Sample records for cometary dust impact

  1. Mechanical and electrostatic experiments with dust particles collected in the inner coma of comet 67P by COSIMA onboard Rosetta.

    PubMed

    Hilchenbach, Martin; Fischer, Henning; Langevin, Yves; Merouane, Sihane; Paquette, John; Rynö, Jouni; Stenzel, Oliver; Briois, Christelle; Kissel, Jochen; Koch, Andreas; Schulz, Rita; Silen, Johan; Altobelli, Nicolas; Baklouti, Donia; Bardyn, Anais; Cottin, Herve; Engrand, Cecile; Fray, Nicolas; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Lehto, Harry; Mellado, Eva Maria; Modica, Paola; Le Roy, Lena; Siljeström, Sandra; Steiger, Wolfgang; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Zaprudin, Boris

    2017-07-13

    The in situ cometary dust particle instrument COSIMA (COmetary Secondary Ion Mass Analyser) onboard ESA's Rosetta mission has collected about 31 000 dust particles in the inner coma of comet 67P/Churyumov-Gerasimenko since August 2014. The particles are identified by optical microscope imaging and analysed by time-of-flight secondary ion mass spectrometry. After dust particle collection by low speed impact on metal targets, the collected particle morphology points towards four families of cometary dust particles. COSIMA is an in situ laboratory that operates remotely controlled next to the comet nucleus. The particles can be further manipulated within the instrument by mechanical and electrostatic means after their collection by impact. The particles are stored above 0°C in the instrument and the experiments are carried out on the refractory, ice-free matter of the captured cometary dust particles. An interesting particle morphology class, the compact particles, is not fragmented on impact. One of these particles was mechanically pressed and thereby crushed into large fragments. The particles are good electrical insulators and transform into rubble pile agglomerates by the application of an energetic indium ion beam during the secondary ion mass spectrometry analysis.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  2. Recent researches into solid bodies and magnetic fields in the solar system; Proceedings of the Topical Meeting and Symposium, Ottawa, Canada, May 16-June 2, 1982

    NASA Technical Reports Server (NTRS)

    Vette, J. I. (Editor); Runcorn, S. K. (Editor); Gruen, E. (Editor); Mcdonnell, J. A. M.

    1982-01-01

    Topics discussed include the magnetic history of the early solar system, impact processes in solid bodies (e.g., meteoroids and asteroids), and topics related to cometary missions. The section devoted to cometary missions lays particular stress on missions to Comet Halley; attention is given to such aspects of these missions as the investigation of hypervelocity impact on the Giotto Halley mission dust shield, the detection of energetic cometary and solar particles by the EPONA instrument on the Giotto mission, the dust hazard near Comet Halley in regard to the Vega project, and cometary ephemerides for spacecraft flyby missions.

  3. Characteristics of Cometary Dust Tracks in Stardust Aerogel and Laboratory Calibrations

    NASA Technical Reports Server (NTRS)

    Burchell, M. J.; Fairey, S. A. J.; Wozniakiewicz, P.; Brownlee, D. E.; Hoerz, F.; Kearsley, A. T.; See, T. H.; Tsou, P.; Westphal, A.; Green, S. F.; hide

    2007-01-01

    The cometary tray of the NASA Stardust spacecraft s aerogel collector has been examined to study the dust that was captured during the 2004 fly by of comet 81P/Wild-2. An optical scan of the entire collector surface revealed 256 impact features in the aerogel (width > 100 microns). 20 aerogel blocks (out of a total of 132) were removed from the collector tray for a higher resolution optical scan and 186 tracks were observed (track length > 50 microns and width > 8 microns). The impact features were classified into three types based on their morphology. Laboratory calibrations were conducted which reproduce all three types. This work suggests that the cometary dust consisted of some cohesive, relatively strong particles as well as particles with a more friable or low cohesion matrix containing smaller strong grains. The calibrations also permitted a particle size distribution to be estimated for the cometary dust. We estimate that approximately 1200 particles bigger than 1 micron struck the aerogel. The cumulative size distribution of the captured particles was obtained and compared with observations made by active dust detectors during the encounter. At large sizes (>20 microns) all measures of the dust are compatible, but at micrometer scales and smaller discrepancies exist between the various measurement systems which may reflect structure in the dust flux (streams, clusters etc.) along with some possible instrument effects.

  4. Dust Impact Monitor (SESAME-DIM) on-board Rosetta/Philae: Aerogel as comet analog material

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto; Albin, Thomas; Arnold, Walter; Fischer, Hans-Herbert; Hirn, Attila; Loose, Alexander; Mewes, Cornelia; Podolak, Morris; Seidensticker, Klaus J.; Volkert, Cynthia; Krüger, Harald

    2018-03-01

    On 12 November 2014, during the descent of the Rosetta lander Philae to the surface of comet 67P/Churyumov-Gerasimenko the Dust Impact Monitor (DIM) on board Philae recorded an impact of a cometary dust impact of a cometary dust particle at 2.4 km from the comet surface (5 km from the nucleus' barycentre). In this work, we report further experiments that support the identification of this particle. We use aerogel as a comet analog material to characterise the properties of this particle. Our experiments show that this particle has a radius of 0.9 mm, a low density of 0.25 g/cm3 and a high porosity close to 90%. The particle likely moved at near 4 m/s with respect to the comet.

  5. The footprint of cometary dust analogues - I. Laboratory experiments of low-velocity impacts and comparison with Rosetta data

    NASA Astrophysics Data System (ADS)

    Ellerbroek, L. E.; Gundlach, B.; Landeck, A.; Dominik, C.; Blum, J.; Merouane, S.; Hilchenbach, M.; Bentley, M. S.; Mannel, T.; John, H.; van Veen, H. A.

    2017-07-01

    Cometary dust provides a unique window on dust growth mechanisms during the onset of planet formation. Measurements by the Rosetta spacecraft show that the dust in the coma of comet 67P/Churyumov-Gerasimenko has a granular structure at size scales from sub-μmup to several hundreds of μm, indicating hierarchical growth took place across these size scales. However, these dust particles may have been modified during their collection by the spacecraft instruments. Here, we present the results of laboratory experiments that simulate the impact of dust on the collection surfaces of the COSIMA (Cometary Secondary Ion Mass Anaylzer) and MIDAS (Micro-Imaging Dust Analysis System) instruments onboard the Rosetta spacecraft. We map the size and structure of the footprints left by the dust particles as a function of their initial size (up to several hundred μm) and velocity (up to 6 m s-1). We find that in most collisions, only part of the dust particle is left on the target; velocity is the main driver of the appearance of these deposits. A boundary between sticking/bouncing and fragmentation as an outcome of the particle-target collision is found at v ˜ 2 m s-1. For velocities below this value, particles either stick or leave a single deposit on the target plate, or bounce, leaving a shallow footprint of monomers. At velocities >2 m s-1and sizes >80 μm, particles fragment upon collision, transferring up to 50 per cent of their mass in a rubble-pile-like deposit on the target plate. The amount of mass transferred increases with the impact velocity. The morphologies of the deposits are qualitatively similar to those found by the COSIMA instrument.

  6. Progress in our understanding of cometary dust tails

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1976-01-01

    Various analytical techniques are employed to analyze observations on the character, composition, and size distribution of solid particles in cometary dust tails. Emphasized is the mechanical theory that includes solar gravitational attraction and solar radiation pressure to explain dust particle motions in cometary tails, as well as interactions between dust and plasma.

  7. Ground truth of (sub-)micrometre cometary dust - Results of MIDAS onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Mannel, Thurid; Bentley, Mark; Schmied, Roland; Torkar, Klaus; Jeszenszky, Harald; Romsted, Jens; Levasseur-Regourd, A.; Weber, Iris; Jessberger, Elmar K.; Ehrenfreund, Pascale; Köberl, Christian; Havnes, Ove

    2016-10-01

    The investigation of comet 67P by Rosetta has allowed the comprehensive characterisation of pristine cometary dust particles ejected from the nucleus. Flying alongside the comet at distances as small as a few kilometres, and with a relative velocity of only centimetres per second, the Rosetta payload sampled almost unaltered dust. A key instrument to study this dust was MIDAS (the Micro-Imaging Dust Analysis System), a dedicated atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre sized particles in 3D with resolutions down to nanometres. This offers the unique opportunity to explore the morphology of smallest cometary dust and expand our current knowledge about cometary material.Here we give an overview of dust collected and analysed by MIDAS and highlight its most important features. These include the ubiquitous agglomerate nature of the dust, which is found at all size scales from the largest (>10 µm) through to the smallest (<1 µm) dust particles. The sub-units show characteristic sizes and shapes that are compared with model predictions for interstellar dust.Our findings constrain key parameters of the evolution of the early Solar System. We will discuss which dust growth model is favoured by the observed morphology and how the results restrict cometary formation. Finally, dust particles detected by MIDAS resemble primitive interplanetary dust which is a strong argument for a common cometary origin.

  8. Electron Beam Analysis of Micrometeoroids Captured in Aerogel as Stardust Analogues

    NASA Technical Reports Server (NTRS)

    Graham, G. A.; Sheffield-Parker, J.; Bradley, P.; Kearsley, A. T.; Dai, Z. R.; Mayo, S. C.; Teslich, N.; Snead, C.; Westphal, A. J.; Ishii, H.

    2005-01-01

    In January 2004, NASA s Stardust spacecraft passed through the tail of Comet 81P/Wild-2. The on-board dust flux monitor instrument indicated that numerous micro- and nano-meter sized cometary dust particles were captured by the dedicated silica aerogel capture cell. The collected cometary particles will be returned to Earth in January 2006. Current Stardust analogues are: (i) Light-gas-gun accelerated individual mineral grains and carbonaceous meteoritic material in aerogels at the Stardust encounter velocity ca.approximately 6 kilometers per second. (ii) Aerogels exposed in low-Earth orbit (LEO) containing preserved cosmic dust grains. Studies of these impacts offer insight into the potential state of the captured cometary dust by Stardust and the suitability of various analytical techniques. A number of papers have discussed the application of sophisticated synchrotron analytical techniques to analyze Stardust particles. Yet much of the understanding gained on the composition and mineralogy of interplanetary dust particles (IDPs) has come from electron microscopy studies. Here we discuss the application of scanning electron microscopy (SEM) for Stardust during the preliminary phase of post-return investigations.

  9. Dust in Cometary Comae: Present Understanding of the Structure and Composition of Dust Particles

    NASA Technical Reports Server (NTRS)

    Levasseur-Regourd, A. C.; Zolensky, M.; Lasue, J.

    2007-01-01

    In situ probing of a very few cometary comae has shown that dust particles present a low albedo and a low density, and that they consist of both rocky material and refractory organics. Remote observations of solar light scattered by cometary dust provide information on the properties of dust particles in the coma of a larger set of comets. The observations of the linear polarization in the coma indicate that the dust particles are irregular, with a size greater (on the average) than about one micron. Besides, they suggest, through numerical and experimental simulations, that both compact grains and fluffy aggregates (with a power law of the size distribution in the -2.6 to -3 range), and both rather transparent silicates and absorbing organics are present in the coma. Recent analysis of the cometary dust samples collected by the Stardust mission provide a unique ground truth and confirm, for comet 81P/Wild 2, the results from remote sensing observations. Future space missions to comets should, in the next decade, lead to a more precise characterization of the structure and composition of cometary dust particles.

  10. Electromagnetic instabilities in solar wind interaction with dusty cometary plasmas

    NASA Technical Reports Server (NTRS)

    Verheest, Frank; Meuris, Peter

    1995-01-01

    Dusty plasmas contain charged dust grains which are much more massive than protons, carry high negative charges due to preferential capture of electrons, and do not have a fixed charge. Fluctuations in the grain charges due to liberation or capture of additional electrons and protons translate as mass and momentum losses or gains for these species, which can render linear modes unstable. On the other hand, many authors have addressed the pickup of ions of cometary origin by the solar wind, which for the parallel part is due to relative streaming between cometary and solar wind ions which excites low-frequency electromagnetic turbulence. In the present work we look again at those instabilities by including effects due to the presence of charged dust in the cometary environments. We have investigated several frequency regimes: nonresonant below the cometary watergroup gyrofrequency, nonresonant below the cometary charged dust gyrofrequency (new and interesting but highly unlikely!) and resonant with the cometary watergroup ions. For most parameter ranges either the existing instabilities are enhanced, showing that the presence of charged dust facilitates the cometary ion pickup by the solar wind, or new instabilities have been shown to exist. Similar conclusions might be relevant for other kinds of astrophysical and heliospheric plasmas containing charged dust, as in planetary rings.

  11. Martian Methane From a Cometary Source: A Hypothesis

    NASA Technical Reports Server (NTRS)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; hide

    2016-01-01

    In recent years, methane in the martian atmosphere has been detected by Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. An additional potential source exists: meteor showers from the emission of large comet dust particles could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, generating methane via UV photolysis.

  12. Preliminary Examination of the Interstellar Collector of Stardust

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bastien, R.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Butterworth, A. L.; Floss, C.; Flynn, G.; hide

    2008-01-01

    The findings of the Stardust spacecraft mission returned to earth in January 2006 are discussed. The spacecraft returned two unprecedented and independent extraterrestrial samples: the first sample of a comet and the first samples of contemporary interstellar dust. An important lesson from the cometary Preliminary Examination (PE) was that the Stardust cometary samples in aerogel presented a technical challenge. Captured particles often separate into multiple fragments, intimately mix with aerogel and are typically buried hundreds of microns to millimeters deep in the aerogel collectors. The interstellar dust samples are likely much more challenging since they are expected to be orders of magnitudes smaller in mass, and their fluence is two orders of magnitude smaller than that of the cometary particles. The goal of the Stardust Interstellar Preliminary Examination (ISPE) is to answer several broad questions, including: which features in the interstellar collector aerogel were generated by hypervelocity impact and how much morphological and trajectory information may be gained?; how well resolved are the trajectories of probable interstellar particles from those of interplanetary origin?; and, by comparison to impacts by known particle dimensions in laboratory experiments, what was the mass distribution of the impacting particles? To answer these questions, and others, non-destructive, sequential, non-invasive analyses of interstellar dust candidates extracted from the Stardust interstellar tray will be performed. The total duration of the ISPE will be three years and will differ from the Stardust cometary PE in that data acquisition for the initial characterization stage will be prolonged and will continue simultaneously and parallel with data publications and release of the first samples for further investigation.

  13. Carbonaceous Components in the Comet Halley Dust

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.; Chang, S.; Mukhin, L. M.

    1994-01-01

    Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.

  14. Physical characteristics of cometary dust from dynamical studies - A review

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1980-01-01

    Progress made in the determination of the physical characteristics of cometary dust particles from studies of dust tail dynamics is reviewed. Applications of the combined dynamical photometric approach of Finson and Probstein (1968) to studies of cometary tails exhibiting continuous light intensity variations are discussed, with attention given to determinations of the particle-size-related distribution function of the solar radiation pressure exerted on the particles, the contribution of comets to the interplanetary dust, calculations of dust ejection rates and a Monte Carlo approach to the analysis of dust tails. Investigations of dust streamers and striae, which are believed to be related to comet outbursts entailing brief but sharp enhancements of dust production, are then reviewed, with particular attention given to observations of Comet West 1976 VI. Finally, the question of cometary particle type is addressed, and it is pointed out that the presence of submicron absorbing particles in the striae of Comet West is not incompatible with the presence of micron-size dielectric particles in the inner coma.

  15. Infrared Observations of Cometary Dust and Nuclei

    NASA Technical Reports Server (NTRS)

    Lisse, Carey

    2004-01-01

    This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.

  16. Cometary Dust: The Diversity of Primitive Matter

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.; Ishiiii, H. A.; Zolensky, M. E.

    2017-01-01

    The connections between comet dust and primitive chondrites from asteroids has strengthened considerably over the past decade. Understanding the importance of the connections between Stardust samples and chondrites requires geochemistry lingo as well as a perspective of other cometary dust samples besides Stardust. We present the principal findings of an extensive review prepared for by us for the June 2016 "Cometary Science After Rosetta" meeting at The Royal Society, London.

  17. The role of organic polymers in the structure of cometary dust

    NASA Technical Reports Server (NTRS)

    Vanysek, Vladimir; Boehnhardt, Hermann; Fechtig, H.

    1992-01-01

    Several phenomena observed in P/Halley and other comets indicate additional fragmentation of dust particles or dust aggregates in cometary atmospheres. The disintegration of dust aggregates may be explained by sublimation of polymerized formaldehyde - POM - which play a role as binding material between submicron individual particles.

  18. P/2006 HR30 (Siding Spring): A Low-activity Comet in Near-Earth Space

    NASA Technical Reports Server (NTRS)

    Hicks, Michael D.; Bauer, James M.

    2007-01-01

    The low cometary activity of P/2006 HR30 (Siding Spring) allowed a unique opportunity to study the nucleus of a periodic comet while near perihelion. P/2006 HR30 was originally targeted as a potential extinct comet, and we measured spectral reflectance and dust production using long-slit CCD spectroscopy and wide-field imaging obtained at the Palomar Mountain 200 inch telescope on 2006 August 3 and 4. The dust production Afp = 19.7 +/- 0.4 cm and mass-loss rate Q(dust) 4.1 +/- 0.1 kg/sec of the comet were approximately 2 orders of magnitude dust less than 1P/Halley at similar heliocentric distance. The VRI colors derived from the spectral reflectance were compared to Kuiper Belt objects, Centaurs, and other cometary nuclei. We found that the spectrum of P/2006 HR30 was consistent with other comets. However, the outer solar system bodies have a color distribution statistically distinct from cometary nuclei. It is our conjecture that cometary activity, most likely the reaccretion of ejected cometary dust, tends to moderate and mute the visible colors of the surface of cometary nuclei.

  19. Organic chemistry of cometary dust as derived from PUMA 1 data

    NASA Technical Reports Server (NTRS)

    Kissel, J.; Krueger, F. R.

    1989-01-01

    Onboard the Halley Fly-By spacecrafts Vega 1, Vega 2, and Giotto were the dust impact mass spectrometers PUMA 1, PUMA 2, and PIA respectively. PUMA 1 was the most sensitive instrument among them. From its data the occurrence of masslines greater than 60 Daltons could be shown to be statistically significant. An analysis of these masslines lead to a scenario, which could explain the masslines as fragment ions from larger molecules which characterize the chemical nature of cometary organic matter as: (1) highly unsaturated hydrocarbons; (2) some of them containing oxygen; (3) less containing nitrogen; and (4) a few containing oxygen and nitrogen as heteroatoms. From the properties of the spectrometer, also some physical parameters of the dust particles could be inferred, such as their density and structure.

  20. Trajectories of charged dust grains in the cometary environment

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Mendis, D. A.

    1985-07-01

    Using a simple model of the particles and fields environment of a comet, the trajectories of the smallest (micron- and submicron-sized) dust grains that are expected to be released from a cometary nucleus are calculated. It is shown that electromagnetic forces play a crucial role in the dynamics of these particles. The present calculations indicate not only the asymmetry of the sunward dust envelopes that have been suggested earlier by other authors, but they also indicate the possible existence of wavy dust features far down the tail, reminiscent of the peculiar wavy dust feature observed in the dust tail of Comet Ikeya-Seki 1965f. The importance of these findings in studying the lower end of the cometary dust mass spectrum during the forthcoming fly-by missions to Comet Halley is underscored.

  1. The mini-CIDEX GC/IMS: Analysis of cometary ice and dust

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Carle, Glenn C.; Humphry, Donald E.; Shao, Maxine; Takeuchi, Nori

    1995-01-01

    Comets are recognized as among the most scientifically important objects in the solar system. They are presumed relics of the early primitive material in the solar nebula and are believed to have provided a general enrichment of volatiles to the inner solar system. The Cometary Coma Chemical Composition (C4) Mission, a proposed Discovery-Class Mission, will analyze materials released into the coma, providing information leading to the understanding of the chemical composition and make-up of the cometary nucleus. As one of two scientific instruments in the C4 spacecraft, an advanced and streamlined version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX, will employ an X-Ray Fluorescence (XRF) spectrometer to determine bulk elemental composition of cometary dust grains and a Gas Chromatograph/Ion Mobility Spectrometer (GC/IMS) for determination of the molecular composition of dust and ices following stepwise pyrolysis and combustion. A description of the mini-CIDEX IMS will be provided as well as data from analyses conducted using the mini-CIDEX breadboard instrument.

  2. Dust evolution from comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1977-01-01

    The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of the evolution of cometary dust. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tails is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.

  3. Insight into Primordial Solar System Oxygen Reservoirs from Returned Cometary Samples

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Messenger, S.

    2004-01-01

    The recent successful rendezvous of the Stardust spacecraft with comet Wild-2 will be followed by its return of cometary dust to Earth in January 2006. Results from two separate dust impact detectors suggest that the spacecraft collected approximately the nominal fluence of at least 1,000 particles larger than 15 micrometers in size. While constituting only about one microgram total, these samples will be sufficient to answer many outstanding questions about the nature of cometary materials. More than two decades of laboratory studies of stratospherically collected interplanetary dust particles (IDPs) of similar size have established the necessary microparticle handling and analytical techniques necessary to study them. It is likely that some IDPs are in fact derived from comets, although complex orbital histories of individual particles have made these assignments difficult to prove. Analysis of bona fide cometary samples will be essential for answering some fundamental outstanding questions in cosmochemistry, such as (1) the proportion of interstellar and processed materials that comprise comets and (2) whether the Solar System had a O-16-rich reservoir. Abundant silicate stardust grains have recently been discovered in anhydrous IDPs, in far greater abundances (200 5,500 ppm) than those in meteorites (25 ppm). Insight into the more subtle O isotopic variations among chondrites and refractory phases will require significantly higher precision isotopic measurements on micrometer-sized samples than are currently available.

  4. Physical characteristics of cometary dust from optical studies

    NASA Technical Reports Server (NTRS)

    Hanner, M. S.

    1980-01-01

    Observations of the sunlight scattered and thermal emission from cometary dust, which may be used to infer the physical properties of the dust grains, are reviewed. Consideration is given to the observed wavelength dependence of the scattered light from cometary coma and tails, the average scattering function of the dust grains, the average grain Bond albedo, the polarization of the scattered light, and grain temperatures deduced from thermal infrared emission. The thermal properties of dust grains are illustrated for models based on magnetite or olivine grain materials, with consideration given to the variation of thermal properties with particle radius and heliocentric distance. Comparison of the models with observations indicates that a disordered or amorphous olivine composition can give a reasonable fit to the data for appropriate grain sizes and temperatures. The observations acquired are noted to indicate an optically important particle size of 1 micron, with silicate particles not larger than a few microns usually present although pure silicate grains can not be responsible for the thermal emission, and the cometary dust grains are most likely not spherical. Further observations needed in the infrared are indicated.

  5. Dynamics and Distribution of Interplanetary Dust

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    2005-08-01

    We integrated the orbital evolution of 12,000 asteroidal, cometary, and trans-Neptunian dust particles, under the gravitational influence of planets, Poynting-Robertson drag, radiation pressure, and solar wind drag (Annals of the New York Academy of Sciences, v. 1017, 66-80, 2004; Advances in Space Research, in press, 2005). The orbital evolution of 30,000 Jupiter-family comets (JFCs) was also integrated (Annals of the New York Academy of Sciences, v. 1017, 46-65, 2004). For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from <0.0004 to 0.4 (for silicates, such values correspond to particle diameters between >1000 and 1 microns). The considered cometary particles started from comets 2P, 10P, and 39P. The probability of a collision of an asteroidal or cometary dust particle with the Earth during a lifetime of the particle was maximum at diameter about 100 microns; this is in accordance with cratering records. Our different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Some JFCs can reach orbits entirely located inside Jupiter's orbit and remain in such orbits for millions of years. Such former comets could disintegrate during millions of years and produce a lot of mini-comets and dust. (2) The spatial density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can migrate outside Jupiter's orbit. Therefore cometary dust particles are needed to explain the observed constant spatial density of dust particles at 3-18 AU from the Sun. (3) Comparison of the velocities of zodiacal dust particles obtained in our runs with the observations of velocities of these particles made by Reynolds et al. (Ap.J., 2004, v. 612, 1206-1213) shows that only asteroidal dust particles cannot explain these observations, and particles produced by high-eccentricity comets (such as Comet Encke) are needed for such explanation. Several our recent papers are presented on astro-ph.

  6. SEM-EDS Analyses of Small Craters in Stardust Aluminum Foils: Implications for the Wild-2 Dust Distribution

    NASA Technical Reports Server (NTRS)

    Borg, J.; Horz, F.; Bridges, J. C.; Burchell, M. J.; Djouadi, Z.; Floss, C.; Graham, G. A.; Green, S. F.; Heck, P. R.; Hoppe, P.; hide

    2007-01-01

    Aluminium foils were used on Stardust to stabilize the aerogel specimens in the modular collector tray. Part of these foils were fully exposed to the flux of cometary grains emanating from Wild 2. Because the exposed part of these foils had to be harvested before extraction of the aerogel, numerous foil strips some 1.7 mm wide and 13 or 33 mm long were generated during Stardusts's Preliminary Examination (PE). These strips are readily accommodated in their entirety in the sample chambers of modern SEMs, thus providing the opportunity to characterize in situ the size distribution and residue composition - employing EDS methods - of statistically more significant numbers of cometary dust particles compared to aerogel, the latter mandating extensive sample preparation. We describe here the analysis of nearly 300 impact craters and their implications for Wild 2 dust.

  7. Infrared Spectroscopy of Wild 2 Particle Hypervelocity Tracks in Stardust Aerogel: Evidence for the presence of Volatile Organics in Comet Dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajt, S; Sandford, S A; Flynn, G J

    2007-08-28

    Infrared spectroscopy maps of some tracks, made by cometary dust from 81P/Wild 2 impacting Stardust aerogel, reveal an interesting distribution of volatile organic material. Out of six examined tracks three show presence of volatile organic components possibly injected into the aerogel during particle impacts. When particle tracks contained excess volatile organic material, they were found to be -CH{sub 2}-rich. Off-normal particle tracks could indicate impacts by lower velocity particles that could have bounced off the Whipple shield, therefore carry off some contamination from it. However, this theory is not supported by data that show excess organic-rich material in normal andmore » off-normal particle tracks. It is clear that the population of cometary particles impacting the Stardust aerogel collectors also include grains that contained little or none of this volatile organic component. This observation is consistent with the highly heterogeneous nature of the collected grains, as seen by a multitude of other analytical techniques. We propose that at least some of the volatile organic material might be of cometary origin based on supporting data shown in this paper. However, we also acknowledge the presence of carbon (primarily as -CH{sub 3}) in the original aerogel, which complicates interpretation of these results.« less

  8. Workshop on Cometary Dust in Astrophysics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The paper include contribution of each Lunar and Planetary Institute. Contents include the following: Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. In-situ analysis of complex organic matter in cometary dust by ion microprobe. Pristine presolar silicon carbide. Infrared spectra of melilite solid solution. Comet observations with SIRTF. Ice and carbon chemistry in comets. The nature in interstellar dust. Modeling the infrared emission from protoplanetary dust disks.

  9. Proceedings of the Shuttle-based Cometary Science Workshop: a Forum for the Presentation and Discussion of Possible Shuttle-based Experiments and Observations of Comets and Cometary-like Materials

    NASA Technical Reports Server (NTRS)

    Gary, G. A. (Editor); Clifton, K. S. (Editor)

    1976-01-01

    The prospects of cometary research from the space shuttle are examined. Topics include: the shuttle as research environment; on-board experiments at zero-gravity and release of gas and dust to simulate cometary phenomena; and cometary observations from space.

  10. The morphology of cometary dust: Subunit size distributions down to tens of nanometres

    NASA Astrophysics Data System (ADS)

    Mannel, Thurid; Bentley, Mark; Boakes, Peter; Jeszenszky, Harald; Levasseur-Regourd, Anny-Chantal; Schmied, Roland; Torkar, Klaus

    2017-04-01

    The Rosetta orbiter carried a dedicated analysis suite for cometary dust. One of the key instruments was MIDAS (Micro-Imaging Dust Analysis System), an atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre particles in 3D with resolutions down to nanometres. This provided the opportunity to study the morphology of the smallest cometary dust; initial investigation revealed that the particles are agglomerates of smaller subunits [1] with different structural properties [2]. To understand the (surface-) structure of the dust particles and the origin of their smallest building blocks, a number of particles were investigated in detail and the size distribution of their subunits determined [3]. Here we discuss the subunit size distributions ranging from tens of nanometres to a few micrometres. The differences between the subunit size distributions for particles collected pre-perihelion, close to perihelion, and during a huge outburst are examined, as well as the dependence of subunit size on particle size. A case where a particle was fragmented in consecutive scans allows a direct comparison of fragment and subunit size distributions. Finally, the small end of the subunit size distribution is investigated: the smallest determined sizes will be reviewed in the context of other cometary missions, interplanetary dust particles believed to originate from comets, and remote observations. It will be discussed if the smallest subunits can be interpreted as fundamental building blocks of our early Solar System and if their origin was in our protoplanetary disc or the interstellar material. References: [1] M.S. Bentley, R. Schmied, T. Mannel et al., Aggregate dust particles at comet 67P/Chruyumov-Gerasimenko, Nature, 537, 2016. doi:10.1038/nature19091 [2] T. Mannel, M.S. Bentley, R. Schmied et al., Fractal cometary dust - a window into the early Solar system, MNRAS, 462, 2016. doi:10.1093/mnras/stw2898 [3] R. Schmied, T. Mannel, H. Jeszenszky, M.S. Bentley, Properties of cometary dust down to the nanometre scale, poster at the conference 'Comets: A new vision after Rosetta/Philae' in Toulouse, 14-18 November 2016.

  11. GIADA: extended calibration activities before the comet encounter

    NASA Astrophysics Data System (ADS)

    Accolla, Mario; Sordini, Roberto; Della Corte, Vincenzo; Ferrari, Marco; Rotundi, Alessandra

    2014-05-01

    The Grain Impact Analyzer and Dust Accumulator - GIADA - is one of the payloads on-board Rosetta Orbiter. Its three detection sub-systems are able to measure the speed, the momentum, the mass, the optical cross section of single cometary grains and the dust flux ejected by the periodic comet 67P Churyumov-Gerasimenko. During the Hibernation phase of the Rosetta mission, we have performed a dedicated extended calibration activity on the GIADA Proto Flight Model (accommodated in a clean room in our laboratory) involving two of three sub-systems constituting GIADA, i.e. the Grain Detection System (GDS) and the Impact Sensor (IS). Our aim is to carry out a new set of response curves for these two subsystems and to correlate them with the calibration curves obtained in 2002 for the GIADA payload onboard the Rosetta spacecraft, in order to improve the interpretation of the forthcoming scientific data. For the extended calibration we have dropped or shot into GIADA PFM a statistically relevant number of grains (i.e. about 1 hundred), acting as cometary dust analogues. We have studied the response of the GDS and IS as a function of grain composition, size and velocity. Different terrestrial materials were selected as cometary analogues according to the more recent knowledge gained through the analyses of Interplanetary Dust Particles and cometary samples returned from comet 81P/Wild 2 (Stardust mission). Therefore, for each material, we have produced grains with sizes ranging from 20-500 μm in diameter, that were characterized by FESEM and micro IR spectroscopy. Therefore, the grains were shot into GIADA PFM with speed ranging between 1 and 100 ms-1. Indeed, according to the estimation reported in Fink & Rubin (2012), this range is representative of the dust particle velocity expected at the comet scenario and lies within the GIADA velocity sensitivity (i.e. 1-100 ms-1 for GDSand 1-300 ms-1for GDS+IS 1-300 ms-1). The response curves obtained using the data collected during the GIADA PFM extended calibration will be linked to the on-ground calibration data collected during the instrument qualification campaign (performed both on Flight and Spare Models, in 2002). The final aim is to rescale the Extended Calibration data obtained with the GIADA PFM to GIADA presently onboard the Rosetta spacecraft. In this work we present the experimental procedures and the setup used for the calibration activities, particularly focusing on the new response curves of GDS and IS sub-systems obtained for the different cometary dust analogues. These curves will be critical for the future interpretation of scientific data. Fink, U. & Rubin, M. (2012), The calculation of Afρ and mass loss rate for comets, Icarus, Volume 221, issue 2, p. 721-734

  12. Optical image of a cometary nucleus: 1980 flyby of Comet Encke

    NASA Technical Reports Server (NTRS)

    Wells, W. C.; Benson, R. S.; Anderson, A. D.; Gal, G.

    1974-01-01

    The feasibility was investigated of obtaining optical images of a cometary nucleus via a flyby of Comet Encke. A physical model of the dust cloud surrounding the nucleus was developed by using available physical data and theoretical knowledge of cometary physics. Using this model and a Mie scattering code, calculations were made of the absolute surface brightness of the dust in the line of sight of the on-board camera and the relative surface brightness of the dust compared to the nucleus. The brightness was calculated as a function of heliocentric distance and for different phase angles (sun-comet-spacecraft angle).

  13. Physical Processing of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1997-01-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  14. Mid-infrared spectra of cometary dust: the evasion of its silicate mineralogy

    NASA Astrophysics Data System (ADS)

    Kimura, H.; Chigai, T.; Yamamoto, T.

    2008-04-01

    Infrared spectra of dust in cometary comae provide a way to identify its silicate constituents, and this is crucial for correctly understanding the condition under which our planetary system is formed. Recent studies assign a newly detected peak at a wavelength of 9.3 μm to pyroxenes and regard them as the most abundant silicate minerals in comets. Here we dispense with this pyroxene hypothesis to numerically reproduce the infrared features of cometary dust in the framework of our interstellar dust models. Presolar interstellar dust in a comet is modeled as fluffy aggregates consisting of submicrometer-sized organic grains with an amorphous-silicate core that undergoes nonthermal crystallization in a coma. We assert that forsterite (Mg2SiO4) is the carrier of all the observed features, including the 9.3 μm peak and that the major phase of iron is sulfides rather than iron-rich silicates.

  15. Cometary Dust

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew

    2018-04-01

    This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.

  16. Hypervelocity dust particle impacts observed by the Giotto magnetometer and plasma experiments

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Glassmeier, K.-H.; Coates, A. J.; Goldstein, R.; Acuna, M. H.

    1990-01-01

    This paper describes 13 very short events in the magnetic field of the inner magnetic pile-up region of Comet Halley observed by the Giotto magnetometer experiment together with simultaneous plasma data obtained by the Johnstone plasma analyzer and the ion mass spectrometer experiments. The events are due to dust impacts in the milligram range on the spacecraft at the relative velocity between the cometary dust and the spacecraft of 68 km/sec. They are generally consistent with dust impact events derived from spacecraft attitude perturbations by the Giotto camera. Their characteristic shape generally involves a sudden decrease in magnetic-field magnitude, a subsequent overshoot beyond initial field values, and an asymptotic approach to the initial field (somewhat reminiscent of the magnetic-field signature after the AMPTE releases in the solar wind). These observations give a new way of analyzing ultra-fast dust particles incident on a spacecraft.

  17. The oxygen isotopic composition (18O/16O) in the dust of comet 67P/Churyumov-Gerasimenko measured by COSIMA on-board Rosetta

    NASA Astrophysics Data System (ADS)

    Paquette, J. A.; Engrand, C.; Hilchenbach, M.; Fray, N.; Stenzel, O. J.; Silen, J.; Rynö, J.; Kissel, J.

    2018-07-01

    The oxygen isotopic ratio 18O/16O has been measured in cometary gas for a wide variety of comets, but the only measurements in cometary dust were performed by the Stardust cometary sample return mission. Most such measurements find a value of the ratio that is consistent with Vienna Standard Mean Ocean Water (VSMOW) within errors. In this work we present the result of a measurement, using the COSIMA (the COmetary Secondary Ion Mass Analyser) instrument on the Rosetta orbiter, of the oxygen isotopic ratio in dust from Comet 67P/Churyumov-Gerasimenko. Measuring the 18O/16O ratio with COSIMA is challenging for a number of reasons, but it is possible with a reasonable degree of precision. We find a result of 2.00 × 10-3 ± 1.2 × 10-4, which is consistent within errors with VSMOW.

  18. How MIDAS improved our understanding of micrometre-sized cometary dust

    NASA Astrophysics Data System (ADS)

    Mannel, T.; Bentley, M. S.; Boakes, P.; Jeszenszky, H.; Levasseur-Regourd, A. C.; Schmied, R.; Torkar, K.

    2017-09-01

    The MIDAS atomic force microscope on the Rosetta orbiter was an instrument developed to investigate, for the first time, the morphology of nearly unaltered cometary dust. It acquired the 3D topography of about 1 - 50 µm sized dust particles with resolutions down to a few nanometres. These images showed the agglomerate character of the dust and confirmed that the smallest subunit sizes were less than 100 nm. MIDAS acquired the first direct proof of a fractal dust particle, opening a new approach to investigate the history of our early Solar System and of comets.

  19. Evolution of Cometary Dust Particles to the Orbit of the Earth: Particle Size, Shape, and Mutual Collisions

    NASA Astrophysics Data System (ADS)

    Yang, Hongu; Ishiguro, Masateru

    2018-02-01

    In this study, we numerically investigated the orbital evolution of cometary dust particles, with special consideration of the initial size–frequency distribution (SFD) and different evolutionary tracks according to the initial orbit and particle shape. We found that close encounters with planets (mostly Jupiter) are the dominating factor determining the orbital evolution of dust particles. Therefore, the lifetimes of cometary dust particles (∼250,000 yr) are shorter than the Poynting–Robertson lifetime, and only a small fraction of large cometary dust particles can be transferred into orbits with small semimajor axes. The exceptions are dust particles from 2P/Encke and, potentially, active asteroids that have little interaction with Jupiter. We also found that the effects of dust shape, mass density, and SFD were not critical in the total mass supply rate to the interplanetary dust particle (IDP) cloud complex when these quantities are confined by observations of zodiacal light brightness and SFD around the Earth’s orbit. When we incorporate a population of fluffy aggregates discovered in the Earth’s stratosphere and the coma of 67P/Churyumov–Gerasimenko within the initial ejection, the initial SFD measured at the comae of comets (67P and 81P/Wild 2) can produce the observed SFD around the Earth’s orbit. Considering the above effects, we derived the probability of mutual collisions among dust particles within the IDP cloud for the first time in a direct manner via numerical simulation and concluded that mutual collisions can mostly be ignored.

  20. Radar meteor orbital structure of Southern Hemisphere cometary dust streams

    NASA Technical Reports Server (NTRS)

    Baggaley, W. Jack; Taylor, Andrew D.

    1992-01-01

    The Christchurch, New Zealand meteor orbit radar (AMOR) with its high precision and sensitivity, permits studies of the orbital fine structure of cometary streams. PC generated graphics are presented of data on some Southern Hemisphere Streams. Such data can be related to the formation phase and subsequent dynamical processes of dust streams.

  1. Chemical Evolution of Interstellar Dust into Planetary Materials

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Comets are believed to retain some interstellar materials, stored in fairly pristine conditions since-their formation. The composition and properties of cometary dust grains should reflect those of grains in the outer part of the protosolar nebula which, at least in part, were inherited from the presolar molecular cloud. However, infrared emission features in comets differ from their interstellar counterparts. These differences imply processing of interstellar material on its way to incorporation in comets, but C and N appear to be retained. Overall dust evolution from the interstellar medium (ISM) to planetary materials is accompanied by an increase in proportion of complex organics and a decrease in pure carbon phases. The composition of cometary dust grains was measured in situ during fly-by missions to comet Halley in 1986. The mass spectra of about 5000 cometary dust grains with masses of 5 x 10(exp -17) - 5 x 10(exp -12) g provide data about the presence and relative abundances of the major elements H, C, N, O,Na, Mg, Al, Si, S, Cl, K, Ca, Ti, Cr, Fe, Ni. The bulk abundances of major rock-forming elements integrated over all spectra were found to be solar within a factor of 2, while the volatile elements H, C, N, O in dust are depleted in respect to their total cosmic abundances. The abundances of C and N in comet dust are much closer to interstellar than to meteoritic and are higher than those of dust in the diffuse ISM. In dense molecular clouds dust grains are covered by icy mantles, the average composition of which is estimated to be H:C:N:O = 96:14:1:34. Up to 40% of elemental C and O may be sequestered in mantles. If we use this upper limit to add H, C, N and O as icy mantle material to the abundances residing in dust in the diffuse ISM, then the resulting values for H. C, and N match cometary abundances. Thus, ice mantles undergoing chemical evolution on grains in the dense ISM appear to have been transformed into less volatile and more complex organic residues wherein the H, C and N are largely retained and ultimately accreted in cometary dust. The abundance of O is about the same for cometary dust, meteorites and interstellar dust. In all these samples, most of O in a solid phase is bonded to silicates. In dense molecular clouds, the abundance of O in dust+mantles is significantly higher then in cometary dust. This difference may reflect the greater lability of oxygenated species toward astrophysical processing. Laboratory studies show that O-bearing functional groups in organic compounds tend to be relatively easily removed by heating and/or UV and particle irradiation . In Halley's coma, O-containing organic grains, being unstable, were located closest to the nucleus. The decomposition of the organic grain component in the coma provided a significant extended source contribution to O-containing gaseous species such as CO and H2CO.

  2. Link between interplanetary & cometary dust: Polarimetric observations and space studies with Rosetta & Eye-Sat

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, Anny-Chantal; Gaboriaud, Alain; Buil, Christian; Ressouche, Antoine; Lasue, J.; Palun, Adrien; Apper, Fabien; Elmaleh, Marc

    Intensity and linear polarization observations of the solar light scattered by interplanetary dust, the so-called zodiacal light, provide information on properties of the dust particles, such as their spatial density, local changes, morphology and albedo. Earth-based polarimetric observations, with a resolution of 5° or more, have been used to derive the polarization phase curve of interplanetary dust particles and to establish that the polarization at 90° phase angle increases with increasing solar distance, at least up to 1.5 au in the ecliptic, while the albedo decreases [1, 2]. Analysis of such studies will be revisited. Numerical simulations of the polarimetric behavior of interplanetary dust particles strongly suggest that, in the inner solar system, interplanetary dust particles consist of absorbing (e.g., organic compounds) and less absorbing (e.g., silicates) materials, that radial changes originate in a decrease of organics with decreasing solar distance (probably due to alteration processes), and that a significant fraction of the interplanetary dust is of cometary origin, in agreement with dynamical studies [3, 4]. The polarimetric behaviors of interplanetary dust and cometary dust particles seem to present striking similarities. The properties of cometary dust particles, as derived from remote polarimetric observations of comets including 67P/Churyumov-Gerasimenko, the target of the Rosetta rendezvous mission, at various wavelengths, will be summarized [5, 6]. The ground truth expected from Rosetta dust experiments, i.e., MIDAS, COSIMA, GIADA, about dust particles’ morphology, composition, and evolution (with distance to the nucleus before Philae release and with distance to the Sun before and after perihelion passage) over the year and a half of nominal mission, will be discussed. Finally, the Eye-Sat nanosatellite will be presented. This triple cubesat, developed by students from engineering schools working as interns at CNES, is to be launched in 2016 [7]. Its main purpose is to study the zodiacal light intensity and polarization from a Sun-synchronous orbit, for the first time at the high spatial resolution of 1° over a wide portion of the sky and at four different wavelengths (in the visible and near-IR domains). The instrumental choices and new on-board technologies will be summarized, together with the results that may be expected on local properties of the interplanetary dust particles and thus on their similarities and differences with cometary dust particles. Support from CNES is warmly acknowledged. [1] Leinert, C., Bowyer, S., Haikala, L.K., et al. The 1997 reference of diffuse night sky brightness, Astron. Astrophys. Supp., 127, 1-99, 1998. [2] Levasseur-Regourd, A.C., Mann, I., Dumont, R., et al. Optical and thermal properties of interplanetary dust. In Interplanetary dust (Grün, E. et al. Eds), 57-94, Springer-Verlag, Berlin, 2001. [3] Lasue, J., Levasseur-Regourd, A.C., Fray, N., et al. Inferring the interplanetary dust properties from remote observations and simulations, Astron. Astrophys., 473, 641-649, 2007. [4] Nesvorny, D., Jenniskens, P., Levison, H.F., et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites: implications for hot debris disks. Astrophys. J. 713, 816-836, 2010. [5] Levasseur-Regourd, A.C., Mukai, T., Lasue, J., et al. Physical properties of cometary and interplanetary dust, Planet. Space Sci., 55, 1010-1020, 2007. [6] Hadamcik, E., Sen, A.K., Levasseur-Regourd, A.C., et al., Astron. Astrophys., 517, A86, 2010. [7] CNES internal report. Eye-Sat end of phase A internal review, EYESAT-PR-0-022-CNES, 2013.

  3. A New 3D Multi-fluid Dust Model: A Study of the Effects of Activity and Nucleus Rotation on Dust Grain Behavior at Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M.; Toth, G.; Tenishev, V.; Fougere, N.; Jia, X.; Rubin, M.; Huang, Z.; Hansen, K.; Gombosi, T.

    2017-11-01

    Improving our capability to interpret observations of cometary dust is necessary to deepen our understanding of the role of dust in the formation of comets and in altering the cometary environments. Models including dust grains are in demand to interpret observations and test hypotheses. Several existing models have taken into account the gas-dust interaction, varying sizes of dust grains and the cometary gravitational force. In this work, we develop a multi-fluid dust model based on the BATS-R-US code. This model not only incorporates key features of previous dust models, but also has the capability of simulating time-dependent phenomena. Since the model is run in the rotating comet reference frame, the centrifugal and Coriolis forces are included. The boundary conditions on the nucleus surface can be set according to the distribution of activity and the solar illumination. The Sun revolves around the comet in this frame. A newly developed numerical mesh is also used to resolve the real-shaped nucleus in the center and to facilitate prescription of the outer boundary conditions that accommodate the rotating frame. The inner part of the mesh is a box composed of Cartesian cells and the outer surface is a smooth sphere, with stretched cells filled in between the box and the sphere. Our model achieved comparable results to the Direct Simulation Monte Carlo method and the Rosetta/OSIRIS observations. It is also applied to study the effects of the rotating nucleus and the cometary activity and offers interpretations of some dust observations of comet 67P/Churyumov-Gerasimenko.

  4. The terminal Velocity of the Deep Impact dust Ejecta

    NASA Astrophysics Data System (ADS)

    Rengel, M.; Küppers, M.; Keller, H. U.; Gutierrez, P.; Hviid, S. F.

    2009-05-01

    The collision of the projectile released from NASA Deep Impact spacecraft on the nucleus of comet 9P/Tempel 1 generated a hot plume. Afterwards ejecta were created, and material moved slowly in a form of a dust cloud, which dissipated during several days after the impact. Here we report a study about the distribution of terminal velocities of the particles ejected by the impact. This is performed by the development and application of an ill-conditioned inverse problem approach. We model the light-curves as seen by the Narrow Angle Camera (NAC) of OSIRIS onboard the ESA spacecraft Rosetta, and we compare them with the OSIRIS observations. Terminal velocities are derived using a maximum likelihood estimator. The dust velocity distribution is well constrained, and peaks at around 220 m s^{-1}, which is in good agreement with published estimates of the expansion velocities of the dust cloud. Measured and modeled velocity of the dust cloud suggests that the impact ejecta were quickly accelerated by the gas in the cometary coma. This analysis provides a more thorough understanding of the properties (velocity and mass of dust) of the Deep Impact dust cloud.

  5. Chemical and Hydrodynamical Models of Cometary Comae

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2012-01-01

    Multi-fluid modelling of the outflowing gases which sublimate from cometary nuclei as they approach the Sun is necessary for understanding the important physical and chemical processes occurring in this complex plasma. Coma chemistry models can be employed to interpret observational data and to ultimately determine chemical composition and structure of the nuclear ices and dust. We describe a combined chemical and hydrodynamical model [1] in which differential equations for the chemical abundances and the energy balance are solved as a function of distance from the cometary nucleus. The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of 1P/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [2]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of new models for the chemistry of cometary comae that include atomic and molecular anions and calculate the impact of these anions on the coma physics and chemistry af the coma.

  6. The effect of a non-volatile dust mantle on the energy balance of cometary surface layers

    NASA Technical Reports Server (NTRS)

    Koemle, Norbert I.; Steiner, Gerhard

    1992-01-01

    It is likely that large parts of a cometary surface layer consist of porous ices, which are covered by a thin layer of non-volatile debris, whose structure is also fluffy and porous. In this paper the results of model calculations are presented. The calculations show the effect of ice and dust pore sizes and of the dust mantle thickness upon the thermal behavior of such a dust-ice system, when it is irradiated by the sun. In particular, it is found that the average pore size of the ice and the dust material has a large influence both on the dust surface temperature and on the temperature at the dust-ice interface.

  7. A new 3D multi-fluid dust model: a study of the effects of activity and nucleus rotation on the dust grains' behavior in the cometary environment

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M. R.; Toth, G.; Fougere, N.; Tenishev, V.; Huang, Z.; Jia, X.; Hansen, K. C.; Gombosi, T. I.; Bieler, A. M.; Rubin, M.

    2016-12-01

    Cometary dust observations may deepen our understanding of the role of dust in the formation of comets and in altering the cometary environment. Models including dust grains are in demand to interpret observations and test hypotheses. Several existing models have taken into account the gas-dust interaction, varying sizes of dust grains and the cometary gravitational force. In this work, we develop a multi-fluid dust model based on BATS-R-US in the University of Michigan's Space Weather Modeling Framework (SWMF). This model not only incorporates key features of previous dust models, but also has the capability of simulating time-dependent phenomena. Since the model is running in the rotating comet reference frame with a real shaped nucleus in the computational domain, the fictitious centrifugal and Coriolis forces are included. The boundary condition on the nucleus surface can be set according to the distribution of activity and the solar illumination. The Sun, which drives sublimation and the radiation pressure force, revolves around the comet in this frame. A newly developed numerical mesh is also used to resolve the real shaped nucleus in the center and to facilitate prescription of the outer boundary conditions that accommodate the rotating frame. The inner part of the grid is a box composed of Cartesian cells and the outer surface is a smooth sphere, with stretched cells filled in between the box and the sphere. The effects of the rotating nucleus and the activity region on the surface are discussed and preliminary results are presented. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta contracts JPL #1266313, JPL #1266314 and JPL #1286489.

  8. Cometary dust at the nanometre scale - the MIDAS view after perihelion

    NASA Astrophysics Data System (ADS)

    Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.; Schmied, R.; Mannel, T.

    2015-10-01

    The MIDAS instrument on-board the Rosetta orbiter [1] is a unique combination of a dust collection and handling system and a high resolution Atomic Force Microscope (AFM). By building three-dimensional images of the dust particle topography with nano- to micrometre resolution, MIDAS addresses a range of fundamental questions in Solar System and cometary sciences. The greatest number of particles is expected to be collected around perihelion and the initial results of imaging these will be presented.

  9. Beyond topography - enhanced imaging of cometary dust with the MIDAS AFM

    NASA Astrophysics Data System (ADS)

    Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.

    2013-09-01

    The MIDAS atomic force microscope (AFM) onboard the Rosetta spacecraft is primarily designed to return the 3D shape and structure of cometary dust particles collected at comet 67P/Churyumov-Gerasimenko [1]. Commercial AFMs have, however, been further developed to measure many other sample properties. The possibilities to make such measurements with MIDAS are explored here.

  10. Characterization of biogenic elements in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.

    1986-01-01

    Those particles that were designated cometary are aggregates of amorphous materials including carbon, iron-magnesium silicates, sulfides, metal and trace amounts of unusual phases. Most aggregates are carbon-rich with major and minor element abundances similar to a fine grained matrix of carbonaceous chondrites. Several particles were analyzed by a laser microprobe. The negative ionic species identified to date include carbon clusters, protonated carbon clusters, CN-, HCN-, CNO-, PO2-, PO3-, S-, S2- asnd OH-. These species are similar to those observed in cometary spectra and they support the assumption that organic materials are present. The occurance of phosphate ions suggests the presence of apatite or whitlockite. Cometary particle characteristics may indicate that the component grains represent primitive unaltered dust whose overall properties are extremely similar to altered primitive dust in carbonaceous chondrites.

  11. Non-Random Spatial Distribution of Impacts in the Stardust Cometary Collector

    NASA Technical Reports Server (NTRS)

    Westphal, Andrew J.; Bastien, Ronald K.; Borg, Janet; Bridges, John; Brownlee, Donald E.; Burchell, Mark J.; Cheng, Andrew F.; Clark, Benton C.; Djouadi, Zahia; Floss, Christine

    2007-01-01

    In January 2004, the Stardust spacecraft flew through the coma of comet P81/Wild2 at a relative speed of 6.1 km/sec. Cometary dust was collected at in a 0.1 sq m collector consisting of aerogel tiles and aluminum foils. Two years later, the samples successfully returned to earth and were recovered. We report the discovery that impacts in the Stardust cometary collector are not distributed randomly in the collecting media, but appear to be clustered on scales smaller than approx.10 cm. We also report the discovery of at least two populations of oblique tracks. We evaluated several hypotheses that could explain the observations. No hypothesis was consistent with all the observations, but the preponderance of evidence points toward at least one impact on the central Whipple shield of the spacecraft as the origin of both clustering and low-angle oblique tracks. High-angle oblique tracks unambiguously originate from a noncometary impact on the spacecraft bus just forward of the collector. Here we summarize the observations, and review the evidence for and against three scenarios that we have considered for explaining the impact clustering found on the Stardust aerogel and foil collectors.

  12. Craters on comets

    NASA Astrophysics Data System (ADS)

    Vincent, J.; Oklay, N.; Marchi, S.; Höfner, S.; Sierks, H.

    2014-07-01

    This paper reviews the observations of crater-like features on cometary nuclei. ''Pits'' have been observed on almost all cometary nuclei but their origin is not fully understood [1,2,3,4]. It is currently assumed that they are created mainly by the cometary activity with a pocket of volatiles erupting under a dust crust, leaving a hole behind. There are, however, other features which cannot be explained in this way and are interpreted alternatively as remnants of impact craters. This work focusses on the second type of pit features: impact craters. We present an in-depth review of what has been observed previously and conclude that two main types of crater morphologies can be observed: ''pit-halo'' and ''sharp pit''. We extend this review by a series of analysis of impact craters on cometary nuclei through different approaches [5]: (1) Probability of impact: We discuss the chances that a Jupiter Family Comet like 9P/Tempel 1 or the target of Rosetta 67P/Churyumov-Gerasimenko can experience an impact, taking into account the most recent work on the size distribution of small objects in the asteroid Main Belt [6]. (2) Crater morphology from scaling laws: We present the status of scaling laws for impact craters on cometary nuclei [7] and discuss their strengths and limitations when modeling what happens when a rocky projectile hits a very porous material. (3) Numerical experiments: We extend the work on scaling laws by a series of hydrocode impact simulations, using the iSALE shock physics code [8,9,10] for varying surface porosity and impactor velocity (see Figure). (4) Surface processes and evolution: We discuss finally the fate of the projectile and the effects of the impact-induced surface compaction on the activity of the nucleus. To summarize, we find that comets do undergo impacts although the rapid evolution of the surface erases most of the features and make craters difficult to detect. In the case of a collision between a rocky body and a highly porous cometary nucleus, two specific crater morphologies can be formed: a central pit surrounded by a shallow depression, or a pit, deeper than typical craters observed on rocky surfaces. After the impact, it is likely that a significant fraction of the projectile will remain in the crater. During its two years long escort of comet 67P/Churyumov-Gerasimenko, ESA's Rosetta mission should be able to detect specific silicate signatures on the bottom of craters or crater-like features, as evidence of this contamination. For large craters, structural changes in the impacted region, in particular, compaction of material, will affect the local activity. The increase of tensile strength can stop the activity by preventing the gas from lifting up dust grains. On the other hand, material compaction can help the heat flux to travel deeper in the nucleus, potentially reaching unexposed pockets of volatiles, and therefore increasing the activity [11]. Ground truth data from Rosetta will help us infer the relative importance of those two effects.

  13. Modeling the cometary environment using a fluid approach

    NASA Astrophysics Data System (ADS)

    Shou, Yinsi

    Comets are believed to have preserved the building material of the early solar system and to hold clues to the origin of life on Earth. Abundant remote observations of comets by telescopes and the in-situ measurements by a handful of space missions reveal that the cometary environments are complicated by various physical and chemical processes among the neutral gases and dust grains released from comets, cometary ions, and the solar wind in the interplanetary space. Therefore, physics-based numerical models are in demand to interpret the observational data and to deepen our understanding of the cometary environment. In this thesis, three models using a fluid approach, which include important physical and chemical processes underlying the cometary environment, have been developed to study the plasma, neutral gas, and the dust grains, respectively. Although models based on the fluid approach have limitations in capturing all of the correct physics for certain applications, especially for very low gas density environment, they are computationally much more efficient than alternatives. In the simulations of comet 67P/Churyumov-Gerasimenko at various heliocentric distances with a wide range of production rates, our multi-fluid cometary neutral gas model and multi-fluid cometary dust model have achieved comparable results to the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid in all collisional regimes. Therefore, our model is a powerful alternative to the particle-based model, especially for some computationally intensive simulations. Capable of accounting for the varying heating efficiency under various physical conditions in a self-consistent way, the multi-fluid cometary neutral gas model is a good tool to study the dynamics of the cometary coma with different production rates and heliocentric distances. The modeled H2O expansion speeds reproduce the general trend and the speed's nonlinear dependencies of production rate and heliocentric distance, which are found in remote observations. In the multi-fluid dust model, we use a newly developed numerical mesh to resolve the real shaped nucleus in the center and to facilitate prescription of the outer boundary conditions that accommodate the rotating frame. The model studies the effects of the rotating nucleus and the cometary activity in time-dependent simulations for the first time. The result also suggests that the rotation of the nucleus explains why there is no clear dust speed dependence on size in some of the dust observations. We developed a new multi-species comet MHD model to simulate the plasma environment of comet C/2006 P1 (McNaught) over a wide range of heliocentric distances from 0.17 AU to 1.75 AU, with the constraints provided by remote and in situ observations. Typical subsolar standoff distances of bow shock and contact surface are modeled and presented to characterize the solar wind interaction of the comet at various heliocentric distances. In addition, the model is also the first one to be used to study the composition and dynamics in the distant cometary tail. The results agree well with the measured water group ion abundances from the Ulysses/SWICS 1.7 AU down-tail from the comet and the velocity and temperature measured by Ulysses/SWOOPS.

  14. Significant variation from a 1/R-squared potential in the cumulative flux determined from the Giotto Comet Halley Dust Impact Experiment

    NASA Technical Reports Server (NTRS)

    Alexander, W. M.; Goad, S.; Mcdonald, R. A.; Tanner, W. G., Jr.; Pollock, J. J.

    1989-01-01

    The Dust Impact Detection System (DIDSY) aboard the Giotto spacecraft provided the information on the dust flux, mass spectrum, and cumulative mass distribution flux in the coma of Comet Halley. Analysis of discrete pulse height data of cometary particles for the mass range of particles between 4.0 x 10 to the -10th g and 6.0 x 10 to the -6th g registered by the Giotto DIDSY detectors 2, 3, and 4 has been completed, and a cumulative flux has been determined for this size range of particles. Inside the cometopause, anomalous peaks have been identified as deviation from a 1/R-squared curve in both pre- and postencounter measurements.

  15. Asteroids and Comets Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Contents include various different animations in the area of Asteroids and Comets. Titles of the short animated clips are: STARDUST Mission; Asteroid Castallia Impact Simulation; Castallia, Toutatis and the Earth; Simulation Asteroid Encounter with Earth; Nanorover Technology Task; Near Earth Asteroid Tracking; Champollian Anchor Tests; Early Views of Comets; Exploration of Small Bodies; Ulysses Resource Material from ESA; Ulysses Cometary Plasma Tail Animation; and various discussions on the Hale-Bopp Comet. Animation of the following are seen: the Stardust aerogel collector grid collecting cometary dust particles, comet and interstellar dust analyzer, Wiper-shield and dust flux monitor, a navigation camera, and the return of the sample to Earth; a comparison of the rotation of the Earth to the Castallia and Tautatis Asteroids; an animated land on Tautatis and the view of the motion of the sky from its surface; an Asteroid collision with the Earth; the USAF Station in Hawaii; close-up views of asteroids; automatic drilling of the Moon; exploding Cosmic Particles; and the dropping off of the plasma tail of a comet as it travels near the sun.

  16. The Giotto radio-science experiment

    NASA Technical Reports Server (NTRS)

    Edenhofer, P.; Bird, M. K.; Buschert, H.; Esposito, P. B.; Porsche, H.; Volland, H.

    1986-01-01

    The scientific objectives of the Giotto Radio Science Experiment (GRE) are to determine the columnar electron content of Comet Halley/s ionosphere and the cometary mass fluence from atmospheric drag by using the radio signals from Giotto during the Halley encounter. The radio science data (S and X-band Doppler and range measurements) will be collected at NASA/s deep-space 64 m tracking antenna at Tidbinbilla near Canberra, in Australia. In order to separate the effects of the terrestrial ionosphere and the interplanetary plasma, S-band Doppler measurements will also be taken at Tidbinbilla along the line-of-sight of Japan/s cometary probe Sakigake during the Giotto-Halley Encounter. The measurements of cometary electron content and mass fluence will be inverted to derive the spatial distribution of the electron and mass (dust and gas) density within Halley/s coma. The GRE is the only experiment on Giotto capable of measuring the low-energy (10 eV) electron bulk population of Halley/s ionosphere and the total cometary mass flow impacting upon the spacecraft.

  17. Comets: Gases, ices, grains and plasma

    NASA Technical Reports Server (NTRS)

    Wilkening, L. L.

    1981-01-01

    The program and abstracts of the 97 papers delivered at the colloquium are presented. Cometary nuclei, comet dust, the coma, ion tails, several comet missions, and cometary origin and evolution were discussed.

  18. The Micro Imaging and Dust Analysis System - New Possibilities for Space Sciences

    NASA Astrophysics Data System (ADS)

    Schmied, R.; Torkar, K..; Jeszenszky, H.; Romstedt, J.; Mannel, T.; Bentley, M. S.

    2015-10-01

    The Rosetta mission addresses a range of fundamental questions in Solar System and cometary science and the MIDAS instrument on-board the orbiter is one of the dust analysis systems. While GIADA analyses the dust flux and spatial distribution as a function of time and space and COSIMA investigates the elemental composition of cometary grains, MIDAS is a unique high resolution Atomic Force Microscope (AFM) combined with a dust collection and handling system designed to reveal the three-dimensional topographical structure of nanoand micrometer sized dust particles [1]. In this work we concentrate on the instrumental functionality and limitations coming from the constcution and operation dealing with an AFM fabricated nearly 20 years ago and operating in a harsh environment.

  19. Infrared Spectroscopy of HR 4796A's Bright Outer Cometary Ring + Tenuous Inner Hot Dust Cloud

    NASA Astrophysics Data System (ADS)

    Lisse, C. M.; Sitko, M. L.; Marengo, M.; Vervack, R. J., Jr.; Fernandez, Y. R.; Mittal, T.; Chen, C. H.

    2017-11-01

    We have obtained new NASA/IRTF SpeX spectra of the HR 4796A debris ring system. We find a unique red excess flux that extends out to ˜9 μm in Spitzer IRS spectra, where thermal emission from cold, ˜100 K dust from the system’s ring at ˜75 au takes over. Matching imaging ring photometry, we find the excess consists of NIR reflectance from the ring, which is as red as that of old, processed comet nuclei, plus a tenuous thermal emission component from close-in, T ˜ 850 K circumstellar material evincing an organic/silicate emission feature complex at 7-13 μm. Unusual, emission-like features due to atomic Si, S, Ca, and Sr were found at 0.96-1.07 μm, likely sourced by rocky dust evaporating in the 850 K component. An empirical cometary dust phase function can reproduce the scattered light excess and 1:5 balance of scattered versus thermal energy for the ring with optical depth < τ > ≥slant 0.10 in an 8 au wide belt of 4 au vertical height and M dust > 0.1-0.7 M Mars. Our results are consistent with HR 4796A, consisting of a narrow shepherded ring of devolatilized cometary material associated with multiple rocky planetesimal subcores and a small steady stream of dust inflowing from this belt to a rock sublimation zone at ˜1 au from the primary. These subcores were built from comets that have been actively emitting large, reddish dust for >0.4 Myr at ˜100 K, the temperature at which cometary activity onset is seen in our solar system.

  20. Cosmic dust and space debris; Proceedings of the Topical Meetings and Workshop 6 of the 26th COSPAR Plenary Meeting, Toulouse, France, June 30-July 11, 1986

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M. (Editor); Hanner, M. S. (Editor); Kessler, D. J. (Editor)

    1986-01-01

    These proceedings encompass topics in the fields of extraterrestrial material samples, IRAS solar system and dust model results, and earth orbit debris. Attention is given to chemical fractionation during high velocity impact, particle deceleration and survival in multiple thin foil targets, and IRAS studies of asteroids, comets, cometary tails, the zodiacal background, and the three-dimensional modeling of interplanetary dust. Also discussed are the evolution of an earth orbit debris cloud, orbital debris due to future space activities, collision probabilities in geosynchronous orbits, and a bitelescopic survey of low altitude orbital debris.

  1. Stardust: An overview of the craters in aluminium foils (calibration, classification and particle size distribution)

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.; Kearsley, A. T.; Wozniakiewicz, P. J.; Hörz, F.; Borg, J.; Graham, G. A.; Leroux, H.; Bridges, J. C.; Bland, P. A.; Bradley, J. P.; Dai, Z. R.; Teslich, N.; See, T.; Warren, J.; Bastien, R.; Hoppe, P.; Heck, P. R.; Huth, J.; Stadermann, F. J.; Floss, C.; Marhas, K.; Stephan, T.; Leitner, J.; Green, S. F.

    2007-08-01

    The NASA Stardust mission (1) to comet 81P/Wild-2 returned to Earth in January 2006 carrying a cargo of dust captured intact in aerogel and as residue rich craters in aluminium foils (2). Although the aerogel (and its content of dust grains) has gathered most attention, the foils have also been subject to extensive analysis. Many groups contributed to the dimensional characterization of representative populations of foilcraters in the Preliminary Examination and combined with a laboratory calibration this yielded a particle size distribution of the dust encountered during the fly by of the comet (3). The calibration experiments will be described in this paper in detail. They involved using the two stage light gas gun at the University of Kent (4) to impact Stardust grade aluminium foils (from the same batch as used on Stardust) with projectiles at 6.1 km/s (the cometary encounter speed). A variety of projectiles were used to simulate possible cometary dust grain composition, morphology and structure. Prior to the return of Stardust, glass beads were used to provide the initial calibration (5) which was used to obtain the size distribution reported in (3). A range of projectiles of differing density were then used (6) to determine the sensitivity of the results to impactor density (also allowed for in (5)). Subsequently this work has been significantly extended (7) to allow for a greater range of projectile densities and strengths. The work has now been extended further to allow for aggregate impactors which have a high individual grain density, but a low overall bulk density. In addition, the results have been extended down in impactor size from the previous lower limit of 10 microns to 1.5 micron impactor diameter. The application of these new calibration results to the measurement of the cometary dust size distribution will be discussed. It will be shown that the changes are within the range originally presented in (3). The results will be compared to the dust size distribution obtained from the tracks in the aerogel and the combined results contrasted to those obtained with active impact detectors in real time during the cometary encounter (8, 9). At small dust grain sizes (a few microns and below) a significant discrepancy is seen which is still unexplained. References (1) Brownlee D.E. et al., J. Geophys. Res. 108, E10, 8111, 2003. (2) Brownlee D.E. et al., Science 314, 1711 - 1716, 2006. (3) Hörz F. et al., Science 314, 1716 - 1719, 2006. (4) Burchell M.J. et al., Meas. Sci. Technol. 10, 41 - 50, 1999. (5) Kearsley A.T. et al., MAPS 41, 167 - 180, 2006. (6) Kearsley A.T. et al., MAPS 42, 191 - 210, 2007. (7) Kearsley A.T. et al., MAPS submitted, 2007. (8) Tuzzolino A.J. et al., Science 304, 1776 - 1780. (9) Green, S.F. et al., J. Geophys. Res. 109, E12S04, 2004.

  2. Proceedings of the MECA Workshop on The Evoluation of the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Carr, M. (Editor); James, P. (Editor); Conway, L. (Editor); Pepin, R. (Editor); Pollack, J. (Editor)

    1985-01-01

    Topics addressed include: Mars' volatile budget; climatic implications of martian channels; bulk composition of Mars; accreted water inventory; evolution of CO2; dust storms; nonlinear frost albedo feedback on Mars; martian atmospheric evolution; effects of asteroidal and cometary impacts; and water exchange between the regolith and the atmosphere/cap system over obliquity timescales.

  3. The Oxygen Isotopic Composition (18O/16O) in the Dust of Comet 67P/Churyumov-Gerasimenko Measured by COSIMA On-board Rosetta

    NASA Astrophysics Data System (ADS)

    Paquette, J. A.; Engrand, C.; Hilchenbach, M.; Fray, N.; Stenzel, O. J.; Silen, J.; Rynö, J.; Kissel, J.

    2018-03-01

    The oxygen isotopic ratio 18O/16O has been measured in cometary gas for a wide variety of comets, but the only measurements in cometary dust were performed by the Stardust cometary sample return mission. Most such measurements find a value of the ratio that is consistent with Vienna Standard Mean Ocean Water (VSMOW) within errors. In this work we present the result of a measurement, using the COSIMA instrument on the Rosetta orbiter, of the oxygen isotopic ratio in dust from Comet 67P/Churyumov-Gerasimenko. Measuring the 18O/16O ratio with COSIMA is challenging for a number of reasons, but it is possible with a reasonable degree of precision. We find a result of 2.00 × 10-3 ± 1.2 × 10-4 which is consistent within errors with VSMOW.

  4. The status of measurement technologies concerning micrometer and submicrometer space articulate matter capture, recovery, velocity and trajectory

    NASA Technical Reports Server (NTRS)

    Alexander, W. M.; Tanner, William G.; Mcdonald, R. A.; Schaub, G. E.; Stephenson, Stepheni L.; Mcdonnell, J. A. M.; Maag, Carl R.

    1994-01-01

    The return of a pristine sample from a comet would lead to greater understanding of cometary structures, as well as offering insights into exobiology. The paper presented at the Discovery Program Workshop outlined a set of measurements for what was identified as a SOCCER-like interplanetary mission. Several experiments comprised the total instrumentation. This paper presents a summary of CCSR with an overview of three of the four major instruments. Details of the major dust dynamics experiment including trajectory are given in this paper. The instrument proposed here offers the opportunity for the return of cometary dust particles gathered in situ. The capture process has been employed aboard the space shuttle with successful results in returning samples to Earth for laboratory analysis. In addition, the sensors will measure the charge, mass, velocity, and size of cometary dust grains during the encounter. This data will help our understanding of dusty plasmas.

  5. Comets and the origin of life; Proceedings of the Fifth College Park Colloquium on Chemical Evolution, University of Maryland, College Park, MD, October 29-31, 1980

    NASA Technical Reports Server (NTRS)

    Ponnamperuma, C.

    1981-01-01

    Papers are presented concerning the characteristics of comets and their possible role in the origin of life. Specific topics include the characteristics, origin and structure of the cometary nucleus, cometary chemical abundances, the nature of interplanetary dust and its entry into terrestrial planet atmospheres, and the mechanism of ray closure in comet tails. Attention is also given to chemically evolved interstellar dust as a source of prebiotic material, the relation of comets to paleoatmospheric photochemistry, comets as a vehicle for panspermia, limits to life posed by extreme environments, and the status of cometary space missions as of 1980.

  6. Cometary dust: the diversity of primitive refractory grains

    PubMed Central

    Ishii, H. A.

    2017-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive cometary particles has expanded significantly through microscale investigations of cosmic dust samples (anhydrous interplanetary dust particles (IDPs), chondritic porous (CP) IDPs and UltraCarbonaceous Antarctic micrometeorites, Stardust and Rosetta), as well as through remote sensing (Spitzer IR spectroscopy). Comet dust are aggregate particles of materials unequilibrated at submicrometre scales. We discuss the properties and processes experienced by primitive matter in comets. Primitive particles exhibit a diverse range of: structure and typology; distribution of constituents; concentration and form of carbonaceous and refractory organic matter; Mg- and Fe-contents of the silicate minerals; sulfides; existence/abundance of type II chondrule fragments; high-temperature calcium–aluminium inclusions and ameboid-olivine aggregates; and rarely occurring Mg-carbonates and magnetite, whose explanation requires aqueous alteration on parent bodies. The properties of refractory materials imply there were disc processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disc present at the time and in the region where the comets formed. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554979

  7. Dust evolution from comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1976-01-01

    The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of evolution. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tail is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.

  8. Comets: Role and importance to exobiology

    NASA Technical Reports Server (NTRS)

    Delsemme, Armand H.

    1992-01-01

    The transfer of organic compounds from interstellar space to the outskirts of a protoplanetary disk, their accretion into cometary objects, and the transport of the latter into the inner solar system by orbital diffusion throw a new light on the central problem of exobiology. It suggests the existence of a cosmic mechanism, working everywhere, that can supply prebiotic compounds to ubiquitous rocky planets, in search of the proper environment to start life in many places in the Universe. Under the heading of chemistry of the cometary nucleus, the following topics are covered: radial homogeneity of the nucleus; the dust-to-ice ratio; nature of the dust grains; origin of the dust in comets; nature of the volatile fraction; the CO distribution in comet Halley; dust contribution to the volatile fraction; elemental balance sheet of comet Halley; quantitative molecular analysis of the volatile fraction; and isotopic ratios. Under the heading of exogenous origin of carbon on terrestrial planets the following topics are covered: evidence for a high-temperature phase; from planetesimals to planets; a veneer of volatile and organic material; and cometary contribution.

  9. Cometary dust at the smallest scale - latest results of the MIDAS Atomic Force Microscope onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Bentley, Mark; Torkar, Klaus; Jeszenszky, Harald; Romstedt, Jens; Schmied, Roland; Mannel, Thurid

    2015-04-01

    The MIDAS instrument onboard the Rosetta orbit is a unique combination of a dust collection and handling system and a high resolution Atomic Force Microscope (AFM). By building three-dimensional images of the dust particle topography, MIDAS addresses a range of fundamental questions in Solar System and cometary science. The first few months of dust collection and scanning revealed a deficit of smaller (micron and below) particles but eventually several 10 µm-class grains were discovered. In fact these were unexpectedly large and close to the limit of what is observable with MIDAS. As a result the sharp tip used by the AFM struck the particles from the side, causing particle breakage and distortion. Analyses so far suggest that the collected particles are fluffy aggregates of smaller sub-units, although determination of the size of these sub-units and high resolution re-imaging remains to be done. The latest findings will be presented here, including a description of the particles collected and the implications of these observations for cometary science and the Rosetta mission at comet 67P.

  10. The Stardust: A Successful Encounter with the Remarkable Comet Wild 2

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Anderson, J. D.; Atkins, K.; Bhaskaran, S.; Cheuvront, A. R.; Clark, B. C.; Duxbury, T. C.; Economou, T.; Hanner, M. S.; Hoerz, F.

    2004-01-01

    On January 2, 2004 the Stardust spacecraft completed a close flyby of comet Wild2 (P81). Flying at a relative speed of 6.1 km/s within 237km of the 5 km nucleus, the spacecraft took 72 close-in images, measured the flux of impacting particles and did in-situ compositional analysis of freshly released dust with a time-of-flight mass spectrometer. The primary goal of the mission is to collect >500 particles >15 m diameter and return them to Earth on January 15, 2006. The cometary particles ranging in size from a micron to approx.100 microns were collected in low density silica aerogel. After returning over a hundred 2x4x3 cm aerogel collection cells will be processed at the curatorial facility at the NASA Johnson Space Center and 5 to 100 micron size extracted cometary particles will be distributed to analysts by a system that will be based on the allocation procedures for cosmic dust, Antarctic meteorites and lunar samples.

  11. Stardust in STARDUST - the C, N, and O Isotopic Compositions of Wild 2 Cometary Matter in Al Foil Impacts

    NASA Technical Reports Server (NTRS)

    Stadermann, Frank J.; Hoppe, Peter; Floss, Christine; Heck, Philipp R.; Hoerz, Friedrich; Huth, Joachim; Kearsley, Anton T.; Leitner, Jan; Marhas, Kuljeet K.; McKeegan, Kevin D.; hide

    2007-01-01

    In January 2006, the Stardust mission successfully returned dust samples from the tail of comet 81P/Wild 2 in two principal collection media, low density silica aerogel and Al foil. While hypervelocity impacts at the Stardust encounter velocity of 6.1 kilometers per second into Al foils are generally highly disruptive for natural, silicate-dominated impactors, previous studies have shown that many craters retain sufficient residue to allow a determination of the elemental and isotopic compositions of the original projectile. We have used two NanoSIMS ion microprobes to perform C, N, and O isotope imaging measurements on four large (59-295 micrometer diameter) and on 47 small (0.32-1.9 micrometer diameter) Al foil impact craters as part of the Stardust Preliminary Examination. Most analyzed residues in and around these craters are isotopically normal (solar) in their C, N, and O isotopic compositions. However, the debris in one large crater shows an average N-15 enrichment of approx. 450%o, which is similar to the bulk composition of some isotopically primitive interplanetary dust particles and to components of some primitive meteorites. A 250 nm grain in another large crater has an O-17 enrichment with approx. 2.65 times the solar O-17/O-16 ratio. Such an O isotopic composition is typical for circumstellar oxide or silicate grains from red giant or asymptotic giant branch stars. The discovery of this circumstellar grain clearly establishes that there is authentic stardust in the cometary samples returned by the Stardust mission. However, the low apparent abundance of circumstellar grains in Wild 2 samples and the preponderance of isotopically normal material indicates that the cometary matter is a diverse assemblage of presolar and solar system materials.

  12. Stardust in STARDUST - the C, N, and O Isotopic Compositions of Wild 2 Cometary Matter in Al foil Impacts

    NASA Technical Reports Server (NTRS)

    Stadermann, Frank J.; Hoppe, Peter; Floss, Christine; Hoerz, Friedrich; Huth, Joachim; Kearsley, Anton T.; Leitner, Jan; Marhas, Kuljeet K.; McKeegan, Kevin D.; Stephan, Thomas; hide

    2007-01-01

    In January 2006, the STARDUST mission successfully returned dust samples from the tail of comet 81P/Wild 2 in two principal collection media, low density silica aerogel and Al foil. While hypervelocity impacts at 6.1 km/s, the encounter velocity of STARDUST, into Al foils are generally highly disruptive for natural, silicate-dominated impactors, previous studies have shown that many craters retain sufficient residue to allow a determination of the elemental and isotopic compositions of the original projectile. We have used the NanoSIMS to perform C, N, and O isotope imaging measurements on four large (59-370 microns diameter) and on 47 small (0.32-1.9 microns diameter) Al foil impact craters as part of the STARDUST Preliminary Examination. Most analyzed residues in and around these craters are isotopically normal (solar) in their C, N, and O isotopic compositions. However, the debris in one large crater shows an average 15N enrichment of approx. 450 %, which is similar to the bulk composition of some isotopically primitive interplanetary dust particles. A 250 nm grain in another large crater has an O-17 enrichment with approx. 2.65 times the solar O-17/O-16 ratio. Such an O isotopic composition is typical for circumstellar oxide or silicate grains from red giant or asymptotic giant branch stars. The discovery of this circumstellar grain clearly establishes that there is authentic stardust in the cometary samples returned by the STARDUST mission. However, the low apparent abundance of circumstellar grains in Wild 2 samples and the preponderance of isotopically normal material indicates that the cometary matter is a diverse assemblage of presolar and solar system materials.

  13. Evolution of Icy Dust Grains in the Vicinity of a Cometary Nucleus

    NASA Astrophysics Data System (ADS)

    Hilchenbach, M.

    2009-12-01

    From late 2014 onwards, ESA's cornerstone mission ROSETTA will orbit the comet 67P/Churyumov-Gerasimenko. One instrument, COSIMA, will collect cometary dust grains and analyze the grains via secondary mass spectrometry. Models of the evolution of icy dust, accelerated by drag forces of subliming gas and exposed to solar radiation, should set constrains on the detection limits of the COSIMA instrument for volatile icy components. A straightforward modeling approach is applied as a baseline for the observational planing schedule of the instrument operations in the years 2014/2015 as ROSETTA escorts the comet nucleus up to perihelion and beyond.

  14. Simulating STARDUST: Reproducing Impacts of Interstellar Dust in the Laboratory

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Srama, R.; Hillier, J. K.; Sestak, S.; Green, S. F.; Trieloff, M.; Grün, E.

    2008-09-01

    Our experiments are carried out to support the analysis of interstellar dust grains, ISDGs, brought to earth by the STARDUST mission. Since the very first investigations, it has turned out that the major problem of STARDUST particle analysis is the modification (partly even the destruction) during capture when particles impact the spacecraft collectors with a velocity of up to 20 km/s. While it is possible to identify, extract, and analyse cometary grains larger than a few microns in aerogel and on metal collector plates, the STARDUST team is not yet ready for the identification, extraction, and analysis of sub-micron sized ISDGs with impact speeds of up to 20 km/s. Reconstructing the original particle properties requires a simulation of this impact capture process. Moreover, due to the lack of laboratory studies of high speed impacts of micron scale dust into interstellar STARDUST flight spares, the selection of criteria for the identification of track candidates is entirely subjective. Simulation of such impact processes is attempted with funds of the FRONTIER program within the framework of the Heidelberg University initiative of excellence. The dust accelerator at the MPI Kernphysik is a facility unique in the world to perform such experiments. A critical point is the production of cometary and interstellar dust analogue material and its acceleration to very high speeds of 20 km/s, which has never before been performed in laboratory experiments. Up to now only conductive material was successfully accelerated by the 2 MV Van de Graaf generator of the dust accelerator facility. Typical projectile materials are Iron, Aluminium, Carbon, Copper, Silver, and the conducting hydrocarbon Latex. Ongoing research now enables the acceleration of any kind of rocky planetary and interstellar dust analogues (Hillier et al. 2008, in prep.). The first batch of dust samples produced with the new method consists of micron and submicron SiO2 grains. Those were successfully accelerated and provided impacts with speeds of over 20 km/s. Impact signals as well as high resolution impact ionisation mass spectra - which reflect the grain's composition - were evaluated. Thus, the tests allow studying of dynamic properties as well as a compositional analysis of the grains. The next step - the production and testing of meteoritic dust material - is already in progress. On basis of our successful experiments, we will comprehensively analyse and compare (in cooperation with the STARDUST team) both the initial starting material and the impact modified material, either captured by aerogel or metal foils, as well as the particle-target interaction along capture tracks. These experiments will be performed on a variety of possible starting materials, with varying major, minor and trace elements. The investigations will allow to reconstruct the initial particle mass, speed, chemical and mineralogical composition of particles before capture, with important implications for the nature of interstellar matter and early solar system processes. Furthermore, the impact spectra we obtain from our in-situ dust analyser with the same projectiles will be included in a data base for comparison with spectra obtained by the dust analyser CIDA onboard the STARDUST spacecraft.

