01

    The process of mass loading of the solar wind by cometary ions, which forms comet tails, has been observed throughout the coma of comet Halley. Three distinct regimes were found where the nature of the energy and momentum coupling between solar wind and cometary ions is different. Outside the bow shock, where there is little angular scattering of the freshly ionized particles, the coupling is described by the simple pickup trajectory and the energy is controlled by the angle between the flow and the magnetic field. Just inside the bow shock, there is considerable scattering accompanied by another acceleration process which raises some particle energies well above the straightforward pickup value. Finally, closer to the nucleus, the amount of scattering decreases and the coupling is once more controlled by the magnetic field direction. 4 refs., 3 figs.

  3. Navigation of the EPOXI Spacecraft to Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam; Abrahamson, Matt; Chesley, Steven; Chung, Min-Kun; Halsell, Allen; Haw, Robert; Helfrich, Cliff; Jefferson, David; Kennedy, Brian; McElrath, Tim; Owen, William; Rush, Brian; Smith, Jonathon; Wang, Tseng-Chan; Yen, Chen-Wan

    2011-01-01

    On November 4, 2010, the EPOXI spacecraft flew by the comet Hartley 2, marking the fourth time that a NASA spacecraft successfully captured high resolution images of a cometary nucleus. EPOXI is the extended mission of the Deep Impact mission, which delivered an impactor on comet Tempel-1 on July 4, 2005. EPOXI officially started in September 2007 and eventually took over 3 years of flight time and had 3 Earth gravity assists to achieve the proper encounter conditions. In the process, the mission was redesigned to accommodate a new comet as the target and changes in the trajectory to achieve better imaging conditions at encounter. Challenges in navigation of the spacecraft included precision targeting of several Earth flybys and the comet encounter, uncertainties in determining the ephemeris of the comet relative to the spacecraft, and the high accuracy trajectory knowledge needed to image the comet during the encounter. This paper presents an overview of the navigation process used for the mission.

  4. Monitoring of DNA damage in haemocytes of freshwater mussel Sinanodonta woodiana sampled from the Velika Morava River in Serbia with the comet assay.

    PubMed

    Kolarević, Stoimir; Knežević-Vukčević, Jelena; Paunović, Momir; Kračun, Margareta; Vasiljević, Božica; Tomović, Jelena; Vuković-Gačić, Branka; Gačić, Zoran

    2013-09-01

    This study was undertaken to investigate the potential of the freshwater mussel Sinanodonta woodiana for detection of genotoxic pollution of the environment. Study was performed at two sites in the Velika Morava River, from May 2010 to February 2011. The alkaline comet assay on haemocytes was used, and the olive tail moment (OTM) was chosen as a measure of DNA damage. The specimens held on acclimation under controlled laboratory conditions for 10d were used as a control. Chemical analysis revealed the presence of phosphates and increased concentrations of zinc, copper and nickel at both sites during the entire sampling period. The values of OTM in mussels collected from the environment, significantly correlated with the concentration of zinc (r=0.6248), temperature (r=0.7006) and dissolved oxygen (r=0.7738). Seasonal variations in genotoxic response were observed, with the highest OTM values obtained during summer months. Preliminary results of the in vitro study indicated the effect of water temperature on genotoxic response to zinc and cadmium in S. woodiana suggesting that the presence of genotoxic pollutants during months with lower temperature could be under-estimated. Obtained results indicate that S. woodiana could be a valuable tool for active biomonitoring of aquatic environments and emphasizes the importance of seasonal genotoxic monitoring with this organism. PMID:23722166

  5. Monitoring of DNA damage in haemocytes of freshwater mussel Sinanodonta woodiana sampled from the Velika Morava River in Serbia with the comet assay.

    PubMed

    Kolarević, Stoimir; Knežević-Vukčević, Jelena; Paunović, Momir; Kračun, Margareta; Vasiljević, Božica; Tomović, Jelena; Vuković-Gačić, Branka; Gačić, Zoran

    2013-09-01

    This study was undertaken to investigate the potential of the freshwater mussel Sinanodonta woodiana for detection of genotoxic pollution of the environment. Study was performed at two sites in the Velika Morava River, from May 2010 to February 2011. The alkaline comet assay on haemocytes was used, and the olive tail moment (OTM) was chosen as a measure of DNA damage. The specimens held on acclimation under controlled laboratory conditions for 10d were used as a control. Chemical analysis revealed the presence of phosphates and increased concentrations of zinc, copper and nickel at both sites during the entire sampling period. The values of OTM in mussels collected from the environment, significantly correlated with the concentration of zinc (r=0.6248), temperature (r=0.7006) and dissolved oxygen (r=0.7738). Seasonal variations in genotoxic response were observed, with the highest OTM values obtained during summer months. Preliminary results of the in vitro study indicated the effect of water temperature on genotoxic response to zinc and cadmium in S. woodiana suggesting that the presence of genotoxic pollutants during months with lower temperature could be under-estimated. Obtained results indicate that S. woodiana could be a valuable tool for active biomonitoring of aquatic environments and emphasizes the importance of seasonal genotoxic monitoring with this organism.

  6. Activity in distant comets

    NASA Technical Reports Server (NTRS)

    Luu, Jane X.

    1992-01-01

    Activity in distant comets remains a mystery in the sense that we still have no complete theory to explain the various types of activity exhibited by different comets at large distances. This paper explores the factors that should play a role in determining activity in a distant comet, especially in the cases of comet P/Tempel 2, comet Schwassmann-Wachmann 1, and 2060 Chiron.

  7. ISO's analysis of Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    1997-03-01

    The European Space Agency's Infrared Space Observatory ISO inspected Comet Hall-Bopp during the spring and autumn of 1996. The need to keep ISO's telescope extremely cold restricts the spacecraft's pointing in relation to the Sun and the Earth and it ruled out observations at other times. The analyses of the 1996 observations are not yet complete, but already they give new insight into the nature of comets. Comet Hale-Bopp is believed to be a large comet with a nucleus up to 40 kilometres wide. It was discovered in July 1995 by two American astronomers working independently, Alan Hale and Thomas Bopp. At that time, the comet was a billion kilometres away from the Sun, but 200 times brighter than Halley's Comet was, when at a comparable distance. Comet Hale-Bopp will make its closest approach to the Earth on 22 March, and its closest approach to the Sun (perihelion) on 1 April 1997. Some scientific results from ISO The discovery of Comet Hale-Bopp occurred before ISO's launch in November 1995. When first observed by ISO in March and April 1996, the comet was still 700 million kilometres from the Sun, and almost as far from the Earth and ISO. With its privileged view of infrared wavebands inaccessible from the Earth's surface, ISO's photometer ISOPHOT discovered that carbon dioxide was an important constituent of the comet's emissions of vapour.ISOPHOT measured the temperature of the dust cloud around Comet Hale-Bopp. In March 1996, when the comet was still more than 700 million kilometres from the Sun, the dust cloud was at minus 120 degrees C. When ISOPHOT made similar observations in October 1996, the comet was 420 million kilometres from the Sun, and the dust cloud had warmed to about minus 50 degrees C. Intensive observations of Comet Hale-Bopp were also made by ISO's Short-Wave Spectrometer SWS, the Long-Wave Spectrometer LWS, and the ISOPHOT spectrometer PHOT-S. Results are due for publication at the end of March. They will give details about the composition

  8. Rosetta - a comet ride to solve planetary mysteries

    NASA Astrophysics Data System (ADS)

    2003-01-01

    kilometres of Halley). It sent back wonderful pictures and data that showed that comets contain complex organic molecules. These kinds of compounds are rich in carbon, hydrogen, oxygen, and nitrogen. Intriguingly, these are the elements which make up nucleic acids and amino acids, which are essential ingredients for life as we know it. Giotto continued its successful journey and flew by Comet Grigg-Skjellerup in 1992 within about 200 km distance. Now scientists will be eagerly waiting to be able to answer some of the new intriguing questions that arose from analysing the exciting results from Giotto. Other past missions that have flown by a comet were: NASA’s ICE mission in 1985, the two Russian VEGA spacecraft and the two Japanese spacecraft Suisei and Sakigake that were part of the armada that visited comet Halley in 1986; NASA’s Deep Space 1 flew-by comet Borelly in 2001 and NASA’s Stardust will fly-by comet Wild 2 in early 2004 and will return samples of the comet’s coma in 2006. Unfortunately NASA’s Contour launched in Summer 2002 failed when it was inserted onto its interplanetary trajectory. In 2004 we will see the launch of Deep Impact, a spacecraft that will shoot a massive block of copper into a comet nucleus.

  9. Comet missions and what can still be done from ground

    NASA Astrophysics Data System (ADS)

    Schulz, Rita

    2015-11-01

    Much of the knowledge on comet nuclei that has become available since the 1P/Halley encounters in 1986, is based on space missions. The nucleus shape and some surface parameters (topography, morphology, thermal, optical behaviour, composition) can directly be determined through remote-sensing measurements at close encounters. At present, 8 comets have been visited. The information that became available from these missions is discussed in view to its relevance for understanding solar system formation. Emphasis is put on comets 81P/Wild-2, 9P/Tempel, 103/Hartley-3 and 67P/Churyumov-Gerasimenko. Furthermore, options and prospects are discussed on how to benefit more effectively from spacecraft data. If the knowledge coming from spacecraft data is properly transferred to other comets, it will provide new means to distinguish whether differences between comets, observed in the coma, reflect differences of the nucleus or are related to different environmental conditions of the comets at the time of observation. This in turn has important implications to the question of how and where comets were formed in the early solar system. Some unknowns can only be addressed if data exist of a statistically relevant number of comets, hence may remain open for a rather long time. Options will be discussed on how to approach these questions in the future.

  10. Formation of Explosive Comet in Proto-planetary Nebula

    NASA Astrophysics Data System (ADS)

    Gladysheva, O.

    2013-09-01

    The question about the formation of the comet's nucleus is examined, taking into account the peculiarities of the destruction of the Tunguska cosmic body. According to the suggested model, the comet's nucleus consists from ample quantity of organic coverings, one covering inserts into another covering, similar to Russian set of nesting dolls. The space between neighbouring coverings is filled by different size lumps and grains down to micron size. Comets were formed in the inner region of the solar system in the early stages of the evolution of the proto-planetary cloud. Proto-comets began to accumulate their mass on the periphery of protoplanetary nebula (far from the ecliptic), where the temperature decreases to <100 K. Then, under the influence of gravitation, comets many times crossed the plane of the ecliptic, performing relaxation oscillations. Coverings on comet surfaces formed during every crossing by the comet of the ecliptic area, where the temperature was high. During their oscillations, most comets were thrown out of the inner regions of the solar system by planetary perturbations in the Öpik-Oort cloud.

  11. Parametric Dielectric Model of Comet Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Heggy, E.; Palmer, E. M.; Kofman, W. W.; Clifford, S. M.; Righter, K.; Herique, A.

    2012-12-01

    In 2014, the European Space Agency's Rosetta mission is scheduled to rendezvous with Comet 67P/Churyumov-Gerasimenko (Comet 67P). Rosetta's CONSERT experiment aims to explore the cometary nucleus' geophysical properties using radar tomography. The expected scientific return and inversion algorithms are mainly dependent on our understanding of the dielectric properties of the comet nucleus and how they vary with the spatial distribution of geophysical parameters. Using observations of comets 9P/Tempel 1 and 81P/Wild 2 in combination with dielectric laboratory measurements of temperature, porosity, and dust-to-ice mass ratio dependencies for cometary analog material, we have constructed two hypothetical three-dimensional parametric dielectric models of Comet 67P's nucleus to assess different dielectric scenarios of the inner structure. Our models suggest that dust-to-ice mass ratios and porosity variations generate the most significant measurable dielectric contrast inside the comet nucleus, making it possible to explore the structural and compositional hypotheses of cometary nuclei. Surface dielectric variations, resulting from temperature changes induced by solar illumination of the comet's faces, have also been modeled and suggest that the real part of the dielectric constant varies from 1.9 to 3.0, hence changing the surface radar reflectivity. For CONSERT, this variation could be significant at low incidence angles, when the signal propagates through a length of dust mantle comparable to the wavelength. The overall modeled dielectric permittivity spatial and temporal variations are therefore consistent with the expected deep penetration of CONSERT's transmitted wave through the nucleus. It is also clear that changes in the physical properties of the nucleus induce sufficient variation in the dielectric properties of cometary material to allow their inversion from radar tomography.

  12. Landslides and impacts on comets.

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2016-07-01

    The recent landing of Philae on the comet 67P/Czuriumow-Gierasimienko indicates that elastic properties of comet's nuclei could be similar to elastic properties of dry snow, namely Young modulus is assumed to be 106 - 108 Pa. We considered a simple model of two spheres (with radius 1400 m each) connected by cylinder (with radius of 200 m and length of 200 m). Density is 470 kg m-3. This shape corresponds approximately to shape of some comets. A few vibration modes are possible. In present research we consider 3 modes: bending, lengthening-shortening along axis of symmetry, and torsion. Let assume that comets are hit by small meteoroid of the mass of 1 kg and velocity 20 km s-1. The maximum values of acceleration of the surface resulting from this impact are given in Table 1. Note that these values are higher than acceleration of the gravity of the comet. Consequently, these vibrations could be an important factor of surface evolution, e.g. they could trigger landslides. It could be alternative mechanism to that presented in [4] (i.e. fluidization). Acknowledgement: The research is partly supported by Polish National Science Centre (decision 2014/15/B/ST 10/02117) References [1] T. Spohn, J. Knollenberg, A. J. Ball, M. Ba-naszkiewicz, J. Benkhoff, M. Grott, J. Gry-gorczuk, C. Hüttig, A. Hagermann, G. Kargl, E. Kaufmann, N. Kömle, E. Kührt, K. J. Kossacki, W. Marczewski, I. Pelivan, R. Schrödter, K. Seiferlin. (2015) Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov- Gera-simenko Science 31 July 2015: Vol. 349 no. 6247 DOI: 10.1126/science.aab0464 [2] Reuter B. (2013) On how to measure snow mechanical properties relevant to slab avalanche release. International Snow Science Workshop Grenoble - Chamonix Mont-Blanc - 2013 007 [3] Ball A.J. (1997) Ph. D. Thesis: Measuring Physical Properties at the Surface of a Comet Nu-cleus, Univ.of Kent U.K. [4] Belton M. J.S., Melosh J. (2009). Fluidization and multiphase transport of

  13. OpenComet: an automated tool for comet assay image analysis.

    PubMed

    Gyori, Benjamin M; Venkatachalam, Gireedhar; Thiagarajan, P S; Hsu, David; Clement, Marie-Veronique

    2014-01-01

    Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires laborious manual tagging of cells. This paper presents OpenComet, an open-source software tool providing automated analysis of comet assay images. It uses a novel and robust method for finding comets based on geometric shape attributes and segmenting the comet heads through image intensity profile analysis. Due to automation, OpenComet is more accurate, less prone to human bias, and faster than manual analysis. A live analysis functionality also allows users to analyze images captured directly from a microscope. We have validated OpenComet on both alkaline and neutral comet assay images as well as sample images from existing software packages. Our results show that OpenComet achieves high accuracy with significantly reduced analysis time. PMID:24624335

  14. OpenComet: an automated tool for comet assay image analysis.

    PubMed

    Gyori, Benjamin M; Venkatachalam, Gireedhar; Thiagarajan, P S; Hsu, David; Clement, Marie-Veronique

    2014-01-01

    Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires laborious manual tagging of cells. This paper presents OpenComet, an open-source software tool providing automated analysis of comet assay images. It uses a novel and robust method for finding comets based on geometric shape attributes and segmenting the comet heads through image intensity profile analysis. Due to automation, OpenComet is more accurate, less prone to human bias, and faster than manual analysis. A live analysis functionality also allows users to analyze images captured directly from a microscope. We have validated OpenComet on both alkaline and neutral comet assay images as well as sample images from existing software packages. Our results show that OpenComet achieves high accuracy with significantly reduced analysis time.

  15. Space observations of comets during solar flares

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon; Ibodov, Firuz S.

    Problems connected with mechanisms for comet outbursts as well as for gamma-ray bursts remain open. Meantime, calculations show that an irradiation of a certain class of cometary nuclei, having high specific electric resistance, by intense fluxes of energetic protons and posi-tively charged ions with kinetic energies more than 1 MeV/nucleon, ejected from the Sun during strong solar flares, can produce a macroscopic high-voltage electric double layer with positive charge in the subsurface region of the nucleus, during irradiation time of the order of 10-100 hours at heliocentric distances around 1-10 AU. The maximum electric energy accumulated in such layer will be restricted by discharge potential of the layer material. For the comet nuclei with the typical radius of the order of 1-10 km the accumulated energy of such natural electric capacitor is comparable to the energy of large comet outbursts that are estimated on the basis of ground-based optical observations of comets. The impulse X-ray radiation anticipated from the high-voltage electric discharge of the capacitor may serve as an indicator of realization of the processes above considered. Therefore, space observations of comets and pseudo-asteroids of cometary origin, having brightness correlation with solar activity, using space X-ray obser-vatories during strong solar flares are very interesting for the physics of comets as well as for high energy astrophysics.

  16. Ground-based photometry of comets in the spectral interval 3000 to 3500 angstrom

    NASA Technical Reports Server (NTRS)

    Willis, R. L.; Ahearn, M. F.

    1981-01-01

    Abundances and production rates of CN, C3, and C2 for fifteen comets were determined and the variation of these parameters with helicentric distance for two comets were monitored. While these measurements provide much information about the similarities and differences among comets, only a small fraction of the total material in any of the comets observed was sampled.

  17. Chemical diversity in the comet population

    NASA Astrophysics Data System (ADS)

    Biver, Nicolas

    2015-08-01

    For the last 3 decades, infrared and microwave techniques have enabled the detection of up to 25 different parent molecules in the coma of comets. Several molecules have been detected in over 40 different comets. A large diversity of composition is seen in the sample, comprising comets of various dynamical origin. Abundances relative to water for the molecules can vary by a factor 3 to more than 10. The taxonomic study of a sample of comets in which the abundance of several molecules (e.g., HCN, CH3OH, CO, CH4, C2H6, H2S, H2CO, CH3CN, cs,...) has been measured does not show any clear grouping. Except for fragments of a common parent comet, every comet observed shows a different composition. The absence of any clear correlation between the volatile content of the comets and their dynamical origin (Kuiper Belt versus Oort Cloud) suggest that there is no clear dychotomy between two origins for the comets. Their diveristy in composition may also suggest that radial and temporal mixing in the early protoplanetary nebula may have played an important role.

  18. Comet of the Century

    NASA Astrophysics Data System (ADS)

    Schaaf, Fred; Ottewell, G.

    The present century has been a disappointing one for comets, but past centuries often featured spectacular, unforgettable comet shows that dominated the night (and even daytime) sky for months: comets that outshone Venus or even the Moon, whose spectacular tails stretched more than halfway across the sky or were weirdly split, and whose apparition was held responsible for everything from wars to unusually good wine vintages. Published to coincide with the first naked-eye appearance of Comet Hale-Bopp, perhaps our own comet of the century, this book is an irresistible guide to comet facts and lore throughout history.

  19. Surface compositional variation on the comet 67P/Churyumov-Gerasimenko by OSIRIS data

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Fornasier, S.; Feller, C.; Perna, D.; Hasselmann, H.; Deshapriya, J. D. P.; Fulchignoni, M.; Besse, S.; Sierks, H.; Forgia, F.; Lazzarin, M.; Pommerol, A.; Oklay, N.; Lara, L.; Scholten, F.; Preusker, F.; Leyrat, C.; Pajola, M.; Osiris-Rosetta Team

    2015-10-01

    Since the Rosetta mission arrived at the comet 67P/Churyumov-Gerasimenko (67/P C-G) on July 2014, the comet nucleus has been mapped by both OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System, [1]) NAC (Narrow Angle Camera) and WAC (Wide Angle Camera) acquiring a huge quantity of surface's images at different wavelength bands, under variable illumination conditions and spatial resolution, and producing the most detailed maps at the highest spatial resolution of a comet nucleus surface.67/P C-G's nucleus shows an irregular bi-lobed shape of complex morphology with terrains showing intricate features [2, 3] and a heterogeneity surface at different scales.

  20. ROTATION OF COMET 103P/HARTLEY 2 FROM STRUCTURES IN THE COMA

    SciTech Connect

    Samarasinha, Nalin H.; Mueller, Beatrice E. A.; A'Hearn, Michael F.; Farnham, Tony L.; Gersch, Alan

    2011-06-10

    The CN coma structure of the NASA EPOXI mission target, comet 103P/Hartley 2, was observed during 20 nights from 2010 September to December. These CN images probe the rotational state of the comet's nucleus and provide a ground-based observational context to complement the EPOXI observations. A dynamically excited cometary nucleus with a changing rotational rate is observed, a characteristic not seen in any comet in the past. The lack of rotational damping during the four-month observing interval places constraints on the interior structure of the nucleus.

  1. Comet or Asteroid?

    NASA Astrophysics Data System (ADS)

    1997-11-01

    , Institute of Planetary Exploration) soon thereafter obtained seven unfiltered CCD images on three consecutive nights with the 60-cm `Bochum telescope' at La Silla, Uri Carsenty found a tail extending 15 arcseconds in the WSE direction from the point source, cf. ESO Press Photo 31b/97. The (red) magnitude was about 19, or 150,000 times fainter than what is visible to the naked eye. More observations were obtained at La Silla during the following nights, confirming the persistent presence of this tail. NTT observations confirm the cometary nature of P/1997 T3 ESO Press Photo 31c/97 ESO Press Photo 31c/97 [JPG, 52k] Caption: Deep NTT image of P/1997 T3. This image covers a field of 105 x 60 arcsec and is a composite of several CCD exposures. It was taken with the ESO New Technology Telescope (NTT) and the EMMI multi-mode instrument by ESO astronomers Hermann Boehnhardt and Olivier Hainaut on different days between 21 and 25 October 1997. By computer processing, the images of P/1997 T3 are aligned to the same pixel position and co-added in order to increase the visibility of the comet. Due to the motion of the comet, multiple images of several galaxies and stars appear in this photo. At the time of the observations, the comet was about 3.34 AU from Earth and about 4.30 AU from the Sun. A larger version [JPG, 384k] is also available. In late October 1997, further images of the new object and its tail were taken with the ESO 3.5-m New Technology Telescope (NTT) at La Silla, cf. ESO Press Photo 31c/97. On these, the narrow tail was seen to be at least 90 arcsec long and pointing roughly in the Sun direction . The steady appearance and the sunward orientation of the tail indicates that it consists of dust. Moreover, a preliminary image analysis shows the presence of a weak and very condensed coma of dust grains around the nucleus. Interestingly, a series of images through several broadband filters with a total of almost 30 min exposure time did not show any trace of a normal, anti

  2. Comet yanaka (1988r): a new class of carbon-poor comet.

    PubMed

    Fink, U

    1992-09-25

    As part of a program to determine the chemical composition of a sample population of comets, a very unusual comet, Yanaka (1988r), was observed in January 1989. Although the comet showed the usual emissions of Ol and NH(2), it did not display any hint of C(2) or CN emission. The comet is depleted in C(2) by at least a factor of 100 and in CN by a factor of 25 relative to typical comets. If comets originate from interstellar clouds, Yanaka (1988r) could be an interloper from a cloud of different composition. If Yanaka (1988r) was formed within our solar system, the solar nebula was less uniform than assumed by most present models of formation.

  3. Coma and tail trajectory design for the CRAF mission. [Comet Rendezvous Asteroid Flyby Mission

    NASA Technical Reports Server (NTRS)

    Ionasescu, Rodica

    1989-01-01

    The design of the trajectory for the proposed Comet Rendezvous Asteroid Flyby (CRAF) mission to study comet coma and tail development is examined. A two part trajectory is planned for the CRAF mission to study comet Kopff. It is proposed that, during the 213 day perihelion phase of the trajectory, CRAF should perform multiple petallike flybys at 50-5000 km from the comet's nucleus. Nine days after the perihelion, the spacecraft would transition into the comet tail in the antisun direction to a maximum distance of 50,000 km. The objectives of these two phases of exploration are discussed.

  4. THE NEOWISE-DISCOVERED COMET POPULATION AND THE CO + CO{sub 2} PRODUCTION RATES

    SciTech Connect

    Bauer, James M.; Stevenson, Rachel; Kramer, Emily; Mainzer, A. K.; Masiero, Joseph R.; Weissman, Paul R.; Nugent, Carrie R.; Sonnett, Sarah; Grav, Tommy; Fernández, Yan R.; Cutri, Roc M.; Dailey, John W.; Masci, Frank J.; Blair, Nathan; Lucas, Andrew; Meech, Karen J.; Walker, Russel; Lisse, C. M.; McMillan, Robert S.; Wright, Edward L.; Collaboration: WISE and NEOWISE Teams

    2015-12-01

    The 163 comets observed during the WISE/NEOWISE prime mission represent the largest infrared survey to date of comets, providing constraints on dust, nucleus size, and CO + CO{sub 2} production. We present detailed analyses of the WISE/NEOWISE comet discoveries, and discuss observations of the active comets showing 4.6 μm band excess. We find a possible relation between dust and CO + CO{sub 2} production, as well as possible differences in the sizes of long and short period comet nuclei.

  5. 15 years of comet photometry: A comparative analysis of 80 comets

    NASA Technical Reports Server (NTRS)

    Osip, David J.; Schleicher, David G.; Millis, Robert L.; Hearn, M. F. A.; Birch, P. V.

    1992-01-01

    In 1976 we began a program of narrowband photometry of comets that has encompassed well over 400 nights of observations. To date, the program has provided detailed information on 80 comets, 11 of which have been observed on multiple apparitions. In this paper we present the observed range of compositions (molecular production rate ratios) and dustiness (gas production compared with AF-rho) for a well sampled group of comets. Based on these results we present preliminary analysis of taxonomic groupings as well as the abundance ratios we associate with a 'typical' comet.

  6. Asteroids and Comets Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Contents include various different animations in the area of Asteroids and Comets. Titles of the short animated clips are: STARDUST Mission; Asteroid Castallia Impact Simulation; Castallia, Toutatis and the Earth; Simulation Asteroid Encounter with Earth; Nanorover Technology Task; Near Earth Asteroid Tracking; Champollian Anchor Tests; Early Views of Comets; Exploration of Small Bodies; Ulysses Resource Material from ESA; Ulysses Cometary Plasma Tail Animation; and various discussions on the Hale-Bopp Comet. Animation of the following are seen: the Stardust aerogel collector grid collecting cometary dust particles, comet and interstellar dust analyzer, Wiper-shield and dust flux monitor, a navigation camera, and the return of the sample to Earth; a comparison of the rotation of the Earth to the Castallia and Tautatis Asteroids; an animated land on Tautatis and the view of the motion of the sky from its surface; an Asteroid collision with the Earth; the USAF Station in Hawaii; close-up views of asteroids; automatic drilling of the Moon; exploding Cosmic Particles; and the dropping off of the plasma tail of a comet as it travels near the sun.

  7. Toxicity evaluation of water samples collected near a hospital waste landfill through bioassays of genotoxicity piscine micronucleus test and comet assay in fish Astyanax and ecotoxicity Vibrio fischeri and Daphnia magna.

    PubMed

    Erbe, Margarete Casagrande Lass; Ramsdorf, Wanessa Algarte; Vicari, Taynah; Cestari, Marta Margarete

    2011-03-01

    In this study, we analyzed samples of water from a river and a lake located near a hospital waste landfill with respect to physico-chemical parameters and conducted bioassays of ecotoxicity using Vibrio fischeri and Daphnia magna, which are species commonly used to evaluate the water toxicity. We also evaluated damage to the genetic material of fish (Astyanax sp. B) that were exposed (96 h) to water from these two sites that were located near the tank ditch, using the alkaline comet assay and the piscine micronucleus test. Parameters including aluminum, manganese, biochemical oxygen demand, sulfide, conductivity, phenol, total coliforms and Escherichia coli counts, were above acceptable levels that have been established in environmental legislation. However, the toxicity bioassays that we carried out in Vibrio fischeri and Daphnia magna and the piscine micronucleus test in fish showed no immediate risk due to acute effects. Based on the results of the comet assay, however, it was possible to detect damage to genetic material in fish that were acutely exposed in the laboratory to water samples from the river and lake that are located near the trench septic tank. Thus, our results suggest that tests beyond those usually employed to test water toxicity, such as the comet assay we used in the fish, are required to assess the toxicity of water with greater accuracy.

  8. Flight of the Comet

    NASA Video Gallery

    This video clip was compiled from images taken by NASA's EPOXI mission spacecraft during its flyby of comet Hartley 2 on Nov. 4, 2010. During the encounter, the spacecraft and comet whisked past ea...

  9. Bye, Bye Comet

    NASA Video Gallery

    SOHO watched as a fairly bright comet dove towards the Sun in a white streak and was not seen again after its close encounter (May 10-11, 2011). The comet, probably part of the Kreutz family of com...

  10. Comet Shoemaker-Levy 9: An Active Comet

    NASA Technical Reports Server (NTRS)

    Rettig, Terrence W.; Hahn, Joseph M.

