Interferometric observations of large biologically interesting interstellar and cometary molecules
Snyder, Lewis E.
2006-01-01
Interferometric observations of high-mass regions in interstellar molecular clouds have revealed hot molecular cores that have substantial column densities of large, partly hydrogen-saturated molecules. Many of these molecules are of interest to biology and thus are labeled “biomolecules.” Because the clouds containing these molecules provide the material for star formation, they may provide insight into presolar nebular chemistry, and the biomolecules may provide information about the potential of the associated interstellar chemistry for seeding newly formed planets with prebiotic organic chemistry. In this overview, events are outlined that led to the current interferometric array observations. Clues that connect this interstellar hot core chemistry to the solar system can be found in the cometary detection of methyl formate and the interferometric maps of cometary methanol. Major obstacles to understanding hot core chemistry remain because chemical models are not well developed and interferometric observations have not been very sensitive. Differentiation in the molecular isomers glycolaldehdye, methyl formate, and acetic acid has been observed, but not explained. The extended source structure for certain sugars, aldehydes, and alcohols may require nonthermal formation mechanisms such as shock heating of grains. Major advances in understanding the formation chemistry of hot core species can come from observations with the next generation of sensitive, high-resolution arrays. PMID:16894168
Formation of methyl formate in comets by irradiation of methanol-bearing ices
NASA Astrophysics Data System (ADS)
Modica, P.; Palumbo, M. E.; Strazzulla, G.
2012-12-01
Methyl formate is a complex organic molecule considered potentially relevant as precursor of biologically active molecules. It has been observed in several astrophysical environments, such as hot cores, hot corinos, and comets. The processes that drive the formation of molecules in cometary ices are poorly understood. In particular it is not yet clear if molecules are directly accreted from the pre-solar nebula to form comets or are formed after accretion. The present work analyzes the possible role of cosmic ion irradiation and radioactive decay in methyl formate formation in methanol-bearing ices. The results indicate that cosmic ion irradiation can account for about 12% of the methyl formate observed in comet Hale-Bopp, while radioactive decay can account for about 6% of this amount. The need of new data coming from earth based and space observational projects as well as from laboratory experiments is outlined.
Cine: Line excitation by infrared fluorescence in cometary atmospheres
NASA Astrophysics Data System (ADS)
de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.
2017-03-01
CINE is a Python module for calculating infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. Excitation by solar radiation of vibrational bands followed by radiative decay to the ground vibrational state is one of the main mechanisms for molecular excitation in comets. This code calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Line transitions are queried from the latest version of the HITRAN spectroscopic repository using the astroquery affiliated package of astropy. Molecular data are obtained from the LAMDA database. These coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.
CINE: Comet INfrared Excitation
NASA Astrophysics Data System (ADS)
de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.
2017-08-01
CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.
NASA Technical Reports Server (NTRS)
Hudson, Reggie L.; Moore, Marla H.
1993-01-01
Observations of nonterrestrial clathrate hydrates are still lacking despite the fact that clathrates first were suggested to exist in cometary and interstellar ices over 40 years ago. Spectroscopy, the most direct method of astronomical detection, has been hampered by the similarity of clathrate hydrate spectra to those of unenclathrated guest molecules and solid H2O. We have prepared a methanol (CH3OH) clathrate hydrate, using a recently published procedure, and have investigated its far-infrared spectrum. The spectrum is quite different from that of either unenclathrated CH3OH or solid H2O and so should be of value in astronomical searches for this clathrate.
Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy)
NASA Astrophysics Data System (ADS)
Biver, Nicolas; Bockelée-Morvan, Dominique; Moreno, Raphaël; Crovisier, Jacques; Colom, Pierre; Lis, Dariusz C.; Sandqvist, Aage; Boissier, Jérémie; Despois, Didier; Milam, Stefanie N.
2015-10-01
The presence of numerous complex organic molecules (COMs; defined as those containing six or more atoms) around protostars shows that star formation is accompanied by an increase of molecular complexity. These COMs may be part of the material from which planetesimals and, ultimately, planets formed. Comets represent some of the oldest and most primitive material in the solar system, including ices, and are thus our best window into the volatile composition of the solar protoplanetary disk. Molecules identified to be present in cometary ices include water, simple hydrocarbons, oxygen, sulfur, and nitrogen-bearing species, as well as a few COMs, such as ethylene glycol and glycine. We report the detection of 21 molecules in comet C/2014 Q2 (Lovejoy), including the first identification of ethyl alcohol (ethanol, C2H5OH) and the simplest monosaccharide sugar glycolaldehyde (CH2OHCHO) in a comet. The abundances of ethanol and glycolaldehyde, respectively 5 and 0.8% relative to methanol (0.12 and 0.02% relative to water), are somewhat higher than the values measured in solar- type protostars. Overall, the high abundance of COMs in cometary ices supports the formation through grain-surface reactions in the solar system protoplanetary disk.
Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy)
Biver, Nicolas; Bockelée-Morvan, Dominique; Moreno, Raphaël; Crovisier, Jacques; Colom, Pierre; Lis, Dariusz C.; Sandqvist, Aage; Boissier, Jérémie; Despois, Didier; Milam, Stefanie N.
2015-01-01
The presence of numerous complex organic molecules (COMs; defined as those containing six or more atoms) around protostars shows that star formation is accompanied by an increase of molecular complexity. These COMs may be part of the material from which planetesimals and, ultimately, planets formed. Comets represent some of the oldest and most primitive material in the solar system, including ices, and are thus our best window into the volatile composition of the solar protoplanetary disk. Molecules identified to be present in cometary ices include water, simple hydrocarbons, oxygen, sulfur, and nitrogen-bearing species, as well as a few COMs, such as ethylene glycol and glycine. We report the detection of 21 molecules in comet C/2014 Q2 (Lovejoy), including the first identification of ethyl alcohol (ethanol, C2H5OH) and the simplest monosaccharide sugar glycolaldehyde (CH2OHCHO) in a comet. The abundances of ethanol and glycolaldehyde, respectively 5 and 0.8% relative to methanol (0.12 and 0.02% relative to water), are somewhat higher than the values measured in solar-type protostars. Overall, the high abundance of COMs in cometary ices supports the formation through grain-surface reactions in the solar system protoplanetary disk. PMID:26601319
Experimental interstellar organic chemistry: Preliminary findings
NASA Technical Reports Server (NTRS)
Khare, B. N.; Sagan, C.
1971-01-01
In a simulation of interstellar organic chemistry in dense interstellar clouds or on grain surfaces, formaldehyde, water vapor, ammonia and ethane are deposited on a quartz cold finger and ultraviolet-irradiated in high vacuum at 77K. The HCHO photolytic pathway which produces an aldehyde radical and a superthermal hydrogen atom initiates solid phase chain reactions leading to a range of new compounds, including methanol, ethanol, acetaldehyde, acetonitrile, acetone, methyl formate, and possibly formic acid. Higher nitriles are anticipated. Genetic relations among these interstellar organic molecules (e.g., the Cannizzaro and Tischenko reactions) must exist. Some of them, rather than being synthesized from smaller molecules, may be degradation products of larger organic molecules, such as hexamethylene tetramine, which are candidate consitituents of the interstellar grains. The experiments reported here may also be relevant to cometary chemistry.
NASA Astrophysics Data System (ADS)
Žáček, P.; Wolf, M.
2017-10-01
This paper contains necessary modification of Bessel's equations for the axial cometary syndyne. This correction provides the accurate values of molecular acceleration in a cometary tail and precise values of decay constants for radiating molecules and their lifetimes. In consequence the hypothesis of the predissociation of molecules seems to be useless.
NASA Astrophysics Data System (ADS)
Sullivan, Kristal K.; Boamah, Mavis D.; Shulenberger, Katie E.; Chapman, Sitara; Atkinson, Karen E.; Boyer, Michael C.; Arumainayagam, Christopher R.
2016-07-01
We report the first infrared study of the low-energy (<20 eV) electron-induced reactions of condensed methanol. Our goal is to simulate processes which occur when high-energy cosmic rays interact with interstellar and cometary ices, where methanol, a precursor of several prebiotic species, is relatively abundant. The interactions of high-energy radiation, such as cosmic rays (Emax ˜ 1020 eV), with matter produce large numbers of low-energy secondary electrons, which are known to initiate radiolysis reactions in the condensed phase. Using temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS), we have investigated low-energy (5-20 eV) and high-energy (˜1000 eV) electron-induced reactions in condensed methanol (CH3OH). IRAS has the benefit that it does not require thermal processing prior to product detection. Using IRAS, we have found evidence for the formation of ethylene glycol (HOCH2CH2OH), formaldehyde (CH2O), dimethyl ether (CH3OCH3), methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), and the hydroxyl methyl radical (·CH2OH) upon both low-energy and high-energy electron irradiation of condensed methanol at ˜85 K. Additionally, TPD results, presented herein, are similar for methanol films irradiated with both 1000 eV and 20 eV electrons. These IRAS and TPD findings are qualitatively consistent with the hypothesis that high-energy condensed phase radiolysis is mediated by low-energy electron-induced reactions. Moreover, methoxymethanol (CH3OCH2OH) could serve as a tracer molecule for electron-induced reactions in the interstellar medium. The results of experiments such as ours may provide a fundamental understanding of how complex organic molecules are synthesized in cosmic ices.
New Solid-Phase IR Spectra of Solar-System Molecules: Methanol, Ethanol, and Methanethiol
NASA Astrophysics Data System (ADS)
Hudson, Reggie L.; Gerakines, Perry A.; Ferrante, Robert F.
2017-10-01
The presence and abundances of organic molecules in extraterrestrial environments, such as on TNOs, can be determined with infrared (IR) spectroscopy, but significant challenges exist. Reference IR spectra for organics under relevant conditions are vital for such work, yet for many compounds such data either are lacking or fragmentary. In this presentation we describe new laboratory results for methanol (CH3OH), the simplest alcohol, which has been reported to exist in planetary and interstellar ices. Our new results include near- and mid-IR spectra, band strengths, and optical constants at various ice temperatures. Moreover, the influence of H2O-ice is examined. In addition to CH3OH, we also have new results for the related cometary molecules CH3SH and CH3CH2OH. Although IR spectra of such molecules have been reported by many groups over the past 60 years, our work appears to be the first to cover densities, refractive indices, band strengths and optical constants of both the amorphous and crystalline phases. Our results are compared to earlier work, the influence of literature assumptions is explored, and possible revisions to the literature are described. Support from the following is acknowledged: (a) NASA-SSERVI's DREAM2 program, (b) the NASA Astrobiology Institute's Goddard Center for Astrobiology, and (c) a NASA-APRA award.
Interstellar Antifreeze: Ethylene Glycol
NASA Technical Reports Server (NTRS)
Hollis, J. M.; Lovas, F. J.; Jewell, P. R.; Coudert, L. H.
2002-01-01
Interstellar ethylene glycol (HOCH2CH2,OH) has been detected in emission toward the Galactic center source Sagittarius B2(N-LMH) by means of several millimeter-wave rotational torsional transitions of its lowest energy conformer. The types and kinds of molecules found to date in interstellar clouds suggest a chemistry that favors aldehydes and their corresponding reduced alcohols-e.g., formaldehyde (H2CO)/methanol (CH3OH), acetaldehyde (CH3CHO)/ethanol (CH3CH2OH). Similarly, ethylene glycol is the reduced alcohol of glycolaldehyde (CH2OHCHO), which has also been detected toward Sgr B2(N-LMH). While there is no consensus as to how any such large complex molecules are formed in the interstellar clouds, atomic hydrogen (H) and carbon monoxide (CO) could form formaldehyde on grain surfaces, but such surface chemistry beyond that point is uncertain. However, laboratory experiments have shown that the gas-phase reaction of atomic hydrogen (H) and solid-phase CO at 10-20 K can produce formaldehyde and methanol and that alcohols and other complex molecules can be synthesized from cometary ice analogs when subject to ionizing radiation at 15 K. Thus, the presence of aldehyde/ reduced alcohol pairs in interstellar clouds implies that such molecules are a product of a low-temperature chemistry on grain surfaces or in grain ice mantles. This work suggests that aldehydes and their corresponding reduced alcohols provide unique observational constraints on the formation of complex interstellar molecules.
Clathrate type 2 hydrate formation in vacuo under astrophysical conditions
NASA Technical Reports Server (NTRS)
Blake, D. F.; Allamandola, L. J.; Sandford, S. A.; Freund, F.
1991-01-01
The properties of clathrate hydrates were used to explain the complex and poorly understood physical processes taking place within cometary nuclei and other icy solar system bodies. Most of all the experiments previously conducted used starting compositions which would yield clathrate types I hydrates. The main criterion for type I vs. type II clathrate hydrate formation is the size of the guest molecule. The stoichiometry of the two structure types is also quite different. In addition, the larger molecules which would form type II clathrate hydrates typically have lower vapor pressures. The result of these considerations is that at temperatures where we identified clathrate formation (120-130 K), it is more likely that type II clathrate hydrates will form. We also formed clathrate II hydrates of methanol by direct vapor deposition in the temperature range 125-135 K.
Infrared molecular emissions from comets
NASA Technical Reports Server (NTRS)
Weaver, H. A.; Mumma, M. J.
1983-01-01
The possibility of detecting IR molecular line emission from cometary parent molecules is explored. Due to the non-LTE conditions in the inner coma and the large amount of near IR solar flux, IR fluorescence will be a significant source of cometary emission and, in fact, will dominate the grain radiation in a sufficiently high resolution instrument. The detection of this line emission will be difficult due to absorption in the terrestrial atmosphere, but it appears possible to measure cometary H2O emission from airplane altitudes. As IR molecular line emission represents one of the few promising methods of detecting cometary parent molecules directly, further research on this problem should be vigorously pursued.
NASA Astrophysics Data System (ADS)
Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Chang, Sherwood; Scharberg, Maureen A.
1995-11-01
The infrared (IR) spectra of ultraviolet (UV) and thermally processed, methanol-containing interstellar/ cometary ice analogs at temperatures from 12 to 300 K are presented. Infrared spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry indicate that CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), HCO (the formyl radical), H2CO (formaldehyde), CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C=-N (nitriles) are formed. In addition, the organic materials remaining after photolyzed ice analogs have been warmed to room temperature contain (in rough order of decreasing abundance), (1) hexamethylenetetramine (HMT, C6H12N4), (2) ethers, alcohols, and compounds related to polyoxymethylene {POM, ( CH2O )n}, and (3) ketones {R-C(=O)-R'} and amides {H2NC(=O)-R}. Most of the carbon in these residues is thought to come from the methanol in the original ice. Deuterium and 13C isotopic labeling demonstrates that methanol is definitely the source of carbon in HMT. High concentrations of HMT in interstellar and cometary ices could have important astrophysical consequences. The ultraviolet photolysis of HMT frozen in H2O ice readily produces the "XCN" band observed in the spectra of protostellar objects and laboratory ices, as well as other nitriles. Thus, HMT may be a precursor of XCN and a source of CN in comets and the interstellar medium. Also, HMT is known to hydrolyze under acidic conditions to yield ammonia, formaldehyde, and amino acids. Thus, HMT may be a significant source of prebiogenic compounds on asteroidal parent bodies. A potential mechanism for the radiative formation of HMT in cosmic ices is outlined.
Formation of Prebiotic Molecules in Interstellar and Cometary Ices
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Dworkin, Jason; Gilette, J. Seb; Zare, Richard N.; DeVincenzi, D. (Technical Monitor)
2000-01-01
We report here on our lab studies of ice photochemistry of large organic molecules under cometary conditions. We focus on polycyclic aromatic hydrocarbons (PAHs), their photoproducts, and their similarities to molecules seen in living systems today. We note that these kinds of compounds are seen in meteorites and we propose an explanation for both their formation and their observed deuterium enrichments.
Infrared molecular emissions from comets
NASA Technical Reports Server (NTRS)
Weaver, H. A.; Mumma, M. J.
1984-01-01
The possibility of detecting IR molecular line emission from cometary parent molecules is explored. Due to the non-LTE conditions in the inner coma and the large amount of near IR solar flux, IR fluorescence will be a significant source of cometary emission and, in fact, will dominate the grain radiation in a sufficiently high resolution instrument. The detection of this line emission will be difficult due to absorption in the terrestrial atmosphere, but it appears possible to measure cometary H2O emission from airplane altitudes. As IR molecular line emission represents one of the few promising methods of detecting cometary parent molecules directly, further research on this problem should be vigorously pursued. Previously announced in STAR as N83-30344
IR spectral studies of the formation of prebiological organic molecules in ion-bombarded ices
NASA Astrophysics Data System (ADS)
Hudson, R.; Moore, M.
To better understand the formation of C- and CN-containing molecules in cold cosmic environments we have performed a variety of processing experiments on icy mixtures. We will discuss details of condensed-phase synthetic pathways for several acids, alcohols, and aldehydes. For N2 -rich ices containing CH4 , we will show that several CN-bonded acids are easily formed. We will compare carbonic and formic acid production in H O-, CO- and CO2 -dominated ices.2 Condensed-phase pathways for the synthesis of several alcohols including methanol and ethylene glycol, along with several aldehydes including formaldehyde and acetaldehyde, will be discussed. While warming irradiated ices, IR spectra help track the formation of new species from, for example, radical or acid-base reactions, and the loss of species due to vaporization. These experiments demonstrate that condensed-phase reactions lead to cometary and interstellar molecules of varying volatilities. Several newly synthesized species are particularly relevant to recent radio detections, and are of high interest to astronomers and astrobiologists. This research is funded through NRA 344-33-01 and 344-02-57.
NASA Technical Reports Server (NTRS)
Charnley, Steven B.
2011-01-01
The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.
Organic History and Ice-Rock Decoupling on Enceladus
NASA Astrophysics Data System (ADS)
Zolotov, M. Y.
2007-12-01
The Cassini detection of methane, propane and acetylene in the Enceladus plume, and condensed organic compounds (OC) on the south polar region imply an organic-bearing interior of the moon. At least a few wt. % of C is expected in rocks from which Enceladus accreted. By analogy with carbonaceous chondrites, the majority of accreted OC was in a polymer in which polyaromatic groups are linked by O-, N-, and S-bearing aliphatic units. If accreted, cometary-type materials also delivered CO2, CO(?), methanol, ethane, ethene, acetylene, and condensed OC. Subsequent water ice melting and hydrothermal processes driven by decay of short-lived radionuclides led to dissolution of CO, CO2 and methanol in water and transformations of the polymer and cometary OC. CO converted to formic acid, carbonate species, methanol and methane. Hydrous pyrolysis and oxidation of the polymer partially liberated aromatic molecules and led to the formation of O-bearing OC (carboxylic and amino acids, alcohols). Increase in temperature favored oxidation of OC to carbonate species and N2, and led to graphitization of the polymer. Despite net oxidation of OC driven by H2 escape, mineral- catalyzed Fisher-Tropsch like synthesis of hydrocarbons and methane occurred in H2-rich niches. As a result, an array of aromatic, aliphatic, and N-, O-, S-bearing OC, and methane was delivered into a primordial water ocean in hydrothermal fluids. Highly soluble OC (acids, alcohols) made multiple passes through hydrothermal systems causing further oxidation of OC in rocks and solutions. In contrast, hydrocarbons exolved from cold oceanic water and formed an organic layer below the ice shell. Subsequent cooling of ocean-entering fluids and ocean freezing from above led to further separation and accumulation of OC. Some OC was trapped in ice, and methane formed clathrates. After freezing of salt eutectic brines, the light oil (a solution/mixture of ethane, propane, butane, ethene, acetylene, methanol, toluene etc.) remained unfrozen and decoupled the ice shell from underlying salt deposits and rocks. Even after oil solidification, if it occurred, the organic layer had a lower viscosity than salts and ice. An uneven pressure and/or topography at the ice-salt boundary could have led to preferential oil (and salt?) accumulation below the south polar region. Throughout history (and today), the uneven oil-rich layer could have favored tidal motions and heat generation at the bottom of the ice shell.
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Chang, Sherwood; Scharberg, Maureen A.
1995-01-01
The InfraRed (IR) spectra of UltraViolet (UV) and thermally processed, methanol-containing interstellar / cometary ice analogs at temperatures from 12 to 300 K are presented. Infrared spectroscopy, H-1 and C-13 Nuclear Magnetic Resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry indicate that CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), HCO (the formyl radical), H2CO (formaldehyde), CH3CH2OH (ethanol), HC([double bond]O)NH2 (formamide), CH3C([double bond]O)NH2 (acetamide), and R[single bond]C[triple bond]N (nitriles) are formed. In addition, the organic materials remaining after photolyzed ice analogs have been warmed to room temperature contain (in rough order of decreasing abundance), (1) hexamethylenetetramine (HMT, C6H12N4), (2) ethers, alcohols, and compounds related to PolyOxyMethylene (POM, ([single bond]CH2O[single bond](sub n)), and (3) ketones (R[single bond]C([double bond]O)[single bond]R') and amides (H2NC([double bond]O)[single bond]R). Most of the carbon in these residues is thought to come from the methanol in the original ice. Deuterium and C-13 isotopic labeling demonstrates that methanol is definitely the source of carbon in HMT. High concentrations of HMT in interstellar and cometary ices could have important astrophysical consequences. The ultraviolet photolysis of HMT frozen in H2O ice readily produces the 'XCN' band observed in the spectra of protostellar objects and laboratory ices, as well as other nitriles. Thus, HMT may be a precursor of XCN and a source of CN in comets and the interstellar medium. Also, HMT is known to hydrolyze under acidic conditions to yield ammonia, formaldehyde, and amino acids. Thus, HMT may be a significant source of prebiogenic compounds on asteroidal parent bodies. A potential mechanism for the radiative formation of HMT in cosmic ices is outlined.
The effect of electron collisions on rotational populations of cometary water
NASA Technical Reports Server (NTRS)
Xie, Xingfa; Mumma, Michael J.
1992-01-01
The e-H2O collisional rate for exciting rotational transitions in cometary water is evaluated for conditions found in Comet Halley during the Giotto spacecraft encounter. In the case of the 0(00)-1(11) rotational transition, the e-H2O collisional rate exceeds that for excitation by neutral-neutral collisions at distances exceeding 3000 km from the cometary nucleus. The estimates are based on theoretical and experimental studies of e-H2O collisions, on ion and electron parameters acquired in situ by instruments on the Giotto and Vega spacecraft, and on results obtained from models of the cometary ionosphere. Thus, the rotational temperature of the water molecule in the intermediate coma may be controlled by collisions with electrons rather than with neutral molecules, and the rotational temperature retrieved from high-resolution IR spectra of water in Comet Halley may reflect electron temperatures rather than neutral gas temperatures in the intermediate coma.
What can meteorites tell us about comets?
NASA Technical Reports Server (NTRS)
Anders, Edward
1986-01-01
Cometary silicates, carbon, and volatiles are reviewed using data from the Halley probes, interplanetary dust particles, and cometary spectra. The origins of anhydrous Fe(2+)-bearing silicates; whether hydrated silicates, if present, were made by gaseous or liquid H2O3; sources of organic compounds: ion-molecule reactions, photochemistry, grain catalysis; sources of CO2 and of organic polymers; and interstellar molecules and grains in comets are discussed.
NASA Technical Reports Server (NTRS)
Anicich, V. G.; Huntress, W. T., Jr.
1986-01-01
All bimolecular positive ion-molecule reactions reported from 1965 to 1985 for temperatures below 1000 K are included in the present survey of those ion-molecule reactions pertinent to the chemistries of planetary atmospheres, cometary comae, and interstellar clouds. This survey is intended as an update of the first, by Huntress (1977). The tabular presentation is organized according to reactant ion, with cross-references for both the ionic and the neutral reactants as well as the ionic and neutral products.
NASA Astrophysics Data System (ADS)
Remijan, Anthony J.; Milam, Stefanie N.; Womack, Maria; Apponi, A. J.; Ziurys, L. M.; Wyckoff, Susan; A'Hearn, M. F.; de Pater, Imke; Forster, J. R.; Friedel, D. N.; Palmer, Patrick; Snyder, L. E.; Veal, J. M.; Woodney, L. M.; Wright, M. C. H.
2008-12-01
We present an interferometric and single-dish study of small organic species toward Comets C/1995 O1 (Hale-Bopp) and C/2002 T7 (LINEAR) using the BIMA interferometer at 3 mm and the ARO 12 m telescope at 2 mm. For Comet Hale-Bopp, both the single-dish and interferometer observations of CH3OH indicate an excitation temperature of 105 +/- 5 K and an average production rate ratio Q(CH3OH)/Q(H2O) ~ 1.3% at ~1 AU. In addition, the aperture synthesis observations of CH3OH suggest a distribution well described by a spherical outflow and no evidence of significant extended emission. Single-dish observations of CH3CN in Comet Hale-Bopp indicate an excitation temperature of 200 +/- 10 K and a production rate ratio of Q(CH3CN)/Q(H2O) ~ 0.017% at ~1 AU. The nondetection of a previously claimed transition of cometary (CH2OH)2 toward Comet Hale-Bopp with the 12 m telescope indicates a compact distribution of emission, D < 9'' (<8500 km). For the single-dish observations of Comet T7 LINEAR, we find an excitation temperature of CH3OH of 35 +/- 5 K and a CH3OH production rate ratio of Q(CH3OH)/Q(H2O) ~ 1.5% at ~0.3 AU. Our data support current chemical models that CH3OH, CH3CN, and (CH2OH)2 are parent nuclear species distributed into the coma via direct sublimation off cometary ices from the nucleus with no evidence of significant production in the outer coma.
Chemical Recycling of Molecules in Cometary Comae
NASA Astrophysics Data System (ADS)
Boice, Daniel C.; Kawakita, Hideyo; Shinnaka, Yoshiharu; Kobayashi, Hitomi
2015-08-01
Modeling is essential to understand the important physical and chemical processes that occur in cometary comae, especially the relationship between native and sibling molecules, such as, HCN and CN. Photochemistry is a major source of ions and electrons that further initiate key gas-phase reactions, leading to the plethora of molecules and atoms observed in comets. The effects of photoelectrons that react via impacts are important to the overall ionization in the inner coma. We have found that many molecules undergo protonation reactions with primarily water, followed by electron recombination resulting in the original molecules in a vibrationally excited state. These excited molecules spontaneously emit photons back to the ground state. We identify this series of reactions as chemical “recycling.” We discuss the importance of this mechanism for HCN, NH3, and water in comets. We also identify other relevant processes in the collision-dominated, inner coma of a comet within a global modeling framework to better understand observations and in situ measurements of cometary species, especially relationships between native and sibling molecules for the Rosetta Mission to Comet 67P/Churyumov-Gerasimenko.Acknowledgements: We appreciate support from the NSF Planetary Astronomy Program under Grant No. 0908529. This program is partially supported by the MEXT Supported Program for the Strategic Research Foundation at Private Universities, 2014-2018.
Cometary pick-up ions observed near Giacobini-Zinner
NASA Technical Reports Server (NTRS)
Gloeckler, G.; Hovestadt, D.; Ipavich, F. M.; Scholer, M.; Klecker, B.
1986-01-01
The number and energy density of cometary water-group ions observed near Comet Giacobini-Zinner are derived using the rest-frame distribution functions. The data reveal that density profiles of inbound and outbound passes and their shape correlate with pick-up ion production model predictions. The lose rate and production rate of water-group cometary molecules calculated from predicted and measured density profiles are 2 x 10 to the -6th/sec and 2.6 x 10 to the 28th/sec respectively. The shapes of the distribution functions are examined to study the solar wind/cometary ions interaction process.
Cometary pick-up ions observed near Giacobini-Zinner
NASA Astrophysics Data System (ADS)
Gloeckler, G.; Hovestadt, D.; Ipavich, F. M.; Scholer, M.; Klecker, B.; Galvin, A. B.
1986-03-01
The number and energy density of cometary water-group ions observed near Comet Giacobini-Zinner are derived using the rest-frame distribution functions. The data reveal that density profiles of inbound and outbound passes and their shape correlate with pick-up ion production model predictions. The lose rate and production rate of water-group cometary molecules calculated from predicted and measured density profiles are 2 x 10 to the -6th/sec and 2.6 x 10 to the 28th/sec respectively. The shapes of the distribution functions are examined to study the solar wind/cometary ions interaction process.
Primitive bodies - Molecular abundances in Comet Halley as probes of cometary formation environments
NASA Technical Reports Server (NTRS)
Lunine, Jonathan I.
1989-01-01
The most recent results on abundances of molecules in Halley's comet are examined in the context of various models for the environment in which comets formed. These environments include molecular clouds associated with star-forming regions, the solar nebula, gaseous disks around proto-planets, and combinations of these. Of all constituents in a cometary nucleus, the highly volatile molecules such as methane, ammonia, molecular nitrogen, and carbon monoxide are most sensitive to the final episode of cometary grain formation and incorporation in the comet's nucleus; hence they likely reflect at least some chemical processing in the solar nebula. Proper interpretation requires modeling of a number of physical processes including gas phase chemistry, chemistry on grain surfaces, and fractionation effects resulting from preferential incorporation of certain gases in proto-cometary grains. The abundance of methane in Halley's comet could be a key indicator of where that comet formed, provided the methane abundance on grains in star-forming regions can be observationally constrained.
NASA Technical Reports Server (NTRS)
Jackson, William M.
1996-01-01
The principle goal of our research was to understand the formation of free radicals in comets. To do this we compared laboratory results with cometary observations in attempt to make sure that the cometary observations agree with what is known about the photochemistry of the proposed parent molecule. Initially we concentrated on the CS emission in an effort to show the parent of this molecule was CS2, consistent with cometary observations of the photochemical lifetime. We then started to look into the problem of the C2 formation in comets. We set out to see if we could measure all of the nascent distributions of the C2 products in the hope that they would be a characteristic signature of the formation process.