  15. The Meteoroid Fluence at Mars Due to Comet C/2013 A1 (Siding Spring)

    NASA Technical Reports Server (NTRS)

    Moorhead, A.; Wiegert, P.; Blaauw, R.; McCarty, C.; Kingery, A.; Cooke, W.

    2014-01-01

    Long-period comet C/2013 A1 (Siding Spring) will experience a close encounter with Mars on 2014 Oct 19. A collision between the comet and the planet has been ruled out, but the comet's coma may envelop Mars and its man-made satellites. By the time of the close encounter, five operational spacecraft will be present near Mars. Characterizing the coma is crucial for assessing the risk posed to these satellites by meteoroid impacts. We present an analytic model of cometary comae that describes the spatial and size distributions of cometary dust and meteoroids. This model correctly reproduces, to within an order of magnitude, the number of impacts recorded by Giotto near 1P/Halley [1] and by Stardust near comet 81P/Wild 2 [2]. Applied to Siding Spring, our model predicts a total particle fluence near Mars of 0.02 particles per square meter. In order to determine the degree to which Siding Spring's coma deviates from a sphere, we perform numerical simulations which take into account both gravitational effects and radiative forces. We take the entire dust component of the coma and tail continuum into account by simulating the ejection and evolution of dust particles from comet Siding Spring. The total number of particles simulated is essentially a free parameter and does not provide a check on the total fluence. Instead, these simulations illustrate the degree to which the coma of Siding Spring deviates from the perfect sphere described by our analytic model (see Figure). We conclude that our analytic model sacrifices less than an order of magnitude in accuracy by neglecting particle dynamics and radiation pressure and is thus adequate for order-of-magnitude fluence estimates. Comet properties may change unpredictably and therefore an analytic coma model that enables quick recalculation of the meteoroid fluence is highly desirable. NASA's Meteoroid Environment Office is monitoring comet Siding Spring and taking measurements of cometary brightness and dust production. We will discuss our coma model and nominal fluence taking the latest observations into account.

  16. GIADA On-Board Rosetta: Early Dust Grain Detections and Dust Coma Characterization of Comet 67P/C-G

    NASA Astrophysics Data System (ADS)

    Rotundi, A.; Della Corte, V.; Accolla, M.; Ferrari, M.; Ivanovski, S.; Lucarelli, F.; Mazzotta Epifani, E.; Sordini, R.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Fulle, M.; Bussoletti, E.; Crifo, J. F.; Esposito, F.; Green, S.; Grün, E.; Lamy, P. L.; McDonnell, T.; Mennella, V.; Molina, A.; Moreno, F.; Ortiz, J. L.; Palomba, E.; Perrin, J. M.; Rodrigo, R.; Weissman, P. R.; Zakharov, V.; Zarnecki, J.

    2014-12-01

    GIADA (Grain Impact Analyzer and Dust Accumulator) flying on-board Rosetta is devoted to study the cometary dust environment of 67P/Churiumov-Gerasimenko. GIADA is composed of 3 sub-systems: the GDS (Grain Detection System), based on grain detection through light scattering; an IS (Impact Sensor), giving momentum measurement detecting the impact on a sensed plate connected with 5 piezoelectric sensors; the MBS (MicroBalances System), constituted of 5 Quartz Crystal Microbalances (QCMs), giving cumulative deposited dust mass by measuring the variations of the sensors' frequency. The combination of the measurements performed by these 3 subsystems provides: the number, the mass, the momentum and the velocity distribution of dust grains emitted from the cometary nucleus.No prior in situ dust dynamical measurements at these close distances from the nucleus and starting from such large heliocentric distances are available up to date. We present here the first results obtained from the beginning of the Rosetta scientific phase. We will report dust grains early detection at about 800 km from the nucleus in August 2014 and the following measurements that allowed us characterizing the 67P/C-G dust environment at distances less than 100 km from the nucleus and single grains dynamical properties. Acknowledgements. GIADA was built by a consortium led by the Univ. Napoli "Parthenope" & INAF-Oss. Astr. Capodimonte, IT, in collaboration with the Inst. de Astrofisica de Andalucia, ES, Selex-ES s.p.a. and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with a support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developped from a PI proposal supported by the University of Kent; sci. & tech. contribution given by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank the RSGS/ESAC, RMOC/ESOC & Rosetta Project/ESTEC for their outstanding work. Science support provided by NASA through the US Rosetta Project managed by JPL/California Institute of Technology. GIADA calibrated data will be available through the ESA's PSA web site (www.rssd.esa.int/index.php?project=PSA&page=index). Thanks Angioletta.

  17. Cometary Dust Characteristics: Comparison of Stardust Craters with Laboratory Impacts

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Burchell, M. J.; Graham, G. A.; Horz, F.; Wozniakiewicz, P. A.; Cole, M. J.

    2007-01-01

    Aluminium foils exposed to impact during the passage of the Stardust spacecraft through the coma of comet Wild 2 have preserved a record of a wide range of dust particle sizes. The encounter velocity and dust incidence direction are well constrained and can be simulated by laboratory shots. A crater size calibration programme based upon buckshot firings of tightly constrained sizes (monodispersive) of glass, polymer and metal beads has yielded a suite of scaling factors for interpretation of the original impacting grain dimensions. We have now extended our study to include recognition of particle density for better matching of crater to impactor diameter. A novel application of stereometric crater shape measurement, using paired scanning electron microscope (SEM) images has shown that impactors of differing density yield different crater depth/diameter ratios. Comparison of the three-dimensional gross morphology of our experimental craters with those from Stardust reveals that most of the larger Stardust impacts were produced by grains of low internal porosity.

  18. Size Dependence of Dust Distribution around the Earth Orbit

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Kobayashi, Hiroshi; Takeuchi, Taku; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro

    2017-05-01

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting-Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI. The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μm band and 3.0% in the 18 μm band. In order to reveal dust properties causing leading-trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading-trailing asymmetry so that intermediate sized dust (˜10-100 μm) produces a greater asymmetry than zodiacal light. The leading-trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μm and 18 μm bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μm and 18 μm bands, respectively, if the maximum dust radius is set to be s max = 3000 μm. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ˜10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.

  19. Size Dependence of Dust Distribution around the Earth Orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, Takahiro; Takeuchi, Taku; Kobayashi, Hiroshi

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and amore » dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s {sub max} = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.« less

  20. Comet or asteroid shower in the late Eocene?

    PubMed

    Tagle, Roald; Claeys, Philippe

    2004-07-23

    The passage of a comet shower approximately 35 million years ago is generally advocated to explain the coincidence during Earth's late Eocene of an unusually high flux of interplanetary dust particles and the formation of the two largest craters in the Cenozoic, Popigai and the Chesapeake Bay. However, new platinum-group element analyses indicate that Popigai was formed by the impact of an L-chondrite meteorite. Such an asteroidal projectile is difficult to reconcile with a cometary origin. Perhaps instead the higher delivery rate of extraterrestrial matter, dust, and large objects was caused by a major collision in the asteroid belt.

  1. Stardust Interstellar Preliminary Examination X: Impact Speeds and Directions of Interstellar Grains on the Stardust Dust Collector

    NASA Technical Reports Server (NTRS)

    Sterken, Veerle J.; Westphal, Andrew J.; Altobelli, Nicolas; Grun, Eberhard; Hillier, Jon K.; Postberg, Frank; Allen, Carlton; Stroud, Rhonda M.; Sandford, S. A.; Zolensky, Michael E.

    2014-01-01

    On the basis of an interstellar dust model compatible with Ulysses and Galileo observations, we calculate and predict the trajectories of interstellar dust (ISD) in the solar system and the distribution of the impact speeds, directions, and flux of ISD particles on the Stardust Interstellar Dust Collector during the two collection periods of the mission. We find that the expected impact velocities are generally low (less than 10 km per second) for particles with the ratio of the solar radiation pressure force to the solar gravitational force beta greater than 1, and that some of the particles will impact on the cometary side of the collector. If we assume astronomical silicates for particle material and a density of 2 grams per cubic centimeter, and use the Ulysses measurements and the ISD trajectory simulations, we conclude that the total number of (detectable) captured ISD particles may be on the order of 50. In companion papers in this volume, we report the discovery of three interstellar dust candidates in the Stardust aerogel tiles. The impact directions and speeds of these candidates are consistent with those calculated from our ISD propagation model, within the uncertainties of the model and of the observations.

  2. Giada improved calibration of measurement subsystems

    NASA Astrophysics Data System (ADS)

    Della Corte, V.; Rotundi, A.; Sordini, R.; Accolla, M.; Ferrari, M.; Ivanovski, S.; Lucarelli, F.; Mazzotta Epifani, E.; Palumbo, P.

    2014-12-01

    GIADA (Grain Impact Analyzer and Dust Accumulator) is an in-situ instrument devoted to measure the dynamical properties of the dust grains emitted by the comet. An Extended Calibration activity using the GIADA Flight Spare Model has been carried out taking into account the knowledge gained through the analyses of IDPs and cometary samples returned from comet 81P/Wild 2. GIADA consists of three measurement subsystems: Grain Detection System, an optical device measuring the optical cross-section for individual dust; Impact Sensor an aluminum plate connected to 5 piezo-sensors measuring the momentum of impacting single dust grains; Micro Balance System measuring the cumulative deposition in time of dust grains smaller than 10 μm. The results of the analyses on data acquired with the GIADA PFM and the comparison with calibration data acquired during the pre-launch campaign allowed us to improve GIADA performances and capabilities. We will report the results of the following main activities: a) definition of a correlation between the 2 GIADA Models (PFM housed in laboratory and In-Flight Model on-board ROSETTA); b) characterization of the sub-systems performances (signal elaboration, sensitivities, space environment effects); c) new calibration measurements and related curves by means of the PFM model using realistic cometary dust analogues. Acknowledgements: GIADA was built by a consortium led by the Univ. Napoli "Parthenope" & INAF-Oss. Astr. Capodimonte, IT, in collaboration with the Inst. de Astrofisica de Andalucia, ES, Selex-ES s.p.a. and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with a support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developed from a University of Kent, UK, PI proposal; sci. & tech. contribution given by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank the RSGS/ESAC, RMOC/ESOC & Rosetta Project/ESTEC for their outstanding work. Science support provided by NASA through the US Rosetta Project managed by JPL/California Institute of Technology. GIADA calibrated data will be available through the ESA's PSA web site (www.rssd.esa.int/index.php?project=PSA&page=index).

  3. Dust as the cause of spots on Jupiter

    NASA Technical Reports Server (NTRS)

    Field, G. B.; Tozzi, G. P.; Stanga, R. M.

    1995-01-01

    The long-lived spots caused by the impact of fragments of Comet S-L 9 on Jupiter can be understood if clouds of dust are produced by the impact. These clouds reside in the stratosphere, where they absorb visible light that would ordinarily reflect from the cloud deck below, and reflect radiation at infrared wavelengths that would ordinarily be absorbed by atmospheric methane. Here we show that, provided that the nucleus of a fragment is composed substantially of silicates and has a diameter greater than about 0.4 km, dust in the required amounts will condense from the hot gas composed of cometary and Jovian material ejected from the site where the fragment entered, and the dust will be suspended in the stratosphere for long periods. Particles about 1 micron in radius can explain both the optical properties and longevities of the spots. According to our model, a silicate band should be present in the 10 - micron spectra of the spots.

  4. The forest and the trees. [comments on comet nuclei, cometary origin, and correlations among cometary data

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1991-01-01

    Comments on the nature of cometary nuclei, some problems regarding cometary origin, and some correlations among cometary data are presented. Comparisons with an earlier report on cometary nuclei are noted, and most of the earlier advances in concept are substantiated. The mean density of the Halley nucleus may have been underestimated, while the nature of the rotation remains uncertain. The dust/gas ratio apparently needs to be increased by as much as two times, perhaps to unity or higher. CHON grains appear to be important sources of gas. Evidence is presented to support the thesis that aging among long-period comets increases statistically as the periods decrease. Data on the orientation of cometary axes with respect to the Galaxy and the properties of clusters defined by these axes are presented.

  5. Space dust and debris; Proceedings of the Topical Meeting of the Interdisciplinary Scientific Commission B (Meetings B2, B3, and B5) of the COSPAR 28th Plenary Meeting, The Hague, Netherlands, June 25-July 6, 1990

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Editor); Zarnecki, J. C. (Editor); Matson, D. L. (Editor)

    1991-01-01

    The present conference on space dust and debris encompasses orbital debris, in situ measurements and laboratory analysis of space-dust particles, comparative studies of comets, asteroids, and dust, the protection and maneuvering of spacecraft in space-debris environments, and the out-of-elliptic distribution of interplanetary dust derived from near-earth flux. Specific issues addressed include asteroid taxonomy, the optical properties of dust from cometary and interplanetary grains, light scattering by rough surfaces on asteroidal/lunar regoliths, and the first results of particulate impacts and foil perforations on the Long Duration Exposure Facility. Also addressed are collision probability and spacecraft disposition in the geostationary orbit, a flash on the moon caused by orbital debris, the limits of population growth in low earth orbit due to collisional cascading, and the simulation of cosmic man-made dust effects on space-vehicle elements in rocket and laboratory experiments.

  6. COSIMA-Rosetta calibration for in situ characterization of 67P/Churyumov-Gerasimenko cometary inorganic compounds

    NASA Astrophysics Data System (ADS)

    Krüger, Harald; Stephan, Thomas; Engrand, Cécile; Briois, Christelle; Siljeström, Sandra; Merouane, Sihane; Baklouti, Donia; Fischer, Henning; Fray, Nicolas; Hornung, Klaus; Lehto, Harry; Orthous-Daunay, Francois-Régis; Rynö, Jouni; Schulz, Rita; Silén, Johan; Thirkell, Laurent; Trieloff, Mario; Hilchenbach, Martin

    2015-11-01

    COmetary Secondary Ion Mass Analyzer (COSIMA) is a time-of-flight secondary ion mass spectrometry (TOF-SIMS) instrument on board the Rosetta space mission. COSIMA has been designed to measure the composition of cometary dust particles. It has a mass resolution m/Δm of 1400 at mass 100 u, thus enabling the discrimination of inorganic mass peaks from organic ones in the mass spectra. We have evaluated the identification capabilities of the reference model of COSIMA for inorganic compounds using a suite of terrestrial minerals that are relevant for cometary science. Ground calibration demonstrated that the performances of the flight model were similar to that of the reference model. The list of minerals used in this study was chosen based on the mineralogy of meteorites, interplanetary dust particles and Stardust samples. It contains anhydrous and hydrous ferromagnesian silicates, refractory silicates and oxides (present in meteoritic Ca-Al-rich inclusions), carbonates, and Fe-Ni sulfides. From the analyses of these minerals, we have calculated relative sensitivity factors for a suite of major and minor elements in order to provide a basis for element quantification for the possible identification of major mineral classes present in the cometary particles.

  7. First determination of the tropospheric CO abundance in Saturn

    NASA Astrophysics Data System (ADS)

    Fouchet, Thierry; Lellouch, Emmanuel; Cavalié, Thibault; Bézard, Bruno

    2017-10-01

    In Giant Planets, CO has two potential origins: i) an external source in form of cometary impacts, infalling ring/satellite dust or/and interplanetary particles; ii) an internal origin that involves convective transport from the deep, dense, hot atmosphere where the thermodynamic equilibrium CO abundance is relatively large.In Saturn, submilimeter stratospheric CO emissions have been detected (Cavalié et al. A&A, 510, A88, 2010; Cavalié et al. Icarus, 203, 531, 2009), suggesting a cometary impact 200 years ago. In contrast, no observation was in position to confirm or rule out the presence of CO in Saturn's troposphere (Noll et al. Icarus, 89, 168, 1990).Here, we present CRIRES/ELT 5-μm observations of Saturn that definitely confirm the presence of CO in Saturn's troposphere. We will present the derived CO abundance and its implication for Saturn's tropospheric transport rate and water deep abundance.

  8. Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    Harris, Alan W. (Editor); Bowell, Edward (Editor)

    1992-01-01

    Papers from the conference are presented and cover the following topics with respect to asteroids, comets, and/or meteors: interplanetary dust, cometary atmospheres, atmospheric composition, comet tails, astronomical photometry, chemical composition, meteoroid showers, cometary nuclei, orbital resonance, orbital mechanics, emission spectra, radio astronomy, astronomical spectroscopy, photodissociation, micrometeoroids, cosmochemistry, and interstellar chemistry.

  9. On the dust zoning of rapidly rotating cometary nuclei

    NASA Astrophysics Data System (ADS)

    Houpis, H. L. F.; Mendis, D. A.

    1981-12-01

    The effects of nuclear rotation on the surface of a cometary nucleus (a comet at 1 AU that is H2O dominated and has a radius of 1 km) are considered. It is shown that this dust does not accumulate uniformly on the surface, which here is considered spherical. While dust particles in the two polar cap regions and an equatorial belt remain at rest on the surface, those in two midlatitude bands migrate toward the equator, stopping at the two low latitudes to form dust ridges. As the nucleus spins up, both the polar caps and the equatorial belt shrink in size, and the dust ridges move toward the equator, eventually spinning off the dust from the nucleus when the nuclear rotation period is less than about 3.3 hr. For larger particles for which the gas buoyancy is negligible, migration takes place only if the rotation period is not significantly larger than the critical value of 3.3 hr or if the surface friction is abnormally small.

  10. Interrelationships between interstellar and interplanetary grains

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1986-01-01

    The relationship between solar system dust (SSD) and interstellar dust particles (ISMD) is being reconsidered because of the discovery of isotopic anomalies in meteorites. Meteoritic, circumstellar/meteoritic, interstellar/meteoritic, planetary, and cometary data are reviewed.

  11. Ion Microprobe Measurements of Comet Dust and Implications for Models of Oxygen Isotope Heterogeneity in the Solar System

    NASA Technical Reports Server (NTRS)

    Snead, C. J.; McKeegan, K. D.; Keller, L. P.; Messenger, S.

    2017-01-01

    The oxygen isotopic compositions of anhydrous minerals in carbonaceous chondrites reflect mixing between a O-16-rich and O-17, O18-rich reservoir. The UV photodissociation of CO (i.e. selfshielding) has been proposed as a mass-independent mechanism for producing these isotopically distinct reservoirs. Self-shielding models predict the composition for the CO gas reservoir to be O-16-rich, and that the accreting primordial dust was in isotopic equilibrium with the gaseous reservoir [1, 2]. Self-shielding also predicts that cometary water, presumed to represent the O-17, O-18-rich reservoir, should be enriched in O-17 and O-18, with compositions of 200 -1000per mille, and that the interaction with this O-17, O-18-rich H2O reservoir altered the compositions of the primordial dust toward planetary values. The bulk composition of the solar nebula, which may be an approximation to the 16O-rich gaseous reservoir, has been constrained by the Genesis results [3]. However, material representing the O-17, O-18-rich end-member is rare [4], and dust representing the original accreting primordial dust has been challenging to conclusively identify in current collections. Anhydrous dust from comets, which accreted in the distal cold regions of the nebula at temperatures below approximately 30K, may provide the best opportunity to measure the oxygen isotope composition of primordial dust. Chondritic porous interplanetary dust particles (CP-IDPs) have been suggested as having cometary origins [5]; however, until direct comparisons with dust from a known comet parent body were made, link between CP-IDPs and comets remained circumstantial. Oxygen isotope analyses of particles from comet 81P/Wild 2 collected by NASA's Stardust mission have revealed surprising similarities to minerals in carbonaceous chondrites which have been interpreted as evidence for large scale radial migration of dust components from the inner solar nebula to the accretion regions of Jupiter- family comets [6]. These studies have been largely focused on the coarse-grained terminal particles extracted from aerogel collectors; hypervelocity capture into aerogel resulted in fine-grained material that was melted and intimately mixed with the SiO2 capture medium. Hypervelocity impacts into Al foils surrounding the aerogel tiles produced impact craters that captured material from the impactor without significant oxygen contamination, allowing for analysis of both the coarse and fine-grained components of the Wild 2 dust. To date, no particles with definitive hydrated mineralogy have been observed in Stardust samples, though this may be a result of alteration due to hypervelocity capture. High-carbon hydrated CS-IDPs have been suggested as resulting from the aqueous alteration of CP-IDPs [7], and may retain evidence for interaction with O-17, O-18-enriched "cometary" water predicted by CO self-shielding. Here we present results of oxygen isotope measurements of twelve Stardust foil craters and four C-rich hydrated IDPs [8, 9], and discuss implications for models of oxygen isotope heterogeneity in the early solar system.

  12. Characteristics of the dust trail of 67P/Churyumov-Gerasimenko: an application of the IMEX model

    NASA Astrophysics Data System (ADS)

    Soja, R. H.; Sommer, M.; Herzog, J.; Agarwal, J.; Rodmann, J.; Srama, R.; Vaubaillon, J.; Strub, P.; Hornig, A.; Bausch, L.; Grün, E.

    2015-11-01

    Context. Here we describe a new model of the dust streams of comet 67P/Churyumov-Gerasimenko that has been developed using the Interplanetary Meteoroid Environment for Exploration (IMEX). This is a new universal model for recently created cometary meteoroid streams in the inner solar system. Aims: The model can be used to investigate characteristics of cometary trails: here we describe the model and apply it to the trail of comet 67P/Churyumov-Gerasimenko to develop our understanding of the trail and assess the reliability of the model. Methods: Our IMEX model provides trajectories for a large number of dust particles released from ~400 short-period comets. We use this to generate optical depth profiles of the dust trail of comet 67P/Churyumov-Gerasimenko and compare these to Spitzer observations of the trail of this comet from 2004 and 2006. Results: We find that our model can match the observed trails if we use very low ejection velocities, a differential size distribution index of α ≈ -3.7, and a dust production rate of 300-500 kg s-1 at perihelion. The trail is dominated by mm-sized particles and can contain a large proportion of dust produced before the most recent apparition. We demonstrate the strength of IMEX in providing time-resolved histories of meteoroid streams. We find that the passage of Mars through the stream in 2062 creates visible gaps. This indicates the utility of this model in providing insight into the dynamical evolution of streams and trails, as well as impact hazard assessment for spacecraft on interplanetary missions. A movie is available in electronic form at http://www.aanda.org

  13. Laboratory investigations

    NASA Technical Reports Server (NTRS)

    Russell, Ray W.

    1988-01-01

    Laboratory studies related to cometary grains and the nuclei of comets can be broken down into three areas which relate to understanding the spectral properties, the formation mechanisms, and the evolution of grains and nuclei: (1) Spectral studies to be used in the interpretation of cometary spectra; (2) Sample preparation experiments which may shed light on the physical nature and history of cometary grains and nuclei by exploring the effects on grain emissivities resulting from the ways in which the samples are created; and (3) Grain processing experiments which should provide insight on the interaction of cometary grains with the environment in the immediate vicinity of the cometary nucleus as the comet travels from the Oort cloud through perihelion, and perhaps even suggestions regarding the relationship between interstellar grains and cometary matter. A summary is presented with a different view of lab experiments than is found in the literature, concentrating on measurement techniques and sample preparations especially relevant to cometary dust.

  14. Origin and Evolution of Organic Matter Preserved in Stardust Cometary Aerogel Tracks

    NASA Technical Reports Server (NTRS)

    McKay, D.S.; Clemett, S.J.; Nakamura-Messenger, K.

    2009-01-01

    The STARDUST spacecraft captured dust samples from Comet 81P/Wild 2 at a relative velocity of 6.1 km/s in a low density silica aerogel and returned them to the Earth. One of the main of the scientific goals established for the mission was to determine whether comets contained complex organic materials and, contingently, the nature and abundance of this material. [1] Although contamination concerns due to carbonaceous impurities intrinsic to the flight aerogel remain, it is generally accepted that at least a fraction of the captured dust particles contain an indigenous organic component. [2] However, understanding the nature and abundance of this material is complicated by nature of the collection process. The rapid dissipation of particle s kinetic energy during its impact and deceleration cause both the particle and surrounding aerogel to experience an intense thermal pulse of upwards of 2000K for a period up to several hundred nanoseconds [3]. During this period thermal alteration and or destruction of organic species present in the impacting particle are likely to occur. We have used the technique of ultrafast two-step laser mass spectrometry (ultra L2MS) [4] to investigate how the nature and distribution of aromatic and conjugated organic species varies between and within aerogel cometary tracks and their associated terminal particles.

  15. Structure and origin of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Donn, B.; Rahe, J.

    1981-01-01

    There is strong evidence that a comet nucleus consists of a single object whose basic structure is Whipple's icy conglomerate. A number of cometary phenomena indicate that the nucleus is a low density, fragile object with a large degree of radial uniformity in structure and composition. Details of the ice-dust pattern are more uncertain. A working model is proposed which is based on theories of accumulation of larger objects from grains. This nucleus is a distorted spherical aggregate of a hierarchy of ice-dust cometesimals. These cometesimals retain some separate identity which lead to comet fragmentation when larger components break off. The outer layers of new comets were modified by cosmic ray irradiation in the Oort Cloud. The evidence for meteorite-comet association is steill controversial. Current dynamical studies do not seem to require a cometary source of meteorites.

  16. Final Reports of the Stardust ISPE: Seven Probable Interstellar Dust Particles

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Sans Tresseras, Juan-Angel; Westphal, Andrew J.; Stroud, Rhonda M.; Bechtel, Hans A.; Brenker, Frank E.; Butterworth, Anna L.; Flynn, George J.; Frank, David R.; Gainsforth, Zack; hide

    2014-01-01

    The Stardust spacecraft carried the first spaceborne collector specifically designed to capture and return a sample of contemporary interstellar dust to terrestrial laboratories for analysis [1]. The collector was exposed to the interstellar dust stream in two periods in 2000 and 2002 with a total exposure of approximately 1.8 10(exp 6) square meters sec. Approximately 85% of the collector consisted of aerogel, and the remainder consisted of Al foils. The Stardust Interstellar Preliminary Examination (ISPE) was a consortiumbased effort to characterize the collection in sufficient detail to enable future investigators to make informed sample requests. Among the questions to be answered were these: How many impacts are consistent in their characteristics with interstellar dust, with interplanetary dust, and with secondary ejecta from impacts on the spacecraft? Are the materials amorphous or crystalline? Are organics detectable? An additional goal of the ISPE was to develop or refine the techniques for preparation, analysis, and curation of these tiny samples, expected to be approximately 1 picogram or smaller, roughly three orders of magnitude smaller in mass than the samples in other small particle collections in NASA's collections - the cometary samples returned by Stardust, and the collection of Interplanetary Dust Particles collected in the stratosphere.

  17. Cometary dust in Antarctic ice and snow: Past and present chondritic porous micrometeorites preserved on the Earth's surface

    NASA Astrophysics Data System (ADS)

    Noguchi, Takaaki; Ohashi, Noriaki; Tsujimoto, Shinichi; Mitsunari, Takuya; Bradley, John P.; Nakamura, Tomoki; Toh, Shoichi; Stephan, Thomas; Iwata, Naoyoshi; Imae, Naoya

    2015-01-01

    Chondritic porous interplanetary dust particles (CP IDPs) collected in the stratosphere are regarded as possibly being cometary dust, and are therefore the most primitive solar system material that is currently available for analysis in laboratories. In this paper we report the discovery of more than 40 chondritic porous micrometeorites (CP MMs) in the surface snow and blue ice of Antarctica, which are indistinguishable from CP IDPs. The CP MMs are botryoidal aggregates, composed mainly of sub-micrometer-sized constituents. They contain two components that characterize them as CP IDPs: enstatite whiskers and GEMS (glass with embedded metal and sulfides). Enstatite whiskers appear as <2-μm-long acicular objects that are attached on, or protrude from the surface, and when included in the interior of the CP MMs are composed of a unit-cell scale mixture of clino- and ortho-enstatite, and elongated along the [100] direction. GEMS appear as 100-500 nm spheroidal objects containing <50 nm Fe-Ni metal and Fe sulfide. The CP MMs also contain low-iron-manganese-enriched (LIME) and low-iron-chromium-enriched (LICE) ferromagnesian silicates, kosmochlor (NaCrSi2O6)-rich high-Ca pyroxene, roedderite (K, Na)2Mg5Si12O30, and carbonaceous nanoglobules. These components have previously been discovered in primitive solar system materials such as the CP IDPs, matrices of primitive chondrites, phyllosilicate-rich MMs, ultracarbonaceous MMs, and cometary particles recovered from the 81P/Wild 2 comet. The most outstanding feature of these CP MMs is the presence of kosmochlor-rich high-Ca pyroxene and roedderite, which suggest that they have building blocks in common with CP IDPs and cometary dust particles and therefore suggest a possible cometary origin of both CP MMs and CP IDPs. It is therefore considered that CP MMs are CP IDPs that have fallen to Earth and have survived the terrestrial environment.

  18. The Lunar Dust Environment

    NASA Astrophysics Data System (ADS)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  19. The Comet Halley dust and gas environment

    NASA Technical Reports Server (NTRS)

    Divine, N.; Hanner, M. S.; Newburn, R. L., Jr.; Sekanina, Z.; Yeomans, D. K.

    1986-01-01

    Quantitative descriptions of environments near the nucleus of comet P/Halley have been developed to support spacecraft and mission design for the flyby encounters in March, 1986. To summarize these models as they exist just before the encounters, the relevant data from prior Halley apparitions and from recent cometary research are reviewed. Orbital elements, visual magnitudes, and parameter values and analysis for the nucleus, gas and dust are combined to predict Halley's position, production rates, gas and dust distributions, and electromagnetic radiation field for the current perihelion passage. The predicted numerical results have been useful for estimating likely spacecraft effects, such as impact damage and attitude perturbations. Sample applications are cited, including design of a dust shield for spacecraft structure, and threshold and dynamic range selection for flight experiments. It is expected that the comet's activity may be more irregular than these smoothly varying models predict, and that comparison with the flyby data will be instructive.

  20. A new hybrid particle/fluid model for cometary dust

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M. R.; Tenishev, V.; Toth, G.; Hansen, K. C.; Huang, Z.; Gombosi, T. I.; Fougere, N.; Rubin, M.

    2017-12-01

    Cometary dust grains, which originate from comets, are believed to contain clues to the formation and the evolution of comets. They also play an important role in shaping the cometary environment, as they are able to decelerate and heat the gas through collisions, carry charges and interact with the plasma environment, and possibly sublimate gases. Therefore, the loss rate and behavior of dust grains are of interest to scientists. Currently, mainly two types of numerical dust models exist: particle models and fluid models have been developed. Particle models, which keep track of the positions and velocities of all gas and dust particles, allow crossing dust trajectories and a more accurate description of returning dust grains than the fluid model. However, in order to compute the gas drag force, the particle model needs to follow more gas particles than dust particles. A fluid model is usually more computationally efficient and is often used to provide simulations on larger spatial and temporal scales. In this work, a new hybrid model is developed to combine the advantages of both particle and fluid models. In the new approach a fluid model based on the University of Michigan BATSRUS code computes the gas properties, and feeds the gas drag force to the particle model, which is based on the Adaptive Mesh Particle Simulator (AMPS) code, to calculate the motion of dust grains. The coupling is done via the Space Weather Modeling Framework (SWMF). In addition to the capability of simulating the long-term dust phenomena, the model can also designate small active regions on the nucleus for comparison with the temporary fine dust features in observations. With the assistance of the newly developed model, the effect of viewing angles on observed dust jet shapes and the transportation of heavy dust grains from the southern to the northern hemisphere of comet 67P/Churyumov-Gerasimenko will be studied and compared with Rosetta mission images. Preliminary results will be presented. Support from contracts JPL #1266314 and #1266313 from the US Rosetta Project and grant NNX14AG84G from the NASA Planetary Atmospheres Program are gratefully acknowledged.

  1. Evolution of the physical properties of dust and cometary dust activity from 67P/Churyumov-Gerasimenko measured in situ by Rosetta/COSIMA

    NASA Astrophysics Data System (ADS)

    Merouane, Sihane; Stenzel, Oliver; Hilchenbach, Martin; Schulz, Rita; Altobelli, Nicolas; Fischer, Henning; Hornung, Klaus; Kissel, Jochen; Langevin, Yves; Mellado, Eva; Rynö, Jouni; Zaprudin, Boris

    2017-07-01

    The Cometary Secondary Ion Mass Analyzer (COSIMA) collects dust particles in the coma of 67P/Churyumov-Gerasimenko, images them with a resolution of 14 μm × 14 μm, and measures their composition via time-of-flight secondary ion mass spectrometry. The particles are collected on targets exposed to the cometary flux for periods ranging from several hours to a week. Images are acquired with the internal camera, the COSISCOPE, before and after each exposure period. This paper focuses on the evolution of the dust flux and of the size distribution of the particles derived from the COSISCOPE images during the two years of the mission. The dust flux reaches its maximum at perihelion. We suggest that the delay of 20 d between the activity measured by COSIMA and the gas activity measured by the other instruments on Rosetta is caused by the presence of a volatile-poor dust layer on the nucleus that is removed around perihelion, uncovering volatile-rich layers that then become active. The difference in morphology between the northern and southern hemispheres observed by OSIRIS, the south being more sintered, is also recorded in the COSIMA data by a change in the size distribution during the southern summer, as the large porous aggregates disappear from the COSIMA collection. The properties of the particles collected during an outburst in early September 2016 indicate that these particles were ejected by a violent event and might originate from regions of low tensile strength.

  2. Telecommunications in cometary environments

    NASA Technical Reports Server (NTRS)

    Flock, W. L.

    1981-01-01

    Propagation effects on telecommunications in a cometary environment include those due to dust, the inhomogeneous plasma of the coma and tail, and ionization generated by impact of neutral molecules and dust on the spacecraft. Attenuation caused by dust particles is estimated to be on the order of 10 to the minus 5th power dB for the Halley Intercept Mission. Ionization generated by impact on the spacecraft is estimated to result in an electron content of 10 to the 12th power to 10 to the 13th power el/sq meters (3 eV electrons) along the telecommunications path. An estimate of the electron content due to Comet Halley itself is 10 to the 16th power to 10 to the 17th power el/sq meters, compared to a content of 10 to the 16th power to 10 to the 18th power el/sq meters for the Earth's ionosphere and 10 to the 17th power to 10 to the 18th power el/sq meters for the interplanetary medium. The electron content of the plasma near Comet Halley will cause excess range delay, and a Doppler shift of the signal from the spacecraft will occur in propagation to the rate of change of the path electron content. It is recommended that S and X down-link frequencies by employed to monitor the path electron content and amplitude scintillation and spectral broadening of the received signals. These measurements will provide a quantitative base of knowledge that will be valuable for radio science and telecommunications system design purposes.

  3. Cometary Coma Chemical Composition (C4) Mission

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C.; Clark, Benton C.; Knocke, Philip C.; OHara, Bonnie J.; Adams, Larry; Niemann, Hasso B.; Alexander, Merle; Veverka, Joseph; Goldstein, Raymond; Huebner, Walter; hide

    1994-01-01

    Cometary exploration remains of great importance to virtually all of space science. Because comets are presumed to be remnants of the early solar nebula, they are expected to provide fundamental knowledge as to the origin and development of the solar system as well as to be key to understanding of the source of volatiles and even life itself in the inner solar system. Clearly the time for a detailed study of the composition of these apparent messages from the past has come. A comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, is now being studied as a candidate for the new Discovery program. This mission is a highly-focussed and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission. The C4 mission will concentrate on measurements that will produce an understanding of the composition and physical makeup of a cometary nucleus. The core science goals of the C4 mission are 1) to determine the chemical, elemental, and isotopic composition of a cometary nucleus and 2) to characterize the chemical and isotopic nature of its atmosphere. A related goal is to obtain temporal information about the development of the cometary coma as a function of time and orbital position. The four short-period comets -- Tempel 1, Tempel 2, Churyumov-Gerasimenko, and Wirtanen -which all appear to have acceptable dust production rates, were identified as candidate targets. Mission opportunities have been identified beginning as early as 1998. Tempel I with a launch in 1999, however, remains the baseline comet for studies of and planning the C4 mission. The C4 mission incorporates two science instruments and two engineering instruments in the payload to obtain the desired measurements. The science instruments include an advanced version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX with a sample collection system, an X-ray Fluorescence Spectrometer and a Pyrolysis-Gas Chromatograph, and a simplified version of the Neutral Gas and Ion Mass Spectrometer (NIGMS). Both of these instruments have substantial heritage as they are based on those developed for the CRAF Mission. The engineering instruments include a simplified Comet Dust Environmental Monitor (SCODEM) and a navigational Camera, NAVCAM. While neither of the instruments will be permitted to establish science requirements, it is anticipated that significant science return will be accomplished Radio science will also be included.

  4. Nucleus structure and dust morphology: Post-Rosetta understanding and implications

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A.; Bentley, Mark; Ciarletti, Valérie; Kofman, Woldek; Lasue, Jeremie; Mannel, Thurid; Herique, Alain

    2017-10-01

    The structure of cometary nuclei and the morphology of dust particles they eject have long been unknowns in cometary science. The combination of these two subjects, as revealed by the Rosetta mission at 67P/C-G, is currently providing an unprecedented insight about Solar System formation and early evolution.Rosetta has established that the bulk porosity of 67P/C-G nucleus is high, in the 70% to 85% range, both from the determination of its density and from permittivity measurements with CONSERT bistatic radar experiment [1-2]. CONSERT, through operations after Philae landing on 12-13 November 2014, has also allowed us to estimate that i) the porosity is likely to be higher inside the nucleus than on its subsurface, ii) a major component of the nucleus is refractory carbonaceous compounds, and iii) the small lobe is homogeneous at a scale of a few wavelengths (i.e., about 10 m), while heterogeneities in the 3-m range (similar to the rounded nodules noticed on walls of large pits) cannot be ruled out [2-4].Rosetta has also established, through its 26 months rendezvous with 67P/C-G, the aggregated structure of dust particles within a wide range of sizes in the inner cometary coma. The MIDAS atomic force microscope experiment has given us evidence (from 3D topographic images with nano- to micrometer resolution) for i) a hierarchical structure of aggregated dust particles, down to tens of nm-sized grains, ii) one extremely porous dust particle, with a fractal dimension of (1.7 ± 0.1) [5-6]. The accuracy of comparisons between cometary dust particles and interplanetary dust particles collected in the stratosphere (including CP-IDPs) could thus be improved.Such results should further refine the main processes (e.g., low velocity aggregation) that allowed the formation of comets in the early Solar System, and the implications of a possible late heavy bombardment on the interplanetary dust clouds and on telluric planets.References. 1. Pätzold et al. Nature 530 63 2016. 2. Kofman et al. Science 349 6247 2015. 3. Herique et al. MNRAS 462 S516 2016. 4. Ciarletti et al. A&A 583 A40 2015. 5. Bentley et al., Nature 537 73 2016. 6. Mannel et al., MNRAS 462 S304 2016.

  5. Mineral abundances of comet 17P/Holmes derived from the mid-infrared spectrum

    NASA Astrophysics Data System (ADS)

    Shinnaka, Yoshiharu; Yamaguchi, MItsuru; Ootsubo, Takafumi; Kawakita, Hideyo; Sakon, Itsuki; Honda, Mitsuhiko; Watanabe, Jun-ichi

    2017-10-01

    Dust grains of crystalline silicate, which is rarely presented in an interstellar space, were found in cometary nuclei (Messenger et al. 1996, LPI, 27, 867; Wooden et al. 1999, ApJ, 517, 1058, references therein). It is thought that these crystalline silicates had formed by annealing or condensations of amorphous grains near the Sun in the solar nebula, and incorporated into a cometary nucleus in a cold region (farther than formation regions of the crystalline silicates) by radial transportation in the solar nebula. It is considered that transportation mechanisms to outside of the solar nebula were turbulent and/or X-wind. An abundance of the crystalline dust grains was therefore expected to be smaller as far from the Sun (Gail, 2001, A&A, 378, 192; Bockelée-Morvan et al. 2002, A&A, 384, 1107). Namely, the abundance ratio of the crystalline silicate in cometary dust grains relates a degree of mass transportation and a distance from the Sun when cometary nucleus formed in the Solar nebula. The mass ratio of crystalline silicates of dust grains is determined from by Si-O stretching vibrational bands of silicate grains around 10 μm using difference of spectral band features between crystalline and amorphous grains. We present the crystalline-to-amorphous mass ratio of silicate grains in the comet 17P/Holmes by using the thermal emission mode of the dust grains (Ootsubo et al. 2007, P&SS, 55, 1044) applied to the mid-infrared spectra of the comet. These spectra were taken by the COMICS mounted on the Subaru Telescope on 2007 October 25, 26, 27 and 28 immediately after the great outburst of the comet (started on October 23). We discuss about formation conditions of the nucleus of the comet based on the derived mass ratio of silicate grains of the comet.

  6. Laboratory simulation of intact capture of cometary and asteroidal dust particles in ISAS

    NASA Technical Reports Server (NTRS)

    Fujiwara, A.; Nakamura, A.; Kadono, T.

    1994-01-01

    In order to develop a collector for intact capturing of cometary dust particles in the SOCCER mission and regolith dust particles released from asteroid surfaces by the impact of projectiles launched from a flying-by spacecraft, various kinds of materials as the collector candidates have been exposed to hypervelocity projectiles in our laboratory. Data based on the penetration characteristics of various materials (penetration depth, hole profile, effectiveness for intact capturing) are greatly increased. The materials tested for these simulation experiments include various kinds of low-density media and multisheet stacks; these are foamed plastics (polystyrene 0.01 g/cc), silica aerogels (0.04 g/cc), air (0.001 g/cc), liquid, and multisheet stack consisting of thin Al sheets (thickness 0.002 to 0.1 mm) or polyethylene sheets. Projectiles used are spheres or cylinders of nylon, polycarbonate, basalt, copper, iron, and volatile organics (e.g.,paradichlorobenzene) of size ranging from 30 micrometers to 1 cm launched by a two-stage light gas gun and a rail gun in ISAS at velocity up to about 7 km/s. Some results obtained by using nylon projectiles of velocity less than about 5 km/s are presented; the penetration depth vs. bulk density of the collector material for several kinds of materials and the velocity at which the projectiles begin to fragment vs. material density for foamed polystyrene.

  7. Cometary Evolution: Clues on Physical Properties from Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.; Mackinnon, Ian D. R.

    1989-01-01

    The degree of diversity or similarity detected in comets depends primarily on the lifetimes of the individual cometary nuclei at the time of analysis. It is inherent in our understanding of cometary orbital dynamics and the seminal model of comet origins by Oort that cometary evolution is the natural order of events in our Solar System. Thus, predictions of cometary behaviour in terms of bulk physical, mineralogical or chemical parameters should contain an appreciation of temporal variation(s). Previously, Rietmeijer and Mackinnon developed mineralogical bases for the chemical evolution of cometary nuclei primarily with regard to the predominantly silicate fraction of comet nuclei. We suggested that alteration of solids in cometary nuclei should be expected and that indications of likely reactants and products can be derived from judicious comparison with terrestrial diagenetic environments which include hydrocryogenic and low-temperature aqueous alterations. In a further development of this concept, Rietmeijer provides indirect evidence for the formation of sulfides and oxides in comet nuclei. Furthermore, Rietmeijer noted that timescales for hydrocryogenic and low-temperature reactions involving liquid water are probably adequate for relatively mature comets, e.g. P/comet Halley. In this paper, we will address the evolution of comet nuclei physical parameters such as solid particle grain size, porosity and density. In natural environments, chemical evolution (e.g. mineral reactions) is often accompanied by changes in physical properties. These concurrent changes are well-documented in the terrestrial geological literature, especially in studies of sediment diagenesis and we suggest that similar basic principles apply within the upper few meters of active comet nuclei. The database for prediction of comet nuclei physical parameters is, in principle, the same as used for the proposition of chemical evolution. We use detailed mineralogical studies of chondritic interplanetary dust particles (IDPS) as a guide to the likely constitution of mature comets traversing the inner Solar System. While there is, as yet, no direct proof that a specific sub-group or type of chondritic IDP is derived from a specific comet, it is clear that these particles are extraterrestrial in origin and that a certain portion of the interplanetary flux received by the Earth is cometary in origin. Two chondritic porous (CP) MPs, sample numbers W7010A2 and W7029Cl, from the Johnson Space Center Cosmic Dust Collection have been selected for this study of putative cometary physical parameters. This particular type of particle is considered a likely candidate for a cometary origin on the basis of mineralogy, bulk composition and morphology. While many IDPs have been subjected to intensive study over the past decade, we can develop a physical parameter model on only these two CP IDPs because few others have been studied in sufficient detail.

  8. Cometary Evolution: Clues on Physical Properties from Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Reitmeijer, Frans J. M.; Mackinnon, Ian D. R.

    1997-01-01

    The degree of diversity or similarity detected in comets depends primarily on the lifetimes of the individual cometary nuclei at the time of analysis. It is inherent in our understanding of cometary orbital dynamics and the seminal model of comet origins that cometary evolution is the natural order of events in our Solar System. Thus, predictions of cometary behaviour in terms of bulk physical, mineralogical or chemical parameters should contain an appreciation of temporal variation(s). Previously, Rietmeijer and Mackinnon [1987] developed mineralogical bases for the chemical evolution of cometary nuclei primarily with regard to the predominantly silicate fraction of comet nuclei. We suggested that alteration of solids in cometary nuclei should be expected and that indications of likely reactants and products can be derived from judicious comparison with terrestrial diagenetic environments which include hydrocryogenic and low-temperature aqueous alterations. In a further development of this concept, Rietmeijer [1988] provides indirect evidence for the formation of sulfides and oxides in comet nuclei. Furthermore, Rietmeijer [1988] noted that timescales for hydrocryogenic and low-temperature reactions involving liquid water are probably adequate for relatively mature comets, e.g. P/comet Halley. In this paper, we will address the evolution of comet nuclei physical parameters such as solid particle grain size, porosity and density. In natural environments, chemical evolution (e.g. mineral reactions) is often accompanied by changes in physical properties. These concurrent changes are well-documented in the terrestrial geological literature, especially in studies of sediment diagenesis and we suggest that similar basic principles apply within the upper few meters of active comet nuclei. The database for prediction of comet nuclei physical parameters is, in principle, the same as used for the proposition of chemical evolution. We use detailed mineralogical studies of chondritic interplanetary dust particles (IDPS) as a guide to the likely constitution of mature comets traversing the inner Solar System. While there is, as yet, no direct proof that a specific sub-group or type of chondritic IDP is derived from a specific comet, it is clear that these particles are extraterrestrial in origin and that a certain portion of the interplanetary flux received by the Earth is cometary in origin. Two chondritic porous (CP) IDPS, sample numbers W701OA2 and W7029CI, from the Johnson Space Center Cosmic Dust Collection have been selected for this study of putative cometary physical parameters. This particular type of particle is considered a likely candidate for a cometary origin on the basis of mineralogy, bulk composition and morphology. While many IDPs have been subjected to intensive study over the past decade, we can develop a physical parameter model on only these two CP IDPs because few others have been studied in sufficient detail.

  9. Numerical simulations of the radiance from the limb measurements of dusty coma of the Comet 67P/Churyumov Gerasimenko

    NASA Astrophysics Data System (ADS)

    Błęcka, M. I.; Rinaldi, G.; Fink, U.; Capacioni, F.; Tozzi, G. P.

    2013-09-01

    The work we present deals with the spectrometric measurements of the VIRTIS instrument part of the payload of the Rosetta mission to the Comet 67P/Churyumov-Gerasimenko. This spectrometer will monitor (VIRTIS M channel: 0.25μm - 0.98μm; Δκ=20cm-1 ; 0.980 - 5.0 μm; Δκ=5cm-1; VIRTIS H channel: 2.0 μm- 5.0 μm ; Δκ=5cm-1) the nucleus and the coma in order to provide a picture of coma's composition, the production of gas and dust, and the structure and variation of mineralogy of the nucleus surface. The dust is an important constituent of cometary environment and is always present on the surface of the nucleus and in the coma. The cometary spectra are strongly affected by the processes taking place in the coma and by the structure, composition and the spatial distribution of cometary solid particles. The particles of the dust, illuminated by solar light, scatter, absorb and emit radiation. The reflected and emitted radiation are transmitted through the coma region before being collected by instruments such as VIRTIS. The reflection, absorption, scattering, and emission processes in the coma depend on the Comet-Sun geometry. In the VIRTIS team we have initiated and effort to simulate the dust radiance using several radiative transfer models (see Rinaldi et al, this issue). In the present paper, which is the continuation of our previous works (e.g. AGU fall meeting 2011, EGU 2012, EPSC2012 -abstracts), we are mainly concentrated on the influence of optical parameters of dust on spectra we expect from the VIRTIS/Rosetta measurements. To this purposes the equation of radiative transfer in limb geometry through the assembly of various dust grains and gases is solved. The number density distribution of the dust grains around the coma and their size distribution are drawn from recent theoretical models (e.g.Tenishev et.al.2011). A few phenomenological scattering phase functions are taken into account. We have assumed in the simulation the presence on the surface of H2O ice, in which are embedded dust grains of various mineralogies. These grains, when freed by the gas sublimation, were considered as the main constituent of the dusty coma. At the beginning the particles are spherical. Such an assumption would be reasonable in many cases. We have confined ourselves to the compact dust particles only. But it should be noted here that fluffy grains would have different optical properties and their presence would lead to different conclusions. The main purposes of the paper are: 1) discussion of the influence of the mineralogical composition of cometary dust including mixtures with ices, the size distributions and optical parameters - using the various possible phase functions, extinction and symmetry factors 2) influence of cometary activity on parameters of the coma and then the signal to be measured by the VIRTIS spectrometer at various distances from the Sun (3.7AU; 3.5AU; 3.0AU; 1.24AU).

  10. Sources of zodiacal dust particles

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    2007-08-01

    The orbital evolution of dust particles produced by asteroids, comets, and trans- Neptunian objects was integrated [1-3]. Analysis of results of these integrations testify in favor of a considerable fraction of particles produced by comets among overall zodiacal dust particles, but it does not contradict to >30% of asteroidal dust needed for explanation of formation of dust bands. Fractions of asteroidal particles, particles originating beyond Jupiter's orbit (including trans-Neptunian particles), and cometary particles originating inside of Jupiter's orbit are estimated to be about 1/3 each, with a possible deviation from 1/3 up to 0.1-0.2. Comparison of the plots of the number density vs. the distance R from the Sun obtained for particles produced by different small bodies with the plots based on observations shows that asteroidal and trans- Neptunian particles alone can not explain the observed almost constant number density at R ∼3-18 AU and a lot of particles must be produced by comets at R ∼5-10 AU [2-3]. Comparison of the WHAM (Wisconsin H-Alpha Mapper spectrometer) observations of spectra of zodiacal light with our models showed [4-5] that a significant fraction of particles produced by short-period comets is required to fit the observations of the width and velocity of the Mg I line. Comparison of the observations of the number density inside Jupiter's orbit with the number density of particles produced by different small bodies leads to the same conclusion about a considerable fraction of cometary particles. This comparison does not make limitations on cometary particles produced beyond Jupiter's orbit, but it shows that the fraction of particles produced by Encke-type comets (with eccentricities ∼0.8-0.9) does not exceed 0.15 of the overall population. The estimated fraction of particles produced by long-period and Halley-type comets among zodiacal dust also does not exceed 0.1-0.15. Though trans-Neptunian particles fit different observations of dust inside Jupiter's orbit, they can not be dominant in the zodiacal cloud because they can not be dominant between orbits of Jupiter and Saturn. The conclusion on a considerable fraction of cometary dust is also in an agreement with our studies [6] of the dynamics of Jupiter-family comets, which showed that some former cometary objects could get high eccentric orbits located entirely inside of Jupiter's orbit and stay in these orbits for a long time. Some of these objects could disintegrate producing a substantial amount of dust. [1] Ipatov S.I., Mather J.C., and Taylor P. (2004) Annals of the New York Acad. of Sciences, 1017, 66-80. [2] Ipatov S.I. and Mather J.C. (2006) Advances in Space Research, 37, 126-137. [3] Ipatov S.I. and Mather J.C., (2007) Dust in Planetary Systems, ed. by H. Krüger and A. Graps, ESA Publications, SP-643, p. 91-94. [4] Ipatov S.I. et al. (2006) 37th LPSC, #1471. [5] Ipatov S.I. et al., astro-ph/0608141. [6] Ipatov S.I. and Mather J.C. (2004) Annals of the New York Acad. of Sciences, 1017, 66-80.

  11. The Diversity of Carbon in Cometary Refractory Dust Particles

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.

    2018-01-01

    When comparing the dark icy surfaces of outer solar system small bodies and the composition of carbonaceous chondrites derived from dark asteroids we find a significant discrepancy in the assessed amounts of elemental carbon: up to 80% amorphous carbon is used to model the dark surfaces of Kuiper Belt Objects and Centaurs whereas at most 5% of elemental carbon is found in carbonaceous chondrites. If we presume that regimes of comet nuclei formation are analogous to disk regimes where other outer solar system ice-rich bodies formed then we can turn to comet dust to gain insights into the diversity in the concentration and forms of carbon available in the outer disk. Comet dust offers important insights into the diversity in the amounts and forms of carbon that were incorporated into aggregate dust particles in the colder parts of the protoplanetary disk out of which comet nuclei accreted. Comet nuclei are amongst the most primitive bodies because they have remained cold and unequilibrated. Comet dust particles reveal the presence of forms of elemental carbon and of soluble and insoluble organic matter, and in a great diversity of concentrations from very little, e.g., Stardust samples of comet 81P/Wild 2, to 80% by volume for Ultra Carbonaceous Antarctic Micro Meteorites (UCAMMs). Cometary outbursts and/or jet activity also demonstrate variations in the concentration of carbon in the grains at different grain sizes within a single comet. We review the diversity of carbon-bearing dust grains in cometary samples, flyby measurements and deduced from remote-sensing to enrich the discussion about the diversity of carbonaceous matter available in the outer ice-rich disk at the time of comet nuclei formation.

  12. What caused terrestrial dust loading and climate downturns between A.D. 533 and 540?

    USGS Publications Warehouse

    Abbott, Dallas H.; Breger, Dee; Biscaye, Pierre E.; Barron, John A.; Juhl, Robert A.; McCafferty, Patrick

    2014-01-01

    Sn-rich particles, Ni-rich particles, and cosmic spherules are found together at four discrete stratigraphic levels within the 362-360 m depth interval of the Greenland Ice Sheet Project 2 (GISP2) ice core (72.6°N, 38.5°W, elevation: 3203 m). Using a previously derived calendar-year time scale, these particles span a time of increased dust loading of Earth's atmosphere between A.D. 533 and 540. The Sn-rich and Ni-rich particles contain an average of 10–11 wt% C. Their high C contents coupled with local enrichments in the volatile elements I, Zn, Cu, and Xe suggest a cometary source for the dust. The late spring timing of extraterrestrial input best matches the Eta Aquarid meteor shower associated with comet 1P/Halley. An increased flux of cometary dust might explain a modest climate downturn in A.D. 533. Both cometary dust and volcanic sulfate probably contributed to the profound global dimming during A.D. 536 and 537 but may be insufficient sources of fine aerosols. We found tropical marine microfossils and aerosol-sized CaCO3 particles at the end A.D. 535–start A.D. 536 level that we attribute to a low-latitude explosion in the ocean. This additional source of dust is probably needed to explain the solar dimming during A.D. 536 and 537. Although there has been no extinction documented at A.D. 536, our results are relevant because mass extinctions may also have multiple drivers. Detailed examinations of fine particles at and near extinction horizons can help to determine the relative contributions of cosmic and volcanic drivers to mass extinctions.

  13. Hydrogen cyanide polymers, comets and the origin of life.

    PubMed

    Matthews, Clifford N; Minard, Robert D

    2006-01-01

    Hydrogen cyanide polymers--heterogeneous solids ranging in colour from yellow to orange to brown to black--could be major components of the dark matter observed on many bodies of the outer solar system including asteroids, moons, planets and, especially, comets. The presence on cometary nuclei of frozen volatiles such as methane, ammonia and water subjected to high energy sources makes them attractive sites for the ready formation and condensed-phase polymerization of hydrogen cyanide. This could account for the dark crust observed on Comet Halley in 1986 by the Vega and Giotto missions. Dust emanating from its nucleus would arise partly from HCN polymers as suggested by the Giotto detection of free hydrogen cyanide, CN radicals, solid particles consisting only of H, C and N, or only of H, C, N, O, and nitrogen-containing organic compounds. Further evidence for cometary HCN polymers could be expected from in situ analysis of the ejected material from Comet Tempel 1 after collision with the impactor probe from the two-stage Deep Impact mission on July 4, 2005. Even more revealing will be actual samples of dust collected from the coma of Comet Wild 2 by the Stardust mission, due to return to Earth in January 2006 for analyses which we have predicted will detect these polymers and related compounds. In situ results have already shown that nitriles and polymers of hydrogen cyanide are probable components of the cometary dust that struck the Cometary and Interstellar Dust Analyzer of the Stardust spacecraft as it approached Comet Wild 2 on January 2, 2004. Preliminary evidence (January 2005) obtained by the Huygens probe of the ongoing Cassini-Huygens mission to Saturn and its satellites indicates the presence of nitrogen-containing organic compounds in the refractory organic cores of the aerosols that give rise to the orange haze high in the atmosphere of Titan, Saturn's largest moon. Our continuing investigations suggest that HCN polymers are basically of two types: ladder structures with conjugated -C=N- bonds and polyamidines readily converted by water to polypeptides. Thermochemolysis GC-MS studies show that cleavage products of the polymer include alpha-amino acids, nitrogen heterocycles such as purines and pyrimidines, and provide evidence for peptide linkages. Hydrogen cyanide polymers are a plausible link between cosmochemistry and the origin of informational macromolecules. Implications for prebiotic chemistry are profound. Following persistent bolide bombardment, primitive Earth may have been covered by water and carbonaceous compounds, particularly HCN polymers which would have supplied essential components for establishing protein/nucleic acid life.

  14. Influence of dust on cometary radiance spectra infered from various models of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Blecka, M. I.; Coradini, A.; Capaccioni, F.; Capria, M. T.; De sanctis, M.

    2011-12-01

    The work we present deals with the spectrometric measurements of VIRTIS instrument of the Rosetta mission to the Comet 67P/Churyumov-Gerasimenko (C-G). The dust important constituent of cometary environment is always present on the surface of the nucleus and in the inner coma. The cometary spectra are strongly affected by the processes taking place in the coma and by the structure and composition of cometary materials. The particles of the dust , illuminated by solar light, scatter, absorb and emit radiation. The reflected and the emitted radiation are transmitted through the coma region before being collected by instruments such as VIRTIS .The reflection, absorption, scattering, and emission processes depend on the Comet-Sun geometry and on the thermal state of the nucleus. The main purposes of the paper are: 1) short review of the published models related to the topic of presence and distribution of the solid particles in the inner coma of the Comet 67/P (C-G) 2) description of numerical calculations done by means of an radiation transfer model and comparison the simulated radiance spectra 3) discussion on influence the geometry of the measurements and the particular parameters of the thermal models taken in consideration. 4) demonstration of simulated spectra of the total directional radiance which can help to recognize the optical characteristics of constituents of the environment of Comet 67P/(C-G) References J.Agarwal; M.Müller, G.Eberhard, Dust Environment Modelling of Comet 67P/Churyumov-Gerasimenko; Space Science Reviews, 128,1-4,2007 M. I. Blecka, M.T. Capria, A. Coradini, M.C. De Sanctis; Numerical simulations of the radiance from the Comet 46P/Wirtanen in the Ivarious configuration of the measurements during "Rosetta" Mission Adv. Space Res.31,12, 2501-2510,2003 M.C.De Sanctis, J.Lasue, M.T.Capria, G. Magni, D. Turrini, A. Coradini, Shape and obliquity effects on the thermal evolution of the Rosetta target 67P/Churyumov-Gerasimenko cometary nucleus, Icarus, 207,341-358,2010 The work was supported by the grant 123/N-ESA/2008/0;

  15. A Dusty Coma Model of Comet Hyakutake

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Benkhoff, J.

    1996-09-01

    We present a multifluid, hydrodynamic model for the gas, dust, and plasma flow in a cometary coma appropriate for Comet Hyakutake. The model accounts for three sources of gas release: sublimation from surface ices, transport of gas from subsurface regions through the surface, and release of gas from dust in the coma. The simulations are based on a spherically symmetric neutral coma model with detailed photo and gas-phase chemistry and dust entrainment by the gas. The model includes a separate energy balance for the electrons, separate flow of the neutral gas, fast neutral atomic and molecular hydrogen, and dust entrainment with fragmentation. The simulations allow a study of how certain features of a cometary coma, e.g., spatial distributions of gas-phase species and dust of various sizes, change with heliocentric distance. Special attention is given to observations of hydrocarbon and sulphur species. In comparison with observations, the model can be used to characterize the environment surrounding Hyakutake and aid in assimilating a variety of diverse observations of this bright comet. A complete description of the model and more extensive results with comparisons to observations where possible will be presented.

  16. Comets: Dirty snowballs or icy dirtballs

    NASA Astrophysics Data System (ADS)

    Keller, H. U.

    1989-12-01

    The observations of comet Halley show that the non-volatile (dust) component of the cometary nucleus has become more dominant if compared to the perception based on the icy conglomerate nucleus. The in-situ observations on the Giotto spacecraft revealed an excess of large dust particles that dominate the mass distribution. Even larger particles were derived from the attitude changes of the spacecraft bridging the gap to the cloud of particles observed by radar techniques. A dust to gas ratio larger than one was derived for comet Halley. The importance of dust for the structure of the nucleus is corroborated by the amount of particles and their lifetime in meteor streams. Fireballs show that large (meter size) objects separate from the nucleus and are stable enough to survive hundreds of orbital periods. From the various lines of evidence it is concluded that the structure of cometary nuclei is determined by the non-volatile component rather than by ice or snow. Laboratory models based on icy agglomerations do not seem realistic as nucleus analogs.

  17. The Interplanetary Meteoroid Environment for eXploration

    NASA Astrophysics Data System (ADS)

    Soja, R.; Sommer, M.; Srama, R.; Strub, P.; Grün, E.; Rodmann, J.; Vaubaillon, J.; Hornig, A.; Bausch, L.

    2014-07-01

    The Interplanetary Meteoroid Environment for eXploration (IMEX) project, funded by the European Space Agency (ESA), aims to characterize dust trails and streams produced by comets in the inner solar system. The goal is to predict meteor showers at any position or time in the solar system, such as at specific spacecraft or planets. This model will allow for the assessment of the dust impact hazard to spacecraft, which is important because hypervelocity impacts of micrometeoroids can damage or destroy spacecraft or their subsystems through physical damage or electromagnetic effects. Such considerations are particularly important in the context of human exploration of the solar system. Additionally, such a model will allow for scientific study of specific trails and their connections to observed dust phenomena, such as cometary trails and new meteor showers at Earth. We have recently expanded the model to include explicit integrations of large numbers of particles from each comet, utilizing the Constellation platform to perform the calculations. This is a distributed computing system, where currently 10,000 users are donating their idle computing time at home and thus generating a virtual supercomputer of 40,000 host PCs connected via the Internet (aerospaceresearch.net). This form of citizen science provides the required computing performance for simulating millions of particles ejected by each of the ˜400 comets, while developing the relationship between scientists and the general public. The result will be a unique set of saved orbital information for a large number of cometary streams, allowing efficient computation of their locations at any point in space and time. Here we will present the results from several test streams and discuss the progress towards obtaining the full set of integrated particles for each of the selected ˜400 short-period comets. individual Constellation users for their computing time.

  18. Composition/Structure/Dynamics of comet and planetary satellite atmospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R. (Principal Investigator)

    1995-01-01

    This research program addresses two cases of tenuous planetary atmospheres: comets and Io. The comet atmospheric research seeks to analyze a set of spatial profiles of CN in comet Halley taken in a 7.4-day period in April 1986; to apply a new dust coma model to various observations; and to analyze observations of the inner hydrogen coma, which can be optically thick to the resonance scattering of Lyman-alpha radiation, with the newly developed approach that combines a spherical radiative transfer model with our Monte Carlo H coma model. The Io research seeks to understand the atmospheric escape from Io with a hybrid-kinetic model for neutral gases and plasma given methods and algorithms developed for the study of neutral gas cometary atmospheres and the earth's polar wind and plasmasphere. Progress is reported on cometary Hydrogen Lyman-alpha studies; time-series analysis of cometary spatial profiles; model analysis of the dust comae of comets; and a global kinetic atmospheric model of Io.

  19. Workshop on Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This volume contains abstracts that were accepted by the Program Committee for presentation at the workshop on the analysis of returned comet nucleus samples held in Milpitas, California, January 16 to 18, 1989. The abstracts deal with the nature of cometary ices, cryogenic handling and sampling equipment, origin and composition of samples, and spectroscopic, thermal and chemical processing methods of cometary nuclei. Laboratory simulation experimental results on dust samples are reported. Some results obtained from Halley's comet are also included. Microanalytic techniques for examining trace elements of cometary particles, synchrotron x ray fluorescence and instrument neutron activation analysis (INAA), are presented.

  20. The Meteoroid Fluence at Mars Due to Comet Siding Spring

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.

    2014-01-01

    Long-period comet C/2013 A1 (Siding Spring) is headed for a close encounter with Mars on 2014 Oct 19. A collision between the comet and the planet has been ruled out, but the comets coma may envelop Mars and its man-made satellites. We present an analytic model of the dust component of cometary comae that describes the spatial distribution of cometary dust and meteoroids and their size distribution. If the coma reaches Mars, we estimate a total incident particle fluence on the planet and its satellites of 0.01 particles per square meter. We compare our model with numerical simulations, data from past comet missions, and recent Siding Spring observations.

  1. Terrestrial production vs. extraterrestrial delivery of prebiotic organics to the early Earth

    NASA Technical Reports Server (NTRS)

    Chyba, C. F.; Sagan, C.; Thomas, P. J.; Brookshaw, L.

    1991-01-01

    A comprehensive treatment of comet/asteroid interaction with the atmosphere, ensuring surface impact, and resulting organic pyrolysis is required to determine whether more than a negligible fraction of the organics in incident comets and asteroids actually survived collision with Earth. Results of such an investigation, using a smoothed particle hydrodynamic simulation of cometary and asteroidal impacts into both oceans and rock, demonstrate that organics will not survive impacts at velocities approx. greater than 10 km s(exp -1), and that even comets and asteroids as small as 100m in radius cannot be aerobraked to below this velocity in 1 bar atmospheres. However, for plausible dense (10 bar CO2) early atmospheres, there will be sufficient aerobraking during atmospheric passage for some organics to survive the ensuing impact. Combining these results with analytical fits to the lunar impact record shows that 4.5 Gyr ago Earth was accreting at least approx. 10(exp 6) kg yr(exp 1) of intact cometary organics, a flux which thereafter declined with a approx. 100 Myr half-life. The extent to which this influx was augmented by asteroid impacts, as well as the effect of more careful modelling of a variety of conservative approximations, is currently being quantified. These results may be placed in context by comparison with in situ organic production from a variety of terrestrial energy sources, as well as organic delivery by interplanetary dust. Which source dominated the early terrestrial prebiotic inventory is found to depend on the nature of the early terrestrial atmosphere. However, there is an intriguing symmetry: it is exactly those dense CO2 atmospheres where in situ atmospheric production of organic molecules should be the most difficult, in which intact cometary organics would be delivered in large amounts.

  2. Impact Vaporization as a Possible Source of Mercury's Calcium Exosphere

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Hahn, Joseph M.

    2015-01-01

    Mercury's calcium exosphere varies in a periodic way with that planet's true anomaly. We show that this pattern can be explained by impact vaporization from interplanetary dust with variations being due to Mercury's radial and vertical excursions through an interplanetary dust disk having an inclination within 5 degrees of the plane of Mercury's orbit. Both a highly inclined dust disk and a two-disk model (where the two disks have a mutual inclination) fail to reproduce the observed variation in calcium exospheric abundance with Mercury true anomaly angle. However, an additional source of impacting dust beyond the nominal dust disk is required near Mercury's true anomaly (?) 25deg +/-5deg. This is close to but not coincident with Mercury's true anomaly (?=45deg) when it crosses comet 2P/Encke's present day orbital plane. Interestingly, the Taurid meteor storms at Earth, which are also due to Comet Encke, are observed to occur when Earth's true anomaly is +/-20 or so degrees before and after the position where Earth and Encke orbital planes cross. The lack of exact correspondence with the present day orbit of Encke may indicate the width of the potential stream along Mercury's orbit or a previous cometary orbit. The extreme energy of the escaping calcium, estimated to have a temperature greater than 50000 K if the source is thermal, cannot be due to the impact process itself but must be imparted by an additional mechanism such as dissociation of a calcium-bearing molecule or ionization followed by recombination.

  3. Physical properties of dust particles in different comets inferred from observations and experimental simulations

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Levasseur-Regourd, A. C.

    2007-08-01

    1.Introduction Remote observations of solar light scattered by cometary dust particles provide information on the dust properties for a large variety of comets, in complement to the exceptional in-situ observations (with or without sample returns). The scattered light is partially linearly polarized, with a polarization degree depending on the geometry of observations (phase angle ?) and on the physical properties of the particles. Differences in polarization have been found in cometary comae, pointing to different physical properties of the dust (e.g. sizes of the grains, of the aggregates, structures and porosities, complex refractive indices) [1, 2]. Such differences, as well as an observed polarimetric wavelength effect, tend to show that large aggregates made of submicron-sized grains could be present in some cometary comae regions [3, 4]. On the opposite, more compact particles seem to be present in other comae regions and/or comets [5, 6]. 2. Results We will present observations of different comets. The variations of the dust properties in the coma and their evolution will be discussed. The results will be compared to the results obtained by other observational techniques. On the images of comet 9P/Tempel 1 (at ?=41°) some hours after Deep Impact, two kinds of dust particles are detected: more compact particles with small velocities and fluffy particles ejected by the impact with larger velocities. On the images of comet 73P/Schwassmann-Wachmann 3, in the tail direction of fragment B, a disruption is observed. The dust coma around fragment C is more symmetric. For both A and B, important dust jets are ejected by the nucleus, which are visible on the intensity images in the solar and antisolar directions, and on the polarization maps. 3. Interpretation and conclusion Numerical (7,8,9) and experimental simulations provide an interpretation of the observations in terms of the physical properties of the particles. Experimental simulations have been performed on numerous levitating samples (compact and fluffy) with the PROGRA2 experiment, either in reduced gravity conditions (parabolic flights) [10,11], or lifted by an air-draught (laboratory conditions) [12,13]. The variations of the polarization are correlated to variations in the size of the grains and aggregates and are a function of the complex refractive index and its evolution. The correlation between the variations of the scattered intensity and the linear polarization maps allows us to disentangle different physical properties of the dust. The results are compared to results obtained from previous observations by the same methods. References [1] E. Hadamcik and A.C. Levasseur-Regourd, JQSRT 79-80, 661-678 (2003) [2] A.C. Levasseur-Regourd, E. Hadamcik, JQSRT 79-80, 903-910 (2003) [3] E. Hadamcik, A.C. Levasseur-Regourd, A&A 403, 757- 768 (2003) [4] L. Kolokolova et al., In: Comets II, M.C. Festou et al. (eds), pp 577 (2004) [5] E. Hadamcik, A.C. Levasseur-Regourd, Icarus 166, 188-194 (2003) [6] E. Hadamcik et al., Icarus, accepted. [7] J. Lasue, A.C. Levasseur-Regourd, JQSRT 100, 220-236 (2006) [8] H. Kimura et al., A&A 449, 1243-1254 (2006) [9] A.C. Levasseur-Regourd et al., PSS, in press, available on line (2007) [10] J.-B. Renard et al. Appl. Opt 41, 609-618 (2002) [11] J.-B. Renard et al., Adv. Space Res. 31, 2511-2518 (2003) [12] E. Hadamcik et al., JQSRT 100, 143-156 (2006) [13] E. Hadamcik et al., Icarus, in press, available on line (2007)

  4. Modeling cometary photopolarimetric characteristics with Sh-matrix method

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.; Petrov, D.

    2017-12-01

    Cometary dust is dominated by particles of complex shape and structure, which are often considered as fractal aggregates. Rigorous modeling of light scattering by such particles, even using parallelized codes and NASA supercomputer resources, is very computer time and memory consuming. We are presenting a new approach to modeling cometary dust that is based on the Sh-matrix technique (e.g., Petrov et al., JQSRT, 112, 2012). This method is based on the T-matrix technique (e.g., Mishchenko et al., JQSRT, 55, 1996) and was developed after it had been found that the shape-dependent factors could be separated from the size- and refractive-index-dependent factors and presented as a shape matrix, or Sh-matrix. Size and refractive index dependences are incorporated through analytical operations on the Sh-matrix to produce the elements of T-matrix. Sh-matrix method keeps all advantages of the T-matrix method, including analytical averaging over particle orientation. Moreover, the surface integrals describing the Sh-matrix elements themselves can be solvable analytically for particles of any shape. This makes Sh-matrix approach an effective technique to simulate light scattering by particles of complex shape and surface structure. In this paper, we present cometary dust as an ensemble of Gaussian random particles. The shape of these particles is described by a log-normal distribution of their radius length and direction (Muinonen, EMP, 72, 1996). Changing one of the parameters of this distribution, the correlation angle, from 0 to 90 deg., we can model a variety of particles from spheres to particles of a random complex shape. We survey the angular and spectral dependencies of intensity and polarization resulted from light scattering by such particles, studying how they depend on the particle shape, size, and composition (including porous particles to simulate aggregates) to find the best fit to the cometary observations.

  5. Carbon petrology in cometary dust

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1992-01-01

    Chondritic porous (CP) interplanetary dust particles (IDP's) are collected in the Earth's stratosphere. There exists an extensive database on major and minor element chemistry, stable isotopes, noble gas abundances and mineralogy of many CP IDP's, as well as infrared and Raman spectroscopic properties. For details on the mineralogy, chemistry and physical properties of IDP's, I refer to the reviews by Mackinnon and Rietmeijer (1987), Bradley et al. (1988) and Sandford (1987). Texture, mineralogy (Mackinnon and Rietmeijer, 1987) and chemistry (Schramm et al., 1989; Flynn and Sutton, 1991) support the notion that CP IDP's are a unique group of ultrafine-grained extraterrestiral materials that are distinct from any known meteorite class. Their fluffy, or porous, morphology suggests that CP IDP's probably endured minimal alteration by protoplanetary processes since their formation. It is generally accepted that CP IDP's are solid debris from short-period comets. The evidence is mostly circumstantial but this notion gained significant support based on the comet Halley dust data (Brownlee, 1990). In this paper, I will accept that CP IDP's are indeed cometary dust. The C/Si ratio in CP IDP's is 3.3 times higher than in CI carbonaceous chondrites (Schramm et al. 1989). The intraparticle carbon distribution is heteorogeneous (Rietmeijer and McKay, 1986). Carbon occurs both in oxidized and reduced forms. Analytical electron microscope (AEM) and Raman spectroscopic analyses have shown the presence of several carbon forms in CP IDP's but the data are scattered in the literature. Carbons in cometary CP IDP's are among the most pristine Solar System carbons available for laboratory study. Similar to a recently developed petrological model for the diversity of layer silicates in CP IDP's (Zolensky, 1991) that is useful to constrain in situ aqueous alteration in comets (Rietmeijer and Mackinnon, 1987a), I here present the first effort to develop a petrological concept of carbons in CP IDP's. This concept is useful to constrain comet evolution. I also present the philosophical constraint facing Earth Scientists in studies of protoplanets that require a new approach to cometary dust studies.

  6. CoMA: A high resolution Time-Of-Flight Secondary Ion Mass Spectrometer (TOF-SIMS) for in situ analysis of cometary matter

    NASA Technical Reports Server (NTRS)

    Zscheeg, Harry; Kissel, J.; Natour, G.

    1992-01-01

    A lot of clues concerning the origin of the solar system can be found by sending an exploring spacecraft to a rendezvous with a comet. The space experiment CoMA, which will measure the elemental, isotopic, and molecular composition of cometary dust grains is described. It will be flown on NASA's Comet Rendezvous Asteroid Flyby (CRAF) mission.

  7. What can meteorites tell us about comets?

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1986-01-01

    Cometary silicates, carbon, and volatiles are reviewed using data from the Halley probes, interplanetary dust particles, and cometary spectra. The origins of anhydrous Fe(2+)-bearing silicates; whether hydrated silicates, if present, were made by gaseous or liquid H2O3; sources of organic compounds: ion-molecule reactions, photochemistry, grain catalysis; sources of CO2 and of organic polymers; and interstellar molecules and grains in comets are discussed.

  8. Modeling the neutral gas and dust coma of Comet 1P/Halley

    NASA Astrophysics Data System (ADS)

    Rubin, Martin; Tenishev, Valeriy M.; Combi, Michael R.; Hansen, Kenneth C.; Gombosi, Tamas I.; Altwegg, Kathrin; Balsiger, Hans

    2010-05-01

    The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer (NMS) and the Dust Impact Detection System (DIDSY) onboard the Giotto spacecraft which flew-by at comet 1P/Halley in 1986. We further show that our model is in good agreement to measurements obtained by the International Ultraviolet Explorer (IUE), sounding rocket experiments, and the International Halley Watch (IHW). The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique [Tenishev et al. (2008, Astrophys. J., 685, 659-677)] by tracking trajectories of gas molecules and dust grains under the influence of the comet's weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO). This work has been supported by JPL subcontract 1266313 under NASA grant NMO710889, NASA planetary atmospheres program grant NNX09AB59G, grant AST-0707283 from the NSF Planetary Astronomy program, and the Swiss National Science Foundation.

  9. Collecting cometary soil samples? Development of the ROSETTA sample acquisition system

    NASA Technical Reports Server (NTRS)

    Coste, P. A.; Fenzi, M.; Eiden, Michael

    1993-01-01

    In the reference scenario of the ROSETTA CNRS mission, the Sample Acquisition System is mounted on the Comet Lander. Its tasks are to acquire three kinds of cometary samples and to transfer them to the Earth Return Capsule. Operations are to be performed in vacuum and microgravity, on a probably rough and dusty surface, in a largely unknown material, at temperatures in the order of 100 K. The concept and operation of the Sample Acquisition System are presented. The design of the prototype corer and surface sampling tool, and of the equipment for testing them at cryogenic temperatures in ambient conditions and in vacuum in various materials representing cometary soil, are described. Results of recent preliminary tests performed in low temperature thermal vacuum in a cometary analog ice-dust mixture are provided.

  10. Understanding the Physical Structure of the Comet Shoemaker-Levy 9 Fragments

    NASA Astrophysics Data System (ADS)

    Rettig, Terrence

    2000-07-01

    Images of the fragmented comet Shoemaker-Levy 9 {SL9} as it approached Jupiter in 1994 provided a unique opportunity to {1} probe the comae, {2} understand the structure of the 20 cometary objects, and {3} provide limits on the Jovian impact parameters. The primary cometary questions were: how were the fragments formed and what was their central structure? There still remains a diversity of opinion regarding the structure of the 21 comet-like fragments as well as the specifics of the disruption event itself. We have shown from Monte Carlo modeling of surface brightness profiles that SL9 fragments had unusual dust size distributions and outflow velocities. Further work of a preliminary nature showed some of the central reflecting area excesses derived from surface brightness profile fitting {w/psf} appeared distributed rather than centrally concentrated as would be expected for comet- like objects, some central excesses were negative and also, the excesses could vary with time. With an improved coma subtraction technique we propose to model each coma surface brightness profile, extract central reflecting areas or central brightness excesses for the non-star-contaminated WFPC-2 SL9, to determine the behavior and characteristics of the central excesses as the fragments approached Jupiter. A second phase of the proposal will be to use numerical techniques {in conjunction with D. Richardson} to investigate the various fragment models. This is a difficult modeling process that will allow us to model the structure and physical characteristics of the fragments and thus constrain parameters for the Jovian impact events. The results will be used to constrain the structure of the central fragment cores of SL9 and how the observed dust comae were produced. The results will provide evidence to discriminate between the parent nucleus models {i.e., were the fragments solid objects or swarms of particles?} and provide better constraints on the atmospheric impact models. The physical characteristics of cometary nuclei are not well understood and the SL9 data provides an important opportunity to constrain these parameters.

  11. Microanalysis of Hypervelocity Impact Residues of Possible Interstellar Origin

    NASA Technical Reports Server (NTRS)

    Stroud, Rhonda M.; Achilles, Cheri; Allen, Carlton; Anasari, Asna; Bajt, Sasa; Bassim, Nabil; Bastien, Ron S.; Bechtel, H. A.; Borg, Janet; Brenker, Frank E.; hide

    2012-01-01

    The NASA Stardust spacecraft deployed two collector trays, one dedicated to the collection of dust from Comet Wild 2, and the other for the capture of interstellar dust (ISD). The samples were returned successfully to Earth in 2006, and now provide an unprecedented opportunity for laboratory-based microanalysis of materials from the outer solar system and beyond. Results from the cometary sample studies have demonstrated that Wild 2 contains much more refractory condensate material and much less pristine extra-solar material than expected, which further indicates that there was significant transport of inner solar system materials to the Kuiper Belt in the early solar system [1]. The analysis of the interstellar samples is still in the preliminary examination (PE) phase, due to the level of difficulty in the definitive identification of the ISD features, the overall low abundance, and its irreplaceable nature, which necessitates minimally invasive measurements [2]. We present here coordinated microanalysis of the impact features on the Al foils, which have led to the identification of four impacts that are possibly attributable to interstellar dust. Results from the study of four ISD candidates captured in aerogel are presented elsewhere [2].

  12. Automated determination of dust particles trajectories in the coma of comet 67P

    NASA Astrophysics Data System (ADS)

    Marín-Yaseli de la Parra, J.; Küppers, M.; Perez Lopez, F.; Besse, S.; Moissl, R.

    2017-09-01

    During more than two years Rosetta spent at comet 67P, it took thousands of images that contain individual dust particles. To arrive at a statistics of the dust properties, automatic image analysis is required. We present a new methodology for fast-dust identification using a star mask reference system for matching a set of images automatically. The main goal is to derive particle size distributions and to determine if traces of the size distribution of primordial pebbles are still present in today's cometary dust [1].

  13. The nature of (sub-)micrometre cometary dust particles detected with MIDAS

    NASA Astrophysics Data System (ADS)

    Mannel, T.; Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.; Schmied, R.

    2015-10-01

    The MIDAS Atomic Force Microscope (AFM) onboard Rosetta collects dust particles and produces three-dimensional images with nano- to micrometre resolution. To date, several tens of particles have been detected, allowing determination of their properties at the smallest scale. The key features will be presented, including the particle size, their fragile character, and their morphology. These findings will be compared with the results of other Rosetta dust experiments.