    1997-01-01

    The important elements of the debate over the activity versus dormancy of comet Shoemaker Levy 9 (S-L 9) are reviewed. It is argued that the circularity of the isophotes in the inner comae of S-L 9 as well as the spatial dependencies of the comae brightness profiles are indicators of sustained dust production by S-L 9. It is also shown that the westward tail orientations, which were formerly interpreted as a sign of the comet's dormancy, are not a good indicator of either activity or dormancy. Rather, the tail orientations simply place constraints on the dust production rate for grains smaller than approx. equals 5(micron). All the available evidence points to S-L 9 as having been an active, dust-producing comet. Synthetic images of an active comet are fitted to Hubble Space Telescope images of the S-L 9 fragment K, and its grain size and outflow velocity distributions are extracted. These findings show that the appearance of the dust coma was dominated by large grains having radii between approx. equals 30 (micron) and approx. equals 3 mm, produced at a rate of M approx. equals 22 kg/ s, and ejected at outflow velocities of approx. equals 0.5 m/ s. Only upper limits on the production rates of smaller grains are obtained. The nucleus of fragment K was not observed directly but its size is restricted to lie within a rather narrow interval 0.4 less than or equal to Rf less than or equal to 1.2 km.

  11. The wind-sock theory of comet tails

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Rothe, E. D.

    1976-01-01

    A method is reported for calculating the shapes of ionic comet tails that use the magnetic field along the tail to channel the tail plasma. The local momentum field in the solar wind determines magnetic field line locations along the tail. Thus, the magnetic field acts as a transparent wind sock in trapping field lines in the cometary plasma around the nucleus long enough to be effectively fastened to the comet's head.

  12. Ion flow at comet Halley

    NASA Technical Reports Server (NTRS)

    Johnstone, A.; Coates, A.; Kellock, S.; Wilken, B.; Jockers, K.

    1986-01-01

    The three-dimensional positive ion analyzer aboard the Giotto spacecraft has been used to study the interaction between protons and alpha-particles in the solar wind and positive ions from comet Halley. Although the first impression of the overall structure is that the plasma flow evolves smoothly as the nucleus is approached, three sharp transitions of relatively small amplitude can be identified on both the inbound and outbound legs of the trajectory. The outermost one, at about one million km from the nucleus, appears to be a multiple crossing of a weak bow shock. The innermost one, at 80,000 km, is the boundary where the flowing plasma becomes depleted. On a microscopic scale, the turbulence created by the interaction between the two ion populations extends to a distance of several million km from the nucleus. At Giotto's closest approach to the nucleus, the plasma produced around the spacecraft by dust and gas impacts was much more energetic than had been expected.

  13. A Million Comet Pieces

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] A Million Comet Pieces (poster version)

    This infrared image from NASA's Spitzer Space Telescope shows the broken Comet 73P/Schwassman-Wachmann 3 skimming along a trail of debris left during its multiple trips around the sun. The flame-like objects are the comet's fragments and their tails, while the dusty comet trail is the line bridging the fragments.

    Comet 73P /Schwassman-Wachmann 3 began to splinter apart in 1995 during one of its voyages around the sweltering sun. Since then, the comet has continued to disintegrate into dozens of fragments, at least 36 of which can be seen here. Astronomers believe the icy comet cracked due the thermal stress from the sun.

    The Spitzer image provides the best look yet at the trail of debris left in the comet's wake after its 1995 breakup. The observatory's infrared eyes were able to see the dusty comet bits and pieces, which are warmed by sunlight and glow at infrared wavelengths. This comet debris ranges in size from pebbles to large boulders. When Earth passes near this rocky trail every year, the comet rubble burns up in our atmosphere, lighting up the sky in meteor showers. In 2022, Earth is expected to cross close to the comet's trail, producing a noticeable meteor shower.

    Astronomers are studying the Spitzer image for clues to the comet's composition and how it fell apart. Like NASA's Deep Impact experiment, in which a probe smashed into comet Tempel 1, the cracked Comet 73P/Schwassman-Wachmann 3 provides a perfect laboratory for studying the pristine interior of a comet.

    This image was taken from May 4 to May 6 by Spitzer's multi-band imaging photometer, using its 24-micron wavelength channel.

  14. Exploding Comet 17P/Holmes

    NASA Astrophysics Data System (ADS)

    Sekanina, Zdenek

    2008-01-01

    The light curve and dust-halo expansion curve of comet 17P are constructed, examined, and compared with those of other comets that experienced outbursts. The 2007 megaburst of 17P is unrivaled as the most powerful event of this kind on record. The proposed scenario for the megaburst involves an exothermic reaction caused by a transition of water ice from low-density amorphous phase to cubic phase in a reservoir spread below a pancake-shaped thick layer of 10^(14) g of terrain on the nucleus' surface. The resulting explosion jettisoned this layer of inert mass into the atmosphere as a major fragment that began to crumble precipitously into a rapidly expanding cloud of microscopic dust immediately upon the lift-off. Fewer than 50 events of this magnitude would consume the entire comet.

  15. The HNC/HCN ratio in comets.

    PubMed

    Irvine, W M; Dickens, J E; Lovell, A J; Schloerb, F P; Senay, M; Bergin, E A; Jewitt, D; Matthews, H E

    1997-01-01

    The abundance ratio of the isomers HCN and HNC has been investigated in comet Hale-Bopp (C/1995 O1) through observations of the J = 4-3 rotational transitions of both species for heliocentric distances 0.93 < r < 3 AU, both pre- and post-perihelion. After correcting for the optical depth of the stronger HCN line, we find that the column density ratio of HNC/HCN in our telescope beam increases significantly as the comet approaches the Sun. We compare this behavior to that predicted from an ion-molecule chemical model and conclude that the HNC is produced in significant measure by chemical processes in the coma; i.e., for comet Hale-Bopp, HNC is not a parent molecule sublimating from the nucleus.

  16. The HNC/HCN ratio in comets

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Dickens, J. E.; Lovell, A. J.; Schloerb, F. P.; Senay, M.; Bergin, E. A.; Jewitt, D.; Matthews, H. E.; Ferris, J. P. (Principal Investigator)

    1997-01-01

    The abundance ratio of the isomers HCN and HNC has been investigated in comet Hale-Bopp (C/1995 O1) through observations of the J = 4-3 rotational transitions of both species for heliocentric distances 0.93 < r < 3 AU, both pre- and post-perihelion. After correcting for the optical depth of the stronger HCN line, we find that the column density ratio of HNC/HCN in our telescope beam increases significantly as the comet approaches the Sun. We compare this behavior to that predicted from an ion-molecule chemical model and conclude that the HNC is produced in significant measure by chemical processes in the coma; i.e., for comet Hale-Bopp, HNC is not a parent molecule sublimating from the nucleus.

  17. There is no 'cometopause' at comet Halley

    NASA Technical Reports Server (NTRS)

    Reme, H.; Mazelle, C.; D'Uston, C.; Korth, A.; Lin, R. P.; Chaizy, P.

    1994-01-01

    Immediately after the flybys at comet Halley by a fleet of spacecraft in 1986, Gringauz et al. (1986a) reported the detection by the Vega-2 spacecraft of a chemical and sharp plasma boundary, which they named the 'cometopause,' at a distance of about 1.6 x 10(exp 5) km from the nucleus. Gringauz and Verigin (1991) presented the 'cometopause' as a permanent feature of the solar wind - Halley type comet interaction at about 1 UA from the Sun. This permanent boundary presumably separates an upstream region dominated by the solar wind from the downstream region where heavy cometary ions dominate. We present here the analysis of the results of the Giotto positive ion cluster composition analyzer - Reme plasma analyzer (PICCA-RPA2) ion mass spectrometer and electron electrostatic analyzer - Reme plasma analyzer (EESA-RPA1) electron spectrometer data, which clearly show that there is no such boundary at comet Halley.

  18. Distant Comets in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Meech, Karen J.

    2000-01-01

    The main goal of this project is to physically characterize the small outer solar system bodies. An understanding of the dynamics and physical properties of the outer solar system small bodies is currently one of planetary science's highest priorities. The measurement of the size distributions of these bodies will help constrain the early mass of the outer solar system as well as lead to an understanding of the collisional and accretional processes. A study of the physical properties of the small outer solar system bodies in comparison with comets in the inner solar system and in the Kuiper Belt will give us information about the nebular volatile distribution and small body surface processing. We will increase the database of comet nucleus sizes making it statistically meaningful (for both Short-Period and Centaur comets) to compare with those of the Trans-Neptunian Objects. In addition, we are proposing to do active ground-based observations in preparation for several upcoming space missions.

  19. Characterization of Continuum Coma features in Comets

    NASA Astrophysics Data System (ADS)

    Mueller, Beatrice E. A.; Samarasinha, Nalin H.; Hergenrother, Carl W.

    2016-10-01

    We will present the results of an analysis of continuum coma features of comets belonging to different dynamical classes at geocentric distances less than 1.5 AU. Our analysis focusses on groundbased visible observations of over a dozen comets. The position angles of the continuum features close to the nucleus, the curvatures, and extents of radial features will be determined, and the dynamics of dust grains will be investigated. We will also use the change in position angles (if relevant) to place constraints on the periodicity of the repeatability of the features. The prevalence of the features in the sunward direction compared to other orientations will be investigated. We will further compare continuum features with CN features when available. This investigation will eventually lead to the discrimination between hemispherical and localized outgassing for the sunward continuum features seen in comets.We acknowledge support from the NASA SSW and PAST programs.

  20. Organic Molecules in Comet C/2012 F6 (Lemmon)

    NASA Astrophysics Data System (ADS)

    Chuang, Y.-L.; Kuan, Y.-J.; Cordiner, M. A.; Charnley, S. B.

    2015-12-01

    Results obtained from ALMA observations of Comet C/2012 F6 (Lemmon) are presented. The 265-GHz continuum peak is uncovered to be offset spatially from spectral peaks, probably due to contamination from dust-tail emission. An isovelocity pattern typical to a rotating solid-body plane is apparent in the moment-1 HCN map. HNCO, cyclopropenylidene and vinyl cyanide are tentatively detected. The spatial distribution of HNCO appears to be localized and inhomogeneous in the cometary nucleus if HNCO is a primary species. Methanol gas is not only concentrated on the cometary nucleus but also extended to the north. c-C3H2 is likely associated with the cometary nucleus and C2H3CN, with the dust tail. The mighty ALMA certainly turns every ordinary comet into a Hale-Bopp, the brightest comet of the 20th century.

  1. Lyman-alpha observations of Comet West /1975n/

    NASA Technical Reports Server (NTRS)

    Opal, C. B.; Carruthers, G. R.

    1977-01-01

    The rate of hydrogen production of Comet West is studied through rocket observation of solar Lyman-alpha radiation resonantly scattered by the escaping hydrogen atoms. Two sets of Lyman-alpha exposure sequences are used to obtain computer-smoothed brightness contour (isophote) maps covering a density range of 100:1. A simple radial outflow model is applied to the contour maps to determine the rate of hydrogen production (3.2 by 10 to the 30th power atoms/sec.) Discrepancies between the observed shape of the outer isophotes and predicted models may be explained by optical depth effects, or by the presence of small pieces of the comet's nucleus distributed along the orbit. Hydrogen, carbon, and oxygen production for Comet West and Comet Kohoutek are compared; differences may be accounted for by variations in the composition or evolution of the two comets.

  2. Comets: Gas in the Inner Coma

    NASA Astrophysics Data System (ADS)

    Ford, Holland

    2003-07-01

    Our target of opportunity program aims at understanding the nucleus-coma interface in comets. Imaging of the near-nucleus region, from both the in situ spacecraft missions to comet Halley in 1986, and more recently with the WFPC2 Planetary Camera, has revealed the structure and evolution of the dust jets associated with active areas on the surface of the nucleus. These dust jets are thought to be driven by the vaporization of the volatiles trapped in the cometary ice. However, the total source inventory of the gaseous component of the coma is not known as there has not been to date direct imaging of a "parent" molecule vaporized directly from the nucleus. In the spectral range of the SBC, the dominant emissions are the Fourth Positive band system of CO and the resonance transitions of its dissociation products carbon and oxygen {oxygen is also produced by the photodissociation of water}. The latter, as dissociation products, are rather extended but the CO emission is concentrated close to the nucleus {McPhate et al. 1999}. Thus, imaging with the SBC using the BaF_2 filter to remove the OI 1304 A will provide a measure of the gas flow leaving the comet's nucleus. In the event of outbursts {often associated with the rotation of active areas into the sunlit hemisphere}, sequential images can provide a direct measure of the gas outflow velocity. The possible presence of a distributed source of CO {such as the purported "CHON" grains invoked to explain the distribution recorded by the Giotto neutral mass spectrometer at Halley} will also be determined. We note that while CO can be detected spectroscopically from the ground at both infrared and millimeter wavelengths, both of these require very high spectral resolving power and the techniques are not suitable for direct imaging of the CO.

  3. Detection of CN emission in Comet P/Halley

    NASA Technical Reports Server (NTRS)

    Wyckoff, S.; Wehinger, P. A.; Belton, M. J. S.

    1986-01-01

    The first detection of the CN 3883 A band in emission in Comet P/Halley (1982) in February 1985 is reported. The detection technique, which is described, used blind offsets from secondary reference stars to the comet's predicted position, and involved plotting the comet's track on an enlargement of an appropriate section of the Palomar Sky Survey E plates. The strong solar continuum in the resulting cometary spectrum demonstrates the dominance of the dust reflection spectrum and the reflection from the nucleus. The 3883 A feature is identified with the v = 0 band sequence of the blue system of CN; no other significant features were identified in the spectrum.

  4. The neutral coma of comets: A review

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1976-01-01

    The hypothesis that water snow controls the vaporization of the nucleus of some comets seems verified from the general order of magnitude of the size of their nucleus and of their nuclear albedo; the largest observed production rates are H and OH which both seem to originate from the photodissociation of H2O, as also confirmed by the scale length of the invisible parent molecule producing OH. However, comet Encke is not uniformly covered by water snow, as it produces only one tenth of the expected vaporization. Early results on comet Kohoutek suggest that the conclusions could be slightly different for some of the new comets in Oort's sense. If the far ultraviolet observations confirm the early assessments of the production rates of C, O and H, then at least another major constituent competing with water has not yet been detected. Such a major constituent is suggested by the ratios C/O = 0.24 and H/O = 2.5.

  5. Comet C/2011 J2 (LINEAR): Photometry and stellar transit

    NASA Astrophysics Data System (ADS)

    Ivanova, Oleksandra; Borysenko, Serhii; Zubko, Evgenij; Krišandová, Zuzana Seman; Svoreň, Ján; Baransky, Aleksandr; Gabdeev, Maksim

    2016-03-01

    We present results of two-year photometric monitoring of Comet C/2011 J2 (LINEAR) that spans the time period from February 2013 through December 2014, before and after perihelion passage. The observations were conducted with broadband R filter. Analysis of observations of Comet C/2011 J2 (LINEAR) allows estimating the nucleus radius as function of geometric albedo and phase-darkening coefficient. Furthermore, our observations showed split of the comet. Fragment (B) additional to the primary C/2011 J2 nucleus was unambiguously detected; relative velocity is estimated to be ~0.17 ″/day. We derive the Afρ parameter and estimate the dust production rate in Comet C/2011 J2 (LINEAR) over the entire run of observations. We found a noticeable increase in Afρ parameter between September 18, 2014 and November 5, 2014, epoch when the nucleus presumably got split. On September 28, 2014, we observed a transit of the 16-magnitude star (USNO-A2 1275-18299027) near nucleus of the Comet C/2011 J2 (LINEAR). We retrieve the optical depth of the coma τ=0.034±0.1. The filling factor f that corresponds to such optical depth is in good quantitative agreement with the value that can be derived from the Afρ parameter under reasonable assumption on geometric albedo of cometary dust.

  6. Comet C/2011 J2 (LINEAR): Photometry and Stellar transit

    NASA Astrophysics Data System (ADS)

    Ivanova, Oleksandra; Baransky, Alexandr; Gabdeev, Maksim; Borysenko, Serhii; Zubko, Evgenij; Seman Krišandová, Zuzana; Svoreň, Jan

    2016-07-01

    We present results of two-year photometric monitoring of Comet C/2011 J2 (LINEAR) that spans the time period from February 2013 through December 2014, before and after perihelion passage. The observations were conducted with broadband R filter. Analysis of observations of Comet C/2011 J2 (LINEAR) allows estimating the nucleus radius as function of geometric albedo and phase-darkening coefficient. Furthermore, our observations showed split of the comet. Fragment (B) additional to the primary C/2011 J2 nucleus was unambiguously detected; relative velocity is estimated to be ˜~ 0.17 arcsec/day. We derive the Afρ parameter and estimate the dust production rate in Comet C/2011 J2 (LINEAR) over the entire run of observations. We found a noticeable increase in Afρ parameter between September 18, 2014 and November 5, 2014, epoch when the nucleus presumably got split. On September 28, 2014, we observed a transit of the 16-magnitude star (USNO-A2 1275-18299027) near nucleus of the Comet C/2011 J2 (LINEAR). We retrieve the optical depth of the coma τ = 0.034 ±± 0.1. The filling factor f that corresponds to such optical depth is in good quantitative agreement with the value that can be derived from the Afρ parameter under reasonable assumption on geometric albedo of cometary dust.

  7. Determination of orbits of comets: P/Kearns-Kwee, P/Gunn, including nongravitational effects in the comets' motion

    NASA Technical Reports Server (NTRS)

    Todorovic-Juchniewicz, Bozenna; Sitarski, Grzegorz

    1992-01-01

    To improve the orbits, all the positional observations of the comets were collected. The observations were selected and weighted according to objective mathematical criteria and the mean residuals a priori were calculated for both comets. We took into account nongravitational effects in the comets' motion using Marsden's method applied in two ways: either determining the three constant parameters, A(sub 1), A(sub 2), A(sub 3) or the four parameters A, eta, I, phi connected with the rotating nucleus of the comet. To link successfully all the observations, we had to assume for both comets that A(t) = A(sub O)exp(-B x t) where B was an additional nongravitational parameter.

  8. CLATHRATE HYDRATES FORMATION IN SHORT-PERIOD COMETS

    SciTech Connect

    Marboeuf, Ulysse; Mousis, Olivier; Petit, Jean-Marc; Schmitt, Bernard

    2010-01-01

    The initial composition of current models of cometary nuclei is only based on two forms of ice: crystalline ice for long-period comets and amorphous ice for short-period comets. A third form of ice, i.e., clathrate hydrate, could exist within the short-period cometary nuclei, but the area of formation of this crystalline structure in these objects has never been studied. Here, we show that the thermodynamic conditions in the interior of short-period comets allow the existence of clathrate hydrates in Halley-type comets. We show that their existence is viable in the Jupiter family comets only when the equilibrium pressure of CO clathrate hydrate is at least 1 order of magnitude lower than the usually assumed theoretical value. We calculate that the amount of volatiles that could be trapped in the clathrate hydrate layer may be orders of magnitude greater than the daily amount of gas released at the surface of the nucleus at perihelion. The formation and the destruction of the clathrate hydrate cages could then explain the diversity of composition of volatiles observed in comets, as well as some pre-perihelion outbursts. We finally show that the potential clathrate hydrate layer in comet 67P/Churyumov-Gerasimenko would, unfortunately, be deep inside the nucleus, out of reach of the Rosetta lander. However, such a clathrate hydrate layer would show up by the gas composition of the coma.

  9. Cometary nucleus and active regions

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1984-01-01

    On the basis of the icy conglomerate model of cometary nuclei, various observations demonstrate the spotted nature of many or most nuclei, i.e., regions of unusual activity, either high or low. Rotation periods, spin axes and even precession of the axes are determined. The observational evidence for variations in activity over the surfaces of cometary nuclei are listed and discussed. On June 11 the comet IRAS-ARAKI-ALCOCK approached the Earth to a distance of 0.031 AU, the nearest since C/Lexell, 1770 I, providing a unique opportunity for near-nucleus observations. Preliminary analysis of these images establishes the spin axis of the nucleus, with an oblioquity to the orbit plane of approximately 50 deg, and a lag angle of sublimation approximately 35 deg from the solar meridian on the nucleus. Asymmetries of the inner coma suggests a crazy-quilt distribution of ices with differing volatility over the surface of the nucleus. The observations of Comet P/Homes 1892 III, exhibiting two 8-10 magnitude bursts, are carefully analyzed. The grazing encounter produced, besides the first great burst, an active area on the nucleus, which was rotating retrograde with a period of 16.3hr and inclination nearly 180 deg. After the first burst the total magnitude fell less than two magnitudes from November 7 to November 30 (barely naked eye) while the nuclear region remained diffuse or complex, rarely if ever showing a stellar appearance. The fading was much more rapid after the second burst. The grazing encounter distributed a volume of large chunks in the neighborhood of the nucleus, maintaining activity for weeks.

  10. The comet Halley diamagnetic cavity boundary

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.; Lindgren, C. J.; Puhl, P.

    1995-01-01

    The magnetometer onboard the Giotto spacecraft observed a diamagnetic cavity surrounding the nucleus of comet Halley. A narrow transition layer with enhanced plasma density is formed at this shock-like boundary as a flux of cometary ions flowing into it from within the cavity is removed by electron-ion recombination. We examine the structure of this layer using both a two-dimensional magnetohydrodynamical model and a one- dimensional hybrid code.

  11. Acellular comet assay: a tool for assessing variables influencing the alkaline comet assay.

    PubMed

    Kennedy, Erin K; McNamee, James P; Prud'homme Lalonde, Louise; Jones, Trevor; Wilkinson, Diana

    2012-01-01

    In this study, an acellular modification to the alkaline comet assay to further evaluate key variables within the assay that may influence the outcome of genotoxicity studies is described. This acellular comet assay can detect differences of 0.2 Gy of (60)Co gamma-ray radiation between 0 and 1 Gy and differences of 1 Gy between 0 and 8 Gy; thus, this assay is applicable for a wide range of DNA damage levels. It is also shown that DNA damage from different radiation energies was not significantly different from (60)Co gamma-ray. This assay displayed a statistical increase in DNA damage due to uncontrolled exposure to natural light; however, the slope of the dose-response curve for light-exposed samples was similar to that for samples protected from light. A comparison of the alkaline comet assay with the acellular comet assay allowed for the intrinsic repair capacity of the alkaline comet assay to be quantified.

  12. Water and dust production rates in comet P/Halley derived from ultraviolet and optical observations

    NASA Technical Reports Server (NTRS)

    Festou, Michel C.

    1992-01-01

    We evaluate whether the activity of comet P/Halley is due solely to the presence of discrete active areas. We preliminarily conclude that the dark areas of the nucleus contribute to the formation of the coma.

  13. Comet Bennett 1969i

    NASA Astrophysics Data System (ADS)

    Hendrie, M. J.

    1999-02-01

    On 1969 December 28, our member Jack C. Bennett in Pretoria, South Africa, discovered a small, diffuse comet of 8.5 magnitude. The discovery was made during a regular programme of sweeping for new comets he had been carrying out over several years. The comet was in Tucana, declination 65 deg south. Precise positions were soon obtained at the Perth Observatory, Western Australia, by Harris, Candy and Gans. The orbit computed by M. P. Candy, a former Director of the Comet Section, showed the comet to have a perihelion distance of about 0.5AU and an inclination close to 90 deg. Our Comet Section Director and Circulars Editor S. W. Milbourn noted in BAAC 515 that comet Bennett was 'likely to become a bright naked-eye object as it moves quickly north at the end of March.' We were not to be disappointed.

  14. Early close image of comet Borrelly

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The solid nucleus of comet Borrelly is barely resolved in this image, enhanced to reveal the highly collimated dust extending towards the bottom left corner of the picture. The jet is attributed to dust carried outward by gas expanding outwards into a cone about 20 degrees across. The surface of Borrelly is composed of a mixture of dust and water ice, and as the comet approaches the Sun the water ice sublimes. The gases produced inside the comet by the Sun's heating race away from the surface into the vacuum of space, carrying the dust away with them. The jet was also seen in images acquired around 9 hours earlier. This suggests that the emission is coming from close to the rotation axis at the comet's constantly illuminated pole. The Sun is at the bottom of the image.

    Deep Space 1 completed its primary mission testing ion propulsion and 11 other advanced, high-risk technologies in September 1999. NASA extended the mission, taking advantage of the ion propulsion and other systems to undertake this chancy but exciting, and ultimately successful, encounter with the comet. More information can be found on the Deep Space 1 home page at http://nmp.jpl.nasa.gov/ds1/ .

    Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, D.C. The California Institute of Technology manages JPL for NASA.

  15. Isotope measurements of a comet by the Ptolemy instrument on Rosetta

    NASA Astrophysics Data System (ADS)

    Franchi, Ian; Morse, Andrew; Andrews, Dan; Sheridan, Simon; Barber, Simeon; Leese, Mark; Morgan, Geraint; Wright, Ian; Pillinger, Colin

    Remote observations of comets (spacecraft fly-bys and telescopes) reveal a vast reservoir of volatile organic species, along with the water ice, other volatiles and silicate dust fractions that make up these very primitive bodies. Understanding the nature of cometary materials, in order to unravel their origin and history, is particularly challenging. Remote observation is only possible for the coma, the constituents of which are likely fractionated and modified compared to the primordial material within the comet. A number of opportunities exist for very detailed study of cometary material with ground-based laboratory instrumentation. How-ever, dissipation of energy during capture (e.g. NASA Stardust samples) or atmospheric entry (stratospheric interplanetary dust particles) has the potential to extensively modify, or even obliterate, detailed information about the nature and origin of the more volatile, biologically important organic species present. Collecting and returning pristine material from the surface of a comet remains very challenging and therefore direct study of the volatile portions can only readily be performed on the comet itself by remote instruments. The ESA Rosetta mission, that will make long-term measurements of a comet as it approaches the sun from 3.5 AU to 1.4 AU over a period of at least six months, includes the Philae lander as well as the orbiter spacecraft. Ptolemy, on board Philae, is a GC-MS instrument designed for the analysis of cometary volatiles, organic materials and silicates. The objectives of Ptolemy are to provide a complete description of the nature and distribution of light elements (H, C, N and O) present in the nucleus of the comet, as well as determining their stable isotopic compositions. Ptolemy also aims to provide ground-truth measurements of those volatiles that are subsequently detected further out from the nucleus in the coma. Samples from the surface and sub-surface, collected by the lander drilling system (SD2

  16. High-resolution infrared spectroscopic measurements of Comet 2P/Encke: Unusual organic composition and low rotational temperatures

    NASA Astrophysics Data System (ADS)

    Radeva, Yana L.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; DiSanti, Michael A.; A'Hearn, Michael F.; Dello Russo, Neil

    2013-03-01

    We present high-resolution infrared spectroscopic measurements of the ecliptic Comet 2P/Encke, observed on 4-6 November 2003 during its close approach to the Earth, using the Near Infrared Echelle Spectrograph on the Keck II telescope. We present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO. Comet 2P/Encke is a dynamical end-member among comets because of its short period of 3.3 years. Relative to “organics-normal” comets, we determined that 2P/Encke is depleted in HCN, H2CO, C2H2, C2H6, CH4 and CO, but it is enriched in CH3OH. We compared mixing ratios of these organic species measured on separate dates, and we see no evidence of macroscopic chemical heterogeneity in the nucleus of 2P/Encke, however, this conclusion is limited by sparse temporal sampling. The depleted abundances of most measured species suggest that 2P/Encke may have formed closer to the young Sun, before its insertion to the Kuiper belt, compared with “organics-normal” comets - as was previously suggested for other depleted comets (e.g. C/1999 S4 (LINEAR)). We measured very low rotational temperatures of 20-30 K for H2O, CH3OH and HCN in the near nucleus region of 2P/Encke, which correlate with one of the lowest cometary gas production rates (∼2.6 × 1027 molecules s-1) measured thus far in the infrared. This suggests that we are seeing the effects of more efficient radiative cooling, insufficient collisional excitation, and/or inefficient heating by fast H-atoms (and icy grains) in the observed region of the coma. Its extremely short orbital period, very low gas production rate, and classification as an ecliptic comet, make 2P/Encke an important addition to our growing database, and contribute significantly to the establishment of a chemical taxonomy of comets.

  17. High-Resolution Infrared Spectroscopic Measurements of Comet 2PlEncke: Unusual Organic Composition and Low Rotational Temperatures

    NASA Technical Reports Server (NTRS)

    Radeva, Yana L.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; DiSanti, Michael A.; A'Hearn, Michael F.; Dello Russo, Neil

    2013-01-01

    We present high-resolution infrared spectroscopic measurements of the ecliptic comet 2P/Encke, observed on 4-6 Nov. 2003 during its close approach to the Earth, using the Near Infrared Echelle Spectrograph on the Keck II telescope. We present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO. Comet 2P/Encke is a dynamical end-member among comets because of its short period of 3.3 years. Relative to "organics-normal" comets, we determined that 2PlEncke is depleted in HCN, H2CO, C2H2, C2H6, CH4 and CO, but it is enriched in CH3OH. We compared mixing ratios of these organic species measured on separate dates, and we see no evidence of macroscopic chemical heterogeneity in the nucleus of 2P/Encke, however, this conclusion is limited by sparse temporal sampling. The depleted abundances of most measured species suggest that 2P/Encke may have formed closer to the young Sun, before its insertion to the Kuiper belt, compared with "organics-normal" comets - as was previously suggested for other depleted comets (e.g. C/1999 S4 (LINEAR)). We measured very low rotational temperatures of 20 - 30 K for H2O, CH3OH and HCN in the near nucleus region of 2P/Encke, which correlate with one of the lowest cometary gas production rates (approx. 2.6 x 10(exp 27) molecules/s) measured thus far in the infrared. This suggests that we are seeing the effects of more efficient radiative cooling, insufficient collisional excitation, and/or inefficient heating by fast H-atoms (and icy grains) in the observed region of the coma. Its extremely short orbital period, very low gas production rate, and classification as an ecliptic comet, make 2PlEncke an important addition to our growing database, and contribute significantly to the establishment of a chemical taxonomy of comets.