Models for Cometary Comae Containing Negative Ions
NASA Technical Reports Server (NTRS)
Cordiner, M. A.; Charnley, S. B.
2012-01-01
The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [I]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of our new models for the chemistry of cometary comae that include atomic and molecular anions. We calculate the impact of these anions on the charge balance and examine their importance for cometary coma chemistry.
Photodestruction rates for cometary parent molecules
NASA Astrophysics Data System (ADS)
Crovisier, J.
1994-02-01
New evaluations of the photodestruction rates for several molecules of cometary interest are presented along with a critical comparison with other estimations from 1976 to 1993, and a summary of the need for future laboratory measurements. Photodestruction rates for a heliocentric distance of 1 AU (assuming the quiet Sun reference spectrum of Huebner and Carpenter) are tabulated for molecules from the water group, hydrocarbons, CO group, CHO species, nitrogen compounds, and sulfur compounds. Inspection of the table shows reasonable agreement between new and previously calculated photodestruction rates. Further work is needed on unstable species, photodissociation channel and quantum yields, temperature effects, kinematics and anistropic ejection of the fragments, and the effects of solar radiation field variations.
NASA Astrophysics Data System (ADS)
Kawakita, Hideyo; Shinnaka, Yoshiharu; Jehin, Emmanuel; Decock, Alice; Hutsemekers, Damien; Manfroid, Jean
2016-10-01
Since molecules having identical protons can be classified into nuclear-spin isomers (e.g., ortho-H2O and para-H2O for water) and their inter-conversions by radiative and non-destructive collisional processes are believed to be very slow, the ortho-to-para abundance ratios (OPRs) of cometary volatiles such as H2O, NH3 and CH4 in coma have been considered as primordial characters of cometary molecules [1]. Those ratios are usually interpreted as nuclear-spin temperatures although the real meaning of OPRs is in strong debate. Recent progress in laboratory studies about nuclear-spin conversion in gas- and solid-phases [2,3] revealed short-time nuclear-spin conversions for water, and we have to reconsider the interpretation for observed OPRs of cometary volatiles. We have already performed the survey for OPRs of NH2 in more than 20 comets by large aperture telescopes with high-resolution spectrographs (UVES/VLT, HDS/Subaru, etc.) in the optical wavelength region [4]. The observed OPRs of ammonia estimated from OPRs of NH2, cluster around ~1.1 (cf. 1.0 as a high-temperature limit), indicative of ~30 K as nuclear-spin temperatures. We present our latest results for OPRs of cometary NH2 and discuss about the real meaning of OPRs of cometary ammonia, in relation to OPRs of water in cometary coma. Chemical processes in the inner coma may play an important role to achieve un-equilibrated OPRs of cometary volatiles in coma.This work was financially supported by MEXT Supported Program for the Strategic Research Foundation at Private Universities, 2014-2018 (No. S1411028) (HK) and by Graint-in-Aid for JSPS Fellows, 15J10864 (YS).References:[1] Mumma & Charnley, 2011, Annu. Rev. Astro. Astrophys. 49, 471.[2] Hama & Watanabe, 2013, Chem. Rev. 113, 8783.[3] Hama et al., 2008, Science 351, 6268.[4] Shinnaka et al., 2011, ApJ 729, 81.
Interstellar Methanol from the Lab to Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Drozdovskaya, Maria; Walsh, Catherine; Visser, Ruud; Harsono, Daniel; van Dishoeck, Ewine
2015-08-01
Interstellar methanol is considered to be a parent species of larger, more complex organic molecules. It holds a central role in many astrochemical models [e.g. 1]. Methanol has also been the focus of several laboratory studies [e.g. 2, 3] in an effort to gain insight into grain-surface chemistry, which potentially builds chemical complexity already in the cold, dark phases of protostellar evolution. The case of methanol is a prime example of experimental work having implications on astronomical scales. For this meeting, I would like to highlight how physical and chemical models can be unified to simulate infalling material during the birth of a low-mass protostar. An axisymmetric 2D semi-analytic collapse model [4], wavelength-dependent radiative transfer calculations with RADMC3D [5] and a comprehensive gas-grain chemical network [6] are used to study two physical scenarios. In the first case, the dominant disc growth mechanism is viscous spreading, while in the second, continuous infall of matter prevails. The results show that the infall path influences the abundance of methanol entering each type of disk, ranging from complete loss of methanol to an enhancement by a factor of >1 relative to the prestellar phase [7]. This work illustrates how the experimentally verified hydrogenation sequence of carbon monoxide leading to methanol influences the delivery of methanol ice to the planet- and comet-forming zones of protoplanetary disks. Such intriguing links will soon be tested by upcoming cometary data from the Rosetta mission and ALMA observations.[1] Garrod R. T., Herbst E., 2006, A&A, 457, 927[2] Watanabe N., Nagaoka A., Shiraki T., Kouchi A., 2004, ApJ, 616, 638[3] Fuchs G. W., Cuppen H. M., Ioppolo S., Romanzin C., Bisschop S. E., Andersson S., van Dishoeck E. F., Linnartz H., 2009, A&A, 505, 629[4] Visser R., van Dishoeck E. F., Doty S. D., Dullemond C. P., 2009, A&A, 495, 881[5] Dullemond C. P., Dominik C., 2004, A&A, 417, 159[6] Walsh C., Millar T. J., Nomura H., Herbst E., Widicus Weaver S., Aikawa Y., Laas J. C., Vasyunin A. I., 2014, A&A, 563, A33[7] Drozdovskaya M. N., Walsh C., Visser R., Harsono D., van Dishoeck E. F., 2014, MNRAS, 445, 91
NASA Technical Reports Server (NTRS)
Anicich, V. G.
1993-01-01
This is a supplement to a previous paper (Anicich & Huntress 1986). It is a survey of bimolecular positive ion-molecule reactions with potential importance to the chemistry of planetary atmospheres, cometary comae, and interstellar clouds. This supplement covers the literature from 1986 through 1991, with some additional citations missed in the original survey. Over 200 new citations are included. A table of reactions is listed by reactant ion, and cross-references are provided for both ionic and neutral reactants and also for both ionic and neutral products.
Pre-cometary ice composition from hot core chemistry.
Tornow, Carmen; Kührt, Ekkehard; Motschmann, Uwe
2005-10-01
Pre-cometary ice located around star-forming regions contains molecules that are pre-biotic compounds or pre-biotic precursors. Molecular line surveys of hot cores provide information on the composition of the ice since it sublimates near these sites. We have combined a hydrostatic hot core model with a complex network of chemical reactions to calculate the time-dependent abundances of molecules, ions, and radicals. The model considers the interaction between the ice and gas phase. It is applied to the Orion hot core where high-mass star formation occurs, and to the solar-mass binary protostar system IRAS 16293-2422. Our calculations show that at the end of the hot core phase both star-forming sites produce the same prebiotic CN-bearing molecules. However, in the Orion hot core these molecules are formed in larger abundances. A comparison of the calculated values with the abundances derived from the observed line data requires a chemically unprocessed molecular cloud as the initial state of hot core evolution. Thus, it appears that these objects are formed at a much younger cloud stage than previously thought. This implies that the ice phase of the young clouds does not contain CN-bearing molecules in large abundances before the hot core has been formed. The pre-biotic molecules synthesized in hot cores cause a chemical enrichment in the gas phase and in the pre-cometary ice. This enrichment is thought to be an important extraterrestrial aspect of the formation of life on Earth and elsewhere.
Molecular Composition and Chemistry of Isolated Dense Cores
NASA Astrophysics Data System (ADS)
Cook, Amanda; Boogert, A.
2009-01-01
The composition of molecular clouds and the envelopes and disks surrounding low mass protostars within them is still poorly known. There is little doubt that a large fraction of the molecules is frozen on grains, but the abundance of several crucial species (e.g. ammonia, methanol, ions) in the ices is still uncertain. In addition, prominent spectral features discovered decades ago are still not securely identified (e.g. the 6.85-micron absorption band). Gas phase and grain surface chemistry play pivotal roles in molecule formation, but numerous other processes could have significant impacts as well: shocks, thermal heating, irradiation of ices by ultraviolet photons and cosmic rays. Complex species could be formed this way, profoundly influencing cloud, disk and planetary/cometary chemistry. We have obtained Spitzer/IRS spectra of an unprecedented sample of sight-lines tracing 25 dense isolated cores. These cores physically differ from the large, cluster-forming molecular clouds (e.g. Ophiuchus, Perseus) that are commonly studied: they are less turbulent, colder, less dense, and likely longer lived. These IRS spectra of isolated cores thus provide unique information on ice formation and destruction mechanisms. Toward the same cores, we observed 33 highly extincted background stars as well, tracing the quiescent cloud medium against which the ices around protostars can be contrasted.
NASA Technical Reports Server (NTRS)
Chin, Gordon
2011-01-01
Submillimeter remote sensing of planetary and cometary atmospheres have been proposed for Venus and Mars while MIRO on Rosetta will observe the coma of Comet 67P/Churyumov - Cierasimenko in December 2015, UARS and AURA MLS have observed millimeter and submillimeter molecule emissions in the Earth's stratosphere for many decades, Observations of submillimeter wave molecular emissions provide a wealth of information not obtainable by alternative techniques. Submillimeter line emissions exhibit linear temperature dependence, insensitivity to aerosol scattering, extinction, and have separated transitions with well determined line-shapes. These observations have high sensitivities to trace chemical species and can; 1) Fully resolve the line profiles of molecules with high resolution, 2) Provide deterministic retrievals of species abundance, temperature, and pressure, and 3) Measure Doppler shifts of detected molecules for wind velocities.
Interstellar/Precometary Organic Material and the Photochemical Evolution of Complex Organics
NASA Technical Reports Server (NTRS)
Allamandola, Lou J.; Bernstein, Max; Sandford, Scott; Witteborn, Fred (Technical Monitor)
1996-01-01
During the past two decades ground-, air-, and space-based infrared spectroscopic observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the raw materials from which planets, comets and stars form. Most interstellar material is concentrated in Large molecular clouds where simple molecules are formed by dust grain and gas phase reactions. Gaseous species striking the cold (10 K) dust will stick, forming an icy grain mantle. This accretion, coupled with energetic particle bombardment and UV photolysis, will produce a complex chemical mixture containing volatile, non-volatile, and isotopically fractionated species. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, H2, and perhaps some NH3 and H2CO, as well as more complex species including nitriles and ketones or esters. The evidence for these compounds as well as carbon rich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon will be reviewed and the possible connections with comets and meteorites will be presented in the first part of the talk. The second part of the presentation will focus on interstellar/precometary ice photochemical evolution. The chemical composition and photochemical evolution of realistic interstellar/pre-cometary ice analogs containing methanol will be discussed. ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and more complex molecules. Infrared spectroscopy, H-1 and C-13 nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry demonstrate that when ices representative of interstellar grains and comets are exposed to UV radiation at low temperature a series of moderately complex organic molecules are formed in the ice including: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C(integral)N (nitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. After warming to room temperature what remains is an organic residue composed primarily of Hexamethylenetetramine (HMT, C6H12N4), with lesser amounts of polyoxymethylene related species (POMs), amides, and ketones. This is in sharp contrast to the organic residues produced by irradiating ices which do not contain methanol (unrealistic interstellar ice analogs) or thermally promoted polymerization-type reactions in unirradiated realistic ice mixtures. Here HMT is only a minor product in a residue dominated by a mixture of polyoxymethylene related species. The implications, for infrared astronomy and astrochemistry, of high concentrations of HMT in interstellar and cometary ices may be profound. The ultraviolet photolysis of HMT frozen in H20 ice produces the "XCN" band observed in the spectra of protostellar objects and laboratory ices, as well as carbon oxides and other nitriles. Thus, HMT may be a precursor of XCN in protostellar objects and a source of CN and CO in the tail of comets. Also, HMT is known to hydrolyze under acidic conditions to yield ammonia and formaldehyde as well as amino acids. Thus, HMT may have been a source of organic material delivered to the early earth by comets.
NASA Technical Reports Server (NTRS)
Broderick, Daniel
2010-01-01
A computational model calculates the excitation of water rotational levels and emission-line spectra in a cometary coma with applications for the Micro-wave Instrument for Rosetta Orbiter (MIRO). MIRO is a millimeter-submillimeter spectrometer that will be used to study the nature of cometary nuclei, the physical processes of outgassing, and the formation of the head region of a comet (coma). The computational model is a means to interpret the data measured by MIRO. The model is based on the accelerated Monte Carlo method, which performs a random angular, spatial, and frequency sampling of the radiation field to calculate the local average intensity of the field. With the model, the water rotational level populations in the cometary coma and the line profiles for the emission from the water molecules as a function of cometary parameters (such as outgassing rate, gas temperature, and gas and electron density) and observation parameters (such as distance to the comet and beam width) are calculated.
The effect of electron collisions on rotational excitation of cometary water
NASA Technical Reports Server (NTRS)
Xie, Xingfa; Mumma, Michael J.
1991-01-01
The e-H2O collisional rate for exciting rotational transitions in cometary water is evaluated for conditions found in Comet Halley. The e-H2O collisional rate exceeds that for excitation by neutral-neutral collisions at distances exceeding 3000 km from the cometary nucleus, in the case of the O sub 00 yields 1 sub 11 transition. The estimates are based on theoretical and experimental studies of e-H2O collisions, on ion and electron parameters acquired in-situ by instruments on the Giotto and Vega spacecraft, and on results obtained from models of the cometary ionosphere. The contribution of electron collisions may explain the need for large water-water cross-sections in models which neglect the effect of electrons. The importance of electron collisions is enhanced for populations of water molecules in regions where their rotational lines are optically thick.
Cometary material and the origins of life on earth
NASA Technical Reports Server (NTRS)
Lazcano-Araujo, A.; Oro, J.
1981-01-01
The role of cometary material in determining the environmental conditions of the prebiotic earth is reviewed. The organic synthesis pathways that occur in dense interstellar clouds and in comets are examined, and complex organic molecules believed to exist (amino acids, carboxylic acids, purines, pyrimidines and hydrocarbons) based on spectral detections of degradation products are noted. Estimates of the amount of terrestrial volatiles of cometary origin that may have been acquired in collisions during the early history of the earth are considered, and shown to dominate any estimated contributions to terrestrial carbon from other extraterrestrial sources. Current evidence that the origin and early evolution of life began about four billion years ago is discussed in relation to the cometary bombardment processes occurring at the time and the resultant shock waves, reducing atmospheres and reactive chemical species. It is thus concluded that comets contributed significantly to the processes of chemical evolution necessary for the emergence of life on earth.
Formation of C3 and C2 in Cometary Comae
NASA Astrophysics Data System (ADS)
Hölscher, Alexander
2015-03-01
Comets are remnants from the Solar System formation. They reside at large distances from the Sun and are believed to store deep freeze imprints of the chemical and physical conditions at the time the Solar System formed. The main ice component of a comet is H2O followed by CO and CO2 with additional small amounts of molecules with varying complexity. Comets also contain large amounts of dust. If a comet approaches the Sun the ices begin to sublimate giving rise to the cometary coma. The molecules producing the coma can be observed in the infrared, the radio wavelength range and at optical wavelengths. To constrain the formation of the Solar System, models require knowledge of the composition for a statistically significant number of comets. This favors optical observations of e.g. C3 (tricarbon) and C2 (dicarbon) since these species allow observations even of relatively faint comets and do not require space missions (infrared observations). However, one has to link these observed photodissociation product species (daughter species) to the molecules that originally sublimated from the comet nucleus surface, i.e. the so-called parent molecules, as e.g. C2H2 (acetylene) for C2. However, for C3 no parent molecules have been identified so far. This thesis investigates the formation of C3 and C2 radicals in cometary comae due to photodissociation of observed and in the literature proposed hydrocarbon parent molecules. For this purpose a one-dimensional multi-fluid coma chemistry model has been improved and applied. This work added new photo reactions to the model, updated the hydrocarbon photo rate coefficients and quantified their uncertainty. A sensitivity analysis has been carried out to determine the reactions whose uncertainty most affect the model output uncertainty. Special attention should be paid to these so-called key reactions in future laboratory experiments and quantum chemical computations to reduce the model output uncertainty more effectively. This will allow to better constrain which parent molecules are responsible for the observational C3 and C2 column densities. Based on observations of the four sample comets C/2001 Q4 (NEAT), C/2002 T7 (LINEAR), 9P (Tempel 1) and C/1995 O1 (Hale-Bopp), this work investigates which combination of the following proposed parent molecules C4H2 (diacetylene), CH2C2H2 (allene), CH3C2H (propyne), C2H4 (ethene) and observed parent molecules C2H2 and HC3N (cyanoacetylene) can best reproduce the observational C3 and C2 column densities in cometary comae, taking into account the uncertainties in photodissociation rate coefficients. It was found that the investigated photodissociation rate coefficients have large uncertainties and also a significant effect on the C3 and C2 model column densities. The responsible key reactions were determined with the sensitivity analysis. The important result of this thesis is that one can reasonably well reproduce the observations of comets with the improved model at rh = 1.00 AU (NEAT) and rh = 3.78 AU (Hale-Bopp), within the photodissociation uncertainties using realistic parent molecule production rate ratios and by various combinations of the investigated parent molecules. To confirm the agreement (NEAT, Hale-Bopp) and to clearify remaining discrepancies (LINEAR, Tempel 1) between model and observations requires additional observations of parent and daughter molecules in the coma of comets as well as in situ measurements of cometary ices (Rosetta).zeige weniger
NASA Astrophysics Data System (ADS)
Bertin, Mathieu; Romanzin, Claire; Doronin, Mikhail; Philippe, Laurent; Jeseck, Pascal; Ligterink, Niels; Linnartz, Harold; Michaut, Xavier; Fillion, Jean-Hugues
2016-02-01
Wavelength-dependent photodesorption rates have been determined using synchrotron radiation for condensed pure and mixed methanol ice in the 7-14 eV range. The VUV photodesorption of intact methanol molecules from pure methanol ices is found to be of the order of 10-5 molecules/photon, that is two orders of magnitude below what is generally used in astrochemical models. This rate gets even lower (<10-6 molecules/photon) when the methanol is mixed with CO molecules in the ices. This is consistent with a picture in which photodissociation and recombination processes are at the origin of intact methanol desorption from pure CH3OH ices. Such low rates are explained by the fact that the overall photodesorption process is dominated by the desorption of the photofragments CO, CH3, OH, H2CO, and CH3O/CH2OH, whose photodesorption rates are given in this study. Our results suggest that the role of the photodesorption as a mechanism to explain the observed gas phase abundances of methanol in cold media is probably overestimated. Nevertheless, the photodesorption of radicals from methanol-rich ices may stand at the origin of the gas phase presence of radicals such as CH3O, therefore, opening new gas phase chemical routes for the formation of complex molecules.
The contribution of cometary volatiles to the primitive Earth.
Oro, J; Holzer, G; Lazcano-Araujo, A
1980-01-01
It has been estimated that during its early history the Earth captured a mass of cometary material of the order of 10(23) grams. Since carbon is supposed to be at least three times more abundant in comets than in carbonaceous chondrites (3.5% C in C 1 chondrites), it can be deduced that about 1 x 10(22) grams of carbon (as carbon compounds), was added by comets to the surface of the prebiotic Earth. This carbon value is of the same order of magnitude as the value of the organic carbon buried in the Earth's sedimentary shell, but approximately one order of magnitude lower than the Earth's surface total carbon (7 x 10(22) gm). The capture of comets by the Earth would also have contributed to generating the appropriate aqueous and reducing environmental conditions necessary for organic synthesis. Although it is possible that some of the cometary carbon compounds falling on the Earth survived, most of them were probably decomposed by the heat and shock waves of the cometary collision. Upon quenching to low temperatures, however, the reactive chemical species produced by the impact would have recombined, leading to the synthesis of a great variety of organic molecules. Laboratory experiments with radiation, heat and shock waves have demonstrated that some of the synthesized compounds are biochemical molecules: amino acids, sugars, purines, and pyrimidines. These are essential to all living systems.
Adsorption of methanol molecule on graphene: Experimental results and first-principles calculations
NASA Astrophysics Data System (ADS)
Zhao, X. W.; Tian, Y. L.; Yue, W. W.; Chen, M. N.; Hu, G. C.; Ren, J. F.; Yuan, X. B.
2018-04-01
Adsorption properties of methanol molecule on graphene surface are studied both theoretically and experimentally. The adsorption geometrical structures, adsorption energies, band structures, density of states and the effective masses are obtained by means of first-principles calculations. It is found that the electronic characteristics and conductivity of graphene are sensitive to the methanol molecule adsorption. After adsorption of methanol molecule, bandgap appears. With the increasing of the adsorption distance, the bandgap, adsorption energy and effective mass of the adsorption system decreased, hence the resistivity of the system decreases gradually, these results are consistent with the experimental results. All these calculations and experiments indicate that the graphene-based sensors have a wide range of applications in detecting particular molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertin, Mathieu; Doronin, Mikhail; Philippe, Laurent
2016-02-01
Wavelength-dependent photodesorption rates have been determined using synchrotron radiation for condensed pure and mixed methanol ice in the 7–14 eV range. The VUV photodesorption of intact methanol molecules from pure methanol ices is found to be of the order of 10{sup −5} molecules/photon, that is two orders of magnitude below what is generally used in astrochemical models. This rate gets even lower (<10{sup −6} molecules/photon) when the methanol is mixed with CO molecules in the ices. This is consistent with a picture in which photodissociation and recombination processes are at the origin of intact methanol desorption from pure CH{sub 3}OHmore » ices. Such low rates are explained by the fact that the overall photodesorption process is dominated by the desorption of the photofragments CO, CH{sub 3}, OH, H{sub 2}CO, and CH{sub 3}O/CH{sub 2}OH, whose photodesorption rates are given in this study. Our results suggest that the role of the photodesorption as a mechanism to explain the observed gas phase abundances of methanol in cold media is probably overestimated. Nevertheless, the photodesorption of radicals from methanol-rich ices may stand at the origin of the gas phase presence of radicals such as CH{sub 3}O, therefore, opening new gas phase chemical routes for the formation of complex molecules.« less
The contribution of electron collisions to rotational excitations of cometary water
NASA Technical Reports Server (NTRS)
Xie, Xingfa; Mumma, Michael J.
1992-01-01
The e-H2O collisional rate for exciting rotational transitions in cometary water is evaluated for conditions found in comet Halley during the Giotto spacecraft encounter. In the case of the O(sub 00) yields 1(sub 11) rotational transition, the e-H2O collisional rate exceeds that for excitation by neutral-neutral collisions at distances exceeding 3000 km from the cometary nucleus. Thus, the rotational temperature of the water molecule in the intermediate coma may be controlled by collisions with electrons rather than with neutral collisions, and the rotational temperature retrieved from high resolution infrared spectra of water in comet Halley may reflect electron temperatures rather than neutral gas temperature in the intermediate coma.
Experimental studies of the far-infrared spectra of cosmic-type ices
NASA Technical Reports Server (NTRS)
Hudson, Reggie L.
1992-01-01
Work performed during the period is reported. The abstract of a paper presented at the Second International Workshop on the Nature of Cometary Organic Matter is included. Far infrared spectra of amorphous and crystalline water ice before and after proton irradiation is presented. Also, a study of clathrate hydrates was conducted in which a methanol (CH3OH) clathrate hydrate was prepared and its far-infrared spectrum investigated. This paper is also included.
Electron transport in ethanol & methanol absorbed defected graphene
NASA Astrophysics Data System (ADS)
Dandeliya, Sushmita; Srivastava, Anurag
2018-05-01
In the present paper, the sensitivity of ethanol and methanol molecules on surface of single vacancy defected graphene has been investigated using density functional theory (DFT). The changes in structural and electronic properties before and after adsorption of ethanol and methanol were analyzed and the obtained results show high adsorption energy and charge transfer. High adsorption happens at the active site with monovacancy defect on graphene surface. Present work confirms that the defected graphene increases the surface reactivity towards ethanol and methanol molecules. The presence of molecules near the active site affects the electronic and transport properties of defected graphene which makes it a promising choice for designing methanol and ethanol sensor.
Chemical and Hydrodynamical Models of Cometary Comae
NASA Technical Reports Server (NTRS)
Charnley, Steven
2012-01-01
Multi-fluid modelling of the outflowing gases which sublimate from cometary nuclei as they approach the Sun is necessary for understanding the important physical and chemical processes occurring in this complex plasma. Coma chemistry models can be employed to interpret observational data and to ultimately determine chemical composition and structure of the nuclear ices and dust. We describe a combined chemical and hydrodynamical model [1] in which differential equations for the chemical abundances and the energy balance are solved as a function of distance from the cometary nucleus. The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of 1P/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [2]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of new models for the chemistry of cometary comae that include atomic and molecular anions and calculate the impact of these anions on the coma physics and chemistry af the coma.
Choudhuri, Jyoti Roy; Chandra, Amalendu
2014-10-07
We have performed ab initio molecular dynamics simulations of a liquid-vapor interfacial system consisting of a mixture of water and methanol molecules. Detailed results are obtained for the structural and dynamical properties of the bulk and interfacial regions of the mixture. Among structural properties, we have looked at the inhomogeneous density profiles of water and methanol molecules, hydrogen bond distributions and also the orientational profiles of bulk and interfacial molecules. The methanol molecules are found to have a higher propensity to be at the interface than water molecules. It is found that the interfacial molecules show preference for specific orientations so as to form water-methanol hydrogen bonds at the interface with the hydrophobic methyl group pointing towards the vapor side. It is also found that for both types of molecules, the dipole moment decreases at the interface. It is also found that the local electric field of water influences the dipole moment of methanol molecules. Among the dynamical properties, we have calculated the diffusion, orientational relaxation, hydrogen bond dynamics, and vibrational frequency fluctuations in bulk and interfacial regions. It is found that the diffusion and orientation relaxation of the interfacial molecules are faster than those of the bulk. However, the hydrogen bond lifetimes are longer at the interface which can be correlated with the time scales found from the decay of frequency time correlations. The slower hydrogen bond dynamics for the interfacial molecules with respect to bulk can be attributed to diminished cooperative effects at the interface due to reduced density and number of hydrogen bonds.
Detection of glycolaldehyde toward the solar-type protostar NGC 1333 IRAS2A
NASA Astrophysics Data System (ADS)
Coutens, A.; Persson, M. V.; Jørgensen, J. K.; Wampfler, S. F.; Lykke, J. M.
2015-04-01
Glycolaldehyde is a key molecule in the formation of biologically relevant molecules such as ribose. We report its detection with the Plateau de Bure interferometer toward the Class 0 young stellar object NGC 1333 IRAS2A, which is only the second solar-type protostar for which this prebiotic molecule is detected. Local thermodynamic equilibrium analyses of glycolaldehyde, ethylene glycol (the reduced alcohol of glycolaldehyde), and methyl formate (the most abundant isomer of glycolaldehyde) were carried out. The relative abundance of ethylene glycol to glycolaldehyde is found to be ~5 - higher than in the Class 0 source IRAS 16293-2422 (~1), but similar to the lower limits derived in comets (≥3-6). The different ethylene glycol-to-glycolaldehyde ratios in the two protostars might be related to different CH3OH:CO compositions of the icy grain mantles. In particular, a more efficient hydrogenation on the grains in NGC 1333 IRAS2A would favor the formation of both methanol and ethylene glycol. In conclusion, it is possible that like NGC 1333 IRAS2A, other low-mass protostars show high ethylene glycol-to-glycolaldehyde abundance ratios. The cometary ratios might consequently be inherited from earlier stages of star formation if the young Sun experienced conditions similar to NGC 1333 IRAS2A. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Figures 3-4 and Table 1 are available in electronic form at http://www.aanda.org
Probing Cometary Chemistry with ALMA
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.
2010-01-01
Comets are considered to bear the record of the primitive Solar nebula as remnants of planetesimals that formed the outer planets. To date there are just over two dozen known cometary species compared to the >150 known interstellar molecules. This is likely due to the challenges posed when attempting to measure the composition of these small bodies. With the significant improvement in sensitivity, ALMA will likely enable the detection of new molecules to help us gain better understanding of the chemical complexity found in comets. This advancement in sensitivity will also assist in the measurement of isotope ratios in various species. These values are imperative for determining the conditions during cometary formation as well as provide insight into ongoing speculations of parent species, the possible delivery of H2O to Earth, and a direct comparison to protostellar disk chemistry. The high angular resolution obtained with ALMA will be capable of resolving any compact distributions or density enhancements in the more extended distribution that may lead to a better understanding of the formation of these species in the outer coma. By studying comet compositions we gain insight into the composition of the early Solar System as well as their astrobiological implications.
Lyman-alpha observations of comet Kohoutek 1973 XII with Copernicus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drake, J.F.; Jenkins, E.B.; Bertaux, J.L.
1976-10-01
Comet Kohoutek 1973 XII was observed with the Princeton telescope-spectrometer on the Copernicus satellite on six occasions over a 1-month period starting on 1974 January 29. Positive detection of the cometary L..cap alpha.. emission profile was obtained on January 29 and February 2. Earlier observations of the geocoronal L..cap alpha.. emission profile allowed an instrumental intensity calibration and confirmation of the computed instrumental profile for an extended source at the L..cap alpha.. wavelength.After allowing for broadening by the instrument, we derived from the width of the L..cap alpha.. emission on January 29 a hydrogen-outflow velocity of 10.6 +- 1.8 kmmore » s/sup -1/. The intensity calibration combined with an appropriate cometary model led to cometary water-production rates with average values of 1.3 +- 0.4 x 10/sup 28/ molecules sr/sup -1/ s/sup -1/ for January 29 and 6.0 +- 2.5 x 10/sup 27/ molecules sr/sup -1/ s/sup -1/ for February 2. Only upper limits were obtained for L..cap alpha.. on and after February 14. Searches for OH and D led to negative results. (AIP)« less
Molecular parity violation via comets?