  14. Shock Effects on Cometary-Dust Simulants

    NASA Technical Reports Server (NTRS)

    Lederer, Susan M.; Jensen, Elizabeth; Wooden, Diane H.; Lindsay, Sean S.; Smith, Douglas H.; Nakamura-Messenger, Keiko; Keller, Lindsay P.; Cardenas, Francisco; Cintala, Mark J.; Montes, Roland

    2014-01-01

    While comets are perhaps best known for their ability to put on spectacular celestial light shows, they are much more than that. Composed of an assortment of frozen gases mixed with a collection of dust and minerals, comets are considered to be very primitive bodies and, as such, they are thought to hold key information about the earliest chapters in the history of the solar system. (The dust and mineral grains are usually called the "refractory" component, indicating that they can survive much higher temperatures than the ices.) It has long been thought, and spacecraft photography has confirmed, that comets suffer the effects of impacts along with every other solar system body. Comets spend most of their lifetimes in the Kuiper Belt, a region of the solar system between 30 and 50 times the average distance of the Earth from the Sun, or the Oort Cloud, which extends to approximately 1 light year from the Sun. Those distances are so far from the Sun that water ice is the equivalent of rock, melting or vaporizing only through the action of strong, impact-generated shock waves.

  15. Indirect Solar Wind Measurements Using Archival Cometary Tail Observations

    NASA Astrophysics Data System (ADS)

    Zolotova, Nadezhda; Sizonenko, Yuriy; Vokhmyanin, Mikhail; Veselovsky, Igor

    2018-05-01

    This paper addresses the problem of the solar wind behaviour during the Maunder minimum. Records on plasma tails of comets can shed light on the physical parameters of the solar wind in the past. We analyse descriptions and drawings of comets between the eleventh and eighteenth century. To distinguish between dust and plasma tails, we address their colour, shape, and orientation. Based on the calculations made by F.A. Bredikhin, we found that cometary tails deviate from the antisolar direction on average by more than 10°, which is typical for dust tails. We also examined the catalogues of Hevelius and Lubieniecki. The first indication of a plasma tail was revealed only for the great comet C/1769 P1.

  16. The nature of cometary dust as determined from infrared observations

    NASA Technical Reports Server (NTRS)

    Swamy, K. S. Krishna; Sandford, Scott A.; Allamandola, Louis J.; Witteborn, Fred C.; Bregman, Jesse D.

    1989-01-01

    The infrared measurements of comets, the compositional information available from interplanetary dust particles (IDPs), and the recent results of flybys to Comet Halley can help in restricting the nature and composition of cometary dust models (c.f., Proceedings of the 20th ESLAB Symposium on Exploration of Halley's Comet, 1986). Researchers tried to incorporate some of these results into a coherent model to account for the observed cometary infrared emission. The presence of 10 and 3.4 micron features in Comet Halley (c.f. Bregman et al. 1987; Wickramasinghe and Allen 1986) indicated the presence of at least two components in the grain material, namely silicates and some form of amorphous carbon. These two components could reside in separate grains or may be parts of composite particles. Both these cases have been considered (see Krishna Swamy el a. 1988a, 1988b). In the absence of refractive index data for cometary analogs, the authors used the optical constants of olivine-rich lunar material 12009.48 (Perry et al. 1972) for the infrared region and that of alpha:C-H film for amorphous carbon (angus et al. 1986). For the visible region, a value of m = 1.38-0.39i was used for the silicates, and values published by Arakawa et al. (1985) were used for the amorphous carbon. These materials should give a representative behavior of the expected results. The model results were compared to observational data. The strength of the 3.4 micron and 10 micron features relative to the adjacent continuum, as well as the slope of the continuum between 2500 and 1250 cm(exp -1) (4 to 8 microns), were used as criteria for comparison. Model calculations with alpha approx. equals -3.5, and also the size distribution function inferred for Comet Halley, with a mass fraction (X) of silicate to amorphous carbon grains of about 40 to 1 can fit the data. A good match is obtained for the infrared spectra of Comets Halley and West from a 40 to 1 mixture of silicate and amorphous carbon grains with a a(exp -3.5) size distribution function. The results are consistent with compositional constraints provided by interplanetary dust particles (IPDs) and Halley flyby data. The variation of grain temperature with heliocentric distance appears to account for the major changes observed in cometary spectra.

  17. Parametric Dielectric Model of Comet Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Heggy, E.; Palmer, E. M.; Kofman, W. W.; Clifford, S. M.; Righter, K.; Herique, A.

    2012-12-01

    In 2014, the European Space Agency's Rosetta mission is scheduled to rendezvous with Comet 67P/Churyumov-Gerasimenko (Comet 67P). Rosetta's CONSERT experiment aims to explore the cometary nucleus' geophysical properties using radar tomography. The expected scientific return and inversion algorithms are mainly dependent on our understanding of the dielectric properties of the comet nucleus and how they vary with the spatial distribution of geophysical parameters. Using observations of comets 9P/Tempel 1 and 81P/Wild 2 in combination with dielectric laboratory measurements of temperature, porosity, and dust-to-ice mass ratio dependencies for cometary analog material, we have constructed two hypothetical three-dimensional parametric dielectric models of Comet 67P's nucleus to assess different dielectric scenarios of the inner structure. Our models suggest that dust-to-ice mass ratios and porosity variations generate the most significant measurable dielectric contrast inside the comet nucleus, making it possible to explore the structural and compositional hypotheses of cometary nuclei. Surface dielectric variations, resulting from temperature changes induced by solar illumination of the comet's faces, have also been modeled and suggest that the real part of the dielectric constant varies from 1.9 to 3.0, hence changing the surface radar reflectivity. For CONSERT, this variation could be significant at low incidence angles, when the signal propagates through a length of dust mantle comparable to the wavelength. The overall modeled dielectric permittivity spatial and temporal variations are therefore consistent with the expected deep penetration of CONSERT's transmitted wave through the nucleus. It is also clear that changes in the physical properties of the nucleus induce sufficient variation in the dielectric properties of cometary material to allow their inversion from radar tomography.

  18. Inner mean-motion resonances with eccentric planets: a possible origin for exozodiacal dust clouds

    NASA Astrophysics Data System (ADS)

    Faramaz, V.; Ertel, S.; Booth, M.; Cuadra, J.; Simmonds, C.

    2017-02-01

    High levels of dust have been detected in the immediate vicinity of many stars, both young and old. A promising scenario to explain the presence of this short-lived dust is that these analogues to the zodiacal cloud (or exozodis) are refilled in situ through cometary activity and sublimation. As the reservoir of comets is not expected to be replenished, the presence of these exozodis in old systems has yet to be adequately explained. It was recently suggested that mean-motion resonances with exterior planets on moderately eccentric (ep ≳ 0.1) orbits could scatter planetesimals on to cometary orbits with delays of the order of several 100 Myr. Theoretically, this mechanism is also expected to sustain continuous production of active comets once it has started, potentially over Gyr time-scales. We aim here to investigate the ability of this mechanism to generate scattering on to cometary orbits compatible with the production of an exozodi on long time-scales. We combine analytical predictions and complementary numerical N-body simulations to study its characteristics. We show, using order of magnitude estimates, that via this mechanism, low-mass discs comparable to the Kuiper belt could sustain comet scattering at rates compatible with the presence of the exozodis which are detected around Solar-type stars, and on Gyr time-scales. We also find that the levels of dust detected around Vega could be sustained via our proposed mechanism if an eccentric Jupiter-like planet were present exterior to the system's cold debris disc.

  19. Structure of Cometary Dust Particles

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A. C.; Hadamcik, E.; Lasue, J.

    2004-11-01

    The recent encounter of Stardust with comet 81P/Wild 2 has provided highly spatially resolved data about dust particles in the coma. They show intense swarms and bursts of particles, suggest the existence of fragmenting low-density particles formed of higher density sub-micrometer components [1], and definitely confirm previous results (inferred from Giotto encounter with comet Grigg-Skjellerup [2] and remote light scattering observations [3]). The light scattering properties (mostly polarization, which does not depend upon disputable normalizations) of dust in cometary comae will be summarized, with emphasis on the spatial changes and on the wavelength and phase angle dependence. Experimental and numerical simulations are needed to translate these observed light scattering properties in terms of physical properties of the dust particles (e.g. size, morphology, albedo, porosity). New experimental simulations (with fluffy mixtures of sub-micron sized silica and carbon grains) and new numerical simulations (with fractal aggregates of homogeneous or core-mantled silicate and organic grains) will be presented. The results are in favor of highly porous particles built up (by ballistic-cluster-cluster agglomeration) from grains of interstellar origin. The perspectives offered by laboratory simulations with aggregates built under conditions representative of the early solar system on board the International Space Station will be presented, together with the perspectives offered by future experiments on board the Rosetta cometary probe. Supports from CNES and ESA are acknowledged [1] Tuzzolino et al., Science, 304, 1776, 2004, [2] N. McBride et al., Mon. Not. R. Astron. Soc., 289, p. 535-553, 1997, [3] Levasseur-Regourd and Hadamcik, J. Quant. Spectros. Radiat. Transfer, 79-80, 903-910, 2003.

  20. Hummingbird Comet Nucleus Analysis Mission

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  1. The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites

    NASA Astrophysics Data System (ADS)

    Engrand, Cécile; Duprat, Jean; Bardin, Noémie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Remusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin

    2016-10-01

    Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. Analyses of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko by the dust analyzers on Rosetta orbiter (COSIMA, GIADA, MIDAS) suggest a relationship to interplanetary dust/micrometeorites. A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system.

  2. Laboratory Studies of Cometary Materials - Continuity Between Asteroid and Comet

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Walker, Robert M.

    2015-01-01

    Laboratory analysis of cometary samples have been enabled by collection of cometary dust in the stratosphere by high altitude aircraft and by the direct sampling of the comet Wild-2 coma by the NASA Stardust spacecraft. Cometary materials are composed of a complex assemblage of highly primitive, unprocessed interstellar and primordial solar system materials as well as a variety of high temperature phases that must have condensed in the inner regions of the protoplanetary disk. These findings support and contradict conclusions of comet properties based solely on astronomical observations. These sample return missions have instead shown that there is a continuity of properties between comets and asteroids, where both types of materials show evidence for primitive and processed materials. Furthermore, these findings underscore the importance and value of direct sample return. There will be great value in comparing the findings of the Stardust cometary coma sample return mission with those of future asteroid surface sample returns OSIRIS-REx and Hayabusa II as well as future comet nucleus sample returns.

  3. Interplanetary dust - Trace element analysis of individual particles by neutron activation

    NASA Technical Reports Server (NTRS)

    Ganapathy, R.; Brownlee, D. E.

    1979-01-01

    Although micrometeorites of cometary origin are thought to be the dominant component of interplanetary dust, it has never been possible to positively identify such micrometer-sized particles. Two such particles have been identified as definitely micrometeorites since their abundances of volatile and nonvolatile trace elements closely match those of primitive solar system material.

  4. Stardust Curation at Johnson Space Center: Photo Documentation and Sample Processing of Submicron Dust Samples from Comet Wild 2 for Meteoritics Science Community

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Zolensky, M. E.; Bastien, R.; See, T. H.; Warren, J. L.; Bevill, T. J.; Cardenas, F.; Vidonic, L. F.; Horz, F.; McNamara, K. M.; hide

    2007-01-01

    Dust particles released from comet 81P/Wild-2 were captured in silica aerogel on-board the STARDUST spacecraft and successfully returned to the Earth on January 15, 2006. STARDUST recovered thousands of particles ranging in size from 1 to 100 micrometers. The analysis of these samples is complicated by the small total mass collected ( < 1mg), its entrainment in the aerogel collection medium, and the fact that the cometary dust is comprised of submicrometer minerals and carbonaceous material. During the six month Preliminary Examination period, 75 tracks were extracted from the aerogel cells , but only 25 cometary residues were comprehensively studied by an international consortium of 180 scientists who investigated their mineralogy/petrology, organic/inorganic chemistry, optical properties and isotopic compositions. These detailed studies were made possible by sophisticated sample preparation methods developed for the STARDUST mission and by recent major advances in the sensitivity and spatial resolution of analytical instruments.

  5. The concept of a facility for cosmic dust research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Blum, Juergen; Cabane, Michel; Fonda, Mark; Giovane, Frank; Gustafson, Bo A. S.; Keller, Horst U.; Markiewicz, Wojciech J.; Levasseur-Regourd, Any-Chantal; Worms, Jean-Claude; Nuth, Joseph A.; hide

    1996-01-01

    A proposal for the development of a permanently operating facility for the experimental investigation of cosmic dust-related phenomena onboard the International Space Station (ISS) is presented. Potential applications for this facility are the convection-free nucleation of dust grains, studies of coagulation and aggregation phenomena in a microgravity environment, investigations of heat transport through, and dust emissions from, high-porosity cometary analogs, and experiments on the interaction of very fluffy dust grains with electromagnetic radiation and with low pressure gas flows. Possible extensions of such a facility are towards aerosol science and colloidal plasma research.

  6. Comet-toolbox: Numerical simulations of cometary dust tails in your browser

    NASA Astrophysics Data System (ADS)

    Vincent, J.

    2014-07-01

    The last few years have seen a rise in the popularity of comets, on both professional and amateur levels. Many cometary events, sometimes visible without a telescope, have triggered worldwide campaigns of ground- and space-based observations: for instance, the explosion of comet 17P/Holmes, the sungrazers C/2006 P1 (McNaught) and C/2012 S1 (ISON), or the forthcoming close encounter of C/2013 A1 (Siding Springs) and Mars. With the overwhelming amount of data available, it becomes more and more important to release the models we use to analyze these events. This ensures not only that more people get the opportunity to investigate the data, but is also beneficial for the science itself as everybody is able to see, use, and improve the models. As a professional planetary scientist, I have written many tools to process the data I use, especially in the field of cometary and asteroid science [1-6]. With the progress of modern computers, it is now possible to translate these tools to simple HTML/Javascript interfaces and run the models in an Internet browser. I have decided to make my tools available in this way, to be used by anybody interested in modeling cometary processes. The first tool being released at ACM 2014 is the Finson-Probstein diagram. The motion of dust particles in a cometary environment is a complex process. A precise description of the grain trajectories requires advanced hydrodynamic models. In the tail, dust and gas are decoupled and the only significant forces affecting the grain trajectories are the solar gravity and radiation pressure. Both forces depend on the square of the heliocentric distance but work in opposite directions. Their sum can be seen as a reduced solar gravity, and the equation of motion is simply m × a = (1-β) × Sun_{gravity}, where β is the ratio P_{radiation}/Sun_{gravity}, and is inversely proportional to the size of the grains for particles larger than 1 micron. From this relation, Finson & Probstein (1968, [7]) proposed a model which describes the full tail geometry with a grid of synchrones and syndynes, i.e., lines representing, respectively, the locations of particles released at the same time or with the same β. This model is simple because it considers only particles released in the orbital plane of the comet, and with zero initial velocity, but it provides a very good approximation of the shape of the tail, and has been used successfully to study many comets. One of the many strengths of this approach is the possibility to date events in the tail. For instance, one can understand if regions of higher density are related to outbursts of the nucleus, or are a result of fragmentation of large chunks of material within the trail. It can also be used to disentangle between continuous activity, short outbursts, or impacts, when all these events produce a feature which at first look like a normal cometary tail. The model can be found at http://www.comet-toolbox.com.

  7. The spectral properties of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    1988-01-01

    The observed spectral and mineralogical properties of interplanetary dust particles (IDP) allows the conclusion that: (1) the majority of IDP infrared spectra are dominated by olivine, pyroxene, or layer lattice silicate minerals, (2) to the first order the emission spectra of comets Halley and Kohoutek can be matched by mixtures of these IDP infrared types, implying that comets contain mixtures of these different crystalline silicates and may vary from comet to comet and perhaps even within a single comet, (3) do not expect to observe a single 20 micron feature in cometary spectra, (4) carbonaceous materials dominate the visible spectra properties of the IDPs even though the mass in these particles consists primarily of silicates, and (5) the particle characteristics summarized need to be properly accounted for in future cometary emission models.

  8. Modeling the ejecta cloud in the first seconds after Deep Impact

    NASA Astrophysics Data System (ADS)

    Nagdimunov, L.; Kolokolova, L.; Wolff, M.; A'Hearn, M.; Farnham, T.

    2014-07-01

    Although the Deep Impact experiment was performed nine years ago, analysis of its data continues to shed light on our understanding of cometary atmospheres, surfaces, and interiors. We analyze the images acquired by the Deep Impact spacecraft High Resolution Instrument (HRI) in the first seconds after impact. These early images reflect the development of the material excavation from the cometary nucleus, enabling a study of fresh, unprocessed nuclear material, and potentially allowing a peek into the interior. Simply studying the brightness of the ejecta plume and its distribution as a function of height and time after impact could provide some insight into the characteristics of the ejecta. However, the optical thickness of the ejecta offers an additional source of information through the resultant shadow on the surface of the nucleus and brightness variations within it. Our goal was to reproduce both the distribution of brightness in the plume and in its shadow, thus constraining the characteristics of the ejecta. To achieve this, we used a 3D radiative-transfer package HYPERION [1], which allows an arbitrary spatial distribution and multiple dust components, for simulations of multiple scattering with realistic scattering and observational geometries. The parameters of our dust modeling were composition, size distribution, and number density of particles at the base of the ejecta cone (the last varied with the height, h, as h^{-3}). Composition was created as a mixture of so called Halley-like dust (silicates, carbon, and organics, see [2]), ice, and voids to account for particle porosity. We performed a parameter survey, searching for dust/ice ratios and particle porosity that could reproduce a density of the individual particles equal to the bulk density of the nucleus, 0.4 g/(cm^3), or 1.75 g/(cm^3) used in [3] to model crater development. The size distribution was taken from [4] and the number density was varied to achieve the best fit. To further constrain the results, we compared them with those of crater modeling [3]. Based on the approach given in [3] and using the crater diameter from [5], the mass of the ejecta 1 sec. after impact was estimated as 9×10^3-2×10^4 kg. The best fit to Deep Impact data and excavated mass constraints was achieved with ˜10% Halley dust, ˜20% ice, and the rest voids by volume for density 0.4 g/(cm^3) and ˜65% Halley dust with 38-8 % ice, depending on porosity, for density 1.75 g/(cm^3). Both cases result in a number density of ˜(10^4) particles/(cm^3). The dust/ice mass ratio for each density is ≥1, which is consistent with [6]. To reproduce the correct position and geometry of the shadow, we had to modify the geometry of the ejecta cone originally prescribed in [3]. This was required, in part, by the use of a revised nuclear shape model [7]. Our estimate of cone tilt differs from the previous one by 13.2°. It appeared that the observed change in brightness of the plume and shadow during the first second cannot be reproduced by a hollow cone. This is consistent with lab simulations of oblique impacts [8] which showed that hollowness of the ejecta cone can develop somewhat later in the plume evolution. Variations of brightness within the plume and the shadow can reveal the structure of the upper layers of the nucleus.

  9. Strategy for infrared photometry of comets with ISO

    NASA Astrophysics Data System (ADS)

    Solc, M.; Vanysek, V.; Gruen, E.

    1994-07-01

    The launch of the ISO (Infrared Satellite Observatory) by the European Space Agency is scheduled for autumn 1995. Photometry and spectrophotometry observing programs of comets in the wavelength range 2.5-200 microns for the onboard spectrophotometer ISOPHOT is now under final preparation. Technical details for preparing propasals are given. Phenomena in comets to be studied are surface properties of bare cometary nuclei at large heliocentric distances, onset of coma activity, and coma dust and gas emission (in inner solar system). Dust production, dust/gas mass ratio, dust distribution in coma, and their temporal variability are important for understanding the physical processes on nuclei, and spectrophotometry in the range of 2.5-12 microns could provide us with data of the chemical composition of cometary dust. Several active comets expected for the 18-month lifetime of ISO in 1995-1997 were selected for the ISO Central Program according to their orbital and physical parameters: P/Schwassman-Wachmann 1, P/Encke, P/d'Arrest, P/Honda-Mrkos-Pajdusakova, P/Churyumov-Gerasimenko, P/Kopff, P/IRAS, P/Wirtanen, P/Wild 2, P/Grigg-Skjellerup, P/Schwassman-Wachmann 3, P/Machholz, and (2060) Chiron. Four of them match well various constraints put on the observations by the technical arrangement of the satellite and instrument. A simple four-parameter model (size, albedo, rotation, optical thickness)was developed to estimate the temperatures and thermal fluxes of both solid nuclei and dust coma.

  10. A Global, Multi-Waveband Model for the Zodiacal Cloud

    NASA Technical Reports Server (NTRS)

    Grogan, Keith; Dermott, Stanley F.; Kehoe, Thomas J. J.

    2003-01-01

    This recently completed three-year project was undertaken by the PI at the University of Florida, NASA Goddard and JPL, and by the Co-I and Collaborator at the University of Florida. The funding was used to support a continuation of research conducted at the University of Florida over the last decade which focuses on the dynamics of dust particles in the interplanetary environment. The main objectives of this proposal were: To produce improved dynamical models of the zodiacal cloud by performing numerical simulations of the orbital evolution of asteroidal and cometary dust particles. To provide visualizations of the results using our visualization software package, SIMUL, simulating the viewing geometries of IRAS and COBE and comparing the model results with archived data. To use the results to provide a more accurate model of the brightness distribution of the zodiacal cloud than existing empirical models. In addition, our dynamical approach can provide insight into fundamental properties of the cloud, including but not limited to the total mass and surface area of dust, the size-frequency distribution of dust, and the relative contributions of asteroidal and cometary material. The model can also be used to provide constraints on trace signals from other sources, such as dust associated with the "Plutinos" , objects captured in the 2:3 resonance with Neptune.

  11. PREVAILING DUST-TRANSPORT DIRECTIONS ON COMET 67P/CHURYUMOV–GERASIMENKO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Tobias; Noack, Matthias

    Dust transport and deposition behind larger boulders on the comet 67P/Churyumov–Gerasimenko (67P/C–G) have been observed by the Rosetta mission. We present a mechanism for dust-transport vectors based on a homogeneous surface activity model incorporating in detail the topography of 67P/C–G. The combination of gravitation, gas drag, and Coriolis force leads to specific dust transfer pathways, which for higher dust velocities fuel the near-nucleus coma. By distributing dust sources homogeneously across the whole cometary surface, we derive a global dust-transport map of 67P/C–G. The transport vectors are in agreement with the reported wind-tail directions in the Philae descent area.

  12. Distribution of Dust from Kuiper Belt Objects

    NASA Technical Reports Server (NTRS)

    Gorkavyi, Nick N.; Ozernoy, Leonid; Taidakova, Tanya; Mather, John C.; Fisher, Richard (Technical Monitor)

    2000-01-01

    Using an efficient computational approach, we have reconstructed the structure of the dust cloud in the Solar system between 0.5 and 100 AU produced by the Kuiper belt objects. Our simulations offer a 3-D physical model of the 'kuiperoidal' dust cloud based on the distribution of 280 dust particle trajectories produced by 100 known Kuiper belt objects; the resulting 3-D grid consists of 1.9 x 10' cells containing 1.2 x 10" particle positions. The following processes that influence the dust particle dynamics are taken into account: 1) gravitational scattering on the eight planets (neglecting Pluto); 2) planetary resonances; 3) radiation pressure; and 4) the Poynting-Robertson (P-R) and solar wind drags. We find the dust distribution highly non-uniform: there is a minimum in the kuiperoidal dust between Mars and Jupiter, after which both the column and number densities of kuiperoidal dust sharply increase with heliocentric distance between 5 and 10 AU, and then form a plateau between 10 and 50 AU. Between 25 and 45 AU, there is an appreciable concentration of kuiperoidal dust in the form of a broad belt of mostly resonant particles associated with Neptune. In fact, each giant planet possesses its own circumsolar dust belt consisting of both resonant and gravitationally scattered particles. As with the cometary belts simulated in our related papers, we reveal a rich and sophisticated resonant structure of the dust belts containing families of resonant peaks and gaps. An important result is that both the column and number dust density are more or less flat between 10 and 50 AU, which might explain the surprising data obtained by Pioneers 10 & 11 and Voyager that the dust number density remains approximately distance-independent in this region. The simulated kuiperoidal dust, in addition to asteroidal and cometary dust, might represent a third possible source of the zodiacal light in the Solar system.

  13. Dynamics of aspherical dust grains in a cometary atmosphere: I. axially symmetric grains in a spherically symmetric atmosphere

    NASA Astrophysics Data System (ADS)

    Ivanovski, S. L.; Zakharov, V. V.; Della Corte, V.; Crifo, J.-F.; Rotundi, A.; Fulle, M.

    2017-01-01

    In-situ measurements of individual dust grain parameters in the immediate vicinity of a cometary nucleus are being carried by the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. For the interpretations of these observational data, a model of dust grain motion as realistic as possible is requested. In particular, the results of the Stardust mission and analysis of samples of interplanetary dust have shown that these particles are highly aspherical, which should be taken into account in any credible model. The aim of the present work is to study the dynamics of ellipsoidal shape particles with various aspect ratios introduced in a spherically symmetric expanding gas flow and to reveal the possible differences in dynamics between spherical and aspherical particles. Their translational and rotational motion under influence of the gravity and of the aerodynamic force and torque is numerically integrated in a wide range of physical parameters values including those of comet 67P/Churyumov-Gerasimenko. The main distinctions of the dynamics of spherical and ellipsoidal particles are discussed. The aerodynamic characteristics of the ellipsoidal particles, and examples of their translational and rotational motion in the postulated gas flow are presented.

  14. Cometary coma chemical composition (C4) mission. [Abstract only

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Clark, B. C.; Niemann, H. B.; Alexander, M.; Knocke, P. C.; O'Hara, B. J.

    1994-01-01

    Cometary missions are of enormous fundamental importance for many different space science disciplines, including exobiology. Comets are presumed relics of the earliest, most primitive material in the solar nebula and are related to the planetesimals. They undoubtedly provided a general enrichment of volatiles to the inner solar system (contributing to atmospheres and oceans) and may have been key to the origin of life. A Discovery class, comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, was selected for further study by NASA earlier this year. The C4 Mission is a highly focused and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission, concentrating exclusively on measurements which will lead to an understanding of the chemical composition and make-up of the cometary nucleus. The scientific goals of the Cometary Coma Chemical Composition (C4) Mission are to rendezvous with a short-period comet and (1) to determine the elemental, chemical, and isotopic composition of the nucleus and (2) to characterize the chemical and isotopic nature of its atmosphere. Further, it is a goal to obtain preliminary data on the development of the coma (dust and gas composition) as a function of time and orbital position.

  15. The study of the physics of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1983-01-01

    On the basis of the icy conglometate model of cometary nuclei various observations demonstrate the spotted nature of many or most nuclei, i.e., regions of unusual activity, either high or low. Rotation periods, spin axes and even precession of the axes have been determined. Narrow dust jets near the nuclei of some bright comets require that small sources be embedded in larger active areas. Certain evidence suggests that very dusty areas and very dusty comets may be less active, respectively, than surrounding areas or other comets.

  16. Could the Geminid meteoroid stream be the result of long-term thermal fracture?

    NASA Astrophysics Data System (ADS)

    Ryabova, G. O.

    2015-10-01

    The previous models by Ryabova have shown that the Geminid meteoroid stream has cometary origin, so asteroid (3200) Phaethon (the Geminid's parent body) is probably a dead comet. Recently (in 2009 and 2012) some week activity was observed (see Jewitt & Li, 2010, AJ, 140), but it was not the cometary activity. Recurrent brightening of Phaethon in perihelion could be the result of thermal fracture and decomposition. In this study we model the longterm dust release from Phaethon based on this mechanism.

  17. Complete positive ion, electron, and ram negative ion measurements near Comet Halley (COPERNIC) plasma experiment for the European Giotto Mission

    NASA Technical Reports Server (NTRS)

    Lin, Robert P.

    1988-01-01

    Participation of U.S. scientists on the COPERNIC (COmplete Positive ions, Electrons and Ram Negative Ion measurements near Comet Halley) plasma experiment on the Giotto mission is described. The experiment consisted of two detectors: the EESA (electron electrostatic analyzer) which provided three-dimensional measurements of the distribution of electrons from 10 eV to 30 keV, and the PICCA (positive ion cluster composition analyzer) which provided mass analysis of positively charged cold cometary ions from mass 10 to 210 amu. In addition, a small 3 deg wide sector of the EESA looking in the ram direction was devoted to the detection of negatively charged cold cometary ions. Both detectors operated perfectly up to near closest approach (approx. 600 km) to Halley, but impacts of dust particles and neutral gas on the spacecraft contaminated parts of the data during the last few minutes. Although no flight hardware was fabricated in the U.S., The U.S. made very significant contributions to the hardware design, ground support equipment (GSE) design and fabrication, and flight and data reduction software required for the experiment, and also participated fully in the data reduction and analysis, and theoretical modeling and interpretation. Cometary data analysis is presented.

  18. The Search for Interstellar Sulfide Grains

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Messenger, Scott

    2010-01-01

    The lifecycle of sulfur in the galaxy is poorly understood. Fe-sulfide grains are abundant in early solar system materials (e.g. meteorites and comets) and S is highly depleted from the gas phase in cold, dense molecular cloud environments. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium, indicating that little sulfur is incorporated into solid grains in this environment. It is widely believed that sulfur is not a component of interstellar dust grains. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. Fe sulfide grains are ubiquitous in cometary samples where they are the dominant host of sulfur. The Fe-sulfides (primarily pyrrhotite; Fe(1-x)S) are common, both as discrete 0.5-10 micron-sized grains and as fine (5-10 nm) nanophase inclusions within amorphous silicate grains. Cometary dust particles contain high abundances of well-preserved presolar silicates and organic matter and we have suggested that they should contain presolar sulfides as well. This hypothesis is supported by the observation of abundant Fe-sulfides grains in dust around pre- and post-main sequence stars inferred from astronomical spectra showing a broad 23 micron IR feature due to FeS. Fe-sulfide grains also occur as inclusions in bona fide circumstellar amorphous silicate grains and as inclusions within deuterium-rich organic matter in cometary dust samples. Our irradiation experiments show that FeS is far more resistant to radiation damage than silicates. Consequently, we expect that Fe sulfide stardust should be as abundant as silicate stardust in solar system materials.

  19. Martian Atmospheric Methane Plumes from Meteor Shower Infall: A Hypothesis

    NASA Technical Reports Server (NTRS)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.

    2016-01-01

    Methane plumes in the martian atmosphere have been detected using Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. To date, none of these phenomena have been found to reliably correlate with the detection of methane plumes. An additional source exists, however: meteor showers could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, depositing freshly disaggregated meteor shower material in a regional concentration. The material generates methane via UV photolysis, resulting in a localized "plume" of short-lived methane.

  20. High-molecular-weight organic matter in the particles of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Fray, Nicolas; Bardyn, Anaïs; Cottin, Hervé; Altwegg, Kathrin; Baklouti, Donia; Briois, Christelle; Colangeli, Luigi; Engrand, Cécile; Fischer, Henning; Glasmachers, Albrecht; Grün, Eberhard; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Jessberger, Elmar K; Koch, Andreas; Krüger, Harald; Langevin, Yves; Lehto, Harry; Lehto, Kirsi; Le Roy, Léna; Merouane, Sihane; Modica, Paola; Orthous-Daunay, François-Régis; Paquette, John; Raulin, François; Rynö, Jouni; Schulz, Rita; Silén, Johan; Siljeström, Sandra; Steiger, Wolfgang; Stenzel, Oliver; Stephan, Thomas; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Wanczek, Karl-Peter; Zaprudin, Boris; Kissel, Jochen; Hilchenbach, Martin

    2016-10-06

    The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula-the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization. Many gaseous organic molecules, however, have been observed; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov-Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites' parent bodies. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.

  1. The dynamics of submicron-sized dust particles lost from Phobos

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Tatrallyay, M.; Juhasz, A.; Luhmann, J. G.

    1991-01-01

    The dynamics of submicron-sized dielectric particles lost from the Martian moon Phobos are studied in connection with the possible detection of dust by the Phobos 2 spacecraft. The motion of these small dust grains is influenced not only by gravity but also by solar radiation pressure and electromagnetic forces. The plasma environment of Mars is described by applying a hybrid gasdynamic-cometary model. Some of the submicron-sized grains ejected at speeds on the order of a few tens meters per second can stay in orbit around Mars for several months forming a nonuniform and time-dependent dust halo.

  2. Spectrophotometry of Dust in Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Comets, such as Hale-Bopp (C/1995 O1), are frozen reservoirs of primitive solar nebula dust grains and ices. Analysis of the composition of cometary dust grains from infrared spectroscopic techniques permits an estimation of the types of organic and inorganic materials that constituted the early primitive solar nebula. In addition, the cometary bombardment of the Earth (approximately 3.5 Gy ago) supplied the water for the oceans and brought organic materials to Earth which may have been biogenic. Spectroscopic observations of comet Hale-Bopp suggest the possible presence of organic hydrocarbon species, silicate and olivine dust grains, and water ice. Spectroscopy near 3 microns obtained in Nov 1996 r=2.393 AU, delta=3.034 AU) shows a feature which we attribute to PAH emission. The spatial morphology of the 3.28 microns PAH feature is also presented. Optical and infrared spectrophotometric observations of comets convey valuable information about the spatial distribution and properties of dust and gas within the inner coma. In the optical and NIR shortward of 2 microns, the observed light is primarily scattered sunlight from the dust grains. At longer wavelengths, particularly in the 10 gm window, thermal emission from these grains dominates the radiation allowing an accurate estimate of grain sizes and chemical composition. Here we present an initial analysis of spectra taken with the NASA HIFOGS at 7-14 microns as part of a multiwavelength temporal study of the "comet of the century".

  3. Vega-Giotto flyby missions and cometary cosmogony

    NASA Technical Reports Server (NTRS)

    Lang, Bruno

    1989-01-01

    The most important implication of the Vega/Giotto flyby missions to Halley's Comet for cometary cosmogony is the opportunity to absorb the results of the in-situ measurements as made onboard the spacecrafts. Unfortunately the exploration of ejecta form the nucleus was unable to provide an unambiguous definition of the chemical-mineralogical nature of the nucleus: it failed to provide information comparable to that which was expected from a sample return mission. However, the obtained results are significant enough to affect and redirect cosmogonical thinking. Accordingly, the understanding of the cometary-matter dichotomy is modified as deduced from the distiction of water-dominated volitiles and silicate-based non-volitiles. Organic carbon compounds emerge as a major constituent of cometary nuclei. Presently, it is likely that the revision of Whipple's classic concept of the icy conglomerate cannot be avoided. Affected by the Vega/Giotto flyby missions to Hally's Comet, cometary cosmogony seems to enter a new conceptual period. The results of the in-situ measurements (mass spectrometric, UV spectroscopic, and IR spectroscopic) appear to be of basic importance. A chemical explanation is employed to explain the occurrence inside the nuclei of the variety of species, as inferred from the mass spectrometric data, to predict the results of the processes possibly involved. A cosmochemical factor is postulated to operate behind the observed cometary phenomena. The chemistry of the interstellar medium, covering the circumstellar and interstellar dust, advances cometary cosmogony.

  4. Physics of Intact Capture of Cometary Coma Dust Samples

    NASA Astrophysics Data System (ADS)

    Anderson, William

    2011-06-01

    In 1986, Tom Ahrens and I developed a simple model for hypervelocity capture in low density foams, aimed in particular at the suggestion that such techniques could be used to capture dust during flyby of an active comet nucleus. While the model was never published in printed form, it became known to many in the cometary dust sampling community. More sophisticated models have been developed since, but our original model still retains superiority for some applications and elucidates the physics of the capture process in a more intuitive way than the more recent models. The model makes use of the small value of the Hugoniot intercept typical of highly distended media to invoke analytic expressions with functional forms common to fluid dynamics. The model successfully describes the deceleration and ablation of a particle that is large enough to see the foam as a low density continuum. I will present that model, updated with improved calculations of the temperature in the shocked foam, and show its continued utility in elucidating the phenomena of hypervelocity penetration of low-density foams.

  5. Searching for dust orbiting around activated asteroid 596 Scheila by means of stellar occultations

    NASA Astrophysics Data System (ADS)

    Santos-Sanz, P.; Ortiz, J. L.; Duffard, R.; Morales, N.; Fernández-Valenzuela, E.; Moreno, F.; Licandro, J.; Rizos, J. L.; Maestre, J. L.; Organero, F.; Fonseca, F.; Ana, L.; Pastor, S.; de los Reyes, J. A.

    2017-03-01

    596 Scheila is a main belt asteroid classified from 2010, when it presented cometary appearance, like a Main Belt Comet (MBC). We only known around a dozen of MBCs till to date. The MBCs present asteroid-like orbits -between Mars and Jupiter- but they have cometary appearances and/or behaviours. It is believed that the activity of Scheila was triggered by the impact of a small asteroid (D 35 m) with a velocity 5 km/s. In order to study if the dust around Scheila generated by this collision could have evolved to a thin ring orbiting the body we have predicted stellar occultations by Scheila favourable for Spain during 2015-2016. We found 3 possible favourable events for the dates: 16 December 2015, 6 January 2016 and 21 January 2016. The first event was not observed due to bad weather conditions, the second one was negative, finally, the third event was positive and was observed from two Spanish sites separated 260 km: the ‘Observatorio de Albox’ in Alicante and the ‘Observatorio de La Hita’ in Toledo. From the analysis of this positive multi-chord stellar occultation of a 14.8 magnitude star we have obtained the equivalent diameter in projected area on the sky plane of Scheila at the moment of the occultation (D = 115.1 ± 6.4 km) and its surface geometric albedo (pV = 3.67 ± 0.41 %). Due to the small-sized telescopes involved in this occultation our limit of detection for a dust ring around Scheila at 3σ is of 15 km, with a maximum optical deep τ_{max} = 0.11. The research leading to these results has received funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement no 687378.

  6. Statistical analysis of dust signals observed by ROSINA/COPS onboard of the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Tzou, Chia-Yu; altwegg, kathrin; Bieler, Andre; Calmonte, Ursina; Gasc, Sébastien; Le Roy, Léna; Rubin, Martin

    2016-10-01

    ROSINA is the in situ Rosetta Orbiter Spectrometer for Ion and Neutral Analysis on board of Rosetta, one of the corner stone missions of the European Space Agency (ESA) to land and orbit the Jupiter family comet 67P/Churyumov-Gerasimenko (67P). ROSINA consists of two mass spectrometers and a pressure sensor. The Reflectron Time of Flight Spectrometer (RTOF) and the Double Focusing Mass Spectrometer (DFMS) complement each other in mass and time resolution.The Comet Pressure Sensor (COPS) provides density measurements of the neutral molecules in the cometary coma of 67P. COPS has two gauges, a nude gauge that measures the total neutral density and a ram gauge that measures the dynamic pressure from the comet. Combining the two COPS is also capable of providing gas dynamic information such as gas velocity and gas temperature of the coma.While Rosetta started orbiting around 67P in August 2014, COPS observed diurnal and seasonal variations of the neutral gas density in the coma. Surprisingly, additional to these major density variation patterns, COPS occasionally observed small spikes in the density that are associated with dust. These dust signals can be interpreted as a result of cometary dust releasing volatiles while heated up near COPS. A statistical analysis of dust signals detected by COPS will be presented.

  7. Electron Microscopy Studies of Comet Wild-2 Particulate Residue Preserved in the Stardust Metallic Foil Craters

    NASA Astrophysics Data System (ADS)

    Graham, G. A.; Kearsley, A. T.; Dai, Z.; Leroux, H.; Teslich, N. E.; Stroud, R.; Borg, J.; Bradley, J. P.; Horz, F. P.; Zolensky, M.

    2006-12-01

    The study of comets is fundamental to the understanding of early solar system processes. Much of the current knowledge of cometary compositions comes from `fly-by' missions or remote sensing studies but not, until now, from the laboratory analyses of samples. The Stardust spacecraft (NASA's 4th Discovery mission) was launched in 1999 and in January 2004 had a successful fly-by close to the nucleus of comet Wild 2. During the encounter, the collector tray assembly containing the principle particle capture technology of low- density silica aerogel was deployed. In addition, the metallic foils (1100 series Aluminum) wrapped around the collector frame also picked up material from the 6.1 km/s cometary particle collisions. Since the retrieval of the sample return capsule in January 2006, and as part of the preliminary examination, a selected number of foils have been scanned using SEM-EDX to locate cometary dust derived impact craters. Craters ranging from 100 nanometers to several hundreds of micrometers in diameter, containing both monomineralic and polymineralic projectile melts, have been identified, measured and analyzed. Focused ion beam microscopy techniques have been used to take cross-section slices of either individual craters or specific residue fragments, and thin them to electron transparency. TEM-EDX analysis of these slices shows that crystalline grains are occasionally preserved, despite the high shock pressures and temperatures that caused most of the particle to melt. Observations from the crater residues make a useful addition to studies of the composition and mineralogy of the cometary particulates preserved within the impact tracks in the silica aerogel. This work was in part performed under the auspices of the U.S. Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  8. The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites

    NASA Astrophysics Data System (ADS)

    Engrand, Cecile; Duprat, Jean; Bardin, Noemie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Rémusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin; COSIMA Team

    2015-08-01

    Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. The Rosetta mission currently carries dust analyzers capable of measuring dust flux, sizes, physical properties and compositions of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko (COSIMA, GIADA, MIDAS), as well as gas analyzers (ROSINA, PTOLEMY, COSAC). A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system. We will present the implications of the analyses of samples in the laboratory and in space to a better understanding of the early protoplanetary disk.

  9. The International Cometary Explorer mission to comets Giacobini-Zinner and Halley - An update

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.

    1986-01-01

    Aspects of the International Cometary Explorer (ICE) flight to the comet Giacobini-Zinner (GZ) are discussed. The most important experiments to be performed by ICE are reviewed, and the orbital parameters of GZ are described. The dust characteristics of GZ that pose a hazard to the spacecraft are addressed, and the ICE targeting strategy toward the comet is discussed. Requested ground-based coverage of GZ is indicated, and the complementarity of the GZ coverage with that given to the Halley mission is shown.

  10. Scientific returns from a program of space missions to comets

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1979-01-01

    A program of cometary missions is proposed. The nature and size of interstellar dust, its origin and evolution; identification of new interstellar molecules; clarification of interstellar chemistry; accretion of grains into protosolar cometesimals; role of a T Tauri wind in the dissipation of the protosolar nebula; record of isotopic anomalies, better preserved in comets than in meteorites; cosmogenic and radiogenic dating of comets; cosmochronology and mineralogy of meteorites, as compared with that of cometary samples; origin of the earth's biosphere, and the origin of life are topics discussed in relation to comet exploration.

  11. Modeling photopolarimetric characteristics of comet dust as a polydisperse mixture of polyshaped rough spheroids

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.; Das, H.; Dubovik, O.; Lapyonok, T.

    2013-12-01

    It is widely recognized now that the main component of comet dust is aggregated particles that consist of submicron grains. It is also well known that cometary dust obey a rather wide size distribution with abundant particles whose size reaches dozens of microns. However, numerous attempts of computer simulation of light scattering by comet dust using aggregated particles have not succeeded to consider particles larger than a couple of microns due to limitations in the memory and speed of available computers. Attempts to substitute aggregates by polydisperse solid particles (spheres, spheroids, cylinders) could not consistently reproduce observed angular and spectral characteristics of comet brightness and polarization even in such a general case as polyshaped (i.e. containing particles of a variety of aspect ratios) mixture of spheroids (Kolokolova et al., In: Photopolarimetry in Remote Sensing, Kluwer Acad. Publ., 431, 2004). In this study we are checking how well cometary dust can be modeled using modeling tools for rough spheroids. With this purpose we use the software package described in Dubovik et al. (J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619d, 2006) that allows for a substantial reduction of computer time in calculating scattering properties of spheroid mixtures by means of using pre-calculated kernels - quadrature coefficients employed in the numerical integration of spheroid optical properties over size and shape. The kernels were pre-calculated for spheroids of 25 axis ratios, ranging from 0.3 to 3, and 42 size bins within the size parameter range 0.01 - 625. This software package has been recently expanded with the possibility of simulating not only smooth but also rough spheroids that is used in present study. We consider refractive indexes of the materials typical for comet dust: silicate, carbon, organics, and their mixtures. We also consider porous particles accounting on voids in the spheroids through effective medium approach. The roughness of the spheroids is considered as a normal distribution of particle surface slopes and can be of different degree depending on the standard deviation of the distribution, σ, where σ=0 corresponds to smooth surface and σ=0.5 describes severely rough surface (see Young et al., J. Atm. Sci., 70, 330, 2012). We perform computations for two wavelengths, typical for blue (447nm) and red (640nm) cometary continuum filters. We compare phase angle dependence of polarization and brightness and their spectral change obtained with the rough-spheroid model with those observed for comets (e.g. Kolokolova et al., In: Comets 2, Arizona Press, 577, 2004) to see how well rough spheroids can reproduce cometary low albedo, red color, red polarimetric color, negative polarization at small phase angles and polarization maximum at medium phase angles.

  12. Could the Geminid meteoroid stream be the result of long-term thermal fracture?

    NASA Astrophysics Data System (ADS)

    Ryabova, G. O.

    2018-06-01

    The previous models by Ryabova showed that the Geminid meteoroid stream has cometary origin, so the asteroid (3200) Phaethon (the Geminid's parent body) is probably a dead comet. In 2009, 2012, and 2016, some weak activity was observed, but it was not cometary activity (see Jewitt & Li). Recurrent brightening of Phaethon at perihelion could be the result of thermal fracture and decomposition. In this study, we model the long-term (5 000 years) dust release from Phaethon in perihelion with velocities specific for this mechanism. The results of these dust ejections cannot be observed from the Earth now, or even in this century. Only around the year 2260, when the Phaethon descending node should intersect the Earth's orbit, this special component of the Geminid meteoroid stream will also approach the Earth. The perihelion activity should cease in 400 years, when the Phaethon perihelion will move away from the Sun.

  13. Dynamics of Long-period Comets

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.

    1985-01-01

    Dynamical studies of the origin and evolution of long period comets in the Oort cloud during the past year have concentrated on four areas: (1) interpretation of IRAS observations of dust shells around Vega and some 40 other main sequence stars as evidence for cometary clouds around each of these stars; (2) the dynamical plausibility of an unseen solar companion star orbiting in the Oort cloud and causing periodic cometary showers which result in biological extinction events on the earth; (3) a review of the current hypotheses for cometary formation with particular attention to how each mechanism supplies the required mass of comets to the Oort cloud; and (4) development of new dynamics software to simulate the passage of individual stars directly through the Oort cloud. Each of these efforts is described in detail.

  14. A comparative study of the continuum and emission characteristics of comet dust. 1: Are the silicates in Comet Halley and Kohoutek amorphous or crystalline

    NASA Technical Reports Server (NTRS)

    Nansheng, Zhao; Greenberg, J. Mayo; Hage, J. I.

    1989-01-01

    A continuum emission was subtracted from the 10 micron emission observed towards comets Halley and Kohoutek. The 10 micron excess emissions were compared with BN absorption and laboratory amorphous silicates. The results show that cometary silicates are predominantly amorphous which is consistent with the interstellar dust model of comets. It is concluded that cometary silicates are predominantly similar to interstellar silicates. For a periodic comet like Comet Halley, it is to be expected that some of the silicate may have been heated enough to convert to crystalline form. But apparently, this is only a small fraction of the total. A comparison of Comet Halley silicates with a combination of the crystalline forms observed in interplanetary dust particles (IPDs) seemed reasonable at first sight (Walker 1988, Brownlee 1988). But, if true, it would imply that the total silicate mass in Comet Halley dust is lower than that given by mass spectrometry data of Kissel and Krueger (1987). They estimated m sub org/m sub sil = 0.5 while using crystalline silicate to produce the 10 micron emission would give m sub org/m sub sil = 5 (Greenberg et al. 1988). This is a factor of 10 too high.

  15. Thermal modeling of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Weissman, P. R.; Kieffer, H. H.

    1981-09-01

    A model of the sublimation of volatile ices from a cometary nucleus is presented which includes the effects of (1) diurnal heating and cooling, (2) rotation period and pole orientation, (3) the thermal properties of the ice and subsurface layers, and (4) the contributions from coma opacity, scattering and thermal emission where the properties of the coma are derived from the integrated rate of volatile production by the nucleus. In applying the model to the case of the 1986 apparition of Halley's comet, it is found that the generation of a cometary dust coma increases the total energy reaching the Halley nucleus due to the greater geometrical cross-section of the coma as compared with the bare nucleus. The calculated coma opacity of Halley is about 0.2 at 1 AU from the sun and 1.2 at perihelion. Possible consequences of the results obtained for the generation of nongravitational forces, volatile production rates for comets and cometary lifetimes against sublimation are discussed.

  16. Cometary and interstellar dust grains - Analysis by ion microprobe mass spectrometry and other techniques

    NASA Technical Reports Server (NTRS)

    Zinner, Ernst

    1991-01-01

    A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion-microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a micron spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refractory trace elements in IDPs; C, N, Mg, and Si isotopes in interstellar SiC grains; and C and N isotopes and H, N, Al, and Si concentrations in interstellar graphite grains.

  17. Migration of Interplanetary Dust and Comets

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    Our studies of migration of interplanetary dust and comets were based on the results of integration of the orbital evolution of 15,000 dust particles and 30,000 Jupiter-family comets (JFCs) [1-3]. For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from <0.0004 to 0.4. For silicates, such values correspond to particle diameters between >1000 and 1 microns. The probability of a collision of a dust particle started from an asteroid or JFC with the Earth during a lifetime of the particle was maximum at diameter d ˜100 microns. For particles started from asteroids and comet 10P, this maximum probability was ˜0.01. Different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Cometary dust particles produced both inside and outside Jupiter's orbit are needed to explain the observed constant number density of dust particles at 3-18 AU. The number density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can get outside Jupiter's orbit. (2) Some (less than 0.1%) JFCs can reach typical near-Earth object orbits and remain there for millions of years. Dynamical lifetimes of most of the former JFCs that have typical near-Earth object orbits are about 106 -109 yr, so during most of these times they were extinct comets. Such former comets could disintegrate and produce a lot of mini-comets and dust. (3) Comparison of the velocities of zodiacal dust particles (velocities of MgI line) based on the distributions of particles over their orbital elements obtained in our runs [3-4] with the velocities obtained at the WHAM observations shows that only asteroidal dust particles cannot explain these observations, and particles produced by comets, including high-eccentricity comets, are needed for such explanation. The fraction of particles started from Encke-type comets is not large (<0.15) in order to fit the observational distributions of particles over their distances from the Sun. Studies of velocities of MgI line and corresponding eccentricities and inclinations in our runs showed that the mean eccentricity of zodiacal dust particles is about 0.5. [1] Ipatov S.I. and Mather J.C. (2004) Annals of the New York Acad. of Sciences, 1017, 46- 65. [2] Ipatov S.I., Mather J.C., and Taylor P. (2004) Annals of the New York Acad. of Sciences, 1017, 66-80. [3] Ipatov S.I. and Mather J.C. (2006) Advances in Space Research, 37, 126-137. [4] Ipatov S.I. et al. (2006) 37th LPSC, #1471.

  18. Stardust@home: A Massively Distributed Public Search for Interstellar Dust in the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, Andrew J.; Butterworth, Anna L.; Snead, Christopher J.; Craig, Nahide; Anderson, David; Jones, Steven M.; Brownlee, Donald E.; Farnsworth, Richard; Zolensky, Michael E.

    2005-01-01

    In January 2006, the Stardust mission will return the first samples from a solid solar system body beyond the Moon. Stardust was in the news in January 2004, when it encountered comet Wild2 and captured a sample of cometary dust. But Stardust carries an equally important payload: the first samples of contemporary interstellar dust ever collected. Although it is known that interstellar (IS) dust penetrates into the inner solar system [2, 3], to date not even a single contemporary interstellar dust particle has been captured and analyzed in the laboratory. Stardust uses aerogel collectors to capture dust samples. Identification of interstellar dust impacts in the Stardust Interstellar Dust Collector probably cannot be automated, but will require the expertise of the human eye. However, the labor required for visual scanning of the entire collector would exceed the resources of any reasonably-sized research group. We are developing a project to recruit the public in the search for interstellar dust, based in part on the wildly popular SETI@home project, which has five million subscribers. We call the project Stardust@home. Using sophisticated chemical separation techniques, certain types of refractory ancient IS particles (so-called presolar grains) have been isolated from primitive meteorites (e.g., [4] ). Recently, presolar grains have been identified in Interplanetary Dust Particles[6]. Because these grains are not isolated chemically, but are recognized only by their unusual isotopic compositions, they are probably less biased than presolar grains isolated from meteorites. However, it is entirely possible that the typical interstellar dust particle is isotopically solar in composition. The Stardust collection of interstellar dust will be the first truly unbiased one.

  19. Sungrazing dust particles against the sporadic meteor background

    NASA Astrophysics Data System (ADS)

    Golubaev, A. V.

    2015-07-01

    From the results of the statistical study, the genetic relation between some meteors (from -5 m to +5 m ) of the sporadic background and the comets of the Kreutz, Marsden, and Kracht families has been revealed. The radiants of sporadic meteors are concentrated at the geocentric ecliptic latitudes 7°-10° northward and southward of the ecliptic. The radiants of the sungrazing meteoroids, that were detected on their heliocentric orbits "before" and "after" the perihelion passage, are concentrated in the elongation intervals of approximately 120°-165° and 20°-60° from the Sun, respectively. Each of the specified radiant regions, in its turn, breaks up into two groups. The group of radiants with elongations of about 30° and 155° from the Sun belongs to the Marsden and Kracht cometary families, while the group with 50° and 135°, to the Kreutz cometary family. In the distribution by perihelion distance, a sharp decrease of the number of observed dust particles with q < 0.08 AU was found. This corresponds to the heliocentric distances (20-30 R ⊙), where the production of microscopic dust due to sublimation of cometary nuclei, while approaching the Sun, terminates. The number of sporadic sungrazing meteoroids detected after their passage in the vicinity of the Sun is approximately 20 times smaller than the number of similar particles in the preperihelion part of the trajectory. This result is of special importance for studying the thermodesorption effect of meteoroids (i.e., the change in the content of chemical elements in meteoroids as a function of the perihelion distance).

  20. Optical spectroscopy of interplanetary dust collected in the earth's stratosphere

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Patel, R. I.; Shirck, J.; Walker, R. M.; Freeman, J. J.

    1980-01-01

    Optical absorption spectra of interplanetary dust particles 2-30 microns in size collected in the atmosphere at an altitude of 20 km by inertial impactors mounted on NASA U-2 aircraft are reported. Fourier transform absorption spectroscopy of crushed samples of the particles reveals a broad feature in the region 1300-800 kaysers which has also been found in meteorite and cometary dust spectra, and a weak iron crystal field absorption band at approximately 9800 kaysers, as is observed in meteorites. Work is currently in progress to separate the various components of the interplanetary dust particles in order to evaluate separately their contributions to the absorption.

  1. Trapped Xenon in Interplanetary Dust Particles and Antarctic Micrometeorites

    NASA Astrophysics Data System (ADS)

    Spring, N. H.; Busemann, H.; Crowther, S. A.; Gilmour, J. D.

    2014-09-01

    We analysed the Xe inventory of several IDPs and AMMs and infer that cometary solids may contain the same mix of organic matter and trapped Xe carriers as found in carbonaceous chondrite matrices, although in higher relative abundances.

  2. Volatiles (H, C, N, O, noble gases) in comets as tracers of early solar system events (Invited)

    NASA Astrophysics Data System (ADS)

    Marty, B.

    2013-12-01

    Volatiles (H, C, N, O, noble gases) present the largest variations in their relative abundances and, importantly, in their isotopic ratios, among solar system elements. The original composition of the protosolar nebula has been investigated through the measurements of primitive meteorites and of in-situ (e.g. Galileo probe analysis of the Jupiter's atmosphere) and sample-return (Genesis, recovery and analysis of solar wind) missions. The protosolar gas was poor in deuterium, in 15N and in 17,18O. Variations among solar system reservoir reach several hundreds of percents for the D/H and 15N/14N ratios. These variations are possibly : (i) due to interactions between XUV photons of the proto-Sun and the-dust, (ii) result from low temperature ion-molecule reactions, or (iii) constitute an heritage on interstellar volatiles trapped in dust (e.g., organics). Likewise, noble gases are elementally and isotopically (1% per amu for xenon) fractionated with respect to the composition of the solar wind (our best proxy for the protosolar nebula composition). Cometary matter directly measured on coma, or in Stardust material, or in IDPs, seems to present among the largest heterogeneities in their stable isotope compositions but knowledge on their precise compositions of the different phases and species is partial and mosty lacking. Among the several important issues requiring a better knowledge of cometary volatiles are the origin(s) of volatile elements on Earth and Moon, on Mars and on Venus, understanding large scale circulation of matter between hot and frozen zones, and the possibility of interstellar heritage for organics. Critical measurements to be made by the next cometary missions include the value of the D/H ratio in water ice, in NH3 and organics. Nitrogen is particularly interesting as cometary HCN and CN are rich in 15N, but an isotoppe mass balance will require to measure the main host species (N2 ?). Noble gases are excellent tracers of physical processes, including the delivery of volatile elements onto planets and atmospheric escape processes, but their cometary inventory is almost not known. The only noble gas (helium and neon) measurement in cometary matter from Stardust suggests that they may be genetically linked to organic matter found in primitive meteorites rather than to the proto-solar gas. Trapping of noble gases in comets is an important issue not only for the physical conditions of cometary formation and evolution, but also for better understanding the possible contribution of cometary matter to Earth and Moon.

  3. Trajectory analysis for the nucleus and dust of comet C/2013 A1 (Siding Spring)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farnocchia, Davide; Chesley, Steven R.; Chodas, Paul W.

    Comet C/2013 A1 (Siding Spring) will experience a high velocity encounter with Mars on 2014 October 19 at a distance of 135,000 km ± 5000 km from the planet center. We present a comprehensive analysis of the trajectory of both the comet nucleus and the dust tail. The nucleus of C/2013 A1 cannot impact on Mars even in the case of unexpectedly large nongravitational perturbations. Furthermore, we compute the required ejection velocities for the dust grains of the tail to reach Mars as a function of particle radius and density and heliocentric distance of the ejection. A comparison between ourmore » results and the most current modeling of the ejection velocities suggests that impacts are possible only for millimeter to centimeter size particles released more than 13 AU from the Sun. However, this level of cometary activity that far from the Sun is considered extremely unlikely. The arrival time of these particles spans a 20-minute time interval centered at 2014 October 19 at 20:09 TDB, i.e., around the time that Mars crosses the orbital plane of C/2013 A1. Ejection velocities larger than currently estimated by a factor >2 would allow impacts for smaller particles ejected as close as 3 AU from the Sun. These particles would reach Mars from 19:13 TDB to 20:40 TDB.« less

  4. A SIGNIFICANT AMOUNT OF CRYSTALLINE SILICA IN RETURNED COMETARY SAMPLES: BRIDGING THE GAP BETWEEN ASTROPHYSICAL AND METEORITICAL OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roskosz, Mathieu; Leroux, Hugues

    2015-03-01

    Crystalline silica (SiO{sub 2}) is recurrently identified at the percent level in the infrared spectra of protoplanetary disks. By contrast, reports of crystalline silica in primitive meteorites are very unusual. This dichotomy illustrates the typical gap existing between astrophysical observations and meteoritical records of the first solids formed around young stars. The cometary samples returned by the Stardust mission in 2006 offer an opportunity to have a closer look at a silicate dust that experienced a very limited reprocessing since the accretion of the dust. Here, we provide the first extended study of silica materials in a large range ofmore » Stardust samples. We show that cristobalite is the dominant form. It was detected in 5 out of 25 samples. Crystalline silica is thus a common minor phase in Stardust samples. Furthermore, olivine is generally associated with this cristobalite, which put constraints on possible formation mechanisms. A low-temperature subsolidus solid–solid transformation of an amorphous precursor is most likely. This crystallization route favors the formation of olivine (at the expense of pyroxenes), and crystalline silica is the natural byproduct of this transformation. Conversely, direct condensation and partial melting are not expected to produce the observed mineral assemblages. Silica is preserved in cometary materials because they were less affected by thermal and aqueous alterations than their chondritic counterparts. The common occurrence of crystalline silica therefore makes the cometary material an important bridge between the IR-based mineralogy of distant protoplanetary disks and the mineralogy of the early solar system.« less

  5. HUBBLE SPACE TELESCOPE PRE-PERIHELION ACS/WFC IMAGING POLARIMETRY OF COMET ISON (C/2012 S1) AT 3.81 AU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hines, Dean C.; Mutchler, Max; Hammer, Derek

    2014-01-10

    We present polarization images of Comet ISON (C/2012 S1) taken with the Hubble Space Telescope (HST) on UTC 2013 May 8 (r {sub h} = 3.81 AU, Δ = 4.34 AU), when the phase angle was α ≈ 12.°16. This phase angle is approximately centered in the negative polarization branch for cometary dust. The region beyond 1000 km (∼0.32 arcsec ≈ 6 pixels) from the nucleus shows a negative polarization amplitude of p% ∼ –1.6%. Within 1000 km of the nucleus, the polarization position angle rotates to be approximately perpendicular to the scattering plane, with an amplitude p% ∼ +2.5%. Such positive polarization has been observedmore » previously as a characteristic feature of cometary jets, and we show that Comet ISON does indeed harbor a jet-like feature. These HST observations of Comet ISON represent the first visible light, imaging polarimetry with subarcsecond spatial resolution of a Nearly Isotropic Comet beyond 3.8 AU from the Sun at a small phase angle. The observations provide an early glimpse of the properties of the cometary dust preserved in this Oort-Cloud comet.« less

  6. Similarities Between Cometary, Meteoritic, and Laboratory Analog Dust: Hints from the Attribution of the 10-micrometer Band

    NASA Astrophysics Data System (ADS)

    Colangeli, L.; Mennella, V.; Bussoletti, E.; Merluzzi, P.; Rotundi, A.; Palumbo, P.; di Marino, C.

    1993-07-01

    It is well known that the infrared emission of many comets is characterized by a broad feature at 10 micrometers, that has been attributed to a Si-O stretching resonance in amorphous and/or hydrated silicate grains. In the case of comets Halley [1,2], Bradfield [3] and Levy [4] two spectral components have been observed: the wide peak centered at 9.8 micrometers and a sharp feature at 11.3 micrometers. This last band has been interpreted with crystalline olivine silicatic grains [1,2,5]. However, recently, it has been pointed out [6] that the laboratory data frequently used in the fits refer to grains embedded in a matrix, which should produce a significant shift of the peak position, according to Mie computations. We have performed laboratory experiments on various silicatic samples with the perspective of determining their optical properties, to study experimentally the influence of matrix effects, and to use the final spectra to perform comparisons with observations. The samples are four terrestrial materials, olivine forsterite, jadeite pyroxene, andesite feldspar and impactite glass, and two meteoritic samples, chondrite (Zacatecas, Mexico) and pallasite (Atacama, Chile). Fine powders of the bulk materials were obtained by grinding calibrated mass amounts of the various samples in an agata mill. The morphological characterization of the samples was performed by means of S.E.M. (scanning electron microscopy) technique. EDX analysis was also performed to determine elemental composition. IR transmission spectra were obtained by using a double beam spectrophotometer that covers the spectral range 2.5-50 micrometers. The standard pellet technique was used by embedding dust samples in KBr or CsI matrices. For comparison, measurements were also performed by depositing small amounts of dust onto KBr windows. In this last case, dust-matrix interaction should be practically absent as grains are simply sitting onto the matrix. The data obtained from the spectroscopic analysis have allowed us to evidence the following main results. Matrix effects do not appear as relevant as suggested by computations performed by the Mie theory. In particular, the peak shift observed for crystalline olivine is from 11.3 micrometers in CsI (n(sub)o = 1.7) to 11.2 micrometers in vacuum (n(sun)o = 1.0). On the other hand, jadeite and andesite grains present main peaks around 10 micrometers, in contrast to cometary spectra. We can, therefore, conclude that crystalline olivine grains are good candidates to simulate the cometary 11.3 micrometer sharp feature, even when matrix effects are accounted for. The impactite sample presents a main broad band around 9.2 micrometers, due to its mainly amorphous composition. This band could resemble the broad 10 micron cometary band; however, its profile is rather broader than that observed for cometary dust. Concerning the meteoritic samples, both chondrite and pallasite show a well defined main peak at 11.3-11.4 micrometers, comparable to cometary spectra. Again, chondrite band profile is too broad. On the contrary, pallasite appears to be a good candidate to reproduce observations. This result appears reasonable if one considers that the sample is formed by small olivine crystals embedded in a iron matrix. In conclusion, the comparison between the spectra of olivine-rich meteoritic grains and cometary dust could suggest either a common origin of the two classes of materials or, at least, a similarity in the processes experienced by them during past evolution. This result appears very relevant because it could imply that the systematic study in the laboratory of meteoritic materials can provide information about the past history of comets. Acknowledgements: This work was partly supported by ASI, CNR, and MURST 40% and 60%. References: [1] Bregman J. D. et al. (1987) Astron. Astrophys., 187, 616. [2] Campins H. and Ryan E. V. (1989) Ap. J., 341, 1059. [3] Hanner M. S. et al. (1990) Ap. J., 348, 312. [4] Lynch D. K. et al. (1990) 22nd annual meeting of the division for planetary sciences, Charlottesville, Virginia. [5] Sandford S. A. and Walker R. M. (1985) Ap. J., 291, 838. [6] Orofino V. et al. (1993) Astron. Astrophys., submitted.

  7. Helium in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Schlutter, D. J.

    1993-01-01

    Helium and neon were extracted from fragments of individual stratosphere-collected interplanetary dust particles (IDP's) by subjecting them to increasing temperature by applying short-duration pulses of power in increasing amounts to the ovens containing the fragments. The experiment was designed to see whether differences in release temperatures could be observed which might provide clues as to the asteroidal or cometary origin of the particles. Variations were observed which show promise for elucidating the problem.

  8. The physics and chemistry of dusty plasmas: A laboratory and theoretical investigation

    NASA Technical Reports Server (NTRS)

    Whipple, E. C.

    1986-01-01

    Theoretical work on dusty plasmas was conducted in three areas: collective effects in a dusty plasma, the role of dusty plasmas in cometary atmospheres, and the role of dusty plasmas in planetary atmospheres (particularly in the ring systems of the giant planets). Laboratory investigations consisted of studies of dust/plasma interactions and stimulated molecular excitation and infrared emission by charged dust grains. Also included is a list of current publications.

  9. The NGST and the Zodiacal Light in the Solar System

    NASA Technical Reports Server (NTRS)

    Gorkavyi, Nick; Ozernoy, Leonid; Mather, John; Taidakova, Tanya

    1999-01-01

    We develop a physical model of the zodiacal cloud incorporating the real dust sources of asteroidal, cometary, and kuiperoidal origin. Using the inferred distribution of the zodiacal dust, we compute its thermal emission and scattering at several wavelengths (1.25, 5, and 20 micron) as a function of NGST location assumed to be at 1 AU or 3 AU. Areas on the sky with a minimum of zodiacal light are determined.

  10. Multiple generations of grain aggregation in different environments preceded solar system body formation.

    PubMed

    Ishii, Hope A; Bradley, John P; Bechtel, Hans A; Brownlee, Donald E; Bustillo, Karen C; Ciston, James; Cuzzi, Jeffrey N; Floss, Christine; Joswiak, David J

    2018-06-26

    The solar system formed from interstellar dust and gas in a molecular cloud. Astronomical observations show that typical interstellar dust consists of amorphous ( a -) silicate and organic carbon. Bona fide physical samples for laboratory studies would yield unprecedented insight about solar system formation, but they were largely destroyed. The most likely repositories of surviving presolar dust are the least altered extraterrestrial materials, interplanetary dust particles (IDPs) with probable cometary origins. Cometary IDPs contain abundant submicron a- silicate grains called GEMS (glass with embedded metal and sulfides), believed to be carbon-free. Some have detectable isotopically anomalous a- silicate components from other stars, proving they are preserved dust inherited from the interstellar medium. However, it is debated whether the majority of GEMS predate the solar system or formed in the solar nebula by condensation of high-temperature (>1,300 K) gas. Here, we map IDP compositions with single nanometer-scale resolution and find that GEMS contain organic carbon. Mapping reveals two generations of grain aggregation, the key process in growth from dust grains to planetesimals, mediated by carbon. GEMS grains, some with a- silicate subgrains mantled by organic carbon, comprise the earliest generation of aggregates. These aggregates (and other grains) are encapsulated in lower-density organic carbon matrix, indicating a second generation of aggregation. Since this organic carbon thermally decomposes above ∼450 K, GEMS cannot have accreted in the hot solar nebula, and formed, instead, in the cold presolar molecular cloud and/or outer protoplanetary disk. We suggest that GEMS are consistent with surviving interstellar dust, condensed in situ, and cycled through multiple molecular clouds. Copyright © 2018 the Author(s). Published by PNAS.

  11. Comet coma sample return instrument

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.

    1994-01-01

    The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.

  12. ENIJA : Search for life with a high-resolution TOF-MS for in-situ compositonal analysis of nano- and micron-sized dust particles

    NASA Astrophysics Data System (ADS)

    Srama, Ralf; Postberg, Frank; Henkel, Hartmut; Klopfer, Tobias; Li, Yanwei; Reviol, Rene; Khawaja, Nozair; Klenner, Fabian; Moragas-Klostermeyer, Georg; Nölle, Lenz; Soja, Rachel; Sternovsky, Zoltan; Kempf, Sascha; Trieloff, Mario

    2015-04-01

    ENIJA was developed to search for the prebiotic molecules and biogenic key compounds like amino acids in the plumes of Saturn's moon Enceladus. ENIJA records time-of-flight mass spectra in the range between 1 and 2000 u produced by high-velocity impacts of individual grains onto a metal target. The spectrometer has a measurement mode for cations or anions formed upon impact, with concurrent determination of the mass of the detected grains. Detection of elemental and molecular species over such a wide mass range permits clear characterization of particle chemistry, simultaneously covering individual ions like H+, C-, O- and complex organics with masses of many hundred u. ENIJA is sensitive to water ice, minerals, metals, organic particles, and mixtures of these components. The instrument is based on the principle of impact ionization and optimized for the analysis of high dust fluxes and number densities as typically occur during Enceladus plume crossings or in cometary comae. The mass resolution is m/dm > 950 for typical plume particles in the size range 0.01 to 100 µm. The instrument mass and peak power is 2.5 kg and 12.5 W, respectively.

  13. An Observational Test for Shock-induced Crystallization of Cometary Silicates

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Johnson, N. M.

    2003-01-01

    Crystalline silicates have been observed in comets and in protostellar nebulae, and there are currently at least two explanations for their formation: thermal annealing in the inner nebula, followed by transport to the regions of cometary formation and in-situ shock processing of amorphous grains at 5 - 10 AU in the Solar Nebula. The tests suggested to date to validate these models have not yet been carried out: some of these tests require a longterm commitment to observe both the dust and gas compositions in a large number of comets. Here we suggest a simpler test.

  14. Cometary and meteorite swarm impact on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1982-01-01

    The impact-induced deformation from hypothetical cometary objects having initial densities in the 0.01 to 1 g/cu cm range and heats of vaporization in the approximately 2 kJ/g (corresponding to water) to approximately 10 to the 7th J/g range is examined for impacts in the 5 to 45 km/s range. Even though the direct effect of an atmosphere is neglected, the atmosphere may in fact cause a cometary object to break up into a shower or equivalent very porous impactor. Besides examining the partitioning of impact energy into internal energy of the impacted planet and impacting cometary material, calculations are made of the relative efficiency of shock-induced melting and vaporization by comets on planetary surface materials and the mass loss from a given planet for various escape velocities.

  15. A Spitzer Search for Activity in Dormant Comets

    NASA Astrophysics Data System (ADS)

    Mommert, Michael; Trilling, David; Hora, Joseph; Smith, Howard

    2018-05-01

    Dormant comets are inactive cometary nuclei hiding in the asteroid populations. Due to their cometary origin, it is possible that volatiles are still retained in their interiors. This hypothesis is supported by the case of near-Earth asteroid Don Quixote, which had been known as an asteroid for 30 yr before activity was discovered in this team's prior Spitzer observations. Interestingly, Don Quixote showed outgassing of CO or CO2, but no dust activity. This significant observation was repeated in 2017 with the same result, suggesting that Don Quixote is continuously outgassing - and still an active comet. Don Quixote's case suggests that other dormant comets might be outgassing with low dust production rates, concealing their activity to optical surveys. The implication of this scenario is that the volatile inventory of the asteroid populations might be significantly larger than currently assumed. We propose 48.8 hr of deep IRAC observations of eight dormant comets in search of faint activity in them. For each target, we will (1) measure (or provide upper limits on) gas and dust production rates from our IRAC CH1 and CH2 observations, (2) derive the diameters and albedos of five of our targets using asteroid thermal modeling, (3) measure the near-infrared spectral slope between CH1 and CH2 for three of our targets, and (4) obtain lightcurve observations of the nuclei of all of our targets. Our observations, which are combined with ground-based observations as part of a NASA-funded program, will provide important constraints on the volatile content of the asteroid population, as well as the origin, evolution, and physical properties of cometary nuclei.

  16. Low encounter speed comet COMA sample return missions

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Yen, C. W.; Albee, A. L.

    1994-01-01

    Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar-system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. The study of comets, and more especially, of material from them, provides an understanding of the physical, chemical, and mineralogical processes operative in the formation and earliest development of the solar systems. These return samples will provide valuable information on comets and serve as a rosetta stone for the analytical studies conducted on interplanetary dust particles over the past two decades, and will provide much needed extraterrestrial samples for the planetary materials community since the Apollo program. Lander sample return missions require rather complex spacecraft, intricate operations, and costly propulsion systems. By contrast, it is possible to take a highly simplified approach for sample capture and return in the case of a comet. In the past, we have considered Earth free-return trajectory to the comet, in which passive collectors intercept dust and volatiles from the cometary coma. However, standard short period cometary free-return trajectories results in the comet to the spacecraft encounter speeds in the range of 10 km/s. At these speeds the kinetic energy of the capture process can render significant modification of dust structure, change of solid phase as well as the lost of volatiles components. This paper presents a class of new missions with trajectories with significant reduction of encounter speeds by incorporating gravity assists and deep space maneuvering. Low encounter speed cometary flyby sample return will enable a marked increase in the value of the return science. Acquiring thousands of samples from a known comet and thousands of images of a comet nucleus would be space firsts. Applying new approach in flight mechanics to generate a new class of low encounter speed cometary sample return trajectories opens new possibilities in science. A systematic search of trajectories for the first decade of the twenty-first century will be made. The target encounter speed is for less than 7 km/s to short period comets.

  17. "CHON" particles: The interstellar component of cometary dust

    NASA Technical Reports Server (NTRS)

    Lien, David J.

    1998-01-01

    Interstellar dust is characterized by strong absorption in the ultraviolet and the mid-IR. Current models of interstellar dust are based on three chemically distinct components: a form of carbon (usually graphite), a silicate, and a blend of polycyclic aromatic hydrocarbons or other carbonaceous material. Previous work using effective medium theories to understand the optical properties of cometary dust suggested that an amalgam of materials could reproduce the observed interstellar and cometary dust features. Recently, Lawler and Brownlee (1992) re-analyzed the PIA and PUMA-1 data sets from the Giotto flyby of P/Halley and discovered that the so-called "CHON" particles were actually composed of a blend of carbon-bearing and silicon-bearing materials. Based on effective medium theories, the absorption spectrum of such a material would display the spectral features of each of the components - strong UV absorption from the carbonaceous component and strong absorption in the IR from the silicate component. To test this idea, vapor-deposited samples were created using two different deposition techniques: sputtering with an argon RF magnetron and deposition from an argon plasma torch. Two different compositions were tested: a blend of graphite and silica in a 7:1 ratio and an amalgam of materials whose approximate composition matches the "CHON"-silicate abundances for the uncompressed PIA data set of Lawler and Brownlee: graphite, iron oxide, magnesium oxide, ammonium sulfate, calcium carbonate, and silica in mass ratios of 6:4.3:4:2.2:1:9. The samples were finely ground and pressed into 2" diameter disks using a 40 ton press. In all, four different experiments were performed: one with each of the compositions (C:SiO and "CHON") in both the RF magnetron and the plasma torch chambers. The RF magnetron created a uniform dark thin film on the substrate surface, and the plasma torch created a coating of small (<100 micron) diameter grey particles. The spectra of all four samples show a strong, broad absorption feature at around 220 nm as well as a strong but narrower absorption peak near 10 microns. The RF magnetron sputtered samples showed some sub-structure in the UV, and the peak of the absorption was shifted toward longer wavelengths. The UV absorption in the plasma torch deposited samples have no sub-structure, and the peak absorption is very near 220 nm. Strong absorption near 9 microns is seen in the spectra from both sample preparation techniques, and is consistent with the IR spectra of some terrestrial silicates. Other features, particularly at 6.2 and 8.6 microns, are seen in the interstellar medium. A strong feature near 2 microns is due to absorbed water in the sample. Based on the results of these experiments, there is evidence that a material with a composition similar to that detected in "CHON" particles in the coma of P/Halley have a spectral signature which reproduces the main absorption features of interstellar dust. This suggests that the "CHON" particles could be the interstellar component of cometary dust.

  18. Massive Remnant of Evolved Cometary Dust Trail Detected in the Orbit of Halley-Type Comet 55P/Tempel-Tuttle

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Betlem, H.

    2000-01-01

    There is a subpopulation of Leonid meteoroid stream particles that appear to form a region of enhanced numbers density along the path of the stream. This structure has been detected in the vicinity of the parent comet, and its variation from one apparition to the next has been traced. A significant amount of known comet 55P/Tempel-Tuttle debris is in this component, called a "filament," which has dimensions exceeding by an order of magnitude that expected for a cometary dust trail. As filament particles are of a size comparable to those found in trails, the emission ages of the particles comprising the filament must be intermediate between the age of the current trail particles (which have not been observed) and the age of the background particles comprising the annual showers. The most likely explanation for this structure is planetary perturbations acting differently on the comet and large particles while at different mean anomalies relative to each other.

  19. The thermal history of interplanetary dust particles collected in the Earth's stratosphere

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Schlutter, D. J.

    1993-01-01

    Fragments of 24 individual interplanetary dust particles (IDPs) collected in the Earth's stratosphere were obtained from NASA's Johnson Space Center collection and subjected to pulse-heating sequences to extract He and Ne and to learn about the thermal history of the particles. A motivation for the investigation was to see if the procedure would help distinguish between IDPs of asteroidal and cometary origin. The use of a sequence of short-duration heat pulses to perform the extractions is an improvement over the employment of a step-heating sequence, as was used in a previous investigation. The particles studied were fragments of larger parent IDPs, other fragments of which, in coordinated experiments, are undergoing studies of elemental and mineralogical composition in other laboratories. While the present investigation will provide useful temperature history data for the particles, the relatively large size of the parent IDPs (approximately 40 micrometers in diameter) resulted in high entry deceleration temperatures. This limited the usefulness of the study for distinguishing between particles of asteroidal and cometary origin.

  20. Evidence of Collisional Histories of Asteroids, Comets and Meteorites: Comparisons with Shocked Minerals

    NASA Technical Reports Server (NTRS)

    Lederer, Susan M.; Jensen, Elizabeth; Smith, Douglas; Fane, Michael; Whizin, Akbar; Landsman, Zoe A.; Wooden, Diane H.; Lindsay, Sean S.; Cintala, Mark; Keller, Lindsay P.; hide

    2017-01-01

    Evidence of the collisional history of comets and asteroids has been emerging from analyses of cometary forsterite and enstatite returned from Comet Wild 2 by the Stardust mission (Keller et al.Geochim. Cosmochim. Acta 72, 2008; Tomeoka et al. MAPS 43, 2008; Jacobs et al. MAPS 44, 2009). Likewise, shock metamorphism is observed in many meteoritic forsterites and enstatites (McCausland et al. AGU, 2010), suggesting similar collisional histories for asteroids. Further exploration of the effects of collisions is slated for the upcoming Asteroid Impact Mission/Double Asteroid Redirection Test (AIM/DART) mission, expected for launch in 2020. DART will impact Didymoon, the companion of the larger 65803 Didymos (1996 G2) asteroid, and AIM will use its instrumentation to characterize the impact. A suite of relevant impact experiments have been carried out in the Experimental Impact Laboratory at the NASA Johnson Space Center at velocities ranging from approx. 2.0 - 2.8 km/s and temperatures from 25 C to -100 C. Targets include a suite of minerals typically found in cometary dust and in asteroids and meteorites: Mg-rich forsterite (olivine), enstatite (orthopyroxene), diopside (clinopyroxene), magnesite (Mg-rich carbonate), and serpentine (phyllosilicate). Transmission Electron Microscope (TEM) imaging indicates evidence of shock similar to that seen in forsterite and enstatite from Comet Wild 2. Fourier Transform Infrared (FTIR) Spectroscopy will also be used for comparisons with meteorite spectra. A quantitative analysis of the shock pressures required to induce planar dislocations and spectral effects with respect to wavelength will also be presented.

  1. Terrestrial analysis of the organic component of comet dust.

    PubMed

    Sandford, Scott A

    2008-01-01

    The nature of cometary organics is of great interest, both because these materials are thought to represent a reservoir of the original carbon-containing materials from which everything else in our solar system was made and because these materials may have played key roles in the origin of life on Earth. Because these organic materials are the products of a series of universal chemical processes expected to operate in the interstellar media and star-formation regions of all galaxies, the nature of cometary organics also provides information on the composition of organics in other planetary systems and, by extension, provides insights into the possible abundance of life elsewhere in the universe. Our current understanding of cometary organics represents a synthesis of information from telescopic and spacecraft observations of individual comets, the study of meteoritic materials, laboratory simulations, and, now, the study of samples collected directly from a comet, Comet P81/Wild 2.

  2. The Volatile Fraction of Comets as Quantified at Infrared Wavelengths - An Emerging Taxonomy and Implications for Natal Heritage

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; DiSanti, M. A.; Bonev, B. P.; Villanueva, G. L.; Magee-Sauer, K.; Gibb, E. L.; Paganini, L.; Radeva, Y. L.; Charnley, S. B.

    2012-01-01

    It is relatively easy to identify the reservoir from which a given comet was ejected. But dynamical models demonstrate that the main cometary reservoirs (Kuiper Belt, Oort Cloud) each contain icy bodies that formed in a range of environments in the protoplanetary disk, and the Oort Cloud may even contain bodies that formed in disks of sibling stars in the Sun s birth cluster. The cometary nucleus contains clues to the formative region(s) of its individual components. The composition of ices and rocky grains reflect a range of processes experienced by material while on the journey from the natal interstellar cloud core to the cometary nucleus. For that reason, emphasis is placed on classifying comets according to their native ices and dust (rather than orbital dynamics). Mumma & Charnley [1] reviewed the current status of taxonomies for comets and relation to their natal heritage.