  18. Hydrogen cyanide polymers, comets and the origin of life.

    PubMed

    Matthews, Clifford N; Minard, Robert D

    2006-01-01

    Hydrogen cyanide polymers--heterogeneous solids ranging in colour from yellow to orange to brown to black--could be major components of the dark matter observed on many bodies of the outer solar system including asteroids, moons, planets and, especially, comets. The presence on cometary nuclei of frozen volatiles such as methane, ammonia and water subjected to high energy sources makes them attractive sites for the ready formation and condensed-phase polymerization of hydrogen cyanide. This could account for the dark crust observed on Comet Halley in 1986 by the Vega and Giotto missions. Dust emanating from its nucleus would arise partly from HCN polymers as suggested by the Giotto detection of free hydrogen cyanide, CN radicals, solid particles consisting only of H, C and N, or only of H, C, N, O, and nitrogen-containing organic compounds. Further evidence for cometary HCN polymers could be expected from in situ analysis of the ejected material from Comet Tempel 1 after collision with the impactor probe from the two-stage Deep Impact mission on July 4, 2005. Even more revealing will be actual samples of dust collected from the coma of Comet Wild 2 by the Stardust mission, due to return to Earth in January 2006 for analyses which we have predicted will detect these polymers and related compounds. In situ results have already shown that nitriles and polymers of hydrogen cyanide are probable components of the cometary dust that struck the Cometary and Interstellar Dust Analyzer of the Stardust spacecraft as it approached Comet Wild 2 on January 2, 2004. Preliminary evidence (January 2005) obtained by the Huygens probe of the ongoing Cassini-Huygens mission to Saturn and its satellites indicates the presence of nitrogen-containing organic compounds in the refractory organic cores of the aerosols that give rise to the orange haze high in the atmosphere of Titan, Saturn's largest moon. Our continuing investigations suggest that HCN polymers are basically of two types

  19. Hydrogen cyanide polymers, comets and the origin of life.

    PubMed

    Matthews, Clifford N; Minard, Robert D

    2006-01-01

    Hydrogen cyanide polymers--heterogeneous solids ranging in colour from yellow to orange to brown to black--could be major components of the dark matter observed on many bodies of the outer solar system including asteroids, moons, planets and, especially, comets. The presence on cometary nuclei of frozen volatiles such as methane, ammonia and water subjected to high energy sources makes them attractive sites for the ready formation and condensed-phase polymerization of hydrogen cyanide. This could account for the dark crust observed on Comet Halley in 1986 by the Vega and Giotto missions. Dust emanating from its nucleus would arise partly from HCN polymers as suggested by the Giotto detection of free hydrogen cyanide, CN radicals, solid particles consisting only of H, C and N, or only of H, C, N, O, and nitrogen-containing organic compounds. Further evidence for cometary HCN polymers could be expected from in situ analysis of the ejected material from Comet Tempel 1 after collision with the impactor probe from the two-stage Deep Impact mission on July 4, 2005. Even more revealing will be actual samples of dust collected from the coma of Comet Wild 2 by the Stardust mission, due to return to Earth in January 2006 for analyses which we have predicted will detect these polymers and related compounds. In situ results have already shown that nitriles and polymers of hydrogen cyanide are probable components of the cometary dust that struck the Cometary and Interstellar Dust Analyzer of the Stardust spacecraft as it approached Comet Wild 2 on January 2, 2004. Preliminary evidence (January 2005) obtained by the Huygens probe of the ongoing Cassini-Huygens mission to Saturn and its satellites indicates the presence of nitrogen-containing organic compounds in the refractory organic cores of the aerosols that give rise to the orange haze high in the atmosphere of Titan, Saturn's largest moon. Our continuing investigations suggest that HCN polymers are basically of two types

  20. WILL COMET ISON (C/2012 S1) SURVIVE PERIHELION?

    SciTech Connect

    Knight, Matthew M.; Walsh, Kevin J.

    2013-10-10

    On 2013 November 28 Comet ISON (C/2012 S1) will pass by the Sun with a perihelion distance of 2.7 solar radii. Understanding the possible outcomes for the comet's response to such a close passage by the Sun is important for planning observational campaigns and for inferring ISON's physical properties. We present new numerical simulations and interpret them in context with the historical track record of comet disruptions and of sungrazing comet behavior. Historical data suggest that sizes below ∼200 m are susceptible to destruction by sublimation driven mass loss, while we find that for ISON's perihelion distance, densities lower than 0.1 g cm{sup –3} are required to tidally disrupt a retrograde or non-spinning body. Such low densities are substantially below the range of the best-determined comet nucleus densities, though dynamically new comets such as ISON have few measurements of physical properties. Disruption may occur for prograde rotation at densities up to 0.7 g cm{sup –3}, with the chances of disruption increasing for lower density, faster prograde rotation, and increasing elongation of the nucleus. Given current constraints on ISON's nucleus properties and the typically determined values for these properties among all comets, we find tidal disruption to be unlikely unless other factors (e.g., spin-up via torquing) affect ISON substantially. Whether or not disruption occurs, the largest remnant must be big enough to survive subsequent mass loss due to sublimation in order for ISON to remain a viable comet well after perihelion.

  1. Stardust: Catching a Comet and Bringing it Home

    NASA Technical Reports Server (NTRS)

    Brownlee, Donald E.

    2007-01-01

    The NASA STARDUST mission collected thousands of particles from Comet Wild 2 that are now being studied by two hundred scientists around the world. The spacecraft captured the samples during a close flyby of the comet in 2004 and returned them to Earth with a dramatic entry into the atmosphere early in 2006. The precious cargo of comet dust is being studied to determine new information about the origin of the Sun and planets. The comet formed at the edge of the solar system, beyond the orbit of Neptune, and is a sample of the material from which the solar system was formed. One of the most dramatic early findings from the mission was that a comet that formed in the coldest place in the solar system contained minerals that formed in the hottest place in the solar system. The comet samples are telling stories of fire and ice and they providing fascinating and unexpected information about our origins.

  2. EXTINCTION IN THE COMA OF COMET 17P/HOLMES

    SciTech Connect

    Lacerda, Pedro; Jewitt, David

    2012-11-20

    On 2007 October 29, the outbursting comet 17P/Holmes passed within 0.''79 of a background star. We recorded the event using optical, narrowband photometry and detect a 3%-4% dip in stellar brightness bracketing the time of closest approach to the comet nucleus. The detected dimming implies an optical depth {tau} Almost-Equal-To 0.04 at 1.''5 from the nucleus and an optical depth toward the nucleus center {tau}{sub n} < 13.3. At the time of our observations, the coma was optically thick only within {rho} {approx}< 0.''01 from the nucleus. By combining the measured extinction and the scattered light from the coma, we estimate a dust red albedo p{sub d} = 0.006 {+-} 0.002 at {alpha} = 16 Degree-Sign phase angle. Our measurements place the most stringent constraints on the extinction optical depth of any cometary coma.

  3. Comet Observations with SIRTF

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2003-01-01

    Comet observations are included in the programs of the Guaranteed Time Observers (GTO) on the Space Infrared Telescope Facility (SIRTF), scheduled to be in space and operational for five years beginning in late 2003. SIRTF is a cryogenic telescope with three basic instruments for imaging, photometry and spectroscopy from 3.6 m to 160 m. All of these capabilities will be used in studies of comets. The intent is to study the infrared radiation (emission) from comets (and dust tails, where relevant) in all stages of evolution, starting with Kuiper Belt objects and Centaurs (thermal emission at 24,70, and 160 m to derive dimensions and albedos). Active comets will be observed spectroscopically and in deep thermal images. Several known or suspected extinct comets will be observed spectroscopically (5-37 m) for information on their surface compositions. There are opportunities for Guest Observers (GO) to propose additional comet work. .

  4. Special Report: Chemistry of Comets.

    ERIC Educational Resources Information Center

    A'Hearn, Michael F.

    1984-01-01

    Discusses the chemistry of comets. How comets provide clues to the birth of the solar system, photolytic reactions on comets involving water, chemical modeling, nuclear chemistry, and research findings are among the areas considered. (JN)

  5. I Spy a Comet!

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows comet Tempel 1 as seen through the clear filter of the medium resolution imager camera on Deep Impact. It was taken on June 25, 2005, when the spacecraft was 8,007,845.1 kilometers (4,976,075 miles) away from the comet. Ten images were combined to create this picture, and a logarithmic stretch was applied to enhance the coma of the comet.

  6. Assessment by Ames test and comet assay of toxicity potential of polymer used to develop field-capable rapid-detection device to analyze environmental samples

    NASA Astrophysics Data System (ADS)

    Hebert, Amanda; Bishop, Michelle; Bhattacharyya, Dhiman; Gleason, Karen; Torosian, Stephen

    2015-08-01

    There is need for devices that decrease detection time of food-borne pathogens from days to real-time. In this study, a rapid-detection device is being developed and assessed for potential cytotoxicity. The device is comprised of melt-spun polypropylene coupons coated via oxidative chemical vapor deposition (oCVD) with 3,4-Ethylenedioxythiophene (EDOT), for conductivity and 3-Thiopheneethanol (3TE), allowing antibody attachment. The Ames test and comet assay have been used in this study to examine the toxicity potentials of EDOT, 3TE, and polymerized EDOT-co-3TE. For this study, Salmonella typhimurium strain TA1535 was used to assess the mutagenic potential of EDOT, 3TE and the copolymer. The average mutagenic potential of EDOT, 3TE and copolymer was calculated to be 0.86, 0.56, and 0.92, respectively. For mutagenic potential, on a scale from 0 to 1, close to 1 indicates low potential for toxicity, whereas a value of 0 indicates a high potential for toxicity. The comet assay is a single-cell gel electrophoresis technique that is widely used for this purpose. This assay measures toxicity based on the area or intensity of the comet-like shape that DNA fragments produce when DNA damage has occurred. Three cell lines were assessed; FRhK-4, BHK-21, and Vero cells. After averaging the results of all three strains, the tail intensity of the copolymer was 8.8 % and tail moment was 3.0, and is most similar to the untreated control, with average tail intensity of 5.7 % and tail moment of 1.7. The assays conducted in this study provide evidence that the copolymer is non-toxic to humans.

  7. Comet Dust After Deep Impact

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Harker, David E.; Woodward, Charles E.

    2006-01-01

    a more diverse mineralogy. The lower spatial resolution, high sensitivity Spitzer IRS data reveal resonances of refractory minerals (those seen by GEMINI+Michelle plus ortho-pyroxene)) as well resonances that can be attributed to phillosilicates (layer lattice silicates such as Montmorillonite) (Lisse et al. 2006). Pre- and post-impact, micron to submicron grains were deciphered to be present in the coma by the modeling the high spatial resolution images to account for nucleus plus inner coma fluxes (Wooden et al. 2005, 2006; Harker et al. 2005, 2006a). Note also that crystalline silicates were released from the interior of 73P-B/SW-3 as it disintegrated (Harker et al. 2006b). From the Deep Impact and the disintegration of 73P-B, we are led to ask the questians: Why is the mineralogy of the dust released from a volatile-rich pocket beneath the surface different from the dust that is released from the nominally active areas? Could the most volatile pockets be exhausted quickly? Why would crystalline silicates be associated with more volatile materials? Perhaps the structure of the comet is so inhomogeneous, e.g., the layered pile mode2 of the nucleus (Belton et al. 2006), that a reservoir of crystalline silicate and submicron grains just happens to not be released by the nominally active areas of comet 9P? Perhaps comets lose matter through their mantles from below their surfaces, thus preserving ancient topographic structures and radiation damaged silicates and carbon? We will discuss and ponder different scenarios. We will discuss future directions for coordinated observations of JF comets.

  8. Infrared emission from comets.

    PubMed

    Krishna-Swamy, K S; Sandford, S A; Allamandola, L J; Witteborn, F C; Bregman, J D

    1989-05-01

    A brief discussion of the infrared observations from 4 to 20 micrometers of seven comets is presented. The observed infrared emission from comets depends primarily on their heliocentric distance. A model based on grain populations composed of a mixture of silicate and amorphous carbon particles in the mass ratio of about 40 to 1, with a power-law size distribution similar to that inferred for comet Halley, is applied to the observations. The model provides a good match to the observed heliocentric variation of both the 10 micrometers feature and the overall thermal emission from comets West and Halley. Matches to the observations of comet IRAS-Araki-Alcock and the antitail of comet Kohoutek require slightly larger grains. While the model does not match the exact profile and position of the 3.4 micrometers feature discovered in comet Halley, it does produce a qualitative fit to the observed variation of the feature's strength as a function of heliocentric distance. The calculations predict that the continuum under the 3.4 micrometers feature is due primarily to thermal emission from the comet dust when the comet is close to the Sun and to scattered solar radiation at large heliocentric distances, as is observed. A brief discussion of the determination of cometary grain temperatures from the observed infrared emission is presented. It is found that the observed shape of the emission curve from about 4 to 8 micrometers provides the best spectral region for estimating the cometary grain temperature distribution.

  9. Comet Borelly and the Two Kinds of Cometary Sub-Nuclei

    NASA Astrophysics Data System (ADS)

    Illés-Almár, E.

    On the basis of four independent observational facts we have suggested earlier that the sub-nuclei - composing the nucleus of comets - belong to two different populations. One of them is much more fluffy and loose that the other. The active surface of a comet, shooting out the jets, represent those parts of a cometary nucleus, where the loose sub-nuclei are exposed to the surface. According to recent Deep Space 1 observations the sources of jets of Comet Borelly are located asymmetrically, which supports our hypothesis as well.

  10. Dust emission from comets at large heliocentric distances. I - The case of comet Bowell /1980b/

    NASA Technical Reports Server (NTRS)

    Houpis, H. L. F.; Mendis, D. A.

    1981-01-01

    Alternative processes of dust emission from comets at large heliocentric distances are considered, in order to explain the dust coma observed in comet Bowell (1980b) at a heliocentric distance as large as 7.17 AU. It is shown that the electrostatic blow-off of dust from a charged, H2O-dominated nucleus having a layer of loose, fine dust may be the formation process of the dust coma, with the coma size expected from the process being comparable to the observed value and the dust grain size being equal to or less than 0.4 microns in size. The upper limit for the total mass in the coma is 3.9 x 10 to the 8th g, and the spatial extension less than 10,000 km. The observed activity may alternatively be due to dust entrainment by the sublimating gas from a CO2-dominated nucleus.

  11. Far-UV phase dependence and surface characteristics of comet 67P/Churyumov-Gerasimenko as observed with Rosetta Alice

    NASA Astrophysics Data System (ADS)

    Feaga, L. M.; Protopapa, S.; Schindhelm, E.; Stern, S. A.; A'Hearn, M. F.; Bertaux, J.-L.; Feldman, P. D.; Parker, J. Wm.; Steffl, A. J.; Weaver, H. A.

    2015-11-01

    Aims: The Alice far-ultraviolet (FUV) spectrograph onboard Rosetta has, for the first time, imaged the surface of a comet, 67P/Churyumov-Gerasimenko (67P), in the FUV. With spatially resolved data, the nucleus properties are characterized in the FUV, including phase dependence, albedo, and spectral slope. Regional measurements across the nucleus are compared to discern any compositional variations. Methods: Hapke theory was utilized to model the phase dependence of the material on the surface of 67P. The phase dependence of 67P was derived from a subset of data acquired at various phase angles in November 2014, within 50 km of the comet such that the nucleus was spatially resolved. The derived photometric correction was then applied to a different subset of spatially resolved data sampling several distinct geographical regions on the nucleus acquired in August-November 2014 under similar viewing geometries. Results: In the FUV, the surface of 67P is dark, blue sloped, has an average geometric albedo of 0.054±0.008 at 1475 Å near the center of the Alice bandpass, and is mostly uniform from region to region, with the exception of the Hatmehit region, which is slightly more reflective. These results are consistent with the suggestion made by the Rosetta OSIRIS and VIRTIS teams that the surface of 67P is covered with a homogeneous layer of material and that surface ice is not ubiquitous in large abundances. The modeled Hapke parameters, specifically the single scattering albedo (w) and the asymmetry factor (ζ), are determined to be 0.031 ± 0.003 and -0.530 ± 0.025 near the center of the Alice bandpass at 1475 Å. These parameters are consistent with measurements of other comet nuclei that have been observed by flyby missions in the visible and the near-infrared regimes.

  12. Searching for evidence for different activity drivers in long- and short-period comets from the WISE/NEOWISE data set

    NASA Astrophysics Data System (ADS)

    Kramer, E.; Fernandez, Y.; Bauer, J.; Stevenson, R.; Mainzer, A.; Grav, T.; Masiero, J.; Walker, R.; Lisse, C.; WISE Team

    2014-07-01

    Introduction: The Wide-field Infrared Survey Explorer (WISE) mission surveyed the sky in four infrared wavelength bands (3.4, 4.6, 12 and 22 μ m) between January 2010 and February 2011 [1,2]. During the mission, WISE serendipitously observed over 150 comets, including 21 newly discovered objects. About half of the comets observed by WISE displayed a significant dust tail in the 12 and 22 μ m (thermal emission) bands. The Figure below shows a sampling of six comets in the 22 μ m band, showing the range of activity levels and dust morphology present in the data. Since the observed objects are a mix of both long-period (LP) and short-period (SP) comets, differences in activity can be used to better understand the thermal processing that each of these populations has undergone. Approach: For the comets that displayed a significant dust tail, we have estimated the sizes and ages of the particles using dynamical models based on the Finson-Probstein method [3,4]. The main parameter in these models is the ratio of solar radiation pressure to solar gravity, called β. We have then compared these models to the data using a novel tail-fitting method that allows the best-fit model to be chosen analytically rather than subjectively. For comets that were observed multiple times by WISE, the particle properties were estimated separately, and then compared. Results: The ages of the dust tails seen vary in age from a few months to several years, with the average for both SP and LP comets being between 1--2 years. While many of the dust tails are comprised of grains emitted near perihelion, several comets exhibit tails that depart from this trend significantly. For both the SP and LP comets, the median β value was about 0.01, suggesting that the tail particles are on the order of tens of microns in size. Our preliminary analysis suggests that while the sizes and ages of the particles that comprise the dust tails of LP and SP comets are similar, the heliocentric distance at which

  13. Dust emission of Comet Halley at large heliocentric distances

    NASA Technical Reports Server (NTRS)

    Gruen, E.; Schwehm, G.; Massonne, L.; Fertig, J.; Graser, U.

    1985-01-01

    Comet Halley is currently approaching the inner solar system. Four spacecrafts (NASA's spacecraft, two Russian Vega probes and the Japanese MS-T5 spacecraft) have already been launched to encounter the comet in March 1986. Two additional Halley probes (the European Giotto spacecraft and another Japanese Planet-A probe) will be launched in mid-85 to join the armada. Observations of dust emissions from Halley's Comet are discussed. The evaporation of cometary ices causes the emission of particulates from the nucleus. These observations will be used to determine the fly-by strategy of the Giotto spacecraft by taking into account the distribution of dust in the vicinity of the nucleus and the associated hazard for the space mission.

  14. Colors of active regions on comet 67P

    NASA Astrophysics Data System (ADS)

    Oklay, N.; Vincent, J.-B.; Sierks, H.; Besse, S.; Fornasier, S.; Barucci, M. A.; Lara, L.; Scholten, F.; Preusker, F.; Lazzarin, M.; Pajola, M.; La Forgia, F.

    2015-10-01

    The OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) scientific imager (Keller et al. 2007) is successfully delivering images of comet 67P/Churyumov-Gerasimenko from its both wide angle camera (WAC) and narrow angle camera (NAC) since ESA's spacecraft Rosetta's arrival to the comet. Both cameras are equipped with filters covering the wavelength range of about 200 nm to 1000 nm. The comet nucleus is mapped with different combination of the filters in resolutions up to 15 cm/px. Besides the determination of the surface morphology in great details (Thomas et al. 2015), such high resolution images provided us a mean to unambiguously link some activity in the coma to a series of pits on the nucleus surface (Vincent et al. 2015).

  15. A search for frosts in Comet Bowell /1980b/

    NASA Technical Reports Server (NTRS)

    Campins, H.; Lebofsky, L. A.; Rieke, G. H.; Lebofsky, M. J.

    1982-01-01

    Infrared observations of Comet Bowell represent the first search for frost signatures in a comet beyond 2 AU from the sun. Broad- and narrowband photometry has been obtained as well as CVF spectrophotometry of this comet and there is no evidence for absorption features in the spectral area between 1.25 and 2.3 microns. Models of the coma have been generated which constrain the volatile content of the grains an; are in agreement with the observed albedo. The darkness of the coma particles at large heliocentric distances indicates a low albedo nucleus as well. Brightness variations during the observing period seem to indicate an active nucleus at 4.5 AU from the sun.

  16. The mass disruption of Jupiter Family comets

    NASA Astrophysics Data System (ADS)

    Belton, Michael J. S.

    2015-01-01

    I show that the size-distribution of small scattered-disk trans-neptunian objects when derived from the observed size-distribution of Jupiter Family comets (JFCs) and other observational constraints implies that a large percentage (94-97%) of newly arrived active comets within a range of 0.2-15.4 km effective radius must physically disrupt, i.e., macroscopically disintegrate, within their median dynamical lifetime. Additional observational constraints include the numbers of dormant and active nuclei in the near-Earth object (NEO) population and the slope of their size distributions. I show that the cumulative power-law slope (-2.86 to -3.15) of the scattered-disk TNO hot population between 0.2 and 15.4 km effective radius is only weakly dependent on the size-dependence of the otherwise unknown disruption mechanism. Evidently, as JFC nuclei from the scattered disk evolve into the inner Solar System only a fraction achieve dormancy while the vast majority of small nuclei (e.g., primarily those with effective radius <2 km) break-up. The percentage disruption rate appears to be comparable with that of the dynamically distinct Oort cloud and Halley type comets (Levison, H.F., Morbidelli, A., Dones, L., Jedicke, R., Wiegert, P.A., Bottke Jr., W.F. [2002]. Science 296, 2212-2215) suggesting that all types of comet nuclei may have similar structural characteristics even though they may have different source regions and thermal histories. The typical disruption rate for a 1 km radius active nucleus is ∼5 × 10-5 disruptions/year and the dormancy rate is typically 3 times less. We also estimate that average fragmentation rates range from 0.01 to 0.04 events/year/comet, somewhat above the lower limit of 0.01 events/year/comet observed by Chen and Jewitt (Chen, J., Jewitt, D.C. [1994]. Icarus 108, 265-271).

  17. Observation of Comet C/2013 US (Catalina) in Tajikistan

    NASA Astrophysics Data System (ADS)

    Buriev, Anvardzhon

    2016-07-01

    Kh. I. Ibadinov, A.M. Buriev Institute of Astrophysics of the Academy of Sciences of Tajikistan E-mail: ibadinov@mail.ru, anvar10@mail.ru The position, magnitude in BVRI filters and diameter of the nucleus of comet C/ 2013 US 10 (CANALINA) on the basis of CCD observations with AZT-8 telescope Hissar Astronomical observatory in 2016 were founded.

  18. The Rosetta mission: Clues on the origin of comet nuclei

    NASA Astrophysics Data System (ADS)

    Davidsson, Bjorn; Stern, S. Alan; Kofman, Wlodek; Hilchenbach, Martin; rotundi, alessandra; Bentley, Mark; Hofstadter, Mark; Sierks, Holger; Altwegg, Kathrin; Nilsson, Hans; Burch, James L.; Eriksson, Anders I.; Glassmeier, Karl-Heinz; Henri, Pierre; Carr, Christopher M.; Pätzold, Martin; Capaccioni, Fabrizio; Boehnhardt, Hermann; Bibring, Jean-Pierre; Fulle, Marco; Fulchignoni, Marcello; Gruen, Eberhard; Weissman, Paul R.; Taylor, Matt; Buratti, Bonnie J.; Choukroun, Mathieu; Altobelli, Nicolas; Snodgrass, Colin; Rosetta Science Working Team

    2016-10-01

    The Rosetta mission has been taking measurements of its target Comet 67P/Churyumov-Gerasimenko sinceearly 2014 and will complete operations at the end of September 2016. The mission Science Management Plan,in 1994, laid out the the prime goals and themes of the mission. These five themes were:1) To study the global characterization of the Nucleus, the determination of the dynamics properties ,surface morphology and composition of the comet.2) Examination of the Chemical, Mineralogical and isotopic compositions of volatiles and refractoriesin a cometary nucleus.3) Physical interrelation of volatile and refractories in a cometary nucleus4) Study the development of cometary activity and the process in the surface layer of thenucleus and in the inner coma5) The origins of comets, the relationship between cometary and interstellar material and theimplications for the origin of the solar system,To cover all aspects of the Rosetta mission in this special Show case session, this abstracts isone of 5, with this particular presentation focusing on theme 5.Several scenarios for comet nucleus formation have been proposed, such as hierarchical agglomeration,or gravitational collapse of pebble swarms created either by turbulent eddies or by streaming instabilities.In addition, the question of survival of such primordial nuclei versus severe collisional processinghas been debated. The pros and cons of these hypotheses are discussed in the light of Rosetta's discoveries.

  19. Unveiling the formation and evolution of comets

    NASA Astrophysics Data System (ADS)

    Lasue, J.; Levasseur-Regourd, A. C.; Botet, R.; Coradini, A.; Desanctis, M. C.; Kofman, W.

    2007-08-01

    energy of the cometesimals and their probable re-accretion after collision events in the Kuiper Belt can be used to interpret the typical layered structure observed for comet 9P/Tempel 1 [10] and evaluate the tensile strengths inside the nucleus. Thermal evolution models of comet nuclei explain the current comet observations with the presence of primordial volatiles [11]. A quasi-3D approach (for non-spherically shaped comet nuclei) is used to interpret the current activity of comets in terms of initial characteristics, and to predict shape and internal stratification evolution of the nucleus. Tensile strength indications and activity predictions from such simulations will provide vital clues for the international Rosetta mission landing on the nucleus of comet 67P/Churyumov-Gerasimenko. During the Rosetta rendezvous, the CONSERT experiment will investigate the deep interior of the nucleus from measurements of the propagation delay of long wavelength radio waves [12]. The analysis and 3D reconstruction of the waves passing through the nucleus will put constraints on the materials constituting the comet and the inhomogeneities within the nucleus. While it is now established that nuclei have low densities and are significantly fragile, it will then be possible to better constrain their formation process and their evolution. [1] A'Hearn et al., Science 310, 258 (2005) [2] Samarasinha, Icarus 154, 540 (2001) [3] Trigo-Rodriguez and Llorca, Mon. Not. R. Astron. Soc. 372, 655 (2006) [4] A'Hearn and Combi, Icarus 187, 1 (2007) [5] Hanner and Bradley, In: Comets II, Festou, Keller, Weaver (eds), pp 555 (2004) [6] Brownlee et al., Science 314, 1711 (2006) [7] Lasue and Levasseur-Regourd, J. Quant. Spectros. Radiat. Transfer 100, 220-236 (2006) [8]Levasseur-Regourd et al., (2007), Planet Space Sci., doi:10.1016/j.pss.2006.11.014 in press. [9] Hörz et al., Science 314, 1716 (2006) [10] Belton et al., Icarus 187, 332 (2007) [11] DeSanctis et al., Astron. Astrophys. 444, 605 (2005

  20. Physical Mechanism of Comet Outbursts: The Movie

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.