Meierhenrich, U; Thiemann, W H; Rosenbauer, H
1999-01-01
Recent theoretical and experimental investigations referring to the origin of homochirality are reviewed and integrated into the hitherto known state of the art. Attention is directed to an extraterrestrial scenario, which describes the interaction of circularly polarized synchrotron radiation with interstellar organic matter. Following this Bonner-Rubenstein hypothesis, optically active molecules could be transferred to Earth via comets. We plan to identify any enantiomeric enhancement in organic molecules of the cometary matter in situ. The present preliminary experimental study intends to optimize gas-chromatographic conditions for the separation of racemates into their enantiomer constituents on the surface of the comet 46P/Wirtanen. Underivatized racemic pairs of alcohols, diols, and phenyl-substituted amines have been separated with the help of a stationary trifluoroacetyl-cyclodextrin phase. We are still developing a technique that will enable us to detect any enantiomeric enhancement of specific simple organic molecules both in cometary or Martian matter in situ and in meteorites found on Earth. Copyright 1999 Wiley-Liss, Inc.
Laboratory observations of the photochemistry of parent molecules: A review
NASA Technical Reports Server (NTRS)
Jackson, W. M.
1976-01-01
The photochemistry of possible parent molecules of comets has been reviewed. Quantum yields for many of the primary processes are unknown. Energy partitioning among the fragments has not been extensively investigated. A few of the studies have been performed as a function of the number of collisions that the excited molecules undergo, so that possible differences that may occur in a cometary environment may be ascertained.
NASA Astrophysics Data System (ADS)
Bulgarevich, Dmitry S.; Sako, Takeshi; Sugeta, Tsutomu; Otake, Katsuto; Takebayashi, Yoshihiro; Kamizawa, Chiyoshi; Uesugi, Masayuki; Kato, Masahiro
1999-09-01
Ultraviolet/visible absorption and fluorescence spectroscopies at different temperatures and pressures were applied to investigate the microscopic solvent structures of subcritical and supercritical methanol using 4-nitroanisole, ethyl-(4-dimethylamino)benzoate, Reichardt's dye, and anthracene as the probe molecules. It was found that at temperatures higher than 150 °C the long winding chains of sequentially hydrogen-bonded methanol molecules were probably broken, but the small hydrogen-bonded aggregates possibly existed in methanol even at higher temperature. It was also found that the solvation process of the anthracene molecule in the S0-ground state obeyed the Langmuir adsorption model. However, in the case of fluorescence measurements in supercritical methanol, we detected deviations from the simple Langmuir adsorption model. These deviations were explained in terms of preferential solvation of the solvent molecules around photoexcited anthracene. Judging from the experimental results, it was concluded that the local density augmentation of the supercritical methanol around the nonpolar solute was a short-ranged effect, which did not correspond directly to the large isothermal compressibility of fluid near the critical point.
Scientific returns from a program of space missions to comets
NASA Technical Reports Server (NTRS)
Delsemme, A. H.
1979-01-01
A program of cometary missions is proposed. The nature and size of interstellar dust, its origin and evolution; identification of new interstellar molecules; clarification of interstellar chemistry; accretion of grains into protosolar cometesimals; role of a T Tauri wind in the dissipation of the protosolar nebula; record of isotopic anomalies, better preserved in comets than in meteorites; cosmogenic and radiogenic dating of comets; cosmochronology and mineralogy of meteorites, as compared with that of cometary samples; origin of the earth's biosphere, and the origin of life are topics discussed in relation to comet exploration.
NASA Technical Reports Server (NTRS)
Milam, S. N.; Nuevo, M.; Sandford, S. A.; Cody, G. D.; Kilcoyne, A. L. D.; Stroud, R. M.; DeGregorio, B. T.
2010-01-01
The NASA Stardust mission successfully collected material from Comet 81P/Wild 2 [1], including authentic cometary grains [2]. X-ray absorption near-edge structure (XANES) spectroscopy analysis of these samples indicates the presence of oxygen-rich and nitrogen-rich organic materials, which contain a broad variety of functional groups (carbonyls, C=C bonds, aliphatic chains, amines, arnides, etc.) [3]. One component of these organics appears to contain very little aromatic carbon and bears some similarity to the organic residues produced by the irradiation of ices of interstellar/cometary composition, Stardust samples were also recently shown to contain glycine, the smallest biological amino acid [4]. Organic residues produced froth the UV irradiation of astrophysical ice analogs are already known to contain a large suite of organic molecules including amino acids [5-7], amphiphilic compounds (fatty acids) [8], and other complex species. This work presents a comparison between XANES spectra measured from organic residues formed in the laboratory with similar data of cometary samples collected by the Stardust mission
Cao, Hao; Jiang, Yang; Zhang, Haiyang; Nie, Kaili; Lei, Ming; Deng, Li; Wang, Fang; Tan, Tianwei
2017-01-01
The methanol resistance of lipase is a critical parameter in enzymatic biodiesel production. In the present work, the methanol resistance of Yarrowia lipolytica Lipase 2 (YLLIP2) was significantly improved using β-cyclodextrin (β-CD) as an additive. According to the results, YLLIP2 with β-CD exhibited approximately 7000U/mg specific activity in 30wt% methanol for 60min compared with no activity without β-CD under the same conditions. Molecular dynamics (MD) simulation results indicated that the β-CD molecules weakened the conformational change of YLLIP2 and maintained a semi-open state of the lid by overcoming the interference caused by methanol molecules. Furthermore, the β-CD molecule could directly stabilize "pathway" regions (e.g., Asp61-Asp67) and indirectly stabilize "pathway" regions (e.g., Gly44-Phe50) by forming hydrogen bonds with "pathway" regions and nearby "pathway" regions, respectively. The regions stabilized by the β-CD molecule then prevented the closure of active pockets, thus retaining the enzymatic activity of YLLIP2 with β-CD in methanol solvent. Copyright © 2016. Published by Elsevier Inc.
Radiation-Induced Processing of Hydrocarbons in Environments Relevant to Pluto
2001-05-07
energetic’ (characterized by high levels of electrical and geothermal activity) liquid water environment, are capable of generating significant prebiotic ...synthesis of biogenic molecules (Chyba & Sagan 1992). In this light, a potential cometary source of prebiotic organics (the precursors of biological...precursors for prebiotic molecules. This exogenous source of prebiotic organics on early Earth could provide an alternative method of accounting for
Deuterated Water in Comet C/1996 B2 (Hyakutake) and its Implications for the Origin of Comets
NASA Technical Reports Server (NTRS)
Bockelee-Morvan, D.; Gautier, D.; Lis, D. C.; Young, K.; Keene, J.; Phillips, T. G.; Owen, T.; Crovisier, J.; Goldsmith, P. F.; Bergin, E. A.;
1998-01-01
The close approach to the Earth of comet C/1996 B2 (Hyakutake) in March 1996 allowed searches for minor volatile species outgassing from the nucleus. We report the detection of deuterated water (HDO) through its 1(sub 01)-0(sub 00) rotational transition at 464.925 GHz using the Caltech Submillimeter Observatory. We also present negative results of a sensitive research for the J(5-4) line of deuterated hydrogen cyanide (DCN) at 362.046 GHz. Simultaneous observations of two rotational lines of methanol together with HDO in the same spectrum allow us to determine the average gas temperature within the telescope beam to be 69 +/- 10 K. We are thus able to constrain the excitation conditions in the inner coma and determine reliably the HDO production rate as (1.20 +/- 0.28) x 10(exp 26)/s on March 23-24, 1996. Available IR, UV and radio measurements lead to a water production rate of (2.1 +/- 0.5) x 10(exp 29)/s at the time of our HDO observations. The resulting D/H ratio in cometary water is thus (29 +/- 10) x 10(exp -5) in good agreement with the values of (30.8(sub - 5.3, sup +3.8) (Balsiger et al. 1995) and (31.6 +/- 3.4) x 10(exp -5) (Eberhardt et al. 1995) determined in comet P/Halley from in situ ion mass spectra. The inferred 3 a upper limit for the D/H ratio in HCN is 1%. Deuterium abundance is a key parameter for studying the origin and the early evolution of the Solar System and of its individual bodies. Our HDO measurement confirms that, in cometary water, deuterium is enriched by a factor of at least 10 relative to the protosolar ratio, namely the D/H ratio in H2 in the primitive Solar Nebula which formed from the collapse of the protosolar cloud. This indicates that cometary water has preserved a major part of the high D/H ratio acquired in this protosolar cloud through ion-molecule isotopic exchanges or grain-surface reactions and was not re-equilibrated with H2 in the Solar Nebula. Scenarios of formation of comets consistent with these results are discussed.
Hirabayashi, Shinichi; Okawa, Ryuji; Ichihashi, Masahiko; Kondow, Tamotsu; Kawazoe, Yoshiyuki
2007-08-09
Structures of nickel cluster ions adsorbed with methanol, Ni3+ (CH3OH)m (m = 1-3) and Ni4+ (CH3OH)m (m = 1-4) were investigated by using infrared photodissociation (IR-PD) spectroscopy based on a tandem-type mass spectrometer, where they were produced by passing Ni3,4+ through methanol vapor under a multiple collision condition. The IR-PD spectra were measured in the wavenumber region between 3100 and 3900 cm-1. In each IR-PD spectrum, a single peak was observed at a wavenumber lower by approximately 40 cm-1 than that of the OH stretching vibration of a free methanol molecule and was assigned to the OH stretching vibrations of the methanol molecules in Ni3,4+ (CH3OH)m. The photodissociation was analyzed by assuming that Ni3,4+ (CH3OH)m dissociate unimolecularly after the photon energy absorbed by them is statistically distributed among the accessible modes of Ni3,4+ (CH3OH)m. In comparison with the calculations performed by the density functional theory, it is concluded that (1) the oxygen atom of each methanol molecule is bound to one of the nickel atoms in Ni3,4+ (defined as molecular chemisorption), (2) the methanol molecules in Ni3,4+ (CH3OH)m do not form any hydrogen bonds, and (3) the cross section for demethanation [CH4 detachment from Nin+ (CH3OH)] is related to the electron density distribution inside the methanol molecule.
NASA Technical Reports Server (NTRS)
Thomas, Paul J. (Editor)
1992-01-01
Papers are presented on comets and the formation of biochemical compounds on the primitive earth; the cometary origin of carbon, nitrogen, and water on the earth; comets as a possible source of prebiotic molecules; comet impacts and chemical evolution on the bombarded earth; and cometary supply of terrestrial organics (lessons from the K/T and the present epoch). Other papers are on a computational study of radiation chemical processing in comet nuclei, the origin of the polycyclic aromatic hydrocarbons in meteorites, the fate of organic matter during planetary accretion (preliminary studies of the organic chemistry of experimentally shocked Murchison meteorite), recent observations of interstellar molecules (detection of CCO and a limit on H2C3O), terrestrial and extraterrestrial sources of molecular monochirality, and dark matter in the solar system (hydrogen cyanide polymers).
NASA Technical Reports Server (NTRS)
Villanueva, Geronimo L.; DiSanti, M. A.; Mumma, M. J.; Xu, L.-H.
2012-01-01
Methanol (CH3OH) radiates efficiently at infrared wavelengths, dominating the C-H stretching region in comets, yet inadequate quantum-mechanical models have imposed limits on the practical use of its emission spectra. Accordingly, we constructed a new line-by-line model for the 3 fundamental band of methanol at 2844 / cm (3.52 micron) and applied it to interpret cometary fluorescence spectra. The new model permits accurate synthesis of line-by-line spectra for a wide range of rotational temperatures, ranging from 10 K to more than 400 K.We validated the model by comparing simulations of CH3OH fluorescent emission with measured spectra of three comets (C/2001 A2 LINEAR, C/2004 Q2 Machholz and 8P/Tuttle) acquired with high-resolution infrared spectrometers at high-altitude sites. The new model accurately describes the complex emission spectrum of the nu3 band, providing distinct rotational temperatures and production rates at greatly improved confidence levels compared with results derived from earlier fluorescence models. The new model reconciles production rates measured at infrared and radio wavelengths in C/2001 A2 (LINEAR). Methanol can now be quantified with unprecedented precision and accuracy in astrophysical sources through high-dispersion spectroscopy at infrared wavelengths
NASA Astrophysics Data System (ADS)
Akhlestin, A. Yu.; Voronina, S. S.; Privezentsev, A. I.; Rodimova, O. B.; Fazliev, A. Z.
2017-04-01
Systematization of information resources in quantitative spectroscopy is demonstrated using the methanol molecule as an example and applying the facilities of the W@DIS information system. The choice of quantum numbers for a methanol state is explained; brief descriptions of about 40 publications containing spectral characteristics of methanol are given. The interfaces used for the analysis of consistency of wavenumbers in all data sources are described, as well as the interface of the application for forming the list of measured transitions.
Early Activity of Cometary Species from ROSINA/DFMS at 67P/ Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Hässig, Myrtha; Fuselier, Stephen A.; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Bieler, André; Calmonte, Ursina; Dhooghe, Frederik; Fiethe, Björn; Gasc, Sébastien; Gombosi, Tamas I.; Jäckel, Annette; Korth, Axel; Le Roy, Léna; Rème, Henri; Rubin, Martin; Tzou, Chia-Yu; Wurz, Peter
2014-11-01
The European Space Agency’s Rosetta spacecraft arrived after a journey of more than 10 years at comet 67P/Churyumov-Gerasimenko. ROSINA is an instrument package on board Rosetta. It consists of two mass spectrometers and a COmetary Pressure Sensor (COPS). The two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron Time of Flight (RTOF) complement each other with high mass resolution (e.g to resolve 13C from CH), high dynamic range (to detect low abundant isotopes and species), high mass range (to detect organics), and high time resolution. ROSINA is designed to measure the neutral gas and plasma composition in the coma of 67P/Churyumov-Gerasimenko in addition to the physical properties of the neutral component of the coma. For the first time, a comet can be observed in situ from its early activity towards and after perihelion. Little is known about what drives initial cometary activity very far from the Sun. Remote sensing observations to date are highly constrained to a limited number of a few bright comets (e.g. Hale-Bopp) and a limited number of species. Rosetta provides the first measurements of the early activity of a comet in situ and detected the first cometary molecules early August. We will focus on early activity of cometary species from the high resolution mass spectrometer ROSINA/DFMS.
Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase
NASA Astrophysics Data System (ADS)
Ligterink, N. F. W.; Walsh, C.; Bhuin, R. G.; Vissapragada, S.; van Scheltinga, J. Terwisscha; Linnartz, H.
2018-05-01
Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims: The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods: Mixed CH3OH:CO/CH4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results: Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10-7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10-6 CH3OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption.
Formation and processing of organics in the early solar system.
Kerridge, J F
1999-01-01
Until pristine samples can be returned from cometary nuclei, primitive meteorites represent our best source of information about organic chemistry in the early solar system. However, this material has been affected by secondary processing on asteroidal parent bodies which probably did not affect the material now present in cometary nuclei. Production of meteoritic organic matter apparently involved the following sequence of events: Molecule formation by a variety of reaction pathways in dense interstellar clouds; Condensation of those molecules onto refractory interstellar grains; Irradiation of organic-rich interstellar-grain mantles producing a range of molecular fragments and free radicals; Inclusion of those interstellar grains into the protosolar nebula with probable heating of at least some grain mantles during passage through the shock wave bounding the solar accretion disc; Agglomeration of residual interstellar grains and locally produced nebular condensates into asteroid-sized planetesimals; Heating of planetesimals by decay of extinct radionuclides; Melting of ice to produce liquid water within asteroidal bodies; Reaction of interstellar molecules, fragments and radicals with each other and with the aqueous environment, possibly catalysed by mineral grains; Loss of water and other volatiles to space yielding a partially hydrated lithology containing a complex suite of organic molecules; Heating of some of this organic matter to generate a kerogen-like complex; Mixing of heated and unheated material to yield the meteoritic material now observed. Properties of meteoritic organic matter believed to be consistent with this scenario include: Systematic decrease of abundance with increasing C number in homologous series of characterisable molecules; Complete structural diversity within homologous series; Predominance of branched-chain isomers; Considerable isotopic variability among characterisable molecules and within kerogen-like material; Substantial deuterium enrichment in all organic fractions; Some fractions significantly enriched in nitrogen-15; Modest excesses of L-enantiomers in some racemisation-resistant molecules but no general enantiomeric preference. Despite much speculation about the possible role of Fischer-Tropsch catalytic hydrogenation of CO in production of organic molecules in the solar nebula, no convincing evidence for such material has been found in meteorites. A similarity between some meteoritic organics and those produced by Miller-Urey discharge synthesis may reflect involvement of common intermediates rather than the operation of electric discharges in the early solar system. Meteoritic organic matter constitutes a useful, but not exact, guide to what we shall find with in situ analytical and sample-return missions to cometary nuclei.
Observations of cometary parent molecules with the IRAM radio telescope
NASA Technical Reports Server (NTRS)
Colom, P.; Despois, D.; Paubert, G.; Bockelee-Morvan, D.; Crovisier, Jacques
1992-01-01
Several rotational transitions of HCN, H2S, H2CO, and CH3OH were detected in comets P/Brorsen-Metcalf 1989 X, Austin (1989c1) and Levy (1990c) with the Institute for Millimeter Radioastronomy (IRAM) 30-m radio telescope. This allows us to determine the production rates of these molecules and to probe the physical conditions of the coma.
Mashiko, T; Hiraoka, S; Nagashima, U; Tachikawa, M
2017-01-04
Gear-shaped amphiphile molecules (1) recently synthesized by Hiraoka et al. self-assemble into a hexameric structure, nanocubes (1 6 ), in 25% aqueous methanol due to a solvophobic effect. Here we have carried out molecular dynamic simulations to elucidate the stability of these hexameric capsules (1 6 and 2 6 ) in water, 25% aqueous methanol, and methanol. In all solvents, the 1 6 nanocubes are maintained for all trajectories. On the other hand, 2 6 was found to collapse for one trajectory in water and seven trajectories in 25% aqueous methanol. In a pure methanol solvent, 2 6 was found to collapse for all trajectories. The number of collapsed trajectories of 2 6 increased with the amount of methanol in the solvent. We therefore focused on the structure of the π-π stacking between pyridyl groups and the CH-π interactions between the methyl and pyridyl groups within the nanocube. Our study clearly shows the role played by the methanol solvent molecules in the assembly of the nanocube in terms of the substituent and solvent effects at the molecular level, and that these substituent and solvent effects are important for the self-assembly of the nanocubes.
Simulated molecular-scale interaction of supercritical fluid mobile and stationary phases.
Siders, Paul D
2017-12-08
In supercritical fluid chromatography, molecules from the mobile phase adsorb on the stationary phase. Stationary-phase alkylsilane-terminated silica surfaces might adsorb molecules at the silica, among the silanes, on a silane layer, or in pore space between surfaces. Mobile phases of carbon dioxide, pure and modified with methanol, and stationary phases were simulated at the molecular scale. Classical atomistic force fields were used in Gibbs-ensemble hybrid Monte Carlo calculations. Excess adsorption of pure carbon dioxide mobile phase peaked at fluid densities of 0.002-0.003Å -3 . Mobile phase adsorption from 7% methanol in carbon dioxide peaked at lower fluid density. Methanol was preferentially adsorbed from the mixed fluid. Surface silanes prevented direct interaction of fluid-phase molecules with silica. Some adsorbed molecules mixed with tails of bonded silanes; some formed layers above the silanes. Much adsorption occurred by filling the space between surfaces in the stationary-phase model. The distribution in the stationary phase of methanol molecules from a modified fluid phase varied with pressure. Copyright © 2017 Elsevier B.V. All rights reserved.
Interaction of alkanes with an amorphous methanol film at 15-180 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souda, Ryutaro
2005-09-15
The hydrogen-bond imperfections and glass-liquid transition of the amorphous methanol film have been investigated on the basis of the film dewetting and the incorporation/desorption of alkane molecules adsorbed on the surface. The butane is incorporated completely in the bulk of the porous methanol film up to 70 K. At least two distinct states exist for the incorporated butane; one is assignable to solvated molecules in the bulk and the other is weakly bound species at the surface or in the subsurface site. For the nonporous methanol film, the uptake of butane in the bulk is quenched but butane forms amore » surface complex with methanol above 80 K. The butane incorporated in the bulk of the glassy methanol film is released at 120 K, where dewetting of the methanol film occurs simultaneously due to evolution of the supercooled liquid phase.« less
Comets - Chemistry and chemical evolution
NASA Technical Reports Server (NTRS)
Donn, B.
1982-01-01
Research on the chemical composition and conditions in comets and their possible role in the origin of life on earth is surveyed. The inorganic and organic compounds and ions indicated in the ultraviolet and visible spectra of comets are noted, and evidence for the existence of at least a small proportion of complex organic molecules in comets is presented. It is then pointed out that while cometary material could have reached the earth and provided volatile elements from which biochemical compounds could have formed, it is unlikely that a cometary nucleus could have withstood the temperatures and pressures necessary to sustain an environment in which life could have originated.
Hydrostatic pressure effect on PNIPAM cononsolvency in water-methanol solutions.
Pica, Andrea; Graziano, Giuseppe
2017-12-01
When methanol is added to water at room temperature and 1atm, poly (N-isopropylacrylamide), PNIPAM, undergoes a coil-to-globule collapse transition. This intriguing phenomenon is called cononsolvency. Spectroscopic measurements have shown that application of high hydrostatic pressure destroys PNIPAM cononsolvency in water-methanol solutions. We have developed a theoretical approach that identifies the decrease in solvent-excluded volume effect as the driving force of PNIPAM collapse on increasing the temperature. The same approach indicates that cononsolvency, at room temperature and P=1atm, is caused by the inability of PNIPAM to make all the attractive energetic interactions that it could be engaged in, due to competition between water and methanol molecules. The present analysis suggests that high hydrostatic pressure destroys cononsolvency because the coil state becomes more compact, and the quantity measuring PNIPAM-solvent attractions increases in magnitude due to the solution density increase, and the ability of small water molecules to substitute methanol molecules on PNIPAM surface. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, Paul; Ubachs, Wim; Bethlem, Hendrick L.
2011-12-15
Recently, methanol was identified as a sensitive target system to probe variations of the proton-to-electron mass ratio {mu}[Jansen et al., Phys. Rev. Lett. 106, 100801 (2011)]. The high sensitivity of methanol originates from the interplay between overall rotation and hindered internal rotation of the molecule; that is, transitions that convert internal rotation energy into overall rotation energy, or vice versa, have an enhanced sensitivity coefficient, K{sub {mu}}. As internal rotation is a common phenomenon in polyatomic molecules, it is likely that other molecules display similar or even larger effects. In this paper we generalize the concepts that form the foundationmore » of the high sensitivity in methanol and use this to construct an approximate model which makes it possible to estimate the sensitivities of transitions in internal rotor molecules with C{sub 3v} symmetry, without performing a full calculation of energy levels. We find that a reliable estimate of transition sensitivities can be obtained from the three rotational constants (A, B, and C) and three torsional constants (F, V{sub 3}, and {rho}). This model is verified by comparing obtained sensitivities for methanol, acetaldehyde, acetamide, methyl formate, and acetic acid with a full analysis of the molecular Hamiltonian. Of the molecules considered, methanol is by far the most suitable candidate for laboratory and cosmological tests searching for a possible variation of {mu}.« less
Harriss, Bethany I; Wilson, Claire; Radosavljevic Evans, Ivana
2014-08-01
Structural studies have been carried out of two solid forms of niclosamide [5-chloro-N-(2-chloro-4-nitrophenyl)-2-hydroxybenzamide, NCL], a widely used anthelmintic drug, namely niclosamide methanol monosolvate, C13H8Cl2N2O4·CH3OH or NCL·MeOH, and niclosamide monohydrate, denoted HA. The structure of the methanol solvate obtained from single-crystal X-ray diffraction is reported for the first time, elucidating the key host-guest hydrogen-bonding interactions which lead to solvate formation. The essentially planar NCL host molecules interact via π-stacking and pack in a herringbone-type arrangement, giving rise to channels along the crystallographic a axis in which the methanol guest molecules are located. The methanol and NCL molecules interact via short O-H...O hydrogen bonds. Laboratory powder X-ray diffraction (PXRD) measurements reveal that the initially phase-pure NCL·MeOH solvate readily transforms into NCL monohydrate within hours under ambient conditions. PXRD further suggests that the NCL monohydrate, HA, is isostructural with the NCL·MeOH solvate. This is consistent with the facile transformation of the methanol solvate into the hydrate when stored in air. The crystal packing and the topology of guest-molecule inclusion are compared with those of other NCL solvates for which the crystal structures are known, giving a consistent picture which correlates well with known experimentally observed desolvation properties.
Prospects for P-bearing molecules in cometary atmospheres
NASA Astrophysics Data System (ADS)
Boice, Daniel; de Almeida, Amaury
Phosphorus is a key element in all known forms of life and phosphorus-bearing compounds have been observed in space. Phosphorus is ubiquitous in meteorites, albeit in small quantities, with phosphates being found in stoney meteorites and phosphides have been identified in iron meteorites. It has been detected as part of the dust component in comet Halley but searches for P-bearing species in the gas phase in comets have been unsuccessful. Based of its moderate cosmic abundance (eighteenth most abundant element, [P]/[N] = 4 x 10-3 ) and the positive identification of P-bearing species in the interstellar medium (such as, PN, PC, HCP and PO), we would expect simple molecules, diatomics (like PH, PO, PC, PS), triatomics (like HCP and PH2 ), and possibly other polyatomics (like phosphine PH3 and diphosphine P2 H4 ), to exist in cometary ices, hence released into the gas phase upon ice sublimation. Our fluid dynamics model with chemistry of cometary comae (SUISEI) has been adapted to study this problem. SUISEI produces cometocentric abundances of the coma gas species; velocities of the bulk gas, light atomic and molecular hydrogen with escape, and electrons; gas and electron temperatures; column densities to facilitate comparison with observations; coma energy budget quantities; attenuation of the solar irradiance; and other quantities that can be related readily to observations. We present results from the first quantitative study of phosphorus-bearing molecules in comets to identify likely species containing phosphorus to aid in future searches for this important element in comets, possibly shedding light on issues of comet formation (time and place) and matters of the prebiotic to biotic evolution of life. Acknowledgements. This work was supported by the NSF Planetary Astronomy Program.
Site Competition During Coadsorption of Acetone with Methanol and Water on TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Mingmin; Henderson, Michael A.
2011-08-02
The competitive interaction between acetone and two solvent molecules (methanol and water) for surface sites on rutile TiO2(110) was studied using temperature programmed desorption (TPD). On a vacuum reduced TiO2(110) surface, which possessed ~5% oxygen vacancy sites, excess methanol displaced preadsorbed acetone molecules to weakly bound and physisorbed desorption states below 200 K, whereas acetone was stabilized to 250 K against displacement by methanol on an oxidized surface through formation of an acetone-diolate species. These behaviors of acetone differ from the competitive interactions between acetone and water in that acetone is less susceptible to displacement by water. Examination of acetone+methanolmore » and acetone+water multilayer combinations shows that acetone is more compatible in water-ice films than in methanol-ice films, presumably because water has greater potential as a hydrogen-bond donor than does methanol. Acetone molecules displaced from the TiO2(110) surface by water are more likely to be retained in the near-surface region, having a greater opportunity to revisit the surface, than when methanol is used as a coadsorbate. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
Interpretation of comet spectra
NASA Technical Reports Server (NTRS)
Arpigny, C.
1976-01-01
The spectra of comets are discussed by considering successively a number of molecules that have been studied recently: CN, CH, C2, C3, OH, CH(+). The first two of this list, CN and CH, have been analyzed in greatest detail. A classification of the spectra of cometary heads is introduced.
Boamah, Mavis D; Sullivan, Kristal K; Shulenberger, Katie E; Soe, ChanMyae M; Jacob, Lisa M; Yhee, Farrah C; Atkinson, Karen E; Boyer, Michael C; Haines, David R; Arumainayagam, Christopher R
2014-01-01
In the interstellar medium, UV photolysis of condensed methanol (CH3OH), contained in ice mantles surrounding dust grains, is thought to be the mechanism that drives the formation of "complex" molecules, such as methyl formate (HCOOCH3), dimethyl ether (CH3OCH3), acetic acid (CH3COOH), and glycolaldehyde (HOCH2CHO). The source of this reaction-initiating UV light is assumed to be local because externally sourced UV radiation cannot penetrate the ice-containing dark, dense molecular clouds. Specifically, exceedingly penetrative high-energy cosmic rays generate secondary electrons within the clouds through molecular ionizations. Hydrogen molecules, present within these dense molecular clouds, are excited in collisions with these secondary electrons. It is the UV light, emitted by these electronically excited hydrogen molecules, that is generally thought to photoprocess interstellar icy grain mantles to generate "complex" molecules. In addition to producing UV light, the large numbers of low-energy (< 20 eV) secondary electrons, produced by cosmic rays, can also directly initiate radiolysis reactions in the condensed phase. The goal of our studies is to understand the low-energy, electron-induced processes that occur when high-energy cosmic rays interact with interstellar ices, in which methanol, a precursor of several prebiotic species, is the most abundant organic species. Using post-irradiation temperature-programmed desorption, we have investigated the radiolysis initiated by low-energy (7 eV and 20 eV) electrons in condensed methanol at - 85 K under ultrahigh vacuum (5 x 10(-10) Torr) conditions. We have identified eleven electron-induced methanol radiolysis products, which include many that have been previously identified as being formed by methanol UV photolysis in the interstellar medium. These experimental results suggest that low-energy, electron-induced condensed phase reactions may contribute to the interstellar synthesis of "complex" molecules previously thought to form exclusively via UV photons.