  3. Extrasolar comets: The origin of dust in exozodiacal disks?

    NASA Astrophysics Data System (ADS)

    Marboeuf, U.; Bonsor, A.; Augereau, J.-C.

    2016-11-01

    Comets have been invoked in numerous studies as a potentially important source of dust and gas around stars, but none has studied the thermo-physical evolution, out-gassing rate, and dust ejection of these objects in such stellar systems. In this paper we investigate the thermo-physical evolution of comets in exo-planetary systems in order to provide valuable theoretical data required to interpret observations of gas and dust. We use a quasi-3D model of cometary nucleus to study the thermo-physical evolution of comets evolving around a single star from 0.1 to 50 AU, whose homogeneous luminosity varies from 0.1 to 70L⊙. This paper provides thermal evolution, physical alteration, mass ejection, lifetimes, and the rate of dust and water gas mass productions for comets as a function of the distance to the star and stellar luminosity. Results show significant physical changes to comets at high stellar luminosities. The mass loss per revolution and the lifetime of comets depend on their initial size, orbital parameters and follow a power law with stellar luminosity. The models are presented in such a manner that they can be readily applied to any planetary system. By considering the examples of the Solar System, Vega and HD 69830, we show that dust grains released from sublimating comets have the potential to create the observed (exo)zodiacal emission. We show that observations can be reproduced by 1 to 2 massive comets or by a large number of comets whose orbits approach close to the star. Our conclusions depend on the stellar luminosity and the uncertain lifetime of the dust grains. We find, as in previous studies, that exozodiacal dust disks can only survive if replenished by a population of typically sized comets renewed from a large and cold reservoir of cometary bodies beyond the water ice line. These comets could reach the inner regions of the planetary system following scattering by a (giant) planet.

  4. Collisional Processing of Olivine and Pyroxene in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Cintala, M. J.; Olney, R. D.; Keller, L. P.; Nakamura-Messenger, K.; Zolensky, M.

    2008-01-01

    According to the nebular theory of solar-system formation, collisions between bodies occurred frequently early in the solar system s history and continue at a lower rate even today. Collisions have reworked the surface compositions and structures of cometary nuclei, though to an unknown degree. The majority of the collisional history of a typical Jupiter-family comet takes place while it resides in the Kuiper Belt. Impacts occur on the surfaces of small bodies over a large range of velocities by impactors of all sizes, but typical encounter speeds within the Kuiper Belt are 1.5 to 2.0 km/s[1]. Durda and Stern suggest that the interiors of most cometary nuclei with diameters <5 km have been heavily damaged by collisions [2]. They estimate that over a period of 3.5 Gy, a nucleus with a diameter of 2 km and an orbit between 35-45 AU will experience 90-300 collisions with objects greater than 8 m in diameter. In this same time interval, collisions between a typical Trans-Neptunian Object (TNO) 200 km in diameter and objects with d > 8 m would rework up to one-third of that TNO s surface. In fact, it has been proposed that most short-period comets from the Kuiper Belt (90%) are collisional fragments from larger TNOs - not primordial objects themselves [3] - and that most short-period comets from the Kuiper Belt will be collisionally processed both on their surfaces as well as in their interiors.

  5. The growing population of dark objects that have high emissivity contrast

    NASA Astrophysics Data System (ADS)

    Sunshine, Jessica M.; Kelley, Michael S. P.; McAdam, Margaret M.

    2017-10-01

    At visible and near-infrared wavelengths dark asteroids, Trojan asteroids, and cometary nuclei are largely featureless and are thus characterized and compared primarily based on differences in their spectral slopes. In contrast, in the mid-infrared a series of telescopic observations (e.g., ISO, Spitzer, SOFIA) have revealed subtle but clear silicate emissions in the 9-11 µm region. For the most part, these features are very low in spectral contrast (~5%). However, Emery et al. (2006) showed that Spitzer spectra of Trojan asteroids can have much larger spectral contrast (~10-15%) akin to cometary comae and dust in planetary disks. Similar high-contrast silicate features were found by Kelley et al. (2017) in Spitzer spectra of bare cometary nuclei. Together these results suggest the presence of fine grained and likely highly porous surfaces (Emery et al., 2006; Vernazza et al., 2012). Here we report on archival spectroscopy with the Spitzer Space Telescope that shows two mainbelt asteroids 267 Tirza (D-type; 55 km diameter) and 1284 Lativa (T/L-type; 40 km diameter) also have strong 10 µm silicate emission features. Moreover, the shapes of their silicate features match those of the other Trojan D-types; the best agreement is with 1172 Aneas. If high porosity is responsible for the enhanced spectra contrast in these objects, that porosity must now be explained for objects over an extended range of heliocentric distances, sizes, and that likely have different accretionary and impact histories.

  6. The Growing Population of Dark Objects Inferred to Have High Surface Porosity

    NASA Astrophysics Data System (ADS)

    Sunshine, J. M.; Kelley, M. S. P.; McAdam, M. M.

    2017-12-01

    At visible and near-infrared wavelengths dark asteroids, Trojan asteroids, and cometary nuclei are largely featureless and are thus characterized and compared primarily based on differences in their spectral slopes. In contrast, in the mid-infrared a series of telescopic observations (e.g., ISO, Spitzer, SOFIA) have revealed subtle but clear silicate emissions in the 9-11 µm region. These features are mostly very low in spectral contrast ( 5%). However, Emery et al. (2006) showed that Spitzer spectra of Trojan asteroids can have much larger spectral contrast ( 10-15%) akin to cometary comae and dust in planetary disks. Similar high-contrast silicate features were found by Kelley et al. (2017) in Spitzer spectra of bare cometary nuclei. Together these results suggest the presence of fine grained and likely highly porous surfaces (Emery et al., 2006; Vernazza et al., 2012). Here we report on archival spectroscopy with the Spitzer Space Telescope that shows two mainbelt asteroids 267 Tirza (D-type; 55 km diameter) and 1284 Lativa (T/L-type; 40 km diameter) also have strong 10 µm silicate emission features. Moreover, the shapes of their silicate features match those of the other Trojan D-types. The best agreement is with 1172 Aneas. If high porosity is responsible for the enhanced spectra contrast in these objects, that porosity must now be explained for objects over an extended range of heliocentric distances, sizes, and that likely have different accretionary and impact histories.

  7. A study of the origin, nature, and behavior of particulate matter and metallic atoms in the mesosphere, lower thermosphere, and at the mesopause. [using lidar data

    NASA Technical Reports Server (NTRS)

    Poultney, S. K.

    1973-01-01

    In a study of particulate matter and metallic atoms in the vicinity of the mesopause, three areas have received the most effort. These areas are: the significance of cometary dust influxes to the earth's atmosphere; the relation of nightglows to atmospheric motions and aerosols; and the feasibility of using an airborne resonant scatter lidar to study polar noctilucent clouds, the sodium layer, and fireball dust.

  8. The morphology of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Jorda, L.

    The sudden appearance of a bright comet stretching over a large part of the night sky must have been one of the most awesome phenomena for early humans watching the sky. The nature of comets remained obscure well into the Middle Ages. Only with the introduction of astronomical techniques and analyses in Europe was the parallax of a comet determined by Tycho Brahe for the first time. He proved that comets are not phenomena of the Earth's atmosphere but are farther away than the Moon; in other words they are interplanetary objects. Later Kepler first predicted that comets follow straight lines, then Hevelius suggested parabolic orbits roughly a hundred years later. It was Halley who suggested that the comets of the years 1531, 1607 and 1682 were apparitions of one and the same comet that would return again in 1758. The success of this prediction made it clear that comets are members of our Solar System. While it was now established that periodic comets are objects of the planetary system, their origin and nature continued to be debated. Were they formed together with the planets from the solar nebula (Kant) or were they of extrasolar origin as suggested by Laplace? This debate lasted for 200 years until well into the second half of the last century. Öpik (1932) suggested that a cloud of comets surrounded our Solar System. This hypothesis was quantified and compared to the observed distribution of orbital parameters (essentially the semi-major axes) of new comets by Oort (1950) (Section 2.1). Comets are scattered into the inner Solar System by perturbations caused by galactic tides, passing stars and large molecular clouds. The Oort cloud would have a radius of 2 105AU, a dimension comparable to the distances of stars in our neighbourhood. The lifetime (limited by decay due to activity and by perturbations caused by encounters with planets) even of the new comets on almost parabolic orbits and typical periods of the order of 106 years is short compared to the age of the planetary system (4.5 Gy). Therefore, observed comets could only recently have arrived on their orbits dipping inside the inner Solar System. This reservoir of comets must have been established during the formation process of the planetary system itself. Cometesimals were agglomerated from interstellar/interplanetary gas and dust and scattered out of the inner Solar System by the giant outer planets (Section 2.3). This scheme implies that a central part of a comet, its nucleus, is stable enough to survive these perturbations. It must also be stable enough to pass the vicinity of the sun for many times in the case of a short-period comet. Comets are bright and large when they are close to the sun and fade quickly when they recede beyond about 2AU. Only with the advent of photography and large astronomical telescopes could a comet be followed until it becomes a starlike point source. What makes comets active near the Sun, blowing their appearances up to the order of 105 km? Bright comets often develop tails two orders of magnitude longer. In an attempt to explain the cometary appearance, Bredichin (1903) introduced a mechanical model where repulsive forces drive the particles away from a central condensation. Spectroscopy revealed that dust grains reflect the solar irradiation. In addition, simple molecules, radicals and ions were found as constituents of the cometary coma and tail. The nature of the central condensation remained mysterious for a long time because of the observational dilemma. When the comet is close to the Earth and therefore to the Sun the dense coma obscures the view into its centre. When activity recedes the comet is too far away and too dim for detailed observations of its central condensation. During the middle of the nineteenth century the connection between comets and meteor streams was established. Schiaparelli (1866) calculated the dispersion of cometary dust within the orbital plane. From this time on the perception that the central condensations of comets were agglomerations of dust particles prevailed for about a century. The gas coma was explained by desorption of molecules from dust particles with large surfaces (Levin 1943). The storage of highly reactive radicals (most observed species (CN, CH, NH2, etc.) were of this category) posed a major difficulty to be explained. The inference that these radicals should be dissociation products of stable parent molecules (such as (CN)2, CH4, NH3, etc.) by Wurm (1934, 1935, 1943) led to our present understanding that these molecules are stored as ices within the central nucleus of a comet. Whipple (1950a,b) combined the astrometrical observations of changes of the orbital periods of comets with the existence of an icy cometary nucleus. The sublimation of ices cause reactive (rocket) non-gravitational forces that increase or decrease the orbital period of an active comet according to the sense of rotation of its nucleus. Evidence in support of the icy conglomerate nucleus became more and more compelling by the derived high gas production rates that could not be stored by adsorption on dust grains (Biermann and Trefftz 1964, Huebner 1965, Keller 1976a,b) and by the same account by the large quantities of dust moving into the cometary tail (Finson and Probstein 1968b). The `sand bank' model (Lyttleton 1953) was clearly dismissed in favour of a solid icy nucleus. Its formation and origin could now be explored. While there was some knowledge about the chemical composition of the nucleus, its physical properties, even the basic ones like size, shape and mass, remained largely unknown because the nucleus could not be observed. Early attempts to derive the nucleus size from the `nuclear' magnitudes of comets at large heliocentric distances while they are inactive (Roemer 1966a,b) led to a systematic overestimation of the size because their residual activity could not be eliminated. The advent of modern detectors and large ground-based telescopes revealed that most comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of the Rosetta comet rendezvous mission) to about 50 km (comet Hale- Bopp, comet P/Schwassman-Wachmann 1). Their albedos are very low, about 0.04. Their shapes are irregular, axes ratios of 2:1 are often derived. Even though comets are characterized by their activity, in most cases only a small fraction of the nuclear surface (in some cases less than 1%) is active. An exception seems to be comet P/Wirtanen where all its surface is required to be active in order to explain its production rates (Rickman and Jorda 1998). The detection of trans-Neptunian objects (TNOs) in the Kuiper belt (Jewitt and Luu 1993) reveals a new population of cometary bodies with dimensions an order of magnitude bigger (100 km and larger) than the typical comet observed in the inner planetary system. Little is known about the extent, density, size distribution and physical characteristics of these objects. This region is supposedly the reservoir for short-period comets, manly those controlled by Jupiter (Jupiter family comets). Our present concept of a cometary nucleus has been strongly influenced by the first pictures of the nucleus of comet Halley achieved during the Giotto flyby in 1986. While this revelation seems to be confirmed as typical by modern observations it carries the danger of prototyping new observational results and inferences. Missions and spacecraft are already on their way (Deep Space, Contour, Stardust, Deep Impact) or in preparation (Rosetta) to diversify our knowledge. The morphology of cometary nuclei is determined by their formation process in the early solar nebula, their dynamics and evolution. The physics of the processes leading to their apparent activity while approaching the Sun are still obscure in many details but determine the small- and intermediate-scale morphology. The large-scale morphology, the shape, of a cometary nucleus is determined by its fragility and inner structure and by its generally complex rotational state. These topics will be reviewed in the following sections. Chemical and compositional aspects will be only discussed where they are important in the framework of the physical evolution of cometary nuclei. More details are given in Chapter 53. A brief survey of the current modelling efforts is given. The fate of cometary nuclei and their decay products follows. A summary and outlook ends this chapter on the morphology of cometary nuclei.

  9. The structure of cometary dust - first results from the MIDAS Atomic Force Microscope onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Bentley, M. S.; Torkar, K.; Romstedt, J.

    2014-12-01

    A decade after launch the European Space Agency's Rosetta spacecraft has finally arrived at comet 67P/Churyumov-Gerasimenko. Unlike previous cometary missions, Rosetta is not a flyby, limited to taking a snapshot of the comet at a single heliocentric distance. Instead, Rosetta intercepted the comet prior to the onset of major activity and will chart its evolution during its perihelion passage and beyond. Such a unique mission requires a unique payload; as well as the more typical remote sensing instruments, Rosetta also carries sensors to sample in situ the gas and dust environment. One of these instruments is MIDAS, an atomic force microscope designed to collect dust and image it in three dimensions with nanometre resolution. Equipped with an array of sharp tips, four of which are magnetised to allow magnetic force microscopy, MIDAS exposes targets to the incident flux after which they are moved to the microscope for analysis. As well as extending coverage of the dust size distribution down to the finest particles, MIDAS has the unique capability to determine the shape of pristine particles - to determine, for example, if they are compact or fluffy, and to look for features which may be diagnostic of their formation environment or evolution. The magnetic mode lets MIDAS probe samples for magnetic material and to map its location if present. Having been operating almost continuously after hibernation imaging empty targets before exposure, the first exposures were performed when Rosetta entered 30 km bound orbits. The first MIDAS images and analyses of collected dust grains are presented here.

  10. A Secondary Ion Mass Analyzer for Remote Surface Composition Analysis of the Galilean Moons

    NASA Technical Reports Server (NTRS)

    Krueger, H.; Srama, R.; Johnson, T. V.; Henkel, H.; vonHoerner, H.; Koch, A.; Horanyi, M.; Gruen, E.; Kissel, J.; Krueger, F.

    2003-01-01

    Galileo in-situ dust measurements have shown that the Galilean moons are surrounded by tenuous dust clouds formed by collisional ejecta from their icy surfaces, kicked up by impacts of interplanetary micrometeoroids. The majority of the ejecta dust particles have been sensed at altitudes below five between 0.5 and 1 micron, just above the detector threshold, indicating a size distribution decreasing towards bigger particles. their parent bodies. They carry information about the properties of the surface from which they have been kicked up. In particular, these grains may carry organic compounds and other chemicals of biological relevance if they exist on the icy Galilean moons. In-situ analysis of the grain composition with a sophisticated dust analyzer instrument flying on a Jupiter Icy Moons Orbiter can provide important information about geochemical and geophysical processes during the evolutionary histories of these moons which are not accessible with other techniques from an orbiter spacecraft. Thus, spacecraft-based in-situ dust measurements can be used as a diagnostic tool for the analysis of the surface composition of the moons. This way, the in-situ measurements turn into a remote sensing technique by using the dust instrument like a telescope for surface investigation. An instrument capable of very high resolution composition analysis of dust particles is the Cometary Secondary Ion Mass Analyzer (COSIMA). The instrument was originally developed for the Comet Rendezvous and Asteroid Flyby (CRAF) mission and has now been built for ESA'S comet orbiter Rosetta. Dust particles are collected on a target and are later located by an optical microscope camera. A pulsed primary indium ion gun partially ionizes the dust grains. The generated secondary ions are accelerated in an electric field and travel through a reflectron-type time-of-flight ion mass spectrometer.

  11. Transmission Electron Microscopy of Cometary Residues from Micron-Sized Craters in the Stardust Al-Foils

    NASA Technical Reports Server (NTRS)

    Leroux, Hugues; Stroud, Rhonda M.; Dai, Zu Rong; Graham, Giles A.; Troadec, David; Bradley, John P.; Teslich, Nick; Borg, Janet; Kearsley, Anton T.; Horz, Friedrich

    2008-01-01

    We report Transmission Electron Microscopy (TEM) investigations of micro-craters that originated from hypervelocity impacts of comet 81P/Wild 2 dust particles on the aluminium foil of the Stardust collector. The craters were selected by Scanning Electron Microscopy (SEM) and then prepared by Focused Ion Beam (FIB) milling techniques in order to provide electron transparent cross-sections for TEM studies. The crater residues contain both amorphous and crystalline materials in varying proportions and compositions. The amorphous component is interpreted as resulting from shock melting during the impact and the crystalline phases as relict minerals. The latter show evidence for shock metamorphism. Based on the residue morphology and the compositional variation, the impacting particles are inferred to have been dominated by mixtures of submicron olivine, pyroxene and Fe-sulfide grains, in agreement with prior results of relatively coarse-grained mineral assemblages in the aerogel collector.

  12. Aerogel Track Morphology: Measurement, Three Dimensional Reconstruction and Particle Location using Confocal Laser Scanning Microscopy

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Ball, A. D.; Wozniakiewicz, P. A.; Graham, G. A.; Burchell, M. J.; Cole, M. J.; Horz, F.; See, T. H.

    2007-01-01

    The Stardust spacecraft returned the first undoubted samples of cometary dust, with many grains embedded in the silica aerogel collector . Although many tracks contain one or more large terminal particles of a wide range of mineral compositions , there is also abundant material along the track walls. To help interpret the full particle size, structure and mass, both experimental simulation of impact by shots and numerical modeling of the impact process have been attempted. However, all approaches require accurate and precise measurement of impact track size parameters such as length, width and volume of specific portions. To make such measurements is not easy, especially if extensive aerogel fracturing and discoloration has occurred. In this paper we describe the application and limitations of laser confocal imagery for determination of aerogel track parameters, and for the location of particle remains.

  13. Forced precession of the cometary nucleus with randomly placed active regions

    NASA Technical Reports Server (NTRS)

    Szutowicz, Slawomira

    1992-01-01

    The cometary nucleus is assumed to be triaxial or axisymmetric spheroid rotating about its axis of maximum moment of inertia and is forced to precess due to jets of ejected material. Randomly placed regions of exposed ice on the surface of the nucleus are assumed to produce gas and dust. The solution of the heat conduction equation for each active region is used to find the gas sublimation rate and the jet acceleration. Precession of the comet nucleus is followed numerically using a phase-averaged system of equations. The gas production curves and the variation of the spin axis during the orbital motion of the comet are presented.

  14. Detection of CN emission from (2060) Chiron

    NASA Technical Reports Server (NTRS)

    Bus, Schelte J.; Schleicher, David G.; Bowell, Edward; A'Hearn, Michael F.

    1991-01-01

    The detection of CN emission the spectrum of (2060) Chiron not only underscores its cometary nature, but represents, at a heliocentric distance in excess of 11 AU, the most distantly detected instance of a cometary gas species. These observations are noted to be consistent with a driving of Chiron's outgassing by isolated outbursts of CO2 from a small fraction of Chiron's surface. If dusty particles or icy grains are dragged out by the gas with unit dust-to-gas mass ratio, outbursts need occur only once every several months. Such small-surface outgassings appear to characterize comets which have made many passages close to the sun.

  15. Could the Geminid meteoroid stream be the result of long-term thermal fracture?

    NASA Astrophysics Data System (ADS)

    Ryabova, G.

    2015-01-01

    The previous models by Ryabova have shown that the Geminid meteoroid stream has a cometary origin, so asteroid (3200) Phaethon (the Geminids' parent body) is probably a dead comet. Recently (in 2009 and 2012) some weak activity was observed (Jewitt and Li, 2010, 2013), but it was not a cometary activity. Recurrent brightening of Phaethon at perihelion could be the result of thermal fracture and decomposition. In this study we model the long term dust release from Phaethon based on this mechanism. It is unlikely that the Geminid meteoroid stream (or its low-active wide component) was generated by long-time thermal fracture.

  16. Comet composition and density analyzer

    NASA Technical Reports Server (NTRS)

    Clark, B. C.

    1982-01-01

    Distinctions between cometary material and other extraterrestrial materials (meteorite suites and stratospherically-captured cosmic dust) are addressed. The technique of X-ray fluorescence (XRF) for analysis of elemental composition is involved. Concomitant with these investigations, the problem of collecting representative samples of comet dust (for rendezvous missions) was solved, and several related techniques such as mineralogic analysis (X-ray diffraction), direct analysis of the nucleus without docking (electron macroprobe), dust flux rate measurement, and test sample preparation were evaluated. An explicit experiment concept based upon X-ray fluorescence analysis of biased and unbiased sample collections was scoped and proposed for a future rendezvous mission with a short-period comet.

  17. Evaluating the hazard from Siding Spring dust: Models and predictions

    NASA Astrophysics Data System (ADS)

    Christou, A.

    2014-12-01

    Long-period comet C/2013 A1 (Siding Spring) will pass at a distance of ~140 thousand km (9e-4 AU) - about a third of a lunar distance - from the centre of Mars, closer to this planet than any known comet has come to the Earth since records began. Closest approach is expected to occur at 18:30 UT on the 19th October. This provides an opportunity for a ``free'' flyby of a different type of comet than those investigated by spacecraft so far, including comet 67P/Churyumov-Gerasimenko currently under scrutiny by the Rosetta spacecraft. At the same time, the passage of the comet through Martian space will create the opportunity to study the reaction of the planet's upper atmosphere to a known natural perturbation. The flip-side of the coin is the risk to Mars-orbiting assets, both existing (NASA's Mars Odyssey & Mars Reconnaissance Orbiter and ESA's Mars Express) and in transit (NASA's MAVEN and ISRO's Mangalyaan) by high-speed cometary dust potentially impacting spacecraft surfaces. Much work has already gone into assessing this hazard and devising mitigating measures in the precious little warning time given to characterise this object until Mars encounter. In this presentation, we will provide an overview of how the meteoroid stream and comet coma dust impact models evolved since the comet's discovery and discuss lessons learned should similar circumstances arise in the future.

  18. Orbital Evolution of Dust Particles in the Sublimation Zone near the Sun

    NASA Astrophysics Data System (ADS)

    Shestakova, L. I.; Demchenko, B. I.

    2018-03-01

    We have performed the calculations of the orbital evolution of dust particles from volcanic glass ( p-obsidian), basalt, astrosilicate, olivine, and pyroxene in the sublimation zone near the Sun. The sublimation (evaporation) rate is determined by the temperature of dust particles depending on their radius, material, and distance to the Sun. All practically important parameters that characterize the interaction of spherical dust particles with the radiation are calculated using the Mie theory. The influence of radiation and solar wind pressure, as well as the Poynting-Robertson drag force effects on the dust dynamics, are also taken into account. According to the observations (Shestakova and Demchenko, 2016), the boundary of the dust-free zone is 7.0-7.6 solar radii for standard particles of the zodiacal cloud and 9.1-9.2 solar radii for cometary particles. The closest agreement is obtained for basalt particles and certain kinds of olivine, pyroxene, and volcanic glass.

  19. Comet 209P/LINEAR and the associated Camelopardalids meteor shower

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Hui, M.; Wiegert, P.; Campbell-Brown, M.; Brown, P.; Weryk, R.

    2014-07-01

    Previous studies have suggested that comet 209P/LINEAR may produce strong meteor activity on the Earth on 2014 May 24. Here we present our observations and simulations prior to the event. We reanalyze the optical observations of P/LINEAR obtained during its 2009 apparition to model the corresponding meteor stream. We find that the comet is relatively depleted in dust production, with Afρ at 1-cm level within eight months around its perihelion. A syndyne simulation shows that the optical cometary tail is dominated by larger particles with β˜0.003. Numerical simulation of the cometary dust trails confirms the arrival of particles on 2014 May 24 from some of the 1798--1979 trails, with nominal radiant in the constellation of Camelopardalis. Given that the comet is found to be depleted in dust production, we concluded that a meteor storm may be unlikely. However, our simulation also shows that the size distribution of the arrived particles is skewed strongly towards larger particles, which, coupling with the result of the syndyne simulation, suggested that the event (if detectable) may be dominated by bright meteors. Preliminary results from the observations of P/LINEAR during its 2014 apparition as well as the Camelopardalids meteor shower will also be presented.

  20. High Precision Oxygen Three Isotope Analysis of Wild-2 Particles and Anhydrous Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Nakashima, D.; Ushikubo, T.; Zolensky, Michael E.; Weisberg, M. K.; Joswiak, D. J.; Brownlee, D. E.; Matrajt, G.; Kita, N. T.

    2011-01-01

    One of the most important discoveries from comet Wild-2 samples was observation of crystalline silicate particles that resemble chondrules and CAIs in carbonaceous chondrites. Previous oxygen isotope analyses of crystalline silicate terminal particles showed heterogeneous oxygen isotope ratios with delta(sup 18)O to approx. delta(sup 17)O down to -50% in the CAI-like particle Inti, a relict olivine grain in Gozen-sama, and an olivine particle. However, many Wild-2 particles as well as ferromagnesian silicates in anhydrous interplanetary dust particles (IDPs) showed Delta(sup 17)O values that cluster around -2%. In carbonaceous chondrites, chondrules seem to show two major isotope reservoirs with Delta(sup 17)O values at -5% and -2%. It was suggested that the Delta(sup 17)O = -2% is the common oxygen isotope reservoir for carbonaceous chondrite chondrules and cometary dust, from the outer asteroid belt to the Kuiper belt region. However, a larger dataset with high precision isotope analyses (+/-1-2%) is still needed to resolve the similarities or distinctions among Wild-2 particles, IDPs and chondrules in meteorites. We have made signifi-cant efforts to establish routine analyses of small particles (< or =10micronsm) at 1-2% precision using IMS-1280 at WiscSIMS laboratory. Here we report new results of high precision oxygen isotope analyses of Wild-2 particles and anhydrous chondritic IDPs, and discuss the relationship between the cometary dust and carbonaceous chondrite chondrules.

  1. Assessing the Main-Belt Comet Population with Comet Hunters

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.; Hsieh, Henry H.; Zhang, Zhi-Wei; Chen, Ying-Tung; Lintott, Chris; Wang, Shiang-Yu; Mishra, Ishan

    2017-01-01

    Cometary activity in the asteroid belt is a recent discovery. Evidence suggests recent collisions play a role excavating subsurface water ice in these Main Belt Comets (MBCs). MBCs may be an alternative source of Earth’s water. The properties and origins of the MBCs remain elusive. To date ~15 MBCs are known, but only with many tens to 100s of MBCs can we fully explore this new reservoir and its implications for the early Earth.Automated routines identify cometary objects by comparing the point spread functions (PSFs) of moving objects to background stars. This approach may miss cometary activity with low-level dust comae or trails that are too weak or extended to affect an object's near-nucleus PSF profile. Direct visual inspection of moving objects by survey team members can often catch such unusual objects, but such an approach is impractical for the largest surveys to date, and will only become more intractable with the next generation wide-field surveys.With the Internet, tens of thousands of people can be engaged in the scientific process. With this citizen science approach, the combined assessment of many non-experts often equals or rivals that of a trained expert and in many cases outperforms automated algorithms. The Comet Hunters (http://www.comethunters.org) project enlists the public to search for MBCs in data from the Hyper Suprime-Cam (HSC) wide survey. HSC is to date the largest field-of-view camera (covering a 1.5 degree diameter circle on sky) on a 8-10-m class telescope. The HSC wide survey provides the sensitivity to detect cometary activity at lower levels than have been possible for previous surveys.We will give an overview of the Comet Hunters project. We will present the results from the first ~10,000 HSC asteroids searched and provide an estimate on the frequency of cometary activity in the Main Asteroid beltAcknowledgements: This work uses data generated via the Zooniverse.org platform, development of which was supported by a Global Impact Award from Google, and by the Alfred P. Sloan Foundation. The HSC collaboration includes the astronomical communities of Japan and Taiwan, and Princeton University.

  2. Mid-Infrared Spectrum of the Zodiacal Emission: Detection of Crystalline Silicates in Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Ootsubo, T.; Onaka, T.; Yamamura, I.; Ishihara, D.; Tanabe, T.; Roellig, T. L.

    2003-01-01

    Within a few astronomical units of the Sun the solar system is filled with interplanetary dust, which is believed to be dust of cometary and asteroidal origin. Spectroscopic observations of the zodiacal emission with moderate resolution provide key information on the composition and size distribution of the dust in the interplanetary space. They can be compared directly to laboratory measurements of candidate materials, meteorites, and dust particles collected in the stratosphere. Recently mid-infrared spectroscopic observations of the zodiacal emission have been made by two instruments on board the Infrared Space Observatory; the camera (ISOCAM) and the spectrophotometer (ISOPHOT-S). A broad excess emission feature in the 9-11 micron range is reported in the ISOCAM spectrum, whereas the ISOPHOT-S spectra in 6-12 microns can be well fitted by a blackbody radiation without spectral features.

  3. Enceladus Icy Jet Analyzer (ENIJA) : Search for life with a high resolution TOF-MS for in situ characterization of high dust density regions

    NASA Astrophysics Data System (ADS)

    Srama, R.; Postberg, F.; Henkel, H.; Klopfer, T.; Li, Y.; Simolka, J.; Bugiel, S.; Kempf, S.; Hillier, J.; Khawaja, N.; Trieloff, M.; Abel, B.; Moragas-Klostermeyer, G.; Strack, H.; Schmidt, J.; Soja, R.; Sternovsky, Z.; Spohn, T.

    2015-10-01

    ENIJA was developed to search for the prebiotic molecules and biogenic key compounds like amino acids in the plumes of Saturn's moon Enceladus. ENIJA records time-of-flight mass spectra in the range between 1 and 2000 u produced by high-velocity impacts of individual grains onto a metal target. The spectrometer has a measurement mode for cations or anions formed upon impact, with concurrent determination of the mass of the detected grains. Detection of elemental and molecular species over such a wide mass range permits clear characterization of particle chemistry, simultaneously covering individual ions like H+, C-, Oand complex organics with masses of many hundred u. ENIJA is sensitive to water ice, minerals, metals, organic particles, and mixtures of these components. The instrument is based on the principle of impact ionization and optimized for the analysis of high dust fluxes and number densities as typically occur during Enceladus plume crossings or in cometary comae. The mass resolution is m/dm > 970 for typical plume particles in the size range 0.01 to 100 μm. The instrument mass and peak power is 3.5 kg and 14.2 W, respectively. The instrument is part of the model payload for the mission "Enceladus Life Finder" (ELF).

  4. MSFC Stream Model Preliminary Results: Modeling Recent Leonid and Perseid Encounters

    NASA Astrophysics Data System (ADS)

    Moser, Danielle E.; Cooke, William J.

    2004-12-01

    The cometary meteoroid ejection model of Jones and Brown [ Physics, Chemistry, and Dynamics of Interplanetary Dust, ASP Conference Series 104 (1996b) 137] was used to simulate ejection from comets 55P/Tempel-Tuttle during the last 12 revolutions, and the last 9 apparitions of 109P/Swift-Tuttle. Using cometary ephemerides generated by the Jet Propulsion Laboratory’s (JPL) HORIZONS Solar System Data and Ephemeris Computation Service, two independent ejection schemes were simulated. In the first case, ejection was simulated in 1 h time steps along the comet’s orbit while it was within 2.5 AU of the Sun. In the second case, ejection was simulated to occur at the hour the comet reached perihelion. A 4th order variable step-size Runge Kutta integrator was then used to integrate meteoroid position and velocity forward in time, accounting for the effects of radiation pressure, Poynting Robertson drag, and the gravitational forces of the planets, which were computed using JPL’s DE406 planetary ephemerides. An impact parameter (IP) was computed for each particle approaching the Earth to create a flux profile, and the results compared to observations of the 1998 and 1999 Leonid showers, and the 1993 and 2004 Perseids.

  5. Overview of the Results of the Organics PET Study of the Cometary Samples from Comet Wild 2 by the Stardust Mission

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Aleon, J.; Alexander, C. M. O'D.; Araki, T.; Bajt, S.; Baratta, G. A.; Borg, J.; Bradley J. P.; Brownlee, D. E.; Brucato, J. R.; hide

    2007-01-01

    STARDUST is the first mission designed to bring samples back to Earth from a known comet. The captured samples were successfully returned to Earth on 15 Jan 2006, after which they were subjected to a preliminary examination by a number of teams of scientists from around the world. This abstract describes the efforts of the Organics Preliminary Examination Team (PET). More detailed discussions of specific analyses of the samples can be found in other papers presented at this meeting by individual members of the Organics PET (see the author list above for team members). The studied Wild 2 gas and dust samples were collected by impact onto aerogel tiles and Al foils when the spacecraft flew through the coma of 81P/Wild 2 on 2 Jan 2004 at a relative velocity of approx.6.1 kilometers per second. After recovery of the Sample Return Capsule (SRC) on 15 Jan 2006, the aerogel collector trays were removed in a clean room at JSC. After documentation of the collection, selected aerogel tiles and aluminum foils were removed and aerogel and cometary samples extracted for study.

  6. Dust Production of Comet 21P/Giacobini Zinner Using Broadband Photometry

    NASA Technical Reports Server (NTRS)

    Blaauw, Rhiannon; Suggs, Robert M.; Cooke, William

    2012-01-01

    Comet 21P/Giacobini-Zinner is a Jupiter family comet that was discovered in December of 1900 by the French astronomer Michel Giacobini, and rediscovered two orbits later by German astronomer Ernst Zinner in 1913. 21P is approximately 2 km in diameter, and is the parent of the Draconids, a meteor shower known to undergo dramatic outbursts. In 1933 and 1946, up to 10,000 meteors per hour were reported for the Draconids; and 2011 saw a minor Draconid outburst. As meteor stream modeling/ forecasting is a primary focus for the NASA Meteoroid Environment Office, it was decided to monitor 21P for three purposes: firstly to find the apparent and absolute magnitude with respect to heliocentric distance; second to calculate Af(rho), a quantity that describes the dust production rate and is used in models to predict the activity of the Draconids; thirdly to detect possible increases in cometary activity, which could correspond to future Draconid meteor outbursts. Giacobini-Zinner is unique in several ways. It was the first comet to have measurements made in situ. Comet 21P was visited by ICE (International Cometary Explorer) in 1985 to study the interaction of the cometary atmosphere with the flowing solar-wind plasma. It is a carbon-depleted comet, and most studies show that it peaks in gas and dust production pre-perihelion, specifically in two very studied passages; 1985 and 1998. A prior study was conducted by Pittichova et al (2008) for 21P during its 2004-2006 close approach to the Sun. Apparent and absolute magnitudes were measured at various heliocentric distances as well as the dust production. At 2.32 AU from the Sun, 21P exhibited an apparent magnitude of 17.05 and Af of 83 cm, and an apparent magnitude of 15.91/Af(rho) of 130.66 cm at 1.76 AU. Another such study performed by Lara et al.on 21P s 1998 apparition found values of Af(rho) of 1010 cm when 1.05 AU from the Sun, two weeks before perihelion, and 669 cm at perihelion, when 1.03 AU from the Sun

  7. Gas flow through through a porous mantle: implications of fluidisation

    NASA Astrophysics Data System (ADS)

    Bentley, Mark; Koemle, Norbert; Kargl, Guenter; Huetter, Mag. Erika Sonja

    Understanding the interaction of dust and gas in the upper layers of a cometary mantle is critical for understanding cometary evolution. The state of knowledge of conditions in these layers is currently rather low, and a wide range of flow conditions and phenomena can be imagined. A model is presented here that examines the conditions under which so-called "fluidized beds" might be possible in a cometary mantle. This phenomenon, well studied in industry, occurs when the weight of a bed of particles is equal to the gas drag of a gas or fluid flowing upwards through it. Wherever fluidisation occurs in a cometary mantle, it could change the dominant heat transfer mechanism by removing intimate particle contacts (creating an expanded bed) or allowing particle convection in the now fluid-like mantle. There are also implications for the stability of the Rosetta lander, Philae, if such a state were to occur in the vicinity of the deployed anchor. A two-fluid model is used, with necessarily restricted geometries, to demonstrate the conditions (gravity, pressure, gas velocity, particle size etc.) under which fluidisation could occur, and the scientific results and implications for the Rosetta mission are explored.

  8. Models for Cometary Comae Containing Negative Ions

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Charnley, S. B.

    2012-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [I]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of our new models for the chemistry of cometary comae that include atomic and molecular anions. We calculate the impact of these anions on the charge balance and examine their importance for cometary coma chemistry.

  9. Evidence for Reduced, Carbon-rich Regions in the Solar Nebula from an Unusual Cometary Dust Particle

    NASA Astrophysics Data System (ADS)

    De Gregorio, Bradley T.; Stroud, Rhonda M.; Nittler, Larry R.; Kilcoyne, A. L. David

    2017-10-01

    Geochemical indicators in meteorites imply that most formed under relatively oxidizing conditions. However, some planetary materials, such as the enstatite chondrites, aubrite achondrites, and Mercury, were produced in reduced nebular environments. Because of large-scale radial nebular mixing, comets and other Kuiper Belt objects likely contain some primitive material related to these reduced planetary bodies. Here, we describe an unusual assemblage in a dust particle from comet 81P/Wild 2 captured in silica aerogel by the NASA Stardust spacecraft. The bulk of this ˜20 μm particle is comprised of an aggregate of nanoparticulate Cr-rich magnetite, containing opaque sub-domains composed of poorly graphitized carbon (PGC). The PGC forms conformal shells around tiny 5-15 nm core grains of Fe carbide. The C, N, and O isotopic compositions of these components are identical within errors to terrestrial standards, indicating a formation inside the solar system. Magnetite compositions are consistent with oxidation of reduced metal, similar to that seen in enstatite chondrites. Similarly, the core-shell structure of the carbide + PGC inclusions suggests a formation via FTT reactions on the surface of metal or carbide grains in warm, reduced regions of the solar nebula. Together, the nanoscale assemblage in the cometary particle is most consistent with the alteration of primary solids condensed from a C-rich, reduced nebular gas. The nanoparticulate components in the cometary particle provide the first direct evidence from comets of reduced, carbon-rich regions that were present in the solar nebula.

  10. Evidence of Collisional Histories of Asteroids, Comets and Meteorites: Comparisons with Shocked Minerals

    NASA Astrophysics Data System (ADS)

    Lederer, Susan M.; Jensen, Elizabeth; Smith, Douglas; Fane, Michael; Whizin, Akbar; Landsman, Zoe A.; Wooden, Diane H.; Lindsay, Sean S.; Cintala, Mark; Keller, Lindsay P.; Zolensky, Michael

    2017-10-01

    Evidence of the collisional history of comets and asteroids has been emerging from analyses of cometary forsterite and enstatite returned from Comet Wild 2 by the Stardust mission (Keller et al.Geochim. Cosmochim. Acta 72, 2008; Tomeoka et al. MAPS 43, 2008; Jacobs et al. MAPS 44, 2009). Likewise, shock metamorphism is observed in many meteoritic forsterites and enstatites (McCausland et al. AGU, 2010), suggesting similar collisional histories for asteroids. Further exploration of the effects of collisions is slated for the upcoming Asteroid Impact Mission/Double Asteroid Redirection Test (AIM/DART) mission, expected for launch in 2020. DART will impact Didymoon, the companion of the larger 65803 Didymos (1996 G2) asteroid, and AIM will use its instrumentation to characterize the impact.A suite of relevant impact experiments have been carried out in the Experimental Impact Laboratory at the NASA Johnson Space Center at velocities ranging from ~2.0 - 2.8 km s-1 and temperatures from 25°C to -100°C. Targets include a suite of minerals typically found in cometary dust and in asteroids and meteorites: Mg-rich forsterite (olivine), enstatite (orthopyroxene), diopside (clinopyroxene), magnesite (Mg-rich carbonate), and serpentine (phyllosilicate). Transmission Electron Microscope (TEM) imaging indicates evidence of shock similar to that seen in forsterite and enstatite from Comet Wild 2. Fourier Transform Infrared (FTIR) Spectroscopy will also be used for comparisons with meteorite spectra. A quantitative analysis of the shock pressures required to induce planar dislocations and spectral effects with respect to wavelength will also be presented.Funding provided by the NASA PG&G grant 09-PGG09-0115, NSF grant AST-1010012. Special thanks to NASA EIL staff, F. Cardenas and R. Montes.

  11. Possible viruses from outer space fall into the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Steklov, A. F.; Dashkiev, G. N.; Vidmachenko, A. P.

    2017-05-01

    Statistical data show that sometime after the passage of the Earth along its orbit through the tail of a comet, a number of epidemics and pandemics occurred. This indicated a possible invasion of viruses, which could be in cometary dust. K.I. Churyumov proposed to develop special traps. They need to be placed under the wings of high-altitude aircraft. And with their help it is necessary to catch, accumulate and examine in the laboratories those particles, which are captured in traces of invasions. The main purpose of such experiments is to reveal, or prove the absence of cosmic viruses in the tracks from the intrusions of fragments of cometary nuclei.

  12. Remote sensing of dust in the Solar system and beyond using wavelength dependence of polarization

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.

    2011-12-01

    For a long time, the main polarimetric tool to study dust in the Solar system has been the dependence of polarization on phase (scattering) angle. Surprisingly, a variety of cosmic dusts (interplanetary and cometary dust, dust on the surfaces of asteroids and in debris disks) possesses a very similar phase dependence of polarization with a negative bowl-shaped part at small phase angles and a positive bell-shaped region with maximum polarization around 95-105 deg. Numerous laboratory and theoretical simulations showed that a polarimetric phase curve of this shape is typical for fluffy materials, e.g., porous, aggregated particles. By contrast, the wavelength dependence of polarization is different for different types of dust. In the visual, polarization decreases with wavelength (negative gradient) for asteroids and interplanetary dust, but usually increases with wavelength (positive gradient) for cometary dust. In debris disks both signs of the spectral gradient of polarization have been found. Moreover, it was found that a cometary positive spectral gradient can change to a negative one as observations move to longer (near-infrared) wavelengths (Kelley et al. AJ, 127, 2398, 2004) and some comets(Kiselev et al. JQSRT, 109, 1384, 2008) have negative gradient even in the visible. The diversity of the spectral dependence of polarization therefore gives us hope that it can be used for characterization of the aggregates that represent different types of cosmic dust. To accomplish this, the physics behind the spectral dependence of polarization need to be revealed. Our recent study shows that the spectral dependence of polarization depends on the strength of electromagnetic interaction between the monomers in aggregates. The strength of the interaction mainly depends on how many monomers the electromagnetic wave covers on the light path equal to one wavelength. Since the electromagnetic interaction depolarizes the light, the more particles a single wavelength covers the smaller is the polarization of the scattered light. Thus, at a given monomer size the polarization decreases as wavelength increases resulting in the negative spectral gradient of polarization. However, this tendency occurs only for rather compact aggregates. For porous particles, an increase of wavelength may not increase the number of the covered monomers. In this case, polarization increases with wavelength as a result of decreasing monomer's size parameter. We performed computer modeling of light scattering by aggregates of different porosity using MSTM (multisphere T-matrix) code by D. Mackowski (see http://eng.auburn.edu/users/dmckwski/scatcodes/). The results show that for each porosity a critical wavelength exists at which the spectral gradient of polarization changes from positive to negative. The electromagnetic interaction is also stronger for more transparent materials which in turn affects the value of the critical wavelength. Thus, measurements of polarization over a broad range of wavelength can be a powerful tool to study the porosity and composition of dust in a variety of cosmic environments, especially when detailed phase dependence of polarization cannot be established (e.g. for TNO and other distant objects).

  13. Infrared spectroscopy of interplanetary dust in the laboratory

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Patel, R. I.; Freeman, J. J.

    1981-01-01

    A mount containing three crushed chondritic interplanetary dust particles (IDPs) collected in the earth's stratosphere and subjected to infrared spectroscopic measurements shows features near 1000 and 500/cm, suggesting crystalline pyroxene rather than crystalline olivine, amorphous olivine, or meteoritic clay minerals. Chondritic IDP structural diversity and atmospheric heating effects must be considered when comparing this spectrum with interplanetary and cometary dust astrophysical spectra. TEM and infrared observations of one member of the rare subset of IDPs resembling hydrated carbonaceous chondrite matrix material shows a close infrared spectrum resemblance between 4000 and 400/cm to the C2 meteorite Murchison. TEM observations suggest that this class of particles may be used as an atmospheric entry heating-process thermometer.

  14. NASA Sample Return Missions: Recovery Operations

    NASA Technical Reports Server (NTRS)

    Pace, L. F.; Cannon, R. E.

    2017-01-01

    The Utah Test and Training Range (UTTR), southwest of Salt Lake City, Utah, is the site of all NASA unmanned sample return missions. To date these missions include the Genesis solar wind samples (2004) and Stardust cometary and interstellar dust samples (2006). NASA’s OSIRIS-REx Mission will return its first asteroid sample at UTTR in 2023.

  15. Cometary Matter Analyser (COMA/CRAF)

    NASA Technical Reports Server (NTRS)

    Buechler, K.; Igenbergs, E.; Klein, J. W.; Krueger, F. R.; Kuczera, H.; Morfill, G.; Palme, H.; Roessler, K.; Weishaupt, U.; Zerrull, R.; hide

    1994-01-01

    This project was part of an international program under which the chemical composition of cometary dust particles was to be measured 'in situ' during a rendezvous and flyby mission of a Mariner Mark 2 space probe and a comet (depending on the time of launch). Two necessary tasks, preliminary hardware development and interface definition, have been completed within the projects submitted for approval. As a result a model close to the flight configuration has been created, which was to be made available to the flight hardware contractor and his purposes. The Comet Rendezvous and Asteroid Flyby (CRAF) mission was abandoned after joint resolution adopted by NASA and the Federal Ministry for Research and Technology in 1992. Since an instrument like CoMA is an important contribution both to future cometary rendezvous missions, such as ROSETTA, as well as for accompanying laboratory activities, this project was terminated in a 'qualified conclusion'. In the process, components suitable for the laboratory developed from the preliminary units were produced and put into operation.

  16. Statistical analysis of micrometeoroids at the heliocentric distance of Mercury

    NASA Astrophysics Data System (ADS)

    Borin, P.; Cremonese, G.; Marzari, F.

    2007-08-01

    This work shows preliminary results of a study of the orbital evolution of dust particles originating from the Main Belt in order to obtain a statistical analysis, then to provide an estimate of the flux of particles hitting the Mercury's surface. We can distinguish two population of meteoroids depending on their dynamical evolution: small particles (r < 1 cm) dominated by the Poynting-Robertson drag, and large particles (r > 1 cm) driven by gravity only. In this work we consider small particles and, in particular, the micrometeoroids produced by collisional fragmentation of cometary or asteroidal bodies. The main effects that determine the distribution of dust in the Solar System are the gravitational attractions of the Sun and planets, Poynting-Robertson drag, solar radiation pressure, solar wind pressure and the effects of different magnetic fields. In order to determine the meteoritic flux at the heliocentric distance of Mercury we utilize the dynamical evolution model of dust particles of Marzari and Vanzani (1994) that numerically solves a (N+1)+M body problem (Sun + N planets + M body with zero mass) with the high-precision integrator RA15 (Everhart 1985). The solar radiation pressure and Poynting-Robertson drag, together with the gravitational interactions of the planets, are taken as major perturbing forces affecting the orbital evolution of the dust particles. We will perform numerical simulations with different initial conditions for the dust particles, depending on the sources, with the aim of estimating to flux of dust on the surface of Mercury. Meteoroid impacts have a very important role in the evolution of Mercury's surface and exosphere. Since the exobase is presently on the surface of the planet, the sources and sinks of the exosphere are tightly linked to the composition and structure of the planet surface. We intend also to evaluate a possible asymmetry between the leading and trailing surface of Mercury in terms of impact frequency.

  17. Tabby's Star (Illustration)

    NASA Image and Video Library

    2017-10-04

    This illustration depicts a hypothetical uneven ring of dust orbiting KIC 8462852, also known as Boyajian's Star or Tabby's Star. Astronomers have found the dimming of the star over long periods appears to be weaker at longer infrared wavelengths of light and stronger at shorter ultraviolet wavelengths. Such reddening is characteristic of dust particles and inconsistent with more fanciful "alien megastructure" concepts, which would evenly dim all wavelengths of light. By studying observations from NASA's Spitzer and Swift telescopes, as well as the Belgian AstroLAB IRIS observatory, the researchers have been able to better constrain the size of the dust particles. This places them within the range found in dust disks orbiting stars, and larger than the particles typically found in interstellar dust. The system is portrayed with a couple of comets, consistent with previous studies that have found evidence for cometary activity within the system. https://photojournal.jpl.nasa.gov/catalog/PIA22081

  18. Laboratory Investigations of the Physical and Optical Properties of the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2005-01-01

    Microdsub-micron size cosmic dust grains play an important role in the physical and dynamical process in the galaxy, the interstellar medium, and the interplanetary and planetary environments. The dust grains in various astrophysical environments are generally charged by a variety of mechanisms that include collisional process with electrons and ions, and photoelectric emissions with UV radiation. The photoelectric emission process is believed to be the dominant process in many astrophysical environments with nearby UV sources, such as the interstellar medium, diffuse clouds, the outer regions of the dense molecular clouds, interplanetary medium, dust in planetary environments and rings, cometary tails, etc. Also, the processes and mechanisms involved in the rotation and alignment of interstellar dust grains are of great interest in view of the polarization of observed starlight as a probe for evaluation of the galactic magnetic field.

  19. Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid

    2017-05-01

    Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size. This article is part of the themed issue 'Cometary science after Rosetta'.

  20. Lunar and Planetary Science XXXV: Special Session: Mars Climate Change

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Mars South Pole CO2 Paleoatmosphere; 2) Do SNC Noble Gas and Deuterium Data Provide Evidence for Large Cometary Impact Between 1300-300 Ma on Mars? 3) Medusae Fossae Formation: Ice-rich Airborne Dust Deposited During Periods of High Obliquity? 4) Ascraeus Mons, Mars: Characterisation and Interpretation of the Fan-shaped Deposit on Its Western Flank; 5) Evidence of Recent Glaciation in Elysium Planitia, Mars; 6) Craters and Other Circular Features in the Northern Circumpolar Area, Mars; 7) Intra-Annual Variations of the Martian Swiss-Cheese Terrain; 8) Drastic Climate Change of Mars Induced by H2O Ice Caps; 9) Modelling the Mass Balance of the North Polar Ice Cap on Mars.

  1. Abundant Solar Nebula Solids in Comets

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of materials that were formed across a wide swath of the early protoplanetary disk.

  2. Anions in Cometary Comae

    NASA Technical Reports Server (NTRS)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  3. Time-dependent evolution of the near nuclear coma of cometary nuclei during their rotational motion

    NASA Astrophysics Data System (ADS)

    Szego, K.; Crifo, J.-F.; Fulle, M.; Rodionov, A. V.

    2003-04-01

    The new physical model of Rodionov et al. (Planetary and Space Sci., 50, 983, 2002) that describes the cometary activity based on a 3-d collisional gas dynamical model has been successfully applied to account for the dust features observed by the cameras flying onboard of the VEGA and Giotto probes during the encounter with comet Halley. This indicates, in particular, that these structures are dominantly controlled by the nucleus topography. An upgraded version of this model has been recently developed and is being applied to the vast body of data gathered in 1986 on comet Halley. This new version is tridimensional as previously, and, in addition, time-dependent. This allows the exact, self-consistent computation of the whole coma structure (primary and daughter molecules, dust), allowing to study its dependence upon nucleus shape, composition, and rotation. The results presented here assume that the coma is formed by solar-driven sublimation of a homogeneous dusty-ice nucleus with shape and rotational state derived for P/Halley. The results are, however, of quite general significance -- in particular they remain valid for different shapes and for inhomogeneous nucleus. This presentation focuses on the time dependence of the dust and gas features obtained around the nucleus. Movies will summarize the results of the calculations exhibiting the time development of the dust and gas coma and its relation to the surface orography for a rotating nucleus. The effect of nucleus activity on its rotational motion, and possible constraints hampering the observation of the activity will be also analyzed.

  4. Dynamical properties and acceleration of hierarchical dust in the vicinity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Skorov, Yu; Reshetnyk, V.; Rezac, L.; Zhao, Y.; Marschall, R.; Blum, J.; Hartogh, P.

    2018-07-01

    A significant fraction of cometary dust grains leaving the nucleus surface are extremely porous and fluffy particles as revealed by recent observation from the Rosetta mission. In this paper our aim is to investigate the dynamics of such grains when subjected to a gas flow, representing the cometary outgassing. We perform numerical experiments to quantify how the internal porous texture is reflected in quantities such as effective cross-section, gas drag coefficient, and light scattering efficiency. We also derive particle speeds for the different types of aggregates as a function of radial distance and compare them to the observations by the GIADA instrument. Using our original method for constructing hierarchical aggregates we increase the level of aggregation to reach particle sizes up to few millimeters, consistent with the observations. In addition, a non-constant gas velocity is now considered in the framework of free molecular as well as fully collisional flow models, and radiation pressure calculations use the effective medium theory appropriate for such particles. These improvements lead us to conclude that dynamical models should account for accelerating gas flow, which leads to a smaller terminal speed of fluffy dust grains. Secondly, solar radiation pressure calculated based on the Mie theory approximation can lead to orders of magnitude error for the very porous particles, instead the effective medium theory should be used. Finally, although numerical simulations can reproduce the GIADA measurements of dust speeds, we cannot conclude that there exists a preferred model of porous particles build as a ballistic cluster aggregate.

  5. Dynamical properties and acceleration of hierarchical dust in the vicinity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Skorov, Yu; Reshetnyk, V.; Rezac, L.; Zhao, Y.; Marschall, R.; Blum, J.; Hartogh, P.

    2018-04-01

    A significant fraction of cometary dust grains leaving the nucleus surface are extremely porous and fluffy particles as recent observation from the Rosetta mission revealed. In this paper our aim is to investigate the dynamics of such grains when subjected to a gas flow, representing the cometary outgassing. We perform numerical experiments to quantify how the internal porous texture is reflected in quantities such as: effective cross-section, gas drag coefficient, and light scattering efficiency. We also derive particle speeds for the different types of aggregates as a function of radial distance and compare them to the observations by the GIADA instrument. Using our original method for constructing hierarchical aggregates we increase the level of aggregation to reach particle sizes up to few millimeters, consistent with the observations. In addition, a non-constant gas velocity is now considered in the framework of free molecular as well as fully collisional flow models, and radiation pressure calculations use the effective medium theory appropriate for such particles. These improvements lead us to conclude that dynamical models should account for accelerating gas flow, which leads to a smaller terminal speed of fluffy dust grains. Second, solar radiation pressure calculated based on the Mie theory approximation can lead to orders of magnitude error for the very porous particles, instead the effective medium theory should be used. Finally, although numerical simulations can reproduce the GIADA measurements of dust speeds, we cannot conclude that there exists a preferred model of porous particles build as a ballistic cluster aggregate.

  6. Discovery of Non-random Spatial Distribution of Impacts in the Stardust Cometary Collector

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Westphal, Andrew J.; Gainsforth, Zack; Borg, Janet; Djouadi, Zahia; Bridges, John; Franchi, Ian; Brownlee, Donald E.; Cheng. Andrew F.; Clark, Benton C.; hide

    2007-01-01

    We report the discovery that impacts in the Stardust cometary collector are not distributed randomly in the collecting media, but appear to be clustered on scales smaller than 10 cm. We also report the discovery of at least two populations of oblique tracks. We evaluated several hypotheses that could explain the observations. No hypothesis was consistent with all the observations, but the preponderance of evidence points toward at least one impact on the central Whipple shield of the spacecraft as the origin of both clustering and low-angle oblique tracks. High-angle oblique tracks unambiguously originate from a non-cometary impact on the spacecraft bus just forward of the collector.

  7. Migration of small bodies and dust to the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Ipatov, Sergei I.; Mather, John C.

    2005-02-01

    We integrated the orbital evolution of 30,000 Jupiter-family comets, 1300 resonant asteroids, and 7000 asteroidal, trans-Neptunian, and cometary dust particles. For initial orbital elements of bodies close to those of Comets 2P, 10P, 44P, and 113P, a few objects got Earth-crossing orbits with semi-major axes a<2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Three objects (from 2P and 10P runs) even got inner-Earth orbits (with aphelion distance Q<0.983 AU) and Aten orbits for Myrs. Our results show that the trans-Neptunian belt can provide a significant portion of near-Earth objects, or the number of trans-Neptunian objects migrating inside the solar system can be smaller than it was earlier considered, or most of 1-km former trans-Neptunian objects that had got near-Earth object orbits for millions of years disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes. The probability of a collision of an asteroidal or cometary particle during its lifetime with the Earth was maximum at diameter d˜ 100 mum. At d<10 mum such probability for trans-Neptunian particles was less than that for asteroidal particles by less than an order of magnitude, so the fraction of trans-Neptunian particles with such diameter near Earth can be considerable.

  8. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  9. Spectroscopic Evidence for the Asteroidal Nature of the July 2009 Jovian Impactor

    NASA Astrophysics Data System (ADS)

    Lisse, Carey; Orton, Glenn; Yanamandra-Fisher, Padma; Fletcher, Leigh; Depater, Imke; Hammel, Heidi

    2010-05-01

    The collision of a large object with Jupiter on July 19, 2009, heated its atmosphere, modified its composition and generated a prominent field of deposited particulate debris. Low-resolution 7-24 μm spectroscopy of the impact field obtained using the T-ReCS mid-infrared camera/spectrometer on Gemini/South on 24 July 2009 has revealed an excess 9-μm absorption in the impact debris in addition to that supplied by hot ammonia created in the impact. We have searched for candidate materials that would best fit the spectral feature near 9 μm, and find that the feature cannot be matched with candidate materials in Jupiter's atmosphere. A search through a large suite of gaseous and solid absorption spectra (c.f Lisse et al. 2008, 2009) revealed that the major competent matches were for (a) obsidian, a glassy silica, and (b) quartz and cristobalite, crystalline silicas, kinetic alteration products of primitive body ferromagnesian silicates formed at high pressures and temperatures over 1500 K. There are also weak features at 10 - 11 um consistent with olivine absorptions. While the high temperatures required to create silicas are also high enough to destroy the non-refractory water and organics dominating icy cometary bodies, and thus destroy their spectral signal, there was no detectable absorption due to pyroxene materials, which, along with olivines in roughly equal measure, comprise the majority of refractory silicaceous species found in comets (Lisse et al. 2007). This suggests that the impacting body was not a comet, but an olivine-rich differentiated body similar to asteroids that are abundant in the outer regions of the main asteroid belt (Lodders and Fegley 1998). We speculate that the weak structural strength of bulk cometary material causes a comet impactor to catastrophically disrupt at higher altitudes and lower temperatures than a strong, dense asteroidal body, so that the cometary refractory dust component remains relatively cold and unaltered through blowback and Jovian surface deposition, while asteroidal dust is heated enough to be transformed from silicates to silicas. Ancillary evidence for the asteroidal nature of the impactor arises from the singular nature of the impact site, the existence of asteroidal orbits consistent with the observed geometry (Chodas 2009, Orton et al. 2010), and the differences between the observed 2009 opacity spectra of the debris and the observed debris opacity created in July 1994 by the SL9 fragments. Nicholson et al. (1995) noted the presence of a non-gaseous component of their spectrum of the SL9 R fragment impact, which they fit with the 'astronomical silicate' of Draine (1985). Griffith et al. (1997) also required an opacity source besides NH3 gas in order to explain the spectral continuum associated with debris from the L fragment, inferring that it was most likely the result of a silicate feature similar to those in comets (Hanner et al. 1994). Both of these are consistent with increased opacity in the 10-12 μm region due to a mix of stratospheric debris consisting of olivines and pyroxenes, typically found in comets, without any additional opacity at ~9 um due to silica.

  10. Electron beam analysis of particulate cometary material

    NASA Technical Reports Server (NTRS)

    Bradley, John

    1989-01-01

    Electron microscopy will be useful for characterization of inorganic dust grains in returned comet nucleus samples. The choice of instrument(s) will depend primarily on the nature of the samples, but ultimately a variety of electron-beam methods could be employed. Scanning and analytical (transmission) electron microscopy are the logical choise for morphological, mineralogical, and bulk chemical analyses of dust grains removed from ices. It may also be possible to examine unmelted ice/dust mixtures using an environmental scanning electron microscope equipped with a cryo-transfer unit and a cold stage. Electron microscopic observations of comet nuclei might include: (1) porosities of dust grains; (2) morphologies and microstructures of individual mineral grains; (3) relative abundances of olivine, pyroxene, and glass; and (4) the presence of phases that might have resulted from aqueous alteration (layer silicates, carbonates, sulfates).

  11. The heliocentric evolution of cometary infrared spectra - Results from an organic grain model

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher F.; Sagan, Carl; Mumma, Michael J.

    1989-01-01

    An emission feature peaking near 3.4 microns that is typical of C-H stretching in hydrocarbons and which fits a simple, two-component thermal emission model for dust in the cometary coma, has been noted in observations of Comets Halley and Wilson. A noteworthy consequence of this modeling is that, at about 1 AU, emission features at wavelengths longer than 3.4 microns come to be 'diluted' by continuum emission. A quantitative development of the model shows it to agree with observational data for Comet Halley for certain, plausible values of the optical constants; the observed heliocentric evolution of the 3.4-micron feature thereby furnishes information on the composition of the comet's organic grains.

  12. CRAF Mission: An opportunity for exobiology

    NASA Technical Reports Server (NTRS)

    Neugebauer, Marcia; Weissman, Paul

    1992-01-01

    The Halley missions of 1986 gave us a first, quick glimpse of a comet nucleus and the first in situ measurements of cometary gas and dust. Many of our basic ideas about cometary nuclei were confirmed while a number of startling new discoveries were also made. However, in many respects the very fast Halley flybys raised more questions than they answered. We learned, for example, that comets contain a large amount of organic material but we were unable to determine precisely which organic molecules were present. We learned, too, that the nucleus of a comet is a dark, irregularly shaped body, but we could determine very little about the physical state and structure of the ices and grains within the comet nucleus.

  13. Dust in the Outer Solar System as measured by Cassini-CDA: KBOs, Centaurs and TNOs as parent bodies?

    NASA Astrophysics Data System (ADS)

    Altobelli, N.; Kempf, S.; Srama, R.

    2017-09-01

    We analyse 13 years of data acquired by the Cosmic Dust Analyser (CDA)-Entrance Grid (EG) subsystem on-board the Cassini spacecraft around Saturn. We confirm the presence of exogenous dust, originating from the interplanetary space and permanently crossing the Saturnian system. We analyse the range of possible heliocentric orbital elements in order to identify their possible origin. We observe particles whose dynamics is compatible with 'old' collisional debris from the Kuiper-Belt, migrating inward the Solar System under influence of the Poynting-Robertson drag, or relatively fresh grains from recently discovered cometary activity of Centaurs. A population of particles entering the Saturn's system with high velocities can be linked to Halley-type comets as parent bodies.

  14. Evidence for Reduced, Carbon-rich Regions in the Solar Nebula from an Unusual Cometary Dust Particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Gregorio, Bradley T.; Stroud, Rhonda M.; Nittler, Larry R.

    Geochemical indicators in meteorites imply that most formed under relatively oxidizing conditions. However, some planetary materials, such as the enstatite chondrites, aubrite achondrites, and Mercury, were produced in reduced nebular environments. Because of large-scale radial nebular mixing, comets and other Kuiper Belt objects likely contain some primitive material related to these reduced planetary bodies. Here, we describe an unusual assemblage in a dust particle from comet 81P/Wild 2 captured in silica aerogel by the NASA Stardust spacecraft. The bulk of this ∼20 μ m particle is comprised of an aggregate of nanoparticulate Cr-rich magnetite, containing opaque sub-domains composed of poorlymore » graphitized carbon (PGC). The PGC forms conformal shells around tiny 5–15 nm core grains of Fe carbide. The C, N, and O isotopic compositions of these components are identical within errors to terrestrial standards, indicating a formation inside the solar system. Magnetite compositions are consistent with oxidation of reduced metal, similar to that seen in enstatite chondrites. Similarly, the core–shell structure of the carbide + PGC inclusions suggests a formation via FTT reactions on the surface of metal or carbide grains in warm, reduced regions of the solar nebula. Together, the nanoscale assemblage in the cometary particle is most consistent with the alteration of primary solids condensed from a C-rich, reduced nebular gas. The nanoparticulate components in the cometary particle provide the first direct evidence from comets of reduced, carbon-rich regions that were present in the solar nebula.« less

  15. TOF-SIMS Analysis of Crater Residues from Wild 2 Cometary on Stardust Aluminum Foil

    NASA Technical Reports Server (NTRS)

    Leutner, Jan; Stephan, Thomas; Kearsley, T.; Horz, Friedrich; Flynn, George J.; Sandford, Scott A.

    2006-01-01

    Impact residues of cometary particles on aluminum foils from the Stardust mission were investigated with TOF-SIMS for their elemental and organic composition. The residual matter from comet 81P/Wild 2 shows a wide compositional range, from nearly monomineralic grains to polymict aggregates. Despite the comparably small analyzed sample volume, the average element composition of the investigated residues is similar to bulk CI chondritic values. Analysis of organic components in impact residues is complicated, due to fragmentation and alteration of the compounds during the impact process and by the presence of contaminants on the aluminum foils. Nevertheless, polycyclic aromatic hydrocarbons (PAHs) that are unambiguously associated with the impact residues were observed, and thus are most likely of cometary origin.

  16. An analysis of the physical, chemical, optical, and historical impacts of the 1908 Tunguska meteor fall

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Park, C.; Whitten, R. C.; Pollack, J. B.; Noerdlinger, P.

    1982-01-01

    An analysis is presented of the physical characteristics and photochemical aftereffects of the 1908 Tunguska explosive cometary meteor, whose physical manifestations are consistent with a five million ton object's entry into the earth's atmosphere at 40 km/sec. Aerodynamic calculations indicate that the shock waves emanating from the falling meteor could have generated up to 30 million tons of nitric oxide in the stratosphere and mesosphere. A fully interactive one-dimensional chemical-kinetics model of atmospheric trace constituents is used to estimate the photochemical consequences of such a large NO injection. The 35-45% hemispherical ozone depletion predicted by the model is in keeping with the 30 + or - 15% ozone variation reported for the first year after the Tunguska fall. Attention is also given to the optical anomalies which followed the event for indications of NO(x)-O(x) chemiluminescent emissions, NO2 solar absorption, and meteoric dust turbidity, along with possible climate changes due to the nearly one million tons of pulverized dust deposited in the mesosphere and stratosphere by the meteor.

  17. Discovery of Brownleeite: a New Manganese Silicide Mineral in an Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Nakamura-Messenger, Keiko; Clemett, Simon J.; Messenger, Scott; Jones, John H.; Palma, Russell L.; Pepin, Robert O.; Klock, Wolfgang; Zolensky, Michael E.; Tatsuoka, Hirokazu

    2011-01-01

    The Earth accretes approximately 40,000 tons of cosmic dust annually, originating mainly from the disintegration of comets and collisions among asteroids. This cosmic dust, also known as interplanetary dust particles (IDPs), is a subject of intense interest since it is made of the original building blocks of our Solar System. Although the specific parent bodies of IDPs are unknown, the anhydrous chondritic-porous IDPs (CP-IDPs) subset has been potentially linked to a cometary source. The CP-IDPs are extremely primitive materials based on their unequilibrated mineralogy, C-rich chemistry, and anomalous isotopic signatures. In particular, some CP-IDPs escaped the thermal, aqueous and impact shock processing that has modified or destroyed the original mineralogy of meteorites. Thus, the CP-IDPs represent some of the most primitive solar system materials available for laboratory study. Most CP-IDPs are comprised of minerals that are common on Earth. However, in the course of an examination of one of the CP-IDPs, we encountered three sub-micrometer sized grains of manganese silicide (MnSi), a phase that has heretofore not been found in nature. In the seminar, we would like to focus on IDP studies and this manganese silicide phase that has been approved as the first new mineral identified from a comet by the International Mineralogical Association (IMA) in 2008. The mineral is named in honour of Donald E. Brownlee, an American astronomer and a founder of the field of cosmic dust research who is the principal investigator of the NASA Stardust Mission that collected dust samples from Comet 81P/Wild-2 and returned them to Earth. Much of our current view and understanding of the early solar system would not exist without the pioneering work of professor Don Brownlee in the study of IDPs.

  18. Electron impact ionization in the vicinity of comets

    NASA Astrophysics Data System (ADS)

    Cravens, T. E.; Kozyra, J. U.; Nagy, A. F.; Gombosi, T. I.; Kurtz, M.

    1987-07-01

    The solar wind interacts very strongly with the extensive cometary coma, and the various interaction processes are initiated by the ionization of cometary neutrals. The main ionization mechanism far outside the cometary bow shock is photoionization by solar extreme ultraviolet radiation.Electron distributions measured in the vicinity of comets Halley and Giacobini-Zinner by instruments on the VEGA and ICE spacecraft, respectively, are used to calculate electron impact ionization frequencies. Ionization by electrons is of comparable importance to photoionization in the magnetosheaths of Comets Halley and Giacobini-Zinner. The ionization frequency in the inner part of the cometary plasma region of comet Halley is several times greater than the photoionization value. Tables of ionization frequencies as functions of electron temperature are presented for H2O, CO2, CO, O, N2, and H.

  19. Presolar Materials in a Giant Cluster IDP of Probable Cometary Origin

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Brownlee, D. E.; Joswiak, D. J.; Nguyen, A. N.

    2015-01-01

    Chondritic porous interplanetary dust particles (CP-IDPs) have been linked to comets by their fragile structure, primitive mineralogy, dynamics, and abundant interstellar materials. But differences have emerged between 'cometary' CP-IDPs and comet 81P/Wild 2 Stardust Mission samples. Particles resembling Ca-Al-rich inclusions (CAIs), chondrules, and amoeboid olivine aggregates (AOAs) in Wild 2 samples are rare in CP-IDPs. Unlike IDPs, presolar materials are scarce in Wild 2 samples. These differences may be due to selection effects, such as destruction of fine grained (presolar) components during the 6 km/s aerogel impact collection of Wild 2 samples. Large refractory grains observed in Wild 2 samples are also unlikely to be found in most (less than 30 micrometers) IDPs. Presolar materials provide a measure of primitive-ness of meteorites and IDPs. Organic matter in IDPs and chondrites shows H and N isotopic anomalies attributed to low-T interstellar or protosolar disk chemistry, where the largest anomalies occur in the most primitive samples. Presolar silicates are abundant in meteorites with low levels of aqueous alteration (Acfer 094 approximately 200 ppm) and scarce in altered chondrites (e.g. Semarkona approximately 20 ppm). Presolar silicates in minimally altered CP-IDPs range from approximately 400 ppm to 15,000 ppm, possibly reflecting variable levels of destruction in the solar nebula or statistical variations due to small sample sizes. Here we present preliminary isotopic and mineralogical studies of a very large CP-IDP. The goals of this study are to more accurately determine the abundances of presolar components of CP-IDP material for comparison with comet Wild 2 samples and meteorites. The large mass of this IDP presents a unique opportunity to accurately determine the abundance of pre-solar grains in a likely cometary sample.

  20. Analysis of Cometary Dust Impact Residues in the Aluminum Foil Craters of Stardust

    NASA Technical Reports Server (NTRS)

    Graham, G. A.; Kearsley, A. T.; Vicenzi, E. P.; Teslich, N.; Dai, Z. R.; Rost, D.; Horz, F.; Bradley, J. P.

    2007-01-01

    In January 2006, the sample return capsule from NASA s Stardust spacecraft successfully returned to Earth after its seven year mission to comet Wild-2. While the principal capture medium for comet dust was low-density graded silica aerogel, the 1100 series aluminum foil (approximately 100 m thick) which wrapped around the T6064 aluminum frame of the sample tray assembly (STA) contains micro-craters that constitute an additional repository for Wild-2 dust. Previous studies of similar craters on spacecraft surfaces, e.g. the Long Duration Exposure Facility (LDEF), have shown that impactor material can be preserved for elemental and mineralogical characterization, although the quantity of impact residue in Stardust craters far exceeds previous missions. The degree of shock-induced alteration experienced by the Wild-2 particles impacting on foil will generally be greater than for those captured in the low-density aerogel. However, even some of the residues found in LDEF craters showed not only survival of crystalline silicates but even their solar flare tracks, which are extremely fragile structures and anneal at around 600 C. Laboratory hypervelocity experiments, using analogues of Wild-2 particles accelerated into flight-grade foils under conditions close to those of the actual encounter, showed retention of abundant projectile residues at the Stardust encounter velocity of 6.1 km/s. During the preliminary examination (PE) of the returned foils, using optical and electron microscopy studies, a diverse range in size and morphologies of micro-craters was identified. In this abstract we consider the state of residue preservation in a diverse range of craters with respect to their elemental composition and inferred mineralogy of the original projectiles.

  1. Cometary crystalline silicate before and after perihelion passage II

    NASA Astrophysics Data System (ADS)

    Ootsubo, Takafumi

    2014-01-01

    Crystalline silicate is often observed in comets as an 11.3-micron resonant emission feature, and may be used for probing the early solar nebula. Because the formation of the crystalline silicate requires high temperature, they are thought to have been born from amorphous silicate at the inner region, and then transported toward the outer regions where comets were born. This transportation can produce the difference in the crystalline fraction in the cometary silicate dust between two dynamical types of comets, Oort-cloud comets (OCs) and Ecliptic comets (ECs), due to the different heliocentric distances of their birth places. The study of peak wavelengths in crystalline features is important to investigate the conditions of the crystalline silicate formation as well. Thus far, we don't have enough observational samples of OCs. Fortunately, we can observe comet C/2012 K1 (PanSTARRS) along with C/2013 A1 (Siding Spring) in this semester. In particular, the comet C/2012 K1 (PanSTARRS) is a bright and good target for this silicate peak feature study. Observations at pre- and post-perihelion provide us precious information on the dust evolution of the comet.

  2. Stardust from Supernovae and Its Isotopes

    NASA Astrophysics Data System (ADS)

    Hoppe, Peter

    Primitive solar system materials, namely, meteorites, interplanetary dust particles, and cometary matter contain small quantities of nanometer- to micrometer-sized refractory dust grains that exhibit large isotopic abundance anomalies. These grains are older than our solar system and have been named "presolar grains." They formed in the winds of red giant and asymptotic giant stars and in the ejecta of stellar explosions, i.e., represent a sample of stardust that can be analyzed in terrestrial laboratories for isotopic compositions and other properties. The inventory of presolar grains is dominated by grains from red giant and asymptotic giant branch stars. Presolar grains from supernovae form a minor but important subpopulation. Supernova (SN) minerals identified to date include silicon carbide, graphite, silicon nitride, oxides, and silicates. Isotopic studies of major, minor, and trace elements in these dust grains have provided detailed insights into nucleosynthetic and mixing processes in supernovae and how dust forms in these violent environments.

  3. THE CIRCUMSTELLAR ENVIRONMENT OF R CORONAE BOREALIS: WHITE DWARF MERGER OR FINAL-HELIUM-SHELL FLASH?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Geoffrey C.; Andrews, J. E.; Sugerman, Ben E. K.

    2011-12-10

    In 2007, R Coronae Borealis (R CrB) went into a historically deep and long decline. In this state, the dust acts like a natural coronagraph at visible wavelengths, allowing faint nebulosity around the star to be seen. Imaging has been obtained from 0.5 to 500 {mu}m with Gemini/GMOS, Hubble Space Telescope/WFPC2, Spitzer/MIPS, and Herschel/SPIRE. Several of the structures around R CrB are cometary globules caused by wind from the star streaming past dense blobs. The estimated dust mass of the knots is consistent with their being responsible for the R CrB declines if they form along the line of sightmore » to the star. In addition, there is a large diffuse shell extending up to 4 pc away from the star containing cool 25 K dust that is detected all the way out to 500 {mu}m. The spectral energy distribution of R CrB can be well fitted by a 150 AU disk surrounded by a very large diffuse envelope which corresponds to the size of the observed nebulosity. The total masses of the disk and envelope are 10{sup -4} and 2 M{sub Sun }, respectively, assuming a gas-to-dust ratio of 100. The evidence pointing toward a white dwarf merger or a final-helium-shell flash origin for R CrB is contradictory. The shell and the cometary knots are consistent with a fossil planetary nebula. Along with the fact that R CrB shows significant lithium in its atmosphere, this supports the final-helium-shell flash. However, the relatively high inferred mass of R CrB and its high fluorine abundance support a white dwarf merger.« less

  4. Administrative Report on Training Awards

    NASA Technical Reports Server (NTRS)

    Woodward, Charles E.

    1999-01-01

    During the tenure of this award, the recipient (David Harker) conducted areas of research which resulted in the award of a doctorate degree (August 1999) from the University of Wyoming. The primary science activity was investigation of silicate dust mineralogy in comets, particularly comet C/1995 O1 (Hale-Bopp). Determination of the dust mineralogy permits us to address an important astrophysical question of relevance to the origins and evolution of solar systems, "Do comets contain relic interstellar dust grains? Since, comets represent the frozen reservoirs of primitive proto-solar dust and ice, we can gain insight into the problem of understanding the formation of protoplanetesimals in the. early solar nebula. Mid-infrared spectrophotometry (7 - 14 micron, R approx. = 180 - 360) of Hale-Bopp was obtained with the NASA/Ames HIFOGS at four distinct epochs pre- and post- perihelion ion from 1996 October through 1997 June. These observations were conducted at the Wyoming Infrared Observatory and the NASA Infrared Telescope Facility, and were supported by funds from this training grant. The emission at mid-IR wavelengths in cometary comae arises from carbon grains, and small silicate grains which produce resonance features. Hale-Bopp had the strongest silicate feature observed from any comet to date. Theoretical calculations utilizing Mie Scattering Theory were employed to construct Synthetic cometary spectra to fit with the observed HIFOGS 10 microns spectral feature of Hale-Bopp. Our analysis suggests that the observed spectra can be modeled with the Hanner grain size distribution peaked at alpha((sub p) = 0.2 microns of fractal porous grains with porosity parameter D = 2.5. This model spectrum also fits photometry points in the 3 - 5 microns region. Comparison with the ISO SWS spectrum of Hale-Bopp obtained 1996 October reveals that the crystalline olivine grains must be at it temperature hotter than computed from Mie theory.

  5. Comet 81p/Wild 2: The Updated Stardust Coma Dust Fluence Measurement for Smaller (Sub 10-Micrometre) Particles

    NASA Technical Reports Server (NTRS)

    Price, M. C.; Kearsley, A. T.; Burchell, M. J.; Horz, Friedrich; Cole, M. J.

    2009-01-01

    Micrometre and smaller scale dust within cometary comae can be observed by telescopic remote sensing spectroscopy [1] and the particle size and abundance can be measured by in situ spacecraft impact detectors [2]. Initial interpretation of the samples returned from comet 81P/Wild 2 by the Stardust spacecraft [3] appears to show that very fine dust contributes not only a small fraction of the solid mass, but is also relatively sparse [4], with a low negative power function describing grain size distribution, contrasting with an apparent abundance indicated by the on-board Dust Flux Monitor Instrument (DFMI) [5] operational during the encounter. For particles above 10 m diameter there is good correspondence between results from the DFMI and the particle size inferred from experimental calibration [6] of measured aerogel track and aluminium foil crater dimensions (as seen in Figure 4 of [4]). However, divergence between data-sets becomes apparent at smaller sizes, especially submicrometre, where the returned sample data are based upon location and measurement of tiny craters found by electron microscopy of Al foils. Here effects of detection efficiency tail-off at each search magnification can be seen in the down-scale flattening of each scale component, but are reliably compensated by sensible extrapolation between segments. There is also no evidence of malfunction in the operation of DFMI during passage through the coma (S. Green, personal comm.), so can the two data sets be reconciled?

  6. The survivability of phyllosilicates and carbonates impacting Stardust Al foils: Facilitating the search for cometary water

    DOE PAGES

    Wozniakiewicz, Penelope J.; Ishii, Hope A.; Kearsley, Anton T.; ...

    2015-11-05

    Comet 81P/Wild 2 samples returned by NASA's Stardust mission provide an unequalled opportunity to study the contents of, and hence conditions and processes operating on, comets. They can potentially validate contentious interpretations of cometary infrared spectra and in situ mass spectrometry data: specifically the identification of phyllosilicates and carbonates. However, Wild 2 dust was collected via impact into capture media at ~6 km s -1, leading to uncertainty as to whether these minerals were captured intact, and, if subjected to alteration, whether they remain recognizable. Here, we simulated Stardust Al foil capture conditions using a two-stage light-gas gun, and directlymore » compared transmission electron microscope analyses of pre- and postimpact samples to investigate survivability of lizardite and cronstedtite (phyllosilicates) and calcite (carbonate). We find the phyllosilicates do not survive impact as intact crystalline materials but as moderately to highly vesiculated amorphous residues lining resultant impact craters, whose bulk cation to Si ratios remain close to that of the impacting grain. Closer inspection reveals variation in these elements on a submicron scale, where impact-induced melting accompanied by reducing conditions (due to the production of oxygen scavenging molten Al from the target foils) has resulted in the production of native silicon and Fe- and Fe-Si-rich phases. In contrast, large areas of crystalline calcite are preserved within the calcite residue, with smaller regions of vesiculated, Al-bearing calcic glass. Unambiguous identification of calcite impactors on Stardust Al foil is therefore possible, while phyllosilicate impactors may be inferred from vesiculated residues with appropriate bulk cation to Si ratios. Finally, we demonstrate that the characteristic textures and elemental distributions identifying phyllosilicates and carbonates by transmission electron microscopy can also be observed by state-of-the-art scanning electron microscopy providing rapid, nondestructive initial mineral identifications in Stardust residues.« less

  7. Origin of cometary and chondritic refractory organics: Ion irradiation experiments

    NASA Astrophysics Data System (ADS)

    Quirico, E.; Faure, M.; Faure, A.; Baklouti, D.; Boduch, P.; Rothard, H.; Ballanzat, E.; Dartois, E.; Brunetto, R.; Bonal, L.; Beck, P.; Schmitt, B.; Duprat, J.; Engrand, C.