    2014-11-01

    During experiments conducted in 1976 at the NASA Ames Research Center’s Vertical Gun Facility (VGF), the author studied low velocity impacts into simulated regolith powders and gravels, in order to examine physics of low-velocity collisions during early solar system planetesimal formation. In one “accidental” experiment, the bucket of powder remained gas-charged during evacuation of the VGF vacuum chamber. The impactor, moving at 5.5 m/s, disturbed the surface, initiating eruptions of dust-charged gas, shooting in jets from multiple vents at speeds up to about 3 m/s, with sporadic venting until 17 seconds after the impact. This experiment was described in [1], which concluded that it simulated comet eruption phenomena. In this hypothesis, a comet nucleus develops a lag deposit of regolith in at least some regions. At a certain distance from the sun, the thermal wave penetrates to an ice-rich depth, causing sublimation. Gas rises into the regolith, collects in pore spaces, and creates a gas-charged powder, as in our experiment. Any surface disturbance, such as a meteoroid, may initiate a temporary eruption, or eventually the gas pressure becomes sufficient to blow off the overburden. Our observed ejection speed would be sufficient to launch dust off of a kilometer-scale comet nucleus.Film (100 frames/s) of the event was obtained, but was partially torn up in a projector. It has recently been reconstituted (Centric Photo Labs, Tucson) and dramatically illustrates various cometary phenomena. Parabolic curtains of erupted material resemble curtains of material photographed from earth in real comet comas, “falling back” under solar wind forces. In retrospect, the mechanism photographed here helps explain:*sporadic eruptions in Comet P/Schwassmann-Wachmann 1 (near-circular orbit at ~6 A.U., where repeated recharge may occur).*sporadic eruptions on “asteroid” 2060 Chiron (which stays beyond 8.5 A.U.). *the thicker dust curtain (and longer eruption?) than

  1. Spectroscopic observations of comet Austin (1989c)

    NASA Technical Reports Server (NTRS)

    Heyd, Rodney; Wyckoff, Susan; Wehinger, Peter; Mack, Peter

    1992-01-01

    Longslit CCD spectra (lambda = 5100-6400 A, delta(lambda) approximately 3 A) were obtained with the Michigan-Dartmouth-MIT 1.3 meter telescope in May 1990 (r = 0.74 AU, delta = 0.50 AU). The spectra were reduced with the Interactive data Reduction and Analysis Facility (IRAF). Spectral extractions offset sunward and tailward from the nucleus were analyzed. Species identified in the spectra include the following: C2, NH2(10-0), NH2(9-0), H2O(+), and CO(+). Spatial extractions of rotational line intensities in the NH2(10-0) band extend approximately 10(exp 4.5) km from the nucleus. A fit of the vectorial model to the NH2(10-0) spatial profile is consistent with an NH3 parent molecule. The NH2 production rate and an ammonia to water abundance ratio, NH3/H2O approximately 3 percent, were derived. The ammonia abundance obtained for comet Austin is consistent with that found for several other comets and is indicative of comet formation under very homogeneous conditions.

  2. Comets: Role and importance to exobiology

    NASA Technical Reports Server (NTRS)

    Delsemme, Armand H.

    1992-01-01

    The transfer of organic compounds from interstellar space to the outskirts of a protoplanetary disk, their accretion into cometary objects, and the transport of the latter into the inner solar system by orbital diffusion throw a new light on the central problem of exobiology. It suggests the existence of a cosmic mechanism, working everywhere, that can supply prebiotic compounds to ubiquitous rocky planets, in search of the proper environment to start life in many places in the Universe. Under the heading of chemistry of the cometary nucleus, the following topics are covered: radial homogeneity of the nucleus; the dust-to-ice ratio; nature of the dust grains; origin of the dust in comets; nature of the volatile fraction; the CO distribution in comet Halley; dust contribution to the volatile fraction; elemental balance sheet of comet Halley; quantitative molecular analysis of the volatile fraction; and isotopic ratios. Under the heading of exogenous origin of carbon on terrestrial planets the following topics are covered: evidence for a high-temperature phase; from planetesimals to planets; a veneer of volatile and organic material; and cometary contribution.

  3. The evolution of comet orbits

    NASA Technical Reports Server (NTRS)

    Everhart, E.

    1976-01-01

    The origin of comets and the evolution of their orbits are discussed. Factors considered include: the law of survival of comets against ejection on hyperbolic orbits; short-period comets are not created by single close encounters of near-parabolic comets with Jupiter; observable long-period comets do not evolve into observable short-period comets; unobservable long-period comets with perihelia near Jupiter can evolve into observable short-period comets; long-period comets cannot have been formed or created within the planetary region of the solar system (excluding the effects of stellar perturbations); it is possible that some of the short-period comets could have been formed inside the orbit of Neptune; circularly-restricted three-body problem, and its associated Jacobi integral, are not valid approximations to use in studying origin and evolution of comets.

  4. Meteoroid streams and comet disintegration

    NASA Astrophysics Data System (ADS)

    Guliyev, A.

    2016-01-01

    The results of the statistical analysis of the dynamic parameters of 114 comets that have undergone nuclear splitting are presented in the article. The list of the objects contains: comets that have split in the period of the observation; data of twin-comets; lost comets with designation D; comets with large-scale structure in the coma. We will describe these comets as "splitted". Some aspects of the following hypothesis are studied: disintegration of comet nuclei happens as the result of their collision with meteoroid streams. For the verification of this hypothesis, the position of splitted comet orbits relatively to 125 meteor streams from Kronk's list is analyzed. It was found that the total number of comet orbit nodes located close to the meteor stream planes (for the distances up to 0.1 AU) is N = 1041. It is shown that if these comets are replaced by randomly selected different comets, N will be reduced by a factor of approximately three.

  5. Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    Harris, Alan W. (Editor); Bowell, Edward (Editor)

    1992-01-01

    Papers from the conference are presented and cover the following topics with respect to asteroids, comets, and/or meteors: interplanetary dust, cometary atmospheres, atmospheric composition, comet tails, astronomical photometry, chemical composition, meteoroid showers, cometary nuclei, orbital resonance, orbital mechanics, emission spectra, radio astronomy, astronomical spectroscopy, photodissociation, micrometeoroids, cosmochemistry, and interstellar chemistry.

  6. Hunting Halley's comet.

    NASA Astrophysics Data System (ADS)

    Celnik, W. E.

    1986-09-01

    Observers of bright comets have always been fascinated by the sight of these rare phenomena. However, it was as late as the 19th century that scientists started to make systematic observations of the appearance of comets and recorded them in the form of drawings and descriptions of comas and tails. Halley's comet in particular was observed intensively because the time of its return was weil known. The first photographic observations of the comet were made during its 1910 perihelion. A large number of photographs were taken using astronomical instruments of all dimensions showing structures within the extended ion tail and the bright coma. Pictures from that time are weil suited to be compared with recently obtained images of the 1986 appearance, although observing conditions were then much less favourable. Just when PI Halley was most active, at its brightest, and thus most interesting, namely during its perihelion passage, it was behind the Sun and unobservable. During the 2,000 years that observations of this comet have been recorded, there was only one appearance where the positions of Sun, Earth and comet were even worse for observations. In addition, the observing conditions in the northern hemisphere were extremely bad because at its best time the comet followed its path through the southern skies. Thus the only way to observe P/ Halley successfully after its perihelion passage was to got to the southern hemisphere. At a latitude of 30 degrees south the comet culminated near the zenith.

  7. Changing Speed of Comets

    ERIC Educational Resources Information Center

    Follows, Mike

    2003-01-01

    It is shown that highly elliptical orbits, such as those of comets, can be explained well in terms of energy rather than forces. The principle of conservation of energy allows a comet's velocity to be calculated at aphelion and perihelion. An example asks students to calculate whether they can run fast enough to escape from a small asteroid.…

  8. New Distant Comet Headed for Bright Encounter

    NASA Astrophysics Data System (ADS)

    1995-08-01

    brightness at this enormous distance [1]. Subsequent orbital calculations depend heavily on this assumption and for that reason, there is still some uncertainty about the comet's true orbit. When the 1993 position is included in the computations, it appears that Comet Hale-Bopp moves in a near-parabolic orbit with a revolution time of about 3000 years [2]. According to this orbit, it will pass about 120 million kilometres from Jupiter in April 1996, and it will approach the Sun to about 140 million kilometres when it passes perihelion in early April 1997. At the time of perihelion, the comet's geocentric distance will be about 200 million kilometres, the angular distance (`elongation') in the sky from the Sun about 45 degrees and it will be located in the northern sky at declination +45 degrees. It will actually by `circumpolar' in Northern Europe and therefore well observable all night from there. Why is Comet Hale-Bopp now so bright ? One possible cause for the unusual brightness of Comet Hale-Bopp at its present location, more than 200 million kilometres outside the orbit of Jupiter, is that it possesses a very large nucleus, that is the `dirty snowball' of dust and ice at the centre of a comet. The larger the diameter of the nucleus, the more sunlight will be reflected from its surface and the brighter will it appear. A corresponding estimate indicates that the diameter of its nucleus would be nearly 100 kilometres, as compared to about 10 kilometres for Comet Halley. However, it is also important to consider that - due to the heating action of the sunlight on its surface - the nucleus of a comet that is not too far from the Sun will emit dust particles of which many assemble as a cloud around it (the `dust coma'). These particles are moved outwards by the pressure of gas molecules emanating from the melting ice(s) in the nucleus. That this is indeed the case for Comet Hale-Bopp can be clearly seen on the first high-resolution images from ESO which confirm the presence

  9. A Comet Engulfs Mars: MAVEN observations of Comet Siding Spring’s Effects on the Martian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Espley, Jared R.; DiBraccio, Gina A.; Connerney, Jack; Brain, David; Gruesbeck, Jacob; Soobiah, Yasir; Halekas, Jasper; Combi, Michael; Luhmann, Janet; Ma, Yingjuan; Jia, Yingdong; Jakosky, Bruce

    2015-11-01

    The nucleus of Comet C/2013 A1 (Siding Spring) passed within 135,000 km of Mars on Oct. 19, 2014. Thus the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the martian magnetosphere and upper atmosphere. We present observations from MAVEN’s particles and fields instruments that show the martian magnetosphere was severely distorted during the comet’s passage. We note four specific major effects: 1) a variable induced magnetospheric boundary, 2) a strong rotation of the magnetic field as the comet approached, 3) severely distorted and disordered ionospheric fields during the comet’s closest approach, and 4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet had effects comparable to a large solar storm (in terms of incident energy) and so was a fascinating opportunity to explore atmospheric escape, MAVEN’s primary science objective.

  10. Comet 81P/wild 2 under a microscope

    USGS Publications Warehouse

    Brownlee, D.; Tsou, P.; Aleon, J.; O'D, Alexander; Araki, T.; Bajt, S.; Baratta, G.A.; Bastien, R.; Bland, P.; Bleuet, P.; Borg, J.; Bradley, J.P.; Brearley, A.; Brenker, F.; Brennan, S.; Bridges, J.C.; Browning, N.D.; Brucato, J.R.; Bullock, E.; Burchell, M.J.; Busemann, H.; Butterworth, A.; Chaussidon, M.; Cheuvront, A.; Chi, M.; Cintala, M.J.; Clark, B. C.; Clemett, S.J.; Cody, G.; Colangeli, L.; Cooper, G.; Cordier, P.; Daghlian, C.; Dai, Z.; D'Hendecourt, L.; Djouadi, Z.; Dominguez, G.; Duxbury, T.; Dworkin, J.P.; Ebel, D.S.; Economou, T.E.; Fakra, S.; Fairey, S.A.J.; Fallon, S.; Ferrini, G.; Ferroir, T.; Fleckenstein, H.; Floss, C.; Flynn, G.; Franchi, I.A.; Fries, M.; Gainsforth, Z.; Gallien, J.-P.; Genge, M.; Gilles, M.K.; Gillet, P.; Gilmour, J.; Glavin, D.P.; Gounelle, M.; Grady, M.M.; Graham, G.A.; Grant, P.G.; Green, S.F.; Grossemy, F.; Grossman, L.; Grossman, J.N.; Guan, Y.; Hagiya, K.; Harvey, R.; Heck, P.; Herzog, G.F.; Hoppe, P.; Horz, F.; Huth, J.; Hutcheon, I.D.; Ignatyev, K.; Ishii, H.; Ito, M.; Jacob, D.; Jacobsen, C.; Jacobsen, S.; Jones, S.; Joswiak, D.; Jurewicz, A.; Kearsley, A.T.; Keller, L.P.; Khodja, H.; Kilcoyne, A.L.D.; Kissel, J.; Krot, A.; Langenhorst, F.; Lanzirotti, A.; Le, L.; Leshin, L.A.; Leitner, J.; Lemelle, L.; Leroux, H.; Liu, M.-C.; Luening, K.; Lyon, I.; MacPherson, G.; Marcus, M.A.; Marhas, K.; Marty, B.; Matrajt, G.; McKeegan, K.; Meibom, A.; Mennella, V.; Messenger, K.; Messenger, S.; Mikouchi, T.; Mostefaoui, S.; Nakamura, T.; Nakano, T.; Newville, M.; Nittler, L.R.; Ohnishi, I.; Ohsumi, K.; Okudaira, K.; Papanastassiou, D.A.; Palma, R.; Palumbo, M.E.; Pepin, R.O.; Perkins, D.; Perronnet, M.; Pianetta, P.; Rao, W.; Rietmeijer, F.J.M.; Robert, F.; Rost, D.; Rotundi, A.; Ryan, R.; Sandford, S.A.; Schwandt, C.S.; See, T.H.; Schlutter, D.; Sheffield-Parker, J.; Simionovici, A.; Simon, S.; Sitnitsky, I.; Snead, C.J.; Spencer, M.K.; Stadermann, F.J.; Steele, A.; Stephan, T.

    2006-01-01

    The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales.

  11. Comet 81P/Wild 2 under a microscope.

    PubMed

    Brownlee, Don; Tsou, Peter; Aléon, Jérôme; Alexander, Conel M O'd; Araki, Tohru; Bajt, Sasa; Baratta, Giuseppe A; Bastien, Ron; Bland, Phil; Bleuet, Pierre; Borg, Janet; Bradley, John P; Brearley, Adrian; Brenker, F; Brennan, Sean; Bridges, John C; Browning, Nigel D; Brucato, John R; Bullock, E; Burchell, Mark J; Busemann, Henner; Butterworth, Anna; Chaussidon, Marc; Cheuvront, Allan; Chi, Miaofang; Cintala, Mark J; Clark, B C; Clemett, Simon J; Cody, George; Colangeli, Luigi; Cooper, George; Cordier, Patrick; Daghlian, C; Dai, Zurong; D'Hendecourt, Louis; Djouadi, Zahia; Dominguez, Gerardo; Duxbury, Tom; Dworkin, Jason P; Ebel, Denton S; Economou, Thanasis E; Fakra, Sirine; Fairey, Sam A J; Fallon, Stewart; Ferrini, Gianluca; Ferroir, T; Fleckenstein, Holger; Floss, Christine; Flynn, George; Franchi, Ian A; Fries, Marc; Gainsforth, Z; Gallien, J-P; Genge, Matt; Gilles, Mary K; Gillet, Philipe; Gilmour, Jamie; Glavin, Daniel P; Gounelle, Matthieu; Grady, Monica M; Graham, Giles A; Grant, P G; Green, Simon F; Grossemy, Faustine; Grossman, Lawrence; Grossman, Jeffrey N; Guan, Yunbin; Hagiya, Kenji; Harvey, Ralph; Heck, Philipp; Herzog, Gregory F; Hoppe, Peter; Hörz, Friedrich; Huth, Joachim; Hutcheon, Ian D; Ignatyev, Konstantin; Ishii, Hope; Ito, Motoo; Jacob, Damien; Jacobsen, Chris; Jacobsen, Stein; Jones, Steven; Joswiak, David; Jurewicz, Amy; Kearsley, Anton T; Keller, Lindsay P; Khodja, H; Kilcoyne, A L David; Kissel, Jochen; Krot, Alexander; Langenhorst, Falko; Lanzirotti, Antonio; Le, Loan; Leshin, Laurie A; Leitner, J; Lemelle, L; Leroux, Hugues; Liu, Ming-Chang; Luening, K; Lyon, Ian; Macpherson, Glen; Marcus, Matthew A; Marhas, Kuljeet; Marty, Bernard; Matrajt, Graciela; McKeegan, Kevin; Meibom, Anders; Mennella, Vito; Messenger, Keiko; Messenger, Scott; Mikouchi, Takashi; Mostefaoui, Smail; Nakamura, Tomoki; Nakano, T; Newville, M; Nittler, Larry R; Ohnishi, Ichiro; Ohsumi, Kazumasa; Okudaira, Kyoko; Papanastassiou, Dimitri A; Palma, Russ; Palumbo, Maria E; Pepin, Robert O; Perkins, David; Perronnet, Murielle; Pianetta, P; Rao, William; Rietmeijer, Frans J M; Robert, François; Rost, D; Rotundi, Alessandra; Ryan, Robert; Sandford, Scott A; Schwandt, Craig S; See, Thomas H; Schlutter, Dennis; Sheffield-Parker, J; Simionovici, Alexandre; Simon, Steven; Sitnitsky, I; Snead, Christopher J; Spencer, Maegan K; Stadermann, Frank J; Steele, Andrew; Stephan, Thomas; Stroud, Rhonda; Susini, Jean; Sutton, S R; Suzuki, Y; Taheri, Mitra; Taylor, Susan; Teslich, Nick; Tomeoka, Kazu; Tomioka, Naotaka; Toppani, Alice; Trigo-Rodríguez, Josep M; Troadec, David; Tsuchiyama, Akira; Tuzzolino, Anthony J; Tyliszczak, Tolek; Uesugi, K; Velbel, Michael; Vellenga, Joe; Vicenzi, E; Vincze, L; Warren, Jack; Weber, Iris; Weisberg, Mike; Westphal, Andrew J; Wirick, Sue; Wooden, Diane; Wopenka, Brigitte; Wozniakiewicz, Penelope; Wright, Ian; Yabuta, Hikaru; Yano, Hajime; Young, Edward D; Zare, Richard N; Zega, Thomas; Ziegler, Karen; Zimmerman, Laurent; Zinner, Ernst; Zolensky, Michael

    2006-12-15

    The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales. PMID:17170289

  12. The superthermal ion environment near comet 67P/Churyumov-Gerasimenko at low activity

    NASA Astrophysics Data System (ADS)

    Nilsson, Hans; Stenberg Wieser, Gabriella; Behar, Etienne; Yamauchi, Masatoshi; Wedlund, Cyril Simon; Kallio, Esa; Burch, Jim; Carr, Chris; Eriksson, Anders; Glassmeier, Karl-Heinz; Lebreton, Jean-Pierre; Henri, Pierre; Gunell, Herbert

    2015-04-01

    The Rosetta mission has been designed to rendezvous with and escort comet 67P/Churyumov-Gerasimenko from a heliocentric distance of >3.6 AU, when the comet still has a low activity level, until perihelion passage at 1.25 AU where the comet reaches the maximum of its activity. Initially, the solar wind permeates the thin comet atmosphere that has just begun to form from sublimation. Eventually the size and plasma pressure of the ionized atmosphere leads to the formation of plasma boundaries: a magnetosphere is born. Using the Rosetta Plasma Consortium Ion Composition Analyzer, we study the gradual evolution from the first detectable traces of water ions to the stage where the comet atmosphere starts to repel the solar wind at a distance from the sun of about 3.3 AU. Gradually the mass loading caused by picked-up comet ions starts to deflect the solar wind. Charge exchange between the solar wind and comet atmosphere gradually increases with comet activity, leading to a situation where a significant fraction of the solar wind has charge-exchanged close to the comet nucleus. Pick up ions created upstream of the comet nucleus are accelerated by the solar wind electric field and are seen with energies up to about 1 keV as they move back towards the nucleus. Locally produced water ions are seen moving with velocities similar to the neutral outgassing velocity of the order of 1 km/s ( 10 eV), but with their direction and speed influenced by the solar wind electric field. High charge state solar wind ions (O6+, O5+) are also seen at times. We quantify the super thermal ion environment near a low activity comet and show how it depends on the solar wind intensity and the distance to the sun.

  13. TRAPPIST monitoring of comet C/2012 F6 (Lemmon)

    NASA Astrophysics Data System (ADS)

    Opitom, C.; Jehin, E.; Manfroid, J.; Hutsemékers, D.; Gillon, M.; Magain, P.

    2015-02-01

    We report the results of the long-term narrowband photometry and imaging monitoring of comet C/2012 F6 (Lemmon) with the robotic TRAPPIST telescope (La Silla Observatory). Observations covered 52 nights pre- and post-perihelion between December 11, 2012, and June 11, 2013 (perihelion: 24 March, 2013). We followed the evolution of the OH, NH, CN, C3, and C2 production rates computed with the Haser model as well as the evolution of the A(θ)fρ parameter as a proxy for the dust production. All five gas species display similar slopes for the heliocentric dependence. An asymmetry about perihelion is observed, the rate of brightening being steeper than the rate of fading. The chemical composition of the comet's coma changes slightly along the orbit: the relative abundance of C2 to CN increases with the heliocentric distance (r) below -1.4 au and decreases with r beyond 1.4 au while the C3-to-CN ratio is constant during our observations. The behavior of the dust is different from that of the gas, the slope of the heliocentric dependence becoming steeper in early February, correlated to a change in the visual lightcurve slope. However, the dust color does not vary during the observations. The application of several enhancement techniques on the images revealed structures in the CN, C3, and C2 images. These features imply the existence of one or several active zone(s) on the comet nucleus. The shape of the structures is similar in these three filters and changes from a roughly hourglass shape in December and January to a corkscrew shape in February and March. The structures in the continuum filters (sampling the dust) are not correlated to those observed for the gas. During several full nights in February, we observed changes in the CN and C2 structures that repeated periodically because of the nucleus rotation, our derived rotational period being of 9.52 ± 0.05 h. Full Tables 2, 4, 6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130

  14. Beyond 3 AU from the Sun: "Hypervolatiles" in Distant Comets

    NASA Astrophysics Data System (ADS)

    Bonev, Boncho P.; Villanueva, Geronimo Luis; Mumma, Michael J.; DiSanti, Michael A.; Paganini, Lucas; Boehnhardt, Hermann; Lippi, Manuela; Gibb, Erika L.; Bockelee-Morvan, Dominique; de Val-Borro, Miguel; Kawakita, Hideyo; Altwegg, Kathrin

    2016-10-01

    Our understanding of inner coma composition in comets has long been biased towards heliocentric distances (Rh) smaller than 2-3 AU. However, observations far from the Sun are also of high value for better understanding the nucleus structure and outgassing of volatiles. Substantial and very important evidence for the activity of distant comets has been accumulated from photometry and analyses of light curves, but direct detections of primary (parent) volatiles are still rare. For example, comet C/2006 W3 (Christensen) remained outside 3.1 AU throughout its apparition, yet it presented the best opportunity since Hale-Bopp (1997) for detailed spectroscopic studies in a distant comet. C/2006 W3 was observed from several space- and ground-based facilities using both infrared and radio techniques. CO, CH4, and C2H6 were measured via infrared spectroscopy at ESO-VLT at Rh = 3.25 AU. Production rates were found to exceed those measured for each of these species in most other comets, despite those comets being observed much closer to the Sun. With its relatively high CO/CO2 ratio, C/2006 W3 also appears as an outlier in the AKARI comet survey of 18 comets. The detections of H2O (Herschel Space Observatory) and CO (ESO-VLT) allow for constraining the coma abundance ratio H2O/CO at Rh = 5 AU.We will compare the C2H6/CH4/CO ratios in C/2006 W3 with those in other comets spanning a large range in Rh: from D/2012 S1 ISON (~0.7 AU) to 29P/Schwassmann-Wachmann 1 (~ 6.3 AU). Notably in situ measurements by the Rosetta mission were performed in the coma of 67P/Churyumov-Gerasimenko, at a very similar heliocentric distance to C/2006 W3 (3.15 AU). While comparisons of column-integrated remote sensing measurements and abundances from in-situ mass spectrometry (as performed by the ROSINA instrument) are not straightforward, both types of measurement are of high value for constraining models of nucleus outgassing beyond 3 AU from the Sun, where the inferred nucleus structure and

  15. The role of the medial caudate nucleus, but not the hippocampus, in a matching-to sample task for a motor response.

    PubMed

    Kesner, Raymond P; Gilbert, Paul E

    2006-04-01

    A delayed-match-to-sample task was used to assess memory for motor responses in rats with control, hippocampus, or medial caudate nucleus (MCN) lesions. All testing was conducted on a cheeseboard maze in complete darkness using an infrared camera. A start box was positioned in the centre of the maze facing a randomly determined direction on each trial. On the sample phase, a phosphorescent object was randomly positioned to cover a baited food well in one of five equally spaced positions around the circumference of the maze forming a 180-degree arc 60 cm from the box. The rat had to displace the object to receive food and return to the start box. The box was then rotated to face a different direction. An identical baited phosphorescent object was placed in the same position relative to the start box. A second identical object was positioned to cover a different unbaited well. On the choice phase, the rat must remember the motor response made on the sample phase and make the same motor response on the choice phase to receive a reward. Hippocampus lesioned and control rats improved as a function of increased angle separation used to separate the correct object from the foil (45, 90, 135, and 180 degrees) and matched the performance of controls. However, rats with MCN lesions were impaired across all separations. Results suggest that the MCN, but not the hippocampus, supports working memory and/or a process aimed at reducing interference for motor response selection based on vector angle information.

  16. Geometry of Comet Halley's outer plasma environment

    NASA Astrophysics Data System (ADS)

    Perez de Tejada, H.

    A study of Comet Halley's outer plasma environment is presented. It is argued that the intermediate transition detected nearly halfway between the comet's bow shock and the cometopause represents the outer boundary of a thick friction layer that develops along the flanks of the cometopause. In the subsolar region the cometopause and the intermediate transition are expected to reach nearly the same (about 350,000 km) distance from the nucleus. The plasma changes seen in the outer ionosheath (between the bow shock and the intermediate transition) are further interpreted as due to an intrinsic axial asymmetry of the cometopause which may have a highly oblate cross-sectional shape with respect to the solar wind direction.

  17. Comet Tempel 1 Went Back to Sleep

    NASA Astrophysics Data System (ADS)

    2005-07-01

    after the impact, the morphology of Comet Tempel 1 had changed, with the appearance of a new plume-like structure, produced by matter being ejected with a speed of about 700 to 1000 km/h (see ESO PR Photo 23/05). This structure, however, diffused away in the following days, being more and more diluted and less visible, the comet taking again the appearance it had before the impact. Further images obtained with, among others, the adaptive optics NACO instrument on the Very Large Telescope, showed the same jets that were visible prior to impact, demonstrating that the comet activity survived widely unaffected by the spacecraft crash. The study of the gas in Comet Tempel 1 (see "Looking for Molecules"), made with UVES on Kueyen (UT2 of the VLT), reveals a small flux increase the first night following the impact. At that time, more than 17 hours after the impact, the ejected matter was fading away but still measurable thanks to the large light collecting power of the VLT. The data accumulated during 10 nights around the impact have provided the astronomers with the best ever time series of optical spectra of a Jupiter Family comet, with a total of more than 40 hours of exposure time. This unique data set has already allowed the astronomers to characterize the normal gas activity of the comet and also to detect, to their own surprise, an active region. This active region is not related to the impact as it was also detected in data collected in June. It shows up about every 41 hours, the rotation period of the comet nucleus determined by the Deep Impact spacecraft. Exciting measurements of the detailed chemical composition (such as the isotopic ratios) of the material released by the impact as well as the one coming from that source will be performed by the astronomers in the next weeks and months. Further spectropolarimetric observations with FORS1 have confirmed the surface of the comet to be rather evolved - as expected - but more importantly, that the dust is not coming

  18. Comet Science Working Group report on the Halley Intercept Mission

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Halley Intercept Mission is described and the scientific benefits expected from the program are defined. One characteristic of the mission is the optical navigation and resulting accurate delivery of the spacecraft to a desired point near the nucleus. This accuracy of delivery has two important implications: (1) high probability that the mass spectrometers and other in situ measurement devices will reach the cometary ionosphere and the zone of parent molecules next to the nucleus; (2) high probability that sunlit, high resolution images of Halley's nucleus will be obtained under proper lighting conditions. In addition an observatory phase is included during which high quality images of the tail and coma structure will be obtained at progressively higher spatial resolutions as the spacecraft approaches the comet. Complete measurements of the comet/solar wind interaction can be made around the time of encounter. Specific recommendations are made concerning project implementation and spacecraft requirements.

  19. Physical Properties of Cometary Nucleus Candidates

    NASA Technical Reports Server (NTRS)

    Jewitt, David; Hillman, John (Technical Monitor)

    2003-01-01

    In this proposal we aim to study the physical properties of the Centaurs and the dead comets, these being the precursors to, and the remnants from, the active cometary nuclei. The nuclei themselves are very difficult to study, because of the contaminating effects of near-nucleus coma. Systematic investigation of the nuclei both before they enter the zone of strong sublimation and after they have depleted their near-surface volatiles should neatly bracket the properties of these objects, revealing evolutionary effects.

  20. The Comet Radar Explorer Mission

    NASA Astrophysics Data System (ADS)

    Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul

    2014-11-01

    Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and

  1. Realm of the comets

    SciTech Connect

    Weissman, P.R.

    1987-03-01

    Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sending large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars.

  2. Realm of the comets

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    1987-01-01

    Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sending large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars.

  3. Infrared imaging of comets

    NASA Technical Reports Server (NTRS)

    Telesco, Charles M.