Jeong, Nak Cheon; Samanta, Bappaditya; Lee, Chang Yeon; Farha, Omar K; Hupp, Joseph T
2012-01-11
HKUST-1, a metal-organic framework (MOF) material containing Cu(II)-paddlewheel-type nodes and 1,3,5-benzenetricarboxylate struts, features accessible Cu(II) sites to which solvent or other desired molecules can be intentionally coordinated. As part of a broader investigation of ionic conductivity in MOFs, we unexpectedly observed substantial proton conductivity with the "as synthesized" version of this material following sorption of methanol. Although HKUST-1 is neutral, coordinated water molecules are rendered sufficiently acidic by Cu(II) to contribute protons to pore-filling methanol molecules and thereby enhance the alternating-current conductivity. At ambient temperature, the chemical identities of the node-coordinated and pore-filling molecules can be independently varied, thus enabling the proton conductivity to be reversibly modulated. The proton conductivity of HKUST-1 was observed to increase by ~75-fold, for example, when node-coordinated acetonitrile molecules were replaced by water molecules. In contrast, the conductivity became almost immeasurably small when methanol was replaced by hexane as the pore-filling solvent. © 2011 American Chemical Society
Separation and conversion dynamics of nuclear-spin isomers of gaseous methanol
Sun, Zhen-Dong; Ge, Meihua; Zheng, Yujun
2015-01-01
All symmetrical molecules with non-zero nuclear spin exist in nature as nuclear-spin isomers (NSIs). However, owing to the lack of experimental information, knowledge is rare about interconversions of NSIs of gaseous molecules with torsional symmetry. Here we report our separation and conversion observations on NSI-torsion-specific transition systems of gaseous methanol from a light-induced drift experiment involving partially spatial separation of the ortho and para isomers. We find that vibrationally excited molecules of the methanol spin isomer have a smaller collision cross-section than their ground-state counterparts. Interconversion of the enriched ortho isomer with the para isomer, which is generally considered improbable, has been quantitatively studied by sensitive detections of the spectral intensities. Rather counterintuitively, this reveals that the interconversion is inhibited with increasing pressure. Our results suggest that the spin conversion mechanism in methanol is via a quantum relaxation process with the quantum Zeno effect induced by molecular collisions. PMID:25880882
Yang, Deheng; Li, Yadong; Liu, Xinyi; Cao, Yue; Gao, Yi; Shen, Y Ron; Liu, Wei-Tao
2018-04-24
The facet-specific interaction between molecules and crystalline catalysts, such as titanium dioxides (TiO 2 ), has attracted much attention due to possible facet-dependent reactivity. Using surface-sensitive sum-frequency vibrational spectroscopy, we have studied how methanol interacts with different common facets of crystalline TiO 2 , including rutile(110), (001), (100), and anatase(101), under ambient temperature and pressure. We found that methanol adsorbs predominantly in the molecular form on all of the four surfaces, while spontaneous dissociation into methoxy occurs preferentially when these surfaces become defective. Extraction of Fermi resonance coupling between stretch and bending modes of the methyl group in analyzing adsorbed methanol spectra allows determination of the methanol adsorption isotherm. The isotherms obtained for the four surfaces are nearly the same, yielding two adsorbed Gibbs free energies associated with two different adsorption configurations singled out by ab initio calculations. They are ( i ) ∼-20 kJ/mol for methanol with its oxygen attached to a low-coordinated surface titanium, and ( ii ) ∼-5 kJ/mol for methanol hydrogen-bonded to a surface oxygen and a neighboring methanol molecule. Despite similar adsorption energetics, the Fermi resonance coupling strength for adsorbed methanol appears to depend sensitively on the surface facet and coverage.
Gong, Yu; Andrews, Lester; Jackson, Virgil E; Dixon, David A
2012-10-15
Reactions of ThO molecules and CH(4) have been investigated in solid argon near 4 K. The CH(3)Th(O)H molecule is produced when the sample is exposed to UV irradiation. Identification of this new intermediate is substantiated by observation of the Th═O and Th-H stretching vibrational modes with isotopic substitution via matrix infrared spectroscopy, and the assignments are supported by electronic structure frequency calculations. Methanol absorptions increase together with formation of the CH(3)Th(O)H molecule, suggesting a methane to methanol conversion induced by thorium oxide proceeding through the CH(3)Th(O)H intermediate. The formation of CH(3)Th(O)H from ThO + CH(4) is exothermic (ΔH(rxn) = -11 kcal/mol) with an energy barrier of 30 kcal/mol at the CCSD(T)//B3LYP level. Decomposition of this intermediate to form methanol involves spin crossing, and the overall reaction from the intermediate is endothermic by 127 kcal/mol. There is no activation energy for the reaction of thorium atoms with methanol to give CH(3)Th(O)H, as observed in separate experiments with Th and CH(3)OH.
CRAF Mission: An opportunity for exobiology
NASA Technical Reports Server (NTRS)
Neugebauer, Marcia; Weissman, Paul
1992-01-01
The Halley missions of 1986 gave us a first, quick glimpse of a comet nucleus and the first in situ measurements of cometary gas and dust. Many of our basic ideas about cometary nuclei were confirmed while a number of startling new discoveries were also made. However, in many respects the very fast Halley flybys raised more questions than they answered. We learned, for example, that comets contain a large amount of organic material but we were unable to determine precisely which organic molecules were present. We learned, too, that the nucleus of a comet is a dark, irregularly shaped body, but we could determine very little about the physical state and structure of the ices and grains within the comet nucleus.
Website for the Astrochemistry Laboratory, Astrophysics Branch, Space Sciences Division
NASA Technical Reports Server (NTRS)
Sandford, Scott; DeVincenzi, D. (Technical Monitor)
2002-01-01
The Astrochemistry Laboratory in the Astrophysics Branch (SSA) of the Space Sciences Division at NASA's Ames Research Center specializes in the study of extraterrestrial materials and their analogs. The staff has pioneered laboratory studies of space environments including interstellar, cometary, and planetary ices, simulations of the so-called 'Unidentified' Infrared Emission Bands and Diffuse Interstellar Bands using PAHs (Polycyclic Aromatic Hydrocarbons) and PAH-related materials, and has extensive experience with low-temperature spectroscopy and astronomical observation. Important discoveries made by the Astrochemistry Group include: (1) The recognition that polycyclic aromatic hydrocarbons and their ions are common in space; (2) The identification of a major fraction of the known molecular species frozen in interstellar/pre-cometary ices; (3) The recognition that a significant fraction of the carbon in the interstellar medium is carried by both microdiamonds and organic materials; (4) The expansion of the types of molecules expected to be synthesized in interstellar/pre-cometary ices. These could be delivered to the early Earth (or other body) and influence the origin or early evolution of life.
Shin, Kyuchul; Udachin, Konstantin A.; Moudrakovski, Igor L.; Leek, Donald M.; Alavi, Saman; Ratcliffe, Christopher I.; Ripmeester, John A.
2013-01-01
One of the best-known uses of methanol is as antifreeze. Methanol is used in large quantities in industrial applications to prevent methane clathrate hydrate blockages from forming in oil and gas pipelines. Methanol is also assigned a major role as antifreeze in giving icy planetary bodies (e.g., Titan) a liquid subsurface ocean and/or an atmosphere containing significant quantities of methane. In this work, we reveal a previously unverified role for methanol as a guest in clathrate hydrate cages. X-ray diffraction (XRD) and NMR experiments showed that at temperatures near 273 K, methanol is incorporated in the hydrate lattice along with other guest molecules. The amount of included methanol depends on the preparative method used. For instance, single-crystal XRD shows that at low temperatures, the methanol molecules are hydrogen-bonded in 4.4% of the small cages of tetrahydrofuran cubic structure II hydrate. At higher temperatures, NMR spectroscopy reveals a number of methanol species incorporated in hydrocarbon hydrate lattices. At temperatures characteristic of icy planetary bodies, vapor deposits of methanol, water, and methane or xenon show that the presence of methanol accelerates hydrate formation on annealing and that there is unusually complex phase behavior as revealed by powder XRD and NMR spectroscopy. The presence of cubic structure I hydrate was confirmed and a unique hydrate phase was postulated to account for the data. Molecular dynamics calculations confirmed the possibility of methanol incorporation into the hydrate lattice and show that methanol can favorably replace a number of methane guests. PMID:23661058
Shin, Kyuchul; Udachin, Konstantin A; Moudrakovski, Igor L; Leek, Donald M; Alavi, Saman; Ratcliffe, Christopher I; Ripmeester, John A
2013-05-21
One of the best-known uses of methanol is as antifreeze. Methanol is used in large quantities in industrial applications to prevent methane clathrate hydrate blockages from forming in oil and gas pipelines. Methanol is also assigned a major role as antifreeze in giving icy planetary bodies (e.g., Titan) a liquid subsurface ocean and/or an atmosphere containing significant quantities of methane. In this work, we reveal a previously unverified role for methanol as a guest in clathrate hydrate cages. X-ray diffraction (XRD) and NMR experiments showed that at temperatures near 273 K, methanol is incorporated in the hydrate lattice along with other guest molecules. The amount of included methanol depends on the preparative method used. For instance, single-crystal XRD shows that at low temperatures, the methanol molecules are hydrogen-bonded in 4.4% of the small cages of tetrahydrofuran cubic structure II hydrate. At higher temperatures, NMR spectroscopy reveals a number of methanol species incorporated in hydrocarbon hydrate lattices. At temperatures characteristic of icy planetary bodies, vapor deposits of methanol, water, and methane or xenon show that the presence of methanol accelerates hydrate formation on annealing and that there is unusually complex phase behavior as revealed by powder XRD and NMR spectroscopy. The presence of cubic structure I hydrate was confirmed and a unique hydrate phase was postulated to account for the data. Molecular dynamics calculations confirmed the possibility of methanol incorporation into the hydrate lattice and show that methanol can favorably replace a number of methane guests.
Investigation of Ion Transport Mechanisms in NAFION in the Presence of Water and Methanol
1996-01-01
uptakes. Zawodzinski et al have determined that the electroosmotic drag coefficient (defined by Zawodzinski as the number of water molecules per H...from the pure water and methanol solutions for comparison to the mixed solutions. These graphs show that solutions with more methanol present have
Where is the Phosphorus in Cometary Volatiles?
NASA Astrophysics Data System (ADS)
Boice, Daniel C.; de Almeida, Amaury
2015-08-01
Phosphorus is a key element in all living organisms but its role in life's origin is not well understood. Phosphorus-bearing compounds have been observed in space, are ubiquitous in meteorites in small quantities, and have been detected as part of the dust component in comets Halley and Wild 2. However, searches for P-bearing species in the gas phase in cometary comae have been unsuccessful. We present results of the first quantitative study of P-bearing molecules in comets to identify likely species containing phosphorus. We found reaction pathways of gas-phase and photolytic chemistry for simple P-bearing molecules likely to be found in comets and important for prebiotic chemistry. We hope to aid future searches for this important element, especially the Rosetta Mission to Comet 67P/Churyumov-Gerasimenko, possibly shedding light on issues of comet formation (time and place) and understanding prebiotic to biotic evolution of life.Acknowledgements: We greatly appreciate support from the NSF Planetary Astronomy Program under Grant No. 0908529 and the Instituto de Astronomia, Geofísica e Ciências Atmosféricas at the University of São Paulo.
Enantioselective Analysis in instruments onboard ROSETTA/PHILAE and ExoMars
NASA Astrophysics Data System (ADS)
Hendrik Bredehöft, Jan; Thiemann, Wolfram; Meierhenrich, Uwe; Goesmann, Fred
It has been suggested a number of times in the past, to look for chirality as a biomarker. So far, for lack of appropriate instrumentation, space missions have never included enantioselective analysis. The distinction between enantiomers is of crucial importance to the question of the origin of the very first (pre)biotic molecules. If molecules detected in situ on another celestial body were found to exhibit a chiral bias, this would mean that at least partial asymmetric synthesis could take place abiotically. If this chiral bias should be found to be near 100For the currently flying ESA mission ROSETTA an enantioselective instrument was built, to try for the first time to detect and separate chiral molecules in situ. This instrument is COSAC, the Cometary Sampling and Acquisition Experiment, an enantioselective GCMS device[1,2], which is included in the lander PHLIAE that will eventually in 2014 land on the nucleus of comet 67P/Churyumov-Gerasimenko. A similar but even more powerful type of enantioselective GC-MS is in preparation for ESA's ExoMars mission. This instrument is part of MOMA, the Mars Organic Molecules Analyser. It has the objective of identifying and quantifying chiral organic molecules in surface and subsurface samples of Mars. Currently ExoMars is scheduled for 2018. The newly developed enantioselective technique utilized by both COSAC and MOMA will be described, including sample acquisition, derivatization, and separation in space-resistant chiral stationary capillary columns with time-of-flight mass spectrometric detection. Results of enantioselective analyses of representative test samples with special emphasis on amino acids[3], the building blocks of protein polymers, will be presented and we will discuss potential results of space missions Rosetta and ExoMars. [1] Thiemann W.H.-P., Meierhenrich U.: ESA Mission ROSETTA Will Probe for Chirality of Cometary Amino Acids. Origins of Life and Evolution of Biospheres 31 (2001), 199-210. [2] Goesmann F., Rosenbauer H., Roll R., Szopa C., Raulin F., Sternberg R., Israel G., Meier-henrich U., Thiemann W., Muñoz Caro G.M.: COSAC, The cometary sampling and composi-n tion experiment on Philae. Space Science Reviews 128 (2007), 257-280. [3] Meierhenrich U.J.: Amino Acids and the Asymmetry of Life -Caught in the Act of Forma-tion. Springer, Heidelberg Berlin New York (2008).
NASA Astrophysics Data System (ADS)
Makó, Éva; Kovács, András; Ható, Zoltán; Kristóf, Tamás
2015-12-01
Recent experimental and simulation findings with kaolinite-methanol intercalation complexes raised the question of the existence of more stable structures in wet and dry state, which has not been fully cleared up yet. Experimental and molecular simulation analyses were used to investigate different types of kaolinite-methanol complexes, revealing their real structures. Cost-efficient homogenization methods were applied to synthesize the kaolinite-dimethyl sulfoxide and kaolinite-urea pre-intercalation complexes of the kaolinite-methanol ones. The tested homogenization method required an order of magnitude lower amount of reagents than the generally applied solution method. The influence of the type of pre-intercalated molecules and of the wetting or drying (at room temperature and at 150 °C) procedure on the intercalation was characterized experimentally by X-ray diffraction and thermal analysis. Consistent with the suggestion from the present simulations, 1.12-nm and 0.83-nm stable kaolinite-methanol complexes were identified. For these complexes, our molecular simulations predict either single-layered structures of mobile methanol/water molecules or non-intercalated structures of methoxy-functionalized kaolinite. We found that the methoxy-modified kaolinite can easily be intercalated by liquid methanol.
Silber, David; Kowalski, Piotr M; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof
2016-09-30
Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO 2 (110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO 2 (110) surface.
NASA Astrophysics Data System (ADS)
Silber, David; Kowalski, Piotr M.; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof
2016-09-01
Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO2(110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO2(110) surface.
NASA Technical Reports Server (NTRS)
dePater, I.; Hollenbach, D. J.; Charnley, S. B.
1999-01-01
In protostellar cores where the dust temperature has been raised above 100K and subsequently allowed to fall below the condensation temperature of methanol, recondensation on to cooling grains removes methanol molecules from the gas at rates.faster (about 1000 times) than those of chemical reactions. Molecular recondensation can have a profound effect on the chemical composition of hot cores. The methanol chemistry of hot cores is solved analytically and the trend in molecule binding energies required is compared with theoretical and experimental values. It is demonstrated, through a model calculation incorporating recondensation, that it yields a consistent explanation of the similarity of the CH3OH , CH3OCH3 and HCOOCH3 abundances measured in G34.3 and W3(H2O). These observations suggest that the latter molecules could not be derived from CH3OH through gas phase reactions. The manner in which molecular recondensation could affect the interpretation of hot core chemistry in general, particularly of organic molecules, is briefly discussed.
Methanol in its own gravy. A PCM study for simulation of vibrational spectra.
Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans
2011-05-07
For studying both hydrogen bond and dipole-dipole interactions between methanol molecules (self-association) the geometry of clusters of increasing numbers of methanol molecules (n = 1,2,3) were optimized and also their vibrational frequencies were calculated with quantum chemical methods. Beside these B3LYP/6-311G** calculations, PCM calculations were also done for all systems with PCM at the same quantum chemical method and basis set, for considering the effect of the liquid continuum on the cluster properties. Comparing the results, the measured and calculated infrared spectra are in good accordance. This journal is © the Owner Societies 2011
On the role of electron-driven processes in planetary atmospheres and comets
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2009-11-01
After the presence of ionized layers in the Earth's atmosphere was inferred, it took 50 years to quantitatively understand them. The electron density could not be accounted for until Sir David Bates first suggested (along with Sir Harrie Massey) that the main electron-loss process was dissociative recombination with molecular ions, and he and colleagues then developed a theory to predict those rates of dissociative recombination. However, electron impact processes, particularly excitation, have been considered insignificant in most situations, in both planetary and cometary atmospheres. Here we describe cases where recent calculations have shown that electron impact excitation of molecules is important, suggesting that, just as in the time of Sir David Bates, electron-driven processes remain fundamental to our quantitative understanding of atmospheric and cometary phenomena.
Organic chemistry of cometary dust as derived from PUMA 1 data
NASA Technical Reports Server (NTRS)
Kissel, J.; Krueger, F. R.
1989-01-01
Onboard the Halley Fly-By spacecrafts Vega 1, Vega 2, and Giotto were the dust impact mass spectrometers PUMA 1, PUMA 2, and PIA respectively. PUMA 1 was the most sensitive instrument among them. From its data the occurrence of masslines greater than 60 Daltons could be shown to be statistically significant. An analysis of these masslines lead to a scenario, which could explain the masslines as fragment ions from larger molecules which characterize the chemical nature of cometary organic matter as: (1) highly unsaturated hydrocarbons; (2) some of them containing oxygen; (3) less containing nitrogen; and (4) a few containing oxygen and nitrogen as heteroatoms. From the properties of the spectrometer, also some physical parameters of the dust particles could be inferred, such as their density and structure.
Volatiles (H, C, N, O, noble gases) in comets as tracers of early solar system events (Invited)
NASA Astrophysics Data System (ADS)
Marty, B.
2013-12-01
Volatiles (H, C, N, O, noble gases) present the largest variations in their relative abundances and, importantly, in their isotopic ratios, among solar system elements. The original composition of the protosolar nebula has been investigated through the measurements of primitive meteorites and of in-situ (e.g. Galileo probe analysis of the Jupiter's atmosphere) and sample-return (Genesis, recovery and analysis of solar wind) missions. The protosolar gas was poor in deuterium, in 15N and in 17,18O. Variations among solar system reservoir reach several hundreds of percents for the D/H and 15N/14N ratios. These variations are possibly : (i) due to interactions between XUV photons of the proto-Sun and the-dust, (ii) result from low temperature ion-molecule reactions, or (iii) constitute an heritage on interstellar volatiles trapped in dust (e.g., organics). Likewise, noble gases are elementally and isotopically (1% per amu for xenon) fractionated with respect to the composition of the solar wind (our best proxy for the protosolar nebula composition). Cometary matter directly measured on coma, or in Stardust material, or in IDPs, seems to present among the largest heterogeneities in their stable isotope compositions but knowledge on their precise compositions of the different phases and species is partial and mosty lacking. Among the several important issues requiring a better knowledge of cometary volatiles are the origin(s) of volatile elements on Earth and Moon, on Mars and on Venus, understanding large scale circulation of matter between hot and frozen zones, and the possibility of interstellar heritage for organics. Critical measurements to be made by the next cometary missions include the value of the D/H ratio in water ice, in NH3 and organics. Nitrogen is particularly interesting as cometary HCN and CN are rich in 15N, but an isotoppe mass balance will require to measure the main host species (N2 ?). Noble gases are excellent tracers of physical processes, including the delivery of volatile elements onto planets and atmospheric escape processes, but their cometary inventory is almost not known. The only noble gas (helium and neon) measurement in cometary matter from Stardust suggests that they may be genetically linked to organic matter found in primitive meteorites rather than to the proto-solar gas. Trapping of noble gases in comets is an important issue not only for the physical conditions of cometary formation and evolution, but also for better understanding the possible contribution of cometary matter to Earth and Moon.
NASA Astrophysics Data System (ADS)
Tanışlı, Murat; Taşal, Erol
2017-07-01
We could easily argue that the decomposition of the chemical chain molecules is a compelling application when it comes to the atmospheric pressure plasma. In this paper, we have investigated the effect of the atmospheric pressure argon plasma on 4-((2-methoxyphenyl)diazenyl)benzene-1,3,-diol molecule (abbreviated as 4MBD) at room temperature. 4MBD molecule is one of the industrial dye molecules used widely. When considering the ecological life, this molecule is very harmful and dangerous. As such, we suggest a new decomposing method for such molecules. Atmospheric pressure plasma jet is principally treated for the breakdown of the molecule in question. Fourier transform infrared spectrometry and UV-Vis spectrophotometry tools are used to characterization of the molecules subsequent to the plasma applications to 4MBD molecule in ethanol and methanol solvents. The atmospheric-pressure plasma jet of argon (Ar) as non-equilibrium has been formed by ac-power generator with frequency—24 kHz and voltage—12 kV. Characterizations for solutions prepared with ethanol and methanol solvents of 4MBD molecule have been examined after applying ( duration 3 min) the atmospheric pressure plasma jet. The molecule is broken at 6C-7N-8N=9C stretching peak in consequence of the plasma treatment. The new plasma photo-products for ethanol and methanol solutions are produced as 6C-7N-8N=9C (strong, varying) and 12C=17O (strong, wide) stretching peaks. Also, the bathochromic drifts are discerned.
Discovery of Methanol in a Planetary Birthplace
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-05-01
Data from the Atacama Large Millimeter/submillimeter Array (ALMA) has recently revealed the first detection of gas-phase methanol, a derivative of methane, in a protoplanetary disk. This milestone discovery is an important step in understanding the conditions for planet formation that can lead to life-supporting planets like Earth.Planetary ChemistryOne major goal in the study of exoplanets is to find planets that orbit in their host stars habitable zones, a measure that determines whether the planet receives the right amount of sunlight to support liquid water. But theres another crucial element in the formation of a life-supporting planet: chemistry.To understand the chemistry of newly born planets, we need to study protoplanetary disks because its from these that young planets form. The elements and molecules contained in these dusty disks are what initially make up the atmospheres of planets forming within the disks.The Atacama Large Millimeter/submillimeter Array under the southern sky. [ESO/B. Tafreshi]The Hunt for ComplexityThe detection of complex molecules in protoplanetary disks is an important milestone, because complex molecules are necessary to build the correct chemistry to support life. Unfortunately, detecting these molecules is very difficult, requiring observations with both high spatial resolution and high sensitivity. Thus far, though weve observed elements and simple molecules in protoplanetary disks, detections of complex molecules have been elusive with only one success before now.Luckily, we now have an observatory up to the challenge! ALMAs unprecedented spatial resolution and sensitivity has recently allowed a team of scientists led by Catherine Walsh (Leiden University) to observe gas-phase methanol in a protoplanetary disk for the first time. This detection was made in the disk around the young star TW Hya, and it represents one of the largest molecules that has ever been observed in a disk to date.Locating IcesThe model (purple line) and data (dashed line) showing the methanol line detection. [Adapted from Walsh et al. 2016]Since TW Hyas disk has temperatures of less than ~100K (-173C), we would expect most of the disks methanol to be frozen. The gas-phase methanol observed by Walsh and collaborators was likely released from a larger reservoir of frozen methanol residing on dust grains in the disk. The peak of the methanol emission was detectedfroma ring located about 30 AU out from the central star, which suggests that the larger dust grains in the disk located in the inner 50 AU may host the bulk of the disk ice reservoir.Walsh and collaborators important detection opens a window into studying complex organic chemistry during planetary system formation. This stepping stone can help us to better understand the conditions when Earth formed and what we should look for in the search for life-supporting planets.CitationCatherine Walsh et al 2016 ApJ 823 L10. doi:10.3847/2041-8205/823/1/L10
NASA Astrophysics Data System (ADS)
Nuevo, Michel; Bredehöft, Jan Hendrik; Meierhenrich, Uwe J.; d'Hendecourt, Louis; Thiemann, Wolfram H.-P.
2010-03-01
More than 50 stable organic molecules have been detected in the interstellar medium (ISM), from ground-based and onboard-satellite astronomical observations, in the gas and solid phases. Some of these organics may be prebiotic compounds that were delivered to early Earth by comets and meteorites and may have triggered the first chemical reactions involved in the origin of life. Ultraviolet irradiation of ices simulating photoprocesses of cold solid matter in astrophysical environments have shown that photochemistry can lead to the formation of amino acids and related compounds. In this work, we experimentally searched for other organic molecules of prebiotic interest, namely, oxidized acid labile compounds. In a setup that simulates conditions relevant to the ISM and Solar System icy bodies such as comets, a condensed CH3OH:NH3â = 1:1 ice mixture was UV irradiated at ˜80 K. The molecular constituents of the nonvolatile organic residue that remained at room temperature were separated by capillary gas chromatography and identified by mass spectrometry. Urea, glycolic acid, and glycerol were detected in this residue, as well as hydroxyacetamide, glycerolic acid, and glycerol amide. These organics are interesting target molecules to be searched for in space. Finally, tentative mechanisms of formation for these compounds under interstellar/pre-cometary conditions are proposed.
NASA Technical Reports Server (NTRS)
Depois, D.; Ricaud, P.; Lautie, N.; Schneider, N.; Jacq, T.; Biver, N.; Lis, D.; Chamberlain, R.; Phillips, T.; Miller, M.;
2000-01-01
HCN is a minor constituent of the Earth atmosphere, with a typical volume mixing ratio around 10(exp -10) HCN per air molecule. At present, the main source of HCN in the lower atmosphere is expected to be biomass burning. The atmospheric HCN has been observed since 1981, first in the infrared, then at microwave radio frequencies. Globally, above 30 km, HCN measurements are in excess of model predictions based on standard photochemistry and biomass burning as the only HCN source. This excess has been explained by: 1) ion-catalyzed reactions in the entire stratosphere, involving CH.3CN as a precursor and/or 2) a high altitude source as a result of chemical production from the methyl radical CH3, or from injection or production by meteors. HCN is a minor constituent of cometary ices. HCN polymers or copolymers have been suggested as constituents of cometary refractory organic matter, and would thus be present in the incoming meteoroids, if these polymers survived their stay in interplanetary space after ejection. HCN may also be created from the CN radical decomposition product of organic carbon, after reaction with hydrogen-bearing molecules. To test the hypothesis of HCN input by meteoroids or the formation in the upper atmosphere from meteoric ablation products, we decided to monitor the HCN submillimeter lines around a major shower: the Leonids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Thi Nu; Ono, Shota; Ohno, Kaoru, E-mail: ohno@ynu.ac.jp
Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronicmore » excited state configuration.« less
Line parameters of methanol (CH3OH) at 10 microns
NASA Astrophysics Data System (ADS)
Lees, R. M.; Xu, L.-H.; Wang, P.; Brown, L. R.; Kleiner, I.; Johns, J. W. C.
2003-05-01
Laboratory spectra of methanol have been measured at high resolution and analyzed to provide spectroscopic information required for astrophysics and solar system studies. Line positions and quantum assignments have been obtained using spectra recorded at 0.002 cm-1 resolution using a modified Bomem DA3,002 spectrometer. Line intensities have been retrieved using laboratory scans from the McMath-Pierce Fourier-transform spectrometer located at the National Solar Observatory. The 10 micron region methanol absorption arises mainly from the fundamental CO-stretch mode (nu8) at 1033 cm-1, along with occasional transitions perturbed in the region by several nearby interacting states of the methyl rock (nu7), methyl bends (nu5, nu10, nu4) and the OH-bending (nu6) in combination with the torsion (nu12). Overall, the nu8 CO-stretch mode follows the traditional torsion-rotational pattern. We modeled the line positions and intensities for the CO-stretch mode with the one-dimensional torsional Hamiltonian and produced a HITRAN line list for cometary studies. The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. RML and LHXu wish to acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada. IK would like to thank the French Programme National de Planétologie (PNP) for funding this research.
OH+ emission from cometary knots in planetary nebulae
NASA Astrophysics Data System (ADS)
Priestley, F. D.; Barlow, M. J.
2018-05-01
We model the molecular emission from cometary knots in planetary nebulae (PNe) using a combination of photoionization and photodissociation region (PDR) codes, for a range of central star properties and gas densities. Without the inclusion of ionizing extreme ultraviolet (EUV) radiation, our models require central star temperatures T* to be near the upper limit of the range investigated in order to match observed H2 and OH+ surface brightnesses consistent with observations - with the addition of EUV flux, our models reproduce observed OH+ surface brightnesses for T* ≥ 100 kK. For T* < 80 kK, the predicted OH+ surface brightness is much lower, consistent with the non-detection of this molecule in PNe with such central star temperatures. Our predicted level of H2 emission is somewhat weaker than commonly observed in PNe, which may be resolved by the inclusion of shock heating or fluorescence due to UV photons. Some of our models also predict ArH+ and HeH+ rotational line emission above detection thresholds, despite neither molecule having been detected in PNe, although the inclusion of photodissociation by EUV photons, which is neglected by our models, would be expected to reduce their detectability.