    2017-09-01

    The formation process of Refractory Organic matter present in chondrites and Interplanetary Dust Particles (IDPs) of cometary and asteroidal origin is a debated issue. Earlier studies have advocated a formation step in a hot environment, however the potential role of ion irradiation has been so far poorly constrained. We present here experimental simulations that address this issue, comprising thermal degradation and ion irradiation experiments conducted at GANIL (Caen France) and CSNSM (Orsay France). We show that unlike thermal reactions, ion irradiation might lead to ROM-like material under very stringent conditions on both the nuclear dose and the nature of precursor. These very narrow conditions suggest that forming ROM without any action of thermal reactions is extremely difficult in astrophysical environments, either ISM or the proto-solar disk.

  8. Preliminary studies of electromagnetic sounding of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Gabriel, A.; Warne, L.; Bednarczyk, S.; Elachi, C.

    1978-01-01

    The internal structure of a comet could be determined with a spacecraft borne electromagnetic sounder. A dielectric profile of the comet could be produced in direct analogy with terrestrial glacier and ice sheet sounding experiments. This profile would allow the detection of a rocky core or ice layers if they exist, just as layers in the ice and the bedrock interface have been clearly observed through the Greenland ice sheet. It would also provide a gross estimate of the amount of dust in the icy region. Models for the response of the nucleus and cometary plasma to electromagnetic sounding are developed and used to derive experimental parameters. A point system design was completed. Preliminary engineering study results indicate that the sounder is well within the bounds of current space technology.

  9. Correlation Between Cometary Gas/Dust Ratios and Heliocentric Distance

    NASA Astrophysics Data System (ADS)

    Harrington, Olga; Womack, Maria; Lastra, Nathan

    2017-10-01

    We compiled CO-based gas/dust ratios for several comets out to heliocentric distances, rh, of 8 au to probe whether there is a noticeable change in comet behavior over the range that water-ice sublimation starts. Previously, gas/dust ratios were calculated for an ensemble of comets using Q(CO2)/efp values derived from infrared measurements, which showed that the gas/dust ratio follows a rh-2 within 4 AU, but is flat at greater distances (Bauer et al. 2015). Our project focuses on gas/dust ratios for which CO is assumed to be the dominant gas, in order to test whether similar breaks in slope occur for CO. The gas/dust ratios were calculated from measurements of CO production rates (mostly from millimeter-wavelength spectroscopy) and reflected sunlight of comets (mostly via reported visual magnitudes of dusty comets). We present our new CO-based gas/dust ratios at different heliocentric distances, compare them to existing CO2-based gas/dust ratios, and discuss implications for CO-driven and CO2-driven activity. We discuss O.H. acknowledges support from the Hartmann Student Travel Grant program. M.W. acknowledges support from NSF grant AST-1615917.

  10. Comet C2012 S1 (ISON): Observations of the Dust Grains From SOFIA and of the Atomic Gas From NSO Dunn and Mcmath-Pierce Solar Telescopes

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Woodward, Charles E.; Harker, David E.; Kelley, Michael S. P.; Sitko, Michael; Reach, William T.; De Pater, Imke; Gehrz, Robert D.; Kolokolova, Ludmilla; Cochran, Anita L.; hide

    2013-01-01

    Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our SOFIA (+FORCAST) mid- to far-IR images and spectroscopy (approx. 5-35 microns) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h approx. = 1.18 AU). Dust characteristics, identified through the 10 micron silicate emission feature and its strength, as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 microns, and near 16, 19, 23.5, 27.5, and 33 microns are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) to large and/or compact grains (e.g., C/2007 N4 (Lulin) and C/2006 P1 (McNaught)). Measurement of the crystalline peaks in contrast to the broad 10 and 20 micron amorphous silicate features yields the cometary silicate crystalline mass fraction, which is a benchmark for radial transport in our protoplanetary disk. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals. Only SOFIA can look for cometary organics in the 5-8 micron region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h< 0.4 AU, near Nov-20-Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures 4 settings: Na I, K, C2 to sample cometary organics (along with Mg I), and [OI] as a proxy for activity from water (along with Si I and Fe I). State-of-the-art instruments that will also be employed include IBIS, which is a Fabry-Perot spectral imaging system that concurrently measures lines of Na, K, Ca II, or Fe, and ROSA (CSUN/QUB), which is a rapid imager that simultaneously monitors Ca II or CN. From McMath-Pierce, the Solar-Stellar Spectrograph also will target ISON (320-900 nm, R approx. 21,000, r_h<0.3 AU). Assuming survival, the intent is to target ISON over r_h<0.4 AU, characteristic of prior Na detections.

  11. Depletions of sulfur and/or zinc in IDPs: Are they reliable indicators of atmospheric entry heating?

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.; Bajt, S.; Kloeck, W.; Thomas, K. L.; Keller, L. P.

    1993-01-01

    The degree of heating of interplanetary dust particles (IDP's) on Earth atmospheric entry is important in distinguishing cometary particles from main-belt asteroidal particles. Depletions in the volatile elements S and Zn were proposed as chemical indicators of significant entry heating. The S and Zn contents of cosmic dust particles were correlated with physical indicators of atmospheric entry heating, such as the production of magnetite and the loss of solar wind implanted He. The results indicate that the Zn content of IDP's is a useful indicator of entry heating, but the S content seems to be less useful.

  12. Accretion of Cometary Nuclei in the Solar Nebula: Boulders, Not Pebbles

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; A'Hearn, Michael

    2015-11-01

    Comets are the most primitive bodies in the solar system. They retain a largely unprocessed record of conditions in the primordial solar nebula 4.56 Gyr ago, including the initial accretion of dust and ice particles into macroscopic bodies. Current accretion theory suggests that ice and dust aggregates grew to pebble (cm) sizes before streaming instabilities and gravitational collapse brought these pebble swarms together as km-sized (or larger) bodies. Recent imaging of the nucleus of comet 67P/Churyumov-Gerasimenko by the Rosetta OSIRIS camera team has revealed the existence of “goose bump” terrain on the nucleus surface and lining the interior walls of large, ~200 m diameter and 180 m deep cylindrical pits. These pits are believed to be sinkholes, formed when near-surface materials collapse into voids within the nucleus, revealing the fresh comet interior on the walls of the pits. The goose bump terrain consists of 3-4 m diameter “boulders” randomly stacked one on top of another. We propose that these boulders, likely with an icy-conglomerate composition, are the basic building blocks of cometary nuclei. This is the first observational confirmation of current accretion theories, with the caveat that rather than pebbles, the preferred size range is 3-4 m boulders for objects formed in the giant planets region of the solar system. The presence of icy grains beyond the solar nebula snow-line and the large heliocentric range of the giant planets region likely contribute to the formation of these larger boulders, before they are incorporated into cometary nuclei. This work was supported by NASA through the U.S. Rosetta Project.

  13. Coma dust scattering concepts applied to the Rosetta mission

    NASA Astrophysics Data System (ADS)

    Fink, Uwe; Rinaldi, Giovanna

    2015-09-01

    This paper describes basic concepts, as well as providing a framework, for the interpretation of the light scattered by the dust in a cometary coma as observed by instruments on a spacecraft such as Rosetta. It is shown that the expected optical depths are small enough that single scattering can be applied. Each of the quantities that contribute to the scattered intensity is discussed in detail. Using optical constants of the likely coma dust constituents, olivine, pyroxene and carbon, the scattering properties of the dust are calculated. For the resulting observable scattering intensities several particle size distributions are considered, a simple power law, power laws with a small particle cut off and a log-normal distributions with various parameters. Within the context of a simple outflow model, the standard definition of Afρ for a circular observing aperture is expanded to an equivalent Afρ for an annulus and specific line-of-sight observation. The resulting equivalence between the observed intensity and Afρ is used to predict observable intensities for 67P/Churyumov-Gerasimenko at the spacecraft encounter near 3.3 AU and near perihelion at 1.3 AU. This is done by normalizing particle production rates of various size distributions to agree with observed ground based Afρ values. Various geometries for the column densities in a cometary coma are considered. The calculations for a simple outflow model are compared with more elaborate Direct Simulation Monte Carlo Calculation (DSMC) models to define the limits of applicability of the simpler analytical approach. Thus our analytical approach can be applied to the majority of the Rosetta coma observations, particularly beyond several nuclear radii where the dust is no longer in a collisional environment, without recourse to computer intensive DSMC calculations for specific cases. In addition to a spherically symmetric 1-dimensional approach we investigate column densities for the 2-dimensional DSMC model on the day and night side of the comet. Our calculations are also applied to estimates of the dust particle densities and flux which are useful for the in-situ experiments on Rosetta.

  14. Asteroidal versus cometary meteoroid impacts on the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Zook, Herbert A.

    1993-01-01

    Meteoroids that enter the Earth's atmosphere at low velocities will tend to impact the apex side (that surface facing the spacecraft direction of motion) of a spacecraft at a very high rate compared to the rate with which they will impact an antapex-facing surface. This ratio--apex to antapex impact rates--will become less as meteoroid entry velocities increase. The measured ration, apex to antapex, for 500 micron diameter impact craters in 6061-T6 aluminum on LDEF seems to be about 20 from the work of the meteoroid SIG group and others, that was presented at the first LDEF symposium. Such a ratio is more consistent with the meteoroid velocity distributions derived by Erickson and by Kessler, than it is with others that have been tested. These meteoroid velocity distributions have mean entry velocities into the Earth's atmosphere of 16.5 to 16.9 km/s. Others have numerically simulated the orbital evolution of small dust grains emitted from asteroids and comets. For those asteroidal grains small enough (below about 100 microns diameter) to drift from the asteroid belt to the orbit of the Earth, under P-R and solar wind drag, without suffering collisional destruction, the following results are found: as the ascending or descending nodes cross the Earth's orbit, their orbital eccentricities and inclinations are quite low (e less than 0.3, i less than 20 deg), and their mean velocity with respect to the Earth is about 5 or 6 km/s. When gravitational acceleration of the Earth is taken into account, the corresponding mean velocities relative to the top of the Earth's atmosphere are 12 to 13 km/s. This means that, at best, these small asteroidal particles cannot comprise more than 50 percent of the particles entering the Earth's atmosphere. When gravitational focusing is considered, they cannot comprise more than a few percent of those in heliocentric orbit at 1 AU. The rest are presumably of cometary origin.

  15. The “Main-Belt Comets” are not comets, nor active asteroids; they are temporary shaken asteroids

    NASA Astrophysics Data System (ADS)

    Tancredi, Gonzalo

    2015-08-01

    Several objects in asteroidal orbits have presented comaes and tails similar to the ones presented by comets for short period of times. There are at present 16 objects in this group. Several hypotheses have been proposed to explain the activity of this object [Jewitt 2012]. Among them, the most accepted scenario for many objects is the ice sublimation and the ejection of dust, in a similar way as the cometary activity. Therefore several authors have coined these objects “Main Belt Comets” [Hsieh & Jewitt 2006]. Nevertheless, in some cases, some authors have concluded that the ejection of dust must be due to an impact.We propose an alternative model for the formation of the dusty comaes and tails.The impact of a small body against a larger one initially produces a crater and the ejection of dust at high velocity (>100 m/s). The dust is rapidly dispersed and it should be only observable just after the impact. In addition the impact generates a shock wave, which propagates to the body interior. The asteroid is globally shaken. Material is ejected at low velocities from the entire surface, similar to the low escape velocities at the surface. The particles move away from the asteroid due to the solar radiation pressure, forming the thin tails aligned with the orbital plane. These tails could persist for various months, as they have been seen in these objects.In addition, chunks of rock could be ejected in suborbital flights lasting for days; which, at return they would induce a new low-velocity ejection of particles. This process can explain some of the long-lasting events.The recurrence of the activity for some objects could be explained due to the collision with a dense meteor shower present in the main-belt.The so-called “Main Belt Comets” could be explained with a hypothesis that does not require the presence of ice on the surface of these objects. We also do not favor the term “Activated asteroids”, because it implies some kind of endogenous process. The objects are plain asteroids that suffered a recent collision, and the entire body is shaken, ejecting dust from the surface at low velocities.

  16. P/2013 P5 PANSTARRS --- a rubbing binary?

    NASA Astrophysics Data System (ADS)

    Hainaut, O.; Snodgrass, C.

    2014-07-01

    P/2013 P5 PANSTARRS (hereafter P5) was discovered [1] on a Main Belt orbit, with a cometary appearance, thereby joining the small but growing collection of objects with such characteristics, loosely called the Main Belt Comets. The dust-lifting process at play on these bodies is not known, although several hypotheses are considered. Furthermore, it is likely that different objects are associated with different processes. For instance, 133P [2,3] and 238P [4] were active for extended periods of time on consecutive passage through perihelion; traditional cometary activity, i.e. caused by the sublimation of volatile ice, is the most likely candidate. In other cases, e.g. (596) Scheila [5,6], P/2012 F5 [7,8] or P/2010 A2 [9-11], the morphology of the dust cloud was compatible with a short, impulsive dust release; they are interpreted as the result of an impact with a smaller body. Finally, in some cases, rotational disruption was proposed as the process causing the activity: a gentle centrifugal lift (proposed by Agarwal et al. [12] for A2) or a complete disruption for P/2013 R3 [13]. Other additional processes were proposed by Jewitt [14], but they do not apply in the case of P5. P5 displayed a dust pattern [15-17] that had not been observed before in other objects. The dust cloud appeared as a series of radial fans and streaks, including some extremely narrow ones. The straight streaks matched synchrones, i.e. loci of dust particles emitted at a given time, and spread radially by the radiation pressure acting differently over a broad range of particle sizes. The narrowness of these lines, especially as observed with HST [15], indicated that the emission episodes were very short. Through a Finson-Probstein [18] analysis, it was shown that the dust release started at least 8 months before the observations, and had a series of very short episodes of dust releases. Because of the location of P5 in the inner Main Belt, sublimation-driven activity is unlikely. Rotational disruption is a possible interpretation [15-17]: the peaks of activity would represent the effects of centrifugal landslides and surface readjustments. We propose another process [17]: we suggest that P5 is a small, quasi-contact binary, whose components are either occasionally touching, or settling together into a full-contact binary. The object would then release dust liberated by these repeated low velocity impact, or rather rubbing between its components. Sharma [19] studied the equilibrium of rubble-pile binaries, and concluded that many stable solutions exist for contact and near-contact objects, with a range of prolateness for both components and for a range of shear resistance of the rubble pile. In other words, such an object, if it can be formed, can be stable. Descamp [20] reviewed observations of known binaries in the context of the Roche systems, i.e. fully synchronized binary objects in fluid equilibrium. Several objects appear to be contact binaries, including some very small objects in the same size range as P5, e.g., 2002 NY_40 and 2005 CR_37. Radar observations [21] showed that (69230) Hermes is a fully synchronized binary, with components only slightly larger than P5 (630 and 560 m), separated by a few radii (1200 m). While their formation process is not known, these observations suggest that small, fully synchronized contact binaries do exist. In the case of P5, this hypothesis can be tested observationally, as the 3^{rd} Kepler law indicates that the rotation period of the system should be of several hours, while a rotationally disrupted object should have a period of around 2 h or less. In the mean time, this idea is submitted to ACM.

  17. Hst Measurements Of Main Belt Comet 300163

    NASA Astrophysics Data System (ADS)

    Jewitt, David; Weaver, H.; Agarwal, J.; Mutchler, M.; Larson, S.

    2012-10-01

    Asteroid 300163 (semimajor axis 3.05 AU, eccentricity 0.20, inclination 3 deg., Tisserand parameter 3.20) is a source of dust, giving it the dual cometary designation P/2006 VW139. It satisfies the definition of a main-belt comet (MBC) by having the orbital character of a main-belt asteroid but the diffuse appearance of a comet. We obtained Hubble Space Telescope observations of this object in December 2011 in order to study the morphology of the ejected dust at the highest angular resolution and to determine the cause of the mass loss from the nucleus. One of the two HST observing epochs was carefully timed to coincide with the Earth's crossing of the orbital plane (out of plane angle 0.01 deg.) to obtain a measure of the vertical velocity dispersion free from the effects of projection. We find an extraordinarily thin dust sheet and infer a sub-meter per second dust ejection velocity. Observations at the second epoch show a change in the near-nucleus dust morphology that indicates continuing ejection (i.e. the dust emission is not impulsive). We use the low velocity ejection, coupled with the absence of an observable coma, to help constrain the possible source mechanisms for the dust.

  18. Light scattering by dust particles (PROGRA2 experiment): size and structure effects for transparent and absorbing materials

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Renard, J.-B.; Lasue, J.; Levasseur-Regourd, A. C.

    2007-08-01

    1- Introduction Cometary and possibly interplanetary dust particles seem to be mainly made of agglomerates of submicron and micron-sized grains. These particles are among the most primitive in our solar system. Regoliths on asteroidal and planetary surfaces seem to be loose materials produced by impinging meteorites on the surface of small bodies. Comparing their physical properties is thus fundamental to understand their evolution. To interpret remote observations of solar light scattered by dust particles and regoliths, it is necessary to use numerical and experimental simulations [1,2,3]. 2- PROGRA2 experiment PROGRA2 instruments are polarimeters; the light sources are two randomly polarized lasers (632.8 nm and 543.5 nm). Levitating particles (in microgravity or lifted by an air-draught) are studied by imaging polarimetry. Details on the instruments can be found in [4,5]. 3- Samples Two kinds of samples are studied: compact particles in the (1-400) micrometer size range and fluffy aggregates in the same size range, made from submicron and micronsized grains. The materials are transparent silica and absorbing carbon. Some deposited particles are huge agglomerates of micron-sized grains produced by random ballistic deposition of single grains [6,7] or produced by evaporation of mixtures in alcohol of fluffy aggregates of submicron-sized grains. Two samples are made of silica spheres coated by a carbonaceous black compound. Cometary analogues are mixtures of silica and amorphous carbon or Mg-Fe silicates mixed with amorphous carbon. 4- Results Phase curves and their main parameters (negative polarization at small phase angles and maximum polarization, Pmax, at 90-100° phase angle) for the different materials will be compared and related to the physical properties. For example, it is well known by numerical simulations and/or by experiments that the maximum polarization decreases when the size (submicrometer range) of the grains increases [2,8,9]. An inverse rule is found for compact grains, larger than the wavelength. Mixtures of fluffy silica and fined grained amorphous carbon or better Mg-Fe silicates with amorphous carbon are excellent cometary particles analogues (as light scattering is concerned) if they are mixed with some compact micron-sized grains [9]. Nevertheless the structure of the aggregates seems to play a major role to obtain the negative branch found on the polarimetric phase curves for comets [10]. 5- Discussion and conclusions The experiments purpose is to help to disentangle the different physical properties of dust particles that can be deduced from remote observations (cometary dust, regoliths). Differences between the main parameters influencing the variations of Pmax and the presence of a negative branch on the polarimetric phase curves for lifted and deposited particles (in huge agglomerates or not) will be discussed. Acknowledgments: Technische Universität Carolo-Wilhelmina, Braunschweig, Deutschland (Pr Blum, Dr Schräpler); University of New Mexico, Albuquerque, USA (Pr Rietmeijer); NASA Goddard Space Flight Center, Maryland, USA (Dr Nuth) References [1] A.C. Levasseur-Regourd, E. Hadamcik, JQSRT 79-80, 903 (2003) [2] J. Lasue, A.C. Levasseur-Regourd, JQSRT 100, 220 (2006) [3] J.-B. Renard et al., ASR 31, 2511 (2003) [4] J.-B. Renard et al., Appl. Opt. 91, 609 (2002) [5] E. Hadamcik et al., JQSRT 106, 74 (2007) [6] J. Blum, R. Schreapler, Phys. Rev Let 93:115031 (2004) [7] J. Blum et al., Astrophys J 652, 1768 (2006) [8] R. West, Appl. Opt. 30, 5216 (1991) [9] E. Hadamcik et al., JQSRT 100, 143 (2006) [10] E. Hadamcik et al., Icarus, in press (2007)

  19. Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs.

    PubMed

    Mann, Ingrid

    2017-07-13

    Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  20. Dust ablation on the giant planets: Consequences for stratospheric photochemistry

    NASA Astrophysics Data System (ADS)

    Moses, Julianne I.; Poppe, Andrew R.

    2017-11-01

    Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe et al., 2016), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0-0.7+2.2 ×107 O atoms cm-2 s-1 to Jupiter, 7.4-5.1+16 ×104 cm-2 s-1 to Saturn, 8.9-6.1+19 ×104 cm-2 s-1 to Uranus, and 7.5-5.1+16 ×105 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.

  1. PROGRA2 experiment: new results for dust clouds and regoliths

    NASA Astrophysics Data System (ADS)

    Renard, J.-B.; Hadamcik, E.; Worms, J.-C.; Levasseur-Regourd, A.-C.; Daugeron, D.

    With the CNES-sponsored PROGRA2 facility, linear polarization of scattered light is performed on various types of dust clouds in microgravity during parabolic flights onboard the CNES- and ESA-sponsored A300 Zéro-G aircraft. Clouds of fluffy aggregates are also studied on the ground when lifted by an air-draught. The effect of the physical properties of the particles, such as the grains size and size distribution, the real part of the refractive index, and the structure is currently being studied. The size distribution of the agglomerates is measured in the field of view from the polarized component images. The large number of phase curves already obtained in the various conditions of measurements, in order to build a database (about 160 curves) allows us to better connect the physical properties with the observed polarization of the dust in the clouds. The aim is to compare these curves with those obtained in the solar system by remote-sensing and in-situ techniques for interplanetary dust, cometary coma, and solid particles in planetary atmospheres (Renard et al., 2003). Measurements on layers of particles (i.e. on the ground) are then compared with remote measurements on asteroidal regoliths and planetary surfaces. New phase curves will be presented and discussed i.e. for quartz samples, crystals, fluffy mixtures of alumina and silica, and a high porosity ``regolith'' analogue made of micron-sized silica spheres. This work will contribute to the choice of the samples to be studied with the IMPACT/ICAPS instrument onboard the ISS. J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms and A.-C. Levasseur-Regourd (2003). Polarization imaging of dust cloud particles: improvement and applications of the PROGRA2 instrument, ASR 31, 12, 2511-2518.

  2. A late Miocene dust shower from the break-up of an asteroid in the main belt.

    PubMed

    Farley, Kenneth A; Vokrouhlický, David; Bottke, William F; Nesvorný, David

    2006-01-19

    Throughout the history of the Solar System, Earth has been bombarded by interplanetary dust particles (IDPs), which are asteroid and comet fragments of diameter approximately 1-1,000 microm. The IDP flux is believed to be in quasi-steady state: particles created by episodic main belt collisions or cometary fragmentation replace those removed by comminution, dynamical ejection, and planetary or solar impact. Because IDPs are rich in 3He, seafloor sediment 3He concentrations provide a unique means of probing the major events that have affected the IDP flux and its source bodies over geological timescales. Here we report that collisional disruption of the >150-km-diameter asteroid that created the Veritas family 8.3 +/- 0.5 Myr ago also produced a transient increase in the flux of interplanetary dust-derived 3He. The increase began at 8.2 +/- 0.1 Myr ago, reached a maximum of approximately 4 times pre-event levels, and dissipated over approximately 1.5 Myr. The terrestrial IDP accretion rate was overwhelmingly dominated by Veritas family fragments during the late Miocene. No other event of this magnitude over the past approximately 10(8) yr has been deduced from main belt asteroid orbits. One remarkably similar event is present in the 3He record 35 Myr ago, but its origin by comet shower or asteroid collision remains uncertain.

  3. Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse.

    PubMed

    Vincent, Jean-Baptiste; Bodewits, Dennis; Besse, Sébastien; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F; Auger, Anne-Thérèse; Barucci, M Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Capanna, Claire; Cremonese, Gabriele; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; El-Maarry, Mohamed Ramy; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Giacomini, Lorenza; Groussin, Olivier; Guilbert-Lepoutre, Aurélie; Gutierrez-Marques, P; Gutiérrez, Pedro J; Güttler, Carsten; Hoekzema, Nick; Höfner, Sebastian; Hviid, Stubbe F; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M; Lazzarin, Monica; Lee, Vicky; Leyrat, Cédric; Lin, Zhong-Yi; Lopez Moreno, Josè J; Lowry, Stephen; Magrin, Sara; Maquet, Lucie; Marchi, Simone; Marzari, Francesco; Massironi, Matteo; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Preusker, Frank; Scholten, Frank; Thomas, Nicolas; Toth, Imre; Tubiana, Cecilia

    2015-07-02

    Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts. Alternative mechanisms like explosive activity have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.

  4. Distant Jupiter family Comet P/2011 P1 (McNaught)

    NASA Astrophysics Data System (ADS)

    Korsun, Pavlo P.; Ivanova, Oleksandra V.; Afanasiev, Viktor L.; Kulyk, Irina V.

    2016-03-01

    The spectra and images obtained through broadband BVRc filters for Jupiter family Comet P/2011 P1 (McNaught) were analyzed. We observed the comet on November 24, 2011, when its heliocentric distance was 5.43 AU. Two dimensional long slit spectra and photometric images were obtained using the focal reducer SCORPIO attached to the prime focus of the 6-m telescope BTA (SAO RAS, Russia). The spectra cover the wavelength range of 4200-7000 Å. No emissions of C2 and CO+, which are expected in this wavelength region, were detected above 3σ level. An upper limit in gas production rate of C2 is expected to be 1.1 × 1024 mol s-1. The continuum shows a reddening effect with the normalized gradient of reflectivity along dispersion of 5.1 ± 1.2% per 1000 Å. The color indices (B-V) = 0.89 ± 0.09 and (V-Rc) = 0.42 ± 0.07 for the nucleus region or (B-V) = 0.68 ± 0.12 and (V-Rc) = 0.39 ± 0.10 for the coma region, which are derived from the photometric data, also evidence that the color of the cometary nucleus and dust are redder with respect to the Sun. The normalized gradients of 5.9 ± 2.9% per 1000 Å and 2.6 ± 1.9% per 1000 Å for VRc filters were obtained for the cometary nucleus and the dust coma, respectively. The estimated dust mass production rate is about 12 kg s-1 for Rc filter. The dust coma like a spiral galaxy edge-on was fitted using a Monte Carlo model. Since it is expected that the particles forming the dust coma consist of ;dirty; ice, Greenberg's model was adopted to track grains with an icy component that evaporates slowly when exposed to solar radiation. The observed coma was fitted assuming two isolated active zones located at the cometocentric latitudes of -8° and -35° with outflow of the dust within the cones having half opening angles of 8° and 70°, respectively. About, 45% and 55% of the observed dust were originated from the high collimated and low collimated active zones, respectively. The spin-axis of the rotating nucleus is positioned in the comet's orbit plane. The sizes of the dust particles were ranged from 5 μm to 1 mm with a power index of -3.0 for the adopted exponential dust size distribution.

  5. Nitrogen Isotopic Composition of Organic Matter in a Pristine Collection IDP

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Nguyen, A. N.; Walker, Robert M.

    2012-01-01

    Anhydrous chondritic porous interplanetary dust particles (CP IDPs) are probable cometary materials that show primitive characteristics, such as unequilibrated mineralogy, fragile structure, and abundant presolar grains and organic matter [1-3]. CP IDPs are richer in aliphatic species and N-bearing aromatic hydrocarbons than meteoritic organics and commonly exhibit highly anomalous H and N isotopic compositions [4,5]. Cometary organic matter is of interest in part because it has escaped the hydrothermal processing experienced by meteorites. However, IDPs are collected using silicon oil that must be removed with strong organic solvents such as hexane. This procedure is likely to have removed some fraction of soluble organic phases in IDPs. We recently reported the first stratospheric collection of IDPs without the use of silicone oil [6]. Here we present initial studies of the carbonaceous material in an IDP from this collection.

  6. Carbon Raman Spectroscopy of 36 Inter-Planetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Busemann, H.; Nittler, L. R.; Davidson, J.; Franchi, I. A.; Messenger, S.; Nakamura-Messenger, K.; Palma, R. L.; Pepin, R. O.

    2009-01-01

    Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.

  7. PROGRA2 experiment: New results for dust clouds and regoliths analogs

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Renard, J.-B.; Levasseur-Regourd, A. C.; Worms, J.-C.

    2006-01-01

    With the PROGRA2 experience, linear polarization of scattered light is measured on various types of dust clouds lifted by microgravity, or by an air-draught. The aim is to compare the phase curves for dust analogs with those obtained in the Solar System (cometary comae, and solid particles in planetary atmospheres) by remote-sensing and in situ techniques. Measurements are also performed on layers of particles (on the ground) and compared with remote measurements on asteroidal regoliths and planetary surfaces. New phase curves have been obtained, e.g., for quartz samples, crystals, fluffy mixtures of silica and carbon blacks and a high porosity regolith analog made of micron-sized silica spheres. This work will contribute to the choice of the samples to be studied with the ICAPS experiment onboard the ISS and on the precursor experiment.

  8. Comets

    NASA Astrophysics Data System (ADS)

    Brownlee, D. E.

    2003-12-01

    Comets are surviving members of a formerly vast distribution of solid bodies that formed in the cold regions of the solar nebula. Cometary bodies escaped incorporation into planets and ejection from the solar system and they have been stored in two distant reservoirs, the Oort cloud and the Kuiper Belt, for most of the age of the solar system. Observed comets appear to have formed between 5 AU and 55 AU. From a cosmochemical viewpoint, comets are particularly interesting bodies because they are preserved samples of the solar nebula's cold ice-bearing regions that occupied 99% of the areal extent of the solar nebula disk. All comets formed beyond the "snow line" of the nebula, where the conditions were cold enough for water ice to condense, but they formed from environments that significantly differed in temperature. Some formed in the comparatively "warm" regions near Jupiter where the nebular temperature may have been greater than 120 K and others clearly formed beyond Neptune where temperatures may have been less than 30 K (Bell et al., 1997). Although comets are the best-preserved materials from the early solar system, they should be a mix of nebular and presolar materials that accreted over a vast range of distances from the Sun in environments that differed in temperature, pressure, and accretional conditions such as impact speed.Comets, by conventional definition, are unstable near the Sun; they contain highly volatile ices that vigorously sublime within 2-3 AU of the Sun. When heated, they release gas and solids due to "cometary activity," a series of processes usually detected from afar by the presence of a coma of gas and dust surrounding the cometary nucleus and or elongated tails composed of dust and gas. Active comets clearly have not been severely modified by the moderate to extreme heating that has affected all other solar system materials, including planets, moons, and even the asteroids that produced the most primitive meteorites. Comets have been widely described as the most primitive solar system materials, preserved at cryogenic temperature and low pressure since the formation of the Sun. This is likely to be true, in general, but there is a growing body of recent evidence suggesting that comets are both more physically complex and have had more complex histories than formerly believed. They formed over an order of magnitude range of distances from the Sun; some are fragments of relatively large bodies and collisional effects must have processed at least some comets, as they have processed asteroids (McSween and Weissman, 1989).Comet-like materials are presumed to be the building blocks of Uranus and Neptune (the ice giants); they may have played a role in the formation of Jupiter and Saturn (the gas giants) and they also played some role in transporting outer solar system volatile materials to inner planets (Delsemme, 2000). The inner solar system flux of comets may have been much higher in the past and comets may have played a role in producing the late heavy bombardment on terrestrial planets ( Levison et al., 2001). Comets also exist outside the solar system and there is good evidence that they orbit a major fraction of Sun-like stars. Circumstellar dust, which appears to have been generated by comets, is detected as thermal infrared emission and sometimes as scattered starlight ( Backman et al., 1997; Weissman, 1984; Jewitt and Luu, 1995). It is particularly interesting that the amount of dust around stars declines with stellar age and is highest around stars younger than a few hundred million years. The common presence of what appears to be comet-generated dust around other stars suggests that comet formation is a normal and common consequence of star formation ( Figure 1). (6K)Figure 1. The ratio of infrared excess/stellar luminosity is a measure of the fraction of starlight absorbed by circumstellar dust and re-radiated in the infrared. The plot from Spangler et al. (2001) shows the temporal decline of dust around "Vega-like" stars (points) and stars in clusters with measured ages (circles). At least for the longer ages, the dust is most probably generated by comets.

  9. Silicon Carbide Found in K/T Boundary Layer: Implication for Asteroid Collision with Planet Earth

    NASA Astrophysics Data System (ADS)

    Leung, I. S.; Tsao, C.

    2016-12-01

    An event at the end of the Cretaceous Period 65.5 m.y. ago produced an impact structure 300 km in diameter designated the Chicxulub Crater, located partly on the Yucatan Peninsula and the Caribbian Sea floor. Mass extinction following that event killed 75% of Earth's living species, including dinosaurs. To this date, the killer space object has not been identified, but it was frequently conjectured to be a comet or an asteroid. The goal of our study was to search for evidence which might implicate the culprit. The Chicxulub impact caused extensive wildfires producing Ir-rich dust fallouts in worldwide localities, among which the least contaminated by land-derived sediments may be situated on deep ocean floors. Our study is based on a sample of pelagic clay from the giant piston core LL44-GPC3 taken from the Pacific Plate, north of the Hawaiian Islands (Woods Hole Oceanographic Institution). The 1-cm thick Ir-rich layer was located at a downcore depth of 1055-1056 cm below sea floor. From a 5 cubic cm sample provided by Jim Broda, we found 29 impact glass spherules and 4 silicon carbide (SiC) crystals. SiC has been reported in carbonaceous meteorites. Our findings of SiC in the K/T boundary layer seem to implicate that an asteroid having composition akin to that of carbonaceous chondrites might have been the killer projectile during the Chicxulub event. However, impact by a comet cannot be ruled out, since the mineralogy of cometary dust is as yet unknown.

  10. Terrestrial catastrophe caused by cometary impact at the end of Cretaceous

    NASA Astrophysics Data System (ADS)

    Hsü, Kenneth J.

    1980-05-01

    Evidence is presented indicating that the extinction, at the end of the Cretaceous, of large terrestrial animals was caused by atmospheric heating during a cometary impact and that the extinction of calcareous marine plankton was a consequence of poisoning by cyanide released by the fallen comet and of a catastrophic rise in calcite-compensation depth in the oceans after the detoxification of the cyanide.

  11. Light scattering by low-density agglomerates of micron-sized grains with the PROGRA2 experiment

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Renard, J.-B.; Lasue, J.; Levasseur-Regourd, A. C.; Blum, J.; Schraepler, R.

    2007-07-01

    This work was carried out with the PROGRA2 experiment, specifically developed to measure the angular dependence of the polarization of light scattered by dust particles. The samples are small agglomerates of micron-sized grains and huge, low number density agglomerates of the same grains. The constituent grains (spherical or irregularly shaped) are made of different non-absorbing and absorbing materials. The small agglomerates, in a size range of a few microns, are lifted by an air draught. The huge centimeter-sized agglomerates, produced by random ballistic deposition of the grains, are deposited on a flat surface. The phase curves obtained for monodisperse, micron-sized spheres in agglomerates are obviously not comparable to the ‘smooth’ phase curves obtained by remote observations of cometary dust or asteroidal regoliths but they are used for comparison with numerical calculations to a better understanding of the light scattering processes. The phase curves obtained for irregular grains in agglomerates are similar to those obtained by remote observations, with a negative branch at phase angles smaller than 20° and a maximum polarization decreasing with increasing albedo. These results, coupled with remote observations in the solar system, should provide a better understanding of the physical properties of solid particles and their variation in cometary comae and asteroidal regoliths.

  12. Titan Ice and Dust Experiment (TIDE): Detection and Analysis of Compounds of Interest to Astrobiology in the Lower Atmosphere and Surface of Titan

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Holland Paul M.; Stimac, Robert M.; Kaye, William J.; Takeruchi, Noreshige

    2004-01-01

    The Titan Orbiter Aerorover Mission (TOAM) is a proposed concept for the Solar System Exploration Visions Mission, Titan Explorer, a follow-on to the Cassini-Huygens mission. TOAM would use a Titan polar orbiter and a lighter-than-air aerorover to investigate the surface and atmosphere of Titan. Astrobiology issues will be addressed though TOAM investigations including, for example: Distribution and composition of organics (atmospheric, aerosol, surface); Organic chemical processes, their chemical context and energy sources; and Seasonal variations and interactions of the atmosphere and surface. The TIDE instrument will perform in-situ analyses to obtain comprehensive and sensitive molecular and elemental assays of volatile organics in the atmosphere, oceans and surface. TIDE chemical analyses are conducted by a Gas Chromatograph-Ion Mobility Spectrometer (GC-IMS). This TIDE GC-IMS was a component of the mini-Cometary Ice and Dust Experiment (mini-CIDEX) developed for the chemical analysis of a cometary environment. Both the GC and helium IMS of mini-CIDEX have been further developed to better meet the analytical and operational requirements of the TOAM. application. A Micro-ElectroMechanical System (MEMS) GC and Mini-Cell helium IMS are under development to replace their respective mini-CIDEX components, providing similar or advanced analytical capabilities.

  13. The measurement of trace elements in interplanetary dust and cometary particles by ultra-high sensitivity INAA

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Lindstrom, David J.; Lindstrom, Richard M.; Lindstrom, M. M.

    1989-01-01

    Today the major elemental composition of interplanetary dust particles (IDPs) is routinely determined in many laboratories. These and mineralogical studies have revealed the presence of at least two major types of IDPs, chondritic and refractory. Preliminary results of a successful attempt to determine abundances of a large suite of trace elements from both chondritic and refractory IDPs are reported. The analytical procedure can be used in the grain-by-grain analysis of returned cometary samples. Chondritic and refractory IDPs are characterized by standard scanning electron microscopy and energy dispersive x ray spectroscopy (SEM-EDX) techniques. With this system, detection limits for many elements are well below picogram levels, and some approach femtogram levels. This technique is non-destructive, although some sample handling is required, so particles can be analyzed by other techniques after instrument neutron activation analysis (INAA) is completed. Data is presently being reduced from the analyses of 7 IDPs. These are U2015E10, U2015F1, W7029-A2, W7029-A3, W7013A8, LACl (all chondritic) and 705 (refractory). So far, 17 different major and trace elements were detected and measured in these particles, including rare earths and some very volatile elements (Br and Zn).

  14. Will comet 209P/LINEAR generate the next meteor storm?

    NASA Astrophysics Data System (ADS)

    Ye, Quanzhi; Wiegert, Paul A.

    2014-02-01

    Previous studies have suggested that comet 209P/LINEAR may produce strong meteor activity on Earth on 2014 May 24; however, exact timing and activity level is difficult to estimate due to the limited physical observations of the comet. Here, we reanalyse the optical observations of 209P/LINEAR obtained during its 2009 apparition. We find that the comet is relatively depleted in dust production, with Afρ at 1 cm level within eight months around its perihelion. This feature suggested that this comet may be currently transitioning from a typical comet to a dormant comet. Syndyne simulation shows that the optical cometary tail is dominated by larger particles with β ˜ 0.003. Numerical simulations of the cometary dust trails confirm the arrival of particles on 2014 May 24 from some of the 1798-1979 trails. The nominal radiant is at RA 122° ± 1°, Dec. 79° ± 1° (J2000) in the constellation of Camelopardalis. Given that the comet is found to be depleted in dust production, we concluded that a meteor storm (ZHR ≥ 1000) may be unlikely. However, our simulation also shows that the size distribution of the arrived particles is skewed strongly to larger particles. Coupling with the result of syndyne simulation, we think that the event, if detectable, may be dominated by bright meteors. We encourage observers to monitor the expected meteor event as it will provide us with rare direct information on the dynamical history of 209P/LINEAR which is otherwise irretrievably lost.

  15. Plasma diagnosis from thermal noise and limits on dust flux or mass in comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Meyer-Vernet, N.; Couturier, P.; Hoang, S.; Perche, C.; Steinberg, J. L.; Fainberg, J.

    1986-01-01

    Thermal noise spectroscopy was used to measure the density and temperature of the main (cold) electron plasma population during two hours around the point of closest approach of the International Cometary Explorer (ICE) to comet Giacobini-Zinner. The time resolution was 18 seconds in the plasma tail and 54 seconds elsewhere. Near the tail axis, the maximum plasma density was 670/cu cm and the temperature slightly above one volt. Away from the axis, the plasma density dropped to 100/cu cm over 2000 km, then decreased to 10/cu cm over 15,000 km; at the plasma tail, the density fluctuated between 10 and 30/cu cm, and the temperature, between 100,000 and 400,000 K. No evidence was found of grain impact on the spacecraft or antennas in the plasma tail. This yields an upper limit for the dust flux or particle mass, indicating either fluxes or masses in the tail smaller than those implied by models or an anomalous grain structure. Outside the tail, and particularly near 100,000 km from its axis, impulsive noises indicating plasma turbulence were observed.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Floss, Christine; Stadermann, Frank J.; Ong, W. J.

    We carried out hypervelocity impact experiments in order to test the possibility that presolar grains are preferentially destroyed during impact of the comet 81P/Wild 2 samples into the Stardust Al foil collectors. Powdered samples of the ungrouped carbonaceous chondrite Acfer 094 were shot at 6 km s{sup -1} into Stardust flight spare Al foil. Craters from the Acfer 094 test shots, as well as ones from the actual Stardust cometary foils, were analyzed by NanoSIMS ion imaging to search for presolar grains. We found two O-rich presolar grains and two presolar SiC grains in the Acfer 94 test shots, withmore » measured abundances in the foils of 4 and 5 ppm, respectively, significantly lower than the amount of presolar grains actually present in this meteorite. Based on known abundances of these phases in Acfer 094, we estimate a loss of over 90% of the O-rich presolar grains; the fraction of SiC lost is lower, reflecting its higher resistance to destruction. In the Stardust cometary foils, we identified four O-rich presolar grains in 5000 {mu}m{sup 2} of crater residue. Including a presolar silicate grain found by Leitner et al., the overall measured abundance of O-rich presolar grains in Wild 2 is {approx}35 ppm. No presolar SiC has been found in the foil searches, although one was identified in the aerogel samples. Based on the known abundances of presolar silicates and oxides in Acfer 094, we can calculate the pre-impact abundances of these grains in the Stardust samples. Our calculations indicate initial abundances of 600-830 ppm for O-rich presolar grains. Assuming a typical diameter of {approx}300 nm for SiC suggests a presolar SiC abundance of {approx}45 ppm. Analyses of the Stardust samples indicated early on that recognizable presolar components were not particularly abundant, an observation that was contrary to expectations that the cometary material would, like interplanetary dust particles, be dominated by primitive materials from the early solar system (including abundant presolar grains), which had remained essentially unaltered over solar system history in the cold environment of the Kuiper Belt. Our work shows that comet Wild 2, in fact, does contain more presolar grains than measurements on the Stardust samples suggest, with abundances similar to those observed in primitive IDPs.« less

  17. Formation of jets in Comet 19P/Borrelly by subsurface geysers

    USGS Publications Warehouse

    Yelle, R.V.; Soderblom, L.A.; Jokipii, J.R.

    2004-01-01

    Observations of the inner coma of Comet 19P/Borrelly with the camera on the Deep Space 1 spacecraft revealed several highly collimated dust jets emanating from the nucleus. The observed jets can be produced by acceleration of evolved gas from a subsurface cavity through a narrow orifice to the surface. As long as the cavity is larger than the orifice, the pressure in the cavity will be greater than the ambient pressure in the coma and the flow from the geyser will be supersonic. The gas flow becomes collimated as the sound speed is approached and dust entrainment in the gas flow creates the observed jets. Outside the cavity, the expanding gas loses its collimated character, but the density drops rapidly decoupling the dust and gas, allowing the dust to continue in a collimated beam. The hypothesis proposed here can explain the jets seen in the inner coma of Comet 1P/Halley as well, and may be a primary mechanism for cometary activity. ?? 2003 Published by Elsevier Inc.

  18. Correlated microanalysis of cometary organic grains returned by Stardust

    NASA Astrophysics Data System (ADS)

    de Gregorio, Bradley T.; Stroud, Rhonda M.; Cody, George D.; Nittler, Larry R.; David Kilcoyne, A. L.; Wirick, Sue

    2011-09-01

    Abstract- Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X-ray absorption near-edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen-rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl-containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule-like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.

  19. The Nature of Punctuational Crises and the Spenglerian Model of Civilization

    NASA Astrophysics Data System (ADS)

    Clube, S. V. M.

    Mankind's essentially untroubled state of mind in the presence of comets during the last two centuries has been fortified by the overall relative brevity of cometary apparitions and the calculated infrequency of cometary encounters with planets. During the course of the Space Age, however, the fact of cometary splitting has also become increasingly secure and there is growing appreciation of the fact that mankind's state of mind can never be altogether relaxed. Indeed a watershed in the modern perception of cometary facts has evidently been reached with the most recent and devastating example of cometary splitting, that of the fragmentation of Comet P/Shoemaker-Levy 9 and its subsequent bombardment of planet Jupiter. Thus there is a recognized tendency now amongst comets, especially those in short-period orbits, due to the occasionally excessive effects of solar irradiation, planetary tides and small body impacts, which gives rise to individual swarms of cometary debris, and it is the resulting repeated penetration of such dispersed swarms by our planet which apparently increases the danger to mankind from time to time. The danger comprises global coolings, atmospheric pollution and super-Tunguska events, the cometary debris being responsible for both high-level dust insertions and low-level multimegaton explosions in the Earth's atmosphere along with a generally enhanced fireball flux. Historically, the presence of such danger was drawn to mankind's attention by the observed bombardments over several decades due to "blazing stars threatening the world with famine, plague and war; to princes death; to kingdoms many curses; to all estates many losses; to herdsmen rot; to ploughmen hapless seasons; to sailors storms; to cities civil treasons." The sense of cosmic destiny aroused by these bombardments evidently involved degrees of fatalism and public anxiety which were deplored by both ecclesiastical authorities and secular administrations with the result that acknowledged dispensers of prognosis and mitigation who endorsed the adverse implications of 'blazing stars' (astrologers, soothsayers etc.) were commonly impugned and censured. Nowadays, of course, we are able to recognise that the Earth's environment is not only one of essentially uniformitarian calm, as formerly assumed, but one that is also interrupted by 'punctuational crises', each crisis being the sequence of events which arises due to the fragmentation of an individual comet whose orbit intersects the Earth's. That even modest crises can arouse apprehension is known through the circumstances of the nineteenth century break-up of Comet Biela. Indeed it seems that these crises are rather frequently characterized by relatively violent (paradigm shifting) transmutations of human society such as were originally proposed by Spengler and Toynbee more than sixty years ago on the basis of historical analysis alone. It would appear, then, that the historical fear of comets which has been with us since the foundation of civilization, far from being the reflection of an astrological perception of the cosmos which was deranged and therefore abandoned, has a perfectly rational basis in occasional cometary fragmentation events. Such events recur and evidently have quite serious implications for society and government today. Thus when cosmic danger returns and there is growing awareness of the fact, we find that society is capable of becoming uncontrollably convulsed as 'enlightenment' spreads. A revival of millenarian expectations under these circumstances, for example, is not so much an underlying consequence but a deviant manifestation of the violent turmoil into which society falls, often to revolutionary effect.

  20. Cometary Jet Collimation Without Physical Confinement

    NASA Astrophysics Data System (ADS)

    Steckloff, J. K.; Melosh, H. J.

    2012-12-01

    Recent high-resolution images of comet nuclei reveal that gases and dust expelled by the comet are organized into narrow jets. Contemporary models postulate that these jets collimate when the expanding gases and dust pass through a physical aperture or nozzle. However, recent high-resolution spacecraft observations fail to detect such apertures on cometary surfaces. Furthermore, these models do not explain why cometary jets appear to be directed normal to the local gravitational potential, and/or appear to originate on the faces of scarps. Additionally, observations of comet nuclei by visiting spacecraft have observed that jet activity is tied to the diurnal rotation of the comet. This suggests that jet emissions are powered by the sun, and therefore must emanate from close to the surface of the comet due to a thermal skin depth on the order of ~10 cm. Here we describe a simplified computer model of jets emanating from Comet Tempel 1. Our novel mechanism is based on the occurrence of fluidized flows, which have gained observational support from the Deep Impact and Stardust-NExT flyby missions We approximate the vents of the comet as a region of smooth terrain on the order of ~10 m in width. We assume that each element of the active area is emitting gas molecules with the same spatial distribution function, and integrate over the active area in order to calculate the gas drag force due to the vent. We consider two angular emission profiles (isotropic and lambertian), and assume plane-strain geometry. The vent surfaces were modeled at various angles with respect to the gravitational potential. To approximate scarps, we modeled a non-venting region located above the vent and at the same angle as the vent. The size of this non-venting region was allowed to vary. We assumed that the scarp face, which is composed of the vent and non-venting regions, eroded uniformly. Particles of a constant size are placed randomly on the surface of the vent, and their positions in time are tracked. After a set time interval, the particles are allowed to split in half. The particles are assumed to be ice grains emitting H2O molecules isotropically. The resulting repulsive drag force was modeled as a one-time impulse. For our simulation, spherical particles with radii of 1 μm to 1 cm were considered. We observe that, when the vent is level, the overwhelming majority of the particles remain close to the central axis of the active area, forming a well-collimated jet. When the vent was at an angle, the particles emanating from the vent itself rose normal to the vent, with smaller particles reaching escape velocity in this direction while larger particles fell out of the jet and impacted the surface. Material from the non-venting region slumped down the slope, hit the upslope edge of the vent, which then ejected this material in a well-collimated cone roughly normal to the gravitational potential. The calculated opacity from this material overwhelmed the opacity of the material originating from the vent. The degree and angle of collimation depended on the initial particle size and time between splitting events. This mechanism may explain cometary jets, given the physical and observational constraints.

  1. Coordinated Microanalyses of Seven Particles of Probable Interstellar Origin from the Stardust Mission

    NASA Technical Reports Server (NTRS)

    Westphal, Andrew J.; Stroud, Rhonda M.; Bechtel, Hans A.; Brenker, Frank E.; Butterworth, Anna L.; Flynn, George J.; Frank, David R.; Gainsforth, Zack; Hillier, Jon K.; Postberg, Frank; hide

    2014-01-01

    Stardust, a NASA Discovery-class mission, was the first sample-return mission to return solid samples from beyond the Moon. Stardust was effectively two missions in one spacecraft: it returned the first materials from a known primitive solar system body, the Jupiter-family comet Wild 2; Stardust also returned a collector that was exposed to the contemporary interstellar dust stream for 200 days during the interplanetary cruise. Both collections present severe technical challenges in sample preparation and in analysis. By far the largest collection is the cometary one: approximately 300 micro g of material was returned from Wild 2, mostly consisting of approx. 1 ng particles embedded in aerogel or captured as residues in craters on aluminum foils. Because of their relatively large size, identification of the impacts of cometary particles in the collection media is straightforward. Reliable techniques have been developed for the extraction of these particles from aerogel. Coordinated analyses are also relatively straightforward, often beginning with synchrotron-based x-ray fluorescence (S-XRF), X-ray Absorption Near-Edge Spectoscopy (XANES) and x-ray diffraction (S-XRD) analyses of particles while still embedded in small extracted wedges of aerogel called ``keystones'', followed by ultramicrotomy and TEM, Scanning Transmission X-ray Microscopy (STXM) and ion microprobe analyses (e.g., Ogliore et al., 2010). Impacts in foils can be readily analyzed by SEM-EDX, and TEM analysis after FIB liftout sample preparation. In contrast, the interstellar dust collection is vastly more challenging. The sample size is approximately six orders of magnitude smaller in total mass. The largest particles are only a few pg in mass, of which there may be only approx.10 in the entire collection. The technical challenges, however, are matched by the scientific importance of the collection. We formed a consortium carry out the Stardust Interstellar Preliminary Examination (ISPE) to carry out an assessment of this collection, partly in order to characterize the collection in sufficient detail so that future investigators could make well-informed sample requests. The ISPE is the sixth PE on extraterrestrial collections carried out with NASA support. Some of the basic questions that we asked were: how many impacts are there in the collector, and what fraction of them have characteristics consistent with extraterrestrial materials? What is the elemental composition of the rock-forming elements? Is there crystalline material? Are there organics? Here we present coordinated microanalyses of particles captured in aerogel, using S-FTIR, S-XRF, STXM, S-XRD; and coordinated microanalyses of residues in aluminum foil, using SEMEDX, Auger spectroscopy, STEM, and ion microprobe. We discuss a novel approach that we employed for identification of tracks in aerogel, and new sample preparation techniques developed during the ISPE. We have identified seven particles - three in aerogel and four in foils - that are most consistent with an interstellar origin. The seven particles exhibit a large diversity in elemental composition. Dynamical evidence, supported supported by laboratory simulations of interstellar dust impacts in aerogel and foils, and numerical modeling of interstellar dust propagation in the heliosphere, suggests that at least some of the particles have high optical cross-section, perhaps due to an aggregate structure. However, the observations are most consistent with a variety of morphologies

  2. GIADA: extended calibration activity: . the Electrostatic Micromanipulator

    NASA Astrophysics Data System (ADS)

    Sordini, R.; Accolla, M.; Della Corte, V.; Rotundi, A.

    GIADA (Grain Impact Analyser and Dust Accumulator), one of the scientific instruments onboard Rosetta/ESA space mission, is devoted to study dynamical properties of dust particles ejected by the short period comet 67P/Churyumov-Gerasimenko. In preparation for the scientific phase of the mission, we are performing laboratory calibration activities on the GIADA Proto Flight Model (PFM), housed in a clean room in our laboratory. Aim of the calibration activity is to characterize the response curve of the GIADA measurement sub-systems. These curves are then correlated with the calibration curves obtained for the GIADA payload onboard the Rosetta S/C. The calibration activity involves two of three sub-systems constituting GIADA: Grain Detection System (GDS) and Impact Sensor (IS). To get reliable calibration curves, a statistically relevant number of grains have to be dropped or shot into the GIADA instrument. Particle composition, structure, size, optical properties and porosity have been selected in order to obtain realistic cometary dust analogues. For each selected type of grain, we estimated that at least one hundred of shots are needed to obtain a calibration curve. In order to manipulate such a large number of particles, we have designed and developed an innovative electrostatic system able to capture, manipulate and shoot particles with sizes in the range 20 - 500 μm. The electrostatic Micromanipulator (EM) is installed on a manual handling system composed by X-Y-Z micrometric slides with a 360o rotational stage along Z, and mounted on a optical bench. In the present work, we display the tests on EM using ten different materials with dimension in the range 50 - 500 μm: the experimental results are in compliance with the requirements.

  3. Extraterrestrial Impact Episodes and Archaean to Early Proterozoic (3.8 2.4 Ga) Habitats of Life

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew

    The terrestrial record is punctuated by major clustered asteroid and comet impacts, which affected the appearance, episodic extinction, radiation, and reemergence of biogenic habitats. Here I examine manifest and potential extraterrestrial impact effects on the onset and evolution of Archaean to early Proterozoic (3.8- 2.4-Ga) habitats, with reference to the Pilbara (Western Australia) and Kaapvaal (eastern Transvaal) Cratons. The range of extraterrestrial connections of microbial habitats includes cometary contribution of volatiles and amino acids, sterilization by intense asteroid and comet bombardment, supernova and solar flares, and impacttriggered volcanic and hydrothermal activity, tectonic modifications, and tsunami effects. Whereas cometary dusting of planetary atmosphere may contribute littlemodi fied extraterrestrial organic components, large impact effects result in both incineration of organic molecules and shock synthesis of new components. From projected impact incidence, ~1.3% of craters >100 km and ~3.8% of craters >250 km have to date been identified for post-3.8-Ga events, due to the mm-scale of impact spherules and the difficulty in their identification in the field - only the tip of the iceberg is observed regarding the effects of large impacts on the Precambrian biosphere, to date no direct or genetic relations between impacts and the onset or extinction of early Precambrian habitats can be confirmed. However, potential relations include (1) ~3.5-3.43 Ga - intermittent appearance of stromatolite-like structures of possible biogenic origin on felsic volcanic shoals representing intervals between mafic volcanic episodes in rapidly subsiding basins, a period during which asteroid impacts are recorded; (2) ~3.26-3.225 Ga - impact-triggered crustal transformation from mafic-ultramafic volcanic environments to rifted troughs dominated by felsic volcanics and turbidites, marked by a major magmatic peak, resulting in extensive hydrothermal activity and development of sulphate-reducing microbes around anoxic submarine fumarole ("black smoker") environments; (3) ~2.63-2.47 Ga - impact-triggered tsunami effects in oxygenated carbonate-dominated epicontinental and intracratonic environments (Hamersley and Transvaal basins); (4) in at least three instances onset of ferruginous sedimentation closely following major impact events, possibly signifying hydrothermal Fe-enrichment related to impact-triggered volcanic activity. Due to limitations on the phylogenic speciation of Precambrian stromatolite and bacterial populations, major impact-extinction-radiation relations are identified only from the late Proterozoic, beginning with the ~0.

  4. Particle emission from artificial cometary materials

    NASA Technical Reports Server (NTRS)

    Koelzer, Gabriele; Kochan, Hermann; Thiel, Klaus

    1992-01-01

    During KOSI (comet simulation) experiments, mineral-ice mixtures are observed in simulated space conditions. Emission of ice-/dust particles from the sample surface is observed by means of different devices. The particle trajectories are recorded with a video system. In the following analysis we extracted the parameters: particle count rate, spatial distribution of starting points on the sample surface, and elevation angle and particle velocity at distances up to 5 cm from the sample surface. Different kinds of detectors are mounted on a frame in front of the sample to register the emitted particles and to collect their dust residues. By means of these instruments the particle count rates, the particle sizes and the composition of the particles can be correlated. The results are related to the gas flux density and the temperature on the sample surface during the insolation period. The particle emission is interpreted in terms of phenomena on the sample surface, e.g., formation of a dust mantle.

  5. 'Peeling a comet': Layering of comet analogues

    NASA Astrophysics Data System (ADS)

    Kaufmann, E.; Hagermann, A.

    2017-09-01

    Using a simple comet analogue we investigate the influence of subsurface solar light absorption by dust. We found that a sample initially consisting of loose water ice grains and carbon particles becomes significantly harder after being irradiated with artificial sunlight for several hours. Further a drastic change of the sample surface could be observed. These results suggests that models should treat the nucleus surface as an interactive transitional zone to better represent cometary processes.

  6. Nature vs. nurture debate on TNO carbons: constraints from Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Brunetto, R.

    2012-02-01

    We compare spectroscopic data of irradiated laboratory analogs with those of an interplanetary dust particle of cometary origin. We investigate if this comparison can help constraining the origin of carbonaceous materials on small icy bodies in the outer Solar System (TNOs, Centaurs, etc.). We suggest that Raman spectroscopy can help in interpreting the observed heterogeneity of the extraterrestrial carbonaceous component and in constraining the irradiation dose accumulated in space.

  7. Carbonate in Comets: A Comparison of Comets 1P/Halley, 9P/Temple 1, and 81P/Wild 2

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Leroux, H.; Tomeoka, K.; Tomioka, N.; Ohnishi, I.; Mikouchi, T.; Wirick, S.; Keller, L. P.; Jacobsen, C.; Sanford, S. A.

    2008-01-01

    Comets are generally believed to have formed in a cold region, trapping in the cometary ices the original low-temperature condensate grains of our Solar System. These grains would have been preserved in cold-storage, at a temperature below the freezing point of CO2, for the last 4.5+ billion years. Carbonates are common in hydrous meteorites and hydrous interplanetary dust particles (IDPs), where they are believed to have formed by parent-body aqueous processing. Since simple models of cometary evolution involve no aqueous processing, carbonates were generally presumed not to occur in comets. However, Toppani et al. [1] have performed experiments that indicate carbonate can be formed by non-equilibrium condensation in circumstellar environments where water is present as a vapor, not as a liquid. This suggests carbonate might have condensed in cold regions of the Solar Nebula, and might be present in comets.

  8. Multiwavelength Observations of Recent Comets

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Charnley, Steven B.; Gicquel, Adeline; Cordiner, Martin; Kuan, Yi-Jehng; Chuang, Yo-Ling; Villanueva, Geronimo; DiSanti, Michael A.; Bonev, Boncho P.; Remijan, Anthony J.; hide

    2013-01-01

    Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth. Comets are comprised of molecular ices, that may be pristine inter-stellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition.

  9. Chemical Composition of the Semi-Volatile Grains of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Wurz, P.; Altwegg, K.; Balsiger, H. R.; Berthelier, J. J.; De Keyser, J.; Fiethe, B.; Fuselier, S. A.; Gasc, S.; Gombosi, T. I.; Korth, A.; Mall, U.; Reme, H.; Rubin, M.; Tzou, C. Y.

    2017-12-01

    Rosetta was in orbit of comet 67P/Churyumov-Gerasimenko from August 2014 to September 2016. On board is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) experiment that has been continuously collecting data on the chemical composition and activity of the coma from 3.5 AU to pericentre at 1.24 AU and out again to 3.5 AU. ROSINA consists of two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron-type Time-Of-Flight (RTOF), as well as the COmet Pressure Sensor (COPS). ROSINA recorded the neutral gas and thermal plasma in the comet's coma. The two mass spectrometers have high dynamic ranges and complement each other with high mass resolution, and high time resolution and large mass range. COPS measures total gas densities, bulk velocities, and gas temperatures. Occasionally, a dust grain of cometary origin enters the ion source of a ROSINA instrument where the volatile part evaporates since these ion sources are hot. The release of volatiles from cometary dust grains was observed with all three ROSINA instruments on several occasions. Because the volatile content of such a dust grain is completely evaporated after a few seconds, the RTOF instrument is best suited for the investigation of its chemical composition since complete mass spectra are recorded during this time. During the mission 9 dust grains were observed with RTOF during the October 2014 to July 2016 time period. It is estimated that these grains contain about 10-15 g of volatiles. The mass spectra were interpreted with a set of 75 molecules, with the major groups of chemical species being hydrocarbons, oxygenated hydrocarbons, nitrogen-bearing molecules, sulphur-bearing molecules, halogenated molecules and others. About 70% of these grains are depleted in water compared to the comet coma, thus, can be considered as semi-volatile dust grains, and the other about 30% are water grains. The chemical composition varies considerably from grain to grain, indicating large chemical heterogeneity at these scales. In contrast, the elemental abundances vary much less.

  10. The Evolution of Saturn's Rings Under the Influence of the Edgeworth-Kuiper Belt Micrometeoroid Flux: Tightening the Constraints on Ring Age

    NASA Astrophysics Data System (ADS)

    Estrada, Paul R.; Durisen, Richard H.; Cuzzi, Jeffrey N.

    2016-10-01

    Results of the Cassini Dust Analyzer (CDA) experiment indicate that the determined range of the micrometeoroid flux at infinity for Saturn (Altobelli et al., 2015) may be comparable to the nominal value of the incident, flat-plate and one-sided meteoroid flux value currently adopted for use in ballistic transport applications and models (e.g., Estrada et al., 2015). Moreover, the source of the micrometeoroid flux has been localized to the Edgeworth-Kuiper Belt (EKB) and is not cometary in origin as previously assumed. Apart from suggesting an altogether different composition for the ring pollutant, a major consequence of these new measurements is that the EKB flux is much more gravitationally focused than the cometary case because it is isotropic in the planet rather than the heliocentric frame. Thus, the lower velocities at infinity that characterize the EKB flux can increase the impact flux on the rings by a factor of ˜25. This means that even for the lower bound of the range of the newly measured flux, the amount of material hitting the rings may be considerably higher and thus the process of micrometeoroid bombardment and ballistic transport is likely even more influential in the rings' structural and compositional evolution over time. Here, we calculate the new EKB ejecta distribution using the model of Cuzzi and Durisen (1990) and compare this with the nominal cometary one, and then demonstrate using new simulations the consequences of the EKB flux on the evolution of ring composition and structure. The constraining of the micrometeoroid flux represents a very important step in being able to associate an absolute age for the rings. We argue that the new EKB flux poses a serious problem for "primordial" or "old" ring origin scenarios and favors more a scenario in which the rings, at least the way we see them today, cannot be much older than a few 100 Myrs.

  11. The Complex Outgassing of Comets and the Resulting Coma, a Direct Simulation Monte-Carlo Approach

    NASA Astrophysics Data System (ADS)

    Fougere, Nicolas

    During its journey, when a comet gets within a few astronomical units of the Sun, solar heating liberates gases and dust from its icy nucleus forming a rarefied cometary atmosphere, the so-called coma. This tenuous atmosphere can expand to distances up to millions of kilometers representing orders of magnitude larger than the nucleus size. Most of the practical cases of coma studies involve the consideration of rarefied gas flows under non-LTE conditions where the hydrodynamics approach is not valid. Then, the use of kinetic methods is required to properly study the physics of the cometary coma. The Direct Simulation Monte-Carlo (DSMC) method is the method of choice to solve the Boltzmann equation, giving the opportunity to study the cometary atmosphere from the inner coma where collisions dominate and is in thermodynamic equilibrium to the outer coma where densities are lower and free flow conditions are verified. While previous studies of the coma used direct sublimation from the nucleus for spherically symmetric 1D models, or 2D models with a day/night asymmetry, recent observations of comets showed the existence of local small source areas such as jets, and extended sources via sublimating icy grains, that must be included into cometary models for a realistic representation of the physics of the coma. In this work, we present, for the first time, 1D, 2D, and 3D models that can take into account the full effects of conditions with more complex sources of gas with jets and/or icy grains. Moreover, an innovative work in a full 3D description of the cometary coma using a kinetic method with a realistic nucleus and outgassing is demonstrated. While most of the physical models used in this study had already been developed, they are included in one self-consistent coma model for the first time. The inclusion of complex cometary outgassing processes represents the state-of-the-art of cometary coma modeling. This provides invaluable information about the coma by refining the understanding of the material that constitutes comets. This helps us to comprehend the process of the Solar System formation, one of the top priority questions in the 2013-2022 Planetary Science Decadal survey.

  12. OUTWARD MOTION OF POROUS DUST AGGREGATES BY STELLAR RADIATION PRESSURE IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tazaki, Ryo; Nomura, Hideko, E-mail: rtazaki@kusastro.kyoto-u.ac.jp

    2015-02-01

    We study the dust motion at the surface layer of protoplanetary disks. Dust grains in the surface layer migrate outward owing to angular momentum transport via gas-drag force induced by the stellar radiation pressure. In this study we calculate the mass flux of the outward motion of compact grains and porous dust aggregates by the radiation pressure. The radiation pressure force for porous dust aggregates is calculated using the T-Matrix Method for the Clusters of Spheres. First, we confirm that porous dust aggregates are forced by strong radiation pressure even if they grow to be larger aggregates, in contrast tomore » homogeneous and spherical compact grains, for which radiation pressure efficiency becomes lower when their sizes increase. In addition, we find that the outward mass flux of porous dust aggregates with monomer size of 0.1 μm is larger than that of compact grains by an order of magnitude at the disk radius of 1 AU, when their sizes are several microns. This implies that large compact grains like calcium-aluminum-rich inclusions are hardly transported to the outer region by stellar radiation pressure, whereas porous dust aggregates like chondritic-porous interplanetary dust particles are efficiently transported to the comet formation region. Crystalline silicates are possibly transported in porous dust aggregates by stellar radiation pressure from the inner hot region to the outer cold cometary region in the protosolar nebula.« less

  13. Water ice grains in comet C/2013 US10 (Catalina)

    NASA Astrophysics Data System (ADS)

    Protopapa, Silvia; Kelley, Michael S. P.; Yang, Bin; Woodward, Charles E.; Sunshine, Jessica M.

    2017-10-01

    Knowledge of the the physical properties of water ice in cometary nuclei is critical in determining how the Solar System was formed. While it is difficult to directly study the properties of water ice in comet nuclei, we can study comet interiors through their comae. Cometary activity makes the interiors of these objects available for characterization. However, the properties (grain size, abundance, purity, chemical state) of water-ice grains detected in the coma do not necessarily represent the characteristics of the water ice on the surface and/or in the interior of the nucleus. This is due to the potential physical and chemical evolution of the emitted material. Once in the coma, water-ice grains are heated by sunlight, and if temperatures are warm enough, they sublime. In this case, their sizes and potentially their ice-to-dust fractions are reduced.We present IRTF/SpeX measurements of the Oort cloud comet C/2013 US10 (Catalina), which reached perihelion in Nov 2015 at a heliocentric distance Rh=0.822 AU. Observations of US10 were acquired on UT 2014-08-13, 2016-01-12, and 2016-08-13 (Rh=5.9, 1.3, and 3.9 AU). This set of measurements, spanning a broad range in Rh, are rare and fundamental for estimating how ice grains evolve in the coma. The spectrum obtained close to perihelion is featureless and red sloped, which is consistent with a dust-dominated coma. Conversely, the spectra acquired on August 2014 and 2016 display neutral slopes and absorption bands at 1.5 and 2.0 μm, consistent with the presence of water-ice grains. These variations in water ice with heliocentric distance are correlated with sublimation rates. Additionally, the measurements obtained at 5.8 AU and 3.9 AU are nearly identical, suggesting that water-ice grains, once in the coma, do not sublime significantly. Therefore, the properties of these long-lived water-ice grains may represent their state in the nucleus or immediately after insertion into the coma. We will present radiative transfer models of the data and interpret the results in the context of spacecraft data of cometary nuclei, and of our on-going compositional survey of water-ice grain halos in cometary comae.This work was funded by NASA SSO, NASA PAST and NASA SOFIA grants.

  14. Discovery of Main-belt Comet P/2006 VW139 by Pan-STARRS1

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Yang, Bin; Haghighipour, Nader; Kaluna, Heather M.; Fitzsimmons, Alan; Denneau, Larry; Novaković, Bojan; Jedicke, Robert; Wainscoat, Richard J.; Armstrong, James D.; Duddy, Samuel R.; Lowry, Stephen C.; Trujillo, Chadwick A.; Micheli, Marco; Keane, Jacqueline V.; Urban, Laurie; Riesen, Timm; Meech, Karen J.; Abe, Shinsuke; Cheng, Yu-Chi; Chen, Wen-Ping; Granvik, Mikael; Grav, Tommy; Ip, Wing-Huen; Kinoshita, Daisuke; Kleyna, Jan; Lacerda, Pedro; Lister, Tim; Milani, Andrea; Tholen, David J.; Vereš, Peter; Lisse, Carey M.; Kelley, Michael S.; Fernández, Yanga R.; Bhatt, Bhuwan C.; Sahu, Devendra K.; Kaiser, Nick; Chambers, K. C.; Hodapp, Klaus W.; Magnier, Eugene A.; Price, Paul A.; Tonry, John L.

    2012-03-01

    The main-belt asteroid (300163) 2006 VW139 (later designated P/2006 VW139) was discovered to exhibit comet-like activity by the Pan-STARRS1 (PS1) survey telescope using automated point-spread-function analyses performed by PS1's Moving Object Processing System. Deep follow-up observations show both a short (~10'') antisolar dust tail and a longer (~60'') dust trail aligned with the object's orbit plane, similar to the morphology observed for another main-belt comet (MBC), P/2010 R2 (La Sagra), and other well-established comets, implying the action of a long-lived, sublimation-driven emission event. Photometry showing the brightness of the near-nucleus coma remaining constant over ~30 days provides further evidence for this object's cometary nature, suggesting it is in fact an MBC, and not a disrupted asteroid. A spectroscopic search for CN emission was unsuccessful, though we find an upper limit CN production rate of Q CN < 1.3 × 1024 mol s-1, from which we infer a water production rate of Q_H_2O<10^{26} mol s-1. We also find an approximately linear optical spectral slope of 7.2%/1000 Å, similar to other cometary dust comae. Numerical simulations indicate that P/2006 VW139 is dynamically stable for >100 Myr, while a search for a potential asteroid family around the object reveals a cluster of 24 asteroids within a cutoff distance of 68 m s-1. At 70 m s-1, this cluster merges with the Themis family, suggesting that it could be similar to the Beagle family to which another MBC, 133P/Elst-Pizarro, belongs.

  15. DISCOVERY OF MAIN-BELT COMET P/2006 VW{sub 139} BY Pan-STARRS1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Henry H.; Yang Bin; Haghighipour, Nader

    2012-03-20

    The main-belt asteroid (300163) 2006 VW{sub 139} (later designated P/2006 VW{sub 139}) was discovered to exhibit comet-like activity by the Pan-STARRS1 (PS1) survey telescope using automated point-spread-function analyses performed by PS1's Moving Object Processing System. Deep follow-up observations show both a short ({approx}10'') antisolar dust tail and a longer ({approx}60'') dust trail aligned with the object's orbit plane, similar to the morphology observed for another main-belt comet (MBC), P/2010 R2 (La Sagra), and other well-established comets, implying the action of a long-lived, sublimation-driven emission event. Photometry showing the brightness of the near-nucleus coma remaining constant over {approx}30 days provides furthermore » evidence for this object's cometary nature, suggesting it is in fact an MBC, and not a disrupted asteroid. A spectroscopic search for CN emission was unsuccessful, though we find an upper limit CN production rate of Q{sub CN} < 1.3 Multiplication-Sign 10{sup 24} mol s{sup -1}, from which we infer a water production rate of Q{sub H{sub 2O}}<10{sup 26} mol s{sup -1}. We also find an approximately linear optical spectral slope of 7.2%/1000 A, similar to other cometary dust comae. Numerical simulations indicate that P/2006 VW{sub 139} is dynamically stable for >100 Myr, while a search for a potential asteroid family around the object reveals a cluster of 24 asteroids within a cutoff distance of 68 m s{sup -1}. At 70 m s{sup -1}, this cluster merges with the Themis family, suggesting that it could be similar to the Beagle family to which another MBC, 133P/Elst-Pizarro, belongs.« less

  16. Nitrogen Isotopic Anomalies in a Hydrous Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Smith, J. B.; Dai, Z. R.; Weber, P. K.; Graham, G. A.; Hutcheon, I. D.; Bajt, S.; Ishii, H.; Bradley, J. P.

    2005-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere are the fine-grained end member (5 - 50 microns in size) of the meteoritic material available for investigation in the laboratory. IDPs are derived from either cometary or asteroidal sources. Some IDPs contain cosmically primitive materials with isotopic signatures reflecting presolar origins. Recent detailed studies using the NanoSIMS have shown there is a wide variation of isotopic signatures within individual IDPs; grains with a presolar signature have been observed surrounded by material with a solar isotopic composition. The majority of IDPs studied have been anhydrous. We report here results from integrated NanoSIMS/FIB/TEM/Synchrotron IR studies of a hydrous IDP, focused on understanding the correlations between the isotopic, mineralogical and chemical compositions of IDPs.

  17. Anticipated results from dust experiments on cometary missions

    NASA Technical Reports Server (NTRS)

    Kissel, J.; Fechtig, H.; Grun, E.

    1981-01-01

    The major scientific objectives of a mission are: to determine the chemical nature and physical structure of comet nuclei, and to characterize the changes that occur as a function of time orbital position; to characterize the chemical and physical nature of the atmospheres and ionospheres of comets as well as the processes that occur in them, and to characterize the development of the atmospheres and ionospheres as functions of time and orbital position; and to determine the nature of comet tails and processes by which they are formed, and to characterize the interaction of comets with the solar wind. Since dust is a major constituent of a comet, the achievement of these goals requires the intensive study of the paticulate emission from a comet.

  18. Twisted waves and instabilities in a permeating dusty plasma

    NASA Astrophysics Data System (ADS)

    Bukhari, S.; Ali, S.; Khan, S. A.; Mendonca, J. T.

    2018-04-01

    New features of the twisted dusty plasma modes and associated instabilities are investigated in permeating plasmas. Using the Vlasov-Poisson model equations, a generalized dispersion relation is obtained for a Maxwellian distributed plasma to analyse the dust-acoustic and dust-ion-acoustic waves with finite orbital angular momentum (OAM) states. Existence conditions for damping/growth rates are discussed and showed significant modifications in twisted dusty modes as compared to straight propagating dusty modes. Numerically, the instability growth rate, which depends on particle streaming and twist effects in the wave potential, is significantly modified due to the Laguerre-Gaussian profiles. Relevance of the study to wave excitations due to penetration of solar wind into cometary clouds or interstellar dusty plasmas is discussed.

  19. DYNAMIC DEUTERIUM ENRICHMENT IN COMETARY WATER VIA ELEY–RIDEAL REACTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yunxi; Giapis, Konstantinos P., E-mail: giapis@cheme.caltech.edu

    2017-01-20

    The deuterium-to-hydrogen ratio (D/H) in water found in the coma of Jupiter family comet (JFC) 67P/Churyumov–Gerasimenko was reported to be (5.3 ± 0.7) × 10{sup −4}, the highest among comets and three times the value for other JFCs with an ocean-like ratio. This discrepancy suggests the diverse origins of JFCs and clouds the issue of the origin of Earth’s oceanic water. Here we demonstrate that Eley–Rideal reactions between accelerated water ions and deuterated cometary surface analogs can lead to instantaneous deuterium enrichment in water scattered from the surface. The reaction proceeds with H{sub 2}O{sup +} abstracting adsorbed D atoms, formingmore » an excited H{sub 2}DO* state, which dissociates subsequently to produce energetic HDO. Hydronium ions are also produced readily by the abstraction of H atoms, consistent with H{sub 3}O{sup +} detection and abundance in various comets. Experiments with water isotopologs and kinematic analysis on deuterated platinum surfaces confirmed the dynamic abstraction mechanism. The instantaneous fractionation process is independent of the surface temperature and may operate on the surface of cometary nuclei or dust grains, composed of deuterium-rich silicates and carbonaceous chondrites. The requisite energetic water ions have been detected in the coma of 67P in two populations. This dynamic fractionation process may temporarily increase the water D/H ratio, especially as the comet gets closer to the Sun. The magnitude of the effect depends on the water ion energy-flux and the deuterium content of the exposed cometary surfaces.« less

  20. Thermal modeling of cometary nuclei

    USGS Publications Warehouse

    Weissman, P.R.; Kieffer, H.H.

    1981-01-01

    A new model of the sublimation of volatile ices from a cometary nucleus has been developed which includes the effects of diurnal heating and cooling, rotation period and pole orientation, and thermal properties of the ice and subsurface layers. The model also includes the contribution from coma opacity, scattering, and thermal emission, where the properties of the coma are derived from the integrated rate of volatile production by the nucleus. The model is applied to the specific case of the 1986 apparition of Halley's comet. It is found that the generation of a cometary dust coma actually increases the total energy reaching the Halley nucleus. This results because of the significantly greater geometrical cross section of the coma as compared with the bare nucleus, and because the coma provides an essentially isotropic source of multiply scattered sunlight and thermal emission over the entire nucleus surface. For Halley, the calculated coma opacity is approximately 0.2 at 1 AU from the Sun, and 1.2 at perihelion (0.587 AU). At 1 AU this has little effect on dayside temperatures (maximum ???200??K) but raises nightside temperatures (minimum ???150??K) by about 40??K. At perihelion the higher opacity results in a nearly isothermal nucleus with only small diurnal and latitudinal temperature variations. The general surface temperature is 205??K with a maximum of 209??K at local noon on the equator. Some possible consequences of the results with respect to the generation of nongravitational forces, observed volatile production rates for comets, and cometary lifetimes against sublimation are discussed. ?? 1981.

  1. Cometary Jet Collimation Without Physical Confinement

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Melosh, H.

    2012-10-01

    Recent high-resolution images of comet nuclei reveal that gases and dust expelled by the comet are organized into narrow jets. Contemporary models postulate that these jets collimate when the expanding gases and dust pass through a physical aperture or nozzle [1]. However, recent high-resolution spacecraft observations fail to detect such apertures on cometary surfaces [2]. Additionally, observations of comet nuclei by visiting spacecraft have observed that jet activity is tied to the diurnal rotation of the comet. This suggests that jet emissions are driven by the sun, and therefore must emanate from close to the surface of the comet (order of 10 cm.) Here we describe a simplified computer model of jets emanating from Comet Tempel 1. We approximate the active areas (vents) of the comet as a region of smooth, level terrain on the order of 10 m in width. We assume that each element of the active area is emitting gas molecules with the same spatial distribution, and integrate over the active area in order to calculate the gas drag force. We consider two angular emission profiles (isotropic and lambertian), and assume plane-strain geometry. Uniformly sized particles are placed randomly on the surface of the vent, and their positions in time are tracked. For our simulation, spherical particles with radii of 1 µm to 1 cm were considered. We observe that the overwhelming majority of the particles remain close to the central axis of the active area, forming a well-collimated jet, with particles reaching escape velocity. This mechanism may explain cometary jets, given the physical and observational constraints. References: [1] Yelle R.V. (2004) Icarus 167, 30-36. [2] A’Hearn M.F. et al. (2011) Science 332, 1396-1400. [3] Belton M.J.S. and Melosh H.J. (2009) Icarus 200, 280-291. Acknowledgements: This research is supported by NASA grant PGG NNX10AU88G.

  2. Space Art "Stardust"

    NASA Image and Video Library

    2008-01-08

    Artist Paul Henry Ramirez captured symbolically the Stardust mission in this peice titled "Stardust". The Stardust mission in January of 2006 completed a seven-year, 2.8 billion mile journey to fly by a comet and return samples to Earth. The material is a first sample of pristine cometary material which will increase human understanding of interstellar dust. Stardust, 2007. Acrylic Micaceous Iron Oxide, Aluminum and crystal, hologram glitter Mylar 20" round canvas. Copyrighted: For more information contact Curator, NASA Art Program.

  3. ARE LARGE, COMETARY-SHAPED PROPLYDS REALLY (FREE-FLOATING) EVAPORATING GAS GLOBULES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, R.; Guesten, R.; Morris, M. R., E-mail: raghvendra.sahai@jpl.nasa.gov

    2012-12-20

    We report the detection of strong and compact molecular line emission (in the CO J = 3-2, 4-3, 6-5, 7-6, {sup 13}CO J = 3-2, HCN, and HCO{sup +} J = 4-3 transitions) from a cometary-shaped object (Carina-frEGG1) in the Carina star-forming region (SFR) previously classified as a photoevaporating protoplanetary disk (proplyd). We derive a molecular mass of 0.35 M{sub Sun} for Carina-frEGG1, which shows that it is not a proplyd, but belongs to a class of free-floating evaporating gas globules (frEGGs) recently found in the Cygnus SFR by Sahai et al. Archival adaptive optics near-IR (Ks) images show amore » central hourglass-shaped nebula. The derived source luminosity (about 8-18 L{sub Sun }), the hourglass morphology, and the presence of collimated jets seen in Hubble Space Telescope images imply the presence of a jet-driving, young, low-mass star deeply embedded in the dust inside Carina-frEGG1. Our results suggest that the true nature of many or most such cometary-shaped objects seen in massive SFRs and previously labeled as proplyds has been misunderstood, and that these are really frEGGs.« less

  4. Sublimating comets as the source of nucleation seeds for grain condensation in the gas outflow from AGB stars

    NASA Technical Reports Server (NTRS)

    Whitmire, D. P.; Matese, John J.; Reynolds, R. T.