    1988-01-01

    Thermal infrared imaging of comets provides fundamental information about the distribution of dust in their comae and tails. The imaging program at NASA Marshall Space Flight Center (MSFC) uses a unique 20-pixel bolometer array that was developed to image comets at 8 to 30 micrometer. These images provide the basis for: (1) characterizing the composition and size distribution of particles, (2) determining the mass-loss rates from cometary nuclei, and (3) describing the dynamics of the interaction between the dust and the solar radiation. Since the array became operational in 1985, researchers have produced a unique series of IR images of comets Giacobini-Zinner (GZ), Halley, and Wilson. That of GZ was the first groundbased thermal image ever made of a comet and was used to construct, with visible observations, an albedo map. Those data and dynamical analyses showed that GZ contained a population of large (approximately 300 micrometer), fluffy dust grains that formed a distinict inner tail. The accumulating body of images of various comets has also provided a basis for fruitfully intercomparing comet properties. Researchers also took advantage of the unique capabilities of the camera to resolve the inner, possible protoplanetary, disk of the star Beta Pictoris, while not a comet research program, that study is a fruitful additional application of the array to solar system astronomy.

  4. CME impact on comet 67P

    NASA Astrophysics Data System (ADS)

    Edberg, Niklas J. T.; Andrews, David J.; Burch, Jim L.; Carr, Christopher M.; Cupido, Emanuele; Eriksson, Anders I.; Glassmeier, Karl-Heinz; Goldstein, Ray; Henri, Pierre; Koenders, Christoph; Mandt, Kathy; Nilsson, Hans; Odelstad, Elias; Stenberg Wieser, Gabriella; Vigren, Erik

    2016-04-01

    We present observations from the Rosetta Plasma Consortium (RPC) of an impact of a coronal mass ejection (CMEs) on comet 67P. The CME impacted during a dayside excursion in early October 2015 when Rosetta slowly moved from a distance of ~300 km to 1500 km from the comet nucleus. Although this was still deep down in the cometary coma, the CME impact caused a significant disturbance to the plasma environment. As the CME impacted, the magnetic field strength increased to reach a maximum of 250 nT, which is the highest magnetic field strength ever observed at 67P. Lots of magnetic field oscillations and increased fluxes of energized (~100 eV) electrons and ions were observed concurrently, and the ionospheric low-energy plasma density increased by roughly one order of magnitude. An interesting phenomenon that could occur during a CME impact is a so-called tail disconnection event, when magnetic reconnection, either on the dayside of the comet or in the tail, causes a large fraction of the tail to be disconnected from the comet. Rosetta, being relatively close to the nucleus, can at best directly observe signatures of dayside reconnection when draped interplanetary magnetic fields of different polarities convects through the plasma environment and reconnects at the location of Rosetta. Rosetta cannot directly observe any tail-side disconnection event due to the orbit constraints. However, signatures of such events might resemble substorm effects in the terrestrial ionosphere with increased wave activity, increased ionization, energization of electrons and possibly ions. We discuss the RPC measurements during the October CME in this context and try to determine if a tail disconnection event could have occurred at this time.

  5. Amino Acids from a Comet

    NASA Technical Reports Server (NTRS)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  6. Submillimeter Continuum Observations of Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1998-01-01

    The aim of this proposal was to study the submillimeter continuum emission from comets. The study was based mainly on the exploitation of the world's leading submillimeter telescope, the JCMT (James Clerk Maxwell Telescope) on Mauna Kea. Submillimeter wavelengths provide a unique view of cometary physics for one main reason. The cometary size distribution is such that the scattering cross-section is dominated by small dust grains, while the mass is dominated by the largest particles. Submillimeter continuum radiation samples cometary particles much larger than those sampled by more common observations at shorter (optical and infrared) wavelengths and therefore provides a nearly direct measure of the cometary dust mass.

  7. Comet Bursting Through Relaxation

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, D. J.

    2012-10-01

    Comets may be excited and occupy non-principal axis (complex) rotation states for a large fraction of their lifetimes. Many comet nuclei have been identified or are suspected to occupy non-principal axis (complex) rotation [Belton 2005, etc.] as well as have evolving rotation rates [Belton 2011, etc.]. Comet orbits drive these rotation states through cycles of excitation due to surface jets and relaxation due to time variable internal stresses that dissipate energy in the anelastic comet interior. Furthermore, relaxation from complex rotation can increase the loads along the symmetry axis of prolate comets. These loads stretch the body along the symmetry axis and may be the cause of the characteristic ``bowling pin’’ shape and eventually may lead to failure. This is an alternative model for comet bursting. Each cycle deposits only a small amount of energy and stress along the axis, but this process is repeated every orbit during which jets are activated. Our model for the evolution of comet nuclei includes torques due to a number of discrete jets located on the surface based on Neishtadt et al. [2002]. The model also includes internal dissipation using an approach developed by Sharma et al. [2005] and Vokrouhlicky et al. [2009]. These equations are averaged over the instantaneous spin state and the heliocentric orbit so the long-term evolution of the comet can be determined. We determine that even after the inclusion of internal dissipation there still exist non-principal axis equilibrium states for certain jet geometries. For ranges of dissipation factors and jet geometries, prolate comets are found to occupy states that have time variable internal loads over long time periods. These periodic loadings along the symmetry axis may lead to ``necking’’ as the body extends along the axis to release the stress and eventually disruption.

  8. Dust tail striae: Lessons from recent comets

    NASA Astrophysics Data System (ADS)

    Jones, G.; Battams, K.

    2014-07-01

    Striae are features rarely observed in cometary dust tails. These are near-linear structures that, unlike synchronic bands, are not aligned with the nucleus position, and have only been clearly observed in a few high-production-rate comets, including C/1957 P1 (Mrkos), C/1962 C1 (Seki-Lines), C/1975 V1 (West), and C/1996 O1 (Hale-Bopp). The formation of striae is difficult to explain, but several scenarios for their creation have been proposed [1]. These include that of Sekanina & Farrell [2], who proposed that striae are the result of a two-step fragmentation process, where parent particles are released from the nucleus which, after a delay, all fragment over a very short period of time. The fragmentation products then separate according to their β parameter, i.e., the degree to which the particles are influenced by radiation pressure force compared to gravitational force, to form the linear structures we observe as striae. Although there are issues with identifying a process through which many particles will collectively delay their break-up and then fragment within a short period, this scenario does fit many observations well [3]. Other proposed scenarios are more complex, including the formation of striae through a continuous cascade of fragmentation to ever smaller particle sizes [4]. As these formation scenarios result in different distributions of dust-particle sizes within individual striae, the processes occurring may therefore be identifiable if these distributions can be inferred. If the fragmentation processes taking place can be identified, then, in turn, more could be learnt about the structure of the original dust grains that go on to form these sometimes beautiful tail structures. Here, we present the analysis of striae in several comets observed from space by the SOHO LASCO coronagraph [5] and SECCHI heliospheric imagers aboard the twin STEREO spacecraft [6]. The comets studied are C/2002 V1 (NEAT) in January 2002, C/2006 P1 (McNaught) during its

  9. Infrared Imaging, Spectroscopic, and Photometric Studies of Comets

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1997-01-01

    We have continued our program of infrared (IR) photometric, imaging, spectroscopic, and polarimetric temporal observations of comets to study the properties of comet dust and comet nuclei. During the first two years we digitized our IR data base on P/Halley and other recent comets to facilitate further analysis and comparison with other data bases, and found compelling evidence for the emission of a burst of small grains from P/Halley's nucleus at perihelion. We reported imaging and photometric observations of Comets Austin 1990 V and Swift-Tuttle 1992. The Swift-Tuttle 1992t observations included IR photometry, several 7-14 micron long-slit spectra of the coma and a time-sequence of more than 150 10 micron broadband images of the coma. An analysis of near-IR images of the inner coma of P/Halley obtained on three consecutive nights in 1986 March showed sunwardjets. We completed our analysis of IR imaging spectrosco-photometric data on comets. We also obtained observations of Comets Hyakutake 1996 B2 and Hale/Bopp 1995 01. We obtained infrared imaging, photometric, spectroscopic and polarimetric temporal observations of bright comets using a network of five telescopes, with emphasis on simultaneous observations of comets at many wavelengths with different instruments. Our program offers several unique advantages: 1) rapid observational response to new comets with dedicated infrared telescopes; 2) observations within a few degrees of the sun when comets are near perihelion and 3) access to advanced infrared array imagers and spectrometers. In particular, reduction, analysis, publication and archiving of our Jupiter/sl-9 and Comet Hyakutake infrared data received special emphasis. Instrumentation development included installation of the latest version of the innovative FORTH telescope control and a data acquisition system that enables us to control three telescopes remotely by telephone from anywhere in the world for comet observations in broad daylight. We have

  10. General Comet Traits and Comparison of their Dynamical History

    NASA Astrophysics Data System (ADS)

    Choukroun, Mathieu; A'Hearn, Michael F.; Vincent, Jean-Baptiste; Bockelee-Morvan, Dominique; Buratti, Bonnie J.; Crovisier, Jacques; Gulkis, Samuel; Von Allmen, Paul; Weissman, Paul R.

    2016-10-01

    Six comets have been visited by spacecrafts to date (1P/Halley, 19P/Borelly, 81P/Wild 2, 9P/Tempel 1, 103P/Hartley 2, and 67P/Churyumov-Gerasimenko). Very diverse nucleus morphologies are observed, within asingle comet and between them: pits, layered regions, scarps, smooth regions. The relative abundances and extent of these morphologies vary largely between comets. On 81P, pits and layered terrains are particularly abundant, while smooth regions are much less abundant. Conversely, on 9P and 19P, pits are notably less abundant, while smooth areas are abundant and more of greater extent. An evolutionary sequence of comet morphologies has been proposed previously, with the formation of pitted and layered terrains with large topography by early activity, and as activity proceeds, materials are mobilized and eventually form smoother, erosional regions. Observations of 67P seem to place it in between 81P and 9P/19P in this evolutionary sequence. Here we compare nucleus morphologies, outgassing rates, and dynamical history of these comets, in an attempt to test this evolutionary sequence, and to assess whether other properties may also be related to their dynamical history.This work has been conducted in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged.

  11. RADAR OBSERVATIONS OF COMET 103P/HARTLEY 2

    SciTech Connect

    Harmon, John K.; Nolan, Michael C.; Howell, Ellen S.; Taylor, Patrick A.; Giorgini, Jon D.

    2011-06-10

    Comets rarely come close enough to be studied intensively with Earth-based radar. The most recent such occurrence was when Comet 103P/Hartley 2 passed within 0.12 AU in late 2010 October, less than two weeks before the EPOXI flyby. This offered a unique opportunity to improve pre-encounter trajectory knowledge and obtain complementary physical data for a spacecraft-targeted comet. 103P/Hartley 2 is only the fourth comet nucleus to be imaged with radar and already the second to be identified as an elongated, bilobate object based on its delay-Doppler signature. The images show the dominant spin mode to be a rotation about the short axis with a period of 18.2 hr. The nucleus has a low radar albedo consistent with a surface density of 0.5-1.0 g cm{sup -3}. A separate echo component was detected from large (>cm) grains ejected anisotropically with velocities of several to tens of meters per second. Radar shows that, in terms of large-grain production, 103P/Hartley 2 is an unusually active comet for its size.

  12. Abundant Solar Nebula Solids in Comets

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  13. Hubble Sees Material Ejected From Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    1995-01-01

    These NASA Hubble Space Telescope pictures of comet Hale-Bopp show a remarkable 'pinwheel' pattern and a blob of free-flying debris near the nucleus. The bright clump of light along the spiral (above the nucleus, which is near the center of the frame) may be a piece of the comet's icy crust that was ejected into space by a combination of ice evaporation and the comet's rotation, and which then disintegrated into a bright cloud of particles.

    Although the 'blob' is about 3.5 times fainter than the brightest portion at the nucleus, the lump appears brighter because it covers a larger area. The debris follows a spiral pattern outward because the solid nucleus is rotating like a lawn sprinkler, completing a single rotation about once per week.

    Ground-based observations conducted over the past two months have documented at least two separate episodes of jet and pinwheel formation and fading. By coincidence, the first Hubble images of Hale-Bopp, taken on September 26, 1995, immediately followed one of these outbursts and allow researchers to examine it at unprecedented detail. For the first time they see a clear separation between the nucleus and some of the debris being shed. By putting together information from the Hubble images and those taken during the recent outburst using the 82 cm telescope of the Teide Observatory (Tenerife, Canary Islands, Spain), astronomers find that the debris is moving away from the nucleus at a speed (projected on the sky) of about 68 miles per hour (109 kilometers per hour).

    The Hubble observations will be used to determine if Hale-Bopp is really a giant comet or rather a more moderate-sized object whose current activity is driven by outgassing from a very volatile ice which will 'burn out' over the next year. Comet Hale-Bopp was discovered on July 23, 1995 by amateur astronomers Alan Hale and Thomas Bopp. Though this comet is still well outside the orbit of Jupiter (almost 600 million miles, or one billion kilometers from Earth

  14. The recent dynamical history of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Maquet, L.

    2015-07-01

    This paper presents the past evolution of the orbital elements of comet 67P/Churyumov-Gerasimenko, target of the Rosetta spacecraft. The gravitational orbit of the comet is affected by the sublimation of ice from the nucleus that triggers non-gravitational forces. The comet also experienced several close encounters with Jupiter, especially notable were those in 1959 and 1923 (less than 1 AU). These perturbations cause the chaoticity of the comet orbit at short time scale. The goal of this paper is to have a precise idea of the comet's recent dynamical history. This is done by studying the mean trends of the orbital elements of the comet and also by characterising its chaotic motion with the fast Lyapunov indicator. To compute these mean trends, two sets (considering or not the non-gravitational forces) of 1000 clone orbits of the comet were considered. This paper shows that the last close encounter with Jupiter on February 4, 1959, drastically modified the orbital elements of the comet (especially the perihelion distance: from more than 2.7 AU before the encounter to 1.3 AU after the encounter). The motion of the comet is also shown to be chaotic before the close encounter with Jupiter on October 2, 1923. The mean trends of the orbital elements of the comet are also presented in this paper (for two time scales: 270 years in the past and 10 000 years in the past).

  15. In-situ investigations of the ionosphere of comet 67P

    NASA Astrophysics Data System (ADS)

    Eriksson, A. I.; Edberg, N. J. T.; Odelstad, E.; Vigren, E.; Engelhardt, I.; Henri, P.; Lebreton, J.-P.; Galand, M.; Carr, C. M.; Koenders, C.; Nilsson, H.; Broiles, T.; Rubin, M.

    2015-10-01

    Since arrival of Rosetta at its target comet 67P/Churyumov-Gerasimenko in August 2014, the plasma environment has been dominated by ionized gas emanating from the comet nucleus rather than by solar wind plasma. This was evident early on from the strong modulation seen with Rosetta's position in a reference frame fixed to the rotating nucleus, with higher plasma densities observed when the spacecraft is above the neck region and when the comet exposes maximum area to the sun. In this respect, Rosetta is inside the comet ionosphere, providing excellent in situ investigation opportunities for the instruments of the Rosetta Plasma Consortium (RPC). In contrast to the often modelled scenario for a very active comet, the Langmuir probe instrument (RPC-LAP) finds electron temperatures mainly in the range of tens of thousand kelvin around this less active comet. This can be attributed to the lower density of neutral gas, meaning little cooling of recently produced electrons. A side effect of this is that the spacecraft charges negatively when within about 100 km from the nucleus. Interesting in itself, this also may point to similar charging for dust grains in the coma, with implications for the detection of the smallest particles and possibly for processes like electrostatic fragmentation. The inner coma also proves to be very dynamic, with large variations not only with latitude and longitude in a comet frame, but also with the solar wind and various wave phenomena.

  16. Comet Hyakutake to Approach the Earth in Late March 1996

    NASA Astrophysics Data System (ADS)

    1996-03-01

    Astronomers Prepare for a Rare Event In the early morning of January 31, 1996, Japanese amateur astronomer Yuji Hyakutake made his second comet discovery within five weeks. He found the new comet near the border between the southern constellations of Hydra (The Water-Snake) and Libra (The Scales), amazingly just three degrees from the position where he detected another comet on December 26, 1995. After two weeks of hectic activity among amateur and professional astronomers all over the world, much interesting information has now been gathered about the new comet which has been designated C/1996 B2 (Hyakutake) . In particular, it has been found to move in a near-parabolic orbit that will bring it unusually close to the Earth next month. It is then expected to become bright enough to be seen with the unaided eye and to remain so during several weeks thereafter. Preparations are now made to observe the celestial visitor with a large number of telescopes, on the ground and in space. This event offers a rare opportunity to study the immediate surroundings of a cometary nucleus in detail and the specialists intend to make the most of it. Discovery and orbit Yuji Hyakutake, of profession photoengraver and a well-known amateur astronomer, announced his new discovery without delay, and within 24 hours, it had been sighted by several other observers in Japan and Australia. Experienced comet-watchers described its appearance as `diffuse with central condensation and of magnitude 11-12', i.e. a little more than 100 times fainter than what can be seen with the unaided eye. This brightness is not unusual for a comet discovered by an amateur, although it would probably have been missed, had it been just a little fainter. In the present case, the decisive factors for Hyakutake's success were undoubtedly his very powerful equipment (25 x 150 binoculars) and the advantageous combination of the comet's southern position in the sky and his location in Kagoshima, the southernmost

  17. Space missions to comets

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor); Yeomans, D. K. (Editor); Brandt, J. C. (Editor); Hobbs, R. W. (Editor)

    1979-01-01

    The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed.

  18. Comet: A VOEvent broker

    NASA Astrophysics Data System (ADS)

    Swinbank, J.

    2014-11-01

    The VOEvent standard provides a means of describing transient celestial events in a machine-readable format. This is an essential step towards analysing and, where appropriate, responding to the large volumes of transients which will be detected by future large scale surveys. The VOEvent Transport Protocol (VTP) defines a system by which VOEvents may be disseminated to the community. We describe the design and implementation of Comet, a freely available, open source implementation of VTP. We use Comet as a base to explore the performance characteristics of the VTP system, in particular with reference to meeting the requirements of future survey projects. We describe how, with the aid of simple extensions to VTP, Comet can help users filter high-volume streams of VOEvents to extract only those which are of relevance to particular science cases. Based on these tests and on the experience of developing Comet, we derive a number of recommendations for future refinements of the VTP standard.

  19. Physics of comets

    NASA Astrophysics Data System (ADS)

    Krishna Swamy, K. S.

    1. General introduction. 1.1. Historical perspective. 1.2. Discovery. 1.3. Appearance. 1.4. Statistics. 1.5. Importance. 1.6. Brightness. 1.7. Main characteristics. 1.8. Spacecraft encounters with comets. 1.9. An overall view -- 2. Dynamics. 2.1. Orbital elements. 2.2. Orbit in space -- 3. Physical aspects. 3.1. Black body radiation. 3.2. Perfect gas law. 3.3. Dissociative equilibrium. 3.4. Doppler shift. 3.5. Spectroscopy. 3.6. Isotopic effect. 3.7. Franck-Condon factors. 3.8. Intensity of emitted lines. 3.9. Boltzmann distribution. 3.10. [symbol]-doubling. 3.11. Photochemistry of water. 3.12. Silicate. 3.13. Annealing. 3.14. Carbon. 3.15. Solar radiation. 3.16. Solar wind -- 4. Spectra. 4.1. Main characteristics. 4.2. Forbidden transitions. 4.3. Line-to-continuum ratio -- 5. Spectra of coma. 5.1. Fluorescence process. 5.2. Excitation temperature. 5.3. Abundances of heavy elements. 5.4. Isotopic abundances. 5.5. Summary -- 6. Gas production rates in coma. 6.1. Theoretical models. 6.2. Results. 6.3. Analysis of hydrogen observations. 6.4. Related studies. 6.5. Parent molecules. 6.6. Chemical diversity. 6.7. Summary -- 7. Dust tails. 7.1. Dynamics. 7.2. Anti-tail. 7.3. Dust trails. 7.4. Sodium gas tails. 7.5. Dust features -- 8. Light scattering theory. 8.1. Mie scattering theory. 8.2. Approximate expressions. 8.3. Computation of cross sections. 8.4. Results. 8.5. Particles of other types. 8.6. Optical constants -- 9. The nature of dust particles. 9.1. Visible continuum. 9.2. Polarization. 9.3. Grain sizes. 9.4. Infrared measurements. 9.5. Spectral feature. 9.6. Properties derived from direct measurements. 9.7. Radiation pressure effects. 9.8. Summary -- 10. Ion tails. 10.1. Evidence for the solar wind. 10.2. Dynamical aberration. 10.3. Theoretical considerations. 10.4. Instabilities and waves. 10.5. Acceleration of cometary ions. 10.6. Large scale structures. 10.7. X-rays. 10.8. Summary -- 11. Nucleus. 11.1. Morphology. 11.2. Theory of vapourization. 11

  20. Autonomous Navigation Performance During The Hartley 2 Comet Flyby

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matthew J; Kennedy, Brian A.; Bhaskaran, Shyam

    2012-01-01

    On November 4, 2010, the EPOXI spacecraft performed a 700-km flyby of the comet Hartley 2 as follow-on to the successful 2005 Deep Impact prime mission. EPOXI, an extended mission for the Deep Impact Flyby spacecraft, returned a wealth of visual and infrared data from Hartley 2, marking the fifth time that high-resolution images of a cometary nucleus have been captured by a spacecraft. The highest resolution science return, captured at closest approach to the comet nucleus, was enabled by use of an onboard autonomous navigation system called AutoNav. AutoNav estimates the comet-relative spacecraft trajectory using optical measurements from the Medium Resolution Imager (MRI) and provides this relative position information to the Attitude Determination and Control System (ADCS) for maintaining instrument pointing on the comet. For the EPOXI mission, AutoNav was tasked to enable continuous tracking of a smaller, more active Hartley 2, as compared to Tempel 1, through the full encounter while traveling at a higher velocity. To meet the mission goal of capturing the comet in all MRI science images, position knowledge accuracies of +/- 3.5 km (3-?) cross track and +/- 0.3 seconds (3-?) time of flight were required. A flight-code-in-the-loop Monte Carlo simulation assessed AutoNav's statistical performance under the Hartley 2 flyby dynamics and determined optimal configuration. The AutoNav performance at Hartley 2 was successful, capturing the comet in all of the MRI images. The maximum residual between observed and predicted comet locations was 20 MRI pixels, primarily influenced by the center of brightness offset from the center of mass in the observations and attitude knowledge errors. This paper discusses the Monte Carlo-based analysis that led to the final AutoNav configuration and a comparison of the predicted performance with the flyby performance.

  1. First High-Resolution Infrared Spectroscopic Measurements of Comet 2P/Encke: Unusual Organic Composition and Low Rotational Temperatures

    NASA Astrophysics Data System (ADS)

    Radeva, Yana L.; Mumma, M. J.; Villanueva, G. L.; Bonev, B. P.; DiSanti, M. A.; A'Hearn, M. F.; Dello Russo, N.

    2012-10-01

    We present the first high-resolution infrared spectra of the ecliptic comet 2P/Encke, acquired on UT 4 - 6 Nov. 2003, with the Near Infrared Echelle Spectrograph (NIRSPEC) on the Keck II telescope. 2P/Encke is a dynamical end-member among comets. Its very short period of 3.3 years (with perihelion at 0.34 AU and aphelion at 4.09 AU) exposes the nucleus to unusually high insolation throughout its orbit, raising the prospect that native ices may have experienced significant fractionation over time. Here, we present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO, and compare the abundance ratios with the “organics-normal” population. We also extracted very low rotational temperatures (20 - 30 K) for H2O, HCN, and CH3OH in the near-nucleus coma, which correlate with one of the lowest cometary gas production rates ( 1027 molecules s-1) measured thus far in the infrared. We determined that 2P/Encke is enriched in CH3OH, but depleted in C2H6, C2H2, HCN, CH4, H2CO and CO. We compared mixing ratios of these organic species measured on separate dates, and found no evidence of macroscopic chemical heterogeneity in this cometary nucleus, however, we are limited by sparse temporal sampling of our observations. The depleted abundances of most measured species but retention of the high temperature volatiles (H2O, CH3OH) are consistent with fractionation of 2P/Encke’s native ices by thermal processing while in its current orbit. 2P/Encke is unique in terms of its short period, unusual organic composition, low rotational temperatures and low production rates. The discovery of its unusual organic composition is an important contribution to the emerging chemical taxonomy of comets.

  2. Hco+ in the Coma of Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    Lovell, A. J.; Schloerb, F. P.; Bergin, E. A.; Dickens, J. E.; De Vries, C. H.; Senay, M. C.; Irvine, W. M.

    1997-05-01

    Maps of comet C/1995 O1 (Hale-Bopp) in the millimeter-wave emission of the ion HCO^+ revealed a local minimum near the nucleus position, with a maximum about 100,000 km in the antisolar direction. These observed features of the HCO^+ emission require a low abundance of HCO^+ due to enhanced destruction in the inner coma of the comet, within a region of low electron temperature (T_e). To set constraints on the formation of HCO^+ in the coma, as well as the location and magnitude of the transition to higher T_e, the data are compared with the results of ion-molecule chemistry models.

  3. HCO+ in the coma of comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Lovell, A. J.; Schloerb, F. P.; Bergin, E. A.; Dickens, J. E.; Devries, C. H.; Senay, M. C.; Irvine, W. M.; Ferris, J. P. (Principal Investigator)

    1997-01-01

    Maps of comet C/1995 O1 (Hale-Bopp) in the millimeter-wave emission of the ion HCO+ revealed a local minimum near the nucleus position, with a maximum about 100,000 km in the antisolar direction. These observed features of the HCO+ emission require a low abundance of HCO+ due to enhanced destruction in the inner coma of the comet, within a region of low electron temperature (Te). To set constraints on the formation of HCO+ in the coma, as well as the location and magnitude of the transition to higher Te, the data are compared with the results of ion-molecule chemistry models.

  4. Spectrophotometric observations of comet P/Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Konno, I.; Wyckoff, S.; Wehinger, P. A.

    1989-01-01

    Spectroscopic observations of the Giacobini-Zinner comet were performed on March 20, June 20 and 21, September 11, and October 19, 1985. The September observations were performed at perihelion, exactly at the time of the International Cometary Explorer (ICE) encounter with the comet. The March and June observations were obtained with an intensified image dissector scanner (IIDS) on the 2.1-meter Kitt Peak telescope and the September and the October observations were obtained with a charge-coupled device (CCD) on the 4-meter Kitt Peak telescope. The nucleus spectra from these observations are presented.

  5. CN jet velocity in Comet P/Halley

    NASA Technical Reports Server (NTRS)

    Klavetter, James J.; A'Hearn, Michael F.

    1992-01-01

    The projected expansion velocity of Comet Halley's coma is presently determined in CN jet images that were processed with a radial profile subtraction technique. It is established that the flow is approximately radial, and that the velocity can also be determined by measuring specific radial features in jets. The largest projected velocity is 1.7 +/- 0.3 km/sec, at 50,000 km from the nucleus. This is the largest expansion velocity found for this region of the Comet Halley coma. Comparisons are made with other observations and theoretical models.

  6. The submillimeter radio continuum of Comet P/Brorsen-Metcalf

    SciTech Connect

    Jewitt, D.; Luu, J. MIT, Cambridge, MA )

    1990-12-01

    Observations of Comet P/Brorsen-Metcalf in the submillimeter radio continuum are presented. The observations were taken using the James Clerk Maxwell Telescope on Mauna Kea, and include the first truly submillimeter detection of a comet, and the first submillimeter continuum spectrum. The submillimeter radiation is attributed to thermal emission from a transient population of large grains with a total mass of (1-10) x 10 to the 9th kg. The large grains may be produced by catastrophic failure of part of the refractory mantle on the surface of the cometary nucleus. Models of the submillimeter continuum are discussed. 49 refs.

  7. Physical parameters and morphology of comet 67P/Churyumov-Gerasimenko - a main target of Rosetta space mission

    NASA Astrophysics Data System (ADS)

    Churyumov, Klim; Kleshchonok, Valery; Mozgova, Alyona

    Rosetta, a European space vehicle was head to the icy nucleus of the short period comet 67P/Churyumov-Gerasimenko on 2 March, 2004 from cosmodrome Kouru. On 20 Jan. 2014, Rosetta after 10 years of flight and 31-month sleep has been woke up succesfully and now will approche to the icy nucleus of comet Churyumov-Gerasimenko and pass away into orbit around the cometary nucleus. In November 2014 the Philae probe will be sent from Rosetta on the nucleus of comet 67P to study the relict matter of the Solar system. Comet 67P was discovered by the Kyiv astronomers Klim Churyumov and Svitlana Gerasimenko on 22 October 1969 on the five photographic plates exponed with the help of 50-cm Maksutov’s reflector of the Alma-Ata Astrophysical Institute on 9, 11 and 21 Sept. 1969. First 5 exact positions of comet were sent to Dr Brian Marsden. Dr B.Marsden showed it was new comet. The comet had an apparent magnitude of 13 and a faint tail about 1 arcmin in length at position angle 280 degrees. The astronomer Nikolay Belyaev from Saint-Petersbourg calculated that the comet followed an elliptical orbit. In 1982 it had the close encounter with the Earth at 0.3910 A.U. On the basis of the observations of comet 67P obtained in Nizhny Arkhyz with the help of the 6- BTA reflector of SAO of RAS some physical parameters of its comet plasma tail (coefficients of diffusion Dp(parallel) , Ds(perpendicular) and induction of magnetic field B) were determined. Other results of exploration of comet 67P (its polarisation, spectral observations, the light curve and morphology) in different apparitions are discussed.