Protostellar and cometary detections of organohalogens
NASA Astrophysics Data System (ADS)
Fayolle, Edith C.; Öberg, Karin I.; Jørgensen, Jes K.; Altwegg, Kathrin; Calcutt, Hannah; Müller, Holger S. P.; Rubin, Martin; van der Wiel, Matthijs H. D.; Bjerkeli, Per; Bourke, Tyler L.; Coutens, Audrey; van Dishoeck, Ewine F.; Drozdovskaya, Maria N.; Garrod, Robin T.; Ligterink, Niels F. W.; Persson, Magnus V.; Wampfler, Susanne F.; Rosina Team
2017-10-01
Organohalogens, a class of molecules that contain at least one halogen atom bonded to carbon, are abundant on the Earth where they are mainly produced through industrial and biological processes1. Consequently, they have been proposed as biomarkers in the search for life on exoplanets2. Simple halogen hydrides have been detected in interstellar sources and in comets, but the presence and possible incorporation of more complex halogen-containing molecules such as organohalogens into planet-forming regions is uncertain3,4. Here we report the interstellar detection of two isotopologues of the organohalogen CH3Cl and put some constraints on CH3F in the gas surrounding the low-mass protostar IRAS 16293-2422, using the Atacama Large Millimeter/submillimeter Array (ALMA). We also find CH3Cl in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) by using the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument. The detections reveal an efficient pre-planetary formation pathway of organohalogens. Cometary impacts may deliver these species to young planets and should thus be included as a potential abiotical production source when interpreting future organohalogen detections in atmospheres of rocky planets.
Organic synthesis in experimental impact shocks
NASA Technical Reports Server (NTRS)
McKay, C. P.; Borucki, W. J.
1997-01-01
Laboratory simulations of shocks created with a high-energy laser demonstrate that the efficacy of organic production depends on the molecular, not just the elemental composition of the shocked gas. In a methane-rich mixture that simulates a low-temperature equilibrium mixture of cometary material, hydrogen cyanide and acetylene were produced with yields of 5 x 10(17) molecules per joule. Repeated shocking of the methane-rich mixture produced amine groups, suggesting the possible synthesis of amino acids. No organic molecules were produced in a carbon dioxide-rich mixture, which is at odds with thermodynamic equilibrium approaches to shock chemistry and has implications for the modeling of shock-produced organic molecules on early Earth.
Probing the presently tenuous link between comets and the origin of life
NASA Technical Reports Server (NTRS)
Hobbs, R. W.; Hollis, J. M.
1982-01-01
The possibilities of using millimeter-wave technology to probe the subsurface processes of comets to investigate links between cometary materials and the origins of life are explored. It is noted that current theories hold that the necessities for life to begin comprise a fairly uniform temperature, the presence of a solvent to give materials mobility, and the presence of atoms which can form long chains of molecules. Consideration is given to two cometary nuclei models: a core with an equal amount of liquid water and lunar material, and a nucleus with equal amounts of frozen water ice and lunar material. Solutions to the radiative transfer equation for the two models are presented to characterize identifiable emissions using radiometric spectrometer instrumentation on a spacecraft. Particular species such as OH, CN, HCN, and glycine are expected to be detectable if present.
New Observations of Comet Hale-Bopp from La Silla
NASA Astrophysics Data System (ADS)
1998-10-01
Methanol and Hydrogen Cyanide Detected at Record Distance Observations of famous Comet Hale-Bopp continue with the 15-m Swedish-ESO Submillimetre Telescope (SEST) at the La Silla Observatory. They show amazingly strong activity of this unusual object, also at the present, very large distance from the Sun. The radio observations document in detail the release of various molecules from the comet's icy nucleus. Of particular interest is the observed emission from methanol ( CH 3 OH ) and hydrogen cyanide ( HCN ) molecules, never before detected in any comet this far away. Comet Hale-Bopp still going strong Just over 18 months after its perihelion passage on April 1, 1997, Comet Hale-Bopp (official designation C/1995 O1 ) is continuing its outward journey through the Solar System. It is now about 1,000 million kilometres (6.7 AU) from the Sun and the Earth, i.e. almost at the same distance as when it was first discovered in July 1995. After having traversed the northern sky in 1996 and 1997, the comet passed the celestial equator in late June 1997 and is now seen in the southern constellation Volans (The Flying Fish), i.e. just east of the Large Magellanic Cloud. It can only be observed from southern latitudes. The comet's brightness has decreased by a factor of more than 10,000 since it was at its brightest in March 1997, just before perihelion. However, the magnitude is still around 9 - 10, or only about 20-40 times fainter than what can be seen with the unaided eye. Hale-Bopp is therefore visible in binoculars to southern observers as a fuzzy object with a diameter of a few arcminutes. New observations from La Silla Several telescopes at La Silla are following the evolution of the activity of Comet Hale-Bopp as it recedes from the Sun. In particular, the comet is observed monthly with SEST , a 15-m diameter submillimetre telescope operated jointly by the Onsala Space Observatory (OSO, Chalmers University of Technology, Gothenburg, Sweden) and ESO; it is the only telescope of its type in the southern hemisphere. Alternating each month, a Swedish team (headed by Anders Winnberg , OSO) and a European team (headed by Dominique Bockelée-Morvan , Observatoire de Paris) observe emission lines in the radio region of the spectrum from some of the molecules in the comet's coma (the cloud of gas and dust around the cometary "dirty-snowball" nucleus). These data are of great importance for understanding the mechanisms that are responsible for the outgassing (sublimation) of ices inside the nucleus of Comet Hale-Bopp. The observations began at SEST in September 1997 and constitute a follow-up programme of a long-term monitoring project at radio wavelengths that was started in August 1995 at the telescopes of the Institut de RadioAstronomie Millimétrique (IRAM) , the James Clerk Maxwell Telescope (JCMT) , the Caltech Submillimeter Observatory (CSO) and the Nançay radio telescope by several teams of astronomers in Europe and US [1]. Radio emission from nine molecules in the coma were studied: H 2 O (water; by means of observations of the radical OH ), CO (carbon monoxide), CH 3 OH (methanol), H 2 CO (formaldehyde), HCN (hydrogen cyanide), HNC (isomeric hydrogen cyanide), CH 3 CN (methyl cyanide), H 2 S (hydrogen sulphide) and CS (carbon sulphide). Detection of methanol and hydrogen cyanide at record distance ESO PR Photo 40a/98 ESO PR Photo 40a/98 [Preview - JPEG: 800 x 911 pix - 264k] [High-Res - JPEG: 3000 x 3415 pix - 1.6Mb] PR Photo 40a/98 displays a part of the radio spectrum with emission from CH 3 OH molecules in the coma of Comet Hale-Bopp, as observed with the 15-m SEST telescope at La Silla from August 16 to 19, 1998. Three lines of this molecule were detected at 145.0938, 145.0974 and 145.1032 GHz, respectively. The total integration (exposure) time is 708 min. The intensity is indicated in units of antenna temperature. Observations at SEST were performed in July and August 1998 by Emmanuel Lellouch (Observatoire de Paris) and Marcus Gunnarsson (Uppsala Astronomiska Observatorium, Sweden), respectively. Three molecules were still detected : carbon monoxide ( CO ) at 230 GHz, hydrogen cyanide ( HCN ) at 89 GHz and methanol ( CH 3 OH ) at 145 GHz. On August 11, when Hale-Bopp was just over 900 million km (6 AU) from the Sun, no less than 2.4 · 10 28 CO molecules were released by the comet per second, corresponding to 1100 kg per second. The measured production rates of HCN and CH 3 OH were about 200 and 20 times smaller, respectively. The observations of these two organic species at SEST constitute the most distant detections ever made in any comet. The sublimation of water, the main constituent of cometary ices, is responsible for cometary activity within 3-4 AU from the Sun. However, at larger distances, this process ceases, due to the low temperature of the nucleus. At the present large distance from the Sun, the CO molecule is now the prime source of activity of Hale-Bopp. When Comet Hale-Bopp was approaching the Sun before perihelion passage in 1997, the long-term monitoring programmes - in the radio wavelength region as well as in other spectral domains - clearly showed the transition from a CO - to a water-dominated coma, at about the time the comet came within 3-4 AU from the Sun. The CO -production rate now measured at SEST at 6 AU on the outward leg is about 100 times less than that at perihelion, and close to the value measured at the same distance from the Sun before perihelion. While CO was first detected in Hale-Bopp in September 1995 at 6.8 AU from the Sun, only a few weeks after the discovery, HCN and CH 3 OH were not detected until a few months later, when the comet had approached to within 4.8-4.9 AU. It is likely that the convincing detection of these two molecules in August 1998 (cf., e.g., PR Photo 40a/98 ) benefitted from an outburst (a sudden release of material from the nucleus) on August 15-19. Some other species were observed at SEST out to a distance of 3-4 AU ( H 2 S, CS, H 2 CO ), but they are no longer easily detectable due to low production rates and the SEST sensitivity limit. New data may provide a "look into the nucleus" ESO PR Photo 40b/98 ESO PR Photo 40b/98 [Preview - JPEG: 800 x 1062 pix - 357k] [High-Res - JPEG: 3000 x 3981 pix - 2.1Mb] PR Photo 40b/98 displays Hale-Bopp gas production curves (quantity of released gas as a function of heliocentric distance) from radio observations at the IRAM, JCMT, CSO, SEST and Nançay telescopes. Pre-perihelion data are shown on the left, post-perihelion data on the right. Adapted from a figure prepared by Nicolas Biver [2]. Comet Hale-Bopp provided the first opportunity in modern times to follow the activity of a comet over a very large range of heliocentric distances, cf. PR Photo 40b/98 . The new data trace the gas release in some detail as the temperature and insolation change when the comet moves along its orbit. They show similarities and differences between individual molecules that in turn contain useful information about the physical state of cometary ices in the nucleus and its internal structure. Some of the current key questions in this research field are concerned with the degree of separation of different ices ("chemical differentiation") in the upper layers of the nucleus, the form under which these ices co-exist and, not least, the still not understood production mechanisms at large heliocentric distances. These new observations will provide very valuable support to the theoretical studies of the cometary nucleus, now being undertaken by several research groups around the world. The new observations of molecular lines in the radio spectral region also provide information about the temperature in the coma, if several lines of the same species are observed. Moreover, they serve to measure the expansion velocity of the gas and the outgassing pattern of the nucleus. For instance, the observations of CH 3 OH in August 1998 show that the coma is now very cold at about 16 K (-257 o C). At perihelion (0.9 AU from the Sun), the corresponding temperature was of the order of 110 K (-163 o C). The expansion velocity has also considerably decreased since perihelion, from 1.1 km/sec to 0.5 km/sec. There is also evidence of anisotropic outgassing : more gas is seen to be flowing out from the sunlit hemisphere of the nucleus. Observations continue The monitoring of Comet Hale-Bopp at the SEST telescope will continue, at least until March 1999. The comet will then be nearly 1,200 million km (7.9 AU) from the Sun. ESO PR Photo 40c/98 ESO PR Photo 40c/98 [Preview - JPEG: 800 x 933 pix - 432k] [High-Res - JPEG: 3000 x 3498 pix - 2.5Mb] PR Photo 40c/98 shows Comet Hale-Bopp, as imaged on October 19, 1998, in visible light and with the DFOSC instrument at the Danish 1.5-m telescope on La Silla. At this time, the comet was about 1,000 million kilometer (6.7 AU) from the Earth and the Sun. Although well beyond Jupiter's orbit, it is very obvious that strong nucleus activity is still present - the large coma extends well beyond the field of view (200 x 200 arcsec or about 1 million km at the distance of the comet). The image mostly depicts cometary dust that reflects the sunlight. The coma is very asymmetric with more material in the northern hemisphere (above). There are also some jets embedded in the coma which indicate that some of the dust is emitted from active regions on the surface of the nucleus. The background stars are slightly elongated since the telescope followed the motion of the comet in the sky during the exposure. Technical information : 5-min exposure through a broadband V-filtre. North is up, East is left. Observers: Kirsten Kraiberg Knudsen (Copenhagen University, Denmark) and Hermann Boehnhardt (ESO/Chile) Observations are also made from time to time with other telescopes at La Silla. As an example, Photo 40c/98 was obtained a few days ago with the Danish 1.5-m telescope. It shows that a very complex coma structure is still present. Due to the large size of the nucleus, probably 40 - 60 km in diameter, it will be possible to observe this comet with large optical telescopes for many years to come. Information about Hale-Bopp on the web Additional information about Comet Hale-Bopp is available on the web at many sites. Some of the most comprehensive websites may be accessed via the ESO Hale-Bopp site. Notes: [1] Other scientists involved in the long-term radio monitoring of Comet Hale-Bopp are Nicolas Biver (Institute for Astronomy, University of Hawaii, USA), Pierre Colom, Jacques Crovisier, Eric Gérard, Benoit Germain, Emmanuel Lellouch (Observatoire de Paris, France), Didier Despois (Observatoire de Bordeaux, France), Gabriel Paubert (IRAM, Granada, Spain), Raphael Moreno, Joern E. Wink (IRAM, Grenoble, France), John K. Davies (JAC, Hawaii, USA), William R.F. Dent (Royal Observatory, Edinburgh, UK), Hans Rickman, Marcus Gunnarsson (Uppsala Astronomiska Observatorium, Sweden), Per Bergman, Lars E.B. Johansson (OSO, Sweden), Fredrik Rantakyroe (SEST, La Silla), Darek C. Lis, David Mehringer, Dominic Benford, Martin Gardner, Tom G. Phillips (CSO, USA), Heike Rauer (DLR, Berlin, Germany). [2] The figure appears in N. Biver et al. : "Long-term Monitoring of the Outgassing of C/1995 O1 (Hale-Bopp) at Radio Wavelengths", a poster paper presented at the DPS meeting on October 11-16, 1998 (Madison, Wisconsin, USA) and to be published in Vol. 30 of the Bulletin of the American Astronomical Society . How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.
Detection of molecular microwave transitions in the 3 mm wavelength range in comet Kohoutek (1973f)
NASA Technical Reports Server (NTRS)
Buhl, D.; Huebner, W. F.; Snyder, L. E.
1976-01-01
Observations of comet Kohoutek made with a 3-mm line receiver mounted on the 11-m NRAO radio dish at Kitt Peak are presented. The detection of line transitions of hydrogen cyanide and methyl cyanide is reported and discussed along with the variability of neutral gas jets. Microwave transitions in molecules of cometary origin are also examined.
The photochemistry of some possible cometary CN parent species
NASA Technical Reports Server (NTRS)
Halpern, Joshua B.
1987-01-01
Laboratory work on the photochemistry of HC3N, C4N2, and CH3CN in relation to their possible role as CN parent molecules in comets is discussed. Photodissociation of HC3N, photolysis of C4N2, and quantum yields of excited CN(B) and CN(A) radicals from the VUV photolysis of CH3CN are considered.
Chemical Recycling of HCN in Cometary Comae
NASA Astrophysics Data System (ADS)
Boice, Daniel C.; Kawakita, Hideyo; Shinnaka, Yoshiharu; Mumma, Michael J.; Kobayashi, Hitomi; Ogawa, Sayuri
2014-11-01
Modeling is essential to understand the important physical and chemical processes that occur in cometary comae, especially the relationship between putative parent and daughter molecules, such as, HCN and CN. Photochemistry is a major source of ions and electrons that further initiate key gas-phase reactions, contributing to the plethora of molecules and atoms observed in comets. The effects of photoelectrons that interact via impacts are important to the overall excitation and dissociation processes in the inner coma. We consider the relevant processes in the collision-dominated, inner coma of a comet within a global modeling framework to understand observations of HCN and CN. The CN source(s) must be able to produce highly collimated jets, be consistent with the observed CN parent scale length, and have a production rate consistent with the observed CN production. HCN fulfills these conditions in some comets (e.g., 1P/Halley, Hale-Bopp) while it does not in others (e.g., 8P/Tuttle, 6P/d’Arrest, 73P/S-W3, 2P/Encke, 9P/Temple 1 and C/2007 W1).We investigate the chemistry of HCN with our chemical kinetics coma model including a network with other possible CN parents, as well as a dust component that may be a potential source of CN. It is seen that the major destruction pathways of HCN are via photo dissociation (into H and CN) and protonation with water group ions - primarily H3O+. We point out the intriguing “recycling” of HCN via protonation reactions with H3O+, H2O+, OH+, and subsequent dissociative recombination. It seems that HCN molecules observed in the coma can consist of those initially released from the nucleus and those that are freshly formed at different locations in the coma via these protonation/dissociation reactions. We will investigate implications for reconciling discrepancies between observations of HCN and CN in cometary comae.Acknowledgements: We appreciate support from the NSF Planetary Astronomy Program. This program is partially supported by the MEXT Supported Program for the Strategic Research Foundation at Private Universities, 2014-2018.
NASA Astrophysics Data System (ADS)
Xia, Hanxue; Zhang, Yong; Attygalle, Athula B.
2018-06-01
Protonated methyl benzoate, upon activation, fragments by three distinct pathways. The m/z 137 ion for the protonated species generated by helium-plasma ionization (HePI) was mass-selected and subjected to collisional activation. In one fragmentation pathway, the protonated molecule generated a product ion of m/z 59 by eliminating a molecule of benzene (Pathway I). The m/z 59 ion (generally recognized as the methoxycarbonyl cation) produced in this way, then formed a methyl carbenium ion in situ by decarboxylation, which in turn evoked an electrophilic aromatic addition reaction on the benzene ring by a termolecular process to generate the toluenium cation (Pathway II). Moreover, protonated methyl benzoate undergoes also a methanol loss (Pathway III). However, it is not a simple removal of a methanol molecule after a protonation on the methoxy group. The incipient proton migrates to the ring and randomizes to a certain degree before a subsequent transfer of one of the ring protons to the alkoxy group for the concomitant methanol elimination. The spectrum recorded from deuteronated methyl benzoate showed two peaks at m/z 105 and 106 for the benzoyl cation at a ratio of 2:1, confirming the charge-imparting proton is mobile. However, the proton transfer from the benzenium intermediate to the methoxy group for the methanol loss occurs before achieving a complete state of scrambling. [Figure not available: see fulltext.
HYDROGEN BONDING IN THE METHANOL DIMER
USDA-ARS?s Scientific Manuscript database
In this work, two methanol molecules are placed in different arrangements to study hydrogen bonding in carbohydrate materials such as cellulose. Energy was calculated as a function of both hydrogen bond length and angle over wide ranges, using quantum mechanics (QM). The QM wavefunctions are analyze...
The atmosphere of a dirty-clathrate cometary nucleus - A two-phase, multifluid model
NASA Astrophysics Data System (ADS)
Marconi, M. L.; Mendis, D. A.
1983-10-01
The dynamical and thermal structure of a dirty-clathrate cometary nucleus' gas atmosphere is presently given a self-consistent, transonic multifluid solution in which, although the heavy neutron and ion species are treated as a single fluid in the collision-dominated region, the photoproduced H is treated separately. The thermal profile of the atmosphere thus obtained is entirely different from those predicted by the earlier, single-fluid models as well as the multifluid models which assumed equipartition of energy between electrons and ions. While the electron gas, like the neutrals and the ions, cools due to expansion, its main mode of energy loss in the inner coma is by way of inelastic collisions with the predominant H2O molecule. The high electron temperature in the outer coma also decreases the efficiency of electron removal by dissociative recombination, thereby increasing electron density throughout the coma.
Chai, Shuo; Yu, Jie; Han, Yong-Chang; Cong, Shu-Lin
2013-11-01
Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP monomer and hydrogen-bonded complex of AP with one methanol are photoexcited initially to the S2 state, and then transferred to the S1 state via internal conversion. However the complex of AP with two methanol molecules is directly excited to the S1 state. From the calculated electronic excited energies and simulated absorption spectra, we find that the intermolecular hydrogen bonds are strengthened in the electronic excited states. The strengthening is confirmed by the optimized excited-state geometries. The photochemical processes in the electronic excited states are significantly influenced by the excited-state hydrogen bond strengthening. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hudson, Reggie L.; Moore, Marla H.
1992-01-01
Far infrared spectra from 20 microns (500 cm(sup -1)) to 100 microns (100 cm(sup -1)) of water ice were measured. Amorphous ice deposited at 13 K has one absorption band at 45 microns (220 cm(sup -1)). Amorphous ice evolves into a crystalline form with absorptions at 44 microns (229 cm(sup -1)) and 62 microns (162 cm(sup -1)) as the temperature is increased to 155 K. Spectra documenting this phase change are presented as well as spectra of crystalline ice at temperatures between 13 K and 155 K. Far infrared spectra of amorphous and crystalline water ice before and after proton irradiation are also presented. Changes in these two forms are discussed in relation to ices in comets, grains, and planetary satellites in various radiation environments. Observations of non-terrestrial clathrate hydrates are still lacking despite the fact that clathrates first were suggested to exist in cometary and interstellar ices over forty years ago. Spectroscopy, the most direct method of astronomical detection, has been hampered by the similarity of clathrate hydrate spectra to those of unenclathrated guest molecules and solid H2O. A methanol (CH3OH) clathrate hydrate, using a recently published procedure, was prepared and its far-IR spectrum investigated. The spectrum is quite differenct from that of either unenclathrated CH3OH or solid H2O and so should be of value in astronomical searches for this clathrate.
Influence of electric field on the hydrogen bond network of methanol.
Suresh, S J; Prabhu, Arun Laxman; Arora, Abhinav
2007-04-07
The understanding of the structure of hydrogen (H) bonding liquids in electric (E) fields is important in the context of several areas of research, such as electrochemistry, surface science, and thermodynamics of electrolyte solutions. We had earlier presented a general thermodynamic framework for this purpose, and had shown that the application of E field enhances H-bond interactions among water molecules. The present investigation with methanol suggests a different result-the H-bond structure, as indicated by the average number of H bonds per molecule, goes through a maxima with increasing field strength. This result is explained based on the symmetry in the location of the H-bonding sites in the two types of molecules.
The Formation of Formaldehyde on Interstellar Carbonaceous Grain Analogs by O/H Atom Addition
NASA Astrophysics Data System (ADS)
Potapov, Alexey; Jäger, Cornelia; Henning, Thomas; Jonusas, Mindaugas; Krim, Lahouari
2017-09-01
An understanding of possible scenarios for the formation of astrophysically relevant molecules, particularly complex organic molecules, will bring us one step closer to the understanding of our astrochemical heritage. In this context, formaldehyde is an important molecule as a precursor of methanol, which in turn is a starting point for the formation of more complex organic species. In the present experiments, for the first time, following the synthesis of CO, formaldehyde has been produced on the surface of interstellar grain analogs, hydrogenated fullerene-like carbon grains, by O and H atom bombardment. The formation of H2CO is an indication for a possible methanol formation route in such systems.
Viscosity of Associated Mixtures Approximated by the Grunberg-Nissan Model
NASA Astrophysics Data System (ADS)
Marczak, W.; Adamczyk, N.; Łężniak, M.
2012-04-01
Previous experiments demonstrated that microheterogeneities occur in liquid systems (2-methylpyridine or 2,6-dimethylpyridine) + water. They are most probably due to the association of the hydrates through hydrogen bonds between water molecules. Substitution of methanol for water causes that the mixtures become homogenous. The results of viscometric studies reported in this study confirmed that the molecular clusters in aqueous solutions are much larger than the complexes occurring in the methanolic systems. Taking into consideration "kinetic entities" rather than monomeric molecules, the dependence of viscosity on concentration and temperature have been satisfactorily approximated by the Grunberg-Nissan relation with two adjustable coefficients. The kinetic entities were trimers of water, dimers of methanol, and monomeric amines. The same approach proved to be valid for the activation energy of viscous flow as well.
Thermodynamics of the Sorption of Benzimidazoles on Octadecyl Silica Gel from Water-Methanol Eluents
NASA Astrophysics Data System (ADS)
Shafigulin, R. V.; Bulanova, A. V.
2018-02-01
The standard enthalpy and entropy component of transferring benzimidazoles from water-methanol solutions to surfaces of octadecyl silica gel are determined using reversed-phase high-performance liquid chromatography (RP HPLC). The dependences between the enthalpy and polarizability of the molecules of the studied benzimidazoles, the enthalpy and the entropy factor are studied, and the influence of the quantitative composition of the water-methanol solution on the enthalpy are studied.
NASA Astrophysics Data System (ADS)
Hudson, R. L.; Moore, M. H.
2004-12-01
Motivated by detections of nitriles in Titan's atmosphere, cometary comae, and the interstellar medium, we report laboratory investigations of the low-temperature chemistry of acetonitrile, propionitrile, acrylonitrile, cyanoacetylene, and cyanogen (CH 3CN, CH 3CH 2CN, CH 2CHCN, HCCCN, and NCCN, respectively). A few experiments were also done on isobutyronitrile and trimethylacetonitrile ((CH 3) 2CHCN and (CH 3) 3CCN, respectively). Trends were sought, and found, in the photo- and radiation chemical products of these molecules at 12-25 K. In the absence of water, all of these molecules isomerized to isonitriles, and CH 3CN, CH 3CH 2CN, and (CH 3) 2CHCN also formed ketenimines. In the presence of H 2O, no isonitriles were detected but rather the cyanate ion (OCN -) was seen in all cases. Although isonitriles, ketenimines, and OCN - were the main focus of our work, we also describe cases of hydrogen loss, to make smaller nitriles, and hydrogen addition (reduction), to make larger nitriles. HCN formation also was seen in most experiments. The results are presented in terms of nitrile ice chemistry on Titan, in cometary ice, and in the interstellar medium. Possible connections to prebiotic chemistry are briefly discussed.
Cometary delivery of organic molecules to the early earth
NASA Technical Reports Server (NTRS)
Chyba, Christopher F.; Thomas, Paul J.; Sagan, Carl; Brookshaw, Leigh
1990-01-01
It has long been speculated that earth accreted prebiotic organic molecules important for the origins of life from impacts of carbonaceous asteroids and comets during the period of heavy bombardment 4.5 x 10 to the 9th to 3.8 x 10 to the 9th years ago. A comprehensive treatment of comet-asteroid interaction with the atmosphere, surface impact, and resulting organic pyrolysis demonstrates that organics will not survive impacts at velocities greater than about 10 kilometers per second and that even comets and asteroids as small as 100 meters in radius cannot be aerobraked to below this velocity in 1-bar atmospheres. However, for plausible dense (10-bar carbon dioxide) early atmospheres, it is found that 4.5 x 10 to the 9th years ago earth was accreting intact cometary organics at a rate of at least about 10 to the 6th to 10 to the 7th kilograms per year, a flux that thereafter declined with a half-life of about 10 to the 8th years. These results may be put in context by comparison with terrestrial oceanic and total biomasses, about 3 x 10 to the 12th kilograms and about 6 x 10 to the 14th kilograms, respectively.
The discovery of cometary activity in near-Earth asteroid (3552) Don Quixote
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mommert, Michael; Harris, Alan W.; Hora, Joseph L.
The near-Earth object (NEO) population, which mainly consists of fragments from collisions between asteroids in the main asteroid belt, is thought to include contributions from short-period comets as well. One of the most promising NEO candidates for a cometary origin is near-Earth asteroid (3552) Don Quixote, which has never been reported to show activity. Here we present the discovery of cometary activity in Don Quixote based on thermal-infrared observations made with the Spitzer Space Telescope in its 3.6 and 4.5 μm bands. Our observations clearly show the presence of a coma and a tail in the 4.5 μm but notmore » in the 3.6 μm band, which is consistent with molecular band emission from CO{sub 2}. Thermal modeling of the combined photometric data on Don Quixote reveals a diameter of 18.4{sub −0.4}{sup +0.3} km and an albedo of 0.03{sub −0.01}{sup +0.02}, which confirms Don Quixote to be the third-largest known NEO. We derive an upper limit on the dust production rate of 1.9 kg s{sup –1} and derive a CO{sub 2} gas production rate of (1.1 ± 0.1) × 10{sup 26} molecules s{sup –1}. Spitzer Infrared Spectrograph spectroscopic observations indicate the presence of fine-grained silicates, perhaps pyroxene rich, on the surface of Don Quixote. Our discovery suggests that CO{sub 2} can be present in near-Earth space over a long time. The presence of CO{sub 2} might also explain that Don Quixote's cometary nature remained hidden for nearly three decades.« less
NASA Astrophysics Data System (ADS)
Hempel, F.; Davies, P. B.; Loffhagen, D.; Mechold, L.; Röpcke, J.
2003-11-01
Tunable infrared diode laser absorption spectroscopy has been used to detect the methyl radical and nine stable molecules, CH4, CH3OH, C2H2, C2H4, C2H6, NH3, HCN, CH2O and C2N2, in H2-Ar-N2 microwave plasmas containing up to 7% of methane or methanol, under both flowing and static conditions. The degree of dissociation of the hydrocarbon precursor molecules varied between 20% and 97%. The methyl radical concentration was found to be in the range 1012-1013 molecules cm-3. By analysing the temporal development of the molecular concentrations under static conditions it was found that HCN and NH3 are the final products of plasma chemical conversion. The fragmentation rates of methane and methanol (RF(CH4) = (2-7) × 1015 molecules J-1, RF(CH3OH) = (6-9) × 1015 molecules J-1) and the respective conversion rates to methane, hydrogen cyanide and ammonia (RCmax(CH4) = 1.2 × 1015 molecules J-1, RCmax(HCN) = 1.3 × 1015 molecules J-1, RCmax(NH3) = 1 × 1014 molecules J-1) have been determined for different hydrogen to nitrogen concentration ratios. An extensive model of the chemical reactions involved in the H2-N2-Ar-CH4 plasma has been developed. Model calculations were performed by including 22 species, 145 chemical reactions and appropriate electron impact dissociation rate coefficients. The results of the model calculations showed satisfactory agreement between calculated and measured concentrations. The most likely main chemical pathways involved in these plasmas are discussed and an appropriate reaction scheme is proposed.
NASA Technical Reports Server (NTRS)
Marconi, M. L.; Mendis, D. A.; Korth, A.; Lin, R. P.; Mitchell, D. L.
1990-01-01
A sharp peak in the mass spectrum at 35 amu is observed by the heavy ion analyzer on board the Giotto spacecraft just inside the ionopause. This peak is identified with H3S(+) and it is argued that the dominant source of its likely parent molecule (H2S) is the observed distributed source of circumnuclear dust, rather than the central nucleus. In this case, the total production rate of H2S is more than about 0.5 percent that of the dominant cometary molecule H2O.