    1989-01-01

    A growing amount of observational and theoretical evidence suggests that most main sequence stars are surrounded by disks of cometary material. The dust production by comets in such disks is investigated when the central stars evolve up the red giant and asymptotic giant branch (AGB). Once released, the dust is ablated and accelerated by the gas outflow and the fragments become the seeds necessary for condensation of the gas. The origin of the requisite seeds has presented a well known problem for classical nucleation theory. This model is consistent with the dust production observed in M giants and supergiants (which have increasing luminosities) and the fact that earlier supergiants and most WR stars (whose luminosities are unchanging) do not have significant dust clouds even though they have significant stellar winds. Another consequence of the model is that the spatial distribution of the dust does not, in general, coincide with that of the gas outflow, in contrast to the conventional condensation model. A further prediction is that the condensation radius is greater that that predicted by conventional theory which is in agreement with IR interferometry measurements of alpha-Ori.

  5. Inferring Sources in the Interplanetary Dust Cloud, from Observations and Simulations of Zodiacal Light and Thermal Emission

    NASA Technical Reports Server (NTRS)

    Levasseur-Regourd, A. C.; Lasue, J.

    2011-01-01

    Interplanetary dust particles physical properties may be approached through observations of the solar light they scatter, specially its polarization, and of their thermal emission. Results, at least near the ecliptic plane, on polarization phase curves and on the heliocentric dependence of the local spatial density, albedo, polarization and temperature are summarized. As far as interpretations through simulations are concerned, a very good fit of the polarization phase curve near 1.5 AU is obtained for a mixture of silicates and more absorbing organics material, with a significant amount of fluffy aggregates. In the 1.5-0.5 AU solar distance range, the temperature variation suggests the presence of a large amount of absorbing organic compounds, while the decrease of the polarization with decreasing solar distance is indeed compatible with a decrease of the organics towards the Sun. Such results are in favor of the predominance of dust of cometary origin in the interplanetary dust cloud, at least below 1.5 AU. The implication of these results on the delivery of complex organic molecules on Earth during the LHB epoch, when the spatial density of the interplanetary dust cloud was orders of magnitude greater than today, is discussed.

  6. Plasma response to a cometary outburst: Rosetta Plasma Consortium observations during comet 67P/Churyumov-Gerasimenko outburst event on 19 February 2016

    NASA Astrophysics Data System (ADS)

    Hajra, R.; Bruce, T.; Pierre, H.; Galand, M. F.; Heritier, K. L.; Edberg, N. J. T.; Burch, J. L.; Broiles, T. W.; Goldstein, R.; Glassmeier, K. H.; Richter, I.; Goetz, C.; Nilsson, H.; Altwegg, K.; Rubin, M.; Tanimori, T.

    2016-12-01

    Cometary outbursts are one of the most spectacular aspects of comet behavior. They are characterized by an abrupt increase in cometary brightness followed by a gradual fall off to the pre-event brightness. Although there are several studies on outburst events, to our knowledge, no detailed analysis on the variation of the cometary plasma environment during an outburst has ever been reported. On 19 February 2016, when comet 67P/Churyumov-Gerasimenko was at a heliocentric distance of 2.4 AU, an outburst event, characterized by two orders of magnitude increase in coma surface brightness, took place. Rosetta was at a distance of 30 km from the comet nucleus, orbiting with a relative speed of 0.17 m/s. The Rosetta Plasma Consortium (RPC) provided in-situ measurements of the cometary plasma, embedded in the solar wind, and the associated magnetic field during this outburst, as the dust and gas expelled from the comet were passing by the spacecraft. While the neutral density (ROSINA/COPS) at the spacecraft position increased by a factor of 1.5, the local plasma density (RPC/MIP) was found to increase by a factor of 3 during the outburst event, driving the spacecraft potential more negative (RPC/LAP). The event was characterized by the energy degradation of energetic (10s of eV) electrons (RPC/IES). In response to the outburst, the local magnetic field exhibited a slight increase in amplitude and a slow rotation (RPC/MAG). A weakening of 10-100 mHz magnetic field fluctuations was also observed during the outburst. The RPC instruments show that the effects of the outburst on the plasma lasted for about 4 hours, from 1000 UT to 1400 UT. Detailed analyses of the observations made by RPC along with ROSINA/COPS will be presented in the paper.

  7. Enhancing the Scientific Return from HST Imaging of Debris Disks

    NASA Astrophysics Data System (ADS)

    Weinberger, Alycia

    2016-10-01

    We propose realistic modeling of scattering of light by small aggregate dust grains that will enable us to interpret visible to near-infrared imaging of debris disks. We will determine if disk colors, phase functions, and polarizations place unique constraints on the composition of debris dust. Ongoing collisions of planetesimals generate dust; therefore, the dust provides unique information on compositions of the parent bodies. These exosolar analogs of asteroids and comets can bear clues to the history of a planetary system including migration and thermal processing. Because directly imaged debris disks are cold, they have no solid state emission features. Grain scattering properties as a function of wavelength are our only tool to reveal their compositions. Solar system interplanetary dust particles are fluffy aggregates, but most previous work on debris disk composition relied on Mie theory, i.e. assumed compact spherical grains. Mie calculations do not reproduce the observed colors and phase functions observed from debris disks. The few more complex calculations that exist do not explore the range of compositions and sizes relevant to debris disk dust. In particular, we expect porosity to help distinguish between cometary-like parent bodies, which are fluffy due to high volatile content and low collisional velocities, and asteroidal-like parent bodies that are compacted.

  8. Stardust Interstellar Preliminary Examination

    NASA Astrophysics Data System (ADS)

    Westphal, A.; Stardust Interstellar Preliminary Examation Team: http://www. ssl. berkeley. edu/~westphal/ISPE/

    2011-12-01

    A. J. Westphal, C. Allen, A. Ansari, S. Bajt, R. S. Bastien, H. A. Bechtel, J. Borg, F. E. Brenker, J. Bridges, D. E. Brownlee, M. Burchell, M. Burghammer, A. L. Butterworth, A. M. Davis, P. Cloetens, C. Floss, G. Flynn, D. Frank, Z. Gainsforth, E. Grün, P. R. Heck, J. K. Hillier, P. Hoppe, G. Huss, J. Huth, B. Hvide, A. Kearsley, A. J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, R. Lettieri, W. Marchant, L. R. Nittler, R. Ogliore, F. Postberg, M. C. Price, S. A. Sandford, J.-A. Sans Tresseras, T. Schoonjans, S. Schmitz, G. Silversmit, A. Simionovici, V. A. Solé, R. Srama, T. Stephan, V. Sterken, J. Stodolna, R. M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, D. Zevin, M. E. Zolensky, >29,000 Stardust@home dusters ISPE author affiliations are at http://www.ssl.berkeley.edu/~westphal/ISPE/. In 2000 and 2002, a ~0.1m2 array of aerogel tiles and alumi-num foils onboard the Stardust spacecraft was exposed to the interstellar dust (ISD) stream for an integrated time of 200 days. The exposure took place in interplanetary space, beyond the orbit of Mars, and thus was free of the ubiquitous orbital debris in low-earth orbit that precludes effective searches for interstellar dust there. Despite the long exposure of the Stardust collector, <<100 ISD particles are expected to have been captured. The particles are thought to be ~1μm or less in size, and the total ISD collection is probably <10-6 by mass of the collection of cometary dust parti-cles captured in the Stardust cometary dust collector from the coma of the Jupiter-family comet Wild 2. Thus, although the first solid sample from the local interstellar medium is clearly of high interest, the diminutive size of the particles and the low numbers of particles present daunting challenges. Nevertheless, six recent developments have made a Preliminary Examination (PE) of this sample practical: (1) rapid automated digital optical scanning microscopy for three-dimensional imaging of the aerogel collector; (2) rapid automated digital scanning electron microscopy for imaging of the aluminum foils; (3) an effective, massively-distributed search by citizen scientists through the Internet; (4) extraction and sample preparation tech-niques for μm-sized particles in aerogel; (5) advances in capabili-ties of synchrotron infrared and X-ray microprobes that enable non-destructive analyses of sub-μm particles in situ in aerogel; and (6) the development of focused-ion beam (FIB) milling tech-niques for sample preparation. The Stardust Interstellar PE consists of six related projects: the identification of tracks through automated scanning microscopy and distributed searching by volunteers (Stardust@home); the extraction of tracks from aerogel in "picokeystones"; the analysis of tracks using synchrotron microprobes; the identifica-tion and analysis of impacts in aluminum foils; laboratory investigations of ISD analogs using an electrostatic dust accelerator; and modeling of ISD propagation in the heliosphere. To date we have identified four impacts in the aerogel collector and one on the foils of probable interstellar origin. We will report on our analyses and implications for the solid component of the local interstellar medium.

  9. Asteroidal versus cometary meteoroid impacts on the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Zook, Herbert A.

    1992-01-01

    Meteoroids that enter the Earth's atmosphere at low velocities will tend to impact the apex side (that surface facing the spacecraft direction of motion) of a spacecraft at a very high rate compared to the rate with which they will impact an antapex-facing surface. This ratio -- apex to antapex impact rates -- will become less as meteoroid entry velocities increase. The measured ratio, apex to antapex, for 500 micron diameter impact craters in 6061-T6 aluminum on LDEF seems to be about 20 from the work of the meteoroid SIG group and from the work of Humes that was presented at the first LDEF symposium. Such a ratio is more consistent with the meteoroid velocity distributions derived by Erickson and by Kessler, than it is with others that have been tested. These meteoroid velocity distributions have mean entry velocities into the Earth's atmosphere of 16.5 to 16.9 km/s. Jackson and Zook (in a paper submitted to Icarus) have numerically simulated the orbital evolution of small dust grains emitted from asteroids and comets. For those asteroidal grains small enough (below about 100 microns diameter) to drift from the asteroid belt to the orbit of the Earth, under P-R and solar wind drag, without suffering collisional destruction, the following results are found: as their ascending or descending nodes cross the Earth's orbit (and when they might collide with the Earth), their orbital eccentricities and inclinations are quite low (e less than 0.3, i less than 20 degrees), and their mean velocity with respect to the Earth is about 5 or 6 km/s. When gravitational acceleration of the Earth is taken into account, the corresponding mean velocities relative to the top of the Earth's atmosphere are 12 to 13 km/s. This means that, at best, these small asteroidal particles can not comprise more than 50 percent of the particles entering the Earth's atmosphere. And when gravitational focusing is considered, they cannot comprise more than a few percent of those in heliocentric orbit at 1 AU. The rest are presumably of cometary origin.

  10. Cometary impact and amino acid survival - Chemical kinetics and thermochemistry

    USGS Publications Warehouse

    Ross, D.S.

    2006-01-01

    The Arrhenius parameters for the initiating reactions in butane thermolysis and the formation of soot, reliable to at least 3000 K, have been applied to the question of the survival of amino acids in cometary impacts on early Earth. The pressure/temperature/time course employed here was that developed in hydrocode simulations for kilometer-sized comets (Pierazzo and Chyba, 1999), with attention to the track below 3000 K where it is shown that potential stabilizing effects of high pressure become unimportant kinetically. The question of survival can then be considered without the need for assignment of activation volumes and the related uncertainties in their application to extreme conditions. The exercise shows that the characteristic times for soot formation in the interval fall well below the cooling periods for impacts ranging from fully vertical down to about 9?? above horizontal. Decarboxylation, which emerges as more rapid than soot formation below 2000-3000 K, continues further down to extremely narrow impact angles, and accordingly cometa??ry delivery of amino acids to early Earth is highly unlikely. ?? 2006 American Chemical Society.

  11. Measurement and Modeling of Electromagnetic Scattering by Particles and Particle Groups. Chapter 3

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.

    2015-01-01

    Small particles forming clouds of interstellar and circumstellar dust, regolith surfaces of many solar system bodies, and cometary atmospheres have a strong and often controlling effect on many ambient physical and chemical processes. Similarly, aerosol and cloud particles exert a strong influence on the regional and global climates of the Earth, other planets of the solar system, and exoplanets. Therefore, detailed and accurate knowledge of physical and chemical characteristics of such particles has the utmost scientific importance.

  12. The Nature and Origin of Interplanetary Dust: High Temperature Components

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2004-01-01

    The specific parent bodies of individual interplanetary dust particles (IDPs) are un-known, but the anhydrous chondritic-porous (CP) sub-set has been linked directly to cometary sources [1]. The CP IDPs escaped the thermal processing and water-rock interactions that have severely modified or destroyed the original mineralogy of primitive meteorites. Their origin in the outer regions of the solar system suggests they should retain primitive chemical and physical characteristics from the earliest stages of solar system formation (including abundant presolar materials). Indeed, CP IDPs are the most primitive extraterrestrial materials available for laboratory studies based on their unequilibrated mineralogy [2], high concentrations of carbon, nitrogen and volatile trace elements relative to CI chondrites [3, 4, 5], presolar hydrogen and nitrogen isotopic signatures [6, 7] and abundant presolar silicates [8].

  13. Cosmic Carbon Chemistry: From the Interstellar Medium to the Early Earth

    PubMed Central

    Ehrenfreund, Pascale; Cami, Jan

    2010-01-01

    Astronomical observations have shown that carbonaceous compounds in the gas and solid state, refractory and icy are ubiquitous in our and distant galaxies. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly large number of molecules that are used in contemporary biochemistry on Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites, and interplanetary dust particles. In this article we review the current knowledge of abundant organic material in different space environments and investigate the connection between presolar and solar system material, based on observations of interstellar dust and gas, cometary volatiles, simulation experiments, and the analysis of extraterrestrial matter. Current challenges in astrochemistry are discussed and future research directions are proposed. PMID:20554702

  14. Chemical composition of the semi-volatile grains of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Wurz, Peter; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Bieler, André; Calmonte, Ursina; De Keyser, Johan; Fiethe, Björn; Fuselier, Stefan; Gasc, Sébastien; Gombosi, Tamas; Jäckel, Annette; Korth, Axel; Le Roy, Lena; Mall, Urs; Rème, Henri; Rubin, Martin; Tzou, Chia-Yu

    2017-04-01

    The European Space Agency's Rosetta spacecraft (Glassmeier et al., 2007) has been in orbit of the comet 67P/Churyumov-Gerasimenko (67P/C-G) since August 2014. On board is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument suite (Balsiger et al., 2007). ROSINA consists of two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron-type Time-Of-Flight (RTOF) (Scherer et al., 2006), as well as the COmet Pressure Sensor (COPS). ROSINA is designed to detect and monitor the neutral gas and thermal plasma environment in the comet's coma by in situ investigation. The two mass spectrometers have high dynamic ranges and complement each other with high mass resolution (DFMS) and high time resolution and large mass range (RTOF). Especially the unprecedented sensitivity and mass resolution of DFMS together with the large mass range of RTOF allow determining precisely light species (e.g. isotopologues) as well as detecting heavy organic species. The pressure sensor COPS measures total gas densities, bulk velocities, and gas temperatures. ROSINA has been collecting data on the composition of the coma and activity of the comet from 3.5 AU to pericentre and out again to 3.5 AU. The Rosetta mission presents a unique opportunity to directly sample the parent species in the thin cometary atmosphere of a Kuiper-belt object at distances in excess of 2.5 AU from the Sun all the way to the pericentre of the cometary orbit at 1.24 AU. The ROSINA experiment continuously measured the chemical composition of the gases in the cometary coma. Occasionally, a dust grain of cometary origin enters the ion source of a ROSINA instrument where the volatile part evaporates since these ion sources are hot. We will report on the first measurements of the volatile inventory of such dust grains. Volatile release from cometary dust grains was observed with all three ROSINA instruments on several occasions. Because the volatile content of such a dust grain is completely evaporated in such an ion source after a few 100 seconds, the RTOF instrument is best suited for the investigation of its chemical composition since several complete mass spectra are recorded during this time. The rate of dust grains recorded in RTOF is small, and we report on the collection and analysis of 9 dust grains during the October 2014 to July 2016 time period. It is estimated that these grains contain about 1E-15 g of volatiles, which would correspond to a grain of the order of 100 nm in size if made up of volatiles alone. We fitted the recorded mass spectra of RTOF with a set of 61 molecules, and their molecular fragments resulting from the ionisation. The major groups of chemical species are hydrocarbons, oxygenated hydrocarbons, nitrogen-bearing molecules, sulphur-bearing molecules, halogenated molecules and others (including water and CO2). About 70% of these grains are depleted in water compared to the comet coma, thus, can be considered as semi-volatile dust grains, and the other about 30% are water grains. The mineral phase of these grains, if there is any, cannot be investigated in these measurements. However, in an earlier investigation the bulk composition of mineral grains on the surface of the comet was inferred from solar wind sputtering of these grains (Wurz et al., 2015). H. Balsiger, K. Altwegg, P. Bochsler, P. Eberhardt, J. Fischer, S. Graf, A. Jäckel, E. Kopp, U. Langer, M. Mildner, J. Müller, T. Riesen, M. Rubin, S. Scherer, P. Wurz, S. Wüthrich, E. Arijs, S. Delanoye, J. De Keyser, E. Neefs, D. Nevejans, H. Rème, C. Aoustin, C. Mazelle, J.-L. Médale, J.A. Sauvaud, J.-J. Berthelier, J.-L. Ber-taux, L. Duvet, J.-M. Illiano, S.A. Fuselier, A.G. Ghielmetti, T. Magoncelli, E.G. Shelley, A. Korth, K. Heerlein, H. Lauche, S. Livi, A. Loose, U. Mall, B. Wilken, F. Gliem, B. Fiethe, T.I. Gombosi, B. Block, G.R. Carignan, L.A. Fisk, J.H. Waite, D.T. Young, and H. Wollnik, ROSINA - Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Space Science Review 128 (2007), 745-801. K.-H Glassmeier, H. Boehnhardt, D. Koschny, E. Kührt, and I. Richter, The Rosetta Mission: Flying To-wards the Origin of the Solar System, Space Science Reviews 128 (2007), 1-21. S. Scherer, K. Altwegg, H. Balsiger, J. Fischer, A. Jäckel, A. Korth, M. Mildner, D. Piazza, H. Rème, and P. Wurz, A novel principle for an ion mirror design in time-of-flight mass spectrometry, Int. Jou. Mass Spectr. 251 (2006) 73-81. P. Wurz, M. Rubin, K. Altwegg, H. Balsiger, S. Gasc, A. Galli, A. Jäckel, L. Le Roy, U. Calmonte, C. Tzou, U.A. Mall, B. Fiethe, J. De Keyser, J.J. Berthelier, H. Rème, A. Bieler, V. Tenishev, T.I. Gombosi, and S.A. Fuselier, Solar Wind Sputtering of Dust on the Surface of 67P/Churyumov-Gerasimenko, Astron. Astrophys. 583, A22 (2015) 1-9, DOI: 10.1051/0004-6361/201525980.

  15. Sulfur in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.

    1997-01-01

    The computer-intensive project consisted of the analysis and synthesis of existing data on composition of comet Halley dust particles. The main objective was to obtain a complete inventory of sulfur containing compounds in the comet Halley dust by building upon the existing classification of organic and inorganic compounds and applying a variety of statistical techniques for cluster and cross-correlational analyses. A student hired for this project wrote and tested the software to perform cluster analysis. The following tasks were carried out: (1) selecting the data from existing database for the proposed project; (2) finding access to a standard library of statistical routines for cluster analysis; (3) reformatting the data as necessary for input into the library routines; (4) performing cluster analysis and constructing hierarchical cluster trees using three methods to define the proximity of clusters; (5) presenting the output results in different formats to facilitate the interpretation of the obtained cluster trees; (6) selecting groups of data points common for all three trees as stable clusters. We have also considered the chemistry of sulfur in inorganic compounds.

  16. International Halley Watch: Discipline specialists for near-nucleus studies

    NASA Technical Reports Server (NTRS)

    Larson, S.; Sekanina, Z.; Rahe, J.

    1986-01-01

    The purpose of the Near-Nucleus Studies Net is to study the processes taking place in the near-nucleus environment as they relate to the nature of nucleus. This is accomplisghed by measuring the spatial and temporal distribution of dust, gases and ions in the coma on high resolution images taken from many observatories around the world. By modeling the motions of discrete dust features in Comet Halley, it is often possible to determine the locations of the emission sources on the surface and learn about the nucleus structure. In addition to the general goals shared by all IHW nets, the scientific goals of the net has been to determine (1)the gross surface structure of the nucleus, (2)the nucleus spin vector, (3)the distribution and evolution of jet sources and (4)the interrelationships between the gas, dust and ion components of the coma. An additional Comet Giacobini-Zinner watch was carried out by the NNSN in support of the NASA International Cometary Explorer flyby.

  17. The discovery of cometary activity in near-Earth asteroid (3552) Don Quixote

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mommert, Michael; Harris, Alan W.; Hora, Joseph L.

    The near-Earth object (NEO) population, which mainly consists of fragments from collisions between asteroids in the main asteroid belt, is thought to include contributions from short-period comets as well. One of the most promising NEO candidates for a cometary origin is near-Earth asteroid (3552) Don Quixote, which has never been reported to show activity. Here we present the discovery of cometary activity in Don Quixote based on thermal-infrared observations made with the Spitzer Space Telescope in its 3.6 and 4.5 μm bands. Our observations clearly show the presence of a coma and a tail in the 4.5 μm but notmore » in the 3.6 μm band, which is consistent with molecular band emission from CO{sub 2}. Thermal modeling of the combined photometric data on Don Quixote reveals a diameter of 18.4{sub −0.4}{sup +0.3} km and an albedo of 0.03{sub −0.01}{sup +0.02}, which confirms Don Quixote to be the third-largest known NEO. We derive an upper limit on the dust production rate of 1.9 kg s{sup –1} and derive a CO{sub 2} gas production rate of (1.1 ± 0.1) × 10{sup 26} molecules s{sup –1}. Spitzer Infrared Spectrograph spectroscopic observations indicate the presence of fine-grained silicates, perhaps pyroxene rich, on the surface of Don Quixote. Our discovery suggests that CO{sub 2} can be present in near-Earth space over a long time. The presence of CO{sub 2} might also explain that Don Quixote's cometary nature remained hidden for nearly three decades.« less

  18. Rosetta Langmuir Probe Photoelectron Emission and Solar Ultraviolet Flux at Comet 67P

    NASA Astrophysics Data System (ADS)

    Johansson, F. L.; Odelstad, E.; Paulsson, J. J.; Harang, S. S.; Eriksson, A. I.; Mannel, T.; Vigren, E.; Edberg, N. J. T.; Miloch, W. J.; Simon Wedlund, C.; Thiemann, E.; Epavier, F.; Andersson, L.

    2017-12-01

    The Langmuir Probe instrument on Rosetta monitored the photoelectron emission current of the probes during the Rosetta mission at comet 67P/Churyumov-Gerasimenko, in essence acting as a photodiode monitoring the solar ultraviolet radiation at wavelengths below 250 nm. We have used three methods of extracting the photoelectron saturation current from the Langmuir probe measurements. The resulting dataset can be used as an index of the solar far and extreme ultraviolet at the Rosetta spacecraft position, including flares, in wavelengths that are important for photoionisation of the cometary neutral gas. Comparing the photoemission current to data measurements by MAVEN/EUVM and TIMED/SEE, we find good correlation when 67P was at large heliocentric distances early and late in the mission, but up to 50 percent decrease of the expected photoelectron current at perihelion. We discuss possible reasons for the photoemission decrease, including scattering and absorption by nanograins created by disintegration of cometary dust far away from the nucleus.

  19. Rosetta photoelectron emission and solar ultraviolet flux at comet 67P

    NASA Astrophysics Data System (ADS)

    Johansson, Fredrik L.; Odelstad, E.; Paulsson, J. J. P.; Harang, S. S.; Eriksson, A. I.; Mannel, T.; Vigren, E.; Edberg, N. J. T.; Miloch, W. J.; Simon Wedlund, C.; Thiemann, E.; Eparvier, F.; Andersson, L.

    2017-07-01

    The Langmuir Probe instrument on Rosetta monitored the photoelectron emission current of the probes during the Rosetta mission at comet 67P/Churyumov-Gerasimenko, in essence acting as a photodiode monitoring the solar ultraviolet radiation at wavelengths below 250 nm. We have used three methods of extracting the photoelectron saturation current from the Langmuir probe measurements. The resulting data set can be used as an index of the solar far and extreme ultraviolet at the Rosetta spacecraft position, including flares, in wavelengths which are important for photoionization of the cometary neutral gas. Comparing the photoemission current to data measurements by MAVEN/EUVM and TIMED/SEE, we find good correlation when 67P was at large heliocentric distances early and late in the mission, but up to 50 per cent decrease of the expected photoelectron current at perihelion. We discuss possible reasons for the photoemission decrease, including scattering and absorption by nanograins created by disintegration of cometary dust far away from the nucleus.

  20. Halogens as tracers of protosolar nebula material in comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Dhooghe, Frederik; De Keyser, Johan; Altwegg, Kathrin; Briois, Christelle; Balsiger, Hans; Berthelier, Jean-Jacques; Calmonte, Ursina; Cessateur, Gaël; Combi, Michael R.; Equeter, Eddy; Fiethe, Björn; Fray, Nicolas; Fuselier, Stephen; Gasc, Sébastien; Gibbons, Andrew; Gombosi, Tamas; Gunell, Herbert; Hässig, Myrtha; Hilchenbach, Martin; Le Roy, Léna; Maggiolo, Romain; Mall, Urs; Marty, Bernard; Neefs, Eddy; Rème, Henri; Rubin, Martin; Sémon, Thierry; Tzou, Chia-Yu; Wurz, Peter

    2017-12-01

    We report the first in situ detection of halogens in a cometary coma, that of 67P/Churyumov-Gerasimenko. Neutral gas mass spectra collected by the European Space Agency's Rosetta spacecraft during four periods of interest from the first comet encounter up to perihelion indicate that the main halogen-bearing compounds are HF, HCl and HBr. The bulk elemental abundances relative to oxygen are ∼8.9 × 10-5 for F/O, ∼1.2 × 10-4 for Cl/O and ∼2.5 × 10-6 for Br/O, for the volatile fraction of the comet. The cometary isotopic ratios for 37Cl/35Cl and 81Br/79Br match the Solar system values within the error margins. The observations point to an origin of the hydrogen halides in molecular cloud chemistry, with frozen hydrogen halides on dust grains, and a subsequent incorporation into comets as the cloud condensed and the Solar system formed.

  1. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples.

    PubMed

    Dominguez, Gerardo; Mcleod, A S; Gainsforth, Zack; Kelly, P; Bechtel, Hans A; Keilmann, Fritz; Westphal, Andrew; Thiemens, Mark; Basov, D N

    2014-12-09

    Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 μm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples.

  2. Physical properties of interplanetary dust: laboratory and numerical simulations

    NASA Astrophysics Data System (ADS)

    Hadamcik, Edith; Lasue, Jeremie; Levasseur-Regourd, Anny-Chantal; Renard, Jean-Baptiste; Buch, Arnaud; Carrasco, Nathalie; Cottin, Hervé; Fray, Nicolas; Guan, Yuan Yong; Szopa, Cyril

    Laboratory light scattering measurements with the PROGRA2 experiment, in A300-CNES and ESA dedicated microgravity flights or in ground based configurations, offer an alternative to models for exploring the scattering properties of particles with structures too complex to be easily handled by computer simulations [1,2]. The technique allows the use of large size distributions (nanometers to hundreds of micrometers) and a large variety of materials, similar to those suspected to compose the interplanetary particles [3]. Asteroids are probably the source of compact particles, while comets have been shown to eject compact and fluffy materials [4]. Moreover giant planets provide further a small number of interplanetary particles. Some interstellar particles are also present. To choose the best samples and size distributions, we consider previous numerical models for the interplanetary particles and their evolution with solar distance. In this model, fluffy particles are simulated by fractal aggregates and compact particles by ellipsoids. The materials considered are silicates and carbonaceous compound. The silicate grains can be coated by the organics. Observations are fitted with two parameters: the size distribution of the particles and the ratio of silicates over carbonaceous compounds. From the light scattering properties of the particles, their equilibrium temperature can be calculated for different structures and composition. The variation of their optical properties and temperatures are studied with the heliocentric distance [5,6]. Results on analogs of cometary particles [7] and powdered meteorites as asteroidal particles will be presented and compared to numerical simulations as well as observations. Organics on cometary grains can constitute distributed sources if degraded by solar UV and heat [8, 9]. The optical properties of CxHyNz compounds are studied after thermal evolution [10]. As a first approach, they are used to simulate the evolution of cometary or interplanetary dust organics approaching the Sun. Albedo and polarization variations will be discussed. The polarization evolution will be compared to those obtained through observations [11]. Studies of the properties of our interplanetary dust cloud should provide information to better interpret observations of dust around exoplanets. Some of these planets are very close to their star. The thermal evolution of organics driven by chemical reactions will represent a fundamental knowledge to interpret the relevant polarimetric observations. We acknowledge CNES for funding the PROGRA2 experiment, CNES and ESA for the micro-gravity flights. [1] Renard J.-B. et al., Appl. Opt. 41, 609 (2002) [2] Hadamcik E. et al., In: Light scattering rev. 4, 31 (Kokhanovszky ed.), Springer -Praxis, Berlin (2009) [3] Mann I. et al., Space Sci. Rev. 110, 269 (2004) [4] Hoertz F. et al., Science 314, 716 (2006) [5] Lasue J. et al., Astron. Astrophys. 473, 641 (2007) [6] Levasseur-Regourd A.C et al., Planet Space Sci. 55, 1010 (2007) [7] Hadamcik E. et al., Icarus 190, 660 (2007) [8] Cottin H. et al., Adv. Space Res. 42, 2019 (2008) [9] Fray N. et al., Planet. Space Sci. 53, 1243 (2005) [10] Sciamma-O'Brien E. et al., Icarus, accepted [11] Levasseur-Regourd A.C., et al., In: Interplanetary dust, Gruen, Gustafson B., Dermott S., Fechtig H. (Eds), Springer, Berlin, 57 (2001)

  3. Radio and infrared study of southern H II regions G346.056-0.021 and G346.077-0.056

    NASA Astrophysics Data System (ADS)

    Das, S. R.; Tej, A.; Vig, S.; Liu, T.; Ghosh, S. K.; Chandra, C. H. I.

    2018-04-01

    Aim. We present a multiwavelength study of two southern Galactic H II regions G346.056-0.021 and G346.077-0.056 which are located at a distance of 10.9 kpc. The distribution of ionized gas, cold and warm dust, and the stellar population associated with the two H II regions are studied in detail using measurements at near-infrared, mid-infrared, far-infrared, submillimeter and radio wavelengths. Methods: The radio continuum maps at 1280 and 610 MHz were obtained using the Giant Metrewave Radio Telescope to probe the ionized gas. The dust temperature, column density, and dust emissivity maps were generated using modified blackbody fits in the far-infrared wavelength range 160-500 μm. Various near- and mid-infrared color and magnitude criteria were adopted to identify candidate ionizing star(s) and the population of young stellar objects in the associated field. Results: The radio maps reveal the presence of diffuse ionized emission displaying distinct cometary morphologies. The 1280 MHz flux densities translate to zero age main sequence spectral types in the range O7.5V-O7V and O8.5V-O8V for the ionizing stars of G346.056-0.021 and G346.077-0.056, respectively. A few promising candidate ionizing star(s) are identified using near-infrared photometric data. The column density map shows the presence of a large, dense dust clump enveloping G346.077-0.056. The dust temperature map shows peaks towards the two H II regions. The submillimeter image shows the presence of two additional clumps, one being associated with G346.056-0.021. The masses of the clumps are estimated to range between 1400 and 15250 M⊙. Based on simple analytic calculations and the correlation seen between the ionized gas distribution and the local density structure, the observed cometary morphology in the radio maps is better explained invoking the champagne-flow model. GMRT data (FITS format) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A36

  4. Meteorites, Bolides and Comets: A Tale of Inconsistency

    NASA Astrophysics Data System (ADS)

    Jakes, P.; Padevet, V.

    1992-07-01

    Inhomogeneity of cometary nuclei has been established through the observed disruptions of comets [1] and through the determination of dust particle composition during the encounter of the Vega and Giotto satellites with comet Halley [2,3,4]. The raisin bread model of cometary nuclei [5,6] assumes the presence of solid (rock) and dust particle material set in the volatile rich, ice- cemented material. Rock material may contribute to the formation of dust particles. Gombosi and Houpis [5] argued that only the composition of dust particles derived from the icy, volatile component of the comet were analyzed and implied thus that the third cometary component present (raisins/rocks) has not been examined. The compositions of the cometary (Halley) dust and the interplanetary dust particles (IDPs) are "chondritic" (Blanford et al., 1988). It is difficult, therefore to estimate the proportion of cometary to asteroid-derived dust in near Earth space, e.g., among the IDPs [7] unless other criteria are available. Bolide multistation photographic tracking allows the determination of the orbital preencounter parameters of solid bodies (0.01-100,000 kg in mass) with the Earth, and allows us to classify them according to their ablation coefficient (tau), penetration depth into the atmosphere (PE), theoretical densities (sigma), and terminal velocities (V(sub)E). Four groups are recognized (Table 1). Three of the type I bolides were recovered as ordinary chondrites (Pribram, Lost City, and Innisfree). Ceplecha [8] has shown that 38% of bolides (fireballs) come from cometary orbits (11% from highly eccentric orbits typical of new comets), but most of the bolides (62%) originate at asteroidal orbits. Seven of the 14 known meteoric showers could be attributed to known comets: N,S Taurids to 1970 P/Encke, Lyrids to 1861 I Thatcher-Beaker, Perseids to 1862 III Swift-Tuttle- Simons, Orionids to 1835 III P/Halley, Draconids to 1946 V P/Giacobini-Zinner, Leonids to 1966 I Tempel-Tuttle, and Leo Minorids to 1739 Zanotti. Geminids were related to asteroid 3200 Phaeton, considered to be an "extinct comet." Spurny [9], using ablation coefficient and penetration depth criteria, found that Geminids (frequently) and Taurids (rarely) contain bolides of types I and II. This may indicate that meteoric showers from "comets" on AAA orbits contain some portion of "rocky" material comparable to chondrites. These observations revive Opik's (1963) idea that comets may be captured in the asteroid belt on AAA orbits and may contain (and supply) chondritic meteorites to the Earth [10]. If the relationship among large solid particles "native to the asteroid belt" and those from the outer solar system can be established, they can be scaled and applied to IDPs. We have studied the records of 292 bolides (Prairie and European networks) with measured terminal velocities. We attempt to use the terminal velocity, calculated density, estimated terminal mass, and mechanical strength to correlate features with the meteorite features. We compare the meteorite fall frequency [11] with the bolide features. Two extreme hypotheses (Table 1) are examined: (A) bolides of types IIIa and IIIb do not have equivalents among the meteorites and (B) all four bolide types have meteoritic equivalents, and only IDPs do not produce bolides (fireballs). If the entry parameters of meteoroids are similar, bodies with lower density should reach terminal velocity at higher altitudes than those with higher density. If it is assumed that fragmentation is the same for dense (I and II) and less dense bodies (IIIa and IIIb), the calculated terminal altitudes show that among the bolides exist materials with lower densities than those of recovered meteorites and that model A of the correlation between meteorite falls and bolide observations is likely [12]. If, however, the less dense bodies were more easily fragmented than denser bodies, the correlation is better for hypothesis B. Table 1, which in the hard copy appears here, shows fireball observations. Using the value of terminal velocities and the average value of ablation coefficients the terminal (residual) masses (m(sub)E) can be calculated. Among the bodies studied, 99 were heavier than 0.1 kg and 153 heavier than 0.01 kg. The parameter (m(sub)E) indicates the end of ablation in the atmosphere, but it cannot distinguish between meteoroids that were totally disintegrated and those genuinely decelerated. Similarly the calculated terminal altitudes and mechanical strength values do not provide a unequivocal interpretation. Correlation of bolide properties with meteorite falls could well be accommodated by the hypothesis B in which each bolide type has a meteorite equivalent. This has, however, some "outrageous" implications: comets may carry chondrites, icy dust balls do not produce fireballs; the extremely primitive carbon-rich particles represented by the IDPs do not form larger discrete bodies (fireballs) of "asteroidal" size; and the asteroid belt is a mixture of "native fractionated old bodies" together with the captured comets. Hypothesis B therefore contradicts the "established" scheme of the asteroid belt in which the non-differentiated meteorites (CI, CM, and CV) form the outer part of the asteroid belt, whereas the fractionated metamorphosed and igneous meteorites characterize the inner asteroids. References: [1] Whipple F. L., 1987, Phil. Trans. R. Soc. Lond., A 323, 339. [2] Dikov Yu. P. et al., 1991, Geochemistry International, 29, 33-38. [3] Kissel J., et al., 1986, Nature, 321, 326. [4] Solc M., et al., 1987, Publ. Astr. Inst. Czechosl., 67, 47. [5] Gombosi T. I. and Houpis H. L. F., 1986, Nature, 324, 43. [6] Delsemme A. H., 1977, Comets, asteroids, meteorites, Univ. of Toledo Press. [7] Gibson E. K., 1992, J. Geophys. Res., 97, E3 3865. [8] Ceplecha Z., 1988, Bull. Astr. Inst. Czech., 39, 221. [9] Spurny P., 1991, doc. diss., Astr. Inst. Czechosl. [10] Opik E. J., 1963, Adv. Astr. Astrophys., 2, 219. [11] Hutchinson R., et al., 1977, Appendix to Catalogue of Meteorites, British Museum, London. [12] Ceplecha Z. and McCrosky R. E., 1976, J. Geophys. Res., 81, 6257.

  5. ON THE ORIGIN OF INNER COMA STRUCTURES OBSERVED BY ROSETTA DURING A DIURNAL ROTATION OF COMET 67P/CHURYUMOV–GERASIMENKO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Tobias; Noack, Matthias

    2016-05-20

    The Rosetta probe around comet 67P/Churyumov–Gerasimenko (67P) reveals an anisotropic dust distribution of the inner coma with jet-like structures. The physical processes leading to jet formation are under debate, with most models for cometary activity focusing on localized emission sources, such as cliffs or terraced regions. Here we suggest, by correlating high-resolution simulations of the dust environment around 67P with observations, that the anisotropy and the background dust density of 67P originate from dust released across the entire sunlit surface of the nucleus rather than from few isolated sources. We trace back trajectories from coma regions with high local dustmore » density in space to the non-spherical nucleus and identify two mechanisms of jet formation: areas with local concavity in either two dimensions or only one. Pits and craters are examples of the first case; the neck region of the bi-lobed nucleus of 67P is an example of the latter case. The conjunction of multiple sources, in addition to dust released from all other sunlit areas, results in a high correlation coefficient (∼0.8) of the predictions with observations during a complete diurnal rotation period of 67P.« less

  6. Solar wind interaction with dusty plasmas produces instabilities and solitary structures

    NASA Astrophysics Data System (ADS)

    Saleem, H.; Ali, S.

    2017-12-01

    It is pointed out that the solar wind interaction with dusty magnetospheres of the planets can give rise to purely growing instabilities as well as nonlinear electric field structures. Linear dispersion relation of the low frequency electrostatic ion-acoustic wave (IAW) is modified in the presence of stationary dust and its frequency becomes larger than its frequency in usual electron ion plasma even if ion temperature is equal to the electron temperature. This dust-ion-acoustic wave (DIAW) either becomes a purely growing electrostatic instability or turns out to be the modified dust-ion-acoustic wave (mDIAW) depending upon the magnitude of shear flow scale length and its direction. Growth rate of shear flow-driven electrostatic instability in a plasma having negatively charged stationary dust is larger than the usual D'Angelo instability of electron-ion plasma. It is shown that shear modified dust ion acoustic wave (mDIAW) produces electrostatic solitons in the nonlinear regime. The fluid theory predicts the existence of electrostatic solitons in the dusty plasmas in those regions where the inhomogeneous solar wind flow is parallel to the planetary or cometary magnetic field lines. The amplitude and width of the solitary structure depends upon dust density and magnitude of shear in the flow. This is a general theoretical model which is applied to dusty plasma of Saturn's F-ring for illustration.

  7. The Mineralogy of Circumstellar Silicates Preserved in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2010-01-01

    Interplanetary dust particles (IDPs) contain a record of the building blocks of the solar system including presolar grains, molecular cloud material, and materials formed in the early solar nebula. Cometary IDPs have remained relatively unaltered since their accretion because of the lack of parent body thermal and aqueous alteration. We are using coordinated transmission electron microscope (TEM) and ion microprobe studies to establish the origins of the various components within cometary IDPs. Of particular interest is the nature and abundance of presolar silicates in these particles because astronomical observations suggest that crystalline and amorphous silicates are the dominant grain types produced in young main sequence stars and evolved O-rich stars. Five circumstellar grains have been identified including three amorphous silicate grains and two polycrystalline aggregates. All of these grains are between 0.2 and 0.5 micrometers in size. The isotopic compositions of all five presolar silicate grains fall within the range of presolar oxides and silicates, having large (17)O-enrichments and normal (18)O/(16)O ratios (Group 1 grains from AGB and RG stars). The amorphous silicates are chemically heterogeneous and contain nanophase FeNi metal and FeS grains in a Mg-silicate matrix. Two of the amorphous silicate grains are aggregates with subgrains showing variable Mg/Si ratios in chemical maps. The polycrystalline grains show annealed textures (equilibrium grains boundaries, uniform Mg/Fe ratios), and consist of 50-100 nm enstatite and pyrrhotite grains with lesser forsterite. One of the polycrystalline aggregates contains a subgrain of diopside. The polycrystalline aggregates form by subsolidus annealing of amorphous precursors. The bulk compositions of the five grains span a wide range in Mg/Si ratios from 0.4 to 1.2 (avg. 0.86). The average Fe/Si (0.40) and S/Si (0.21) ratios show a much narrower range of values and are approximately 50% of their solar abundances. The latter observation may indicate a decoupling of the silicate and sulfide components in grains that condense in stellar outflows. The amorphous silicate grains described here were not extensively affected by irradiation, sputtering, or thermal processing and may represent relatively pristine circumstellar grains. They are strong candidates for the "dirty silicates" in astronomical observations of circumstellar dust shells. The polycrystalline grains were originally amorphous silicate grains that were likely annealed in the early solar nebula but the processing was not sufficient to erase their anomalous oxygen isotopic compositions.

  8. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar System.

  9. Thermal infrared and optical photometry of Asteroidal Comet C/2002 CE10

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Tomohiko; Miyasaka, Seidai; Dermawan, Budi; Mueller, Thomas; Takato, Naruhisa; Watanabe, Junichi; Boehnhardt, Hermann

    2018-04-01

    C/2002 CE10 is an object in a retrograde elliptical orbit with Tisserand parameter - 0.853 indicating a likely origin in the Oort Cloud. It appears to be a rather inactive comet since no coma and only a very weak tail was detected during the past perihelion passage. We present multi-color optical photometry, lightcurve and thermal mid-IR observations of the asteroidal comet. With the photometric analysis in BVRI, the surface color is found to be redder than asteroids, corresponding to cometary nuclei and TNOs/Centaurs. The time-resolved differential photometry supports a rotation period of 8.19 ± 0.05 h. The effective diameter and the geometric albedo are 17.9 ± 0.9 km and 0.03 ± 0.01, respectively, indicating a very dark reflectance of the surface. The dark and redder surface color of C/2002 CE10 may be attribute to devolatilized material by surface aging suffered from the irradiation by cosmic rays or from impact by dust particles in the Oort Cloud. Alternatively, C/2002 CE10 was formed of very dark refractory material originally like a rocky planetesimal. In both cases, this object lacks ices (on the surface at least). The dynamical and known physical characteristics of C/2002 CE10 are best compatible with those of the Damocloids population in the Solar System, that appear to be exhaust cometary nucleus in Halley-type orbits. The study of physical properties of rocky Oort cloud objects may give us a key for the formation of the Oort cloud and the solar system.

  10. Fractal cometary dust - a window into the early Solar system

    NASA Astrophysics Data System (ADS)

    Mannel, T.; Bentley, M. S.; Schmied, R.; Jeszenszky, H.; Levasseur-Regourd, A. C.; Romstedt, J.; Torkar, K.

    2016-11-01

    The properties of dust in the protoplanetary disc are key to understanding the formation of planets in our Solar system. Many models of dust growth predict the development of fractal structures which evolve into non-fractal, porous dust pebbles representing the main component for planetesimal accretion. In order to understand comets and their origins, the Rosetta orbiter followed comet 67P/Churyumov-Gerasimenko for over two years and carried a dedicated instrument suite for dust analysis. One of these instruments, the MIDAS (Micro-Imaging Dust Analysis System) atomic force microscope, recorded the 3D topography of micro- to nanometre-sized dust. All particles analysed to date have been found to be hierarchical agglomerates. Most show compact packing; however, one is extremely porous. This paper contains a structural description of a compact aggregate and the outstanding porous one. Both particles are tens of micrometres in size and show rather narrow subunit size distributions with noticeably similar mean values of 1.48^{+0.13}_{-0.59} μm for the porous particle and 1.36^{+0.15}_{-0.59} μm for the compact. The porous particle allows a fractal analysis, where a density-density correlation function yields a fractal dimension of Df = 1.70 ± 0.1. GIADA, another dust analysis instrument on board Rosetta, confirms the existence of a dust population with a similar fractal dimension. The fractal particles are interpreted as pristine agglomerates built in the protoplanetary disc and preserved in the comet. The similar subunits of both fractal and compact dust indicate a common origin which is, given the properties of the fractal, dominated by slow agglomeration of equally sized aggregates known as cluster-cluster agglomeration.

  11. The Large-Grained Dust Coma of 174P/Echeclus

    NASA Technical Reports Server (NTRS)

    Bauer, James M.; Choi, Young-Jun; Weissman, Paul R.; Stansberry, John A.; Fernandez, Yanga R.; Roe, Henry G.; Buratti, Bonnie J.; Sung, Hyun-Il

    2008-01-01

    On 2005 December 30, Y.-J. Choi and P. R. Weissman discovered that the formerly dormant Centaur 2000 EC98 was in strong outburst. Previous observations by P. Rousselot et al. spanning a 3-year period indicated a lack of coma down to the 27 mag arcsec 2 level.We present Spitzer Space Telescope MIPS observations of this newly active Centaur--now known as 174P/Echeclus (2000 EC98)--or 60558 Echeclus--taken in 2006 late February. The images show strong signal at both the 24 and 70 micron bands and reveal an extended coma about 2' in diameter. Analyses yield estimates of the coma signal contribution that are in excess of 90% of the total signal in the 24 micron band. Dust production estimates ranging from 1.7-4 x 10(exp 2) kg/s are on the order of 30 times that seen in other Centaurs. Simultaneous visible-wavelength observations were also obtained with Palomar Observatory's 200-inch telescope, the 1.8-m Vatican Advanced Technology Telescope, the Bohyunsan Optical Astronomy Observatory (BOAO) 1.8-m telescope, and Table Mountain Observatory's 0.6-m telescope, revealing a coma morphology nearly identical to the mid-IR observations. The grain size distribution derived from the data yields a log particle mass power-law with slope parameter (alpha) = -0.87 +/- 0.07, and is consistent with steady cometary-activity, such as that observed during the Stardust spacecraft's encounter at 81P/Wild 2, and not with an impact driven event, such as that caused by the Deep Impact experiment.

  12. The diffuse interstellar bands: a tracer for organics in the diffuse interstellar medium?

    NASA Technical Reports Server (NTRS)

    Salama, F.

    1998-01-01

    The diffuse interstellar bands (DIBs) are absorption bands seen in the spectra of stars obscured by interstellar dust. DIBs are recognized as a tracer for free, organic molecules in the diffuse interstellar medium (ISM). The potential molecular carriers for the DIBs are discussed with an emphasis on neutral and ionized polycyclic aromatic hydrocarbons (PAHs) for which the most focused effort has been made to date. From the combined astronomical, laboratory and theoretical study, it is concluded that a distribution of free neutral and ionized complex organics (PAHs, fullerenes, unsaturated hydrocarbons) represents the most promising class of candidates to account for the DIBs. The case for aromatic hydrocarbons appears particularly strong. The implied widespread distribution of complex organics in the diffuse ISM bears profound implications for our understanding of the chemical complexity of the ISM, the evolution of prebiotic molecules and its impact on the origin and the evolution of life on early Earth through the exogenous delivery (cometary encounters and metoritic bombardments) of prebiotic organics.

  13. The tensile strength of ice and dust aggregates and its dependence on particle properties

    NASA Astrophysics Data System (ADS)

    Gundlach, B.; Schmidt, K. P.; Kreuzig, C.; Bischoff, D.; Rezaei, F.; Kothe, S.; Blum, J.; Grzesik, B.; Stoll, E.

    2018-06-01

    The knowledge of the tensile strength of astrophysical dust and ice aggregates is of major importance to understand the early stages of planet formation in our solar system and cometary activity. In this letter we report on an experimental setup, developed to measure the tensile strength of granular, astrophysical relevant materials, such as water ice and silica aggregates. We found that the tensile strength of aggregates composed of monodisperse silica particles depends on the grain size of the used material and is in a good agreement with the predictions of earlier works. For aggregates consisting of polydisperse water-ice particles, the measured tensile strength is very low compared to the theoretical prediction, which indicates that the specific surface energy of water ice at low temperatures is lower than previously assumed.

  14. Search for Primitive Matter in the Solar System

    NASA Technical Reports Server (NTRS)

    Libourel, G.; Michel, P.; Delbo, M.; Ganino, C.; Recio-Blanco, A.; de Laverny, P.; Zolensky, M. E.; Krot, A. N.

    2017-01-01

    Recent astronomical observations and theoretical modeling led to a consensus regarding the global scenario of the formation of young stellar objects (YSO) from a cold molecular cloud of interstellar dust (organics and minerals) and gas that, in some cases, leads to the formation of a planetary system. In the case of our Solar System, which has already evolved for approximately 4567 Ma, the quest is to access, through the investigation of planets, moons, cometary and asteroidal bodies, meteorites, micrometeorites, and interplanetary dust particles, the primitive material that contains the key information about the early Solar System processes and its evolution. However, laboratory analyses of extraterrestrial samples, astronomical observations and dynamical models of the Solar System evolution have not brought yet any conclusive evidence on the nature and location of primitive matter in the Solar System, preventing a clear understanding of its early stages.

  15. Coordinates Analyses of Hydrated Interplanetary Dust Particles: Samples of Primitive Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Snead, C.; McKeegan, K. D.

    2016-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere fall into two major groups: an anhydrous group termed the "chondritic-porous (CP) IDPs and a hydrated group, the "chondritic-smooth (CS) IDPs, although rare IDPs with mineralogies intermediate between these two groups are known [1]. The CP-IDPs are widely believed to be derived from cometary sources [e.g. 2]. The hydrated CS-IDPs show mineralogical similarities to heavily aqueously altered carbonaceous chondrites (e.g. CI chondrites), but only a few have been directly linked to carbonaceous meteorite parent bodies [e.g. 3, 4]. Most CS-IDPs show distinct chemical [5] and oxygen isotopic composition differences [6-8] from primitive carbonaceous chondrites. Here, we report on our coordinated analyses of a suite of carbon-rich CS-IDPs focusing on their bulk compositions, mineralogy, mineral chemistry, and isotopic compositions.

  16. Interstellar and Solar Nebula Materials in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nakamura-Messenger, Keiko; Keller, Lindsay; Nguyen, Ann; Clemett, Simon

    2017-01-01

    Laboratory studies of cometary dust collected in the stratosphere and returned from comet 81P/Wild 2 by the Stardust spacecraft have revealed ancient interstellar grains and molecular cloud organic matter that record a range of astrophysical processes and the first steps of planetary formation. Presolar materials are rarer meteorites owing to high temperature processing in the solar nebula and hydrothermal alteration on their asteroidal parent bodies. The greater preservation of presolar materials in comets is attributed to their low accretion temperatures and limited planetary processing. Yet, comets also contain a large complement of high temperature materials from the inner Solar System. Owing to the limited and biased sampling of comets to date, the proportions of interstellar and Solar System materials within them remains highly uncertain. Interstellar materials are identified by coordinated isotopic, mineralogical, and chemical measurements at the scale of individual grains. Chondritic porous interplanetary dust particles (CP IDPs) that likely derive from comets are made up of 0.1 - 10 micron-sized silicates, Fe-Ni-sulfides, oxides, and other phases bound by organic material. As much as 1% of the silicates are interstellar grains that have exotic isotopic compositions imparted by nucleosynthetic processes in their parent stars. Crystalline silicates in CP IDPs dominantly have normal isotopic compositions and probably formed in the Solar System. 81P samples include isotopically normal refractory minerals that resemble Ca-Al rich inclusions and chondrules common in meteorites. The origins of sub-micron amorphous silicates in IDPs are not certain, but at least a few % of them are interstellar grains. The remainder have isotopic compositions consistent with Solar System origins and elemental compositions that are inconsistent with interstellar grain properties, thus favoring formation in the solar nebula [4]. The organic component in comets and primitive meteorites has large enrichments in D/H and N-15/N-14 relative to terrestrial materials. These isotopic signatures are probably due to low temperature chemical processes in cold molecular clouds or the outermost reaches of the protoplanetary disk. The greatest isotopic anomalies are found in sub-micron organic nanoglobules that show chemical signatures of interstellar chemistry. The observation that cometary dust is mostly composed of isotopically normal minerals within isotopically anomalous organic matter is difficult to reconcile with the formation models of each component. The mineral component likely formed in high temperature processes in the inner Solar System, while the organic fraction shows isotopic and chemical signatures of formation near 10 K. Studying more primitive remnants of the Solar System starting materials would help in resolving this paradox. Comets formed across a vast expanse of the outer disk under differing thermal and collisional regimes, and some are likely to be better preserved than others. Finding truly pristine aggregates of presolar materials may require return of a pristine sample of comet nucleus material.

  17. Aluminum Foils of the Stardust Interstellar Collector: The Challenge of Recognizing Micrometer-sized Impact Craters made by Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Westphal, A. J.; Burchell, M. J.; Zolensky, Michael E.

    2008-01-01

    Preliminary Examination (PE) of the Stardust cometary collector revealed material embedded in aerogel and on aluminium (Al) foil. Large numbers of sub-micrometer impact craters gave size, structural and compositional information. With experience of finding and analyzing the picogram to nanogram mass remains of cometary particles, are we now ready for PE of the Interstellar (IS) collector? Possible interstellar particle (ISP) tracks in the aerogel are being identified by the stardust@home team. We are now assessing challenges facing PE of Al foils from the interstellar collector.

  18. Observations of Periodic Comet 2P/Encke: Physical Properties of the Nucleus and First Visual-Wavelength Detection of Its Dust Trail

    NASA Technical Reports Server (NTRS)

    Lowry, Stephen C.; Weissman, Paul R.; Sykes, Mark V.; Reach, William T.

    2003-01-01

    We are conducting an observational program designed to determine the overall distributions of size, shape, rotation period, and surface characteristics of cometary nuclei. Here, we present results from a study of the Jupiter- family comet 2P/Encke based on observations from Steward Observatory's 2.3m Bok Telescope at Kitt Peak. This comet has been observed extensively in the past and was one of the primary flyby targets of the recently failed CONTOUR mission.

  19. Mineralogy, Three Dimensional Structure, and Oxygen Isotope Ratios of Four Crystalline Particles from Comet 81P/Wild 2

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Noguchi, T.; Tsuchiyama, A.; Ushikubo, T.; Kita, N. T.; Valley, J. W.; Zolensky, M. E.; Kakazu, Y.; Sakamoto, K.; Mashio, E.; hide

    2008-01-01

    Preliminary examinations of small dust particles from comet 82P/Wild 2 revealed many expected and unexpected features. Among them the most striking feature is the presence of abundant crystalline material in the comet. Synchrotron radiation X-ray diffraction and microtomography are the most efficient methods to detect and describe bulk mineralogical features of crystalline cometary particles. In the present study, in addition to these two non-destructive techniques, electron microscopy and ion-probe mass spectrometry were carried out on the four crystalline particles.

  20. Chemical Recycling of HCN in Cometary Comae

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Kawakita, Hideyo; Shinnaka, Yoshiharu; Mumma, Michael J.; Kobayashi, Hitomi; Ogawa, Sayuri

    2014-11-01

    Modeling is essential to understand the important physical and chemical processes that occur in cometary comae, especially the relationship between putative parent and daughter molecules, such as, HCN and CN. Photochemistry is a major source of ions and electrons that further initiate key gas-phase reactions, contributing to the plethora of molecules and atoms observed in comets. The effects of photoelectrons that interact via impacts are important to the overall excitation and dissociation processes in the inner coma. We consider the relevant processes in the collision-dominated, inner coma of a comet within a global modeling framework to understand observations of HCN and CN. The CN source(s) must be able to produce highly collimated jets, be consistent with the observed CN parent scale length, and have a production rate consistent with the observed CN production. HCN fulfills these conditions in some comets (e.g., 1P/Halley, Hale-Bopp) while it does not in others (e.g., 8P/Tuttle, 6P/d’Arrest, 73P/S-W3, 2P/Encke, 9P/Temple 1 and C/2007 W1).We investigate the chemistry of HCN with our chemical kinetics coma model including a network with other possible CN parents, as well as a dust component that may be a potential source of CN. It is seen that the major destruction pathways of HCN are via photo dissociation (into H and CN) and protonation with water group ions - primarily H3O+. We point out the intriguing “recycling” of HCN via protonation reactions with H3O+, H2O+, OH+, and subsequent dissociative recombination. It seems that HCN molecules observed in the coma can consist of those initially released from the nucleus and those that are freshly formed at different locations in the coma via these protonation/dissociation reactions. We will investigate implications for reconciling discrepancies between observations of HCN and CN in cometary comae.Acknowledgements: We appreciate support from the NSF Planetary Astronomy Program. This program is partially supported by the MEXT Supported Program for the Strategic Research Foundation at Private Universities, 2014-2018.

  1. Characterizing the population of Asteroids in Cometary Orbits (ACOs)

    NASA Astrophysics Data System (ADS)

    Tancredi, Gonzalo; Licandro, Javier; Alí-Lagoa, Victor; Martino, Silvia; Vieira Monteiro, Filipe; Silva, Jose Sergio; Lazzaro, Daniela

    2015-08-01

    The classification criterion between asteroids and comets has evolved in recent decades, but the main phenomenological distinction remains unchanged: comets are active objects as they present gas and dust ejection from the surface at some point of their orbits, while asteroids are inert objects as they do not show any kind of large scale gas and dust ejection.To identify the transitional objects several classification schemes based on the orbital elements have been used. They are usually based on the Tisserand’s parameter (TJ). Tancredi (2014) presents a much more restrictive criterion to identify ACOs that ensured that the objects have a dynamical evolution similar to the population of periodic comets. After applying the criteriaa to the sample of over half a million asteroids already discovered, we obtain 316 ACOs that are further classified in subclasses similar to the cometary classification: 203 objects belong to the Jupiter Family group; 72 objects are classified as Centaurs; and 56 objects have Halley Type Orbits (also known as Damocloids). These are the best-known extinct/dormant comets candidates from a dynamical point of view.We study the physical properties of this sample of ACOs. Two results will be presented:- We look for the ACOs detected by the NASA’s WISE and by fitting a thermal model to their observations, we derive: the effective diameter, beaming parameter and the visible geometric albedo, using the method described in Al-Lagoa et al (2013). We obtain these parameters for 37 of 203 ACOs in JFC orbits and 13 of 56 Damocloids. We also compute the Cumulative Size Distribution (CSDs) of these populations and compare them with the CSDs of JF Comets and Centaurs.- We have been monitoring the observable ACOs since 12/2014 up to 06/2015. Every other month we select all the ACOs with elongations >90deg and estimated magnitudes V<21. We try to observe them with the 1m IMPACTON telescope of the Observatório Astronômico do Sertão de Itaparica (OASI). By comparing the photometric profiles of the ACOs with background stars, we try to detect some hint of cometary activity. Over 20 ACOs have been observed in the six months.

  2. Physical Mechanism of Comet Outbursts: The Movie

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.

    2014-11-01

    During experiments conducted in 1976 at the NASA Ames Research Center’s Vertical Gun Facility (VGF), the author studied low velocity impacts into simulated regolith powders and gravels, in order to examine physics of low-velocity collisions during early solar system planetesimal formation. In one “accidental” experiment, the bucket of powder remained gas-charged during evacuation of the VGF vacuum chamber. The impactor, moving at 5.5 m/s, disturbed the surface, initiating eruptions of dust-charged gas, shooting in jets from multiple vents at speeds up to about 3 m/s, with sporadic venting until 17 seconds after the impact. This experiment was described in [1], which concluded that it simulated comet eruption phenomena. In this hypothesis, a comet nucleus develops a lag deposit of regolith in at least some regions. At a certain distance from the sun, the thermal wave penetrates to an ice-rich depth, causing sublimation. Gas rises into the regolith, collects in pore spaces, and creates a gas-charged powder, as in our experiment. Any surface disturbance, such as a meteoroid, may initiate a temporary eruption, or eventually the gas pressure becomes sufficient to blow off the overburden. Our observed ejection speed would be sufficient to launch dust off of a kilometer-scale comet nucleus.Film (100 frames/s) of the event was obtained, but was partially torn up in a projector. It has recently been reconstituted (Centric Photo Labs, Tucson) and dramatically illustrates various cometary phenomena. Parabolic curtains of erupted material resemble curtains of material photographed from earth in real comet comas, “falling back” under solar wind forces. In retrospect, the mechanism photographed here helps explain:*sporadic eruptions in Comet P/Schwassmann-Wachmann 1 (near-circular orbit at ~6 A.U., where repeated recharge may occur).*sporadic eruptions on “asteroid” 2060 Chiron (which stays beyond 8.5 A.U.). *the thicker dust curtain (and longer eruption?) than predicted for the Deep Impact experiment in Comet Tempel 1.The film is posted on the Planetary Science Institute website, www.psi.edu/hartmann. [1] Hartmann, W. K. 1993 Physical Mechanism of Comet Outbursts: An Experimental Result. Icarus 104, 226-233.

  3. Plasma wave observations at comet giacobini-zinner.

    PubMed

    Scarf, F L; Coroniti, F V; Kennel, C F; Gurnett, D A; Ip, W H; Smith, E J

    1986-04-18

    The plasma wave instrument on the International Cometary Explorer (ICE) detected bursts of strong ion acoustic waves almost continuously when the spacecraft was within 2 million kilometers of the nucleus of comet Giacobini-Zinner. Electromagnetic whistlers and low-level electron plasma oscillations were also observed in this vast region that appears to be associated with heavy ion pickup. As ICE came closer to the anticipated location of the bow shock, the electromagnetic and electrostatic wave levels increased significantly, but even in the midst of this turbulence the wave instrument detected structures with familiar bow shock characteristics that were well correlated with observations of localized electron heating phenomena. Just beyond the visible coma, broadband waves with amplitudes as high as any ever detected by the ICE plasma wave instrument were recorded. These waves may account for the significant electron heating observed in this region by the ICE plasma probe, and these observations of strong wave-particle interactions may provide answers to longstanding questions concerning ionization processes in the vicinity of the coma. Near closest approach, the plasma wave instrument detected broadband electrostatic noise and a changing pattern of weak electron plasma oscillations that yielded a density profile for the outer layers of the cold plasma tail. Near the tail axis the plasma wave instrument also detected a nonuniform flux of dust impacts, and a preliminary profile of the Giacobini-Zinner dust distribution for micrometer-sized particles is presented.

  4. Ultrasonic Micro-Blades for the Rapid Extraction of Impact Tracks from Aerogel

    NASA Technical Reports Server (NTRS)

    Ishii, H. A.; Graham, G. A.; Kearsley, A. T.; Grant, P. G.; Snead, C. J.; Bradley, J. P.

    2005-01-01

    The science return of NASA's Stardust Mission with its valuable cargo of cometary debris hinges on the ability to efficiently extract particles from silica aerogel collectors. The current method for extracting cosmic dust impact tracks is a mature procedure involving sequential perforation of the aerogel with glass needles on computer controlled micromanipulators. This method is highly successful at removing well-defined aerogel fragments of reasonable optical clarity while causing minimal damage to the surrounding aerogel collector tile. Such a system will be adopted by the JSC Astromaterials Curation Facility in anticipation of Stardust s arrival in early 2006. In addition to Stardust, aerogel is a possible collector for future sample return missions and is used for capture of hypervelocity ejecta in high power laser experiments of interest to LLNL. Researchers will be eager to obtain Stardust samples for study as quickly as possible, and rapid extraction tools requiring little construction, training, or investment would be an attractive asset. To this end, we have experimented with micro-blades for the Stardust impact track extraction process. Our ultimate goal is a rapid extraction system in a clean electron beam environment, such as an SEM or dual-beam FIB, for in situ sample preparation, mounting and analysis.

  5. Coordinated Radio, Electron, and Waves Experiment (CREWE) for the NASA Comet Rendezvous and Asteroid Flyby (CRAF) instrument

    NASA Technical Reports Server (NTRS)

    Scudder, Jack D.

    1992-01-01

    The Coordinated Radio, Electron, and Waves Experiment (CREWE) was designed to determine density, bulk velocity and temperature of the electrons for the NASA Comet Rendezvous and Asteroid Flyby Spacecraft, to define the MHD-SW IMF flow configuration; to clarify the role of impact ionization processes, to comment on the importance of anomalous ionization phenomena (via wave particle processes), to quantify the importance of wave turbulence in the cometary interaction, to establish the importance of photoionization via the presence of characteristic lines in a structured energy spectrum, to infer the presence and grain size of significant ambient dust column density, to search for the theoretically suggested 'impenetrable' contact surface, and to quantify the flow of heat (in the likelihood that no surface exists) that will penetrate very deep into the atmosphere supplying a good deal of heat via impact and charge exchange ionization. This final report provides an instrument description, instrument test plans, list of deliverables/schedule, flight and support equipment and software schedule, CREWE accommodation issues, resource requirements, status of major contracts, an explanation of the non-NASA funded efforts, status of EIP and IM plan, descope options, and Brinton questions.

  6. (abstract) Cometary Particles as a Tracer of Jupiter's Stratospheric Circulation

    NASA Technical Reports Server (NTRS)

    West, R. A.; Friedson, A. J.

    1993-01-01

    The impact of fragments of comet Shoemaker-Levy 9 on Jupiter's atmosphere in July 1994 may provide an unprecedented opportunity to study Jupiter's stratospheric circulation. Recent calculations by Z. Sekanina predict that much of the comet material will be deposited in Jupiter's stratosphere. If so, and if the material is deposited in a confined region (10 000 km or less, horizontally) we can expect a situation analogous to an El Chichon or Pinatubo event for the terrestrial stratosphere. Initially the volatile material will be vaporized and will rapidly recondense. The large ice crystals and dust particles will rain out and be lost to the troposphere. The cloud of small particles which remain may have settling times of more than a year. These submicron to micron particles would probably be easily seen in methane filter images in the near-IR, and possibly in the ultraviolet. An observational program to monitor the dispersal of this cloud or clouds would reveal much about the nature of the circulation. Some predictions about the meridional evolution of the clouds can be made already, based on the meridional circulation model of West et al. unless the impact itself significantly disrupts the annual average circulation well after the initial transients die away.

  7. Dynamical and collisional evolution of Halley-type comets

    NASA Astrophysics Data System (ADS)

    van der Helm, E.; Jeffers, S. V.

    2012-03-01

    The number of observed Halley-type comets is hundreds of times less than predicted by models (Levison, H.F., Dones, L., Duncan, M.J. [2001]. Astron. J. 121, 2253-2267). In this paper we investigate the impact of collisions with planetesimals on the evolution of Halley-type comets. First we compute the dynamical evolution of a sub-set of 21 comets using the MERCURY integrator package over 100 Myr. The dynamical lifetime is determined to be of the order of 105-106 years in agreement with previous work. The collisional probability of Halley-type comets colliding with known asteroids, a simulated population of Kuiper-belt objects, and planets, is calculated using a modified, Öpik-based collision code. Our results show that the catastrophic disruption of the cometary nucleus has a very low probability of occurring, and disruption through cumulative minor impacts is concluded to be negligible. The dust mantle formed from ejected material falling back to the comet’s surface is calculated to be less than a few centimeters thick, which is insignificant compared to the mantle formed by volatile depletion, while planetary encounters were found to be a negligible disruption mechanism.

  8. Laboratory Simulation of Impacts upon Aluminum Foils of the Stardust Spacecraft: Calibration of Dust Particle Size from Comet Wild 2

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Burchell, M. J.; Horz, F.; Cole, M. J.; Schwandt, C. S.

    2006-01-01

    Metallic aluminium alloy foils exposed on the forward, comet-facing surface of the aerogel tray on the Stardust spacecraft are likely to have been impacted by the same cometary particle population as the dedicated impact sensors and the aerogel collector. The ability of soft aluminium alloy to record hypervelocity impacts as bowl-shaped craters offers an opportunistic substrate for recognition of impacts by particles of a wide potential size range. In contrast to impact surveys conducted on samples from low Earth orbit, the simple encounter geometry for Stardust and Wild 2, with a known and constant spacecraft-particle relative velocity and effective surface-perpendicular impact trajectories, permits closely comparable simulation in laboratory experiments. For a detailed calibration programme we have selected a suite of spherical glass projectiles of uniform density and hardness characteristics, with well-documented particle size range from 10 microns to nearly 100 microns. Light gas gun buckshot firings of these particles at approximately 6km s)exp -1) onto samples of the same foil as employed on Stardust have yielded large numbers of craters. Scanning electron microscopy of both projectiles and impact features has allowed construction of a calibration plot, showing a linear relationship between impacting particle size and impact crater diameter. The close match between our experimental conditions and the Stardust mission encounter parameters should provide another opportunity to measure particle size distributions and fluxes close to the nucleus of Wild 2, independent of the active impact detector instruments aboard the Stardust spacecraft.

  9. Impact contribution of prebiotic reactants to Earth

    NASA Technical Reports Server (NTRS)

    Aggarwal, Hans R.

    1993-01-01

    A study was performed to explore the effectiveness of comets for chemical evolution. The concentration of amino acids in various terrestrial environments was mathematically explored as there is evidence that amino acids formed as a result of cometary impact. First, the initial concentration of amino acids in surface environment after cometary impact was estimated. The effect of hydrothermal vents, ultra-violet rays, and clays was taken into consideration. Next, the absorption of amino acids by clay particles before degradation by ultra-violet light was analyzed. Finally, the effectiveness of clays, ultra-violet, and hydrothermal vents as sinks for cometary amino acids was compared. A mathematical model was then developed for the production of impact deposits on Earth for the past 2 Ga, and the relative thickness distribution was computed for impact deposits produced in 2 Ga. The reported relative thickness distribution of tillites and diamicites of all ages agrees with the thickness calculated from this impact model. This suggests that many of the ancient tillites and diamicites could be of impact origin. The effectiveness of comets was explored on the chemical evolution of amino acids. The effect of sinks such as clays, submarine vents, and UV light on amino acid concentration was considered. Sites favorable to chemical evolution of amino acids were examined, and it was concluded that chemical evolution could have occurred at or above the surface even during periods of intense bombardment of the Earth more than 3.8 billion years ago.

  10. Impact contribution of prebiotic reactants to Earth

    NASA Astrophysics Data System (ADS)

    Aggarwal, Hans R.

    1993-03-01

    A study was performed to explore the effectiveness of comets for chemical evolution. The concentration of amino acids in various terrestrial environments was mathematically explored as there is evidence that amino acids formed as a result of cometary impact. First, the initial concentration of amino acids in surface environment after cometary impact was estimated. The effect of hydrothermal vents, ultra-violet rays, and clays was taken into consideration. Next, the absorption of amino acids by clay particles before degradation by ultra-violet light was analyzed. Finally, the effectiveness of clays, ultra-violet, and hydrothermal vents as sinks for cometary amino acids was compared. A mathematical model was then developed for the production of impact deposits on Earth for the past 2 Ga, and the relative thickness distribution was computed for impact deposits produced in 2 Ga. The reported relative thickness distribution of tillites and diamicites of all ages agrees with the thickness calculated from this impact model. This suggests that many of the ancient tillites and diamicites could be of impact origin. The effectiveness of comets was explored on the chemical evolution of amino acids. The effect of sinks such as clays, submarine vents, and UV light on amino acid concentration was considered. Sites favorable to chemical evolution of amino acids were examined, and it was concluded that chemical evolution could have occurred at or above the surface even during periods of intense bombardment of the Earth more than 3.8 billion years ago.

  11. Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong Jingyu; Du Jiulin; Liu Zhipeng

    2012-08-15

    The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution ofmore » each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.« less

  12. GEMS Revealed: Spectrum Imaging of Aggregate Grains in Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.; Christoffersen, R.

    2005-01-01

    Anhydrous interplanetary dust particles (IDPs) of cometary origin contain abundant materials that formed in the early solar nebula. These materials were transported outward and subsequently mixed with molecular cloud materials and presolar grains in the region where comets accreted [1]. GEMS (glass with embedded metal and sulfides) grains are a major component of these primitive anhydrous IDPs, along with crystalline Mg-rich silicates, Fe-Ni sulfides, carbonaceous material, and other trace phases. Some GEMS grains (5%) are demonstrably presolar based on their oxygen isotopic compositions [2]. However, most GEMS grains are isotopically solar and have bulk chemical compositions that are incompatible with inferred compositions of interstellar dust, suggesting a solar system origin [3]. An alternative hypothesis is that GEMS grains represent highly irradiated interstellar grains whose oxygen isotopic compositions were homogenized through processing in the interstellar medium (ISM) [4]. We have obtained the first quantitative X-ray maps (spectrum images) showing the distribution of major and minor elements in individual GEMS grains. Nanometer-scale chemical maps provide critical data required to evaluate the differing models regarding the origin of GEMS grains.

  13. Will Deep Impact Make a Splash?

    NASA Technical Reports Server (NTRS)

    Sheldon, Robert B.; Hoover, Richard B.

    2005-01-01

    Recent cometary observations from spacecraft flybys support the hypothesis that short-period comets have been substantially modified by the presence of liquid water. Such a model can resolve many outstanding questions of cometary dynamics, as well as the differences between the flyby observations and the dirty snowball paradigm. The model also predicts that the Deep Impact mission, slated for a July 4, 2005 collision with Comet Temple-1, will encounter a layered, heterogenous nucleus with subsurface liquid water capped by dense crust. Collision ejecta will include not only vaporized material, but liquid water and large pieces of crust. Since the water will immediately boil, we predict that the water vapor signature of Deep Impact may be an order of magnitude larger than that expected from collisional vaporization alone.

  14. Evolution of Morphological and Physical Properties of Laboratory Interstellar Organic Residues with Ultraviolet Irradiation

    NASA Astrophysics Data System (ADS)

    Piani, L.; Tachibana, S.; Hama, T.; Tanaka, H.; Endo, Y.; Sugawara, I.; Dessimoulie, L.; Kimura, Y.; Miyake, A.; Matsuno, J.; Tsuchiyama, A.; Fujita, K.; Nakatsubo, S.; Fukushi, H.; Mori, S.; Chigai, T.; Yurimoto, H.; Kouchi, A.

    2017-03-01

    Refractory organic compounds formed in molecular clouds are among the building blocks of the solar system objects and could be the precursors of organic matter found in primitive meteorites and cometary materials. However, little is known about the evolutionary pathways of molecular cloud organics from dense molecular clouds to planetary systems. In this study, we focus on the evolution of the morphological and viscoelastic properties of molecular cloud refractory organic matter. We found that the organic residue, experimentally synthesized at ˜10 K from UV-irradiated H2O-CH3OH-NH3 ice, changed significantly in terms of its nanometer- to micrometer-scale morphology and viscoelastic properties after UV irradiation at room temperature. The dose of this irradiation was equivalent to that experienced after short residence in diffuse clouds (≤104 years) or irradiation in outer protoplanetary disks. The irradiated organic residues became highly porous and more rigid and formed amorphous nanospherules. These nanospherules are morphologically similar to organic nanoglobules observed in the least-altered chondrites, chondritic porous interplanetary dust particles, and cometary samples, suggesting that irradiation of refractory organics could be a possible formation pathway for such nanoglobules. The storage modulus (elasticity) of photo-irradiated organic residues is ˜100 MPa irrespective of vibrational frequency, a value that is lower than the storage moduli of minerals and ice. Dust grains coated with such irradiated organics would therefore stick together efficiently, but growth to larger grains might be suppressed due to an increase in aggregate brittleness caused by the strong connections between grains.

  15. Evolution of Interstellar Ices

    NASA Astrophysics Data System (ADS)

    Allamandola, Louis J.; Bernstein, Max P.; Sandford, Scott A.; Walker, Robert L.

    1999-10-01

    Infrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Ices in molecular clouds are dominated by the very simple molecules H2O, CH3OH, NH3, CO, CO2, and probably H2CO and H2. More complex species including nitriles, ketones, and esters are also present, but at lower concentrations. The evidence for these, as well as the abundant, carbon-rich, interstellar, polycyclic aromatic hydrocarbons (PAHs) is reviewed. Other possible contributors to the interstellar/pre-cometary ice composition include accretion of gas-phase molecules and in situ photochemical processing. By virtue of their low abundance, accretion of simple gas-phase species is shown to be the least important of the processes considered in determining ice composition. On the other hand, photochemical processing does play an important role in driving dust evolution and the composition of minor species. Ultraviolet photolysis of realistic laboratory analogs readily produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including amides, ketones, and polyoxymethylenes (POMs). Inclusion of PAHs in the ices produces many species similar to those found in meteorites including aromatic alcohols, quinones and ethers. Photon assisted PAH-ice deuterium exchange also occurs. All of these species are readily formed and are therefore likely cometary constituents.

  16. Evolution of Morphological and Physical Properties of Laboratory Interstellar Organic Residues with Ultraviolet Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piani, L.; Tachibana, S.; Endo, Y.

    Refractory organic compounds formed in molecular clouds are among the building blocks of the solar system objects and could be the precursors of organic matter found in primitive meteorites and cometary materials. However, little is known about the evolutionary pathways of molecular cloud organics from dense molecular clouds to planetary systems. In this study, we focus on the evolution of the morphological and viscoelastic properties of molecular cloud refractory organic matter. We found that the organic residue, experimentally synthesized at ∼10 K from UV-irradiated H{sub 2}O-CH{sub 3}OH-NH{sub 3} ice, changed significantly in terms of its nanometer- to micrometer-scale morphology andmore » viscoelastic properties after UV irradiation at room temperature. The dose of this irradiation was equivalent to that experienced after short residence in diffuse clouds (≤10{sup 4} years) or irradiation in outer protoplanetary disks. The irradiated organic residues became highly porous and more rigid and formed amorphous nanospherules. These nanospherules are morphologically similar to organic nanoglobules observed in the least-altered chondrites, chondritic porous interplanetary dust particles, and cometary samples, suggesting that irradiation of refractory organics could be a possible formation pathway for such nanoglobules. The storage modulus (elasticity) of photo-irradiated organic residues is ∼100 MPa irrespective of vibrational frequency, a value that is lower than the storage moduli of minerals and ice. Dust grains coated with such irradiated organics would therefore stick together efficiently, but growth to larger grains might be suppressed due to an increase in aggregate brittleness caused by the strong connections between grains.« less

  17. Spitzer Evidence for a Late Heavy Bombardment and the Formation of Urelites in {eta}Corvi at Approximately 1 Gyr

    NASA Technical Reports Server (NTRS)

    Lisse, C. M.; Wyatt, M. C.; Chen, C. H.; Morlok, A.; Watson, D. M.; Manj, P.; Sheehan, P.; Currie, T. M.; Thebault, P.; Sitko, M. L.

    2011-01-01

    We have analyzed Spitzer and NASA/IRTF 2 - 35 micrometer spectra of the warm, 350 K circumstellar dust around the nearby MS star eta Corvi (F2V, 1.4 plus or minus 0.3 Gyr). The spectra show clear evidence for warm, water- and carbon-rich dust at 3 AU from the central star, in the system's Terrestrial Habitability Zone. Spectral features due to ultra-primitive cometary material were found, in addition to features due to impact produced silica and high temperature carbonaceous phases. At least 9 x 10(exp 18) kg of 0.1 - 100 micrometer warm dust is present in a collisional equilibrium distribution with dn/da a(exp -3.5), the equivalent of a 130 km radius KBO of 1.0 grams per cubic centimeter density and similar to recent estimates of the mass delivered to the Earth at 0.6 - 0.8 Gyr during the Late Heavy Bombardment. We conclude that the parent body was a Kuiper-Belt body or bodies which captured a large amount of early primitive material in the first Myrs of the system's lifetime and preserved it in deep freeze at approximately 150 AU. At approximately 1.4 Gyr they were prompted by dynamical stirring of their parent Kuiper Belt into spiraling into the inner system, eventually colliding at 5-10 kilometers per second with a rocky planetary body of mass less than or equal to M(sub Earth at approximately 3 AU, delivering large amounts of water (greater than 0.1 % of M(sub Earth's Oceans)) and carbon-rich material. The Spitzer spectrum also closely matches spectra reported for the Ureilite meteorites of the Sudan Almahata Sitta fall in 2008, suggesting that one of the Ureilite parent bodies was a KBO.

  18. Chemistry in the Dusty Coma of Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Cochran, A. L.; Disanti, M. A.; Huebner, W. F.

    1998-09-01

    Recent progress on a multifluid, hydrodynamic model is presented for the dusty gas flow in the inner coma of comet Hale-Bopp at several heliocentric distances. The simulations are based on a 1-D neutral coma model with detailed photo and gas-phase chemistry and dust entrainment by the gas, a separate energy balance for the electrons, separate flow of the neutral gas, fast neutral atomic and molecular hydrogen, and dust entrainment with fragmentation. The model accounts for three sources of gas release: sublimation from surface ices, transport of gas from subsurface regions through the surface, and release of gas from dust in the coma. This permits a consistent study of the importance and strength of each possible source for a variety of gas-phase species. The simulations allow a study of the changes with heliocentric distance of features within a cometary coma, e.g., spatial distributions of gas-phase species and dust of various sizes and the velocity and temperature profiles. In particular, the model is used to probe spatial distributions of gas-phase species (e.g., CN, CH, C_3, C_2, HCN, HNC, CO) and dust, and the velocity and temperature structure to understand the complex gas-phase chemistry that occurs in the inner coma. Comparisons with observations are made where available to characterize the environment surrounding comet Hale-Bopp and to aid in assimilating a variety of diverse observations of this unique comet.