  8. Comets as collisional fragments of a primordial planetesimal disk

    NASA Astrophysics Data System (ADS)

    Morbidelli, A.; Rickman, H.

    2015-11-01

    Context. The Rosetta mission and its exquisite measurements have revived the debate on whether comets are pristine planetesimals or collisionally evolved objects. Aims: We investigate the collisional evolution experienced by the precursors of current comet nuclei during the early stages of the solar system in the context of the so-called Nice model. Methods: We considered two environments for the collisional evolution: (1) the transplanetary planetesimal disk, from the time of gas removal until the disk was dispersed by the migration of the ice giants; and (2) the dispersing disk during the time that the scattered disk was formed. We performed simulations using different methods in the two cases to determine the number of destructive collisions typically experienced by a comet nucleus of 2 km radius. Results: In the widely accepted scenario, where the dispersal of the planetesimal disk occurred at the time of the Late Heavy Bombardment about 4 Gy ago, comet-sized planetesimals have a very low probability of surviving destructive collisions in the disk. On the extreme assumption that the disk was dispersed directly upon gas removal, a significant fraction of the planetesimals might have remained intact. However, these survivors would still bear the marks of many nondestructive impacts. Conclusions: The Nice model of solar system evolution predicts that typical km-sized comet nuclei are predominantly fragments resulting from collisions experienced by larger parent bodies. An important goal for future research is to investigate whether the observed properties of comet nuclei are compatible with such a collisional origin.

  9. Spectroscopic evidence for interstellar ices in comet Hyakutake.

    PubMed

    Irvine, W M; Bockelee-Morvan, D; Lis, D C; Matthews, H E; Biver, N; Crovisier, J; Davies, J K; Dent, W R; Gautier, D; Godfrey, P D; Keene, J; Lovell, A J; Owen, T C; Phillips, T G; Rauer, H; Schloerb, F P; Senay, M; Young, K

    1996-10-01

    Volatile compounds in comets are the most pristine materials surviving from the time of formation of the Solar System, and thus potentially provide information about conditions that prevailed in the primitive solar nebula. Moreover, comets may have supplied a substantial fraction of the volatiles on the terrestrial planets, perhaps including organic compounds that played a role in the origin of life on Earth. Here we report the detection of hydrogen isocyanide (HNC) in comet Hyakutake. The abundance of HNC relative to hydrogen cyanide (HCN) is very similar to that observed in quiescent interstellar molecular clouds, and quite different from the equilibrium ratio expected in the outermost solar nebula, where comets are thought to form. Such a departure from equilibrium has long been considered a hallmark of gas-phase chemical processing in the interstellar medium, suggesting that interstellar gases have been incorporated into the comet's nucleus, perhaps as ices frozen onto interstellar grains. If this interpretation is correct, our results should provide constraints on the temperature of the solar nebula, and the subsequent chemical processes that occurred in the region where comets formed.

  10. The study of comets, part 1. [conference on photometry and spectrum analysis of Kohoutek comet and comet tails

    NASA Technical Reports Server (NTRS)

    Donn, B. (Editor); Mumma, M. J. (Editor); Jackson, W. M. (Editor); Ahearn, M. (Editor); Harrington, R. (Editor)

    1976-01-01

    Papers are presented dealing with observations of comets. Topic discussed include: photometry, polarimetry, and astrometry of comets; detection of water and molecular transitions in comets; ion motions in comet tails; determination of comet brightness and luminosity; and evolution of cometary orbits. Emphasis is placed on analysis of observations of comet Kohoutek.

  11. Ensemble Properties of Comets in the Sloan Digital Sky Survey

    SciTech Connect

    Solontoi, Michael; Ivezic, Zeljko; Juric, Mario; Becker, Andrew C.; Jones, Lynne; West, Andrew A.; Kent, Steve; Lupton, Robert H.; Claire, Mark; Knapp, Gillian R.; Quinn, Tom; /Washington U., Seattle, Astron. Dept. /Princeton U. Observ.

    2012-02-01

    We present the ensemble properties of 31 comets (27 resolved and 4 unresolved) observed by the Sloan Digital Sky Survey (SDSS). This sample of comets represents about 1 comet per 10 million SDSS photometric objects. Five-band (u, g, r, i, z) photometry is used to determine the comets colors, sizes, surface brightness profiles, and rates of dust production in terms of the Afp formalism. We find that the cumulative luminosity function for the Jupiter Family Comets in our sample is well fit by a power law of the form N(comets. The resolved comets show an extremely narrow distribution of colors (0.57 {+-} 0.05 in g - r for example), which are statistically indistinguishable from that of the Jupiter Trojans. Further, there is no evidence of correlation between color and physical, dynamical, or observational parameters for the observed comets.

  12. Geomorphological mapping of the Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Giacomini, Lorenza; Massironi, Matteo; Pajola, Maurizio; Ramy El-Maarry, Mohamed; Thomas, Nicolas; Cremonese, Gabriele; La Forgia, Fiorangela; Ferri, Francesca; Lazzarin, Monica; Barbieri, Cesare; Bertini, Ivano; Magrin, Sara; Marzari, Francesco; Naletto, Giampiero; Sierks, Holger

    2015-04-01

    OSIRIS, the Scientific Imaging System for Rosetta mission, has been acquiring images of the nucleus of the comet 67P/Churyumov-Gerasimenko since Aug 2014 with a resolution that allows a detailed analysis of its surface. The data reveal a complex surface morphology that is probably the expression of different processes affecting the cometary nucleus. In order to characterize these different morphologies and better understand their distribution we have performed a geomorphological/geological mapping of 67P's surface. For this purpose we used NAC images acquired on August 5-8 with a spatial resolution ranging from 1.5 and 2.4 m/pixel. Several different geological units have been identified on the basis of their different surface textures. Some of these units appear specific to a particular region of the comet whereas others seem to be more common and scattered all over the nucleus surface. Moreover, different types of lineaments have been distinguished. Some of them have never been observed before on a comet and provide important clues on the internal structure of the nucleus. These geomorphological maps will allow us to assess the stratigraphic relationship between the different units and will therefore shed more light on the surface evolution of 67P/Churyumov-Gerasimenko.

  13. Comets and the Stardust Mission

    SciTech Connect

    LLNL - University of California Television

    2008-05-16

    The occasional appearance of comets has awed humans throughout history. But how much do we really know about comets? Did a comet kill the dinosaurs? And, what can comets tell us about our own ancient history? With comet dust from NASA's Stardust mission, scientists like Hope Ishii, a Research Scientist at Lawrence Livermore National Laboratory, are beginning to answer these questions. She and high school teacher Tom Shefler look at how comets formed, their role in the Earth's history and the clues about what happened over 4 billion years ago. Series: Science on Saturday [5/2008] [Science] [Show ID: 14492

  14. Comets and the Stardust Mission

    ScienceCinema

    LLNL - University of California Television

    2016-07-12

    The occasional appearance of comets has awed humans throughout history. But how much do we really know about comets? Did a comet kill the dinosaurs? And, what can comets tell us about our own ancient history? With comet dust from NASA's Stardust mission, scientists like Hope Ishii, a Research Scientist at Lawrence Livermore National Laboratory, are beginning to answer these questions. She and high school teacher Tom Shefler look at how comets formed, their role in the Earth's history and the clues about what happened over 4 billion years ago. Series: Science on Saturday [5/2008] [Science] [Show ID: 14492

  15. Comets in Australian Aboriginal Astronomy

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.; Norris, Ray P.

    2011-03-01

    We present 25 accounts of comets from 40 Australian Aboriginal communities, citing both supernatural perceptions of comets and historical accounts of historically bright comets. Historical and ethnographic descriptions include the Great Comets of 1843, 1861, 1901, 1910, and 1927. We describe the perceptions of comets in Aboriginal societies and show that they are typically associated with fear, death, omens, malevolent spirits, and evil magic, consistent with many cultures around the world. We also provide a list of words for comets in 16 different Aboriginal languages.

  16. The 10 micron spectral structure in comets

    NASA Technical Reports Server (NTRS)

    Lynch, David K.; Russell, Ray W.; Campins, Humberto

    1989-01-01

    The 10 micron spectra of comets Halley (1982i), Wilson (1986l), Kohoutek (1973f) and Bradfield (1987s) are presented and compared. The silicate emission profiles of Halley and Bradfield are seen to be remarkably similar in that both contain a sharp break in the spectrum at 11.3 microns. Comet Bradfield does not show the same double peak structure seen in olivine and reported in Comet Halley be Campins and Ryan (1988) and Bregman, et al. (1987). The authors interpret the 11.3 micron signature as being due to olivine-type dust grains with at least some degree of crystallinity. Olivine alone is not enough to reproduce the shape of the 10 micron structure. However, in view of the authors' past success in fitting interstellar dust features with the emissivity profile obtained from amorphous grains produced by laser-vaporizing olivine, this is a very appealing identification. They note that there are significant variations in olivine spectra due to compositional differences, grain size distribution and related grain temperature variations to make the olivine identification tentative. They further tentatively identify the 9.8 micron feature in Halley as being due to either amorphorous olivine or a phyllosilicate (layer lattice). Neither the spectra of Halley, Kohoutek, nor Bradfield exhibited the 12.2 micron feature seen in Comet Wilson, which may prove diagnostic of the composition or thermal history differences between these comets. IR spectra of various mineral samples are discussed in terms of their match to cometary spectra.

  17. Photometric behavior of comet Hale-Bopp (C/1995 O1) before perihelion.

    PubMed

    Schleicher, D G; Lederer, S M; Millis, R L; Farnham, T L

    1997-03-28

    Narrowband photometric observations of comet Hale-Bopp (C/1995 O1) between 25 July 1995 and 15 February 1997 indicated gas and dust production rates of 20 and 100 times greater, respectively, than observed at the same heliocentric distances for comet P/Halley in 1985. Hale-Bopp produced dust at a rate greater than has been observed for any other comet at any distance since at least 1977. On the basis of the observed production rate of the hydroxyl molecule, the calculated minimum effective diameter of Hale-Bopp's nucleus is 17 kilometers, but the actual diameter of the nucleus is likely to be at least two to three times larger. The chemical composition of Hale-Bopp is consistent with that of other long-period comets originating from the Oort Cloud.

  18. Photometric behavior of comet Hale-Bopp (C/1995 O1) before perihelion.

    PubMed

    Schleicher, D G; Lederer, S M; Millis, R L; Farnham, T L

    1997-03-28

    Narrowband photometric observations of comet Hale-Bopp (C/1995 O1) between 25 July 1995 and 15 February 1997 indicated gas and dust production rates of 20 and 100 times greater, respectively, than observed at the same heliocentric distances for comet P/Halley in 1985. Hale-Bopp produced dust at a rate greater than has been observed for any other comet at any distance since at least 1977. On the basis of the observed production rate of the hydroxyl molecule, the calculated minimum effective diameter of Hale-Bopp's nucleus is 17 kilometers, but the actual diameter of the nucleus is likely to be at least two to three times larger. The chemical composition of Hale-Bopp is consistent with that of other long-period comets originating from the Oort Cloud. PMID:9072963

  19. Geomorphology of Active Regions on Comet 67P/Churyumov-Gerasimenko from Osiris Observations

    NASA Astrophysics Data System (ADS)

    Auger, A. T.; Groussin, O.; Jorda, L.; Bouley, S.; Lamy, P. L.; Cremonese, G.; Thomas, N.; Sierks, H.

    2014-12-01

    The geomorphological study of active regions on comets provides valuable insights to understand how comets work and to which extend they may still contain pristine materials on or close to their surface. The Rosetta spacecraft is orbiting comet 67P/Churyumov-Gerasimenko since summer 2014 and offers a unique opportunity to address this science topic. The Narrow and Wide Angle Cameras of the OSIRIS imaging experiment have acquired numerous images of the nucleus surface, with a spatial resolution down to the meter scale. Here, we focus on the geomorphology of some specific, active, regions of the nucleus, releasing materials from their surface or from their upper layers. With the help of digital terrains models and GIS tools, we map these regions and report their size, area, shape, slopes and surface roughness. This detailed analysis give us a reference point to emphasize their evolution as the comet approaches perihelion, but also provide information on the possibly pristine nature of these morphologies.

  20. EPOXI: Comet 103P/Hartley 2 Observations from a Worldwide Campaign

    NASA Astrophysics Data System (ADS)

    Meech, K. J.; A'Hearn, M. F.; Adams, J. A.; Bacci, P.; Bai, J.; Barrera, L.; Battelino, M.; Bauer, J. M.; Becklin, E.; Bhatt, B.; Biver, N.; Bockelée-Morvan, D.; Bodewits, D.; Böhnhardt, H.; Boissier, J.; Bonev, B. P.; Borghini, W.; Brucato, J. R.; Bryssinck, E.; Buie, M. W.; Canovas, H.; Castellano, D.; Charnley, S. B.; Chen, W. P.; Chiang, P.; Choi, Y.-J.; Christian, D. J.; Chuang, Y.-L.; Cochran, A. L.; Colom, P.; Combi, M. R.; Coulson, I. M.; Crovisier, J.; Dello Russo, N.; Dennerl, K.; DeWahl, K.; DiSanti, M. A.; Facchini, M.; Farnham, T. L.; Fernández, Y.; Florén, H. G.; Frisk, U.; Fujiyoshi, T.; Furusho, R.; Fuse, T.; Galli, G.; García-Hernández, D. A.; Gersch, A.; Getu, Z.; Gibb, E. L.; Gillon, M.; Guido, E.; Guillermo, R. A.; Hadamcik, E.; Hainaut, O.; Hammel, H. B.; Harker, D. E.; Harmon, J. K.; Harris, W. M.; Hartogh, P.; Hashimoto, M.; Häusler, B.; Herter, T.; Hjalmarson, A.; Holland, S. T.; Honda, M.; Hosseini, S.; Howell, E. S.; Howes, N.; Hsieh, H. H.; Hsiao, H.-Y.; Hutsemékers, D.; Immler, S. M.; Jackson, W. M.; Jeffers, S. V.; Jehin, E.; Jones, T. J.; de Juan Ovelar, M.; Kaluna, H. M.; Karlsson, T.; Kawakita, H.; Keane, J. V.; Keller, L. D.; Kelley, M. S.; Kinoshita, D.; Kiselev, N. N.; Kleyna, J.; Knight, M. M.; Kobayashi, H.; Kobulnicky, H. A.; Kolokolova, L.; Kreiny, M.; Kuan, Y.-J.; Küppers, M.; Lacruz, J. M.; Landsman, W. B.; Lara, L. M.; Lecacheux, A.; Levasseur-Regourd, A. C.; Li, B.; Licandro, J.; Ligustri, R.; Lin, Z.-Y.; Lippi, M.; Lis, D. C.; Lisse, C. M.; Lovell, A. J.; Lowry, S. C.; Lu, H.; Lundin, S.; Magee-Sauer, K.; Magain, P.; Manfroid, J.; Mazzotta Epifani, E.; McKay, A.; Melita, M. D.; Mikuz, H.; Milam, S. N.; Milani, G.; Min, M.; Moreno, R.; Mueller, B. E. A.; Mumma, M. J.; Nicolini, M.; Nolan, M. C.; Nordh, H. L.; Nowajewski, P. B.; Odin Team; Ootsubo, T.; Paganini, L.; Perrella, C.; Pittichová, J.; Prosperi, E.; Radeva, Y. L.; Reach, W. T.; Remijan, A. J.; Rengel, M.; Riesen, T. E.; Rodenhuis, M.; Rodríguez, D. P.; Russell, R. W.; Sahu, D. K.; Samarasinha, N. H.; Sánchez Caso, A.; Sandqvist, A.; Sarid, G.; Sato, M.; Schleicher, D. G.; Schwieterman, E. W.; Sen, A. K.; Shenoy, D.; Shi, J.-C.; Shinnaka, Y.; Skvarc, J.; Snodgrass, C.; Sitko, M. L.; Sonnett, S.; Sosseini, S.; Sostero, G.; Sugita, S.; Swinyard, B. M.; Szutowicz, S.; Takato, N.; Tanga, P.; Taylor, P. A.; Tozzi, G.-P.; Trabatti, R.; Trigo-Rodríguez, J. M.; Tubiana, C.; de Val-Borro, M.; Vacca, W.; Vandenbussche, B.; Vaubaillion, J.; Velichko, F. P.; Velichko, S. F.; Vervack, R. J., Jr.; Vidal-Nunez, M. J.; Villanueva, G. L.; Vinante, C.; Vincent, J.-B.; Wang, M.; Wasserman, L. H.; Watanabe, J.; Weaver, H. A.; Weissman, P. R.; Wolk, S.; Wooden, D. H.; Woodward, C. E.; Yamaguchi, M.; Yamashita, T.; Yanamandra-Fischer, P. A.; Yang, B.; Yao, J.-S.; Yeomans, D. K.; Zenn, T.; Zhao, H.; Ziffer, J. E.

    2011-06-01

    Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales, at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P/Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was ~16.4 hr. Starting in 2010 August the period changed from 16.6 hr to near 19 hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO2-driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.

  1. EPOXI: Comet 103p/Hartley 2 Observations from a Worldwide Campaign

    NASA Technical Reports Server (NTRS)

    Meech, K. J.; Hearn, M. F. A.; Bauer, J. M.; Bonev, B. P.; Charnley, S. B.; DiSanti, M. A.; Gersch, A.; Immler, S. M.; Kaluna, H. M.; Keane, J. V.; Kelley, M. S.; Kleyna, J.; Landsman, W. B.; Milam, S. N.; Mumma, M. J.; Pittichova, J.; Riesen, T. E.; Sarid, G.; Sonnett, S.; Villanueva, G. L.; Wiessman, P. R.; Wooden, D. H.; Yanamandra-Fischer, P. A.; Yeomans, D. K.; Zenn, T.

    2011-01-01

    Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales. at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P (Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was approximately 16.4 hr. Starting in 2010 August the period changed from 16.6 hr to near 19 hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO2-driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.

  2. Comets after Hyakutake and Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.

    1999-01-01

    Being icy, cometary nuclei are the most easily modified bodies in the solar system - even modest heating is sufficient to induce significant weight loss. This sublimative loss and longterm storage far from the sun protect the nucleus against internal warming and ensure that cometary nuclei today contain the least processed material remaining from the early nebula - or perhaps from the natal cloud. The chemical compositions of ices, low temperature-refractory organics, and refractory minerals (and their physical states) provide sensitive probes of the origin and history of this material. The fortunate appearance of Hyakutake and Hale-Bopp has provided a wealth of information on these Oort cloud comets, obtained with a wide range of astronomical approaches. I will review certain key results for these comets, such as chemical abundances, isotopic abundance ratios, nuclear spin statistics, and nuclear vs extended production of "parent volatiles", and will illustrate how these test the origins of cometary material. A comparison with 1P/Halley--a third comet from the giant planet nebular region--will be discussed in the context of heterogeneity among these bodies.

  3. Photometry of the comet 2060 Chiron

    NASA Technical Reports Server (NTRS)

    Buratti, Bonnie J.; Marcialis, Robert L.; Dunbar, R. Scott

    1991-01-01

    The comet 2060 Chiron has proven to be an interesting and enigmatic object. Situated between the orbits of Saturn and Uranus, it was originally classified as the most distant asteroid. It began to show cometary behavior in 1987 by increasing a full magnitude in brightness and developing a coma; there is evidence also for similar earlier outbursts. A thorough study of Chiron is important for two reasons: (1) it is a transition object defining the relationship between comets, asteroids, and meteorites; and (2) a full description of its changes in brightness - particularly on time scale of hours - will provide an empirical foundation for understanding the physical mechanisms (including outgassing, sublimation of volatiles, and even significant mass ejections) driving the evolution of comets. Short term outbursts were observed in early 1989, and a rapid decrease in brightness of Chiron's coma was observed in 1990 in the V and R filters. Also, a rotational lightcurve was detected of the nucleus with an amplitude only 1/4 that observed in its quiescent state: this fact indicates the increased importance of the optically thin coma to the observed brightness.

  4. Sample Returns Missions in the Coming Decade

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Mitcheltree, Robert A.; Cheatwood, F. McNeil

    2000-01-01

    In the coming decade, several missions will attempt to return samples to Earth from varying parts of the solar system. These samples will provide invaluable insight into the conditions present during the early formation of the solar system, and possibly give clues to how life began on Earth. A description of five sample return missions is presented (Stardust, Genesis, Muses-C. Mars Sample Return, and Comet Nucleus Sample Return). An overview of each sample return mission is given, concentrating particularly on the technical challenges posed during the Earth entry, descent, and landing phase of the missions. Each mission faces unique challenges in the design of an Earth entry capsule. The design of the entry capsule must address the aerodynamic, heating, deceleration, landing, and recovery requirements for the safe return of samples to Earth.

  5. Close encounters and collisions of comets with the earth

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.; Yeomans, D. K.

    1984-01-01

    A computer search for earth-approaching comets among those listed in Marsden's (1983) updated orbit catalog has identified 36 cases at which minimum separation distance was less than 2500 earth radii. A strong representation of short period comets in the sample is noted, and the constant rate of the close approaching comets in the last 300 years is interpreted to suggest the lack of long-period comets intrinsically fainter than an absolute magnitude of about 11. A comet-earth collision rate derived from the statistics of these close encounters implies an average period of 33-64 million years between any two events. This rate is comparable with the frequency of geologically recent global catastrophes which appear to be associated with extraterrestrial object impacts, such as the Cretaceous-Tertiary extinction 65 million years ago and the late Eocene event 34 million years ago.

  6. Hubble View of Comet ISON

    NASA Video Gallery

    This time-lapse sequence of images from the Hubble Space Telescope shows comet ISON as it appeared on May 8, 2013. At the time the images were taken, the comet was 403 million miles from the Earth,...

  7. NARROW DUST JETS IN A DIFFUSE GAS COMA: A NATURAL PRODUCT OF SMALL ACTIVE REGIONS ON COMETS

    SciTech Connect

    Combi, M. R.; Tenishev, V. M.; Rubin, M.; Fougere, N.; Gombosi, T. I.

    2012-04-10

    Comets often display narrow dust jets but more diffuse gas comae when their eccentric orbits bring them into the inner solar system and sunlight sublimates the ice on the nucleus. Comets are also understood to have one or more active areas covering only a fraction of the total surface active with sublimating volatile ices. Calculations of the gas and dust distribution from a small active area on a comet's nucleus show that as the gas moves out radially into the vacuum of space it expands tangentially, filling much of the hemisphere centered on the active region. The dust dragged by the gas remains more concentrated over the active area. This explains some puzzling appearances of comets having collimated dust jets but more diffuse gaseous atmospheres. Our test case is 67P/Churyumov-Gerasimenko, the Rosetta mission target comet, whose activity is dominated by a single area covering only 4% of its surface.

  8. The diiversity of rocky materials in comets

    NASA Astrophysics Data System (ADS)

    Brownlee, Don E.; Joswiak, Dave

    2016-10-01

    Comets have spectacularly diverse surface morphologies and notable differences in volatile contents. Is it possible that these seemingly diverse bodies actually contain similar mixes of rocky materials and that this is a fundamental property of small bodies that accreted in the outer parts of the early solar system? Detailed laboratory analyses of comet Wild 2 samples returned by the Stardust mission show, to first order, that the majority of preserved rocky materials >1µm are similar to those in primitive asteroidal meteorites. Nearly all of these components have solar system isotopic compositions and appear for have formed in hot environments in the inner solar system by the same high temperature processes than made condensates, chondrules and refractory inclusions found in primitive meteorites. It appears that the major difference between the rocky materials in the comet and meteorites is that the comet materials are an amazing potpourri of materials made in numerous nebular environments while meteorite groups are dominated by regional materials whose properties give each group its distinctive isotopic, elemental and mineralogical compositions. Olivine is one of the most abundant minerals in primitive meteorites and in Wild 2. The Mn & Fe abundances in olivine show distinct trends in different meteorite groups. The dispersion of Mn and Fe in 200 comet olivine grains shows that the comet is not dominated by grains from any of the meteorite group reservoirs but requires broad contributions from many nebular environments. This is very strong evidence that the comet rocky materials came from multiple solar system environments and were broadly mixed during long distant transport from high temperature environments to cold comet-forming regions. Results from interplanetary dust of probably cometary origin matches the Wild 2 data. These findings suggest that outer solar system bodies may have received similar mixes of inner solar system rocky particles. The great

  9. Thermophysical simulations of comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    González, M.; Gutiérrez, P. J.; Lara, L. M.

    2014-03-01

    Aims: In this work, we simulate the global behavior of comet Hale-Bopp with our thermophysical model starting with simple, homogeneous conditions, so that dust mantling and the active area develop consistently depending on the properties of the simulated nucleus. We aim to obtain a range of compatibility between our model and the observations, that can be used as constraints on some of the characteristics of cometary nuclei. Methods: Our thermophysical model includes crystallization (and release of trapped CO), sublimation/recondensation, heat and gas transport through the nucleus, and dragged dust release. We run a battery of simulations with different parameter sets selected according to our current knowledge of comets and compare our results with observational data. Initial calculations are performed for a comet radius R0 = 30 km. To match the calculated integrated H2O production to the observed rate, we renormalize to a new R, which must be within 20 and 40 km, that is a range compatible with several estimates. Further selection is performed comparing the simulated water and carbon monoxide production rate profiles with the observational profiles and checking that the observational upper/lower limits of the H2O production are fulfilled. Results: We have found a reasonable agreement between our model and the data for H2O and CO production rates, without the need of distributed sources, for the following initial conditions: the nucleus is composed of water, carbon monoxide, and dust with a moderate dust proportion, tending to be icy, with a dust-to-ice ratio of between 0.5 and 1. The water ice must be initially amorphous with 15 to 20% of trapped carbon monoxide. The icy matrix has a thermal inertia between 100 and 200 J m-2 K s-1/2, considering the initial composition with crystalline ice at 140 K. The dust follows an exponential size distribution with particles from 0.1 μm to 1 mm and leaves the comet dragged by the expelled vapor with a dragging efficiency

  10. Activity of Comet Hale-Bopp (1995 01) Beyond 6 AU From the Sun

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1996-01-01

    The physical evolution of comet Hale-Bopp is investigated along the preperihelic arc of its orbit at heliocentric distances larger than 6 AU. The comet's considerable intrinsic brightness and activity are explained by the existence of a relatively larg area on its nucleus surface that is a resevoir of both carbon monoxide and dust particulates. Three recuring dust emission events observed in August-October 1995 are studied in some detail.

  11. Discovery of cometary kilometric radiations and plasma waves at Comet Halley

    NASA Astrophysics Data System (ADS)

    Oya, H.; Morioka, A.; Miyake, W.; Smith, E. J.; Tsurutani, B. T.

    1986-05-01

    The plasma-wave probe carried by the spacecraft Sakigake discovered discrete spectra of emissions from comet Halley in the frequency range 30 - 195 kHz. The observed cometary kilometric radiation appears to come from moving shocks in the coma region which are possibly associated with temporal variations of the solar wind. Waves due to plasma instabilities associated with the pick-up of cometary ions by the solar wind were observed within a region almost 107km from the comet nucleus.

  12. Hubble Images of Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This is a series of Hubble Space Telescope observations of the region around the nucleus of Hale-Bopp, taken on eight different dates since September 1995. They chronicle changes in the evolution of the nucleus as it moves ever closer to, and is warmed by, the sun.

    The first picture in the sequence, seen at upper left shows a strong dust outburst on the comet that occurred when it was beyond the orbit of Jupiter. Images in the Fall of 1996 show multiple jets that are presumably connected to the activation of multiple vents on the surface of the nucleus.

    In these false color images, taken with the Wide Field and Planetary Camera 2, the faintest regions are black, the brightest regions are white, and intermediate intensities are represented by different levels of red. All images are processed at the same spatial scale of 280 miles per pixel (470 kilometers), so the solid nucleus, no larger than 25 miles across, is far below Hubble's resolution.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  13. The nature of comet nuclei

    NASA Technical Reports Server (NTRS)

    Sykes, Mark V.; Walker, Russell G.

    1992-01-01

    The icy-conglomerate model of comet nuclei has dominated all others since its introduction. It provided a basis for understanding the non-gravitational motions of comets which had perplexed dynamicists up to that time, and provided a focus for understanding cometary composition and origin. The image of comets as dirty snowballs was quickly adopted. Comet nuclei including their trail mass loss rates and refractory to volatile mass ratios are described.

  14. Planetary perturbations and the origins of short-period comets

    SciTech Connect

    Quinn, T.; Tremaine, S.; Duncan, M. Queen's Univ., Kingston )

    1990-06-01

    To investigate the dynamical plausibility of possible sources for the short-period comets, a representative sample of comet orbits in the field of the sun and the giant planets was integrated, with the aim to determine whether the distribution of orbits from a proposed source that reach observable perihelia (q less than 2.5 AU) matches the observed distribution of short-period orbits. It is found that the majority of the short-period comets, those with orbital period P less than 20 yr (the Jupiter family), cannot arise from isotropic orbits with perihelia near Jupiter's orbit, because the resulting observable comet orbits have the wrong distribution in period, inclination, and argument of perihelion. The simulations also show that Jupiter-family comets cannot arise from isotropic orbits with perihelia in the Uranus-Neptune region. On the other hand, a source of low-inclination Neptune-crossing orbits yields a distribution of observable Jupiter-family comets that is consistent with the data in all respects. These results imply that the Jupiter-family comets arise from a disk source in the outer solar system rather than from the Oort comet cloud. 30 refs.