Coadsorbed species explain the mechanism of methanol temperature-desorption on CeO 2(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, Jonathan E.; Steven H. Overbury; Beste, Ariana
2016-03-24
Here, we have used density functional theory calculations to investigate the temperature-programmed desorption (TPD) of methanol from CeO 2(111). For the first time, low-temperature water formation and high-temperature methanol desorption are explained by our calculations. High coverages of methanol, which correspond to experimental conditions, are required to properly describe these features of the TPD spectrum. We identify a mechanism for the low-temperature formation of water involving the dissociation of two methanol molecules on the same surface O atom and filling of the resulting surface vacancy with one of the methoxy products. After water desorption, methoxy groups are stabilized on themore » surface and react at higher temperatures to form methanol and formaldehyde by a disproportionation mechanism. Alternatively, the stabilized methoxy groups undergo sequential C–H scission reactions to produce formaldehyde. Calculated energy requirements and methanol/formaldehyde selectivity agree with the experimental data.« less
The Formation of Formaldehyde on Interstellar Carbonaceous Grain Analogs by O/H Atom Addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potapov, Alexey; Jäger, Cornelia; Henning, Thomas
An understanding of possible scenarios for the formation of astrophysically relevant molecules, particularly complex organic molecules, will bring us one step closer to the understanding of our astrochemical heritage. In this context, formaldehyde is an important molecule as a precursor of methanol, which in turn is a starting point for the formation of more complex organic species. In the present experiments, for the first time, following the synthesis of CO, formaldehyde has been produced on the surface of interstellar grain analogs, hydrogenated fullerene-like carbon grains, by O and H atom bombardment. The formation of H{sub 2}CO is an indication formore » a possible methanol formation route in such systems.« less
NASA Astrophysics Data System (ADS)
Xu, Li-Hong
2016-06-01
Methanol is a simple and intensively studied organic molecule possessing one large-amplitude torsional motion. It has, for nearly a century, been a favorite of researchers in many fields, e.g., instrument builders, for whom methanol is often the first molecule chosen for testing an improved or a newly built instrument (including HIFI, the Heterodyne Instrument for the Far Infrared on board the Herschel space mission); theorists and/or dynamicists studying the challenging effects of a large-amplitude motion coupling with small-amplitude motions to enhance intramolecular vibrational energy redistribution; astronomers who have elevated methanol to their #1 interstellar weed because of its rich and omnipresent spectrum in the interstellar garden, where it serves as a unique probe for diagnosing conditions in star-forming regions; astrochemists studying isotopic ratios as clues to the chemical evolution of the universe; and fundamentalists seeking possible time variation of the proton/electron mass ratio in the standard model; just to name a few. From high-resolution to high-precision spectroscopy, the large-amplitude internal rotation of the methyl top against its OH framework in methanol has never failed to produce new surprises in spectral regions from the microwave all the way to the near IR. The very recent observation of completely unexpected large methanol hyperfine splittings is a vivid testimonial that the large-amplitude torsional motion can still lead us to unexplored landscapes. This talk will focus on the complicated vibration-torsion-rotation energy networks and interactions deduced from high resolution spectra; our efforts to understand some of them using ab-initio-assisted approaches and the modeling of torsion-rotation and torsionally mediated spin-rotation hyperfine splittings in methanol. These topics represent one part of the much larger fascinating world inhabited by methanolics.
Antifreeze in the hot core of Orion. First detection of ethylene glycol in Orion-KL
NASA Astrophysics Data System (ADS)
Brouillet, N.; Despois, D.; Lu, X.-H.; Baudry, A.; Cernicharo, J.; Bockelée-Morvan, D.; Crovisier, J.; Biver, N.
2015-04-01
Context. Ices are present in comets and in the mantles of interstellar grains. Their chemical composition has been indirectly derived by observing molecules released in the gas phase, when comets approach the sun and when ice mantles are sublimated or destroyed, e.g. in the hot cores present in high-mass, star-forming regions. Comparison of these chemical compositions sheds light on the formation of comets and on the evolution of interstellar matter from the molecular cloud to a protoplanetary disk, and it shows, to first order, a good agreement between the cometary and interstellar abundances. However, a complex O-bearing organic molecule, ethylene glycol (CH2OH)2, seems to depart from this correlation because it was not easily detected in the interstellar medium (Sgr B2) although it proved to be rather abundant with respect to other O-bearing species in comet C/1995 O1 (Hale-Bopp). Ethylene glycol thus appears, together with the closely related molecules glycolaldehyde CH2OHCHO and ethanol CH3CH2OH, as a key species in the comparison of interstellar and cometary ices as well as in any discussion on the formation of cometary matter. Aims: It is important to measure the molecular abundances in various hot cores to see if the observed differences between the interstellar medium and the comets are general. We focus here on the analysis of ethylene glycol in the nearest and best studied hot core-like region, Orion-KL. Methods: We use ALMA interferometric data because high spatial resolution observations allow us to reduce the line confusion problem with respect to single-dish observations since different molecules are expected to exhibit different spatial distributions. Furthermore, a large spectral bandwidth is needed because many individual transitions are required to securely detect large organic molecules. Confusion and continuum subtraction are major issues and have been handled with care. Results: We have detected the aGg' conformer of ethylene glycol in Orion-KL. The emission is compact and peaks towards the hot core close to the main continuum peak, about 2″ to the south-west; this distribution is notably different from other O-bearing species. Assuming optically thin lines and local thermodynamic equilibrium, we derive a rotational temperature of 145 ± 30 K and a column density of 4.6 ± 0.8 × 1015 cm-2. The limit on the column density of the gGg' conformer is five times lower. Based on observations carried out with ALMA and the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Appendix A is available in electronic form at http://www.aanda.org
On-Chip Microfluidic Components for In Situ Analysis, Separation, and Detection of Amino Acids
NASA Technical Reports Server (NTRS)
Zheng, Yun; Getty, Stephanie; Dworkin, Jason; Balvin, Manuel; Kotecki, Carl
2013-01-01
The Astrobiology Analytical Laboratory at GSFC has identified amino acids in meteorites and returned cometary samples by using liquid chromatography-electrospray ionization time-of-flight mass spectrometry (LCMS). These organic species are key markers for life, having the property of chirality that can be used to distinguish biological from non-biological amino acids. One of the critical components in the benchtop instrument is liquid chromatography (LC) analytical column. The commercial LC analytical column is an over- 250-mm-long and 4.6-mm-diameter stainless steel tube filled with functionized microbeads as stationary phase to separate the molecular species based on their chemistry. Miniaturization of this technique for spaceflight is compelling for future payloads for landed missions targeting astrobiology objectives. A commercial liquid chromatography analytical column consists of an inert cylindrical tube filled with a stationary phase, i.e., microbeads, that has been functionalized with a targeted chemistry. When analyte is sent through the column by a pressurized carrier fluid (typically a methanol/ water mixture), compounds are separated in time due to differences in chemical interactions with the stationary phase. Different species of analyte molecules will interact more strongly with the column chemistry, and will therefore take longer to traverse the column. In this way, the column will separate molecular species based on their chemistry. A lab-on-chip liquid analysis tool was developed. The microfluidic analytical column is capable of chromatographically separating biologically relevant classes of molecules based on their chemistry. For this analytical column, fabrication, low leak rate, and stationary phase incorporation of a serpentine microchannel were demonstrated that mimic the dimensions of a commercial LC column within a 5 10 1 mm chip. The microchannel in the chip has a 75- micrometer-diameter oval-shaped cross section. The serpentine microchannel has four different lengths: 40, 60, 80, and 100 mm. Functionized microbeads were filled inside the microchannel to separate molecular species based on their chemistry.
Organic Synthesis in Simulated Interstellar Ice Analogs
NASA Technical Reports Server (NTRS)
Dworkin, Jason P.; Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Deamer, David W.; Elsila, Jamie; Zare, Richard N.; DeVincenzi, Donald (Technical Monitor)
2001-01-01
Comets and carbonaceous micrometeorites may have been significant sources of organic compounds on the early Earth. Ices on grains in interstellar dense molecular clouds contain a variety of simple molecules as well as aromatic molecules of various sizes. While in these clouds the icy grains are processed by ultraviolet light and cosmic radiation which produces more complex organic molecules. ID We have run laboratory simulations to identify the types of molecules which could have been generated photolytically in pre-cometary ices. Experiments were conducted by forming various realistic interstellar mixed-molecular ices with and without polycyclic aromatic hydrocarbons (PAHs) at approx. 10 K under high vacuum irradiated with LTV light from a hydrogen plasma lamp: The residue that remained after warming to room temperature was analyzed by HPLC, and by laser desorption mass spectrometry. The residue contains several classes of compounds which may be of prebiotic significance.
Organic Synthesis in Simulated Interstellar Ice Analogs
NASA Technical Reports Server (NTRS)
Dworkin, Jason P.; Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Deamer, David W.; Elsila, Jamie; Zare, Richard N.
2001-01-01
Comets and carbonaceous micrometeorites may have been significant sources of organic compounds on the early Earth. Ices on grains in interstellar dense molecular clouds contain a variety of simple molecules as well as aromatic molecules of various sizes. While in these clouds the icy grains are processed by ultraviolet light and cosmic radiation which produces more complex organic molecules. We have run laboratory simulations to identify the types of molecules which could have been generated photolytically in pre-cometary ices. Experiments were conducted by forming various realistic interstellar mixed-molecular ices with and without polycyclic aromatic hydrocarbons (PAHs) at approx. 10 K under high vacuum irradiated with UV light from a hydrogen plasma lamp. The residue that remained after warming to room temperature was analyzed by HPLC, and by laser desorption mass spectrometry. The residue contains several classes of compounds which may be of prebiotic significance.
Evolution of Interstellar Ices
NASA Astrophysics Data System (ADS)
Allamandola, Louis J.; Bernstein, Max P.; Sandford, Scott A.; Walker, Robert L.
1999-10-01
Infrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Ices in molecular clouds are dominated by the very simple molecules H2O, CH3OH, NH3, CO, CO2, and probably H2CO and H2. More complex species including nitriles, ketones, and esters are also present, but at lower concentrations. The evidence for these, as well as the abundant, carbon-rich, interstellar, polycyclic aromatic hydrocarbons (PAHs) is reviewed. Other possible contributors to the interstellar/pre-cometary ice composition include accretion of gas-phase molecules and in situ photochemical processing. By virtue of their low abundance, accretion of simple gas-phase species is shown to be the least important of the processes considered in determining ice composition. On the other hand, photochemical processing does play an important role in driving dust evolution and the composition of minor species. Ultraviolet photolysis of realistic laboratory analogs readily produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including amides, ketones, and polyoxymethylenes (POMs). Inclusion of PAHs in the ices produces many species similar to those found in meteorites including aromatic alcohols, quinones and ethers. Photon assisted PAH-ice deuterium exchange also occurs. All of these species are readily formed and are therefore likely cometary constituents.
Dong, Ming; Gonzalez, Tara D; Klems, Meghan M; Steinberg, Lisa M; Chen, Wilfred; Papoutsakis, Eleftherios T; Bahnson, Brian J
2017-09-01
Methanol:coenzyme M methyltransferase is an enzyme complex composed of three subunits, MtaA, MtaB, and MtaC, found in methanogenic archaea and is needed for their growth on methanol ultimately producing methane. MtaABC catalyzes the energetically favorable methyl transfer from methanol to coenzyme M to form methyl coenzyme M. Here we demonstrate that this important reaction for possible production of methanol from the anaerobic oxidation of methane can be reversed in vitro. To this effect, we have expressed and purified the Methanosarcina barkeri MtaABC enzyme, and developed an in vitro functional assay that demonstrates MtaABC can catalyze the energetically unfavorable (ΔG° = 27 kJ/mol) reverse reaction starting from methyl coenzyme M and generating methanol as a product. Demonstration of an in vitro ability of MtaABC to produce methanol may ultimately enable the anaerobic oxidation of methane to produce methanol and from methanol alternative fuel or fuel-precursor molecules. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1243-1249, 2017. © 2017 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Andrade, Diana; Rocco, Maria Luiza M.; Boechat-Roberty, Heloisa Maria
The origin of complex organic molecules detected in comets, meteorites, star-forming regions and other environments are currently subject of discussion. Depending on the environment, it is dominated by X-rays, UV photons as well as by charged particles, electrons and ions with high or low energies. Every particle will promote a different fragmentation in the molecule and different phenomena in the ice, favoring the formation of an ion species rather than another. To predict the chemical evolution and to quantify the complex organics incorporated into grains or desorbed to the gas phase, it is necessary to establish the main formation route, which can be tested in the laboratories. In this way, the study of the effects of different ionization agents on the ices becomes crucial. Methanol (CH3 OH), the simplest organic alcohol, is an important precursor of more complex prebiotic species and is found abundantly in icy mantles on interstellar and protostellar dust grains. This molecule has been detected through infrared spectroscopy in some astrophysics environments as W33A and RAFGL 7009. Additionally, methanol has been found in comets, as Hale-Bopp, and other solar system bodies, such as the centaur 5145 Pholus. All of these astronomical environments are subjected to some form of ionizing agents such as cosmic rays, electrons and photons (e.g. stellar radiation field). In this work, synchrotron radiation from the Brazilian Synchrotron Light Laboratory at the O 1s-edge was employed to perform desorption experiments on the frozen methanol. The desorp-tion rates (desorbed ion per incident photon) of the most intense ions desorbed from methanol due soft X-ray bombardment are estimated. The desorption rates are critical parameters for modeling the chemistry of interstellar clouds. Moreover, a comparison among our results and literature using different ionization agents and different phases (photons at 292 eV and elec-trons at 70 eV in gaseous phase and heavy ions around 65 MeV on methanol ice) is given and discussed.
Torsion-rotation intensities in methanol
NASA Astrophysics Data System (ADS)
Pearson, John
Methanol exists in numerous kinds of astronomical objects featuring a wide range of local conditions. The light nature of the molecule coupled with the internal rotation of the methyl group with respect to the hydroxyl group results in a rich, strong spectrum that spans the entire far-infrared region. As a result, any modest size observational window will have a number of strong methanol transitions. This has made it the gas of choice for testing THz receivers and to extract the local physical conditions from observations covering small frequency windows. The latter has caused methanol to be dubbed the Swiss army knife of astrophysics. Methanol has been increasingly used in this capacity and will be used even more for subsequent investigations into the Herschel archive, and with SOFIA and ALMA. Interpreting physical conditions on the basis of a few methanol lines requires that the molecular data, line positions, intensities, and collision rates, be complete, consistent and accurate to a much higher level than previously required for astrophysics. The need for highly reliable data is even more critical for modeling the two classes of widespread maser action and many examples of optical pumping through the torsional bands. Observation of the torsional bands in the infrared will be a unique opportunity to directly connect JWST observations with those of Herschel, SOFIA, and ALMA. The theory for the intensities of torsion-rotation transitions in a molecule featuring a single internally rotating methyl group is well developed after 70 years of research. However, other than a recent very preliminary and not completely satisfactory investigation of a few CH3OH torsional bands, this theory has never been experimentally tested for any C3V internal rotor. More alarming is a set of recent intensity calibrated microwave measurements that showed deviations relative to calculations of up to 50% in some ground state rotational transitions commonly used by astronomers to extract local conditions. We propose a comprehensive study of the intensities of methanol involving both the pure rotation bands and the torsional bands to serve as a benchmark for the theory used to calculate the infrared activity of all single methyl internal rotation molecules.
NASA Astrophysics Data System (ADS)
Radeva, Yana L.; Mumma, Michael J.; Villanueva, Geronimo L.; A'Hearn, Michael F.
2011-03-01
Accurate rotational temperatures are essential for extracting production rates for parent volatiles in comets. Two strong bands of ethane (ν7 at 2985.39 cm-1 and ν5 at 2895.67 cm-1) are seen in infrared cometary spectra, but the Q-branches of ν7 are not resolved by current instruments and cannot provide an accurate rotational temperature with current models. We developed a fluorescence model for the C2H6 ν5 band that can be used to derive a rotational temperature. We applied our C2H6 ν5 model to high-resolution infrared spectra of the comets C/2004 Q2 Machholz and C/2000 WM1 (LINEAR), acquired with the Near-infrared Echelle Spectrograph on the Keck II telescope. We demonstrate agreement among the rotational temperatures derived from C2H6 ν5 and other species, and between mixing ratios derived from C2H6 ν5 and C2H6 ν7. As a symmetric hydrocarbon, C2H6 is observed only in the infrared, and it is now the fifth molecule (along with H2O, HCN, CO, and H2CO) for which we can derive a reliable rotational temperature from cometary infrared spectra.
Ion composition at comet 67P near perihelion: Rosetta/ROSINA measurements and modeling
NASA Astrophysics Data System (ADS)
Beth, Arnaud; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Calmonte, Ursina; Combi, Michael R.; De Keyser, Johan; Dhooghe, Frederik; Fiethe, Björn; Fuselier, Stephen; Galand, Marina; Gasc, Sébastien; Gombosi, T. I.; Hansen, Kenneth C.; Hässig, Myrtha; Héritier, Kévin; Kopp, Ernest; Le Roy, Léna; Peroy, Solène; Rubin, Martin; Sémon, Thierry; Tzou, Chia-Yu; Vigren, Erik
2016-10-01
On August 13th, 2015, comet 67P/Churyumov-Gerasimenko reached its perihelion at 1.24 AU, a milestone for its cometary activity observed by the European Space Agency's Rosetta spacecraft which arrived in August 2014. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Comet Pressure Sensor (COPS) instrument onboard Rosetta measured local outgassing rates over 1028 molecules.s-1 in summer 2015. In the meantime, the ROSINA/Double Focusing Mass Spectrometer (DFMS) instrument measured the ion composition in the coma which was expected to be more diversified than during the early phase of the mission. Indeed, the increase in the cometary activity is expected to trigger new chemical pathways, yielding the formation of new cometary ions, other than the major water ions observed at larger heliocentric distances. Such new ion species can be produced from minor neutral species, such as those with proton affinity higher than that of water. This includes NH4+ whose detection has been recently reported (Beth et al., 2016).In this study, we propose to investigate other ion species during the perihelion period by:- analysing DFMS data to find any signature of substantial ion species,- modeling the ionosphere of 67P by driving the model with the neutral densities measured by DFMS and COPS to support or constrain the absence or the presence of these ion species,- discussing any discrepancy between observations and simulations.
NASA Technical Reports Server (NTRS)
Gary, G. A. (Editor); Clifton, K. S. (Editor)
1976-01-01
The prospects of cometary research from the space shuttle are examined. Topics include: the shuttle as research environment; on-board experiments at zero-gravity and release of gas and dust to simulate cometary phenomena; and cometary observations from space.
Pica, Andrea; Graziano, Giuseppe
2017-11-01
In a recent article, Kremer and co-workers have combined NMR measurements and very long, all-atom MD simulations to strengthen their original claim that PNIPAM cononsolvency in water-methanol solutions is driven by the ability of MeOH molecules to bridge different monomers far away along the polymeric chain. In this comment, the results presented by Kremer and co-workers are reviewed, analyzed, and questioned regarding their ability to provide support to the bridging mechanism. Here, some pieces of evidence are provided to show that: (1) the solvent-excluded volume effect plays always a fundamental role in polymer collapse; (2) PNIPAM cononsolvency is caused by the geometric-energetic frustration experienced by the polymer when it can interact with both water and methanol molecules at the same time.
Delchev, Vassil B; Shterev, Ivan G
2009-04-01
Twelve binary and eight ternary supersystems between thymine and methanol, and water were investigated in the ground state at the B3LYP and MP2 levels of theory using B3LYP/6-311 + + G(d,p) basis functions. The thermodynamics of complex formations and the mechanisms of intermolecular proton transfers were clarified in order to find out the most stable H-boned system. It was established that the energy barriers of the water/methanol-assisted proton transfers are several times lower than those of the intramolecular proton transfers in the DNA/RNA bases. The X-ray powder spectra of thymine, and this precrystallized from water and methanol showed that water molecules are incorporated in the crystal lattice of thymine forming H-bridges between thymine molecules.
Graham, Alexander J; Banu, Ana-Maria; Düren, Tina; Greenaway, Alex; McKellar, Scott C; Mowat, John P S; Ward, Kenneth; Wright, Paul A; Moggach, Stephen A
2014-06-18
Previous high-pressure experiments have shown that pressure-transmitting fluids composed of small molecules can be forced inside the pores of metal organic framework materials, where they can cause phase transitions and amorphization and can even induce porosity in conventionally nonporous materials. Here we report a combined high-pressure diffraction and computational study of the structural response to methanol uptake at high pressure on a scandium terephthalate MOF (Sc2BDC3, BDC = 1,4-benzenedicarboxylate) and its nitro-functionalized derivative (Sc2(NO2-BDC)3) and compare it to direct compression behavior in a nonpenetrative hydrostatic fluid, Fluorinert-77. In Fluorinert-77, Sc2BDC3 displays amorphization above 0.1 GPa, reversible upon pressure release, whereas Sc2(NO2-BDC)3 undergoes a phase transition (C2/c to Fdd2) to a denser but topologically identical polymorph. In the presence of methanol, the reversible amorphization of Sc2BDC3 and the displacive phase transition of the nitro-form are completely inhibited (at least up to 3 GPa). Upon uptake of methanol on Sc2BDC3, the methanol molecules are found by diffraction to occupy two sites, with preferential relative filling of one site compared to the other: grand canonical Monte Carlo simulations support these experimental observations, and molecular dynamics simulations reveal the likely orientations of the methanol molecules, which are controlled at least in part by H-bonding interactions between guests. As well as revealing the atomistic origin of the stabilization of these MOFs against nonpenetrative hydrostatic fluids at high pressure, this study demonstrates a novel high-pressure approach to study adsorption within a porous framework as a function of increasing guest content, and so to determine the most energetically favorable adsorption sites.
A systematization of spectral data on the methanol molecule
NASA Astrophysics Data System (ADS)
Akhlyostin, A. Yu.; Voronina, S. S.; Lavrentiev, N. A.; Privezentsev, A. I.; Rodimova, O. B.; Fazliev, A. Z.
2015-11-01
Problems underlying a systematization of spectral data on the methanol molecule are formulated. Data on the energy levels and vacuum wavenumbers acquired from the published literature are presented in the form of information sources imported into the W@DIS information system. Sets of quantum numbers and labels used to describe the CH3OH molecular states are analyzed. The set of labels is different from universally accepted sets. A system of importing the data sources into W@DIS is outlined. The structure of databases characterizing transitions in an isolated CH3OH molecule is introduced and a digital library of the relevant published literature is discussed. A brief description is given of an imported data quality analysis and representation of the results obtained in the form of ontologies for subsequent computer processing.
Decomposition of 2-((2-methoxyphenyl)diazenyl)benzene-1,3,5-triol molecule by an argon plasma jet
NASA Astrophysics Data System (ADS)
Tanışlı, Murat; Taşal, Erol
2018-05-01
In this study, we have presented the effects of the argon plasma on a 2-((2-methoxyphenyl)diazenyl)benzene-1,3,5-triol molecule—AZO compound (abbreviated as 2MDB)—under atmospheric pressure. In order to do this, the validated molecule has been considered and plasma has been used to modify it. The atmospheric pressure plasma jet system was specially designed for performing decomposing processes of the 2MDB molecule. The characterizations before and after the application of plasma—which takes only 3 minutes under atmospheric pressure conditions, to dissolve the 2MDB molecule in ethanol and methanol solutions—were examined using the Fourier transform infrared and Ultraviolet-Visible (UV-Vis) spectroscopies. After the plasma treatment, the molecule was broken at -C-N=N-C-C bond. Accurate and important changes are seen clearly from the results. In addition, according to UV-Vis spectra, π-π* electronic transitions related to -N=N- AZO bridge for the 2MDB molecule in polar-aprotic solvents such as ethanol and methanol were recorded as strong transitions. The new photoproducts such as -C-N-N=C and C=O were obtained from the 2MDB molecule.
Dynamic molecular oxygen production in cometary comae.
Yao, Yunxi; Giapis, Konstantinos P
2017-05-08
Abundant molecular oxygen was discovered in the coma of comet 67P/Churyumov-Gerasimenko. Its origin was ascribed to primordial gaseous O 2 incorporated into the nucleus during the comet's formation. This thesis was put forward after discounting several O 2 production mechanisms in comets, including photolysis and radiolysis of water, solar wind-surface interactions and gas-phase collisions. Here we report an original Eley-Rideal reaction mechanism, which permits direct O 2 formation in single collisions of energetic water ions with oxidized cometary surface analogues. The reaction proceeds by H 2 O + abstracting a surface O-atom, then forming an excited precursor state, which dissociates to produce O 2 - . Subsequent photo-detachment leads to molecular O 2 , whose presence in the coma may thus be linked directly to water molecules and their interaction with the solar wind. This abiotic O 2 production mechanism is consistent with reported trends in the 67P coma and raises awareness of the role of energetic negative ions in comets.
Dynamic molecular oxygen production in cometary comae
NASA Astrophysics Data System (ADS)
Yao, Yunxi; Giapis, Konstantinos P.
2017-05-01
Abundant molecular oxygen was discovered in the coma of comet 67P/Churyumov-Gerasimenko. Its origin was ascribed to primordial gaseous O2 incorporated into the nucleus during the comet's formation. This thesis was put forward after discounting several O2 production mechanisms in comets, including photolysis and radiolysis of water, solar wind-surface interactions and gas-phase collisions. Here we report an original Eley-Rideal reaction mechanism, which permits direct O2 formation in single collisions of energetic water ions with oxidized cometary surface analogues. The reaction proceeds by H2O+ abstracting a surface O-atom, then forming an excited precursor state, which dissociates to produce O2-. Subsequent photo-detachment leads to molecular O2, whose presence in the coma may thus be linked directly to water molecules and their interaction with the solar wind. This abiotic O2 production mechanism is consistent with reported trends in the 67P coma and raises awareness of the role of energetic negative ions in comets.
A two component model for thermal emission from organic grains in Comet Halley
NASA Technical Reports Server (NTRS)
Chyba, Christopher; Sagan, Carl
1988-01-01
Observations of Comet Halley in the near infrared reveal a triple-peaked emission feature near 3.4 micrometer, characteristic of C-H stretching in hydrocarbons. A variety of plausible cometary materials exhibit these features, including the organic residue of irradiated candidate cometary ices (such as the residue of irradiated methane ice clathrate, and polycyclic aromatic hydrocarbons. Indeed, any molecule containing -CH3 and -CH2 alkanes will emit at 3.4 micrometer under suitable conditions. Therefore tentative identifications must rest on additional evidence, including a plausible account of the origins of the organic material, a plausible model for the infrared emission of this material, and a demonstration that this conjunction of material and model not only matches the 3 to 4 micrometer spectrum, but also does not yield additional emission features where none is observed. In the case of the residue of irradiated low occupancy methane ice clathrate, it is argued that the lab synthesis of the organic residue well simulates the radiation processing experienced by Comet Halley.
NASA Astrophysics Data System (ADS)
Danger, G.; Fresneau, A.; Abou Mrad, N.; de Marcellus, P.; Orthous-Daunay, F.-R.; Duvernay, F.; Vuitton, V.; Le Sergeant d'Hendecourt, L.; Thissen, R.; Chiavassa, T.
2016-09-01
Experimental simulations in the laboratory may provide important information about the chemical evolution occurring in various astrophysical objects such as extraterrestrial ices. Interstellar or (pre)cometary ice analogues made of H2O, CH3OH, and NH3 at 77 K, when subjected to an energetic process (VUV photons, electrons or ions) and then warmed-up to room temperature, lead, in the laboratory, to the formation of an organic residue. In this paper we expand our previous analysis of the residues in order to obtain a better insight into their molecular content. Data analyses show that three different chemical groups are present in the residue in the negative electrospray ionization (ESI) mode: CHN, CHO and CHNOsbnd whereas only two groups are detected in the positive ESI mode: CHN and CHNO. In both cases, the CHNO group is the most abundant. The application of specific data treatment shows that residue mainly contains aliphatic linear molecules or cyclic structures connected to unsaturated chemical functions such as esters, carboxylic acids, amides or aldehydes. In lower abundances, some molecules do present aromatic structures. The comparison of our residue with organic compounds detected in the Murchison meteorite gives an interesting match, which suggests that laboratory simulation of interstellar ice chemistry is relevant to understand astrophysical organic matter evolution.
Spectroscopic studies of clusterization of methanol molecules isolated in a nitrogen matrix
NASA Astrophysics Data System (ADS)
Vaskivskyi, Ye.; Doroshenko, I.; Chernolevska, Ye.; Pogorelov, V.; Pitsevich, G.
2017-12-01
IR absorption spectra of methanol isolated in a nitrogen matrix are recorded at temperatures ranging from 9 to 34 K. The changes in the spectra with increasing matrix temperature are analyzed. Based on quantum-chemical calculations of the geometric and spectral parameters of different methanol clusters, the observed absorption bands are identified. The cluster composition of the sample is determined at each temperature. It is shown that as the matrix is heated there is a redistribution among the different cluster structures in the sample, from smaller to larger clusters.