  19. Where is the Phosphorus in Cometary Volatiles?

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; de Almeida, Amaury

    2015-08-01

    Phosphorus is a key element in all living organisms but its role in life's origin is not well understood. Phosphorus-bearing compounds have been observed in space, are ubiquitous in meteorites in small quantities, and have been detected as part of the dust component in comets Halley and Wild 2. However, searches for P-bearing species in the gas phase in cometary comae have been unsuccessful. We present results of the first quantitative study of P-bearing molecules in comets to identify likely species containing phosphorus. We found reaction pathways of gas-phase and photolytic chemistry for simple P-bearing molecules likely to be found in comets and important for prebiotic chemistry. We hope to aid future searches for this important element, especially the Rosetta Mission to Comet 67P/Churyumov-Gerasimenko, possibly shedding light on issues of comet formation (time and place) and understanding prebiotic to biotic evolution of life.Acknowledgements: We greatly appreciate support from the NSF Planetary Astronomy Program under Grant No. 0908529 and the Instituto de Astronomia, Geofísica e Ciências Atmosféricas at the University of São Paulo.

  20. Comet 252P/LINEAR: Born (Almost) Dead?

    NASA Astrophysics Data System (ADS)

    Ye, Quan-Zhi; Brown, Peter G.; Wiegert, Paul A.

    2016-02-01

    Previous studies have revealed Jupiter-family comet 252P/LINEAR as a comet that was recently transported into the near-Earth object (NEO) region in ∼1800 AD yet only being weakly active. In this Letter, we examine the “formed (almost) dead” hypothesis for 252P/LINEAR using both dynamical and observational approaches. By statistically examining the dynamical evolution of 252P/LINEAR over a period of 107 years, we find the median elapsed residency in the NEO region to be 4 × 102 years, which highlights the likelihood of 252P/LINEAR as an (almost) first-time NEO. With available cometary and meteor observations, we find the dust production rate of 252P/LINEAR to be on the order of 106 kg per orbit since its entry to the NEO region. These two lines of evidence support the hypothesis that the comet was likely to have formed in a volatile-poor environment. Cometary and meteor observations during the comet's unprecedented close approach to the Earth around 2016 March 21 would be useful for understanding of the surface and evolutionary properties of this unique comet.

  1. A possible detection of infrared emission from carbon monoxide in Comet Austin (1989c1)

    NASA Technical Reports Server (NTRS)

    Disanti, Michael A.; Mumma, Michael J.; Lacy, John H.; Parmar, Parvinder

    1992-01-01

    A cryogenic IR echelle grating spectrometer has been used to probe the nu = 1-0 rovibrational band of the CO molecule in Comet Austin. Line emission has been detected at the Doppler-shifted frequency expected for the cometary P(3) line, in scans which are noted to cover only the first 3000 sec of May 16, 1990 observations; this is suggested to be due to an outburst of comparable duration. No detections were made of the P(2) line, which was predicted by models to occur at the 3.5 sigma level even for relatively high coma temperatures. If the outburst was accompanied by enhanced dust production, an increase by a factor of 2.5 is consistent with the present observational data and CO/dust may have been enriched in the outbursting volume relative to the remainder of the nucleus.

  2. A study of extended zodiacal structures

    NASA Technical Reports Server (NTRS)

    Sykes, Mark V.

    1990-01-01

    Observations of cometary dust trails and zodiacal dust bands, discovered by the Infrared Astronomical Satellite (IRAS) were analyzed in a continuing effort to understand their nature and relationship to comets, asteroids, and processes effecting those bodies. A survey of all trails observed by IRAS has been completed, and analysis of this phenomenon continues. A total of 8 trails have been associated with known short-period comets (Churyumov-Gerasimenko, Encke, Gunn, Kopff, Pons-Winnecke, Schwassmann-Wachmann 1, Tempel 1, and Tempel 2), and a few faint trails have been detected which are not associated with any known comet. It is inferred that all short-period comets may have trails, and that the trails detected were seen as a consequence of observational selection effects. Were IRAS launched today, it would likely observe a largely different set of trails. The Tempel 2 trail exhibits a small but significant excess in color temperature relative to a blackbody at the same heliocentric distance. This excess may be due to the presence of a population of small, low-beta particles deriving from large particles within the trail, or a temperature gradient over the surface of large trail particles. Trails represent the very first stage in the formation and evolution of a meteor stream, and may also be the primary mechanism by which comets contribute to the interplanetary dust complex. A mathematical model of the spatial distribution of orbitally evolved collisional debris was developed which reproduces the zodiacal dust band phenomena and was used in the analysis of dust band observations made by IRAS. This has resulted in the principal zodiacal dust bands being firmly related to the principal Hirayama asteroid families. In addition, evidence for the collisional diffusion of the orbital elements of the dust particles has been found in the case of dust generated in the Eos asteroid family.

  3. The dust environment of 67P/Churyumov-Gerasimenko as seen through Rosetta/OSIRIS

    NASA Astrophysics Data System (ADS)

    Tubiana, Cecilia; Bertini, Ivano; Deller, Jakob; Drolshagen, Esther; Frattin, Elisa; Güttler, Carsten; Hofmann, Marc; Koschny, Detlef; Oklay, Nilda; Ott, Theresa; Shi, Xian; Sierks, Holger; Vincent, Jean-Baptiste; OSIRIS Team

    2016-10-01

    The ESA's Rosetta spacecraft had the unique opportunity to stay in the vicinity of the comet for two years, observing how the comet evolved while approaching the Sun, passing through perihelion and then moving outwards. OSIRIS, the Optical, Spectroscopic, and Infrared Remote Imaging System onboard Rosetta, imaged the nucleus and the dust environment of 67/Churyumov-Gerasimenko since the beginning of post-hibernation operations in March 2014. We focus here on dust studies carried on with OSIRIS.Images obtained in different filters in the visible wavelength range have been used to study the unresolved dust coma, investigating its diurnal and seasonal variations and providing insights into the dust composition. A correlation has been found between the level of diurnal activity and the region of the nucleus surface in sunlight, suggesting that the topography and/or composition of the surface play an important role. The overall activity increases while the comet is approaching the Sun, peaking about a month after perihelion. Comparison with ground-based observations will allow to understand if the dust coma behaves in similar ways at small scales - as observed by Rosetta/OSIRIS - and at large scales - as observed from ground. Several times during the mission, we acquired images spanning the phase angle range 0-165 degrees. They are used to determine the dust phase function in different wavelengths, its evolution with heliocentric distance and to investigate the intimate nature of cometary dust aggregates by solving the inverse scattering problem. A large amount of individual aggregates is present in the vicinity of 67P/Churyumov-Gerasimenko. We used OSIRIS NAC and WAC images to determine the aggregate properties: size and distance distributions, colors and rotation. Thanks to observations performed at different heliocentric distances, we address how those properties are changing with heliocentric distance.

  4. What if chondritic porous interplanetary dust particles are not the real McCoy

    NASA Astrophysics Data System (ADS)

    Rietmeijer, Frans J. M.

    To select a target comet for a Comet Nucleus Sample Return Mission (CNSRM) it is necessary to have an experimental data base to evaluate the extent of diversity and similarity of comets. For example, the physical properties (e.g., low density) of chondritic porous (CP) interplanetary dust particles (IDPs) are believed to resemble these properties of cometary dust although it is yet to be demonstrated that the porous structure of CP IDPs is inherent to presolar dust particles stored in comet nuclei. Porous structures of IDPs could conceivably form during sublimation at the surface of active comet nuclei. Porous structures are also obtained during annealing of amorphous Mg-SiO smokes which initially forms porous aggregates of olivine + platey tridymite and which, upon continued annealing, react to fluffy enstatite aggregates. It is therefore uncertain that CP IDPs are entirely composed of unmetamorphosed presolar dust. Conceivably, new minerals and textures may form in situ in nuclei of active comets as a function of their individual thermal history. Unmetamorphosed comet dust is probably structurally amorphous. Thermal annealing of this dust can produce ultra fine-grained minerals and this ultrafine grain size of CP IDPs should be considered in assessments of aqueous alterations that could affect presolar dust in comet nuclei between 200 and 400 K. Devitrification and hydration may occur in situ in ice-dust mixtures and the mantle of active comet nuclei. Devitrification, or uncontrolled crystallization, of amorphous precursor dust can produce a range of chemical compositions of ultrafine-grained minerals and (non-equilibrium) mineral assemblages and textures in dust contained in comet nuclei as a function of period and trajectory of orbit and number of perihelion passages (not considering internal heating). Thus, experimental data on relevant processes and reaction rates between 200 and 400 K are needed in order to evaluate comet selection, penetration depth for sampling device and curation of samples for CNSRM.

  5. What if chondritic porous interplanetary dust particles are not the real McCoy

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1989-01-01

    To select a target comet for a Comet Nucleus Sample Return Mission (CNSRM) it is necessary to have an experimental data base to evaluate the extent of diversity and similarity of comets. For example, the physical properties (e.g., low density) of chondritic porous (CP) interplanetary dust particles (IDPs) are believed to resemble these properties of cometary dust although it is yet to be demonstrated that the porous structure of CP IDPs is inherent to presolar dust particles stored in comet nuclei. Porous structures of IDPs could conceivably form during sublimation at the surface of active comet nuclei. Porous structures are also obtained during annealing of amorphous Mg-SiO smokes which initially forms porous aggregates of olivine + platey tridymite and which, upon continued annealing, react to fluffy enstatite aggregates. It is therefore uncertain that CP IDPs are entirely composed of unmetamorphosed presolar dust. Conceivably, new minerals and textures may form in situ in nuclei of active comets as a function of their individual thermal history. Unmetamorphosed comet dust is probably structurally amorphous. Thermal annealing of this dust can produce ultra fine-grained minerals and this ultrafine grain size of CP IDPs should be considered in assessments of aqueous alterations that could affect presolar dust in comet nuclei between 200 and 400 K. Devitrification and hydration may occur in situ in ice-dust mixtures and the mantle of active comet nuclei. Devitrification, or uncontrolled crystallization, of amorphous precursor dust can produce a range of chemical compositions of ultrafine-grained minerals and (non-equilibrium) mineral assemblages and textures in dust contained in comet nuclei as a function of period and trajectory of orbit and number of perihelion passages (not considering internal heating). Thus, experimental data on relevant processes and reaction rates between 200 and 400 K are needed in order to evaluate comet selection, penetration depth for sampling device and curation of samples for CNSRM.

  6. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    2016-12-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of `polar ice' mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm `carbonyl' absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes.

  7. The geocentric particulate distribution: Cometary, asteroidal, or space debris?

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.; Ratcliff, P. R.

    1992-01-01

    Definition of the Low Earth Orbit (LEO) particulate environment has been refined considerably with the analysis of data from NASA's Long Duration Exposure Facility (LDEF). Measurements of the impact rates from particulates ranging from sub-micron to millimetres in dimension and, especially, information on their directionality has permitted new scrunity of the sources of the particulates. Modelling of the dynamics of both bound (Earth orbital) and unbound (hyperbolic interplanetary) particulates intercepting LDEF's faces leads to the conclusion that the source is dominantly interplanetary for particle dimensions of greater than some 5 microns diameter; however the anisotropy below this dimension demands lower velocities and is compatible with an orbital component. Characteristics of the LDEF interplanetary component are compatible with familiar meteoroid sources and deep space measurements. Understanding of the orbital component which exceeds the interplanetary flux by a factor of 4 is less clear; although the very small particulates in orbit have been associated with space debris (Lawrance and Brownlee, 1986) this data conflicts with other measurements (McDonnell, Carey and Dixon, 1984) at the same epoch. By analysis of trajectories approaching the Earth and its atmosphere, we have shown that a significant contribution could be captured by aerocapture, i.e., atmospheric drag, from either asteroidal or cometary sources; such enhancement is unlikely however to provide the temporal and spatial fluctuations observed by the LDEF Interplanetary Dust Experiment (Mullholland et al. 1992). A further new mechanism is also examined, that of aerofragmentation capture, where an atmospheric grazing trajectory, which would not normally lead to capture, leads to fragmentation by thermal or mechanical shock; the microparticulates thus created can be injected in large numbers, but only into short-lifetime orbits. The concentration in one particular orbit plane, could explain the temporal fluctuations seen on LDEF; space debris could also explain the phenomenon.

  8. Comet Wild 2 and the two kinds of cometary sub-nuclei population

    NASA Astrophysics Data System (ADS)

    Illes-Almar, E.

    On the 2nd January 2004 Stardust encountered the nucleus of comet Wild 2 by 240 km. 72 images have been collected - among them the up-till-now best views of a cometary nucleus. The "pockmarked" surface of the comet is peculiar as the "craters" are not normal craters: neither in shape nor in cross section. Their shapes are rather irregular and generally not central or axisymmetric. Furthermore they have flat bottoms and very steep walls that seem almost perpendicular to the surface. One has the feeling that they are not impact craters. In the framework of our `two kinds of cometary sub-nuclei population' hypothesis (Illés-Almár, 1995, 2002) the cavities can be explained by the stronger sublimation where the loose sub-nuclei are exposed to the surface. The almost vertical walls resemble to the vertical walls of the sublimated CO2 ice on the South polar cap of Mars. References: Illés-Almár, E.: On two different populations of cometary sub-nuclei. Antarctic Meteorites XX. June 6-8, 1995, Tokyo. Abstracts pp. 93-94, 1995. Illés-Almár, E.: Comet Borrelly and the two kinds of cometary sub-nuclei population. (submitted to Adv. Sp. Res. in 2002)

  9. Migration of Small Bodies and Dust to Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    Computer simulations of the orbital evolution of Jupiter-family comets (JFCs), resonant asteroids, and asteroidal, kuiperoidal, and cometary dust particles were made. The gravitational influence of planets (exclusive of Pluto and sometimes of Mercury) was taken into account. For dust particles we also considered radiation pressure, Poynting-Robertson drag, and solar wind drag. A few JFCs got Earth-crossing orbits with semi-major axes a<2 AU and aphelion distance Q<4.2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Three considered former JFCs even got inner-Earth orbits (with Q<0.983 AU) or Aten orbits for Myrs. The probability of a collision of one of such objects, which move for millions of years inside Jupiter's orbit, with a terrestrial planet can be greater than analogous total probability for thousands other objects. Results obtained by the Bulirsch-Stoer method and by a symplectic method were mainly similar (except for probabilities of close encounters with the Sun when they were high). The fraction of asteroids migrated from the 3:1 resonance with Jupiter that collided with the Earth was greater by a factor of several than that for the 5:2 resonance. Our results show that the trans-Neptunian belt can provide a significant portion of near-Earth objects, or the number of trans-Neptunian objects migrating inside solar system could be smaller than it was earlier considered, or most of 1-km former trans-Neptunian objects that had got near-Earth object orbits disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes are not small. The obtained results show that during the accumulation of the giant planets the total mass of icy bodies delivered to the Earth could be about the mass of water in Earth's oceans. In our runs for dust particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from 0.0004 to 0.4 (for silicates, such values correspond to particle diameters between 1000 and 1 microns). For β >0.01 the collision probabilities of dust particles with the terrestrial planets during lifetimes of particles were considerably greater for larger asteroidal and cometary particles. At β ≥ 0.1 and β ≤ 0.001 some asteroidal particles migrated beyond Jupiter's orbit. The peaks in the distribution of migrating asteroidal dust particles with semi-major axis corresponding to the n:(n+1) resonances with Earth and Venus and the gaps associated with the 1:1 resonances with these planets are more pronounced for larger particles. Several our papers on this problem were put in http://arXiv.org/format/astro-ph/ (e.g., 0305519, 0308448, 0308450). This work was supported by INTAS (00-240) and NASA (NAG5-10776).

  10. Disk Chemistry and Cometary Composition

    NASA Astrophysics Data System (ADS)

    Markwick, A. J.; Charnley, S. B.

    2003-05-01

    We will describe current chemical modelling of disks similar to the protosolar nebula. Calculations are being undertaken to determine the spatial and temporal chemistry of the gas and dust within the 5-40AU comet-forming region of the nebula. These theoretical studies aim to determine the contribution of pristine and partially-processed interstellar material from the cool outer nebula, as compared to that obtained from outward radial mixing of matter from the hot inner nebula. Reference Molecular distributions in the inner regions of protostellar disks, Markwick, A. J., Ilgner, M., Millar, T. J., Henning, Th. (2002), Astron. Astrophys., 385, 632.

  11. Disk Chemistry and Cometary Composition

    NASA Astrophysics Data System (ADS)

    Markwick, A. J.; Charnley, S. B.

    2005-01-01

    We will describe current chemical modelling of disks similar to the protosolar nebula. Calculations are being undertaken to determine the spatial and temporal chemistry of the gas and dust within the 5-40AU comet-forming region of the nebula. These theoretical studies aim to determine the contribution of pristine and partially-processed interstellar material from the cool outer nebula as compared to that obtained from outward radial mixing of matter from the hot inner nebula. Reference Molecular distributions in the inner regions of protostellar disks Markwick A. J. Ilgner M. Millar T. J. Henning Th. (2002) Astron. Astrophys. 385 632

  12. Astrobiology of Comets

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.

    2004-01-01

    We model the thermal history of a cometary body, regarded as an assemblage of boulders, dust, ices and organics, as it approaches a perihelion distance of - IAU. The transfer of incident energy h m sunlight into the interior leads to the melting of ices under tens of meters of stable crust, providing possible habitats for a wide range of microorganisms. We consider the icediatoms, snow algae and cyanobacteria, bacteria and yeast of cryoconite communities which are encountered in liquid wafer pools (meltwater) surrounding dark rocks in glaciers and the polar ice sheets as excellent analogs for the microbial ecosystems that might possibly exist on some comets.

  13. Modeling of meteoroid streams: The velocity of ejection of meteoroids from comets (a review)

    NASA Astrophysics Data System (ADS)

    Ryabova, G. O.

    2013-05-01

    An analytical review of the models of ejection of meteoroids from cometary nuclei is presented. Different formulas for the ejection velocity of meteoroids and the corresponding parameters are discussed and compared with the use of comet Halley and the Geminids meteoroid stream as examples. The ejection velocities obtained from observations of the dust trails of comets are discussed, and the values for comets 2P/Encke, 4P/Faye, 17P/Holmes, 22P/Kopff, and 67P/Churyumov-Gerasimenko are compared to the velocities yielded by Whipple's model. The uncertainty intervals of the results are estimated.

  14. The Aftermath of the Largest Cometary Outburst in Recorded History - An In-Depth Study of Comet 17P/Holmes

    NASA Astrophysics Data System (ADS)

    Stevenson, Rachel Ann

    On UT 2007 Oct. 23, Jupiter Family comet 17P/Holmes underwent the largest cometary outburst in recorded history when it brightened by a factor of nearly a million in less than 2 days. This unprecedented event prompted a four-month observing campaign to observe the aftermath of the outburst. The wide field imager, MegaCam mounted on the Canada-France-Hawaii telescope was used to obtain r' images of the nucleus and the rapidly expanding dust coma. These images are unequaled in their quality and scope, and form a unique dataset with which to study the outburst aftermath. This original work examines the morphology of the outburst, and constrains the characteristics of the ejected material. Spatial filtering of images obtained in 2007 Nov. revealed numerous fragments moving away from the nucleus. The fragments were too bright to have been inactive, monolithic blocks and must have been acting as mini-comets with their own sources of sublimating volatiles and dust comae. They represented a significant (~ 10%) of the total ejected mass. The fragments had unusually high velocities relative to the nucleus, suggesting that they were accelerated by high gas pressure inside the nucleus prior to ejection. This work presents the first detection of such large, rapidly moving cometary fragments. The scarcity of similar ejecta around other fragmenting comets may be due to observational biases, rather than being unique to 17P/Holmes. Aperture photometry was used to study the evolution of the inner coma, which faded rapidly in the weeks and months following the initial outburst. Despite the observed fading, the nucleus must have remained active, continuing to supply fresh material to the inner coma. A second, much smaller outburst was detected on UT 2007 Nov. 12, which released an estimated 106 kg of dust into the inner coma. The secondary outburst showed that the nucleus remained unstable for several weeks after the initial event. Surface brightness profiles of the inner coma were constructed for each night of observation. The slopes of the profiles between 10000 km and 25000 km are consistent with dust grains fragmenting near the nucleus. Such fragmenting may be caused by thermal stressing or sublimation of cohesive volatiles. As the comet moved away from the Sun, the profiles also showed a persistent bump, interpreted as a halo of freshly released ice grains. The expected sublimation rates of such grains were examined, and it is concluded that the ice grains must have been contaminated with albedo-lowering regolith that significantly shortened their life-times. The possible characteristics of these dirty ice grains are examined within the context of the observations. The mini-comet fragments, dirty ice grains, and continuing but declining activity together suggest that the outburst of 17P/Holmes excavated material from within the nucleus, and left exposed patches of sublimating volatiles on its surface. The long-term fate of 17P/Holmes is uncertain, but micro-outbursts are likely as the nucleus settles over coming apparitions.

  15. Cometary showers and unseen solar companions

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.

    1984-01-01

    The possibility that an invisible solar companion passing through the Oort cloud every 28 Myr precipitates a sufficiently high rate of cometary collisions with the earth to account for periodic mass species extinctions recorded in the fossil record is discussed. A Monte Carlo simulation shows that any hypothesized 'death star' with a 28 Myr orbit would experience an average 10 percent change in period per orbit. Production of an 18-fold increase in cometary impacts would be associated with a 0.055 probability that a 10 km nucleus would hit the earth in a shower once every 510 Myr, longer than the proposed extinction periodicity. However, if the death star orbit has a 0.6 eccentricity and the Oort cloud is sufficiently densely populated, a 2 billion comet shower may be possible. A survey of large terrestrial impact craters indicates that 6-12 craters with diameters over 10 km originated in periodic showers. The extinctions in any case occur at 26 Myr periods and cannot be correlated with the 33 Myr period of recrossing the galactic plane, or with any other known phenomena.

  16. Analysis of the Cometary Plasma Environment of 67P/Churyumov-Gerasimenko Near Perihelion

    NASA Astrophysics Data System (ADS)

    Ostaszewski, K.; Goetz, C.; Motschmann, U.; Glassmeier, K. H.

    2017-09-01

    Over the course of its two year escort phase the Rosetta spacecraft has provided various observations that furthered our understanding of the cometary plasma environment. The use of numerical simulations is essential for this understanding because they allow to place the in situ measurements in a global context, in turn, through observations the numerical models can be ex- tended and improved. We use the simulation code A.I.K.E.F (Müller [7]) to simulate the cometary plasma environment of 67P/Churyumov-Gerasimenko (67P/CG). Based on observations made by the Rosetta spacecraft we extend the numerical model by electron impact ionization and the anisotropic outgassing model by Hansen et al. (2016). Both extensions result in an increase in the cometary ion production rate on the dayside. Therefore, the size of the interaction region and the contained structures increases. This causes the position of the different boundaries, e.g. bow shock, to shift further away from the comet. Considering this we can explain why no bow shock crossings could be observed during the dayside excursion of Rosetta in September 2015.

  17. Comet 103P/Hartley 2 at perihelion: gas and dust activity

    NASA Astrophysics Data System (ADS)

    Lara, L. M.; Lin, Z.-Y.; Meech, K.

    2011-08-01

    Context. The comet 103P/Hartley 2, target of the EPOXI mission (NASA), was supposed to be observed for 3 days around its perihelion, from October 27 to 29, 2010, but photometric data were obtained only on October 27 and 29, 2010. On both dates, the comet visibility was not optimal due to its proximity to the Moon, as projected on the plane of the sky, whereas on October 28, the comet could not be observed at all. Aims: The goal of the campaign was to give ground support to the EPOXI mission by establishing a baseline of activity at perihelion to be compared with in situ activity observed by the space mission about 7 days later on Nov. 4, 2010. We aimed to assess gas and dust production rates, to study the gas and dust coma morphology, to investigate the behaviour of the refractory component by analysing the dust colour variations with date and with projected cometocentric distance, ρ, and to determine the slope of the surface brightness profiles, B, as a function of ρ. Methods: Long-slit spectra and optical broad- and narrowband images were acquired with the instrument ACAM mounted on the William Herschel Telescope (WHT) at La Palma Observatory. We investigated the evolution of the dust coma morphology from the images acquired with specific continuum cometary filters (in the blue and red wavelength region) with image-enhancing techniques. We studied (1) the gas and dust production rates; (2) the dust radial brightness profiles; (3) the profiles of the CN, C2, C3 and NH2 column densities, and (4) the CN and C3 coma morphologies. The dust and gas profiles were azimuthally averaged, as well as measured in both the E-W direction (~Sun-antisolar direction) and in a direction defined by the slit orientation at PA 70 to 250 degrees. Results: The morphological analysis of the dust coma reveals only one structure. Aside from the dust tail in the west direction, a bright jet is detected in images acquired on October 27 at 03:00-04:00 UT. This jet turns on and off and it is not clearly detected at any time on the images obtained during October 29. This structure is enhanced by making use of the radial renormalization and the Larson-Sekanina method. It is also confirmed by the distortion of the isophotes at the same position angle (PA). The Afρ parameter, a proxy to the dust production rate, and the gas (CN, C3, C2, and NH2) production rate, Qi, have been measured at perihelion, rh ≈ 1.058 AU. The quotient QC2/QCN ~ 1.3 places 103P/Hartley 2 as a typical comet in terms of long-chain hydrocarbon abundance. The gas-to-dust mass ratio is ~3-6, indicating that 103P/Hartley 2 is a relatively gas-rich comet. At perihelion, Afρ, as measured in a circular aperture of ~4700 km ranges from ~60 cm in the blue to ~110 cm in the red, which indicates an overall change in the optical properties of the dust grains. On the other hand, the Afρ is rather stable in the innermost coma when it is computed from the spectroscopic measurements within several continuum spectral ranges from 482-685 nm. Both 2D dust colour maps and profiles in the directions imposed by the slit indicate that there are variations with ρ with a trend towards bluer dust colour with increasing ρ. This could indicate sublimation of ices as the cameras on board the EPOXI mission have shown. The average dust reddening is ~24%/100 nm. The azimuthally averaged surface brightness profiles of the continuum from the broad band images can be well fitted with m ~ 1 in the tail direction, whereas in the opposite direction the dust profiles are much flatter at ρ ≤ 10 000 km. The azimuthally averaged profiles of the comet images acquired with the blue and red continuum cometary filters show a nominal behaviour of log B ~ - mlog ρ with m ~ 1. Based on observations made with the William Herschel Telescope (WHT) operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  18. Evidence for Changes in 81PIWild 2 Organic Matter Since Collection and Comparison of 82PIWild 2 and IDP Organic Matter to Access the Thermal Effects of Aerogel Capture

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Keller, L.; Messenger, Nakamura; Sandford, S. A.; Zolensky, M. E.; Peltzer, C.; Jacobsen, C.

    2009-01-01

    NASA s Stardust spacecraft collected cometary material during its passage through the dust coma of comet 81P/Wild 2 on January 2nd, 2004 and delivered this material to Earth on January 15th 2006. The first fragment we analyzed during the preliminary examination was partially vaporized by the X-ray beam. The carbonaceous material that survived was re-analysis approx.2 months later and the carbon spectrum for this material had significantly changed from what we first observed.. We have observed similar changes to the carbonaceous matter in some interplanetary dust particles ( IDPs). Some of the 81P/Wild 2 organic matter volatilized upon impact with the aerogel as observed using IR spectroscopy where IR spectra were collected several mms away from sample tracks [1]. The time-temperature profile experienced by any particular 81P/Wild 2 grain during aerogel capture is not known, although Brownlee, et al. suggest that fine-grained materials, <1 micron in size, fragmented and then partially vaporized during collection, while particles much larger then 1 micron in size were captured intact [2]. Nearly all organic matter is subject to thermal alteration. To assess the heating and alteration experienced by the 81P/Wild 2 organic matter during capture we are comparing 81P/Wild2 organic matter with IDP organic matter where we have evidence of heating in the IDP [3,4].

  19. MAPPING THE RELEASE OF VOLATILES IN THE INNER COMAE OF COMETS C/2012 F6 (LEMMON) AND C/2012 S1 (ISON) USING THE ATACAMA LARGE MILLIMETER/SUBMILLIMETER ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordiner, M. A.; Milam, S. N.; Mumma, M. J.

    2014-09-01

    Results are presented from the first cometary observations using the Atacama Large Millimeter/Submillimeter Array (ALMA), including measurements of the spatially resolved distributions of HCN, HNC, H{sub 2}CO, and dust within the comae of two comets: C/2012 F6 (Lemmon) and C/2012 S1 (ISON), observed at heliocentric distances of 1.5 AU and 0.54 AU, respectively. These observations (with angular resolution ≈0.''5), reveal an unprecedented level of detail in the distributions of these fundamental cometary molecules, and demonstrate the power of ALMA for quantitative measurements of the distributions of molecules and dust in the inner comae of typical bright comets. In both comets, HCN ismore » found to originate from (or within a few hundred kilometers of) the nucleus, with a spatial distribution largely consistent with spherically symmetric, uniform outflow. By contrast, the HNC distributions are clumpy and asymmetrical, with peaks at cometocentric radii ∼500-1000 km, consistent with release of HNC in collimated outflow(s). Compared to HCN, the H{sub 2}CO distribution in comet Lemmon is very extended. The interferometric visibility amplitudes are consistent with coma production of H{sub 2}CO and HNC from unidentified precursor material(s) in both comets. Adopting a Haser model, the H{sub 2}CO parent scale length is found to be a few thousand kilometers in Lemmon and only a few hundred kilometers in ISON, consistent with the destruction of the precursor by photolysis or thermal degradation at a rate that scales in proportion to the solar radiation flux.« less

  20. The Preliminary Examination of Organics in the Returned Stardust Samples from Comet Wild 2

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Aleon, J.; Alexander, C.; Butterworth, A.; Clemett, S. J.; Cody, G.; Cooper, G.; Dworkin, J. P.; Flynn, G. J.; Gilles, M. K.

    2006-01-01

    The primary objective of STARDUST is to collect coma samples from comet 8lP/Wild 2. These samples were collected by impact onto aerogel tiles on Jan 2, 2004 when the spacecraft flew through the comet's coma at a relative velocity of about 6.1 km/sec. Measurements of dust impacts on the front of the spacecraft suggest that the aerogel particle collector was impacted by 2800 +/- 500 particles larger than 15 micron in diameter. Following recovery of the Sample Return Capsule (SRC) on Jan 15, 2006, the aerogel collector trays will be removed in a clean room at JSC. After documentation of the collection, selected aerogel tiles will be removed and aerogel and cometary samples will be extracted for study. A number of different extraction techniques will be used, each optimized for the analytical technique that is to be used. The STARDUST Mission will carry out a 6 month preliminary examination (PE) of a small portion of the returned samples. The examination of the samples will be made by a number of subteams that will concentrate on specific aspects of the samples. One of these is the Organics PE Team (see the author list above for team members). These team members will use a number of analytical techniques to produce a preliminary characterization of the abundance and nature of the organics (if any) in the returned samples.

  1. Geochemical evidences for two chondritic-like cometary or asteroidal impacts before and at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Liu, Y.-G.; Schmitt, R. A.

    1993-01-01

    A number of geological and palaeontological evidences support multiple impacts of cometary showers within a short time (approximately 1-3 Ma) and their connection with mass extinctions. Observations include clustered crater ages, stratigraphic horizons of impact ejecta closely spaced in time, and evidence for stepwise mass extinctions spanning intervals of 1-3 Ma. For the K/T boundary, three candidates, Popigai, Manson, and Yucatan, have been proposed as impact craters. Two distinct strata at the K/T boundary in western North America have been interpreted as evidence for two sequential impacts. If multiple impacts occurred within a time span of about 1 Ma then multiple Ir enrichments should be observed. DSDP Hole 577B on the Shatsky Plateau in the northern Pacific at K/T time is the first site. Samples contain approximately greater than 97 percent CaCO3, which exhibit clear chemical signals associated with asteroidal/cometary impact. Ir, Fe, and Cr data are presented. From the Th-normalized data, two satellite peaks below the major peak at 78 cm and 81 cm of 577B-1-4 are clearly shown. The major Ir peak (K/T boundary) is at 72 cm. Fe and Cr, from C1-like impactor ejecta fallout, also show two peaks at the same positions. For hole 738C on the southern Kerguelen Plateau, Ir values reach a peak concentration of 18 ppb in the clay layer at 96.0-96.2 cm in section 20R-5, and gradually tail off. In the sample 115 cm above the boundary, Ir concentrations have still not reached background levels. From the Ir peak downward to the lowermost sample analyzed at 102 cm, the Ir concentration is still as high as 1.7 ppb. From the Th-normalized data, we observe a small Ir/Th peak at 100-101 cm. Though this peak is within the error margin, the trend is clear. Fe and Cr exhibit the same pattern. The third case is Hole 690C on the Queen Maud Ridge. Again, the Ir/Th plot indicates the strong possibility of satellite peaks at approximately 52 cm. The main peak is at 39-40 cm. For the Stevns Klint K/T boundary layers, the stratification of trace elements appears threefold with peak concentrations in sublayers A1, A3, and B2 for different element groups, including Ir. C1 ratios for many siderophile elements found in combined layers III and IV, corresponding to layers A, B, C, and D, strongly support the impact hypothesis. Also, multiple Ir anomalies in the K/T section at Lattengebirge, Bavarian Alps are reported. Recent works on Ni-rich spinels and Ir at the K/T boundaries clearly establish cometary/asteroidal impacts at the K/T boundary. Lastly, cometary showers can explain the enhanced Ir contents over approximately a 1 Ma interval in Gubbio shales.

  2. Coma morphology of comet 67P controlled by insolation over irregular nucleus

    NASA Astrophysics Data System (ADS)

    Shi, X.; Hu, X.; Mottola, S.; Sierks, H.; Keller, H. U.; Rose, M.; Güttler, C.; Fulle, M.; Fornasier, S.; Agarwal, J.; Pajola, M.; Tubiana, C.; Bodewits, D.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Groussin, O.; Gutiérrez, P. J.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez-Moreno, J. J.; Marzari, F.; Naletto, G.; Oklay, N.; Toth, I.; Vincent, J.-B.

    2018-05-01

    While the structural complexity of cometary comae is already recognizable from telescopic observations1, the innermost region, within a few radii of the nucleus, was not resolved until spacecraft exploration became a reality2,3. The dust coma displays jet-like features of enhanced brightness superposed on a diffuse background1,4,5. Some features can be traced to specific areas on the nucleus, and result conceivably from locally enhanced outgassing and/or dust emission6-8. However, diffuse or even uniform activity over topographic concavity can converge to produce jet-like features9,10. Therefore, linking observed coma morphology to the distribution of activity on the nucleus is difficult11,12. Here, we study the emergence of dust activity at sunrise on comet 67P/Churyumov-Gerasimenko using high-resolution, stereo images from the OSIRIS camera onboard the Rosetta spacecraft, where the sources and formation of the jet-like features are resolved. We perform numerical simulations to show that the ambient dust coma is driven by pervasive but non-uniform water outgassing from the homogeneous surface layer. Physical collimations of gas and dust flows occur at local maxima of insolation and also via topographic focusing. Coma structures are projected to exhibit jet-like features that vary with the perspective of the observer. For an irregular comet such as 67P/Churyumov-Gerasimenko, near-nucleus coma structures can be concealed in the shadow of the nucleus, which further complicates the picture.

  3. Isotope measurements of a comet by the Ptolemy instrument on Rosetta

    NASA Astrophysics Data System (ADS)

    Franchi, Ian; Morse, Andrew; Andrews, Dan; Sheridan, Simon; Barber, Simeon; Leese, Mark; Morgan, Geraint; Wright, Ian; Pillinger, Colin

    Remote observations of comets (spacecraft fly-bys and telescopes) reveal a vast reservoir of volatile organic species, along with the water ice, other volatiles and silicate dust fractions that make up these very primitive bodies. Understanding the nature of cometary materials, in order to unravel their origin and history, is particularly challenging. Remote observation is only possible for the coma, the constituents of which are likely fractionated and modified compared to the primordial material within the comet. A number of opportunities exist for very detailed study of cometary material with ground-based laboratory instrumentation. How-ever, dissipation of energy during capture (e.g. NASA Stardust samples) or atmospheric entry (stratospheric interplanetary dust particles) has the potential to extensively modify, or even obliterate, detailed information about the nature and origin of the more volatile, biologically important organic species present. Collecting and returning pristine material from the surface of a comet remains very challenging and therefore direct study of the volatile portions can only readily be performed on the comet itself by remote instruments. The ESA Rosetta mission, that will make long-term measurements of a comet as it approaches the sun from 3.5 AU to 1.4 AU over a period of at least six months, includes the Philae lander as well as the orbiter spacecraft. Ptolemy, on board Philae, is a GC-MS instrument designed for the analysis of cometary volatiles, organic materials and silicates. The objectives of Ptolemy are to provide a complete description of the nature and distribution of light elements (H, C, N and O) present in the nucleus of the comet, as well as determining their stable isotopic compositions. Ptolemy also aims to provide ground-truth measurements of those volatiles that are subsequently detected further out from the nucleus in the coma. Samples from the surface and sub-surface, collected by the lander drilling system (SD2), are heated in an oven and can be injected into one of three gas chromatography columns (GC) for analysis by the mass spectrometer. Accurate isotopic analysis is achieved by chemical processing before and/or after the GC columns and by direct comparison with reference materials of known isotopic composition. Recent operations of the Ptolemy mass spectrometer during recent spacecraft checkouts have shown that the Ptolemy instrument is operational and should be capable of meeting its science aims.

  4. Distal Impact Ejecta from the Gulf of Carpentaria: Have We Found Cometary Fragments as Part of the Ejecta Suite?

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. E.; Abbott, D. H.; Breger, D.

    2011-12-01

    Analysis using light microscopy, analytical scanning electron microscopy, and measurements of the magnetic susceptibility of five sediment cores (MD 28-MD 32) from the Gulf of Carpentaria have revealed that each has had an impact layer less than a centimeter (10s to 100s of micrometers) thick prior to bioturbation. The present stratigraphic thickness of the impact layer (result of bioturbation) within every core was determined based on whether or not we had observed at least one of the following impact ejecta: FeNiCrCl (a recent discovery), metallic spherules (some of which consisted of Fe and Ni), or chlorinated hydrocarbon; the highest peak of magnetic susceptibility correlated with the highest concentration of impact ejecta. We used modeling of the magnetic susceptibility of a hematite-calcium carbonate mixture to constrain the minimum thickness of the impact ejecta layer (prior to bioturbation). Until recently we had been unaware that the red, glassy, semi-spherules we found within the impact layer were in fact FeNiCrCl. Nickel is not abundant within the Earth's crust, thus it is highly likely that these fragments are cometary debris from an impact event within the Gulf of Carpentaria. Furthermore, SEM analysis has confirmed that the chlorinated hydrocarbon was not PVC contamination from the coring process; with such high levels of chlorine the results strongly suggest that the material was a by product of a marine water impact event. In addition, by using impact modeling we deduced that the observed impact ejecta layer could not have been transported via an impact generated tsunami. The model also predicts that the layer could have been produced by a cometary impact event (average velocity 51 km/s) that would have produced the 12 km crater at the site of the Tabban crater candidate.

  5. Astrophysics with Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Nittler, Larry R.; Ciesla, Fred

    2016-09-01

    Extraterrestrial materials, including meteorites, interplanetary dust, and spacecraft-returned asteroidal and cometary samples, provide a record of the starting materials and early evolution of the Solar System. We review how laboratory analyses of these materials provide unique information, complementary to astronomical observations, about a wide variety of stellar, interstellar and protoplanetary processes. Presolar stardust grains retain the isotopic compositions of their stellar sources, mainly asymptotic giant branch stars and Type II supernovae. They serve as direct probes of nucleosynthetic and dust formation processes in stars, galactic chemical evolution, and interstellar dust processing. Extinct radioactivities suggest that the Sun's birth environment was decoupled from average galactic nucleosynthesis for some tens to hundreds of Myr but was enriched in short-lived isotopes from massive stellar winds or explosions shortly before or during formation of the Solar System. Radiometric dating of meteorite components tells us about the timing and duration over which solar nebula solids were assembled into the building blocks of the planets. Components of the most primitive meteoritical materials provide further detailed constraints on the formation, processing, and transport of material and associated timescales in the Sun's protoplanetary disk as well as in other forming planetary systems.

  6. Clementine Observations of the Zodiacal Light and the Dust Content of the Inner Solar System

    NASA Technical Reports Server (NTRS)

    Hahn, Joseph M.; Zook, Herbert A.; Cooper, Bonnie; Sunkara, Bhaskar

    2002-01-01

    Using the Moon to occult the Sun, the Clementine spacecraft used its navigation cameras to map the inner zodiacal light at optical wavelengths over elongations of 3 approx. less than epsilon approx. less than 30 deg from the Sun. This surface brightness map is then used to infer the spatial distribution of interplanetary dust over heliocentric distances of about 10 solar radii to the orbit of Venus. The averaged ecliptic surface brightness of the zodiacal light falls off as Z(epsilon) is a member of epsilon(sup -2.45 +/- 0.05), which suggests that the dust cross-sectional density nominally falls off as sigma(r) is a member of r(sup - 1.45 +/- 0.05). The interplanetary dust also has an albedo of alpha approx. = 0.1 that is uncertain by a factor of approx. 2. Asymmetries of approx. 10% are seen in directions east-west and north-south of the Sun, and these may be due the giant planets' secular gravitational perturbations. We apply a simple model that attributes the zodiacal light as due to three dust populations having distinct inclination distributions, namely, dust from asteroids and Jupiter-family comets (JFCs) having characteristic inclinations of i approx. 7 deg, dust from Halley-type comets having i approx. 33 deg, and an isotropic cloud of dust from Oort Cloud comets. The best-fitting scenario indicates that asteroids + JFCs are the source of about 45% of the optical dust cross section seen in the ecliptic at 1 AU but that at least 89% of the dust cross section enclosed by a 1-AU-radius sphere is of a cometary origin. Each population's radial density variations can also deviate somewhat from the nominal sigma(r) is a member of r(sup -1.45). When these results are extrapolated out to the asteroid belt, we find an upper limit on the mass of the light-reflecting asteroidal dust that is equivalent to a 12-km asteroid, and a similar extrapolation of the isotropic dust cloud out to Oort Cloud distances yields a mass equivalent to a 30-km comet, although the latter mass is uncertain by orders of magnitude.

  7. A post-Rosetta understanding of polarimetric observations of comets

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A. Chantal; Ciarletti, Valérie; Hadamcik, Edith; Lasue, Jérémie; Mannel, Thurid

    2017-04-01

    Numerous polarimetric observations of solar light scattered by dust in cometary comae have been obtained by various teams, providing phase angle and wavelength dependences for many comets and revealing different classes of comets [e.g., 1]. Besides, numerical and experimental simulations have suggested interpretations for such observations. The Rosetta long duration rendezvous with comet 67P/Churyumov-Gerasimenko (thereafter 67P/C-G) now allows us to compare our understanding of the polarimetric properties of cometary dust with the ground-truth provided by the Rosetta mission, at least for two typical results. First, some comets present a highly-polarized positive branch, the most conspicuous case being that of new comet C/1995 O1 Hale-Bopp [2], while other comets suffering a partial fragmentation or a total disruption, such as C/1995 S4 LINEAR [3], present a significant increase in polarization. We will discuss these observations in the context of evidence for changes between the porosity (and possibly the dust/ice ratio) of the subsurface and of the interior of 67P/C-G, a periodic Jupiter Family Comet, as derived from analyses [4] of the CONSERT bi-static radar measurements on board Rosetta and Philae. Secondly, numerical simulations of the phase and wavelength dependence of polarimetric observations of some comets (extensively observed on a wide range of wavelengths and phase angles) have suggested the presence of fractal, likely-porous aggregates and of compact particles within their comae [e.g., 5]. We will review such results in the context of evidence for porous and compact aggregates of submicron-sized grains in the inner coma of 67P/C-G [6], as given by 3D images (with a resolution down to tens of nanometers) of the MIDAS atomic force microscope on board Rosetta. References: [1] Kiselev et al., 2015, In Polarization of stars and planetary systems, CUP 379-404. [2] Levasseur-Regourd & Hadamcik, 2003, JQSRT 79-80, 903-910. [3] Hadamcik & Levasseur-Regourd, 2003, Icarus 166, 188-194. [4] Ciarletti et al., 2015, Astron. Astrophys. 583, A40. [5] Lasue et al., 2009, Icarus 199, 129-144. [6] Mannel et al., 2016, MNRAS 462, S 304-S311.

  8. 3D Radiative Transfer Code for Polarized Scattered Light with Aligned Grains

    NASA Astrophysics Data System (ADS)

    Pelkonen, V. M.; Penttilä, A.; Juvela, M.; Muinonen, K.

    2017-12-01

    Polarized scattered light has been observed in cometary comae and in circumstellar disks. It carries information about the grains from which the light scattered. However, modelling polarized scattered light is a complicated problem. We are working on a 3D Monte Carlo radiative transfer code which incorporates hierarchical grid structure (octree) and the full Stokes vector for both the incoming radiation and the radiation scattered by dust grains. In octree grid format an upper level cell can be divided into 8 subcells by halving the cell in each of the three axis. Levels of further refinement of the grid may be added, until the desired resolution is reached. The radiation field is calculated with Monte Carlo methods. The path of the model ray is traced in the cloud: absorbed intensity is counted in each cell, and from time to time, the model ray is scattered towards a new direction as determined by the dust model. Due to the non-spherical grains and the polarization, the scattering problem will be the main issue for the code and most time consuming. The scattering parameters will be taken from the models for individual grains. We can introduce populations of different grain shapes into the dust model, and randomly select, based on their amounts, from which shape the model ray scatters. Similarly, we can include aligned and non-aligned subpopulations of these grains, based on the grain alignment calculations, to see which grains should be oriented with the magnetic field, or, in the absence of a magnetic field close to the comet nucleus, with another axis of alignment (e.g., the radiation direction). The 3D nature of the grid allows us to assign these values, as well as density, for each computational cell, to model phenomena like e.g., cometary jets. The code will record polarized scattered light towards one or more observer directions within a single simulation run. These results can then be compared with the observations of comets at different phase angles, or, in the case of other star systems, of circumstellar disks, to help us study these objects. We will present tests of the code in development with simple models.

  9. Penetrator Coring Apparatus for Cometary Surfaces

    NASA Technical Reports Server (NTRS)

    Braun, David F.; Heinrich, Michael; Ai, Huirong Anita; Ahrens, Thomas J.

    2004-01-01

    Touch and go impact coring is an attractive technique for sampling cometary nuclei and asteroidal surface on account of the uncertain strength properties and low surface gravities of these objects. Initial coring experiments in low temperature (approx. 153K polycrystalline ice) and porous rock demonstrate that simultaneous with impact coring, measurements of both the penetration strength and constraints on the frictional properties of surface materials can be obtained upon core penetration and core sample extraction. The method of sampling an asteroid, to be deployed, on the now launched MUSES-C mission, employs a small gun device that fires into the asteroid and the resulted impact ejecta is collected for return to Earth. This technique is well suited for initial sampling in a very low gravity environment and deployment depends little on asteroid surface mechanical properties. Since both asteroids and comets are believed to have altered surface properties a simple sampling apparatus that preserves stratigraphic information, such as impact coring is an attractive alternate to impact ejecta collection.

  10. The age of the Venusian surface - Estimates using terrestrial crater data

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.; Shoemaker, E. N.; Kozak, R. C.

    1987-01-01

    It is hypothesized that the age of the Venusian northern hemisphere surface studied thus far could be as great as the average age of the earth's crust (450 Myr). This possibility arises because of the uncertainty of the role of active and inactive cometary nuclei in the crateral history of the earth. If the observed Venusian surface were 1 Byr old, then there would be traces of the impacts of a half dozen or more large cometary nuclei which penetrated the atmosphere and formed craters over 100 km in diameter.

  11. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry

    PubMed Central

    2016-01-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of ‘polar ice’ mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm ‘carbonyl’ absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes. PMID:28083090

  12. Weathering of stony meteorites in Antarctica

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1986-01-01

    Weathering produces undesirable physical, chemical, and isotopic changes that might disturb the records of cosmochemical evolution that are sought in meteorites. Meteorites are physically disintegrated by crack propagation phenomena, including ice riving and secondary mineral riving, and are probably abraded by wind that is laden with ice crystals or dust particles. Chemical weathering proceeds by oxidation, hydration, carbonation, and solution and produces a variety of secondary minerals and mineraloids. Differential weathering under freezing conditions is discussed, as well as, the mineralogy of weathering products. Furthermore, the use of Antarctic alteration of meteorites could be used as an excellent analog for weathering on Mars or on cometary bodies.

  13. Review of amateur meteor research

    NASA Astrophysics Data System (ADS)

    Rendtel, Jürgen

    2017-09-01

    Significant amounts of meteor astronomical data are provided by amateurs worldwide, using various methods. This review concentrates on optical data. Long-term meteor shower analyses based on consistent data are possible over decades (Orionids, Geminids, κ-Cygnids) and allow combination with modelling results. Small and weak structures related to individual stream filaments of cometary dust have been analysed in both major and minor showers (Quadrantids, September ε-Perseids), providing feedback to meteoroid ejection and stream evolution processes. Meteoroid orbit determination from video meteor networks contributes to the improvement of the IAU meteor data base. Professional-amateur cooperation also concerns observations and detailed analysis of fireball data, including meteorite ground searches.

  14. The identification of H3S(+) with the ion of mass per charge (m/q) 35 observed in the coma of Comet Halley

    NASA Technical Reports Server (NTRS)

    Marconi, M. L.; Mendis, D. A.; Korth, A.; Lin, R. P.; Mitchell, D. L.

    1990-01-01

    A sharp peak in the mass spectrum at 35 amu is observed by the heavy ion analyzer on board the Giotto spacecraft just inside the ionopause. This peak is identified with H3S(+) and it is argued that the dominant source of its likely parent molecule (H2S) is the observed distributed source of circumnuclear dust, rather than the central nucleus. In this case, the total production rate of H2S is more than about 0.5 percent that of the dominant cometary molecule H2O.

  15. Aspherical dust dynamics code for GIADA experiment in the coma of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Ivanovski, Stavro; Zakharov, Vladimir; Della Corte, Vincenzo; Lucarelli, Francesca; Crifo, Jean-Francois; Rotundi, Alessandra; Fulle, Marco

    2014-05-01

    In 2014, the ESA ROSETTA probe is on its way to face its main scientific objectives by encountering and landing on comet 67P/Churyumov- Gerasimenko. One of the in-situ instrument on board ROSETTA is GIADA (Grain Impact Analyzer and Dust Accumulator)[1], which will measure individual dust grain mass, number density and velocity in the immediate vicinity of the cometary nucleus. Based on the state-of-the-art 3D+t dust coma model [3,4] we developed a 3D+t aspherical dust dynamical code Giaspheria (GIADA aspherical dust analyzer) which treats aspherical dust motion to support the scientific objectives of GIADA. We report the latest improvements in Giaspheria[5,6,7] and the distinctions in the dust dynamics of spherical and aspherical grains using gas solutions for a spherical nucleus not yet data-calibrated. We consider motion of homogeneous, isothermal polygonal convex bodies (close to ellipsoid of revolution with different aspect ratios of axes), moving under influence of three forces: aerodynamic , gravitational and torque. We use the gas distribution (density, velocity, temperature) for a spherical nucleus discussed in [4,8]. We estimate the aerodynamic force from expressions for free molecular interactions and postulate the distribution function of ejection velocity and the distribution function of initial orientation on the surface of the nucleus. We show the dust distribution of aspherical grains at three different heliocentric distances (3AU, 2AU and 1.3 AU) by means of GIPSI simulated GIADA measurements during these stages of the mission. As an input for GIPSI simulations we use the dust and velocity distributions prevised by Giaspheria computations. Acknowledgements: This research has been supported by the Italian Space Agency (ASI) (Ref: n. I/032/05/0) [1] Della Corte V. et al, (2014), Journal of Astronomical Instrumentation (in press). [2] Colangeli, L., et al., Space Science Reviews, Volume 128, Numbers 1-4, 803-821, 2007 [3] Zakharov, V.V., Rodionov A.V., Crifo J.-F., Fulle M., EPSC-DPS , p. 126, 2011 [4] Crifo, J.-F., Loukianov, G.A., Rodionov, A. V., and Zakharov, V. V., Icarus 176, pp. 192-219, 2005 [5] Ivanovski, S. L., Zakharov, V.V., Crifo J.-F., Della Corte V., Rotundi A., EPSC-DPS, p.1371, 2011 [6] Ivanovski, S. L., Zakharov, V.V., Crifo J.-F., Della Corte V., Rotundi A., Vol 7, EPSC2012-592, 2012 [7] Ivanovski, S. L., Zakharov, V.V., Crifo J.-F., Della Corte V., Rotundi A., Vol. 15, EGU2013-11417, 2013 [8] Crifo, J-F., Lukianov,G.A., Rodionov,A.V., Khanlarov,G.O. ,Zakharov,V.V. Icarus Vol.156, 249-268, 2002 [9] Zakharov,V.V., Rodionov, A. V., Lukianov,G.A., Crifo, J-F.,Icarus Vol. 201, I1, p.358-380, 2009

  16. Does a continuous solid nucleus exist in comets.

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1972-01-01

    The implication of actual cometary observations for the physical nature of comets is briefly reviewed, bringing out the complete conflict with observation of the ice-dust solid nucleus model put forward in recent years as representing the fundamental structure of comets. That under increasing solar heat the nucleus develops an expanding atmosphere is inconsistent with the well-established phenomenon that the coma contracts with decreasing distance from the sun. Several comets remaining always beyond Mars have nevertheless been strongly active and produced fine tails. That some comets show at times a star-like point of light is readily explicable on the dust-cloud structure and by no means establishes that a solid nucleus exists. With the nucleus-area corresponding not to a small solid mass but to an optical phenomenon, there would be no reason to expect that it would describe a precise dynamical orbit. On the hypothesis of a nucleus, it is necessary to postulate further some internal jet-propulsion mechanism to account for the orbital deviations.

  17. Research and Development on In-Situ Measurement Sensors for Micro-Meteoroid and Small Space Debris at JAXA

    NASA Astrophysics Data System (ADS)

    Kitazawa, Y.; Matsumoto, H.; Okudaira, O.; Kimoto, Y.; Hanada, T.; Faure, P.; Akahoshi, Y.; Hattori, M.; Karaki, A.; Sakurai, A.; Funakoshi, K.; Yasaka, T.

    2013-08-01

    The Japan Aerospace Exploration Agency (JAXA) has been conducting R&D into in-situ sensors for measuring micro-meteoroid and small-sized debris (MMSD) since the 1980s. Research into active sensors started with the meteoroid observation experiment conducted using the HITEN (MUSES-A) satellite that ISAS/JAXA launched in 1990. The main purpose behind the start of passive collector research was SOCCER, a late-80s Japan-US mission that was designed to capture cometary dust and then return to the Earth. Although this mission was cancelled, the research outcomes were employed in a JAXA mission for the return of MMSD samples using calibrated aerogel and involving the space shuttle and the International Space Station. Many other important activities have been undertaken as well, and the knowledge they have generated has contributed to JAXA's development of a new type of active dust sensor. This paper reports on the R&D conducted at JAXA into in-situ MMSD measurement sensors.

  18. MIDAS: Lessons learned from the first spaceborne atomic force microscope

    NASA Astrophysics Data System (ADS)

    Bentley, Mark Stephen; Arends, Herman; Butler, Bart; Gavira, Jose; Jeszenszky, Harald; Mannel, Thurid; Romstedt, Jens; Schmied, Roland; Torkar, Klaus

    2016-08-01

    The Micro-Imaging Dust Analysis System (MIDAS) atomic force microscope (AFM) onboard the Rosetta orbiter was the first such instrument launched into space in 2004. Designed only a few years after the technique was invented, MIDAS is currently orbiting comet 67P Churyumov-Gerasimenko and producing the highest resolution 3D images of cometary dust ever made in situ. After more than a year of continuous operation much experience has been gained with this novel instrument. Coupled with operations of the Flight Spare and advances in terrestrial AFM a set of "lessons learned" has been produced, cumulating in recommendations for future spaceborne atomic force microscopes. The majority of the design could be reused as-is, or with incremental upgrades to include more modern components (e.g. the processor). Key additional recommendations are to incorporate an optical microscope to aid the search for particles and image registration, to include a variety of cantilevers (with different spring constants) and a variety of tip geometries.

  19. Asymmetric Spherical Coupled Escape Probability: Model and Results for Optically Thick Cometary Comae

    NASA Astrophysics Data System (ADS)

    Gersch, Alan; A'Hearn, M. F.

    2012-05-01

    We have adapted the Coupled Escape Probability method of radiative transfer calculations for use in asymmetrical spherical situations and applied it to modeling molecular emission spectra of potentially optically thick cometary comae. Recent space missions (e.g. Deep Impact & EPOXI) have provided spectra from comets of unprecedented spatial resolution of the regions of the coma near the nucleus, where the coma may be optically thick. Currently active missions (e.g. Rosetta) and hopefully more in the future will continue the trend and demonstrate the need for better modeling of comae with optical depth effects included. Here we present a brief description of our model and results of interest for cometary studies, especially for space based observations. Although primarily motivated by the need for comet modeling, our (asymmetric spherical) radiative transfer model could be used for studying other astrophysical phenomena as well.

  20. Cometary Glycine Detected in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, D. P.; Dworkin, J. P.

    2010-01-01

    In January 2006, NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth. The Stardust cometary collector consisted of aerogel cells lined with aluminum foils designed to capture impacting particles and facilitate removal of the aerogel. Preliminary examinations of these comet-exposed materials revealed a suite of organic compounds, including several amines and amino acids which were later examined in more detail. Methylamine (NH2CH3) and ethylamine (NH2C2H5) were detected in the exposed aerogel at concentrations greatly exceeding those found in control samples, while the amino acid glycine (NH2CH2COOH) was detected in several foil samples as well as in the comet-exposed aerogel. None of these three compounds had been previously detected in comets, although methylamine had been observed in the interstellar medium. Although comparison with control samples suggested that the detected glycine was cometary. the previous work was not able to conclusively identify its origin. Here, we present the results of compound-specific carbon isotopic analysis of glycine in Stardust cometary collector foils. Several foils from the interstellar side of the Stardust collector were also analyzed for amino acid abundance, but concentrations were too low to perform isotopic ana!ysis.

  1. The carbon-14 spike in the 8th century was not caused by a cometary impact on Earth

    NASA Astrophysics Data System (ADS)

    Usoskin, Ilya G.; Kovaltsov, Gennady A.

    2015-11-01

    A mysterious increase of radiocarbon 14 C ca. 775 AD in the Earth's atmosphere has been recently found by Miyake et al. (Miyake, F., Nagaya, K., Masuda, K., Nakamura, T. [2012]. Nature, 486, 240). A possible source of this event has been discussed widely, the most likely being an extreme solar energetic particle event. A new exotic hypothesis has been presented recently by Liu et al. (Liu, Y. [2014]. Sci. Rep., 4, 3728) who proposed that the event was caused by a cometary impact on Earth bringing additional 14 C to the atmosphere. Here we calculated a realistic mass and size of such a comet to show that it would have been huge (≈100 km across and 1017-1020 g of mass) and would have produced a disastrous geological/biological impact on Earth. The absence of an evidence for such a dramatic event makes this hypothesis invalid.

  2. The fragmentation of dust in the innermost comae of comets: Possible evidence from ground-based images

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    1994-01-01

    Dust particles when released from the nucleus of a comet are entrained in the expanding gas flow created by the vaporization of ices (mainly water ice). Traditional approaches to dusty-gas dynamics in the inner comae of comets consider there to be an initial distribution of dust particle sizes which do not fragment or evaporate. The standard Finson-Probstein model (and subsequent variations) yields a one-to-one-to-one correspondence between the size of a dust particle, its terminal velocity owing to gas drag, and its radiation pressure acceleration which creates the notable cometary dust tail. The comparison of a newly developed dust coma model shows that the typical elongated shapes of isophotes in the dust comae of comets on the scale of greater than 10(exp 4) km from the nucleus requires that the one-to-one-to-one relationship between particle size, terminal velocity and radiation pressure acceleration cannot in general be correct. There must be a broad range of particles including those having a small velocity but large radiation pressure acceleration in order to explain the elongated shape. A straightforward way to create such a distribution is if particle fragmentation, or some combination of fragmentation with vaporization, routinely occurs within and/or just outside of the dusty-gas dynamic acceleration region (i.e., up to several hundred km). In this way initially large particles, which are accelerated to fairly slow velocities by gas-drag, fragment to form small particles which still move slowly but are subject to a relatively large radiation pressure acceleration. Fragmentation has already been suggested as one possible interpretation for the flattened gradient in the spatial profiles of dust extracted from Giotto images of Comet Halley. Grain vaporization has been suggested as a possible spatially extended source of coma gases. The general elongated isophote shapes seen in ground-based images for many years represents another possible signature of fragmentation.

  3. Research and Development on In-Situ Measurement Sensors for Micro-Meteoroid and Small Space Debris at JAXA

    NASA Astrophysics Data System (ADS)

    Kitazawa, Yukihito; Matsumoto, Haruhisa; Okudaira, Osamu; Kimoto, Yugo; Hanada, Toshiya; Akahoshi, Yasuhiro; Pauline, Faure; Sakurai, Akira; Funakoshi, Kunihiro; Yasaka, Testuo

    2015-04-01

    The history of Japanese R&D into in-situ sensors for micro-meteoroid and orbital debris (MMOD) measurements is neither particularly long nor short. Research into active sensors started for the meteoroid observation experiment on the HITEN (MUSES-A) satellite of ISAS/JAXA launched in 1990, which had MDC (Munich Dust Counter) on-board sensors for micro meteoroid measurement. This was a collaboration between Technische Universität München and ISAS/JAXA. The main purpose behind the start of passive sensor research was SOCCOR, a late 80's Japan-US mission that planned to capture cometary dust and return to the Earth. Although this mission was canceled, the research outcomes were employed in a JAXA micro debris sample return mission using calibrated aerogel involving the Space Shuttle and the International Space Station. There have been many other important activities apart from the above, and the knowledge generated from them has contributed to JAXA's development of a new type of active dust sensor. JAXA and its partners have been developing a simple in-situ active dust sensor of a new type to detect dust particles ranging from a hundred micrometers to several millimeters. The distribution and flux of the debris in the size range are not well understood and is difficult to measure using ground observations. However, it is important that the risk caused by such debris is assessed. In-situ measurement of debris in this size range is useful for 1) verifying meteoroid and debris environment models, 2) verifying meteoroid and debris environment evolution models, and 3) the real time detection of explosions, collisions and other unexpected orbital events. Multitudes of thin, conductive copper strips are formed at a fine pitch of 100 um on a film 12.5 um thick of nonconductive polyimide. An MMOD particle impact is detected when one or more strips are severed by being perforated by such an impact. This sensor is simple to produce and use and requires almost no calibration as it is essentially a digital system. Based on this sensor technology, the Kyushu Institute of Technology (Kyutech) has designed and developed an educational version of the sensor, which is currently on board the nano-satellite Horyu-II, which was built at Kyutech and launched on May 18, 2012 by JAXA. Although the sensor has a very small sensing area, sensor data were nonetheless successfully received. Moreover, a laboratory version of the sensor fitted on QSAT-EOS ("Tsukushi"), a small satellite, was be launched in November 2014. This version was developed and manufactured by Japan's QPS Institute to evaluate the sensor's capability regarding hypervelocity impact experiments at JAXA. JAXA's flight version, to be employed on satellites and/or the ISS, will be ready soon and a flight demonstration will be conducted on KOUNOTORI (HTV) in 2015. This paper reports on the R&D into in-situ measurement MMOD sensors at JAXA.

  4. The 8-13 micron spectra of comets and the composition of silicate grains

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.; Lynch, David K.; Russell, Ray W.

    1994-01-01

    We have analyzed the existing spectra of seven comets which show an emission feature at 7.8-13 micrometers. Most have been converted to a common calibration, taking into account the SiO feature in late-type standard stars. The spectra are compared with spectra of the Trapezium, interplanetary dust particles (IDPs), laboratory mineral samples, and small particle emission models. The emission spectra show a variety of shapes; there is no unique 'cometary silicate'. A peak at 11.20-11.25 micrometers, indicative of small crystalline olivine particles, is seen in only three comets of this sample, P/Halley, Bradfield 1987 XXIX, and Levy 1990 XX. The widths of the emission features range from 2.6 to 4.1 micrometers (FWHM). To explain the differing widths and the broad 9.8 micrometers maximum, glassy silicate particles, including both pyroxene and olivine compositions, are the most plausible candidates. Calculations of emission models confirm that small grains of glassy silicate well mixed with carbonaceous material are plausible cometary constituents. No single class of chondritic aggregate IDPs exhibits spectra closely matching the comet spectra. A mixture of IDP spectra, particularly the glass-rich aggregates, approximately matches the spectra of comets P/Halley, Levy, and Bradfield 1987 XXIX. Yet, if comets are simply a mix of IDP types, it is puzzling that the classes of IDPs are so distinct. None of the comet spectra match the spectrum of the Trapezium. Thus, the mineralogy of the cometary silicates is not the same as that of the interstellar medium. The presence of a component of crystalline silicates in comets may be evidence of mixing between high- and low-temperature regions in the solar nebula.

  5. Prospects for P-bearing molecules in cometary atmospheres

    NASA Astrophysics Data System (ADS)

    Boice, Daniel; de Almeida, Amaury

    Phosphorus is a key element in all known forms of life and phosphorus-bearing compounds have been observed in space. Phosphorus is ubiquitous in meteorites, albeit in small quantities, with phosphates being found in stoney meteorites and phosphides have been identified in iron meteorites. It has been detected as part of the dust component in comet Halley but searches for P-bearing species in the gas phase in comets have been unsuccessful. Based of its moderate cosmic abundance (eighteenth most abundant element, [P]/[N] = 4 x 10-3 ) and the positive identification of P-bearing species in the interstellar medium (such as, PN, PC, HCP and PO), we would expect simple molecules, diatomics (like PH, PO, PC, PS), triatomics (like HCP and PH2 ), and possibly other polyatomics (like phosphine PH3 and diphosphine P2 H4 ), to exist in cometary ices, hence released into the gas phase upon ice sublimation. Our fluid dynamics model with chemistry of cometary comae (SUISEI) has been adapted to study this problem. SUISEI produces cometocentric abundances of the coma gas species; velocities of the bulk gas, light atomic and molecular hydrogen with escape, and electrons; gas and electron temperatures; column densities to facilitate comparison with observations; coma energy budget quantities; attenuation of the solar irradiance; and other quantities that can be related readily to observations. We present results from the first quantitative study of phosphorus-bearing molecules in comets to identify likely species containing phosphorus to aid in future searches for this important element in comets, possibly shedding light on issues of comet formation (time and place) and matters of the prebiotic to biotic evolution of life. Acknowledgements. This work was supported by the NSF Planetary Astronomy Program.

  6. Ground-Based Centimeter, Millimeter, and Submillimeter Observations of Recent Comets

    NASA Technical Reports Server (NTRS)

    Milam, S. N.; Chuang, Y.-L.; Charnley, S. B.; Kuan, Y. -J.; Villanueva, G. L.; Coulson, I. M.; Remijan. A. R.

    2012-01-01

    Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth [I]. Comets are comprised of molecular ices, that may be pristine interstellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula [2]. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection [3]. In the classical picture, the long-period comets probably formed in the nebular disk across the giant planet formation region (5-40 AU) with the majority of them originating from the Uranus-Neptune region. They were subsequently scattered out to the Oort Cloud (OC) by Jupiter. The short-period comets (also known as ecliptic or Jupiter Family Comets - JFC) reside mainly in the Edgeworth-Kuiper belt where they were formed. Given the gradient in physical conditions expected across this region of the nebula, chemical diversity in this comet population is to be expected [4,5]. We have conducted observations of comets I 03P/Hartley 2 (JFC) and C/2009 PI (Garradd) (OC), at primarily millimeter and submillimeter wavelengths, to determine important cosmogonic quantities, such as the ortho:para ratio and isotope ratios, as well as probe the origin of cometary organics and if they vary between the two dynamic reservoirs.

  7. On the evolution and activity of cometary nuclei.

    PubMed

    Prialnik, D; Bar-Nun, A

    1987-02-15

    The thermal evolution of a spherical cometary nucleus (initial radius of 2.5 km), composed initially of very cold amorphous ice and moving in comet Halley's orbit, is simulated numerically for 280 revolutions. It is found that the phase transition from amorphous to crystalline ice constitutes a major internal heat source. The transition does not occur continuously, but in five distinct rounds, during the following revolutions: 1, 7, 40-41, 110-112, and 248-252. Due to the (slow) heating of the amorphous ice between crystallization rounds, the phase transition front advances into the nucleus to progressively greater depths: 36 m on the first round, and then 91 m, 193 m, 381 m, and 605 m respectively. Each round of crystallization starts when when the boundary between amorphous and crystalline ice is brought to approximately 15 m below the surface, as the nucleus radius decreases due to sublimation. At the time of crystallization, the temperature of the transformed ice rises to 180 K. According to experimental studies of gas-laden amorphous ice, a large fraction of the gas trapped in the ice at low temperatures is released. Whereas some of the released gas may find its way out through cracks in the crystalline ice layer, the rest is expected to accumulate in gas pockets that may eventually explode, forming "volcanic calderas." The gas-laden amorphous ice thus exposed may be a major source of gas and dust jets into the coma, such as those observed on comet Halley by the Giotto spacecraft. The activity of new comets and, possibly, cometary outbursts and splits may also be explained in terms of explosive gas release following the transition from amorphous to crystalline ice.

  8. Compressive Strength of Cometary Surfaces Derived from Radar Observations

    NASA Astrophysics Data System (ADS)

    ElShafie, A.; Heggy, E.

    2014-12-01

    Landing on a comet nucleus and probing it, mechanically using harpoons, penetrometers and drills, and electromagnetically using low frequency radar waves is a complex task that will be tackled by the Rosetta mission for Comet 67P/Churyumov-Gerasimenko. The mechanical properties (i.e. density, porosity and compressive strength) and the electrical properties (i.e. the real and imaginary parts of the dielectric constant) of the comet nucleus, constrain both the mechanical and electromagnetic probing capabilities of Rosetta, as well as the choice of landing site, the safety of the landing, and subsurface data interpretation. During landing, the sounding radar data that will be collected by Rosetta's CONSERT experiment can be used to probe the comet's upper regolith layer by assessing its dielectric properties, which are then inverted to retrieve the surface mechanical properties. These observations can help characterize the mechanical properties of the landing site, which will optimize the operation of the anchor system. In this effort, we correlate the mechanical and electrical properties of cometary analogs to each other, and derive an empirical model that can be used to retrieve density, porosity and compressive strength from the dielectric properties of the upper regolith inverted from CONSERT observations during the landing phase. In our approach we consider snow as a viable cometary material analog due to its low density and its porous nature. Therefore, we used the compressive strength and dielectric constant measurements conducted on snow at a temperature of 250 K and a density range of 0.4-0.9 g/cm3 in order to investigate the relation between compressive strength and dielectric constant under cometary-relevant density range. Our results suggest that compressive strength increases linearly as function of the dielectric constant over the observed density range mentioned above. The minimum and maximum compressive strength of 0.5 and 4.5 MPa corresponded to a dielectric constant of 2.2 and 3.4 over the density range of 0.4-0.9 g/cm3. This preliminary correlation will be applied to the case of porous and dust contaminated snow under different temperatures to assess the surface mechanical properties for Comet 67P.

  9. D/H on Mars: Effects of floods, volcanism, impacts, and polar processes

    USGS Publications Warehouse

    Carr, M.H.

    1990-01-01

    Water in the Martian atmosphere is 5.1 times more enriched in deuterium than terrestial water. The enrichment has been previously attributed to either a massive loss of water early in the planet's history or the presence of only a very small reservoir of water that has exchanged with the atmosphere over geologic time. Both these interpretations appear inconsistent with geologic evidence of large floods and sustained volcanism. Large floods are believed to have episodically introduced large amounts of water onto the surface. During a large flood roughly 1017 g of water would almost immediately sublime into the atmospher and be frozen out on polar terrain, to form a new layer several centimeters thick. The long-term effect of a flood would depend on where the water pooled after the flood. If the water pooled at low latitudes, all the water would slowly sublime into the atmosphers and ultimately be frozen out at the poles, thereby adding several meters to the polar deposits for each flood. If the water pooled at high latitude, it would form a permanent ice deposit, largely isolated from further interchange with the atmosphere. Volcanism has also episodically introduced water into the atmosphere. Most of this water has become incorporated into the polar deposits. That released over the last 3.5 Ga could have added a few kilometers to the polar deposits, depending on the amount of dust incorporated along with the ice. Large cometary impacts would have introduced additional large amounts of water into the atmosphere. The long-term evolution of D/H in the atmosphere depends on the rate of exchange of water between the atmosphere and the polar deposits. If exchange is active, then loss rates of hydrogen from the upper atmosphere are substantially higher than those estimated by Y. L. Yung, J. Wen, J. P. Pinto, M. Allen, K. K. Pierce, and S. Paulsen [Icarus 76, 146-159 (1988)]. More plausibly, exchange of water between the atmosphere and the polar deposits is limited, so that after eruptions, floods, and cometary impacts, the atmosphere soon becomes enriched in deuterium. According to this scenario, the atmospheric D/H is different from the bulk of the planet's water and so reveals little about the amount of water outgassed. The scenario implies, however, that the polar deposits are older and more stable than formerly thought. ?? 1990.

  10. On the role of electron-driven processes in planetary atmospheres and comets

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.

    2009-11-01

    After the presence of ionized layers in the Earth's atmosphere was inferred, it took 50 years to quantitatively understand them. The electron density could not be accounted for until Sir David Bates first suggested (along with Sir Harrie Massey) that the main electron-loss process was dissociative recombination with molecular ions, and he and colleagues then developed a theory to predict those rates of dissociative recombination. However, electron impact processes, particularly excitation, have been considered insignificant in most situations, in both planetary and cometary atmospheres. Here we describe cases where recent calculations have shown that electron impact excitation of molecules is important, suggesting that, just as in the time of Sir David Bates, electron-driven processes remain fundamental to our quantitative understanding of atmospheric and cometary phenomena.

  11. Development of Sample Handling and Analytical Expertise For the Stardust Comet Sample Return

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J; Bajt, S; Brennan, S

    NASA's Stardust mission returned to Earth in January 2006 with ''fresh'' cometary particles from a young Jupiter family comet. The cometary particles were sampled during the spacecraft flyby of comet 81P/Wild-2 in January 2004, when they impacted low-density silica aerogel tiles and aluminum foils on the sample tray assembly at approximately 6.1 km/s. This LDRD project has developed extraction and sample recovery methodologies to maximize the scientific information that can be obtained from the analysis of natural and man-made nano-materials of relevance to the LLNL programs.

  12. Landslide on comets as a result of impacts

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2016-04-01

    Introduction: Landslides were observed on a few comet's nuclei, e.g. [1], [2]. The mechanism of their origin is not obvious because of very low gravity. According to [2] fluidization and multiphase transport of cometary material could be an explanation. We consider another option, namely, earthquakes resulted from meteoroids impacts as a trigging mechanism. Material of comets: Comets nuclei are believed to built of soft materials like snow and dust. The recent landing of Philae on the comet 67P/Czuriumow-Gierasimienko indicates a different situation. According to [1]: "thermal probe did not fully penetrate the near-surface layers, suggesting a local resistance of the ground to penetration of >4 megapascals, equivalent to >2 megapascal uniaxial compressive strength". Here we assume that elastic properties of comet's nuclei could be similar to elastic properties of dry snow, namely Young modulus is assumed to be 106 - 108Pa, see [3] and [4]. The model and results: We consider cometary nucleus in the shape of two spheres (with radius 1400 m each) connected by a cylinder (with radius of 200 m and length of 200 m). Density is 470 kg m-3. This shape corresponds approximately to shapes of some comets (e.g. 67P/Churyumov- Gerasimenko [1], 103P/Hartley 2 [5]) A few vibration modes of such body are possible. In present research we consider 3 modes: bending, lengthening-shortening along axis of symmetry, and torsion. We calculated periods of basic oscillation in each of these modes for different values of Young modulus - Table 1. Table 1 Basic results of calculations Young modulus [MPa]Periods [s] of vibrationMaximum acceleration [m s-2] 4 110 - 950 0.0001- 0.0004 40 38 - 290 0.0004- 0.0014 400 12 - 92 0.0012- 0.0045 Rotation and nutation: the impact results in changing of rotation of the comet. In general, the vector of angular velocity will be a subject to nutation that results in changing of centrifugal force, and consequently could be an additional factor triggering landslides. Discussion: Let assume that the comet are hit by small meteoroid of the mass of 1 kg and velocity 20 km s-1. The mode of excited vibrations and their amplitudes depends on many factors. Of course, the energy of vibration cannot exceed energy released during impact. Generally a few modes of vibration are excited but for some special place of impact and the special velocity vector of the impactor one mode could take most of the energy and this mode will prevail. In calculations for Table 1 we assume that only one mode is generated. The maximum values of acceleration of the surface resulting from the impact are given in Table 1. The acceleration of the cometary surface could be vertical, horizontal or inclined with respect to local gravity or local normal to the surface. Note that acceleration is often higher than acceleration of the gravity of the comet. Consequently, the vibrations could throw loose material into space that could lead to massive instability of loose material, i.e. to landslides. It could be alternative mechanism to that presented in [2] (i.e. fluidization). Acknowledgement: The research is partly supported by Polish National Science Centre NCN) (decision 2014/15/B/ST 10/02117) References [1] T. Spohn, et al. (2015) Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov- Gerasimenko. Science 31 July 2015: Vol. 349 no. 6247 DOI: 10.1126/science.aab0464 [2] Belton M. J.S., Melosh J. (2009). Fluidization and multiphase transport of particulate cometary material as an explanation of the smooth terrains and repetitive outbursts on 9P/Tempel 1. Icarus 200 (2009) 280-291 [3] Reuter B. (2013) On how to measure snow mechanical properties relevant to slab avalanche release. International Snow Science Workshop Grenoble - Chamonix Mont-Blanc - 2013 007 [4] Ball A.J. (1997) Ph. D. Thesis: Measuring Physical Properties at the Surface of a Comet Nucleus, Univ.of Kent U.K. [5] Thomas P.C. et al.(2013) Shape, density, and geology of the nucleus of Comet 103P/Hartley 2. Icarus 222 (2013) 550-558

  13. Comet C/2012 S1 (ISON): Observations of the Dust Grains from SOFIA and of the Atomic Gas from NSO Dunn and McMath-Pierce Solar Telescopes (Invited)

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.; Woodward, C. E.; Harker, D. E.; Kelley, M. S.; Sitko, M.; Reach, W. T.; De Pater, I.; Gehrz, R. D.; Kolokolova, L.; Cochran, A. L.; McKay, A. J.; Reardon, K.; Cauzzi, G.; Tozzi, G.; Christian, D. J.; Jess, D. B.; Mathioudakis, M.; Lisse, C. M.; Morgenthaler, J. P.; Knight, M. M.

    2013-12-01

    Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our early results. SOFIA (+FORCAST [1]) mid- to far-IR images and spectroscopy (~5-35 μm) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h≈1.18 AU). Dust characteristics, identified through the 10 μm silicate emission feature and its strength [2], as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 μm, and near 16, 19, 23.5, 27.5, and 33 μm are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) [3,4,5] and C/2001 Q4 (NEAT) [6]) to large and/or compact grains (e.g., C/2007 N4 (Lulin) [7] and C/2006 P1 (McNaught) [8]). Measurement of the crystalline peaks in contrast to the broad 10 and 20 μm amorphous silicate features yields the cometary silicate crystalline mass fraction [9], which is a benchmark for radial transport in our protoplanetary disk [10]. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals [11]. Only SOFIA can look for cometary organics in the 5-8 μm region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h< 0.4 AU, near Nov-20--Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) [12,13] suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures 4 settings: Na I, K, C2 to sample cometary organics (along with Mg I), and [O I] as a proxy for activity from water [14] (along with Si I and Fe I). State-of-the-art instruments that will also be employed include IBIS [15], which is a Fabry-Perot spectral imaging system that concurrently measures lines of Na, K, Ca II, or Fe, and ROSA (CSUN/QUB) [16], which is a rapid imager that simultaneously monitors Ca II or CN. From McMath-Pierce, the Solar-Stellar Spectrograph also will target ISON (320-900 nm, R~21,000, r_h<0.3 AU). Assuming survival, the intent is to target ISON over r_h<0.4 AU, characteristic of prior Na detections [12,13,17,18,19]. References: [1] Adams, J.D., et al. 2012, SPIE, 8446, 16; [2] Kelley, M.S., Wooden, D.H. 2009, PSS, 57, 1133; [3] Harker et al. 2002, ApJ, 580, 579; [4] Hayward et al. 2000, ApJ, 538, 428; [5] Hadamcik, E., Levasseur-Regourd, A.C. 2003, JQSRT, 79-80, 661; [6] Wooden, D.H. 2004, ApJL, 612, L77; [7] Woodward et al. 2011, AJ, 141, 181; [8] Kelley et al. 2010, LPSC, 41, #2375; [9] Kelley, M.S. et al. 2011, AAS, 211, 560; [10] Wooden, D.H. 2008, SSRv, 138, 75; [11] Lindsay et al. 2013, ApJ, 766, 54; [12] Preston, G. W. 1967, ApJ, 147, 718; [13] Slaughter, C.D. 1969, AJ, 74, 929; [14] McKay et al. 2012, Icarus, 222, 684; [15] Cavallini, F., 2006, Solar Phys., 236, 415; [16] Jess et al., 2010, Solar Phys, 261, 363; [17] Watanabe, J-I. et al. 2003, ApJ, 585, L159; [18] Leblanc, F. et al. 2008, A&A, 482, 293; [19] Fulle, M. et al. 2013, ApJL, 771, L21

  14. A Stellar Appulse by Exploding Comet 17P/Holmes

    NASA Astrophysics Data System (ADS)

    Lacerda, Pedro; Jewitt, D.

    2012-10-01

    Comet 17P/Holmes suffered a massive outburst in October 2007. Its total brightness increased from about 17th to 2nd magnitude over a period of only two days as 17P released about 1-10% of its mass into space in the form of dust. Several theories have been proposed to explain the event but the exact cause for the outburst remains unknown. 17P had suffered a similar outburst more than one century ago, which led to its discovery. These unusual and violent explosions have rendered this otherwise unremarkable Jupiter family comet an interesting target of study, because it may provide clues to the activity in other comets. On 29 October 2007, the optocenter of outbursting 17P passed within 1" of a background star. We used observations taken at the Univ. of Hawaii 2.2m telescope located atop Mauna Kea to measure the brightness of the star as it crossed the coma of 17P in an attempt to estimate the optical depth of the dust. The time sampling was 10-15 min. In addition, we used two-band photometry to look for colour variation as the star crossed the dust cloud. These measurements place the most stringent constraints on the extinction optical depth of any cometary coma.