  15. Planetary perturbations and the origins of short-period comets

    NASA Astrophysics Data System (ADS)

    Quinn, T.; Tremaine, S.; Duncan, M.

    1990-06-01

    To investigate the dynamical plausibility of possible sources for the short-period comets, a representative sample of comet orbits in the field of the sun and the giant planets was integrated, with the aim to determine whether the distribution of orbits from a proposed source that reach observable perihelia (q less than 2.5 AU) matches the observed distribution of short-period orbits. It is found that the majority of the short-period comets, those with orbital period P less than 20 yr (the 'Jupiter family'), cannot arise from isotropic orbits with perihelia near Jupiter's orbit, because the resulting observable comet orbits have the wrong distribution in period, inclination, and argument of perihelion. The simulations also show that Jupiter-family comets cannot arise from isotropic orbits with perihelia in the Uranus-Neptune region. On the other hand, a source of low-inclination Neptune-crossing orbits yields a distribution of observable Jupiter-family comets that is consistent with the data in all respects. These results imply that the Jupiter-family comets arise from a disk source in the outer solar system rather than from the Oort comet cloud.

  16. Vaporization of comet nuclei - Light curves and life times

    NASA Technical Reports Server (NTRS)

    Cowan, J. J.; Ahearn, M. F.

    1979-01-01

    The effects of vaporization from the nucleus of a comet are examined and it is shown that a latitude dependence of vaporization can explain the asymmetries in cometary light curves. An attempt is made to explain the observed variation in molecular production rates with heliocentric distance when employing CO2 and clathrate hydrate ice as cometary nuclei substances. The energy balance equation and the vapor pressure equations of water and CO2 are used in calculating the vaporization from a surface. Calculations were carried out from both dry-ice and water-ice nuclei, using a variety of different effective visual albedos, but primarily for a thermal infrared of 0 (emission). Attention is given to cometary lifetimes and light curves and it was determined that the asymmetry in light curves occurs (occasionally) as a 'seasonal' effect due to a variation in the angle between the comet's rotation axis and the sun-comet line.

  17. Optical spectrophotometry of comet Tempel 2 far from the sun

    NASA Technical Reports Server (NTRS)

    Spinrad, H.; Stauffer, J.; Newburn, R. L., Jr.

    1979-01-01

    With the advent of mission planning for spacecraft encounters with comets in the 1980s, the lack of basic data on cometary nuclei has become quite apparent and a real problem. More effort is needed on all comets, with special attention given to probable space flight targets such as Tempel 2. The paper presents medium-spectral-resolution spectrophotometry of P/Tempel 2, made at heliocentric distances of 2.66 and 3.02 AU on two dates in 1978. It is shown that optical spectrophotometry of comet Tempel 2 near 3 AU heliocentric distance places strict limits on its activity, the modeled CN production rate having an upper limit of 6 times 10 to the 21st molecules per sec. The observations of P/Tempel 2 are compatible with a bare nucleus of 1.6 km radius (geometric albedo = 0.15) and somewhat redder than the sun.

  18. Study of a comet rendezvous mission, volume 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The feasibility, scientific objectives, modes of exploration and implementation alternatives of a rendezvous mission to Encke's comet in 1984 are considered. Principal emphasis is placed on developing the scientific rationale for such a mission, based on available knowledge and best estimates of this comet's physical characteristics, including current theories of its origin, evolution and composition. Studied are mission profile alternatives, performance tradeoffs, preferred exploration strategy, and a spacecraft design concept capable of performing this mission. The study showed that the major scientific objectives can be met by a Titan IIID/Centaur-launched 17.5 kw solar electric propulsion spacecraft which carries 60 kg of scientific instruments and is capable of extensive maneuvering within the comet envelope to explore the coma, tail and nucleus.

  19. An analysis of the coma of comet Bennett 1970 II

    NASA Technical Reports Server (NTRS)

    Oppenheimer, M.

    1978-01-01

    Brightness profiles for emission features of H2O(+) in comet Bennett 1970 II are analyzed, taking into account the role of chemical reactions in the coma. By comparing the rates of transport processes derived from the brightness profile with known chemical rate constants, upper limits on the abundances and production rates of H2O, CH4, NH3, and other possible coma constituents are found. The derived upper limit on the H2O production rate inside 10 to the 4th power km is less than the observed OH production rate averaged over the coma of this comet. It is concluded that the brightness profiles of H2O(+) and OH in comet Bennett 1970 II which are presently available are inconsistent with production of OH primarily by photodissociation of H2O molecules sublimating from the nucleus. The existence of an extended source of H2O is not ruled out.

  20. The internal density distribution of comet 67P/C-G based on 3D models

    NASA Astrophysics Data System (ADS)

    Jorda, Laurent; Faurschou Hviid, Stubbe; Capanna, Claire; Gaskell, Robert W.; Gutiérrez, Pedro; Preusker, Frank; Scholten, Frank; Rodionov, Sergey; OSIRIS Team

    2016-10-01

    The OSIRIS camera aboard the Rosetta spacecraft observed the nucleus of comet 67P/C-G from the mapping phase in summer 2014 until now. The images have allowed the reconstruction in three-dimension of nucleus surface with stereophotogrammetry (Preusker et al., Astron. Astrophys.) and stereophotoclinometry (Jorda et al., Icarus) techniques. We use the reconstructed models to constrain the internal density distribution based on: (i) the measurement of the offset between the center of mass and the center of figure of the object, and (ii) the assumption that flat areas observed at the surface of the comet correspond to iso-gravity surfaces. The results of our analysis will be presented, and the consequences for the internal structure and formation of the nucleus of comet 67P/C-G will be discussed.

  1. Are Comet Outbursts the Result of Avalanches?

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Melosh, H. Jay

    2016-10-01

    Recently, Rosetta became the first spacecraft to make high-resolution observations of a comet outburst (a rapid, ephemeral increase in dust production) emerging from the surface of a comet nucleus. These outbursts occurred near perihelion, lasted only a few minutes, and produced a highly collimated outburst plume without any corresponding increase in H2O or CO2 gas production (See abstract by Rinaldi et al.). These observations cannot be explained by proposed driving outburst mechanisms (such as crystallization of amorphous ice, cryovolcanic gas exsolution, or explosive outgasing of subsurface chambers), all of which are driven by gas, and would therefore lead to an increase in the gas production.We propose instead that the observed outbursts on Comet 67P/Churyumov-Gerasimenko (hereafter 67P) are the result of cometary avalanches. The surface of 67P contains many cliffs and scarps, with dusty surface layers blanketing the shallower slopes above and below these steep surfaces. The Rosetta spacecraft returned clear evidence of mass wasting, which form icy talus fields that are the source of much of 67P's cometary activity. Additionally, Rosetta observed morphological changes over time in the shallower, dusty surface layers above these steep slopes, which suggest that avalanches periodically release dusty materials onto these active talus fields.Here we present the results of a numerical simulation of dusty material avalanching into an active area (active talus field). These simulations show that such avalanches will generate a transient, highly collimated outburst plume that closely matches the observed morphology of the outbursts emanating from the surface of 67P. This mechanism predicts that cometary outbursting should not be directly associated with any increase in gas production, consistent with observations. Additionally, we show that regions of the nucleus that have sourced outburst plumes contain steep surfaces (above the angle of repose), which is required

  2. Carbonaceous Components in the Comet Halley Dust

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.; Chang, S.; Mukhin, L. M.

    1994-01-01

    Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.

  3. Term Projects on Interstellar Comets

    ERIC Educational Resources Information Center

    Mack, John E.

    1975-01-01

    Presents two calculations of the probability of detection of an interstellar comet, under the hypothesis that such comets would escape from comet clouds similar to that believed to surround the sun. Proposes three problems, each of which would be a reasonable term project for a motivated undergraduate. (Author/MLH)

  4. Discovering the Nature of Comets.

    ERIC Educational Resources Information Center

    Whipple, Fred L.

    1986-01-01

    "The Mystery of Comets" by Dr. Fred Whipple provides an introduction to the modern picture of comets and his personal reminiscences of how his model of comets came to be. An adaptation of several sections of the book is presented. (JN)

  5. Look--It's a Comet!

    ERIC Educational Resources Information Center

    Berglund, Kay

    1997-01-01

    Describes a classroom lesson on comets that uses modeling and guided imagery to spark students' curiosity. Comet models are built using chunks of rock salt, polystyrene balls, and tinsel. Abstract ideas are made more concrete with a guided imagery story called Comet Ride! Includes an introduction to the use of parallax to measure the distance of…

  6. Astrobiology of Comets

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Wickramasinghe, Nalin C.; Wallis, Max K.; Sheldon, Robert B.

    2004-01-01

    We review the current state of knowledge concerning microbial extremophiles and comets and the potential significance of comets to Astrobiology. We model the thermal history of a cometary body, regarded as an assemblage of boulders, dust, ices and organics, as it approaches a perihelion distance of - IAU. The transfer of incident energy from sunlight into the interior leads to the melting of near surface ices, some under stable porous crust, providing possible habitats for a wide range of microorganisms. We provide data concerning new evidence for indigenous microfossils in CI meteorites, which may be the remains of extinct cometary cores. We discuss the dominant microbial communities of polar sea-ice, Antarctic ice sheet, and cryoconite environments as possible analogs for microbial ecosystems that may grow in sub-crustal pools or in ice/water films in comets.

  7. IRAS observations of comets

    NASA Technical Reports Server (NTRS)

    Walker, R. G.; Matson, D. L.; Veeder, G. J.

    1986-01-01

    The moderate spatial resolution and high sensitivity of the Infrared Astronomical Satellite (IRAS), which surveyed the celestial sphere during 1983 at wavelengths of 12, 25, 60, and 100 microns, were particularly well suited to detecting extended thermal emission from cometary dust. Sources with infrared color temperatures characteristic of solar system bodies, and at the ephemerides position of known comets were selected for analysis by the IRAS Asteroid Data Analysis System (ADAS). The data base is now available for use by researchers. This paper describes the development of the data base, details its entries, and presents a statistical analysis of its contents. The IRAS survey contains multiple observations of many periodic comets. A brief description and analysis is given of the observed infrared and derived physical properties for several comets of special interest.

  8. Does Comet WILD-2 contain Gems?

    NASA Technical Reports Server (NTRS)

    Chi, M.; Ishii, H.; Dai, Z. R.; Toppani, A.; Joswiak, D. J.; Leroux, H.; Zolensky, M.; Keller, L. P.; Browning, N. D.

    2007-01-01

    It is expected that Comet Wild-2 dust should resemble anhydrous carbon-rich, chondritic porous (CP) interplanetary dust particles (IDPs) collected in the stratosphere because some CP IDPs are suspected to be from comets. The rarity of carbonaceous grains and presolar silicates, as well as the presence of high-temperature inner solar nebula minerals in the Wild-2 sample (e.g. osbornite and melilite), appear incompatible with most CP IDPs. However, it is premature to draw firm conclusions about the mineralogy of comet Wild-2 because only approx. 1% of the sample has been examined. The most abundant silicates in CP IDPs are GEMS (glass with embedded metal and sulfides). Nonsolar O isotopic compositions confirm that at least some GEMS in IDPs are presolar amorphous silicates. The presence or absence of GEMS in the Wild-2 sample is important because it addresses, (a) the relationship between CP IDPs and comets, and (b) the hypothesis that other GEMS in IDPs formed in the solar nebula. Here we show that most of the GEMSlike materials so far identified in Stardust aerogel were likely impact generated during collection. At the nanometer scale, they are compositionally and crystallographically distinct from GEMS in IDPs.

  9. Encounter of the Ulysses Spacecraft with the Ion Tail of Comet McNaught

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.; Gloeckler, G.; Gosling, J. T.; Rees, A.; Skoug, R.; Goldstein, B. E.; Armstrong, T. P.; Combi, M. R.; Makinen, T.; McComas, D. J.; VonSteiger, R.; Zurbuchen, T. H.; Smith, E. J.; Geiss, J.; Lanzerotti, L. J.

    2007-01-01

    Comet McNaught was the brightest comet observed from Earth in the last 40 years. For a period of five days in early 2007 February, four instruments on the Ulysses spacecraft directly measured cometary ions and key properties of the interaction of the comet's ion tail with the high-speed solar wind from the polar regions of the Sun. Because of the record-breaking duration of the encounter, the data are unusually comprehensive. O3(+) ions were detected for the first time in a comet tail, coexisting with singly charged molecular ions with masses in the range 28-35 amu. The presence of magnetic turbulence and of ions with energies up to approximately 200 keV indicate that at a distance of approximately 1.6 AU from the comet nucleus, the ion tail McNaught had not yet reached equilibrium with the surrounding solar wind.

  10. The comet rendezvous asteroid flyby mission: A status report

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Neugebauer, Marcia

    1991-01-01

    The Comet Rendezvous Asteroid Flyby (CRAF) mission received a new start in fiscal year 1990. CRAF will match orbits with an active short-period comet and follow it around the Sun, making scientific measurements of the nucleus, coma, and tail. The Imaging system will map the nucleus surface at a resolution of 1 meter/line-pair or better, while Visible and Infrared Mapping Spectrometer (VIMS) and Thermal Infrared Radiometer Experiment (TIREX) will produce spectral and thermal maps of the surface. Onboard instruments will collect cometary dust, ice, and gases and perform elemental and molecular analysis. A suite of fields and particles instruments will observe the solar wind interaction with the cometary atmosphere and tail. Radio tracking of the spacecraft will provide an accurate measure of the nucleus mass and higher harmonics in the comet's gravity field. En route to the comet, the spacecraft will make a close flyby of a large asteroid, preferably a primitive type from the outer main belt. Observations at the asteroid include remote sensing mapping of the surface, detection of any solar wind interaction observable at the flyby distance, and measurement of the asteroid mass to better than 10 percent accuracy. Detailed design of the CRAF spacecraft is currently underway at the Jet Propulsion Laboratory (JPL). Recent mass growth has necessitated a switch to Venus-Earth gravity assist type trajectories, similar to that used by the Galileo spacecraft. These trajectories require longer flight times from launch to rendezvous with the target comet. The details of the current baseline mission, spacecraft design, and instrument payload will be reviewed.

  11. Geomorphological Mapping on the Southern Hemisphere of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Lee, Jui-Chi; Massironi, Matteo; Giacomini, Lorenza; Ip, Wing-Huen; El-Maarry, Mohamed R.

    2016-04-01

    Since its rendezvous with comet 67P/Churyumov-Gerasimenko on the sixth of August, 2014, the Rosetta spacecraft has carried out close-up observations of the nucleus and coma of this Jupiter family comet. The OSIRIS, the Scientific Imaging Camera System onboard the Rosetta spacecraft, which consists of a narrow-angle and wide-angle camera (NAC and WAC), has made detailed investigations of the physical properties and surface morphology of the comet. From May 2015, the southern hemisphere of the comet became visible and the adaptical resolution was high enough for us to do a detailed analysis of the surface. Previous work shows that the fine particle deposits are the most extensive geomorphological unit in the northern hemisphere. On the contrary, southern hemisphere is dominated by rocky-like stratified terrain. The southern hemisphere of the nucleus surface reveals quite different morphologies from the northern hemisphere. This could be linked to the different insolation condition between northern and southern hemisphere. As a result, surface geological processes could operate with a diverse intensity on the different sides of the comet nucleus. In this work, we provide the geomorphological maps of the southern hemisphere with linear features and geological units identified. The geomorphological maps described in this study allow us to understand the processes and the origin of the comet.

  12. A study of the icy tails of the distant comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1975-01-01

    Properties are studied of the icy grain model for the tails of comets Baade 1955 VI and Haro-Chavira 1956 I, which have large perihelion distances. The general profiles and orientations of the tails are compared with a set of synchrones, or theoretical trajectories of particles ejected from a cometary nucleus at given instants of time. Several features observed in these comets are shown to be explained by the icy grain model, including jet activity in the coma and no appreciable broadening of the tail with increasing distance from the nucleus. It is demonstrated that the transition region between 2 and 3 AU, where water snow begins to experience rapid evaporation, has a significant effect on the dynamics of icy tails. It is suggested that the icy grains constituting these cometary tails may carry fine particles of meteoric dust which are released when the grains begin to disintegrate by evaporation.

  13. Evolution of the Plasma Environment of Comet 67P

    NASA Astrophysics Data System (ADS)

    Eriksson, A. I.; Odelstad, E.; Edberg, N. J. T.; Vigren, E.; Engelhardt, I. A. D.; Pierre, H.; Lebreton, J. P.; Carr, C.; Koenders, C.; Nilsson, H.; Broiles, T. W.; Karlsson, T.; Jarvinen, R.; Miloch, W.; Rubin, M.

    2015-12-01

    Since the arrival of Rosetta at comet 67P in August 2014, the plasma environment around the nucleus has been dominated by plasma of cometary origin, as witnessed by a strong modulation by the rotation of the nucleus on the plasma density from the Langmuir probe (RPC-LAP) and Mutual impedance probe (RPC-MIP) instruments. As 67P is not a particularly active comet, coma densities have mainly been too low to efficiently cool the electrons emitted by ionization of neutrals, keeping the electron temperature well into the eV range and driving the spacecraft to a potential often below -10 V. The plasma density has evolved from tens of cm-3 at the early stage to hundreds and thousands of cm-3 during the approach to perihelion. In addition to the large scale structures and slow evolution, the data also show a multitude of transient features of which we will also provide some examples.

  14. Comets, meteorites and atmospheres.

    PubMed

    Owen, T; Bar-Nun, A

    1996-01-01

    The relatively low value of Xe/Kr in the atmospheres of Earth and Mars seems to rule out meteorites as the major carriers of noble gases to the inner planets. Laboratory experiments on the trapping of gases in ice forming at low temperatures suggest that comets may be a better choice. It is then possible to develop a model for the origin of inner planet atmospheres based on volatiles delivered by comets added to volatiles originally trapped in planetary rocks. The model will be tested by results from the Galileo Entry Probe.

  15. Comets, meteorites and atmospheres

    NASA Technical Reports Server (NTRS)

    Owen, T.; Bar-Nun, A.

    1996-01-01

    The relatively low value of Xe/Kr in the atmospheres of Earth and Mars seems to rule out meteorites as the major carriers of noble gases to the inner planets. Laboratory experiments on the trapping of gases in ice forming at low temperatures suggest that comets may be a better choice. It is then possible to develop a model for the origin of inner planet atmospheres based on volatiles delivered by comets added to volatiles originally trapped in planetary rocks. The model will be tested by results from the Galileo Entry Probe.

  16. Sublimation rates of carbon monoxide and carbon dioxide from comets at large heliocentric distances

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1992-01-01

    Using a simple model for outgassing from a small flat surface area, the sublimation rates of carbon monoxide and carbon dioxide, two species more volatile than water ice that are known to be present in comets, are calculated for a suddenly activated discrete source on the rotating nucleus. The instantaneous sublimation rate depends upon the comet's heliocentric distance and the Sun's zenith angle at the location of the source. The values are derived for the constants of CO and CO2 in an expression that yields the local rotation-averaged sublimation rate as a function of the comet's spin parameters and the source's cometocentric latitude.

  17. Scenarios for distributed sources of formaldehyde in the atmosphere of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Cottin, H.; Hadraoui, K.; Bardyn, A.; Le Roy, L.; Fray, N.; Briois, C.; Thirkell, L.; Merouane, S.; Hornung, K.; Langevin, Y.; Hilchenbach, M.

    2015-10-01

    The polymer of formaldehyde ((H2CO)n - polyoxymethylene - POM) has been tentatively detected in comet 1P/Halley by mass spectrometry with PICCA instrument onboard the Giotto spacecraft [1]. Although its detection has been questioned [2], this polymer could be the origin of distributed formaldehyde observed in the atmosphere of comet Halley and others [3]. We will present modelling results of the photo and thermal degradation of POM on grains in the environment of comet 67P/Churyumov-Gerasimenko, and discuss the extent to which distributed formaldehyde could be detected with Rosetta spacecraft observations in case POM is actually part of the nucleus component.

  18. Spatial distribution of low energy plasma at comet 67P from Rosetta RPC-LAP measurements

    NASA Astrophysics Data System (ADS)

    Edberg, Niklas J. T.; Eriksson, Anders I.; Odelstad, Elias; Vigren, Erik; Henri, Pierre; Lebreton, Jean-Pierre; Mandt, Kathleen; Nilsson, Hans; Carr, Chris; Cupido, Emanuele; Vallat, Claire; Altwegg, Kathrin

    2015-04-01

    We present in situ measurements of the low energy plasma environment around comet 67P from the two Langmuir probes (LAP) on the Rosetta spacecraft, which form part of the Rosetta plasma consortium (RPC). RPC-LAP has operated almost continuously as Rosetta has orbited the comet at close distance (10-30 km) at low velocity (about 1 m/s) since August 2014. Using the RPC-LAP measurements we have produced global maps of the low energy plasma in the vicinity of 67P. Initial estimates indicate that the plasma density has reached values of several 100 cm^-3 and that the electron temperature has typically been in the range 5-10 eV, when the comet was beyond 2.5 AU from the sun. Photoionisation is the dominating process for producing the plasma around the comet while charge-exchange and impact ionisation may also contribute. The plasma environment has been found to be strongly coupled to the local neutral gas density, which in turn is coupled to which area on the comet is facing the sun. The northern summer neck-area of the comet outgasses more than other areas and above this region are the highest densities observed. In the southern winter and above the two main lobes of the comet body, the plasma density is lower. The plasma density is hence not determined by the solar wind, but by the outgassing from the comet. The 12.4-hour rotation period of the comet together with the varying latitude of the slow-moving Rosetta provide strong modulation of the RPC-LAP measurements. Besides orbiting the comet, Rosetta will also perform flybys of the comet in early 2015 when Rosetta will move to distances of several hundred kilometres from the nucleus. These flybys provide a cut-through view of the near-comet plasma environment, which will possibly give some insight to the solar-wind interaction with the cometary coma.

  19. Formation of ions and radicals from icy grains in comets

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Gerth, Christopher; Hendricks, Charles

    1991-01-01

    Ion and radical formation in comets are thought to occur primarily by photodissociation of gas phase molecules. Experimental evidence and theoretical calculations are presented that show that some of the radical and ions can come directly from ice grains. The experimental evidence suggest that if the frozen molecules on the surface of grains undergo direct dissociation then they may be able to release radicals directly in the gas phase. If the molecules undergo predissociation it is unlikely that they will release radicals in the gas phase since they should be quenched. Calculations of this direct photodissociation mechanism further indicate that even if the parent molecule undergoes direct dissociation, the yield will not be high enough to explain the rays structure in comets unless the radicals are stored in the grains and then released when the grain evaporates. Calculations were also performed to determine the maximum number of ions that can be stored in an icy grain's radius. This number is compared with the ratio of the ion to neutral molecular density. The comparison suggests that some of the ions observed near the nucleus of the comet could have originally been present in the cometary nucleus. It is also pointed out that the presence of these ions in icy grains could lead to radical formation via electron recombination. Finally, an avalanche process was evaluated as another means of producing ions in comets.

  20. Rosetta Lander - Philae on Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Biele, J.; Ulamec, S.; Cozzoni, B.; Fantinati, C.; Gaudon, P.; Geurts, K.; Jurado, E.; Küchemann, O.; Lommatsch, V.; Finke, F.; Maibaum, M.; Moussi-Soffys, A.; Salatti, M.

    2015-10-01

    Rosetta is a Cornerstone Mission of the ESA Horizon 2000 programme. In August 2014 it reached comet 67P/Churyumov-Gerasimenko after a 10 year cruise. Both its nucleus and coma have been studied with its orbiter payload of eleven PI instruments, allowing the selection of a landing site for Philae. The landing on the comet nucleus successfully took place on November 12th 2014. Philae touched the comet surface seven hours after ejection from the orbiter. After several bounces it came to rest and continued to send scientific data to Earth. All ten instruments of its payload have been operated at least once. Due to the fact that the Lander could not be anchored, the originally planned first scientific sequence had to be modified. Philae went into hibernation on November 15th, after its primary battery ran out of energy. Re-activation of the Lander is expected in spring/summer 2015 (before the conference) when CG is closer to the sun and the solar generator of Philae will provide more power. The presentation will give an overview of the activities of Philae on the comet, including a status report on the re-activation after hibernation. Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta's Philae lander is provided by a consortium led by DLR, MPS, CNES and ASI with additional contributions from Hungary, UK, Finland, Ireland and Austria.

  1. Lingering Grains of Truth around Comet 17P/Holmes

    NASA Astrophysics Data System (ADS)

    Stevenson, R.; Bauer, J. M.; Kramer, E. A.; Grav, T.; Mainzer, A. K.; Masiero, J. R.

    2014-06-01

    Comet 17P/Holmes underwent a massive outburst in 2007 October, brightening by a factor of almost a million in under 48 hr. We used infrared images taken by the Wide-Field Infrared Survey Explorer mission to characterize the comet as it appeared at a heliocentric distance of 5.1 AU almost 3 yr after the outburst. The comet appeared to be active with a coma and dust trail along the orbital plane. We constrained the diameter, albedo, and beaming parameter of the nucleus to 4.135 ± 0.610 km, 0.03 ± 0.01, and 1.03 ± 0.21, respectively. The properties of the nucleus are consistent with those of other Jupiter family comets. The best-fit temperature of the coma was 134 ± 11 K, slightly higher than the blackbody temperature at that heliocentric distance. Using Finson-Probstein modeling, we found that the morphology of the trail was consistent with ejection during the 2007 outburst and was made up of dust grains between 250 μm and a few cm in radius. The trail mass was ~1.2-5.3 × 1010 kg.

  2. MAIN-BELT COMET 238P/READ REVISITED

    SciTech Connect

    Hsieh, Henry H.; Meech, Karen J.; Pittichova, Jana E-mail: meech@ifa.hawaii.edu

    2011-07-20

    We present a series of observations of the return of activity in main-belt comet (MBC) 238P/Read. Using data obtained in 2010 July and August when 238P appeared to be largely inactive, we find best-fit IAU phase function parameters of H = 19.05 {+-} 0.05 mag, corresponding to a nucleus radius of r{sub n} {approx} 0.4 km (assuming an albedo of p{sub R} = 0.05), and G = -0.03 {+-} 0.05. Observations from 2010 September onward show a clear rise in activity, causing both a notable change in visible morphology and increasing photometric excesses beyond what would be expected based on bare nucleus observations. By the end of the observing period reported on here, the dust mass in the coma shows indications of reaching a level comparable to that observed in 2005, but further observations are highly encouraged once 238P again becomes observable from Earth in mid-2011 to confirm whether this level of activity is achieved, or if the comet shows a noticeable drop in activity strength compared with 2005. Comet 238P is now the second MBC (after 133P/Elst-Pizarro) observed to exhibit recurrent activity, providing strong corroboration for the conclusion that it is a true comet whose active episodes are driven by sublimation of volatile ice.

  3. Lingering grains of truth around comet 17P/HOLMES

    SciTech Connect

    Stevenson, R.; Bauer, J. M.; Mainzer, A. K.; Masiero, J. R.; Kramer, E. A.; Grav, T.

    2014-06-01

    Comet 17P/Holmes underwent a massive outburst in 2007 October, brightening by a factor of almost a million in under 48 hr. We used infrared images taken by the Wide-Field Infrared Survey Explorer mission to characterize the comet as it appeared at a heliocentric distance of 5.1 AU almost 3 yr after the outburst. The comet appeared to be active with a coma and dust trail along the orbital plane. We constrained the diameter, albedo, and beaming parameter of the nucleus to 4.135 ± 0.610 km, 0.03 ± 0.01, and 1.03 ± 0.21, respectively. The properties of the nucleus are consistent with those of other Jupiter family comets. The best-fit temperature of the coma was 134 ± 11 K, slightly higher than the blackbody temperature at that heliocentric distance. Using Finson-Probstein modeling, we found that the morphology of the trail was consistent with ejection during the 2007 outburst and was made up of dust grains between 250 μm and a few cm in radius. The trail mass was ∼1.2-5.3 × 10{sup 10} kg.

  4. The Rotation State of Comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Farnham, Tony; Knight, Matthew M.; Schleicher, David G.