NASA Astrophysics Data System (ADS)
Man, Isabela-Costinela; Soriga, Stefan Gabriel; Parvulescu, Vasile
2017-01-01
Density functional theory (DFT) calculations were carried out to study the activation of methyl acetate and methanol on MgO(100) and MgO(501) surfaces and integrated in the context of transesterification, interesterification and glycerolysis reactions used in biodiesel industry. First results indicate the importance of including of dispersion forces in the calculations. On MgO(100) the reverse reactions steps of Csbnd O and Csbnd H dissociations and on MgO(501) the same reverse reaction step of Csbnd H dissociations of methyl acetate are energetically favorable, while the dissociation of Csbnd O bond into methoxide and acetate fragments on the edge of MgO(501) was found to be exothermic with a low activation energy. For methanol, the dissociation of Osbnd H bond on MgO(100) surface in the presence of the second coadsorbed methanol molecule becomes more energetically favoured compared to the isolated molecule, due to the fact that the methoxide fragment is stabilized by intermolecular hydrogen bonding. This is reflected by the decrease of the activation energy of the forward reaction step and the increase of the activation energy of the backward reaction step, increasing the probability to have dissociated molecules among the undissociated ones. These results represent a step forward for better understanding from atomistic point of view the paths of these reactions on these surfaces for the corresponding catalytic processes.
NASA Astrophysics Data System (ADS)
Hemmateenejad, Bahram; Emami, Leila; Sharghi, Hashem
2010-01-01
The acidity constants of some newly synthesized Schiff base derivatives were determined by hard-model based multivariate data analysis of the spectrophotometric data in the course of pH-metric titration in 50% (v/v) methanol-water binary solvent. The employed data analysis method was also able to extract the pure spectra and pH-dependent concentration profiles of the acid-base species. The molecules that possess different substituents (both electron donating and withdrawing) on the ortho-, meta- and para-positions of one of the phenyl ring showed variable acidity constants ranging from 8.77 to 11.07 whereas the parent molecule had an acidity constant of 10.25. To investigate the quantitative effects of changing of substitution pattern on the acidity constant, a quantitative structure-property relation analysis was conducted using substituent constants and molecular descriptor. Some models with high statistical quality (measured by cross-validation Q2) were obtained. It was found that the acidity constant of the studied molecules in the methanol-water mixed solvent not only is affected by electronic features of the solutes but also by the lipophilic interaction between methanol part of solvent and the deprotonated solutes.
Harnessing the Efficiency of 0(1D) Insertion Reactions for Prebiotic Astrochemistry
NASA Astrophysics Data System (ADS)
Widicus Weaver, Susanna
We propose a THz spectroscopic study of the small prebiotic molecules aminomethanol, methanediol, and methoxymethanol. These target molecules are predicted as the dominant products of photo-driven grain surface chemistry in interstellar environments, and are precursors to important prebiotic molecules like sugars and amino acids. These molecules are also expected to be major contributors to the spectral line density in the submillimeter spectral surveys from the Herschel and SOFIA observatories. We will use our custom mixing source to produce these molecules through O(1D) insertion reactions with the precursor molecules methyl amine, methanol, and dimethyl ether, respectively. We will then record their rotational spectra across the THz frequency range using our existing submillimeter spectrometer. This research will increase the science return from NASA missions because the target molecules serve as tracers of the simplest organic chemistry that can occur in starforming regions. This chemistry begins with methanol, which is the predominant organic molecule observed in interstellar ices. Methanol photodissociation leads to small organic radicals such as CH3O, CH2OH, and CH3. These radicals can undergo combination reactions on interstellar ices to form many of the complex organic molecules that are routinely observed in star-forming regions. Our target molecules aminomethanol, methanediol, and methoxymethanol are some of the simplest molecules that can form from this type of chemistry, and serve as tracers of ice mantle liberation in star-forming regions. These molecules also participate in gas-phase reactions that lead to amino acids and sugars, and as such are fundamentally important prebiotic molecules in interstellar environments. These types of small organic molecules also have high spectral line density, and are major contributors to line confusion in observational spectral surveys such as those conducted by Herschel and SOFIA. Therefore, the proposed research will aid in full data interpretation from Herschel and SOFIA observations. Currently there is no spectral information available for these molecules to guide observational studies, despite their importance in astrochemistry. This is because these molecules are difficult to study in laboratory settings due to their instability and reactivity. We are using highly exothermic O(1D) insertion reactions to produce these molecules in a supersonic expansion, and investigating the products using THz spectroscopy. This work builds on the work involved in our previous APRA award (Grant NNX11AI07G) "New THz Tools to Support Herschel Observations: Integrative Studies in Laboratory Spectroscopy, Observational Astronomy, and Chemical Modeling". In this previous award, we laid the groundwork for these experiments by constructing and benchmarking the spectrometer, designing and testing the molecular source used for the O(1D) reactions, and studying the proposed formation reactions for the laboratory work through computational studies. We have confirmed production of methanol from O(1D) insertion into methane, and then applied this chemistry to produce vinyl alcohol from ethylene. We have now also obtained preliminary spectra of aminomethanol. Here we propose to extend this work by finishing the aminomethanol characterization as well as examining methanediol and methoxymethanol during the next proposal period.
NASA Astrophysics Data System (ADS)
Gasc, Sébastien; Altwegg, Kathrin; Jäckel, Annette; Le Roy, Léna; Rubin, Martin; Fiethe, Björn; Mall, Urs; Rème, Henri
2014-05-01
The European Space Agency's Rosetta mission will rendez-vous comet 67P/Churyumov-Gerasimenko (67P) in September 2014. The Rosetta spacecraft with the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) onboard will follow and survey 67P for more than a year until the comet reaches its perihelion and beyond. ROSINA will provide new information on the global molecular, elemental, and isotopic composition of the coma [1]. ROSINA consists of a pressure sensor (COPS) and two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron Time Of Flight mass spectrometer (RTOF). RTOF has a wide mass range, from 1 amu/e to >300 amu/e, and contains two ion sources, a reflectron and two detectors. The two ion sources, the orthogonal and the storage source, are capable to measure cometary ions while the latter also allows measuring cometary neutral gas. In neutral gas mode the ionization is performed through electron impact. A built-in Gas Calibration Unit (GCU) contains a known gas mixture composed of He, CO2, and Kr that can be used for in-flight calibration of the instrument. Among other ROSINA specific scientific goals, RTOF's task will be to determine molecular composition of volatiles via measuring and separating heavy hydrocarbons; it has been designed to study the development of the cometary activity as well as the coma chemistry between 3.5 AU and perihelion. From the spectroscopic studies and in-situ observations of other comets, we expect to find molecules such as H2O, CO, CO2, hydrocarbons, alcohols, formaldehyde, and other organic compounds in the coma of 67P/Churyumov-Gerasimenko [2]. To demonstrate and quantify the sensitivity and functionality of RTOF, calibration measurements have been realized with more than 20 species among the most abundant molecules quoted above, as well as other species such as PAHs. We will describe the applied methods used to realize this calibration and will discuss our preliminary results, i.e. RTOF capabilities in terms of sensitivity, isotopic ratios, and fragmentation patterns. We will demonstrate that RTOF is well capable to meet the requirements to address the scientific questions discussed above. [1] Balsiger, H. et al.: ROSINA-Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Space Science Reviews, Vol. 128, 745-801, 2007. [2] Bockelée-Morvan, D., Crovisier, J., Mumma, M. J., and Weaver, H. A.: The Composition of Cometary Volatiles, in Comets II (M. C. Festou et al., eds), Univ. Arizona Press, Tucson, 2004
One-pot conversion of biomass-derived xylose and furfural into levulinate esters via acid catalysis.
Hu, Xun; Jiang, Shengjuan; Wu, Liping; Wang, Shuai; Li, Chun-Zhu
2017-03-07
Direct conversion of biomass-derived xylose and furfural into levulinic acid, a platform molecule, via acid-catalysis has been accomplished for the first time in dimethoxymethane/methanol. Dimethoxymethane acted as an electrophile to transform furfural into 5-hydroxymethylfurfural (HMF). Methanol suppressed both the polymerisation of the sugars/furans and the Aldol condensation of levulinic acid/ester.
ERIC Educational Resources Information Center
Brown, Tom; Rushton, Greg; Bencomo, Marie
2008-01-01
As part of the SMATHematics Project: The Wonder of Science, The Power of Mathematics--a collaborative partnership between Kennesaw State University and two local school districts, fifth graders had the opportunity to puzzle out chemical formulas of propane, methanol, and other important molecules. In addition, they explored properties that…
Reichert, Robert; Zambrzycki, Christian; Jusys, Zenonas; Behm, R Jürgen
2015-11-01
To better understand organic-molecule-assisted photo-electrochemical water splitting, photo-electrochemistry and on-line mass spectrometry measurements are used to investigate the photo-electrochemical oxidation of the C1 molecules methanol, formaldehyde, and formic acid over WO3 film anodes in aqueous solution and its competition with O2 evolution from water oxidation O2 (+) and CO2 (+) ion currents show that water oxidation is strongly suppressed by the organic species. Photo-electro-oxidation of formic acid is dominated by formation of CO2 , whereas incomplete oxidation of formaldehyde and methanol prevails, with the selectivity for CO2 formation increasing with increasing potential and light intensity. The mechanistic implications for the photo-electro-oxidation of the organic molecules and its competition with water oxidation, which could be derived from this novel approach, are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Whipple, Fred L.
1991-01-01
Comments on the nature of cometary nuclei, some problems regarding cometary origin, and some correlations among cometary data are presented. Comparisons with an earlier report on cometary nuclei are noted, and most of the earlier advances in concept are substantiated. The mean density of the Halley nucleus may have been underestimated, while the nature of the rotation remains uncertain. The dust/gas ratio apparently needs to be increased by as much as two times, perhaps to unity or higher. CHON grains appear to be important sources of gas. Evidence is presented to support the thesis that aging among long-period comets increases statistically as the periods decrease. Data on the orientation of cometary axes with respect to the Galaxy and the properties of clusters defined by these axes are presented.
Extended atmospheres of outer planet satellites and comets
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Combi, M. R.
1984-01-01
The cometary hydrogen particle-trajectory model was used successfully to analyze observations of Comet P/Encke. The Pioneer Venus Orbiter Ultraviolet Spectrometer observed the comet at 1216A (hydrogen Lyman-alpha) on 15 April 1984, when the comet was .58 AU from the Sun and 1.02 AU from Venus. The analysis implies a production rate at .58 AU of 3.3 x 10 to the 28th power/sec of the water molecules which photodissociate to produce the observed hydrogen.
NASA Technical Reports Server (NTRS)
Irvine, W. M.; Dickens, J. E.; Lovell, A. J.; Schloerb, F. P.; Senay, M.; Bergin, E. A.; Jewitt, D.; Matthews, H. E.
1998-01-01
Significant gas-phase chemistry occurs in the comae of bright comets, as is demonstrated here for the case of Comet Hale-Bopp. The abundance ratio of the two isomers, hydrogen cyanide and hydrogen isocyanide, is shown to vary with heliocentric distance in a way that is consistent with production of HNC by ion-molecule chemistry initiated by the photoionization of water. Likewise, the first maps of emission from HCO+ show an abundance and an extended distribution that are consistent with the same chemical model.
High-molecular-weight organic matter in the particles of comet 67P/Churyumov-Gerasimenko.
Fray, Nicolas; Bardyn, Anaïs; Cottin, Hervé; Altwegg, Kathrin; Baklouti, Donia; Briois, Christelle; Colangeli, Luigi; Engrand, Cécile; Fischer, Henning; Glasmachers, Albrecht; Grün, Eberhard; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Jessberger, Elmar K; Koch, Andreas; Krüger, Harald; Langevin, Yves; Lehto, Harry; Lehto, Kirsi; Le Roy, Léna; Merouane, Sihane; Modica, Paola; Orthous-Daunay, François-Régis; Paquette, John; Raulin, François; Rynö, Jouni; Schulz, Rita; Silén, Johan; Siljeström, Sandra; Steiger, Wolfgang; Stenzel, Oliver; Stephan, Thomas; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Wanczek, Karl-Peter; Zaprudin, Boris; Kissel, Jochen; Hilchenbach, Martin
2016-10-06
The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula-the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization. Many gaseous organic molecules, however, have been observed; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov-Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites' parent bodies. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.
Efficient green methanol synthesis from glycerol
NASA Astrophysics Data System (ADS)
Haider, Muhammad H.; Dummer, Nicholas F.; Knight, David W.; Jenkins, Robert L.; Howard, Mark; Moulijn, Jacob; Taylor, Stuart H.; Hutchings, Graham J.
2015-12-01
The production of biodiesel from the transesterification of plant-derived triglycerides with methanol has been commercialized extensively. Impure glycerol is obtained as a by-product at roughly one-tenth the mass of the biodiesel. Utilization of this crude glycerol is important in improving the viability of the overall process. Here we show that crude glycerol can be reacted with water over very simple basic or redox oxide catalysts to produce methanol in high yields, together with other useful chemicals, in a one-step low-pressure process. Our discovery opens up the possibility of recycling the crude glycerol produced during biodiesel manufacture. Furthermore, we show that molecules containing at least two hydroxyl groups can be converted into methanol, which demonstrates some aspects of the generality of this new chemistry.
Minyaev, Mikhail E; Nifant'ev, Ilya E; Tavtorkin, Alexander N; Korchagina, Sof'ya A; Zeynalova, Shadana Sh; Ananyev, Ivan V; Churakov, Andrei V
2017-10-01
The crystal structures of rare-earth diaryl- or dialkylphosphate derivatives are poorly explored. Crystals of bis[bis(2,6-diisopropylphenyl)phosphato-κO]chloridotetrakis(methanol-κO)neodymium methanol disolvate, [Nd(C 24 H 34 O 4 P)Cl(CH 4 O) 4 ]·2CH 3 OH, (1), and of the lutetium, [Lu(C 24 H 34 O 4 P)Cl(CH 4 O) 4 ]·2CH 3 OH, (2), and yttrium, [Y(C 24 H 34 O 4 P)Cl(CH 4 O) 4 ]·2CH 3 OH, (3), analogues have been obtained by reactions between lithium bis(2,6-diisopropylphenyl)phosphate and LnCl 3 (H 2 O) 6 (in a 2:1 ratio) in methanol. Compounds (1)-(3) crystallize in the C2/c space group. Their crystal structures are isomorphous. The molecule possesses C 2 symmetry with a twofold crystallographic axis passing through the Ln and Cl atoms. The bis(2,6-diisopropylphenyl)phosphate ligands all display a κ 1 O-monodentate coordination mode. The coordination polyhedron for the metal atom [coordination number (CN) = 7] is a distorted pentagonal bipyramid. Each [Ln{O 2 P(O-2,6- i Pr 2 C 6 H 3 ) 2 } 2 Cl(CH 3 OH) 4 ] molecular unit exhibits two intramolecular O-H...O hydrogen bonds, forming six-membered rings, and two intramolecular O-H...Cl interactions, forming four-membered rings. Intermolecular O-H...O hydrogen bonds connect each unit via four noncoordinating methanol molecules with four other units, forming a two-dimensional hydrogen-bond network. Crystals of bis[bis(2,6-diisopropylphenyl)phosphato-κO]tetrakis(methanol-κO)(nitrato-κ 2 O,O')neodymium methanol disolvate, [Nd(C 24 H 34 O 4 P)(NO 3 )(CH 4 O) 4 ]·2CH 3 OH, (4), have been obtained in an analogous manner from NdCl 3 (H 2 O) 6 . Compound (4) also crystalizes in the C2/c space group. Its crystal structure is similar to those of (1)-(3). The κ 2 O,O'-bidentate nitrate anion is disordered over a twofold axis, being located nearly on it. Half of the molecule is crystallographically unique (CN Nd = 8). Unlike (1)-(3), complex (4) exhibits disorder of all three methanol molecules, one isopropyl group of the phosphate ligand and the NO 3 - ligand. The structure of (4) displays intra- and intermolecular O-H...O hydrogen bonds similar to those in (1)-(3). Compounds (1)-(4) represent the first reported mononuclear bis[bis(diaryl/dialkyl)phosphate] rare-earth complexes.
NASA Technical Reports Server (NTRS)
Russell, Ray W.
1988-01-01
Laboratory studies related to cometary grains and the nuclei of comets can be broken down into three areas which relate to understanding the spectral properties, the formation mechanisms, and the evolution of grains and nuclei: (1) Spectral studies to be used in the interpretation of cometary spectra; (2) Sample preparation experiments which may shed light on the physical nature and history of cometary grains and nuclei by exploring the effects on grain emissivities resulting from the ways in which the samples are created; and (3) Grain processing experiments which should provide insight on the interaction of cometary grains with the environment in the immediate vicinity of the cometary nucleus as the comet travels from the Oort cloud through perihelion, and perhaps even suggestions regarding the relationship between interstellar grains and cometary matter. A summary is presented with a different view of lab experiments than is found in the literature, concentrating on measurement techniques and sample preparations especially relevant to cometary dust.
Mu, Yongyan; Liang, Hanpu; Hu, Jinsong; Jiang, Li; Wan, Lijun
2005-12-01
We report a novel process to prepare well-dispersed Pt nanoparticles on CNTs. Pt nanoparticles, which were modified by the organic molecule triphenylphosphine, were deposited on multiwalled carbon nanotubes by the organic molecule, which acts as a cross linker. By manipulating the relative ratio of Pt nanoparticles and multiwalled carbon nanotubes in solution, Pt/CNT composites with different Pt content were achieved. The so-prepared Pt/CNT composite materials show higher electrocatalytic activity and better tolerance to poisoning species in methanol oxidation than the commercial E-TEK catalyst, which can be ascribed to the high dispersion of Pt nanoparticles on the multiwalled carbon nanotube surface.
NASA Astrophysics Data System (ADS)
Grzhegorzhevskii, K. V.; Adamova, L. V.; Eremina, E. V.; Ostroushko, A. A.
2017-03-01
The possibility of changing the hydrophilic (polar) surfaces of toroid nanocluster polyoxomolibdates to hydrophobic (nonpolar) surfaces via the modification of Mo138 nanoclusters by surfactant molecules (dodecylpyridinium chloride) as a result of the interaction between these compounds in solutions is demonstrated. Benzene and methanol are used as molecular probes (indicators of the condition of nanocluster surfaces). Comparative characteristics of the equilibrium sorption of benzene and methanol vapors on the initial and modified surfaces of the solid polyoxometalate, and data on the sorption of organic molecules on the surfaces of Rhodamine B-modified nanoclusters of the toroid (Mo138) and keplerate (Mo132) types are obtained.
Smart supramolecular sensing with cucurbit[n]urils: probing hydrogen bonding with SERS.
de Nijs, Bart; Kamp, Marlous; Szabó, Istvan; Barrow, Steven J; Benz, Felix; Wu, Guanglu; Carnegie, Cloudy; Chikkaraddy, Rohit; Wang, Wenting; Deacon, William M; Rosta, Edina; Baumberg, Jeremy J; Scherman, Oren A
2017-12-04
Rigid gap nano-aggregates of Au nanoparticles formed using cucurbit[n]uril (CB[n]) molecules are used to investigate the competitive binding of ethanol and methanol in an aqueous environment. We show it is possible to detect as little as 0.1% methanol in water and a ten times higher affinity to methanol over ethanol, making this a useful technology for quality control in alcohol production. We demonstrate strong interaction effects in the SERS peaks, which we demonstrate are likely from the hydrogen bonding of water complexes in the vicinity of the CB[n]s.
Physical process in the coma of comet 67P derived from narrowband imaging of fragment species
NASA Astrophysics Data System (ADS)
Perez Lopez, F.; Küppers, M.; Marín-Yaseli de la Parra, J.; Besse, S.; Moissl, R.
2017-09-01
During the rendezvous of the Rosetta spacecraft with comet 67P/Churyumov-Gerasimenko, the OSIRIS scientific cameras monitored the near-nucleus gas environment in various narrow-band filters, observing various fragment species. It turned out that the excitation processes in the innermost coma are significantly different from the overall coma, as observed from the ground [1]. In particular, some of the observed emissions of fragments (daughter molecules) are created by direct dissociation of parent molecules, and in those cases the spatial distribution of the emission directly maps the distribution of parent molecules. We investigate the evolution of the brightness and distribution of the emissions over time to improve our understanding of the underlying emission mechanisms and to derive the spatial distribution of H2O and CO2. The outcome will provide constraints on the homogeneity of the cometary nucleus.
Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID
2011-02-01
Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.
Rolllins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID
2012-07-24
Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.
Infrared Spectroscopy of NaCl(CH3OH)n Complexes in Helium Nanodroplets.
Sadoon, Ahmed M; Sarma, Gautam; Cunningham, Ethan M; Tandy, Jon; Hanson-Heine, Magnus W D; Besley, Nicholas A; Yang, Shengfu; Ellis, Andrew M
2016-10-10
Infrared (IR) spectra of complexes between NaCl and methanol have been recorded for the first time. These complexes were formed in liquid helium nanodroplets by consecutive pick-up of NaCl and CH 3 OH molecules. For the smallest NaCl(CH 3 OH) n , complexes where n = 1-3, the IR data suggest that the lowest-energy isomer is the primary product in each case. The predominant contribution to the binding comes from ionic hydrogen bonds between the OH in each methanol molecule and the chloride ion in the NaCl, as established by the large red shift of the OH stretching bands compared with the isolated CH 3 OH molecule. For n ≥ 4, there is a dramatic shift from discrete vibrational bands to very broad absorption envelopes, suggesting a profound change in the structural landscape and, in particular, access to multiple low-energy isomers.
Endogenous Methanol Regulates Mammalian Gene Activity
Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.
2014-01-01
We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296
Huang, Wenjing; Wang, Hongtao; Zhou, Jigang; Wang, Jian; Duchesne, Paul N; Muir, David; Zhang, Peng; Han, Na; Zhao, Feipeng; Zeng, Min; Zhong, Jun; Jin, Chuanhong; Li, Yanguang; Lee, Shuit-Tong; Dai, Hongjie
2015-11-25
Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell technology. Unfortunately, current methanol oxidation electrocatalysts fall far short of expectations and suffer from rapid activity degradation. Here we report platinum-nickel hydroxide-graphene ternary hybrids as a possible solution to this long-standing issue. The incorporation of highly defective nickel hydroxide nanostructures is believed to play the decisive role in promoting the dissociative adsorption of water molecules and subsequent oxidative removal of carbonaceous poison on neighbouring platinum sites. As a result, the ternary hybrids exhibit exceptional activity and durability towards efficient methanol oxidation reaction. Under periodic reactivations, the hybrids can endure at least 500,000 s with negligible activity loss, which is, to the best of our knowledge, two to three orders of magnitude longer than all available electrocatalysts.
Huang, Wenjing; Wang, Hongtao; Zhou, Jigang; Wang, Jian; Duchesne, Paul N.; Muir, David; Zhang, Peng; Han, Na; Zhao, Feipeng; Zeng, Min; Zhong, Jun; Jin, Chuanhong; Li, Yanguang; Lee, Shuit-Tong; Dai, Hongjie
2015-01-01
Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell technology. Unfortunately, current methanol oxidation electrocatalysts fall far short of expectations and suffer from rapid activity degradation. Here we report platinum–nickel hydroxide–graphene ternary hybrids as a possible solution to this long-standing issue. The incorporation of highly defective nickel hydroxide nanostructures is believed to play the decisive role in promoting the dissociative adsorption of water molecules and subsequent oxidative removal of carbonaceous poison on neighbouring platinum sites. As a result, the ternary hybrids exhibit exceptional activity and durability towards efficient methanol oxidation reaction. Under periodic reactivations, the hybrids can endure at least 500,000 s with negligible activity loss, which is, to the best of our knowledge, two to three orders of magnitude longer than all available electrocatalysts. PMID:26602295
Amidi, Salimeh; Hashemi, Zahra; Motallebi, Abbasali; Nazemi, Melika; Farrokhpayam, Hoda; Seydi, Enayatollah
2017-01-01
Hepatocellular carcinoma (HCC), also named cancerous hepatoma, is the most common type of malignant neoplasia of the liver. In this research, we screened the Persian Gulf sea cucumber Holothuria parva (H. parva) methanolic sub-fractions for the possible existence of selective toxicity on liver mitochondria isolated from an animal model of HCC. Next, we purified the most active fraction. Thus the structure of the active molecule was identified. HCC was induced by diethylnitrosamine (DEN) and 2-acetylaminofluorene (2-AAF) protocol. Rat liver mitochondria for evaluation of the selective cytotoxic effects of sub-fractions of H. parva were isolated and then mitochondrial parameters were determined. Our results showed that C1 sub-fraction of methanolic extract of H. parva considerably increased reactive oxygen species (ROS) generation, collapse of mitochondrial membrane potential (MMP), swelling in mitochondria and cytochrome c release only on HCC liver mitochondria. Furthermore, the methanolic extract of H. parva was investigated furthermore and the active fraction was extracted. In this fraction, (Z)-2,3-diphenylacrylonitrile molecule, which is also known as α-cyanostilbene, was identified by mass analysis. This molecule increased ROS generation, collapse of MMP, swelling in mitochondria and finally cytochrome c release only on HCC liver mitochondria. The derivatives of (Z)-2,3-diphenylacrylonitrile in other natural products were also reported as an anti-cancer agent. These results suggest the eligibility of the (Z)-2,3-diphenylacrylonitrile as a complementary therapeutic agent for patients with HCC. PMID:29035293
NASA Astrophysics Data System (ADS)
Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.; Petrenko, V. E.
2017-04-01
The solvate structures formed by the ortho-, meta-, and para-isomers of hydroxybenzoic acid ( o-HBA, m-HBA, and p-HBA) with a polar co-solvent (methanol at a concentration of 0.030 and 0.035 mole fractions) in supercritical carbon dioxide at a constant density of 0.7 g/cm3 and temperatures of 318 and 328 K have been studied by the classic molecular dynamics. It has been determined that a stable hydrogen-bonded complex with the co-solvent forms via the hydrogen of the carboxyl group for all isomers. The probability of this complex existence is high at all temperatures and concentrations. In the o-HBA molecule, the other functional groups are engaged in the intramolecular hydrogen bond, but not involved in interactions with methanol. It has been found that m-HBA and p-HBA can be involved in hydrogen bonds with methanol via hydroxyl hydrogen and oxygen atoms; they are characterized by the presence of one more co-solvent molecule (rarely, two molecules) in their solvation shell and intermittent formations/breakages of hydrogen bonds via other functional groups. These bonds are far less stable, and their formation is sensitive to change of temperature and co-solvent concentration. It has been concluded that the degree of selective solvation of m-HBA and p-HBA by co-solvent molecules is approximately the same, but the rate of structural rearrangements in the nearest environment of m-HBA is higher than that of p-HBA.
Mission strategy for cometary exploration in the 1980's
NASA Technical Reports Server (NTRS)
Farquhar, R. W.
1976-01-01
A specific plan for a sequence of cometary intercept missions in the 1980's is reported. Each mission is described in detail and the supporting role of ground based cometary observations is included. Only three launches are required in the proposed mission sequence for six cometary encounters with comets Encke, Giacobini-Zinner, Borrelly and Halley. Cometary ephemerics errors are reduced to very small values because of a favorable earth-comet orbital geometry for Encke 1980, and excellent earth based sighting conditions exist for the entire 1985 mission set.
Could life have evolved in cometary nuclei
NASA Technical Reports Server (NTRS)
Bar-Nun, A.; Lazcano-Araujo, A.; Oro, J.
1981-01-01
The suggestion by Hoyle and Wickramasinghe (1978) that life might have originated in cometary nuclei rather than directly on the earth is discussed. Factors in the cometary environment including the conditions at perihelion passage leading to the ablation of cometary ices, ice temperatures, the absence of an atmosphere and discrete liquid and solid surfaces, weak cometary structure incapable of supporting a liquid core, and radiation are presented as arguments against biopoesis in comets. It is concluded that although the contribution of cometary and meteoritic matter was significant in shaping the earth environment, the view that life on earth originally arose in comets is untenable, and the proposition that the process of interplanetary infection still occurs is unlikely in view of the high specificity of host-parasite relationships.
Michelini, Maria Del Carmen; Marçalo, Joaquim; Russo, Nino; Gibson, John K
2010-04-19
Bimolecular reactions of uranium oxide molecular anions with methanol have been studied experimentally, by Fourier transform ion cyclotron resonance mass spectrometry, and computationally, by density functional theory (DFT). The primary goals were to provide fundamental insights into mechanistic and structural details of model reactions of uranium oxides with organics, and to examine the validity of theoretical modeling of these types of reactions. The ions UO(3)(-), UO(4)(-), and UO(4)H(-) each reacted with methanol to give a singular product; the primary products each exhibited sequential reactions with two additional methanol molecules to again give singular products. The observed reactions were elimination of water, formaldehyde, or hydrogen, and in one case addition of a methanol molecule. The potential energy profiles were computed for each reaction, and isotopic labeling experiments were performed to probe the validity of the computed mechanisms and structures-in each case where the experiments could be compared with the theory there was concurrence, clearly establishing the efficacy of the employed DFT methodologies for these and related reaction systems. The DFT results were furthermore in accord with the surprisingly inert nature of UO(2)(-). The results provide a basis to understand mechanisms of key reactions of uranium oxides with organics, and a foundation to extend DFT methodologies to more complex actinide systems which are not amenable to such direct experimental studies.
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.; Weaver, Susanna Widicus
2012-01-01
Over 150 molecular species have been confirmed in space, primarily by their rotational spectra at millimeter/submillimeter wavelengths, which yield an unambiguous identification. Many of the known interstellar organic molecules cannot be explained by gas-phase chemistry. It is now presumed that they are produced by surface reactions of the simple ices and/or grains observed and released into the gas phase by sublimation, sputtering, etc. Additionally, the chemical complexity found in meteorites and samples returned from comets far surpasses that of the remote detections for the interstellar medium (ISM), comets, and planetary atmospheres. Laboratory simulations of interstellar/cometary ices have found, from the analysis of the remnant residue of the warmed laboratory sample, that such molecules are readily formed; however, it has yet to be determined if they are formed during the warm phase or within the ice during processing. Most analysis of the ice during processing reveals molecular changes, though the exact quantities and species formed are highly uncertain with current techniques due to overwhelming features of simple ices. Remote sensing with high resolution spectroscopy is currently the only method to detect trace species in the ISM and the primary method for comets and icy bodies in the Solar System due to limitations of sample return. We have recently designed an experiment to simulate interstellar/cometary/planetary ices and detect trace species employing the same techniques used for remote observations. Preliminary results will be presented.