  15. Dust Production of Comet 21P/Giacobini-Zinner Using Broadband Photometry

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Suggs, R. M.; Cooke, W.

    2012-01-01

    Comet 21P/Giacobini-Zinner is a Jupiter family comet, approximately 2 km in diameter, and is established to be the parent of the Draconids, a meteor shower known to outburst. In 1933 and 1946 up to 10,000 meteors per hour were reported for the Draconids, and 2011 saw a minor Draconid outburst. Meteor stream modeling/forecasting being a primary focus for the NASA Meteoroid Environment Office, it was decided to monitor 21P for three purposes: firstly to find the apparent and absolute magnitude with respect to heliocentric distance; second to calculate Af , a quantity that describes the dust production rate and is used in models to predict the activity of the Draconids; and thirdly to detect possible increases in cometary activity, which could correspond to future Draconid meteor outbursts. A similar study was done for 21P during its 2004-2006 close approach to the Sun in which apparent and absolute magnitudes were found with various heliocentric distances, as well as the dust production. At 2.32 AU from the Sun, 21P possessed an apparent magnitude of 17.05 and Af of 83 cm, and an apparent magnitude of 15.91 and Af of 130.66 cm at 1.76 AU from the sun.

  16. The Umov effect in application to an optically thin two-component cloud of cosmic dust

    NASA Astrophysics Data System (ADS)

    Zubko, Evgenij; Videen, Gorden; Zubko, Nataliya; Shkuratov, Yuriy

    2018-04-01

    The Umov effect is an inverse correlation between linear polarization of the sunlight scattered by an object and its geometric albedo. The Umov effect has been observed in particulate surfaces, such as planetary regoliths, and recently it also was found in single-scattering small dust particles. Using numerical modeling, we study the Umov effect in a two-component mixture of small irregularly shaped particles. Such a complex chemical composition is suggested in cometary comae and other types of optically thin clouds of cosmic dust. We find that the two-component mixtures of small particles also reveal the Umov effect regardless of the chemical composition of their end-member components. The interrelation between log(Pmax) and log(A) in a two-component mixture of small irregularly shaped particles appears either in a straight linear form or in a slightly curved form. This curvature tends to decrease while the index n in a power-law size distribution r-n grows; at n > 2.5, the log(Pmax)-log(A) diagrams are almost straight linear in appearance. The curvature also noticeably decreases with the packing density of constituent material in irregularly shaped particles forming the mixture. That such a relation exists suggest the Umov effect may also be observed in more complex mixtures.

  17. The Umov effect in application to an optically thin two-component cloud of cosmic dust

    NASA Astrophysics Data System (ADS)

    Zubko, Evgenij; Videen, Gorden; Zubko, Nataliya; Shkuratov, Yuriy

    2018-07-01

    The Umov effect is an inverse correlation between linear polarization of the sunlight scattered by an object and its geometric albedo. The Umov effect has been observed in particulate surfaces, such as planetary regoliths, and recently it also was found in single-scattering small dust particles. Using numerical modelling, we study the Umov effect in a two-component mixture of small irregularly shaped particles. Such a complex chemical composition is suggested in cometary comae and other types of optically thin clouds of cosmic dust. We find that the two-component mixtures of small particles also reveal the Umov effect regardless of the chemical composition of their end-member components. The interrelation between log(Pmax) and log(A) in a two-component mixture of small irregularly shaped particles appears either in a straight linear form or in a slightly curved form. This curvature tends to decrease while the index n in a power-law size distribution r-n grows; at n > 2.5, the log(Pmax)-log(A) diagrams are almost straight linear in appearance. The curvature also noticeably decreases with the packing density of constituent material in irregularly shaped particles forming the mixture. That such a relation exists suggests the Umov effect may also be observed in more complex mixtures.

  18. Cometary Dust in the Debris of HD 31648 and HD163296: Two "Baby" Beta pictoris Stars

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Grady, Carol A.; Lynch, David K.; Russell, Ray W.; Hanner, Martha S.

    1999-01-01

    The debris disks surrounding the pre-main-sequence stars HD 31648 and HD 163296 were observed spectroscopically between 3 and 14 microns. Both stars possess a silicate emission feature at 10 Am that resembles that of the star P Pictoris and those observed in solar system comets. The structure of the band is consistent with a mixture of olivine and pyroxene material, plus an underlying continuum of unspecified origin. The similarity in both size and structure of the silicate band suggests that the material in these systems had a processing history similar to that in our own solar system prior to the time that the grains were incorporated into comets.

  19. Cometary Dust in the Debris Disks of HD 31648 and HD 163296: Two "Baby" (BETA) Pictoris Stars

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Grady, Carol A.; Lynch, David K.; Russell, Ray W.; Hanner, Martha S.; Hanner, Martha S.

    1999-01-01

    The debris disks surrounding the pre-main-sequence stars HD 31648 and HD 163296 were observed spectroscopically between 3 and 14 microns. Both stars possess a silicate emission feature at 10 microns that resembles that of the star beta Pictoris and those observed in solar system comets. The structure of the band is consistent with a mixture of olivine and pyroxene material, plus an underlying continuum of unspecified origin. The similarity in both size and structure of the silicate band suggests that the material in these systems had a processing history similar to that in our own solar system prior to the time that the grains were incorporated into comets.

  20. Fossil diatoms imply common cometary origin of space-dust and the Polonnaruwa meteorite

    NASA Astrophysics Data System (ADS)

    Miyake, N.; Wallis, M. K.; Wickramasinghe, N. C.

    2013-09-01

    IDPs collected in 2001 at 40km altitude by cryosamplers studied via scanning electron microscopy and EDX were found to contain siliceous fibres and whiskers, some isolated but often embedded in a mineral matrix. The newly-arrived Polonnaruwa meteorite gives strong evidence for the hypothesis that they are fragments of diatoms agglomerating on solar system icy bodies. Diatom frustules and even whole diatom skeletons are identifiable within the meteorite. Specimens of a siliceous exoskeleton with multiple spines/whiskers have also been found, thought to be freshwater diatoms. As diatoms are dependent on a source of nitrogenous organics, the siliceous whiskers within IDPs would be an indicator of a photosynthesizing ecosystem, probably on a comet.

  1. Organic and inorganic correlations for Northwest Africa 852 by synchrotron-based Fourier transform infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Yesiltas, Mehmet; Peale, Robert E.; Unger, Miriam; Sedlmair, Julia; Hirschmugl, Carol J.

    2015-10-01

    Relationships between organic molecules and inorganic minerals are investigated in a single 34 μm diameter grain of the CR2 chondrite Northwest Africa 852 (NWA) 852 with submicron spatial resolution using synchrotron-based imaging micro-FTIR spectroscopy. Correlations based on absorption strength for the various constituents are determined using statistical correlation analysis. The silicate band is found to be correlated with the hydration band, and the latter is highly correlated with stretching modes of aliphatic hydrocarbons. Spatial distribution maps show that water+organic combination, silicate, OH, and C-H distributions overlap, suggesting a possible catalytic role of phyllosilicates in the formation of organics. In contrast, the carbonate band is anticorrelated with water+organic combination, however uncorrelated with any other spectral feature. The average ratio of asymmetric CH2 and CH3 band strengths (CH2/CH3 = 2.53) for NWA 852 is similar to the average ratio of interplanetary dust particles (~2.40) and Wild 2 cometary dust particles (2.50), but it significantly exceeds that of interstellar medium objects (~1.00) and several aqueously altered carbonaceous chondrites (~1.40). This suggests organics of similar length/branching, and perhaps similar formation regions, for NWA 852, Wild 2 dust particles, and interplanetary dust particles. The heterogeneous spatial distribution of ratio values indicates the presence of a mixture of aliphatic organic material with different length/branching, and thus a wide range of parent body processes, which occurred before the considered grain was formed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieman-Sifry, Jesse; Hughes, A. Meredith; Flaherty, Kevin M.

    We present a CO(2-1) and 1240 μ m continuum survey of 23 debris disks with spectral types B9-G1, observed at an angular resolution of 0.″5–1″ with the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was selected for large infrared excess and age ∼10 Myr, to characterize the prevalence of molecular gas emission in young debris disks. We identify three CO-rich debris disks, plus two additional tentative (3 σ) CO detections. Twenty disks were detected in the continuum at the >3 σ level. For the 12 disks in the sample that are spatially resolved by our observations, we perform an independentmore » analysis of the interferometric continuum visibilities to constrain the basic dust disk geometry, as well as a simultaneous analysis of the visibilities and broadband spectral energy distribution to constrain the characteristic grain size and disk mass. The gas-rich debris disks exhibit preferentially larger outer radii in their dust disks, and a higher prevalence of characteristic grain sizes smaller than the blowout size. The gas-rich disks do not exhibit preferentially larger dust masses, contrary to expectations for a scenario in which a higher cometary destruction rate would be expected to result in a larger mass of both CO and dust. The three debris disks in our sample with strong CO detections are all around A stars: the conditions in disks around intermediate-mass stars appear to be the most conducive to the survival or formation of CO.« less

  3. Space missions to comets

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor); Yeomans, D. K. (Editor); Brandt, J. C. (Editor); Hobbs, R. W. (Editor)

    1979-01-01

    The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed.

  4. Photospheric mass ejections caused by cometary impacts

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon; Ibodov, Firuz S.

    It is analytically shown that impacts of cometary nuclei with the Sun will be accompanied, due to action of ram aerodynamic pressure at the passage of the high-velocity, more than 600 km/s, nucleus through the chromosphere by its crushing, lateral expansion of the crushed mass and sharp stopping of the flattening structure in a relatively very thin near-photosphere layer. High value of the specific kinetic energy of the comet nucleus, essentially more than the heat of its sublimation - of the order of 10^10 erg/g, leads to generation of a high-temperature, 10^6-10^7 K, plasma as well as strong "blast" shock wave in the decelerating layer, so that hot layer plasma will be ejected to the lower solar corona. Space observations of the phenomenon are of interest for revealing mechanisms for generation of solar prominences.

  5. The nature of cometary materials

    NASA Technical Reports Server (NTRS)

    Stephens, James

    1989-01-01

    Because cometary surfaces are likely to be far colder and of a different composition than planetary surfaces, there are some new considerations that must be examined in regards to placing instrumented packages or sample return devices on their surfaces. The qualitative analysis of the problem of attaching hardware to a comet and not being ejected back into space can be divided into two parts. The first problem is to pierce the mantle and obtain access to the icy core. Drilling through the mantle requires that the drilling forces be reacted. Reacting such forces probably requires attachment to the icy core below. Therefore, some kinetic impact piercing device is likely to be required as the first act of attachment. The second problem for a piercing device to overcome is the force produced by the impact kinetic energy that tries to eject the piercing device back into space. The mantle and icy core can absorb some of the impact kinetic energy in the form of fracture formation and friction energy. The energy that is not absorbed in these two ways is stored by the core as elastic deformation of the mantle and icy core. It is concluded that because the cometary materials are almost certainly brittle and the icy core is likely to be self lubricating, the elastic rebound and gas pressure expulsion forces must be counteracted by forces greater than those that may be provided by a piercing device or its capture devices (barbs).

  6. In situ observation of penetration process in silica aerogel: Deceleration mechanism of hard spherical projectiles

    NASA Astrophysics Data System (ADS)

    Niimi, Rei; Kadono, Toshihiko; Arakawa, Masahiko; Yasui, Minami; Dohi, Koji; Nakamura, Akiko M.; Iida, Yosuke; Tsuchiyama, Akira

    2011-02-01

    A large number of cometary dust particles were captured with low-density silica aerogels by NASA's Stardust Mission. Knowledge of the details of the capture mechanism of hypervelocity particles in silica aerogel is needed in order to correctly derive the original particle features from impact tracks. However, the mechanism has not been fully understood yet. We shot hard spherical projectiles of several different materials into silica aerogel of density 60 mg cm -3 and observed their penetration processes using an image converter or a high-speed video camera. In order to observe the deceleration of projectiles clearly, we carried out impact experiments at two velocity ranges; ˜4 km s -1 and ˜200 m s -1. From the movies we took, it was indicated that the projectiles were decelerated by hydrodynamic force which was proportional to v2 ( v: projectile velocity) during the faster penetration process (˜4 km s -1) and they were merely overcoming the aerogel crushing strength during the slower penetration process (˜200 m s -1). We applied these deceleration mechanisms for whole capture process to calculate the track length. Our model well explains the track length in the experimental data set by Burchell et al. (Burchell, M.J., Creighton, J.A., Cole, M.J., Mann, J., Kearsley, A.T. [2001]. Meteorit. Planet. Sci. 36, 209-221).

  7. Establishing a molecular relationship between chondritic and cometary organic solids

    PubMed Central

    Cody, George D.; Heying, Emily; Alexander, Conel M. O.; Nittler, Larry R.; Kilcoyne, A. L. David; Sandford, Scott A.

    2011-01-01

    Multidimensional solid-state NMR spectroscopy is used to refine the identification and abundance determination of functional groups in insoluble organic matter (IOM) isolated from a carbonaceous chondrite (Murchison, CM2). It is shown that IOM is composed primarily of highly substituted single ring aromatics, substituted furan/pyran moieties, highly branched oxygenated aliphatics, and carbonyl groups. A pathway for producing an IOM-like molecular structure through formaldehyde polymerization is proposed and tested experimentally. Solid-state 13C NMR analysis of aqueously altered formaldehyde polymer reveals considerable similarity with chondritic IOM. Carbon X-ray absorption near edge structure spectroscopy of formaldehyde polymer reveals the presence of similar functional groups across certain Comet 81P/Wild 2 organic solids, interplanetary dust particles, and primitive IOM. Variation in functional group concentration amongst these extraterrestrial materials is understood to be a result of various degrees of processing in the parent bodies, in space, during atmospheric entry, etc. These results support the hypothesis that chondritic IOM and cometary refractory organic solids are related chemically and likely were derived from formaldehyde polymer. The fine-scale morphology of formaldehyde polymer produced in the experiment reveals abundant nanospherules that are similar in size and shape to organic nanoglobules that are ubiquitous in primitive chondrites. PMID:21464292

  8. The 67P/Churyumov-Gerasimenko nucleus spectroscopic properties and their evolution over time

    NASA Astrophysics Data System (ADS)

    Fornasier, S.

    2016-11-01

    Comets are primitive small bodies witness of the Solar System formation. Our knowledge on cometary nuclei and on their evolution over time is very limited because they are dark, small, and thus faint objects, spatially unresolved by groundbased telescopes and masked by their atmosphere when they become brighter close to the Sun. Before the Rosetta mission, only 5 cometary nuclei have been directly imaged and investigated by space missions during relatively short fly-bys, catching thus a small fraction of the comet lifetime in its orbit. The Rosetta mission is orbiting around the 67P/Churyumov-Gerasimenko comet since August 2014, and provides the unique opportunity to continuously investigate the 67P nucleus during about 2 years, from large heliocentric distances (about 4 AU) to its perihelion passage (1.24 AU) and beyond. The OSIRIS cameras and VIRTIS spectrometer have shown that the 67P nucleus has a red spectral behavior with spectral properties similar to those of bare cometary nuclei, of primitive D-type asteroids like the Jupiter Trojans, and of the moderately red Transneptunians population (Sierks et al., 2015, Capaccioni et al., 2015). The surface is globally dominated by dehydrated and organic-rich refractory materials (Capaccioni et al., 2015), and shows some color heterogeneities. Three kind of terrains, from the spectrally bluer and water ice enriched terrains to the redder ones, associated mostly to dusty regions, have been identified by visible spectrophotometry from the first resolved images acquired in July-August 2014 (Fornasier et al., 2015), covering mostly the northern hemisphere of the nucleus. The southern hemisphere has become visible from Rosetta only since March 2015, and it shows a lack of spectrally red regions compared to the northern one, associated to the absence of wide spread smooth or dust covered terrains. Although water is the dominant volatile observed in the coma, exposed water ice has been detected only in small amounts in different regions of the comet (Pommerol et al., 2015; De Sanctis et al., 2015; Filacchione et al., 2016; Barucci et al. 2016). Thanks to the unprecedented spatial resolution, VIRTIS and OSIRIS instruments have detected the occurrence of water frost close to the morning shadows, putting in evidence the diurnal cycle of water. Seasonal color and spectral variations have also been observed when the comet approached perihelion, indicating that the increasing activity had progressively shed the surface dust, partially showing the underlying ice-rich layer. I will present an overview of the spectroscopic properties of the 67P nucleus and of their diurnal and seasonal variations over time and heliocentric distance.

  9. The Uncertain Nature of Cometary Motions

    NASA Technical Reports Server (NTRS)

    Yeomans, Donald K.

    1997-01-01

    The number of active short- and long-periodic comets crossing the Earth's orbit each year is less than 10 percent of the corresponding number of asteroids crossing the Earth's orbit. However, the higher relative velocities of comets with respect to the Earth and the uncertainties associated with accurately computing their future trajectories can cause considerable problems when assessing the risks of Earth-crossing objects. Unlike asteroids, the motions of active comets are often affected by so-called nongravitational (outgassing) forces that are imperfectly modeled. In addition, the astrometric optical observations that are used to refine a comet's orbit are often imprecise because a comet's center of mass can be hidden by atmospheric gas and dust. For long-period comets, there is the additional problem of having to base orbital solutions on relatively short observational data intervals. Long-term numerical integrations extending two centuries into the future have been carried out to investigate upcoming Earth-close approaches by known periodic comets. Error analyses and impact probabilities have been computed for those comets that will pass closest to the Earth. Although there are no known comets that will make dangerously close Earth approaches in the next two centuries, there are a few objects that warrant future monitoring.

  10. Atmospheric Impacts of a Close Cometary Encounter

    NASA Astrophysics Data System (ADS)

    Aylett, Tasha; Chipperfield, Martyn; Diego Carrillo Sánchez, Juan; Feng, Wuhu; Forster, Piers; Plane, John

    2017-04-01

    Although a close encounter with a comet is extremely unlikely, a significant perturbation to the flux of Earth-bound dust from a comet's close passage could have huge implications for both the chemistry of the atmosphere and climate. For example, following the close passage of Comet Halley to Earth in A.D. 536, dark skies, reduced day lengths and a protracted global cooling were reported [1], for which an extraterrestrial disturbance is likely to be at least partly responsible. Indeed, the recent encounter of Comet Siding Spring with Mars provided evidence that the risks posed by such an event are significant [2]. We have run sensitivity simulations using the Whole Atmosphere Community Climate Model (WACCM) with an elevated Meteoric Input Function (MIF) to investigate such an encounter - specifically, Comet Halley in A.D. 536. The simple analytical model developed by Moorhead et al. [3] has been incorporated into an atmospheric chemical ablation model to provide the MIF of several meteoric species (Na, Fe, Si, Mg and S) in the mesosphere and lower thermosphere (70-120 km) for input into WACCM. Key effects of this additional input on the chemistry of the upper atmosphere and the metal layers have been explored in the simulations and effects on mesospheric and stratospheric ozone chemistry have been assessed. In addition to any effects on atmospheric chemistry, WACCM will also be used to provide insight into the impacts of a high dust flux on the Earth's climate. References [1] Stothers, R. B. (1984), Mystery Cloud of Ad-536, Nature, 307(5949), 344-345. [2] Schneider, N. M., et al. (2015), MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars, Geophys Res Lett, 42(12), 4755-4761. [3] Moorhead, A. V., P. A. Wiegert, and W. J. Cooke (2014), The meteoroid fluence at Mars due to Comet C/2013 A1 (Siding Spring), Icarus, 231, 13-21.

  11. The Preservation of Cometary Organics in Stardust Aerogel

    NASA Astrophysics Data System (ADS)

    Clemett, Simon; Nakamura-Messenger, Keiko; Sandford, Scott; McKay, David

    It has been recognized for many years that the continuous global accretion of organic matter from comets and carbonaceous asteroids, over geological timescales, to the surfaces of both Earth and Mars may have played a significant role in the prebiotic chemical evolution of these planets [1]. The dominant mass fraction of accreted meteoritic material is in the form of interplanetary dust for which the current accretion rate is estimated at ˜ 40±20 Gg·yr-1 [2]. Our understanding of the organic matter present in interplanetary dust is, however, limited by the analytical challenges involved in the molecular analysis of heterogeneous micron sized particles. We have used the technique of ultrafast two-step laser mass spectrometry (µltra-L2 MS) to investigate the nature and distribution of the aromatic organic matter present in individual dust particles from comet P81/Wild 2 collected in aerogel by the STARDUST sample return mission [3]. Complex aromatic hydrocarbons have been detected in cometary particles entrained along multiple aerogel tracks. Although terrestrial contamination from the aerogel remains a concern, a substantial fraction is interpreted as indigenous. The spectral complexity is atypical of carbonaceous and ordinary chondrites. While simple fused ring polycyclic aromatic hydrocarbon (PAHs) such as naphthalene (C10 H8 ), acenaphthalene (C12 H8 ), phenanthrene (C14 H10 ) are present along with their homologous alkylation series (Ar-(CH2 )n -H) there are additionally many prominent odd-mass species present. These are consistent with several interleaved alkylation series of N-containing PAHS (NPAHs) in the form of nitriles (Ar-CN). These species may be related to the 2.3 & 4.6 µm 'XCN' adsorption features observed in the spectra of many young stellar objects and some comets, which is believed to be synthesized by ultraviolet and/or ion bombardment of precometary ices in circumstellar environments. The presence of organo-N species is of particular importance to the organic inventory of the the early Earth since its abiotic synthesis would have been extremely slow due to the difficulty in cleaving the N≡N triple bond in the absence of biology. [1] Anders (1989) Nature 342, 255; [2] Love & Brownlee (1993) Science 262, 550; Clemett et al. MAPS (submited)

  12. Complex Organics from Laboratory Simulated Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.

    2003-01-01

    Many of the volatiles in interstellar dense clouds exist in ices surrounding dust grains. The low temperatures of these ices (T < 50 K) preclude most chemical reactions, but photolysis can drive reactions that produce a suite of new species, many of which are complex organics. We study the UV and proton radiation processing of interstellar ice analogs to explore links between interstellar chemistry, the organics in comets and meteorites, and the origin of life on Earth. The high D/H ratios in some interstellar species, and the knowledge that many of the organics in primitive meteorites are D-enriched, suggest that such links are plausible. Once identified, these species may serve as markers of interstellar heritage of cometary dust and meteorites. Of particular interest are our findings that UV photolysis of interstellar ice analogs produce molecules of importance in current living organisms, including quinones, amphiphiles, and amino acids. Quinones are essential in vital metabolic roles such as electron transport. Studies show that quinones should be made wherever polycyclic aromatic hydrocarbons are photolyzed in interstellar ices. In the case of anthracene-containing ices, we have observed the production of 9-anthrone and 9,10 anthraquinone, both of which have been observed in the Murchison meteorite. Amphiphiles are also made when mixed molecular ices are photolyzed. These amphiphiles self-assemble into fluorescent vesicles when placed in liquid water, as do Murchison extracts. Both have the ability to trap an ionic dye. Photolysis of plausible ices can also produce alanine, serine, and glycine as well as a number of small alcohols and amines. Flash heating of the room temperature residue generated by such experiments generates mass spectral distributions similar to those of IDPs. The detection of high D/H ratios in some interstellar molecular species, and the knowledge that many of the organics, such as hydroxy and amino acids, in primitive meteorites are D-enriched provides evidence for a connection between intact organic material in the interstellar medium and in meteorites. Thus, some of the oxidized aromatics, amphiphiles, amino acids, hydroxy acids, and other compounds found in meteorites may have had an interstellar ancestry and not solely a product of parent body aqueous alteration. Such compounds should also be targeted for searches of organics in cometary dust.

  13. Does warm debris dust stem from asteroid belts?

    NASA Astrophysics Data System (ADS)

    Geiler, Fabian; Krivov, Alexander V.

    2017-06-01

    Many debris discs reveal a two-component structure, with a cold outer and a warm inner component. While the former are likely massive analogues of the Kuiper belt, the origin of the latter is still a matter of debate. In this work, we investigate whether the warm dust may be a signature of asteroid belt analogues. In the scenario tested here, the current two-belt architecture stems from an originally extended protoplanetary disc, in which planets have opened a gap separating it into the outer and inner discs which, after the gas dispersal, experience a steady-state collisional decay. This idea is explored with an analytic collisional evolution model for a sample of 225 debris discs from a Spitzer/IRS catalogue that are likely to possess a two-component structure. We find that the vast majority of systems (220 out of 225, or 98 per cent) are compatible with this scenario. For their progenitors, original protoplanetary discs, we find an average surface density slope of -0.93 ± 0.06 and an average initial mass of (3.3^{+0.4}_{-0.3})× 10^{-3} solar masses, both of which are in agreement with the values inferred from submillimetre surveys. However, dust production by short-period comets and - more rarely - inward transport from the outer belts may be viable, and not mutually excluding, alternatives to the asteroid belt scenario. The remaining five discs (2 per cent of the sample: HIP 11486, HIP 23497, HIP 57971, HIP 85790, HIP 89770) harbour inner components that appear inconsistent with dust production in an 'asteroid belt.' Warm dust in these systems must either be replenished from cometary sources or represent an aftermath of a recent rare event, such as a major collision or planetary system instability.

  14. Local growth of dust- and ice-mixed aggregates as cometary building blocks in the solar nebula

    NASA Astrophysics Data System (ADS)

    Lorek, S.; Lacerda, P.; Blum, J.

    2018-03-01

    Context. Comet formation by gravitational instability requires aggregates that trigger the streaming instability and cluster in pebble-clouds. These aggregates form as mixtures of dust and ice from (sub-)micrometre-sized dust and ice grains via coagulation in the solar nebula. Aim. We investigate the growth of aggregates from (sub-)micrometre-sized dust and ice monomer grains. We are interested in the properties of these aggregates: whether they might trigger the streaming instability, how they compare to pebbles found on comets, and what the implications are for comet formation in collapsing pebble-clouds. Methods: We used Monte Carlo simulations to study the growth of aggregates through coagulation locally in the comet-forming region at 30 au. We used a collision model that can accommodate sticking, bouncing, fragmentation, and porosity of dust- and ice-mixed aggregates. We compared our results to measurements of pebbles on comet 67P/Churyumov-Gerasimenko. Results: We find that aggregate growth becomes limited by radial drift towards the Sun for 1 μm sized monomers and by bouncing collisions for 0.1 μm sized monomers before the aggregates reach a Stokes number that would trigger the streaming instability (Stmin). We argue that in a bouncing-dominated system, aggregates can reach Stmin through compression in bouncing collisions if compression is faster than radial drift. In the comet-forming region ( 30 au), aggregates with Stmin have volume-filling factors of 10-2 and radii of a few millimetres. These sizes are comparable to the sizes of pebbles found on comet 67P/Churyumov-Gerasimenko. The porosity of the aggregates formed in the solar nebula would imply that comets formed in pebble-clouds with masses equivalent to planetesimals of the order of 100 km in diameter.

  15. Optical and Near-infrared Polarimetry of Non-periodic Comet C/2013 US10 (Catalina)

    NASA Astrophysics Data System (ADS)

    Kwon, Yuna Grace; Ishiguro, Masateru; Kuroda, Daisuke; Hanayama, Hidekazu; Kawabata, Koji S.; Akitaya, Hiroshi; Nakaoka, Tatsuya; Itoh, Ryosuke; Toda, Hiroyuki; Yanagisawa, Kenshi; Lee, Myung Gyoon; Ohta, Kouji; Yoshida, Michitoshi; Kawai, Nobuyuki; Watanabe, Jun-Ichi

    2017-10-01

    We present an optical and near-infrared (hereafter NIR) polarimetric study of a comet C/2013 US10 (Catalina) observed on UT 2015 December 17-18 at phase angles of α = 52.°1-53.°1. Additionally, we obtained an optical spectrum and multi-band images to examine the influence of gas emission. We find that the observed optical signals are significantly influenced by gas emission; that is, the gas-to-total intensity ratio varies from 5 to 30% in the R C and 3%-18% in the I C bands, depending on the position in the coma. We derive the “gas-free dust polarization degrees” of 13.8% ± 1.0% in the R C and 12.5% ± 1.1% in the I C bands and a gray polarimetric color, I.e., -8.7% ± 9.9% μm-1 in optical and 1.6% ± 0.9% μm-1 in NIR. The increments of polarization obtained from the gas correction show that the polarimetric properties of the dust in this low-polarization comet are not different from those in high-polarization comets. In this process, the cometocentric distance dependence of polarization has disappeared. We also find that the R C-band polarization degree of the southeast dust tail, which consists of large dust particles (100 μm-1 mm), is similar to that in the outer coma where small and large ones are mixed. Our study confirms that the dichotomy of cometary polarization does not result from the difference of dust properties, but from depolarizing gas contamination. This conclusion can provide a strong support for similarity in origin of comets.

  16. Evolution of the Edgeworth-Kuiper Belt and Kuiperoidal Dust

    NASA Astrophysics Data System (ADS)

    Ozernoy, L. M.; Ipatov, S. I.

    Evolution of orbits of Edgeworth-Kuiper belt objects (EKBOs) under the gravitational influence of the giant planets has been studied by a number of authors (e.g., Duncan & Levison; Budd; Ozernoy, Gorkavyi & Taidakova). Here we show that the gravitational interactions of EKBOs can also play a certain role in their orbital evolution. For instance, during the last 4 Gyr as many as several percents of EKBOs could change their semimajor axes by more than 1 AU due to close encounters with other EKBOs. Even small variations in orbital elements of EKBOs caused by their mutual collisions coupled with the mutual gravitational influence can cause large variations in the orbital elements due to the gravitational influence of planets. About 6% of Neptune-crossers can reach the orbit of the Earth, with the average time in Earth-crossing orbits of about 5× 103 yr. The portion of former EKBOs now moving in Earth-crossing orbits can exceed 20% of all Earth-crossers. Evaporation of the volatile material from the EKBOs surfaces, due to mutual EKBO collisions, along with the Solar wind and the heating by the Sun, are the sources of the dust in the outer Solar system. The evolution and structure of the interplanetary dust cloud computed, in some approximations, by Gorkavyi, Ozernoy, Mather, & Taidakova offers a preliminary 3-D physical model of the cloud, which includes three dust components (asteroidal, cometary, and kuiperoidal), which is fairly consistent with the available data of Pioneer and Voyager dust detectors and contribution of the zodiacal light into the COBE/DIRBE data. We acknowledge support of this work by NASA grant NAG5-10776, the Russian Federal Program ``Astronomy'' (section 1.9.4.1), RFBR (01-02-17540), and INTAS (00-240).

  17. Mass Spectum Imaging of Organics Injected into Stardust Aerogel by Cometary Impacts

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Nakamura-Messenger, K.; Messenger, S.

    2014-01-01

    Comets have largely escaped the hydrothermal processing that has affected the chemistry and mineralogy of even the most primitive meteorites. Consequently, they are expected to better preserve nebular and interstellar organic materials. Organic matter constitutes roughly 20-30% by weight of vol-atile and refractory cometary materials [1,2]. Yet organic matter identified in Stardust aerogel samples is only a minor component [3-5]. The dearth of intact organic matter, fine-grained and pre-solar materials led to suggestions that comet 81P/Wild-2 is com-posed largely of altered materials, and is more similar to meteorites than the primitive view of comets [6]. However, fine-grained materials are particularly susceptible to alteration and destruction during the hypervelocity impact. While hypervelocity capture can cause thermal pyrolysis of organic phases, some of the impacting organic component appears to have been explosively dispersed into surrounding aerogel [7]. We used a two-step laser mass spectrometer to map the distribution of organic matter within and sur-rounding a bulbous Stardust track to constrain the dispersion of organic matter during the impact.

  18. Chemically anomalous, pre-accretionally irradiated grains in interplanetary dust -- interstellar grains?. [Abstract only

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.

    1994-01-01

    Ultrafine-grained matrix is a unique and fundamental building block of chondritic porous (CP) interplanetary dust particles. Most IDPs so far determined to be of cometary origin belong to the CP class. The matrix in CP IDPs is not homogeneous but rather a loose mixture of discrete single crystals (e.g., olivine, pyroxene, Fe sulfides) and polyphase grains. The petrographic diversity observed among the polyphase grains suggest that they were formed under variable physiochemical conditions. One particular class of polyphase grains are a dominant component in cometary IDPs. Although their occurrence is well documented, the terminology used to describe them is confused. They have been called many names. Here they are simply called GEMS (Glass with Embedded Metal and Sulfides). The bulk compositions of GEMS are within a factor of 3 chondritic (solar) for all major elements except C. Quantitative thin-film X-ray (EDS) analyses have shown that GEMS are systematically depleted in Mg and Si, enriched in S, Fe, and Ni, and stoichiometrically enriched in O. Electron energy-loss spectroscopy (EELS) suggests that the excess O is present as hydroxyl (-OH) groups. These same chemical 'anomalies' were observed in solar-wind-irradiated amorphous rims on the surfaces of IDPs, suggesting that the compositions of GEMS reflect prior exposure to ionizing radiation. In order to test this hypothesis, a sample of Allende (CV3) matrix was exposed to proton flux. Radiation-damaged amorphous rims on olivine and pyroxene crystals in the Allende sample were found to be depleted in Mg and Ca, enriched in S, Fe, and Ni, and stoichiometrically enriched in O. Thus, the compositions of GEMS are indeed consistent with exposure to ionizing radiation. This study suggests that chemical as well as isotopic anomalies may be used to identify presolar interstellar grains in primitive meteoritic materials.

  19. Extraterrestrial organic matter: a review

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1998-01-01

    We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an increasingly debated topic over the last several years. The principal source for such intact organics was probably accretion of interplanetary dust particles of cometary origin.

  20. Episodic Aging and End States of Comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    2008-01-01

    It is known that comets are aging very rapidly on cosmic scales, because they rapidly shed mass. The processes involved are (i) normal activity - sublimation of ices and expulsion of dust from discrete emission sources on and/or below the surface of a comet's nucleus, and (ii) nuclear fragmentation. Both modes are episodic in nature, the latter includes major steps in the comet's life cycle. The role and history of dynamical techniques used are described and results on mass losses due to sublimation and dust expulsion are reviewed. Studies of split comets, Holmes-like exploding comets, and cataclysmically fragmenting comets show that masses of 10 to 100 million tons are involved in the fragmentation process. This and other information is used to investigate the nature of comets' episodic aging. Based on recent advances in understanding the surface morphology of cometary nuclei by close-up imaging, a possible mechanism for large-scale fragmentation events is proposed and shown to be consistent with evidence available from observations. Strongly flattened pancake-like shapes appear to be required for comet fragments by conceptual constraints. Possible end states are briefly examined.

  1. Observations of faint comets with the IUE

    NASA Astrophysics Data System (ADS)

    Festou, M.

    1982-06-01

    Spectral observations of eight comets, including seven periodic comets, made in the range 1150-3400 A with the IUE satellite are presented. Comet Bradfield, the sole nonperiodic comet observed, is found to exhibit strong OH and atomic hydrogen emissions from the decomposition of water, along with oxygen, carbon, sulfur, carbon disulfide, C2 and CO2(plus) emissions and a faint continuum due to dust at longer wavelengths. Comets Encke, Tuttle and Stefan-Oterma appear to have identical spectra in the UV, showing evidence of much gas, little dust and few ions (only CO2(plus) detected), and differing from comet Bradfield only in the lack of C2 emission. All eight comets observed by IUE, including Seargent, Meier, Borrelly and Panther, had the same chemical composition, consisting mainly of water with a few per mil or per cent CN, C2, C3 and CS. The water production rates of the periodic comets range from levels 6 times less to 11 times more than that of Comet Bradfield, which may be related to nuclear size or cometary age.

  2. The role of phosphorus in chemical evolution.

    PubMed

    Maciá, Enrique

    2005-08-01

    In this tutorial review we consider the role of phosphorus and its compounds within the context of chemical evolution in galaxies. Following an interdisciplinary approach we first discuss the position of P among the main biogenic elements by considering its relevance in most essential biochemical functions as well as its peculiar chemistry under different physicochemical conditions. Then we review the phosphorus distribution in different cosmic sites, such as terrestrial planets, interplanetary dust particles, cometary dust, planetary atmospheres and the interstellar medium (ISM). In this way we realize that this element is both scarce and ubiquitous in the universe. These features can be related to the complex nucleosynthesis of P nuclide in the cores of massive stars under explosive conditions favouring a wide distribution of this element through the ISM, where it would be ready to react with other available atoms. A general tendency towards more oxidized phosphorus compounds is clearly appreciated as chemical evolution proceeds from circumstellar and ISM materials to protoplanetary and planetary condensed matter phases. To conclude we discuss some possible routes allowing for the incorporation of phosphorus compounds of prebiotic interest during the earlier stages of solar system formation.

  3. Analyses of Cometary Silicate Crystals: DDA Spectral Modeling of Forsterite

    NASA Technical Reports Server (NTRS)

    Wooden, Diane

    2012-01-01

    Comets are the Solar System's deep freezers of gases, ices, and particulates that were present in the outer protoplanetary disk. Where comet nuclei accreted was so cold that CO ice (approximately 50K) and other supervolatile ices like ethane (C2H2) were preserved. However, comets also accreted high temperature minerals: silicate crystals that either condensed (greater than or equal to 1400 K) or that were annealed from amorphous (glassy) silicates (greater than 850-1000 K). By their rarity in the interstellar medium, cometary crystalline silicates are thought to be grains that formed in the inner disk and were then radially transported out to the cold and ice-rich regimes near Neptune. The questions that comets can potentially address are: How fast, how far, and over what duration were crystals that formed in the inner disk transported out to the comet-forming region(s)? In comets, the mass fractions of silicates that are crystalline, f_cryst, translate to benchmarks for protoplanetary disk radial transport models. The infamous comet Hale-Bopp has crystalline fractions of over 55%. The values for cometary crystalline mass fractions, however, are derived assuming that the mineralogy assessed for the submicron to micron-sized portion of the size distribution represents the compositional makeup of all larger grains in the coma. Models for fitting cometary SEDs make this assumption because models can only fit the observed features with submicron to micron-sized discrete crystals. On the other hand, larger (0.1-100 micrometer radii) porous grains composed of amorphous silicates and amorphous carbon can be easily computed with mixed medium theory wherein vacuum mixed into a spherical particle mimics a porous aggregate. If crystalline silicates are mixed in, the models completely fail to match the observations. Moreover, models for a size distribution of discrete crystalline forsterite grains commonly employs the CDE computational method for ellipsoidal platelets (c:a:b=8.14x8.14xl in shape with geometrical factors of x:y:z=1:1:10, Fabian et al. 2001; Harker et al. 2007). Alternatively, models for forsterite employ statistical methods like the Distribution of Hollow Spheres (Min et al. 2008; Oliveira et al. 2011) or Gaussian Random Spheres (GRS) or RGF (Gielen et al. 200S). Pancakes, hollow spheres, or GRS shapes similar to wheat sheaf crystal habit (e.g., Volten et al. 2001; Veihelmann et al. 2006), however, do not have the sharp edges, flat faces, and vertices seen in images of cometary crystals in interplanetary dust particles (IDPs) or in Stardust samples. Cometary forsterite crystals often have equant or tabular crystal habit (J. Bradley). To simulate cometary crystals, we have computed absorption efficiencies of forsterite using the Discrete Dipole Approximation (DDA) DDSCAT code on NAS supercomputers. We compute thermal models that employ a size distribution of discrete irregularly shaped forsterite crystals (nonspherical shapes with faces and vertices) to explore how crystal shape affects the shape and wavelength positions of the forsterite spectral features and to explore whether cometary crystal shapes support either condensation or annealing scenarios (Lindsay et al. 2012a, b). We find forsterite crystal shapes that best-fit comet Hale-Bopp are tetrahedron, bricks or brick platelets, essentially equant or tabular (Lindsay et al. 2012a,b), commensurate with high temperature condensation experiments (Kobatake et al. 2008). We also have computed porous aggregates with crystal monomers and find that the crystal resonances are amplified. i.e., the crystalline fraction is lower in the aggregate than is derived by fitting a linear mix of spectral features from discrete subcomponents, and the crystal resonances 'appear' to be from larger crystals (Wooden et al. 2012). These results may indicate that the crystalline mass fraction in comets with comae dominated by aggregates may be lower than deduced by popular methods that only emoy ensembles of discrete crystals.

  4. Dust grains in the coma of 67P/Churyumov-Gerasimenko - link with surface properties and cometary activity

    NASA Astrophysics Data System (ADS)

    Capria, M. T.; Ivanovski, S.; Zakharov, W.; Capaccioni, F.; Filacchione, G.; De Sanctis, M. C.; Rotundi, A.; Della Corte, V.; Longobardo, A.; Palomba, E.; Colangeli, L.; Bockelee-Morvan, D.; Erard, S.; Leyrat, C.

    2016-11-01

    The imaging spectrometer VIRTIS and the dust analyzer GIADA, onboard Rosetta, made an extensive observation of the dust particles in the coma of the comet 67P/Churyumov-Gerasimenko. From the analysis of GIADA data, two different kind of particles have been revealed, compact and fluffy with different compositions and dynamical properties. Compact particles are characterized by densities of about 10E3 kg/m3, while fluffy particles have an almost fractal nature, with densities less than 1 kg/m3. In this work we present the initial results of a model linking the dust flux distribution, as obtained from a theoretical thermal nucleus model, with a model describing the dynamics of aspherical grains in the coma. The results are discussed in the context of the latest observations from VIRTIS and GIADA instruments. The 2D nucleus thermal model, when applied to the real shape of the comet, provides the size distribution and physical properties of the emitted grains at different times and location on the surface. The thermal model can simulate grains of various size distribution, composition and physical properties. This information is used as an input for the dust dynamical model that follows the emitted particles in the coma. The main source of heating is the solar illumination. In the dust dynamical model, the grain trajectory of emitted particles remains in a plane perpendicular to the rotational axis and the direction of illumination is taken to be in the same plane (i.e. does not cause transversal forces). The dust particles are assumed to be isothermal convex bodies and temperature changes only induce modest changes in the aerodynamic force (twice higher temperature changes aerodynamic force less than 30%). This study reviews the theoretical values at which temperature difference starts to play a role on the dynamics. We discuss to what extent the particle's temperature affects the terminal velocities of the dust grains in the 67P coma in dependence on their mass and temperature constrained by the observations.

  5. Dust grains in the coma of 67P/Churyumov-Gerasimenko - link with surface properties and cometary activity

    NASA Astrophysics Data System (ADS)

    Capria, Maria Teresa; Ivanovski, Stavro; Zakharov, Vladimir; Capaccioni, Fabrizio; Filacchione, Gianrico; De Sanctis, Maria Cristina; rotundi, alessandra; della corte, vincenzo; Longobardo, Andrea; Palomba, Ernesto; colangeli, luigi; Bockelee-Morvan, Dominique; Érard, Stéphane; Leyrat, Cedric; VIRTIS, GIADA

    2016-10-01

    The imaging spectrometer VIRTIS and the dust analyzer GIADA, onboard Rosetta, made an extensive observation of the dust particles in the coma of the comet 67P/Churyumov-Gerasimenko. From the analysis of GIADA data, two different kind of particles have been revealed, compact and fluffy with different compositions and dynamical properties. Compact particles are characterized by densities of about 103 kg/m3, while fluffy particles have an almost fractal nature, with densities less than 1 kg/m3.In this work we present the initial results of a model linking the dust flux distribution, as obtained from a theoretical thermal nucleus model, with a model describing the dynamics of aspherical grains in the coma. The results are discussed in the context of the latest observations from VIRTIS and GIADA instruments.The 2D nucleus thermal model, when applied to the real shape of the comet, provides the size distribution and physical properties of the emitted grains at different times and location on the surface. The thermal model can simulate grains of various size distribution, composition and physical properties. This information is used as an input for the dust dynamical model that follows the emitted particles in the coma. The main source of heating is the solar illumination. In the dust dynamical model, the grain trajectory of emitted particles remains in a plane perpendicular to the rotational axis and the direction of illumination is taken to be in the same plane (i.e. does not cause transversal forces). The dust particles are assumed to be isothermal convex bodies and temperature changes only induce modest changes in the aerodynamic force (twice higher temperature changes aerodynamic force less than ~30%). This study reviews the theoretical values at which temperature difference starts to play a role on the dynamics. We discuss to what extent the particle's temperature affects the terminal velocities of the dust grains in the 67P coma in dependence on their mass and temperature constrained by the observations.

  6. The contribution of cometary volatiles to the primitive Earth.

    PubMed

    Oro, J; Holzer, G; Lazcano-Araujo, A

    1980-01-01

    It has been estimated that during its early history the Earth captured a mass of cometary material of the order of 10(23) grams. Since carbon is supposed to be at least three times more abundant in comets than in carbonaceous chondrites (3.5% C in C 1 chondrites), it can be deduced that about 1 x 10(22) grams of carbon (as carbon compounds), was added by comets to the surface of the prebiotic Earth. This carbon value is of the same order of magnitude as the value of the organic carbon buried in the Earth's sedimentary shell, but approximately one order of magnitude lower than the Earth's surface total carbon (7 x 10(22) gm). The capture of comets by the Earth would also have contributed to generating the appropriate aqueous and reducing environmental conditions necessary for organic synthesis. Although it is possible that some of the cometary carbon compounds falling on the Earth survived, most of them were probably decomposed by the heat and shock waves of the cometary collision. Upon quenching to low temperatures, however, the reactive chemical species produced by the impact would have recombined, leading to the synthesis of a great variety of organic molecules. Laboratory experiments with radiation, heat and shock waves have demonstrated that some of the synthesized compounds are biochemical molecules: amino acids, sugars, purines, and pyrimidines. These are essential to all living systems.

  7. The cometary and asteroidal impactor flux at the earth

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    1988-01-01

    The cratering records on the Earth and the lunar maria provide upper limits on the total impactor flux at the Earth's orbit over the past 600 Myr and the past 3.3 Gyr, respectively. These limits can be compared with estimates of the expected cratering rate from observed comets and asteroids in Earth-crossing orbits, corrected for observational selection effects and incompleteness, and including expected temporal variations in the impactor flux. Both estimates can also be used to calculate the probability of large impacts which may result in biological extinction events on the Earth. The estimated cratering rate on the Earth for craters greater than 10 km-diameter, based on counted craters on dated surfaces is 2.2 + or - 1.1 x 10 to the minus 14th power km(-2) yr(-1) (Shoemaker et al., 1979). Using a revised mass distribution for cometary nuclei based on the results of the spacecraft flybys of Comet Halley in 1986, and other refinements in the estimate of the cometary flux in the terrestrial planets zone, it is now estimated that long-period comets account for 11 percent of the cratering on the Earth (scaled to the estimate above), and short-period comets account for 4 pct (Weissman, 1987). However, the greatest contribution is from large but infrequent, random cometary showers, accounting for 22 pct of the terrestrial cratering.

  8. Long-term Monitoring of Comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Lin, Z.-Y.; Lara, L. M.; Ip, W.-H.

    2013-07-01

    We report the spectrophotometric, photometric, and imaging monitoring results of comet 103P/Hartley 2 obtained at the Lulin (1 m), Calar Alto (2.2 m), and Beijing Astronomical (2.16 m) observatories from 2010 April to December. We found that a dust feature in the sunward direction was detected starting from the end of September until the beginning of December (our last observation from the Lulin and Calar Alto observatories). Two distinct sunward jet features in the processed images were observed on October 11 and after October 29 until November 2. In parallel, the CN images reveal two asymmetrical jet features which are nearly perpendicular to the Sun-nucleus direction, these asymmetrical features imply that the comet was in a nearly side-on view in late October and early November. In addition to the jet features, the average result of the C2-to-CN production rate ratio ranges from 0.7 to 1.5, consistent with 103P/Hartley 2 being of typical cometary chemistry. We found that the rh dependence for the dust production rate, Afρ (5000 km), is -3.75 ± 0.45 before perihelion and -3.44 ± 1.20 during the post-perihelion period. We detected higher dust reddening around the optocenter and decreased reddening along the sunward jet feature. We concluded that higher dust reddening could be associated with strong jet activity while lower dust reddening could be associated with the outburst or might imply changes in the optical properties. The average dust color did not appear to vary significantly as the comet passed through perihelion. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), at Lulin Observatory operated by the Institute of Astronomy, National Central University in Taiwan, and at Xinglong Station inaugurated by the National Astronomical Observatory (BAO), Beijing.

  9. Fast Variations In Spectrum of Comet Halley

    NASA Astrophysics Data System (ADS)

    Borysenko, S. A.

    The goal of this work is to research fast variations of spectral lines intensities in spectra of comet Halley. The present research was made on the basis of more then 500 high- resolution spectrogram obtained by L.M. Shulman and H.K. Nazarchuk in November- December, 1985 at the 6-m telescope (SAO, Russia). Some fast variations with different quasiperiods were detected in all the spectrograms. Quasiperiods of these variations were from 15 - 40 min to 1.5 - 2 hours. As data from spacecraft "Vega-2" show, more fast variations with quasiperiods 5 - 10 min are obviously present in cometary time variations. Only the most important lines so as C2, C3, CN, CH and NH2 were analyzed. False periods were checked by comparison of the power spectra of the variations with the computed spectral window of the data. Only false periods about 400 sec (the avarage period of exposition) were detected. An algorithm for analysis of locally Poisson's time series was proposed. Two types of fast variations are detected: 1)high amplitude variations with more long quasiperiods (1.5 - 2 hours) and the coefficient of crosscorrelations between line intensities about 0.9 - 0.95; 2)low amplitude variations with short periods (15 - 40 min), which look like white noise and have the coefficient of crosscorrelations about 0.1 - 0.3. This difference may be caused by nature of variations. The first type variations may be an effect of both active processes in cometary nucleus and streams of solar protons. Analysis of solar proton flux variation with energies >1 MeV in November - Decem- ber 1985 confirms the above-mentioned version. In the second case it may by only inner processes in the nucleus that generate the observed variations. For determination of general parameters of cometary atmosphere, such as the produc- tion rates of radicals C2, C3, CN, CH, and NH2 it was necessary to estimate the contri- bution of dust grains luminiscence into the continuum of the comet. Space and wave- length distribution of the lumminescent continuum was calculated. A simple model of a comet atmosphere (the Haser's model) was taken to make synthetic photomet- rical data and to calibrate the spectra by comparison the synthetic photometry with the data of the absolute photometry from the IHW archive. This way the gas obtained production rates and numbers of basic molecules in the cometary atmosphere.

  10. Vectorial Modeling Of NH In Comet 2P/Encke

    NASA Astrophysics Data System (ADS)

    Dorman, Garrett; Pierce, D.; Cochran, A.

    2010-10-01

    Encke is an ideal comet for studying the relationship of radicals to their photodissociative parent molecules due to its low dust content. On 2003 October 22 - 24, we used the the 2.7 m telescope at the McDonald Observatory of the University of Texas to obtain spectra of several cometary radical species. Using a version of the Vectorial Model that has been modified to simulate Encke's prominent sunward-facing fan, we examined the spacial distribution of NH in the coma. Potential photochemical parents of NH were studied in order to understand its production and spacial distribution in the coma. Derived production rates are compared to values in other comets to constrain the primary parent of NH in Encke.

  11. Modelling the neutral gas environment of comets with special application to P/Halley

    NASA Technical Reports Server (NTRS)

    Newburn, R. L., Jr.

    1982-01-01

    A technique has been developed which allows relatively accurate modelling of cometary gas production from nothing more than a visible light curve. Application to P/Halley suggests that the production rate of parent molecules will be about 2.6 x 10 to the 29th/second on March 10, 1986, for example. The uncertainties and intrinsic limitations in this approach are outlined. The theory is then extended to predictions of abundance of other gaseous species, and a photometric model of these gases is provided.Combined with the dust model of Divine (1981), preliminary predictions of the luminance of P/Halley, as seen in any direction from inside the coma or outside, can be provided for in the 3000-7000 A wavelength range.

  12. The major-element composition of Mercury's surface from MESSENGER X-ray spectrometry.

    PubMed

    Nittler, Larry R; Starr, Richard D; Weider, Shoshana Z; McCoy, Timothy J; Boynton, William V; Ebel, Denton S; Ernst, Carolyn M; Evans, Larry G; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Schlemm, Charles E; Solomon, Sean C; Sprague, Ann L

    2011-09-30

    X-ray fluorescence spectra obtained by the MESSENGER spacecraft orbiting Mercury indicate that the planet's surface differs in composition from those of other terrestrial planets. Relatively high Mg/Si and low Al/Si and Ca/Si ratios rule out a lunarlike feldspar-rich crust. The sulfur abundance is at least 10 times higher than that of the silicate portion of Earth or the Moon, and this observation, together with a low surface Fe abundance, supports the view that Mercury formed from highly reduced precursor materials, perhaps akin to enstatite chondrite meteorites or anhydrous cometary dust particles. Low Fe and Ti abundances do not support the proposal that opaque oxides of these elements contribute substantially to Mercury's low and variable surface reflectance.

  13. Building and testing of MIDAS instrument sub-assemblies

    NASA Astrophysics Data System (ADS)

    Lewis, S. D.

    2001-09-01

    The MIDAS instrument is an atomic force microscope developed by ESTEC to fly on Rosetta. The purpose of the instrument is to sample and characterise cometary dust, which impinges upon a facetted wheel contained within the instrument enclosure. Due to its relative complexity, the long cruise phase of the Rosetta mission and the relatively novel use of piezomotors for all drive requirements the instrument has a number of interesting mechanisms engineering challenges. This paper describes the lubricant selection, EM and FM subassembly build and test campaigns carried out by AEA Technology Space in close support of the instrumentlevel activities which ran in parallel at ESTEC. The paper also identifies some lessons learned, which can be generally applied in other mechanism programmes.

  14. Irradiation Effects in Fosterrite and the Nature of Interstellar Grains: A Coordinated Spectroscopy and Electron Microscopy Study

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Christoffersen, R.

    2007-01-01

    Crystalline and amorphous silicates condense in the outflows of low mass evolved stars and massive red supergiant stars and are injected into the interstellar medium (ISM) where they are rendered almost completely amorphous by a multitude of destructive processes (e.g. shock, grain-grain collisions, and irradiation). Irradiation effects in particular may have played an important role in the genesis and modification of primitive grains in cometary dust, but unraveling those effects requires controlled experiments under appropriate conditions and with an emphasis on materials relevant to the ISM. Here we report our infrared (IR) microspectroscopy and trans-mission electron microscope (TEM) measurements on forsterite that was amorphized through irradiation by high energy heavy ions.

  15. Exocometary gas in the HD 181327 debris ring

    NASA Astrophysics Data System (ADS)

    Marino, S.; Matrà, L.; Stark, C.; Wyatt, M. C.; Casassus, S.; Kennedy, G.; Rodriguez, D.; Zuckerman, B.; Perez, S.; Dent, W. R. F.; Kuchner, M.; Hughes, A. M.; Schneider, G.; Steele, A.; Roberge, A.; Donaldson, J.; Nesvold, E.

    2016-08-01

    An increasing number of observations have shown that gaseous debris discs are not an exception. However, until now, we only knew of cases around A stars. Here we present the first detection of 12CO (2-1) disc emission around an F star, HD 181327, obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) observations at 1.3 mm. The continuum and CO emission are resolved into an axisymmetric disc with ring-like morphology. Using a Markov chain Monte Carlo method coupled with radiative transfer calculations, we study the dust and CO mass distribution. We find the dust is distributed in a ring with a radius of 86.0 ± 0.4 au and a radial width of 23.2 ± 1.0 au. At this frequency, the ring radius is smaller than in the optical, revealing grain size segregation expected due to radiation pressure. We also report on the detection of low-level continuum emission beyond the main ring out to ˜200 au. We model the CO emission in the non-local thermodynamic equilibrium regime and we find that the CO is co-located with the dust, with a total CO gas mass ranging between 1.2 × 10-6 M⊕ and 2.9 × 10-6 M⊕, depending on the gas kinetic temperature and collisional partners densities. The CO densities and location suggest a secondary origin, I.e. released from icy planetesimals in the ring. We derive a CO+CO2 cometary composition that is consistent with Solar system comets. Due to the low gas densities, it is unlikely that the gas is shaping the dust distribution.

  16. Comet C/2013 US10 (CATALINA) - Dust in the Infrared with SOFIA

    NASA Astrophysics Data System (ADS)

    Woodward, Charles E.; Kelley, Michael S. P.; Harker, David E.; Russell, Ray W.; Kim, Daryl L.; Sitko, Michael L.; Wooden, Diane H.

    2018-01-01

    One of the major goals of modern astronomy is the "search for origins'' from the big bang to the development of intelligence. A key process in developing our understanding of these origins is how planetary systems are created from dusty disks around stars and evolve into planets with water and other molecules. Traces of primordial materials, and their least-processed products, are found in the outermost regions of the solar system -- the realm of comets -- in the form of ices of volatile materials (H2O, NH3, CO, CH4, and other more rare species), and more refractory dust grains. There is considerable evidence that in the cold regions where cometary material formed, existing comet bodies were mixed with refractory material processed at much higher temperatures. Remote sensing observation of comets provides a means to study the properties of this dust material to characterize the nature of refactory comet grains. These include observations of both the re-radiated thermal (spectrophotometric) and scattered light (spectrophotometric and polarimetric). The former technique provides our most direct link to the composition (mineral content) of the grains.Here we report our post-perihelion (TP = 2015 Nov 15.721 UT) infrared 2 to 31 micron spectrophotometric observations and dust thermal model analyses of comet C/2013 US10 (Catalina), a dynamically new Oort Cloud comet -- 1/aorg [reciprocal original semimajor axis ] = 0.00005339 -- conducted at two contemporaneous observational epochs near close Earth approach (Δ ≈ 0.93 AU) with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) complemented by observations from the NASA Infrared Telescope Facility (IRTF).

  17. DNA sequencing and predictions of the cosmic theory of life

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. Chandra

    2013-01-01

    The theory of cometary panspermia, developed by the late Sir Fred Hoyle and the present author argues that life originated cosmically as a unique event in one of a great multitude of comets or planetary bodies in the Universe. Life on Earth did not originate here but was introduced by impacting comets, and its further evolution was driven by the subsequent acquisition of cosmically derived genes. Explicit predictions of this theory published in 1979-1981, stating how the acquisition of new genes drives evolution, are compared with recent developments in relation to horizontal gene transfer, and the role of retroviruses in evolution. Precisely-stated predictions of the theory of cometary panspermia are shown to have been verified.

  18. DNA Sequencing and Predictions of the Cosmic Theory of Life

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. Chandra

    The theory of cometary panspermia, developed by the late Sir Fred Hoyle and the present author argues that life originated cosmically as a unique event in one of a great multitude of comets or planetary bodies in the Universe. Life on Earth did not originate here but was introduced by impacting comets, and its further evolution was driven by the subsequent acquisition of cosmically derived genes. Explicit predictions of this theory published in 1979-1981, stating how the acquisition of new genes drives evolution, are compared with recent developments in relation to horizontal gene transfer, and the role of retroviruses in evolution. Precisely-stated predictions of the theory of cometary panspermia are shown to have been verified.

  19. Lunar Ion Transport Near Magnetic Anomalies: Possible Implications for Swirl Formation

    NASA Technical Reports Server (NTRS)

    Keller, J. W.; Killen, R. M.; Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.

    2011-01-01

    The bright swirling features on the lunar surface in areas around the Moon but most prominently at Reiner Gamma, have intrigued scientists for many years. After Apollo and later Lunar Prospector (LP} mapped the Lunar magnetic fields from orbit, it was observed that these features are generally associated with crustal magnetic anomalies. This led researchers to propose a number of explanations for the swirls that invoke these fields. Prominent among these include magnetic shielding in the form of a mini-magnetosphere which impedes space weathering by the solar wind, magnetically controlled dust transport, and cometary or asteroidal impacts that would result in shock magnetization with concomitant formation ofthe swirls. In this presentation, we will consider another possibility, that the ambient magnetic and electric fields can transport and channel secondary ions produced by micrometeorite or solar wind ion impacts. In this scenario, ions that are created in these impacts are under the influence of these fields and can drift for significant distances before encountering the magnetic anomalies when their trajectories are disrupted and concentrated onto nearby areas. These ions may then be responsible for chemical alteration of the surface leading either to a brightening effect or a disruption of space weathering processes. To test this hypothesis we have run ion trajectory simulations that show ions from regions about the magnetic anomalies can be channeled into very small areas near the anomalies and although questions remain as to nature of the mechanisms that could lead to brightening of the surface it appears that the channeling effect is consistent with the existence of the swirls.

  20. Simulation of Comet Impact and Survivability of Organic Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, B T; Lomov, I N; Blank, J G

    Comets have long been proposed as a potential means for the transport of complex organic compounds to early Earth. For this to be a viable mechanism, a significant fraction of organic compounds must survive the high temperatures due to impact. We have undertaken three-dimensional numerical simulations to track the thermodynamic state of a comet during oblique impacts. The comet was modeled as a 1-km water-ice sphere impacting a basalt plane at 11.2 km/s; impact angles of 15{sup o} (from horizontal), 30{sup o}, 45{sup o}, 65{sup o}, and 90{sup o} (normal impact) were examined. The survival of organic cometary material, modeledmore » as water ice for simplicity, was calculated using three criteria: (1) peak temperatures, (2) the thermodynamic phase of H{sub 2}O, and (3) final temperature upon isentropic unloading. For impact angles greater than or equal to 30{sup o}, no organic material is expected to survive the impact. For the 15{sup o} impact, most of the material survives the initial impact and significant fractions (55%, 25%, and 44%, respectively) satisfy each survival criterion at 1 second. Heating due to deceleration, in addition to shock heating, plays a role in the heating of the cometary material for nonnormal impacts. This effect is more noticeable for more oblique impacts, resulting in significant deviations from estimates using scaling of normal impacts. The deceleration heating of the material at late times requires further modeling of breakup and mixing.« less

  1. Properties of dust particles near Saturn inferred from voltage pulses induced by dust impacts on Cassini spacecraft

    NASA Astrophysics Data System (ADS)

    Ye, S.-Y.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, H.-W.; Srama, R.; Grün, E.

    2014-08-01

    The Cassini Radio and Plasma Wave Science (RPWS) instrument can detect dust particles when voltage pulses induced by the dust impacts are observed in the wideband receiver. The size of the voltage pulse is proportional to the mass of the impacting dust particle. For the first time, the dust impacts signals measured by dipole and monopole electric antennas are compared, from which the effective impact area of the spacecraft is estimated to be 4 m2. In the monopole mode, the polarity of the dust impact signal is determined by the spacecraft potential and the location of the impact (on the spacecraft body or the antenna), which can be used to statistically infer the charge state of the spacecraft. It is shown that the differential number density of the dust particles near Saturn can be characterized as a power law dn/dr ∝ rμ, where μ ~ - 4 and r is the particle size. No peak is observed in the size distribution, contrary to the narrow size distribution found by previous studies. The RPWS cumulative dust density is compared with the Cosmic Dust Analyzer High Rate Detector measurement. The differences between the two instruments are within the range of uncertainty estimated for RPWS measurement. The RPWS onboard dust recorder and counter data are used to map the dust density and spacecraft charging state within Saturn's magnetosphere.

  2. The Nucleus of Comet 67P/Churyumov-Gerasimenko: Lots of Surprises

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Rosetta Science Working Team

    2016-10-01

    ESA's Rosetta mission has made many new and unexpected discoveries since its arrival at comet 67P/Churyumov-Gerasimenko in August 2014. The first of these was the unusual shape of the cometary nucleus. Although bilobate nuclei had been seen before, the extreme concavities on 67P were unexpected. Evidence gathered during the mission suggests that two independent bodies came together to form 67P, rather than the nucleus being a single body that was sculpted by sublimation and/or other processes. Although not a surprise, early observations showed that the nucleus rotation period had decreased by ~22 minutes since the previous aphelion passage. A similar rotation period decrease was seen post-perihelion during the encounter. These changes likely arise from asymmetric jetting forces from the irregular nucleus. Initially, Rosetta's instruments found little evidence for water ice on the surface; the presence of surface water ice increased substantially as the nucleus approached perihelion. The nucleus bulk density, 533 ± 6 kg/m3, was measured with Radio Science and OSIRIS imaging of the nucleus volume. This confirmed previous estimates based on indirect methods that the bulk density of cometary nuclei was on the order of 500-600 kg/m3 and on measurement of the density of 9P/Tempel 1's nucleus by Deep Impact. Nucleus topography proved to be highly varied, from smooth dust-covered plains to shallow circular basins, to the very rough terrain where the Philae lander came to rest. Evidence of thermal cracking is everywhere. The discovery of cylindrical pits on the surface, typically 100-200m in diameter with similar depths was a major surprise and has been interpreted as sinkholes. "Goose-bump" terrain consisting of apparently random piles of boulders 2-3 m in diameter was another unexpected discovery. Apparent layering with scales of meters to many tens of meters was seen but there was little or no evidence for impact features. Radar tomography of the interior of the "head" of the nucleus showed no evidence of large voids, > 100's of meters, in the interior and the RSI experiment also ruled out large voids > 600m in size. This work was supported by the U.S. Rosetta Project, funded by NASA.

  3. DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean S.; Harker, David; Woodward, Charles; Kelley, Michael S.; Kolokolova, Ludmilla

    2015-01-01

    Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 < or = fcrystal < or = 0.74. Radial transport models that predict the enrichment of the outer disk (>25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 microns, 16, 19, 23.5, 27, and 33 microns), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 micron-radii porous aggregates with 0.13 < or = fcrystal < or = 0.35 and with polyhedral-shaped Forsterite crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale- Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11micron and 23 micron crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial transport models of our protoplanetary disk.

  4. Modeling Subsidence-Like Events on Cometary Nuclei

    NASA Astrophysics Data System (ADS)

    Rosenberg, Eric; Prialnik, Dina

    2017-10-01

    There is ample evidence, particularly from the Rosetta mission, that cometary nuclei have very low tensile strength. Consequently, morphological changes are expected to occur, caused by buildup of pressure due to gas release in the interior of the nucleus. Such changes have been observed on the surface of comet 67P/Churyumov-Gerasimenko, as reported for example by Groussin et al.(2015). A mechanism for explaining comet surface depressions has been recently proposed by Prialnik & Sierks (2017). Here we report on a numerical study, elaborating on this mechanism. Essentially, the model considers a cometary nucleus composed of a low-density mixture of ice and dust, assuming that the ice is amorphous and traps volatile gasses, such as CO and CO2. The model assumes that the tensile strength of the subsurface material is low and that the surface is covered by a thin crust of low permeability. As the comet evolves, the amorphous ice crystallizes, and the crystallization front recedes from the surface, releasing the trapped gasses, which accumulate beneath the surface, building up pressure. The gas pressure weakens the material strength, but sustains the gas-filled layer against hydrostatic pressure. Eventually, the gas will break its way through the outer crust in an outburst. The rapid pressure drop may cause the collapse of the gas depleted layer, as seen on the nucleus of 67P/Churyumov-Gerasimenko. This mechanism is similar to subsidence events in gas fields on earth.We have performed quasi-3D numerical simulations in an attempt to determine the extent of the area that would be affected by such a mechanism. The frequency of such subsidence events and the depth of the collapse are investigated as functions of solar angle and spin axis inclination. The necessary conditions for outburst-induced collapse are determined and confronted with observations.References:Groussin, O., Sierks, H., et al. 2015, A&A, 583, A35Prialnik, D. & Sierks, H., 2017, MNRAS, in press

  5. The Amazing Apparition of 73P/Schwassmann-Wachmann 3 in 2006

    NASA Astrophysics Data System (ADS)

    Weaver, Harold A.

    2006-09-01

    Most comets may meet their ultimate demise as a result of catastrophic fragmentation events, and that process was prominently displayed during the 2006 apparition of comet 73P/Schwassmann-Wachmann 3 (73P/SW3). This Jupiter-family comet with an orbital period of 5.4 yr was discovered when it passed within 0.06 AU of the Earth during the spring of 1930. However, it was subsequently lost until 1979 when it arrived at perihelion about 5 weeks later than predicted, probably owing to a close approach to Jupiter in 1965. Several remarkable outbursts in dust and gas activity were observed during the 1995 apparition, and four separate fragments were clearly detected and followed for several months. The solar elongation angle was unfavorably small, and the geocentric distance rather large, throughout the 2000-2001 apparition, and only two fragments were definitely detected then. Thus, it was with considerable uncertainty that cometary researchers approached the 2006 apparition, when the geometry would be nearly as favorable as for the discovery apparition with the comet passing within 0.08 AU during May 2006. Owing to the extremely fragile nature of cometary nuclei in general, and the previously recorded breakup of 73P/SW3, there was no guarantee that any fragment would return this year. To the delight of professional and amateur astronomers alike, the 2006 apparition of 73P/SW3 was nothing short of spectacular, as over 60 new fragments were detected and monitored during the late-winter and spring. Ground-based and space-based observatories, large and small, intensively monitored 73P/SW3 to document the disintegration of its nuclei and to measure the composition of its larger fragments. This paper will review the scientific results obtained during the 2006 apparition of 73P/SW3 and reflect on what the disintegration of this comet reveals about the nature of cometary nuclei.

  6. Mission strategy for cometary exploration in the 1980's

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.

    1976-01-01

    A specific plan for a sequence of cometary intercept missions in the 1980's is reported. Each mission is described in detail and the supporting role of ground based cometary observations is included. Only three launches are required in the proposed mission sequence for six cometary encounters with comets Encke, Giacobini-Zinner, Borrelly and Halley. Cometary ephemerics errors are reduced to very small values because of a favorable earth-comet orbital geometry for Encke 1980, and excellent earth based sighting conditions exist for the entire 1985 mission set.

  7. Retrieval of microphysical characteristics of particles in atmospheres of distant comets from ground-based polarimetry

    NASA Astrophysics Data System (ADS)

    Dlugach, Janna M.; Ivanova, Oleksandra V.; Mishchenko, Michael I.; Afanasiev, Viktor L.

    2018-01-01

    We summarize unique aperture data on the degree of linear polarization observed for distant comets C/2010 S1, C/2010 R1, C/2011 KP36, C/2012 J1, C/2013 V4, and C/2014 A4 with heliocentric distances exceeding 3 AU. Observations have been carried out at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (Nizhnij Arkhyz, Russia) during the period from 2011 to 2016. The measured negative polarization proves to be significantly larger in absolute value than what is typically observed for comets close to the Sun. We compare the new observational data with the results of numerical modeling performed with the T-matrix and superposition T-matrix methods. In our computer simulations, we assume the cometary coma to be an optically thin cloud containing particles in the form of spheroids, fractal aggregates composed of spherical monomers, and mixtures of spheroids and aggregate particles. We obtain a good semi-quantitative agreement between all polarimetric data for the observed distant comets and the results of numerical modeling for the following models of the cometary dust: (i) a mixture of submicrometer water-ice oblate spheroids with aggregates composed of submicrometer silicate monomers; and (ii) a mixture of submicrometer water-ice oblate spheroids and aggregates consisting of both silicate and organic monomers. The microphysical parameters of these models are presented and discussed.

  8. Comet C/2011 W3 (Lovejoy) between 2 and 10 Solar Radii: Physical Parameters of the Comet and the Corona

    NASA Astrophysics Data System (ADS)

    Raymond, J. C.; Downs, Cooper; Knight, Matthew M.; Battams, Karl; Giordano, Silvio; Rosati, Richard

    2018-05-01

    Comet C/2011 W3 (Lovejoy) is the first sungrazing comet in many years to survive perihelion passage. We report ultraviolet observations with the Ultraviolet Coronagraph Spectrometer (UVCS) spectrometer aboard the Solar and Heliospheric Observatory satellite at five heights as the comet approached the Sun. The brightest line, Lyα, shows dramatic variations in intensity, velocity centroid, and width during the observation at each height. We derive the outgassing rates and the abundances of N, O, and Si relative to H, and we estimate the effective diameter of the nucleus to be several hundred meters. We consider the effects of the large outgassing rate on the interaction between the cometary gas and the solar corona and find good qualitative agreement with the picture of a bow shock resulting from mass loading by cometary neutrals. We obtain estimates of the solar wind density, temperature, and speed, and compare them with predictions of a global magnetohydrodynamic simulation, finding qualitative agreement within our uncertainties. We also determine the sublimation rate of silicate dust in the comet’s tail by comparing the visible brightness from the Large Angle Spectroscopic Coronagraphs with the Si III intensity from UVCS. The sublimation rates lie between the predicted rates for olivines and pyroxenes, suggesting that the grains are composed of a mixture of those minerals.

  9. Could life have evolved in cometary nuclei

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Lazcano-Araujo, A.; Oro, J.

    1981-01-01

    The suggestion by Hoyle and Wickramasinghe (1978) that life might have originated in cometary nuclei rather than directly on the earth is discussed. Factors in the cometary environment including the conditions at perihelion passage leading to the ablation of cometary ices, ice temperatures, the absence of an atmosphere and discrete liquid and solid surfaces, weak cometary structure incapable of supporting a liquid core, and radiation are presented as arguments against biopoesis in comets. It is concluded that although the contribution of cometary and meteoritic matter was significant in shaping the earth environment, the view that life on earth originally arose in comets is untenable, and the proposition that the process of interplanetary infection still occurs is unlikely in view of the high specificity of host-parasite relationships.

  10. Volatiles Delivery to the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Marov, M. Ya.; Ipatov, S. I.

    2006-08-01

    Migration of small bodies and dust particles from the outer regions of the solar system is an important mechanism of the formation and evolution of atmospheres and hydrospheres of the terrestrial planets [1]. It is assumed that these bodies and particles could be responsible for the delivery of the original matter (mainly volatiles) and thus could give rise to the life origin. A fraction of dust particles migrated inward solar system is believed to be of interstellar origin embedded in presolar nebula and preserved for a long time at the fringe of the solar system. Our studies of volatiles delivery were based on results of numerical integration of the migration of small bodies and dust particles in the Solar System [2]. It was shown that the exogenous mechanism of heterogeneous accretion and the endogenous mechanism of the interior degassing may contribute to the formation of planetary atmospheres and hydrospheres at least comparably. If the total mass of planetesimals beyond Jupiter's orbit exceeded a hundred of Earth masses, then of the total mass of volatiles delivered to the Earth exceeded the amount of water in the Earth's oceans. The results of our studies of the migration of dust particles of various genesis lead to the conclusion that a portion of cometary and trans-Neptunian dust particles highly enriched by volatiles can be considerable among particles of other origin. Although it is difficult to obtain exact estimates of the dust influx to the Earth and neighboring planets, it was shown that, in comparison with small bodies, the dust contribution is 3-4 orders of magnitude smaller. However, dust particles could have been most efficient in the delivery of organic prebiogenic and, most likely, biogenic matter, because they are subjected to substantially weaker heating at the altitudes at which they enter the atmosphere and decelerate in it. This conclusion is confirmed by laboratory investigations into the probability of survival of bacteria and phages heated up to 200^o C and allows one to consider dust as a potential carrier of biogenic material from outer space. [1] Marov M. Ya. and Ipatov S.I., Solar System Research, 2005, 39, 374-380. [2] Ipatov S.I. and Mather J.C., Advances in Space Research, 2006, 37, 126-137.

  11. Lunar and Planetary Science XXXV: Astrobiology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Astrobiology" included the following reports:The Role of Cometary and Meteoritic Delivery in the Origin and Evolution of Life: Biogeological Evidences Revisited; Hopane Biomarkers Traced from Bedrock to Recent Sediments and Ice at the Haughton Impact Structure, Devon Island: Implications for the Search for Biomarkers on Mars; and Survival of Organic Matter After High Temperature Events (Meteorite Impacts, Igneous Intrusions).

  12. Interstellar and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Mathis, John S.

    1997-01-01

    'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral/carbonaceous matrix, without organic refractory mantles, in between the ices. Unfortunately, they may be significantly processed by chemical processes accompanying the warming (over the 10 K of the dark cloud cores) which occurs in the outer solar system. Evidence of this processing is the chemical anomalies present in interplanetary dust particles collected in the stratosphere, which may be the most primitive materials we have obtained to date. The comet return mission would greatly clarify the situation, and probably provide samples of genuine interstellar grains.

  13. Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument

    NASA Technical Reports Server (NTRS)

    Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.

    2014-01-01

    Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.

  14. Thermal Ion Transport on the Moon and the Formation of the Lunar Swirls

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Killen, R. M.; Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.

    2011-01-01

    The bright "swirl" features observed on the lunar surface are generally associated with crustal magnetic anomalies. Prominent explanations that invoke these fields include: magnetic shielding in the form of a mini-magnetosphere, which impedes space weathering by the solar wind; magnetically controlled dust transport; and cometary or asteroidal impacts, that could result in shock magnetization with concomitant formation of the swirls. Here we consider another possibility in which the ambient magnetic and electric fields can transport and channel secondary ions produced by micrometeorite or solar wind ion impacts. We use a simplified model of the fields, which incorporates a two-dipole magnetic field model for Reiner Gamma, and typical solar wind conditions. We will present preliminarily results suggesting that ions created over significant regions of the lunar surface can be transported under the influence of local and interplanetary electromagnetic fields to narrow areas ncar arcas of high crustal magnetic field strength. The flux of these focused ions may be of sufficient intensity to chemically process (or otherwise bleach) the surface leading to the formation of the high albedo component of the lunar swirls. The theory is appealing since through a lensing effect, it is possible that this flux is sufficient to overcome other space weathering processes which would otherwise tend to erase the features. Also, with relatively low energy ions, and consistent with the observed focusing, the ion gyro radii in the local magnetic fields is small enough to resolve the swirls.

  15. Are cometary nuclei primordial rubble piles?

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.

    1986-01-01

    Whipple's icy conglomerate model for the cometary nucleus has had considerable sucess in explaining a variety of cometary phenomena such as gas production rates and nongravitational forces. However, as discussed here, both observational evidence and theoretical considerations suggest that the cometary nucleus may not be a well-consolidated single body, but may instead be a loosely bound agglomeration of smaller fragments, weakly bonded and subject to occasional or even frequent disruptive events. The proposed model is analogous to the 'rubble pile' model suggested for the larger main-belt asteroids, although the larger cometary fragments are expected to be primordial condensations rather than collisionally derived debris as in the asteroid case. The concept of cometary nuclei as primordial rubble piles is proposed as a modification of the basic Whipple model, not as a replacement for it.

  16. Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment

    NASA Astrophysics Data System (ADS)

    Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.

    2015-12-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.

  17. Cassini RPWS Measurement of Dust Particles in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Ye, S.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, S.; Sakai, S.; Morooka, M.; Wahlund, J.

    2013-12-01

    The Cassini Radio and Plasma Wave Science (RPWS) instrument can detect dust impacts when voltage pulses induced by the impact charges are observed in the wideband receiver. The size of the voltage pulse is proportional to the mass of the impacting dust particle. Based on the data collected during the E-ring crossings and Enceladus flybys, we show that the size distribution of the dust particles can be characterized as dn/dr ∝ rμ, where μ~-4. We compare the density of dust particles above a certain size threshold calculated from the impact rate with the Cosmic Dust Analyzer (CDA) High Rate Detector (HRD) data. When the monopole antenna is connected to the wideband receiver, the polarity of the dust impact signal is determined by the spacecraft potential and the location of the impact (on the spacecraft body or the antenna). Because the effective area of the antenna is relatively easy to estimate, we use the polarity ratio of the dust impacts to infer the effective area of the spacecraft body. RPWS onboard dust detection data is analyzed, from which we infer the sign of the spacecraft potential and the dust density within Saturn's magnetosphere. A new phenomenon called dust ringing has been found to reveal the electron density inside the Enceladus plume. The ringing frequencies, interpreted as the local plasma frequencies, are consistent with the values measured by other methods, i.e., Langmuir probe and upper hybrid resonance.

  18. Laboratory investigation of dust impacts on antennas in space

    NASA Astrophysics Data System (ADS)

    Drake, K.; Gruen, E.; Malaspina, D.; Sternovsky, Z.

    2013-12-01

    We are performing calibration measurements in our laboratory using a dust accelerator to understand the mechanisms how dust impact generated plasma clouds couple into electric field antennas on spacecraft. The S/WAVES electric field instruments on board the twin STEREO spacecraft observed short duration (milliseconds), large amplitude (> 15 mV) voltage spikes associated with the impact of high velocity dust particles on the spacecraft [St. Cyr et al., 2009, MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. These sharp spikes have been attributed to plasma clouds generated by the impact ionization of high velocity dust particles. The high count rate has lead to the interpretation that S/WAVES is detecting nanometer sized dust particles (nano-dust) generated in the inner solar system and accelerated to close to solar wind velocities before impacting the spacecraft at 1 AU. The S/WAVES nano-dust interpretation is currently based on an incomplete understanding of the charge generated from relevant materials and the coupling mechanism between the plasma cloud and the electric field instrument. Calibration measurements are performed at the dust accelerator facility at the University of Colorado to investigate the effect of various impact parameters on the signals measured by the electric field instrument. The dust accelerator facility allows experimental control over target materials, size (micron to sub-micron), and velocity (1-60 km/s) of impacting dust particles, geometry of the impact, the ';spacecraft' potential, and the presence or absence of photoelectrons, allowing each coupling factor to be isolated and quantified. As the first step in this effort, we measure the impact charge generation for materials relevant for the STEREO spacecraft.

  19. Elastic-plastic adhesive impacts of tungsten dust with metal surfaces in plasma environments

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Tolias, P.; Shalpegin, A.; Vignitchouk, L.; De Angeli, M.; Bykov, I.; Bystrov, K.; Bardin, S.; Brochard, F.; Ripamonti, D.; den Harder, N.; De Temmerman, G.

    2015-08-01

    Dust-surface collisions impose size selectivity on the ability of dust grains to migrate in scrape-off layer and divertor plasmas and to adhere to plasma-facing components. Here, we report first experimental evidence of dust impact phenomena in plasma environments concerning low-speed collisions of tungsten dust with tungsten surfaces: re-bouncing, adhesion, sliding and rolling. The results comply with the predictions of the model of elastic-perfectly plastic adhesive spheres employed in the dust dynamics code MIGRAINe for sub- to several meters per second impacts of micrometer-range metal dust.

  20. The pristine nature of comets. [primeval composition of solar bodies

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1977-01-01

    Abundance considerations suggest that comets are likely to be the most pristine minor bodies in the solar system. In proportion to solar abundances, the present scanty data suggest that cometary oxygen is not depleted, whereas carbon is by a factor of 4 and hydrogen, by a factor of 2000. This implies that comets are less depleted in H, C, N, O than CI chondrites, namely 10:1 in hydrogen, 4:1 in carbon and 3:1 in oxygen. These results have been obtained by using dust-to-gas ratios in comets to measure the relative abundance of silicon and metals to volatile material, and the spectra of atomic lines, mainly from the vacuum ultraviolet, to determine the H/O and C/O ratios of the mixture of volatile molecules.

Top