    2016-10-01

    On November 4, 2010, the Deep Impact (DI) spacecraft made its closest approach to comet 103P/Hartley 2, passing only 694 km from the nucleus. Observations of the coma produced a lightcurve that shows the nucleus is in a state of non-principal axis rotation that evolves with time, while other observations revealed a nucleus that has concentrated collimated jets driven by CO2 emission (A'Hearn et al., 2011), large variability in the production of H2O and CO2 (Besse et al. 2016), and ice patches on the surface (Sunshine et al. 2011). To properly interpret the significance of these phenomena, it is necessary to understand the rotation of the nucleus, so that its thermal history can be derived and properly modeled, while at the same time, it is likely that the comet's high activity levels play an important role in the nucleus dynamics.An analysis of the lightcurve by Belton et al (2013) described the comet's rotation state, with two periodicities (primary of 18 h, secondary of 28 or 55 h) that change with time. Although their solution describes the periodicities observed around closest approach, it is insufficient to reproduce the changes in coma morphology with time. We are performing an analysis of the structures in the coma (Farnham 2009), using Monte Carlo routines to model the outflowing dust produced by active sources on the nucleus, to derive a comprehensive solution for the nucleus' rotation.We are also obtaining new observations of Hartley 2 in June/July 2016 (r~3.2 AU) to measure the nucleus' primary component period before the comet becomes highly active. This will provide an end-state measure of the rotation from the 2010 apparition, as well as a starting value for the current apparition, to allow its continuing evolution to be monitored. We will present an update on the status and preliminary results of these analyses.This work is funded by NASA Grant NNX12AQ64G.A'Hearn, M.F., et al. (2011) Science 332, 1396-1400Belton M.J.S., et al. (2013) Icarus 222, 595

  5. Optical Detection of Anomalous Nitrogen in Comets

    NASA Astrophysics Data System (ADS)

    2003-12-01

    exceedingly difficult to procure the high-quality, high-resolution spectra needed to show the very faint emissions of the rare species. So far, they were only possible when a very bright comet happened to pass by, perhaps once a decade, thereby significantly limiting such studies. And there has always been some doubt whether the brightest comets are also truly representative of this class of objects. Observations of fainter, more typical comets had to await the advent of powerful instruments and telescopes. First UVES spectrum of a comet ESO PR Photo 28a/03 ESO PR Photo 28a/03 [Preview - JPEG: 495 x 400 pix - 183k [Normal - JPEG: 990 x 800 pix - 450k] ESO PR Photo 28b/03 ESO PR Photo 28b/03 [Preview - JPEG: 502 x 400 pix - 115k [Normal - JPEG: 1004 x 800 pix - 290K] Captions : PR Photo 28a/03 displays an image of Comet LINEAR (C/2000 WM1) with the UVES slit viewer image. The colour composite in the large frame (sky field: 16 x 16 arcmin 2 ) was obtained by Gordon Garradd (Loomberah, NSW, Australia). [Image Copyright (c) 2002 Gordon Garradd (loomberah@ozemail.com.au]. The UVES slit viewer photo (small frame; 40 x 40 arcsec 2 ) is a false-colour image taken in the (red) R-band with UVES+KUEYEN on March 22, 2002; it shows the position of the narrow spectrograph slit (0.45 arcsec wide and 8 arcsec long) crossing the inner coma and through which the comet's light was captured to produce the high-resolution spectra. The slit has been offset from the center of light to reduce contamination from solar light reflected off dust particles in the comet's coma - there is most dust near the nucleus. PR Photo 28b/03 shows a small part of the UVES spectrum with an emission band (ultraviolet light at wavelength 390 nm) from CN molecules [3] in the comet's atmosphere. The emission lines are produced by absorption of the solar light by these molecules, followed by re-emission of lines of specific wavelengths. This physical process is known as "resonance-fluorescence" - it is the same process

  6. Mass spectra of heavy ions near comet Halley

    NASA Technical Reports Server (NTRS)

    Korth, A.; Richter, A. K.; Loidl, A.; Anderson, K. A.; Carlson, C. W.

    1986-01-01

    The heavy-ion analyzer, RPA2-PICCA, aboard the Giotto spacecraft, detected the first cometary ions at a distance of about 1.05 million km from the nucleus of comet Halley. In the inner coma the major ions identified are associated with the H2O, CO and CO2 groups. Ions of larger atomic mass unit are also present, corresponding possibly to various hydrocarbons, heavy metals of the iron-group or to sulphur compounds.

  7. Understanding the nucleus of 67P/C-G through laboratory experiments

    NASA Astrophysics Data System (ADS)

    Laufer, Diana; Ba-Nun, Akiva

    2015-04-01

    On August the 6th, 2014 the Rosetta spacecraft arrived at Comet 67P/Churyumov-Gerasimenko and on November the 12th, the Philae probe landed, sending the most detailed close-up pictures, with a few meters resolution, of the surface of the comet. We will present an explanation of the observed surface features on the comet nucleus, as derived from our laboratory experimental results, such as craters, boulders, active areas and smooth terrains, due to ice sublimation and evolution of gases from the interior of the nucleus. A large flux of ice grains was observed to emanate from the central part "the neck" of the nucleus. Our experiments demonstrated that a huge flux of ice grains is ejected together with gas jets from the ice. As the comet approaches the Sun, gases emerge from pockets up to the ice surface quiescently and also accumulate in larger cavities which explode to release gas jets together with a huge amount of micron size ice grains, forming craters and smooth surfaces. Also comparing our experimental results on the density, thermal conductivity and mechanical strength with the in situ results of comet 67P C-G, as done with comet Temple 1 in the Deep Impact mission, will be used for better understanding of the internal properties of the nucleus. The experimental results on gas trapping in the ice and its release upon warming up will be presented and compared with Rosetta's findings. Authors acknowledge the funding from the Israeli Ministry of Science, Technology and Space.

  8. Chemical Composition of Comet C/2007 N3 (Lulin): Another ''Atypical'' Comet

    NASA Astrophysics Data System (ADS)

    Gibb, Erika L.; Bonev, Boncho P.; Villanueva, Geronimo; DiSanti, Michael A.; Mumma, Michael J.; Sudholt, Emily; Radeva, Yana

    2012-05-01

    We measured the volatile chemical composition of comet C/2007 N3 (Lulin) on three dates from 2009 January 30 to February 1 using NIRSPEC, the high-resolution (λ/Δλ ≈ 25,000), long-slit echelle spectrograph at Keck 2. We sampled nine primary (parent) volatile species (H2O, C2H6, CH3OH, H2CO, CH4, HCN, C2H2, NH3, CO) and two product species (OH* and NH2). We also report upper limits for HDO and CH3D. C/2007 N3 (Lulin) displayed an unusual composition when compared to other comets. Based on comets measured to date, CH4 and C2H6 exhibited "normal" abundances relative to water, CO and HCN were only moderately depleted, C2H2 and H2CO were more severely depleted, and CH3OH was significantly enriched. Comet C/2007 N3 (Lulin) is another important and unusual addition to the growing population of comets with measured parent volatile compositions, illustrating that these studies have not yet reached the level where new observations simply add another sample to a population with well-established statistics.

  9. CHEMICAL COMPOSITION OF COMET C/2007 N3 (LULIN): ANOTHER ''ATYPICAL'' COMET

    SciTech Connect

    Gibb, Erika L.; Sudholt, Emily; Bonev, Boncho P.; Villanueva, Geronimo; Radeva, Yana; DiSanti, Michael A.; Mumma, Michael J.

    2012-05-10

    We measured the volatile chemical composition of comet C/2007 N3 (Lulin) on three dates from 2009 January 30 to February 1 using NIRSPEC, the high-resolution ({lambda}/{Delta}{lambda} Almost-Equal-To 25,000), long-slit echelle spectrograph at Keck 2. We sampled nine primary (parent) volatile species (H{sub 2}O, C{sub 2}H{sub 6}, CH{sub 3}OH, H{sub 2}CO, CH{sub 4}, HCN, C{sub 2}H{sub 2}, NH{sub 3}, CO) and two product species (OH* and NH{sub 2}). We also report upper limits for HDO and CH{sub 3}D. C/2007 N3 (Lulin) displayed an unusual composition when compared to other comets. Based on comets measured to date, CH{sub 4} and C{sub 2}H{sub 6} exhibited 'normal' abundances relative to water, CO and HCN were only moderately depleted, C{sub 2}H{sub 2} and H{sub 2}CO were more severely depleted, and CH{sub 3}OH was significantly enriched. Comet C/2007 N3 (Lulin) is another important and unusual addition to the growing population of comets with measured parent volatile compositions, illustrating that these studies have not yet reached the level where new observations simply add another sample to a population with well-established statistics.

  10. Infrared observations of oxidized carbon in comet C/2002 t7 (LINEAR)

    NASA Astrophysics Data System (ADS)

    Anderson, William Michael, Jr.

    2010-11-01

    Cometary nuclei are generally recognized as the most primitive remnants of the early Solar System. Their physical and chemical attributes allow a glimpse into the conditions under which icy bodies formed. Parent volatiles in comets are now routinely studied, and a significant diversity in composition among the comets sampled to date has been demonstrated. This forms the foundation of an emerging cometary taxonomy based on chemical composition. In spring 2004, comet C/2002 T7 (LINEAR) was observed using the facility echelle spectrometer (CSHELL) at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. CSHELL offers seeing-limited spatial resolution and sufficiently high spectral resolving power (R = lambda/Deltalambda ˜ 2.5 x 10 4) to permit line-by-line intensities to be measured along its 30 arc-second slit. Its small pixels favor measurement of molecules released from ices housed in cometary nuclei ("native" ices) over those released from spatially extended sources in the coma. Emission lines from multiple molecular species were targeted in the 3 to 5 mum wavelength region. The observations revealed an extremely rich volatile chemistry in C/2002 T7. I present the chemical composition of oxidized carbon in C/2002 T7 (LINEAR). Carbon monoxide (CO), formaldehyde (H2CO), and methyl alcohol (CH 3OH) were detected simultaneously or nearly simultaneously with H 2O on multiple UT dates spanning 2004 May 3-9 (heliocentric distance Rh = 0.66 -- 0.71 AU) and May 30 - June 2 (R h = 0.99 -- 1.03 AU). I will discuss native production rates, rotational temperatures, and mixing ratios (abundances relative to H2O) for oxidized carbon. My results illustrate that C/2002 T7 (LINEAR) is enriched in CH3OH, while CO is borderline depleted compared to other Oort cloud comets that have been measured. I tested for chemical heterogeneity in C/2002 T7 (LINEAR), both diurnal, presumably associated with rotation of the nucleus, and serial (i.e., over a range in Rh). However, no evidence

  11. VIRTIS on Rosetta: a unique technique to observe comet 67P/Churyumov-Gerasimenko - first results and prospects

    NASA Astrophysics Data System (ADS)

    Arnold, Gabriele E.; Capaccioni, Fabrizio; Filacchione, Gianrico; Erard, Stéphane; Bockelee-Morvan, Dominique; Barucci, Maria A.; De Sanctis, Maria Cristina; Palomba, Ernesto; Capria, Maria Teresa; Cerroni, Priscilla; Drossart, Pierre; Leyrat, Cedric; Piccioni, Giuseppe; Schmitt, Bernard; Tosi, Frederico; Tozzi, Gian Paolo; Kappel, David; Markus, Kathrin; Migliorini, Alessandra

    2015-09-01

    VIRTIS aboard ESA's Rosetta mission is a complex imaging spectrometer that combines three unique data channels in one compact instrument to study nucleus and coma of comet 67P/Churyumov-Gerasimenko. Two of the spectral channels are dedicated to spectral mapping (-M) at moderate spectral resolution in the range from 0.25 to 5.1 μm. The third channel is devoted to high resolution spectroscopy (-H) between 2 and 5 μm. The VIRTIS-H field of view is approximately centered in the middle of the -M image. The spectral sampling of VIRTIS-M is 1.8 nm/band below 1 μm and 9.7 nm/band between 1-5 μm, while for VIRTIS-H λ/Δλ= 1300-3000 in the 2-5 μm range. This paper describes selected findings during the pre-landing phase of Philae's robotic subsystem and the comet's escort phase as well as prospects of further observations. The preliminary results include studies of surface composition, coma analyses, and temperature retrieval for the nucleus surface-coma system demonstrating the capability of the instrument.

  12. Detection of Irradiation Treatment of Foods Using DNA `Comet Assay'

    NASA Astrophysics Data System (ADS)

    Khan, Hasan M.; Delincée, Henry

    1998-06-01

    Microgel electrophoresis of single cells (DNA comet assay) has been investigated to detect irradiation treatment of some food samples. These samples of fresh and frozen rainbow trout, red lentil, gram and sliced almonds were irradiated to 1 or 2 kGy using 10 MeV electron beam from a linear accelerator. Rainbow trout samples yielded good results with samples irradiated to 1 or 2 kGy showing fragmentation of DNA and, therefore, longer comets with no intact cells. Unirradiated samples showed shorter comets with a significant number of intact cells. For rainbow trout stored in a freezer for 11 days the irradiated samples can still be discerned by electrophoresis from unirradiated samples, however, the unirradiated trouts also showed some longer comets besides some intact cells. Radiation treatment of red lentils can also be detected by this method, i.e. no intact cells in 1 or 2 kGy irradiated samples and shorter comets and some intact cells in unirradiated samples. However, the results for gram and sliced almond samples were not satisfactory since some intact DNA cells were observed in irradiated samples as well. Probably, incomplete lysis has led to these deviating results.

  13. Orbit determination of the Comet Rendezvous/Asteroid Flyby mission - Post-rendezvous phases

    NASA Technical Reports Server (NTRS)

    Miller, James K.; Wood, Lincoln J.; Weeks, Connie J.

    1989-01-01

    Orbit determination during the post-rendezvous phases of the Comet Rendezvous/Asteroid Flyby mission is described. The orbit determination process is discussed, with emphasis placed on optical imaging of landmarks and Doppler tracking. Rotational dynamics are introduced for the cometary nucleus. State estimation errors are given for spacecraft trajectory prediction and cometary nucleus attitude prediction. Estimation errors are also given for parameters that describe the cometary nucleus such as moments of inertia and gravity harmonics. The orbit determination performance in support of science observations while in orbit about the nucleus is described.

  14. DIRBE Comet Trails

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.

    2015-01-01

    Re-examination of the COBE DIRBE data reveals the thermal emission of several comet dust trails.The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported.The known trails of 2P/Encke, and 73P/Schwassmann-Wachmann 3 are also seen. The dust trails have 12 and 25 microns surface brightnesses of <0.1 and <0.15 MJy/sr, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals one additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  15. DRBE comet trails

    SciTech Connect

    Arendt, Richard G.

    2014-12-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/Schwassmann–Wachmann 3 are also seen. The dust trails have 12 and 25 μm surface brightnesses of <0.1 and <0.15 MJy sr{sup −1}, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  16. Halley's Comet: A Bibliography.

    ERIC Educational Resources Information Center

    Freitag, Ruth S., Comp.

    Included in this bibliography are over 3,200 references to publications on Halley's Comet, its history, orbital motion, and physical characteristics, meteor streams associated with it, preparations for space missions to study it in 1986, and popular reaction to its appearances. Also cited are a few papers that, although they devote little…

  17. Comets and life.

    PubMed

    Oró, J; Berry, J M

    1987-01-01

    Some of the chemical species which have been detected in comets include H2O, HCN, CH3CN, CO, CO2, NH3, CS, C2 and C3. All of these have also been detected in the interstellar medium, indicating a probable relationship between interstellar dust and gas clouds and comets. Laboratory experiments carried out with different mixtures of these molecules give rise to the formation of the biochemical compounds which are necessary for life, such as amino acids, purines, pyrimidines, monosaccharides, etc. However, in spite of suggestions to the contrary, the presence of life in comets is unlikely. On the other hand, the capture of cometary matter by the primitive Earth is considered essential for the development of life on this planet. The amount of cometary carbon-containing matter captured by the Earth, as calculated by different authors, is several times larger than the total amount of organic matter present in the biosphere (10(18)g). The major classes of reactions which were probably involved in the formation of key biochemical compounds are discussed. Our tentative conclusions are that: 1) comets played a predominant role in the emergence of life on our planet, and 2) they are the cosmic connection with extraterrestrial life.

  18. Comets in Indian Scriptures

    NASA Astrophysics Data System (ADS)

    Das Gupta, P.

    2016-01-01

    The Indo-Aryans of ancient India observed stars and constellations for ascertaining auspicious times in order to conduct sacrificial rites ordained by the Vedas. Naturally, they would have sighted comets and referred to them in the Vedic texts. In Rigveda (circa 1700-1500 BC) and Atharvaveda (circa 1150 BC), there are references to dhumaketus and ketus, which stand for comets in Sanskrit. Rigveda speaks of a fig tree whose aerial roots spread out in the sky (Parpola 2010). Had this imagery been inspired by the resemblance of a comet's tail with long and linear roots of a banyan tree (ficus benghalensis)? Varahamihira (AD 550) and Ballal Sena (circa AD 1100-1200) described a large number of comets recorded by ancient seers, such as Parashara, Vriddha Garga, Narada, and Garga, to name a few. In this article, we propose that an episode in Mahabharata in which a radiant king, Nahusha, who rules the heavens and later turns into a serpent after he kicked the seer Agastya (also the star Canopus), is a mythological retelling of a cometary event.

  19. DIRBE Comet Trails

    NASA Astrophysics Data System (ADS)

    Arendt, Richard G.

    2014-12-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/Schwassmann-Wachmann 3 are also seen. The dust trails have 12 and 25 μm surface brightnesses of \\lt 0.1 and \\lt 0.15 MJy sr-1, respectively, which is \\lt 1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  20. Finding Comet Halley.

    ERIC Educational Resources Information Center

    Glenn, William H.

    1985-01-01

    Provides background information and references on Comet Halley (which will be observable by telescope in October 1985 and reach its most brilliant appearance in March and April of 1986). Suggestions for equipment and maps of its path through the sky are included. (DH)

  1. Millimeter and submillimeter observations of comet 67P/C-G with the MIRO instrument

    NASA Astrophysics Data System (ADS)

    Hofstadter, M. D.; Gulkis, S.

    2015-10-01

    The Microwave Instrument on the Rosetta Orbiter (MIRO) [3] makes submillimeter- and millimeterwavelength observations of the nucleus and coma of the target comet of the Rosetta mission (Comet 67P/Churyumov-Gerasimenko). By making broadband continuum measurements at two wavelengths (approximately 0.5 and 1.6 mm), MIRO probes the thermal and dielectric properties of the nucleus subsurface. High-resolution spectroscopic measurements of 8 molecular lines in the submillimeter (H2O, H2 17O, H2 18O, CO, NH3, and three lines of CH3OH) constrain the abundance, velocity, and temperature of gases in the coma. These measurements allow MIRO to study the nucleus and coma as a coupled system. Upon arrival at the comet (August 2014) measurements by MIRO [4] and other instruments quickly determined that the upper ~10 cm of the nucleus generally have thermal properties consistent with very porous, dusty material, but that there is ice within the upper few cm at least in some regions. It was also found that gas emission from the nucleus varies with location and time. More recently, we have begun to study in detail the time and spatial variability of the nucleus [2, 6] and coma [1, 5]. This presentation will provide an overview of the MIRO instrument, our data sets, and provide a high-level discussion of what we are learning about the upper meter of the nucleus' surface and the distribution and transport of water.

  2. The ICQ Guide to Observing Comets.

    NASA Astrophysics Data System (ADS)

    Green, D. W. E.

    1997-01-01

    The following topics were dealt with: basic information (comet names and designation nomenclature, basic anatomy of a comet, composition of comets and techniques for deriving this information, orbital characteristics of comets, the stellar-magnitude scale and general remarks on comet magnitudes, typical comet behaviors, and the role of solar activity, time and its role in observing comets, locating and identifying known comets, what to do if you discover a comet); a historical overview of the observation of comets (perceptions of comets via naked-eye observations prior to Halley, issues regarding the reading and interpretation of historical observations); visual observing (the human eye as a light detector, observing conditions and observing-site selection, instrumentation and observing "assessories", comet hunting, discovery, and follow-up, estimating a comet's total magnitude, estimating the comet's other physical parameters, drawing comets, daytime observations of comets); non-visual optical observations (CCD observations, photography of comets, narrow-band photometry, spectroscopy and spectrophotometry, occultations); observations outside the visual region (ground-based observations at non-optical wavelengths, satellite-based observations of comets); astrometry of comets (astrometric measurement of photographs and CCD frames, general measurement procedures and astrometric reductions, reporting of comet astrometry, radar astrometry, dealing with older astrometry). Appendices (list of numbered periodic comets, star catalogues, atlases, and charts).

  3. Constraints on Comet 332P/Ikeya-Murakami

    NASA Astrophysics Data System (ADS)

    Hui, Man-To; Ye, Quan-Zhi

    2016-10-01

    Encke-type comet 332P/Ikeya-Murakami is experiencing a series of cascading fragmentation events during its 2016 apparition. It is likely the first splitting Encke-type comet ever being observed. A nongravitational solution to the available astrometry including high quality observations from the Canada-France-Hawaii Telescope by Kleyna et al. (private communication) reveals a statistical detection of the radial and transverse nongravitational parameters, A1 = (1.54 ± 0.39) × 10-8 AU day-2, and A2 = (7.19 ± 1.92) × 10-9 AU day-2, respectively, based upon which we calculated the erosion rate of the comet, which is large and hence is likely related to the ongoing fragmentation events. We have constrained the nucleus size from our archival search for serendipitously pre-discovery observations of the comet from major sky surveys. Our study also suggests a potential generic relationship between comet P/2010 B2 (WISE) and 332P. Detailed information will be presented.

  4. ESA Unveils Its New Comet Chaser.

    NASA Astrophysics Data System (ADS)

    1999-07-01

    October 2007 before heading away from the Sun towards Comet Wirtanen. As it bounces around the Solar System, Rosetta will also make two excursions into the main asteroid belt, where it will obtain the first close-up images and information on two contrasting objects, 4979 Otawara and 140 Siwa. Scientists believe Otawara is less than 20 km across, whereas Siwa is probably 110 km in diameter, much larger than any asteroid which has so far been visited by spacecraft. Rosetta will fly to within 1,000 km of Otawara in July 2006, followed by a similar rendezvous with Siwa two years later. However, the most difficult phase of the mission will be the final rendezvous with the fast-moving comet (the foreseen date for the rendezvous manoeuvre is 27 November 2011, close approach is set for 20 May 2012 and orbit insertion around the nucleus is set for 28 May 2012). Thus, after a 5.3 billion km space odyssey, Rosetta will make first contact with Wirtanen about 675 million km from the Sun. At this distance, sunlight is 20 times weaker than on Earth, and the comet's nucleus will still be frozen and inactive. Once the navigation team are able to determine the comet's exact location from images returned by the spacecraft camera, a series of braking manoeuvres will allow Rosetta to match speed and direction with its target. After about seven months of edging closer, Rosetta will eventually close to within 2 km of Wirtanen's frozen nucleus. From its close orbit above the tiny nucleus, Rosetta will be able to send back the most detailed images and information ever obtained of a comet. When a suitable landing site has been chosen, about a month after global mapping starts, the orbiter will release a 100 kg lander onto the comet's solid surface. Touchdown must be quite slow - less than one metre per second - to allow for the almost negligible gravitational pull of the tiny nucleus. In order to ensure that the lander does not bounce and disappear into space, an anchoring harpoon will be fired

  5. COSAC onboard Rosetta: a bioastronomy experiment for the short-period comet 67P/Churyumov-Gerasimenko.

    PubMed

    Gösmann, Fred; Rosenbauer, Helmut; Roll, Reinhard; Böhnhardt, Hermann

    2005-10-01

    The COSAC (Cometary Sampling and Composition Experiment) onboard the Rosetta mission is a combined gas chromatograph (GC)-mass spectrometer (MS). It is situated on Philae, the lander of the mission, which is intended to land on the nucleus of comet 67P/Churyumov- Gerasimenko. The purpose of the experiment is to analyze the volatile fraction of soil samples retrieved by a drill. For investigation, the samples will be pyrolysed, and the emanating gases fed into a GC, into an MS, or the combination of both. In the first part of this paper, the bioastronomical relevance of such measurements is outlined. In the second part the details of the hardware and its performance are described.

  6. Scientific returns from a program of space missions to comets

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1979-01-01

    A program of cometary missions is proposed. The nature and size of interstellar dust, its origin and evolution; identification of new interstellar molecules; clarification of interstellar chemistry; accretion of grains into protosolar cometesimals; role of a T Tauri wind in the dissipation of the protosolar nebula; record of isotopic anomalies, better preserved in comets than in meteorites; cosmogenic and radiogenic dating of comets; cosmochronology and mineralogy of meteorites, as compared with that of cometary samples; origin of the earth's biosphere, and the origin of life are topics discussed in relation to comet exploration.

  7. Observing campaigns for two unique comets: C/2012 S1 ISON and C/2013 A1 Siding Spring

    NASA Astrophysics Data System (ADS)

    Knight, Matthew

    During 2013-2014, comets C/2012 S1 (ISON) and C/2013 A1 (Siding Spring) have been the subjects of international observing campaigns due to their unique and fortuitous orbits. Dynamically new comet ISON was discovered in 2012 September and was destroyed during its perihelion passage at a sungrazing distance of 0.0124 AU (just 1.7 solar radii above the Sun’s photosphere) on 2013 November 28. It was of high scientific interest as the first known dynamically new sungrazing comet, became very bright near perihelion when it was extensively observed by telescopes on SOHO and STEREO, and had favorable observing circumstances for spacecraft at both Mars and Mercury. As a result, comet ISON was studied intensively by observers around the world and by more than ten spacecraft, making it one of the best-observed comets in history. Comet Siding Spring is a dynamically new comet discovered in 2013 January that passes 0.0009 AU (~135,000 km) from Mars on 2014 October 19. This is approximately 16 times smaller than the closest known approach by a comet to Earth and should bring Mars and its fleet of orbiting spacecraft within the comet’s coma. This incredibly close approach may allow the nucleus to be resolved by spacecraft at Mars, a feat only previously accomplished by a handful of missions to short period comets, and never for a dynamically new or long period comet. Observations are ongoing by ground- and space-based observatories in order to characterize both the comet itself and the hazard it may pose to the Martian spacecraft fleet. As members of NASA’s Comet ISON Observing Campaign team, we have been involved in encouraging and facilitating observations of comet ISON and are serving a similar role for comet Siding Spring. We will review the successes of these campaigns and highlight major results and ongoing work.

  8. Recommendations for safety testing with the in vivo comet assay.

    PubMed

    Vasquez, Marie Z

    2012-08-30

    While the in vivo comet assay increases its role in regulatory safety testing, deliberations about the interpretation of comet data continue. Concerns can arise regarding comet assay publications with limited data from non-blind testing of positive control compounds and using protocols (e.g. dose concentrations, sample times, and tissues) known to give an expected effect. There may be a tendency towards bias when the validation or interpretation of comet assay data is based on results generated by widely accepted but non-validated assays. The greatest advantages of the comet assay are its sensitivity and its ability to detect genotoxicity in tissues and at sample times that could not previously be evaluated. Guidelines for its use and interpretation in safety testing should take these factors into account. Guidelines should be derived from objective review of data generated by blind testing of unknown compounds dosed at non-toxic concentrations and evaluated in a true safety-testing environment, where the experimental design and conclusions must be defensible. However, positive in vivo comet findings with such compounds are rarely submitted to regulatory agencies and this data is typically unavailable for publication due to its proprietary nature. To enhance the development of guidelines for safety testing with the comet assay, and with the permission of several sponsors, this paper presents and discusses relevant data from multiple GLP comet studies conducted blind, with unknown pharmaceuticals and consumer products. Based on these data and the lessons we have learned through the course of conducting these studies, I suggest significant adjustments to the current conventions, and I provide recommendations for interpreting in vivo comet assay results in situations where risk must be evaluated in the absence of carcinogenicity or clinical data.

  9. Characterization of Comet 252P/LINEAR during its 2016 Earth Encounter

    NASA Astrophysics Data System (ADS)

    Li, Jian-Yang; Samarasinha, Nalin H.; Kelley, Michael S.; Farnocchia, Davide; Mutchler, Maximilian J.

    2016-10-01

    Comet 252P/LINEAR had a close encounter to Earth at 14 lunar distances in March 2016, representing one of the closest encounters of known comets in history and a good opportunity to measure its nucleus size and to resolve its inner coma. Observations from previous apparitions suggested a small nucleus of about or less than 1 km, and very weak activity for this comet. The similarity between the orbits of 252P and P/2016 BA16 suggests that they might be a pair of fragments from one common parent comet. We imaged 252P with the Hubble Space Telescope Wide Field Camera 3 through r'- and V-band filters over ~45 min on March 14 and over ~8 hours on April 4, 2016 at pixel scales down to 1.4 km/pix. The dust coma shows a strong enhancement in the sunward direction within about 1".5 (about 100 km at the comet) for both epochs. Image enhancement with 1/rho normalization shows that the sunward feature moves about the nucleus for ~60 deg in the second epoch, consistent with a ~7.35-hr period. The r'-band partial lightcurve measured in the April 4 images in a 0".2-radius aperture shows variability of about 0.14 mag or larger. This partial lightcurve is not consistent with the 7.35-hr period, but is consistent with a periodicity of ~5.5 hr or its multiples. The r'-band mean value of Afrho is 13 cm for March 14 and 46 cm for April 4 in a 0".2-radius aperture. We will also measure the nucleus size of this comet, and discuss its implications about the evolutionary state of the comet.

  10. Fission and reconfiguration of bilobate comets as revealed by 67P/Churyumov-Gerasimenko.