First Detection of Methanol in a Class O Protostellar Disk
NASA Technical Reports Server (NTRS)
Velusamy, T.; Langer, William D.; Goldsmith, Paul F.
2000-01-01
We report the detection of emission from methanol in a compact source coincident with the position of the L1157 infrared source, which we attribute to molecules in the disk surrounding this young, Class O protostellar object. In addition, we identify a spectral feature in the outflow corresponding to an ethanol transition. Using the Caltech Owens Valley Millimeter Array with a synthesized beam size of 2", we detect spatially unresolved methanol in the 2(sub k) - 1(sub k) transitions at 3mm, which is coincident in position with the peak of the continuum emission. The gas phase methanol could be located in the central region (< 100 AU radius) of a flat disk, or in an extended heated surface layer (approx. 200 AU radius) of a flared disk. The fractional abundance of methanol X(CH3OH) is approx. 2 x l0(exp -8) in the flat disk model, and 3 x l0(exp -7) for the flared disk. The fractional abundance is small in the disk as a whole, but considerably larger in the warm portions. This difference indicates that substantial chemical processing probably takes place in the disk via depletion and desorption. The methanol desorbed from the grains in the warm surface layers returns to the icy grain mantles in the cooler interior of the disk, where it is available to become part of the composition of solar system-like bodies, such as comets, formed in the outer circumstellar region. This first millimeter-wavelength detection of a complex organic molecule in a young protostellar disk has implications for disk structure and chemical evolution and for potential use as a temperature probe. The research of TV and WL was conducted at the Jet Propulsion Laboratory, California Institute of Technology with support from the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Bandlamudi, Santosh Rathan Paul; Benjamin, Kenneth M.
2018-05-01
Molecular dynamics (MD) simulations were conducted for 1-ethyl-3-methylimidazolium methylsulfate [EMIM][MeSO4] dissolved in six polar covalent molecules [acetic acid, acetone, chloroform, dimethyl sulfoxide (DMSO), isopropyl alcohol, and methanol] to understand the free energies of ionic liquid (IL) ion pairing/aggregation in the limit of infinite dilution. Free energy landscapes or potentials of mean force (PMF) were computed using umbrella sampling and the weighted histogram analysis method. The PMF studies showed the strongest IL ion pairing in chloroform, and the strength of IL ion pairing decreases in the order of chloroform, acetone, propanol, acetic acid, DMSO, and methanol. In the limit of infinite dilution, the free energy curves for IL ion aggregation in co-solvents were characterized by two distinct minima [global (˜3.6 Å) and local (˜5.7 Å)], while free energy values at these minima differed significantly for IL in each co-solvent. The PMF studies were extended for determining the free energy of IL ion aggregation as a function of concentration of methanol. Studies showed that as the concentration of methanol increased, the free energy of ion aggregation decreased, suggesting greater ion pair stability, in agreement with previously reported MD clustering and radial distribution function data.
Are cometary nuclei primordial rubble piles?
NASA Technical Reports Server (NTRS)
Weissman, P. R.
1986-01-01
Whipple's icy conglomerate model for the cometary nucleus has had considerable sucess in explaining a variety of cometary phenomena such as gas production rates and nongravitational forces. However, as discussed here, both observational evidence and theoretical considerations suggest that the cometary nucleus may not be a well-consolidated single body, but may instead be a loosely bound agglomeration of smaller fragments, weakly bonded and subject to occasional or even frequent disruptive events. The proposed model is analogous to the 'rubble pile' model suggested for the larger main-belt asteroids, although the larger cometary fragments are expected to be primordial condensations rather than collisionally derived debris as in the asteroid case. The concept of cometary nuclei as primordial rubble piles is proposed as a modification of the basic Whipple model, not as a replacement for it.
NASA Astrophysics Data System (ADS)
Di Lella, Santiago; Petruk, Ariel A.; Armiño, Diego J. Alonso de; Álvarez, Rosa M. S.
2010-08-01
Water molecules, rigidly associated to protein surfaces, play a key role in stabilizing biomolecules and participating in their biological functions. Recent studies on the solvation properties of the carbohydrate recognition domain of Galectin-1 by means of molecular dynamic simulations have revealed the existence of several water sites which were well correlated to both the bound water molecules observed in the crystal structure of the protein in the free state and to some of the hydroxyl groups of the carbohydrate ligand observed in the crystal structure of the complexed protein. In this work, we present a study using quantum mechanical methods (B3LYP/6-311++G(3df,3dp)//B3LYP/6-31+G(d)) to determine the energy involved in the binding of these water molecules to specific amino acids in the carbohydrate recognition domain of the protein. By modeling the hydroxyl groups of the carbohydrate by methanol, the energies associated to the local interactions between the ligand and the protein have been evaluated by replacing specific water molecules with methanol. The values of the binding energies have been compared to those previously obtained by the molecular dynamic method.
A Spectroscopic Tour of the Solar System with FUSE
NASA Astrophysics Data System (ADS)
Feldman, P. D.
2006-06-01
The spectral band, resolution, and sensitivity of FUSE provide a unique capability to study the principal atoms, ions and molecules in a variety of planetary environments. Moving target capability was implemented in mid-2000 and has enabled significant discoveries on the nature of the atmospheres of Mars, Jupiter, Saturn, and four comets, particularly the detection for the first time of H2 in the atmosphere of Mars and in cometary comae. FUSE showed that comets have a very rich spectrum in the far-ultraviolet although nearly half of the observed lines remain unidentified. Sensitive searches for Ar, N2, and O VI have only yielded upper limits to the abundances of these species in cometary comae. Observations of Jovian aurora, which is dominated by electron excited H2 emission, and of the Io plasma torus were made during a mini-campaign at the time of the Cassini closest approach to Jupiter in December 2000. Singly and doubly-ionized chlorine were detected in the torus spectrum and their abundances were quantitatively determined relative to the sulfur ion abundance.
Methanol May Function as a Cross-Kingdom Signal
Dorokhov, Yuri L.; Komarova, Tatiana V.; Petrunia, Igor V.; Kosorukov, Vyacheslav S.; Zinovkin, Roman A.; Shindyapina, Anastasia V.; Frolova, Olga Y.; Gleba, Yuri Y.
2012-01-01
Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain. We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in human gene regulation. PMID:22563443
Predicting Complex Organic Molecule Emission from TW Hya
NASA Astrophysics Data System (ADS)
Vissapragada, Shreyas; Walsh, Catherine
2017-01-01
The Atacama Large Millimeter/submillimeter Array (ALMA) has significantly increased our ability to observe the rich chemical inventory of star and planet formation. ALMA has recently been used to detect CH3OH (methanol) and CH3CN (methyl cyanide) in protoplanetary disks; these molecules may be vital indicators of the complex organic ice reservoir in the comet-forming zone. We have constructed a physiochemical model of TW Hya, a well-studied protoplanetary disk, to explore the different formation mechanisms of complex ices. By running our model through a radiative transfer code and convolving with beam sizes appropriate for ALMA, we have obtained synthetic observations of methanol and methyl cyanide. Here, we compare and comment on these synthetic observations, and provide astrochemical justification for their spatial distributions.
Bioherbicidal activity of a germacranolide sesquiterpene dilactone from Ambrosia artemisiifolia L.
Molinaro, Francesco; Monterumici, Chiara Mozzetti; Ferrero, Aldo; Tabasso, Silvia; Negre, Michèle
2016-12-01
Ambrosia artemisiifolia L. (common ragweed) is an invasive plant whose allelopathic properties have been suggested by its field behaviour and demonstrated through phytotoxicity bioassays. However, the nature of the molecules responsible for the allelopathic activity of common ragweed has not been explored. The main objective of this study was to identify the phytotoxic molecules produced by A. artemisiifolia. A preliminary investigation has indicated that a methanol extract of A. artemisiifolia completely inhibited the germination of cress and radish. Semi-preparative fractionation of the methanol extract allowed separating of phytotoxic fraction which contained a single compound. The structure of this compound was elucidated by liquid chromatography-mass spectrometry (LC-MS)/MS, high-resolution mass spectral, nuclear magnetic resonance, and Fourier transform infrared spectra as sesquiterpene lactone isabelin (C 15 H 16 O 4 ). The effect of pure isabelin was tested on four different weed species, confirming the inhibitory activity of molecule. The results indicate directions for the future studies about herbicidal specific activity of isabelin, as pure molecule or in the crude extract, as a potential candidate for biological weed control.
Dipolar ordering and glassy freezing in methanol-{beta}-hydroquinone-clathrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woll, H.; Rheinstadter, M. C.; Kruchten, F.
2001-06-01
The dielectric, structural, and thermodynamic properties of single crystals of methanol-{beta}-hydroquinone-clathrates have been studied as function of temperature and of the concentration x of the polar guest molecules. At higher temperatures the dielectric response along the threefold crystal axis is of the quasi-one-dimensional Ising type. At lower temperatures the higher concentrated samples order antiferroelectrically whereas the lower concentrated ones freeze into dipole glasses. The behavior is interpreted in terms of the methanol dipole moments coupled by the electric dipole-dipole interaction which is highly frustrated because of the rhombohedral symmetry of the lattice. The dielectric relaxations have been analyzed.
JCMT Spectral and Continuum Imaging of Comet 252P/LINEAR
NASA Astrophysics Data System (ADS)
Coulson, Iain M.; Cordiner, Martin A.; Kuan, Yi-Jehng; Tseng, Wei-Ling; Chuang, Yo-Ling; Lin, Zhong-Yi; Milam, Stefanie N.; Charnley, Steven B.; Ip, Wing-Huen
2017-04-01
Comet 252P/LINEAR passed the Earth at a distance of 0.035 au on 2016 March 21, presenting a rare opportunity to study a comet at high spatial resolution. Even with a single dish facility such as JCMT, the chemical structure of the coma could be observed on scales of 500-1000 km, which are smaller than the scale lengths of known distributed cometary molecules. Our week-long observing campaign at JCMT started on March 27 (UT), 12 days after perihelion, and ended on April 3, during which time the comet's distance from Earth increased from 0.045 to 0.078 au. Our observations of the J = 4 - 3 transition of HCN showed generally uniform levels of activity. Expansion velocities were ˜0.6 km s-1 (±10%), and the derived mean HCN production rate during the week was 6.4 × 1024 mol s-1. Comparison with independent estimates of the water production rate during the same period yields a mixing ratio of 0.12% with respect to water. Methanol emissions appear to arise from an extended source—probably in the form of an ice halo—suggesting that all the gases from 252P may originate in large part from the sublimation of icy grains in the coma. Adopting a mean dust particle size of 1 mm, the mass of dust in the coma at the same time is estimated at 4 × 107 kg, implying a total dust production rate of 4 kg s-1. The dust-to-gas mass ratio of ˜0.025 is one of the lowest values ever observed for a comet.
Electromagnetic instabilities in solar wind interaction with dusty cometary plasmas
NASA Technical Reports Server (NTRS)
Verheest, Frank; Meuris, Peter
1995-01-01
Dusty plasmas contain charged dust grains which are much more massive than protons, carry high negative charges due to preferential capture of electrons, and do not have a fixed charge. Fluctuations in the grain charges due to liberation or capture of additional electrons and protons translate as mass and momentum losses or gains for these species, which can render linear modes unstable. On the other hand, many authors have addressed the pickup of ions of cometary origin by the solar wind, which for the parallel part is due to relative streaming between cometary and solar wind ions which excites low-frequency electromagnetic turbulence. In the present work we look again at those instabilities by including effects due to the presence of charged dust in the cometary environments. We have investigated several frequency regimes: nonresonant below the cometary watergroup gyrofrequency, nonresonant below the cometary charged dust gyrofrequency (new and interesting but highly unlikely!) and resonant with the cometary watergroup ions. For most parameter ranges either the existing instabilities are enhanced, showing that the presence of charged dust facilitates the cometary ion pickup by the solar wind, or new instabilities have been shown to exist. Similar conclusions might be relevant for other kinds of astrophysical and heliospheric plasmas containing charged dust, as in planetary rings.
Structure and density of cometary nuclei
NASA Astrophysics Data System (ADS)
Weissman, Paul R.; Lowry, Stephen C.
2008-09-01
Understanding the nature of the cometary nucleus remains one of the major problems in solar system science. Whipple’s (1950) icy conglomerate model has been very successful at explaining a range of cometary phenomena, including the source of cometary activity and the nongravitational orbital motion of the nuclei. However, the internal structure of the nuclei is still largely unknown. We review herein the evidence for cometary nuclei as fluffy aggregates or primordial rubble piles, as first proposed by Donn et al. (1985) and Weissman (1986). These models assume that cometary nuclei are weakly bonded aggregations of smaller, icy- onglomerate planetesimals, possibly held together only by self-gravity. Evidence for this model comes from studies of the accretion and subsequent evolution of material in the solar nebula, from observations of disrupted comets, and in particular comet Shoemaker-Levy 9, from measurements of the ensemble rotational properties of observed cometary nuclei, and from recent spacecraft missions to comets. Although the evidence for rubble pile nuclei is growing, the eventual answer to this question will likely not come until we can place a spacecraft in orbit around a cometary nucleus and study it in detail over many months to years. ESA’s Rosetta mission, now en route to comet 67P/Churyumov- Gerasimenko, will provide that opportunity.
IR spectra and properties of solid acetone, an interstellar and cometary molecule
NASA Astrophysics Data System (ADS)
Hudson, Reggie L.; Gerakines, Perry A.; Ferrante, Robert F.
2018-03-01
Mid-infrared spectra of amorphous and crystalline acetone are presented along with measurements of the refractive index and density for both forms of the compound. Infrared band strengths are reported for the first time for amorphous and crystalline acetone, along with IR optical constants. Vapor pressures and a sublimation enthalpy for crystalline acetone also are reported. Positions of 13C-labeled acetone are measured. Band strengths are compared to gas-phase values and to the results of a density-functional calculation. A 73% error in previous work is identified and corrected.
The activity of C-G at 3.5 AU from the Sun
NASA Astrophysics Data System (ADS)
Rubin, M.; Altwegg, K.
2014-04-01
Starting in early August the ROSINA instrument on board the Rosetta spacecraft (1] saw clearly cometary molecules above the spacecraft background. The COPS sensor, which measures the total density with its nude gauge, registered large density variations in line with the rotation period of the comet. Mapping this to the comet showed that especially the neck of the comet is very active whenever it comes into sunlight. However, the outgassing pattern is more complex. In this talk we give an overview on the measured density profiles along the Rosetta trajectory.
The photodissociation lifetimes of the OH and OD radicals in comets
NASA Technical Reports Server (NTRS)
Singh, P. D.; Van Dishoeck, E. F.; Dalgarno, A.
1983-01-01
The photodissociation rates of OH and OD molecules due to absorption of solar radiation in the X(2)Pi-A(2)Sigma(+) electronic transition are calculated to lie between 3.5 and 6.7 x 10 to the -6th/sec for OH for heliocentric velocities between -60 and +60 km/sec and at about 4.7 x 10 to the -7th/sec for OD at 1 AU from the sun. The corresponding lifetimes, which are upper bounds to the actual lifetimes, are generally consistent with the observational cometary data.
New functionalized IRMOF-10 with strong affinity for methanol: A simulation study
NASA Astrophysics Data System (ADS)
Liu, Zewei; Zhang, Kai; Wu, Ying; Xi, Hongxia
2018-05-01
Grand Canonical Monte Carlo (GCMC) method simulation combined with density functional theory (DFT) calculation were used to investigate the methanol adsorption in IRMOF-10, with nitrogen and metal-doping functionalizations in order to understand the underlying performance of MOFs in methanol adsorption. New doped IRMOF-10s (M-2N-IRMOF-10, M = Be, Mg, Ca, Sr, Ba) were theoretically constructed by binding nitrogen atoms of organic linkers in N-doping IRMOF-10 (2N-IRMOF-10) with various metal atoms. 2N-IRMOF-10 shows only a little higher methanol capacity in the measured pressure range. However, M-2N-IRMOF-10s (especially Be-2N-IRMOF-10) demonstrate much higher methanol capacity due to the stronger interaction between the induced Be atoms and methanol molecules. Furthermore, the obtained results can be attributed to the new adsorption sites created by metal-doping, as revealed by the more exothermic binding energies (BEs) on Be-sites (-160.8 kJ/mol) than Zn-sites (-19.4 kJ/mol). According to the simulation results, it can be concluded that functionalized IRMOF-10 are capable of enhancing the adsorption capacity of methanol at pressure from 0 to 12 kPa at 298 K. This study provides a new functionalized method to effectively enhance methanol adsorption capacity of MOFs, which might extend the application of MOFs on methanol adsorption in the near future.
Laboratory Research. [spectroscopic analysis, photochemical reactions, and proton irradiation of ice
NASA Technical Reports Server (NTRS)
Donn, B.
1981-01-01
To properly interpret the rapidly growing body of data from comet observations, many types of laboratory measurements are needed. These include: (1) molecular spectroscopy in the visible, ultraviolet, infrared and microwave region of the spectra; (2) laser fluorescent spectroscopy of photofragments; (3) laboratory cross-section or reaction rate measurements using flow tube techniques, fluorescent spectroscopy detection for neutrals and ion-molecule reaction techniques; (4) experiments to simulate solar-wind interactions with comets; (5) studies of the properties and behavior of ice mixtures; (6) experiments on the sublimation rate of ice, and the phase transition from amorphous to crystalline ice; (7) investigations of the irradiation of ice; and (8) the electron impact dissociation and excitation of molecules of cometary interest. A nearly completed experiment on the proton irradiation of ice is described.
Jeon, Daun; Kim, Seok Joong; Kim, Hong Seok
2017-11-29
Atherosclerosis is a chronic vascular inflammatory disease. Since even low-level endotoxemia constitutes a powerful and independent risk factor for the development of atherosclerosis, it is important to find therapies directed against the vascular effects of endotoxin to prevent atherosclerosis. Taraxacum officinale (TO) is used for medicinal purposes because of its choleretic, diuretic, antioxidative, anti-inflammatory, and anti-carcinogenic properties, but its anti-inflammatory effect on endothelial cells has not been established. We evaluated the anti-inflammatory activity of TO filtered methanol extracts in LPS-stimulated human umbilical vein endothelial cells (HUVECs) by monocyte adhesion and western blot assays. HUVECs were pretreated with 100 μg/ml TO for 1 h and then incubated with 1 μg/ml LPS for 24 h. The mRNA and protein expression levels of the targets (pro-inflammatory cytokines and adhesion molecules) were analyzed by real-time PCR and western blot assays. We also preformed HPLC analysis to identify the components of the TO methanol extract. The TO filtered methanol extracts dramatically inhibited LPS-induced endothelial cell-monocyte interactions by reducing vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and pro-inflammatory cytokine expression. TO suppressed the LPS-induced nuclear translocation of NF-κB, whereas it did not affect MAPK activation. Our findings demonstrated that methanol extracts of TO could attenuate LPS-induced endothelial cell activation by inhibiting the NF-κB pathway. These results indicate the potential clinical benefits and applications of TO for the prevention of vascular inflammation and atherosclerosis.
Imaging sequential dehydrogenation of methanol on Cu(110) with a scanning tunneling microscope.
Kitaguchi, Y; Shiotari, A; Okuyama, H; Hatta, S; Aruga, T
2011-05-07
Adsorption of methanol and its dehydrogenation on Cu(110) were studied by using a scanning tunneling microscope (STM). Upon adsorption at 12 K, methanol preferentially forms clusters on the surface. The STM could induce dehydrogenation of methanol sequentially to methoxy and formaldehyde. This enabled us to study the binding structures of these products in a single-molecule limit. Methoxy was imaged as a pair of protrusion and depression along the [001] direction. This feature is fully consistent with the previous result that it adsorbs on the short-bridge site with the C-O axis tilted along the [001] direction. The axis was induced to flip back and forth by vibrational excitations with the STM. Two configurations were observed for formaldehyde, whose structures were proposed based on their characteristic images and motions.
NASA Astrophysics Data System (ADS)
Noel, M.; Santhanam, R.; Francisca Flora, M.
The solvent can play a major role in the intercalation/de-intercalation process and the stability of graphite substrates towards this process. This fact is established in the present work that involves fluoride intercalation/de-intercatlation on graphite electrodes in aqueous and aqueous methanolic HF solutions where the HF concentration is varied between 1.0 and 18.0 M. In addition to cyclic voltammetry and potentiostatic polarization, open-circuit potential decay measurements, scanning electron microscopy and X-ray diffraction measurements have been employed. In general, addition of methanol and increasing concentration of HF raise the overall intercalation/de-intercalation efficiency. Methanol is adsorbed preferentially on the graphite lattice and, hence, suppresses both oxygen evolution and the formation of passive graphite oxides. In 15.0 M HF, the optimum methanol concentration is 5 vol.%. This suggests that, in addition to the adsorption effect, there is some weakening of the structured water molecules that facilitates the solvated fluoride ions for efficient intercalation.
Chan, T C; Li, H T; Li, K Y
2015-12-24
Diffusivities of basically linear, planar, and spherical solutes at infinite dilution in various solvents are studied to unravel the effects of solute shapes on diffusion. On the basis of the relationship between the reciprocal of diffusivity and the molecular volume of solute molecules with similar shape in a given solvent at constant temperature, the diffusivities of solutes of equal molecular volume but different shapes are evaluated and the effects due to different shapes of two equal-sized solute molecules on diffusion are determined. It is found that the effects are dependent on the size of the solute pairs studied. Evidence of the dependence of the solute-shape effects on solvent properties is also demonstrated and discussed. Here, some new diffusion data of aromatic compounds in methanol at different temperatures are reported. The result for methanol in this study indicates that the effects of solute shape on diffusivity are only weakly dependent on temperature.
NASA Technical Reports Server (NTRS)
Charnley, S. B.; Kress, M. E.; Tielens, A. G. G. M.; Millar, T. J.
1995-01-01
We have investigated the gas-phase chemistry in dense cores where ice mantles containing ethanol and other alcohols have been evaporated. Model calculations show that methanol, ethanol, propanol, and butanol drive a chemistry leading to the formation of several large ethers and esters. Of these molecules, methyl ethyl ether (CH3OC2H5) and diethyl ether (C2H5)2O attain the highest abundances and should be present in detectable quantities within cores rich in ethanol and methanol. Gas-phase reactions act to destroy evaporated ethanol and a low observed abundance of gas-phase C,H,OH does not rule out a high solid-phase abundance. Grain surface formation mechanisms and other possible gas-phase reactions driven by alcohols are discussed, as are observing strategies for the detection of these large interstellar molecules.
Clustering of amines and hydrazines in atmospheric nucleation
NASA Astrophysics Data System (ADS)
Li, Siyang; Qu, Kun; Zhao, Hailiang; Ding, Lei; Du, Lin
2016-06-01
It has been proved that the presence of amines in the atmosphere can enhance aerosol formation. Hydrazine (HD) and its substituted derivatives, monomethylhydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH), which are organic derivatives of amine and ammonia, are common trace atmospheric species that may contribute to the growth of nucleation clusters. The structures of the hydrazine and amine clusters containing one or two common nucleation molecules (ammonia, water, methanol and sulfuric acid) have been optimized using density functional theory (DFT) methods. The clusters growth mechanism has been explored from the thermochemistry by calculating the Gibbs free energies of adding an ammonia, water, methanol or sulfuric acid molecule step by step at room temperature, respectively. The results show that hydrazine and its derivatives could enhance heteromolecular homogeneous nucleation in the earth's atmosphere.
Possible cometary bioorganic compounds as sources of planetary biospheres
NASA Astrophysics Data System (ADS)
Kobayashi, K.; Takano, Y.; Kaneko, T.; Hashimoto, H.; Saito, T.
Complex organi c compound s were discovered in the coma of Comet Halley [1], whi c h suggested that they w er e p ossibl e sources of the terr estria l biosp here. It has not been confirmed, however, that bioorganic compounds like amino acids were contained in comet ary nuclei. It has been hypothe sized that cometary organic compounds wer e formed in interstellar dust particles (ISDs) [2]. A great nu mber of experiments have been done s imulat i ng the condition o ISDf environments. Amino acids were reported to form in simulated ISD environments by proton irradiation [3] and by UV irradiation [4] of simulat ed ISD ice mantles. Here w e discuss nature of bioorganic compounds formed in simul a t e d ISD environments, and compare wit h those f ormed in simulated primitive planet ary atmospheres. A gas mixt ure of carbon monoxi d e, ammonia and water was irradiated wit h high - energy protons, gamma rays or UV light. All of hydrolysates o f the products gave a wide variety of a ino acids, t ogethe r with uracil a d cytosine. When amn mixture of methanol, ammonia and w at e r (1:1:2.8) was irradiated wit h gamma rays or UV light at 77K, 293K or 353K, am ino acids were also detect e d in each hydrolysates: The G-value ( energy yield) of glycine (the most abundant amino acids in the products) was ca. 0.01, which was independent from the temp eratur e or the phase (s olid, liquid or gas). These results s ugg est that amino acid precursors can be formed in ISD environments quite effe c t i vely even if the materials were frozen in low temperature. If comets can bring sufficient kinds and amount of bioorganic co mpou nds to planets, planetary biospheres can be generated, regardless of the comp osit ion of planet ary atmospheres. It will be quite interesting to find and analyze cometary organics left in planets and satellites such as the moon, as wel l as in cometary bodies. [1] J. Kissel and F. R. Kreuger, Natur e, 326, 755 (1987). [2] J. M. Greenberg and A. Li, Adv. Space Res., 19, 981 (1997). [3] K. Kobayashi, et al., Adv. Space Res ., 16, 21 (1995); T. Kasam atsu, et al., Bull. Chem . Soc. Jpn., 70, 1021 (1997). [4] R. Briggs , et al., Origins Life Evol. Biosphere, 22, 287 (1992); K. Kobayas hi, et al., Adv. Space Res., 23, 401 (1999 ) ; M. P. Bern stein, et al., Nature, 416, 401 (2002); G. M. M unoz Caro, et al., Nature, 416, 403 (2002).
Chemical Composition of the Semi-Volatile Grains of Comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Wurz, P.; Altwegg, K.; Balsiger, H. R.; Berthelier, J. J.; De Keyser, J.; Fiethe, B.; Fuselier, S. A.; Gasc, S.; Gombosi, T. I.; Korth, A.; Mall, U.; Reme, H.; Rubin, M.; Tzou, C. Y.
2017-12-01
Rosetta was in orbit of comet 67P/Churyumov-Gerasimenko from August 2014 to September 2016. On board is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) experiment that has been continuously collecting data on the chemical composition and activity of the coma from 3.5 AU to pericentre at 1.24 AU and out again to 3.5 AU. ROSINA consists of two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron-type Time-Of-Flight (RTOF), as well as the COmet Pressure Sensor (COPS). ROSINA recorded the neutral gas and thermal plasma in the comet's coma. The two mass spectrometers have high dynamic ranges and complement each other with high mass resolution, and high time resolution and large mass range. COPS measures total gas densities, bulk velocities, and gas temperatures. Occasionally, a dust grain of cometary origin enters the ion source of a ROSINA instrument where the volatile part evaporates since these ion sources are hot. The release of volatiles from cometary dust grains was observed with all three ROSINA instruments on several occasions. Because the volatile content of such a dust grain is completely evaporated after a few seconds, the RTOF instrument is best suited for the investigation of its chemical composition since complete mass spectra are recorded during this time. During the mission 9 dust grains were observed with RTOF during the October 2014 to July 2016 time period. It is estimated that these grains contain about 10-15 g of volatiles. The mass spectra were interpreted with a set of 75 molecules, with the major groups of chemical species being hydrocarbons, oxygenated hydrocarbons, nitrogen-bearing molecules, sulphur-bearing molecules, halogenated molecules and others. About 70% of these grains are depleted in water compared to the comet coma, thus, can be considered as semi-volatile dust grains, and the other about 30% are water grains. The chemical composition varies considerably from grain to grain, indicating large chemical heterogeneity at these scales. In contrast, the elemental abundances vary much less.
Radiolysis of Amino Acids in Outer Solar-System Ice Analogs
NASA Technical Reports Server (NTRS)
Gerakines, Perry A.; Hudson, Reggie L.
2011-01-01
Amino acids have been found in cometary dust particles and in the organic component of meteorites. These molecules, important for pre-biotic chemistry and for active biological systems, might be formed in cold planetary or interstellar environments and then delivered to H20-rich surfaces in the outer solar system. Many models for the availability of organic species on Earth and elsewhere depend on the ability of these molecules to survive in radiation-rich space environments. This poster presents results of O.8-MeV proton radiolysis of ice films at lS-140K. using infrared spectroscopy, the destruction rates of glycine, alanine, and phenylalanine have been determined for both pure films and those containing amino acids diluted in H2o. our results are discussed in terms of the survivability of these molecules in the icy surfaces present in the outer solar system and the possibility of their detection by instruments on board the New Horizons spacecraft
NASA Technical Reports Server (NTRS)
Zank, G. P.; Khabibrakhmanov, I. KH.; Story, T.
1993-01-01
A new two-fluid model which describes mass loading in the solar wind (e.g., the interaction of the solar wind with a cometary coma or the local interstellar medium) is presented. The self-consistent back-reaction of the mass-loaded ions is included through their effective scattering in low-frequency MHD turbulence and the invocation of a diffusive approximation. Such an approximation has the advantage of introducing self-consistent dissipation coefficients into the governing equations, thereby facilitating the investigation of the internal structure of shocks in mass-loading environments. To illustrate the utility of the new model, we consider the structure of cometary shocks in the hypersonic one-dimensional limit, finding that the incoming solar wind is slowed by both mass loading and the development of a large cometary ion pressure gradient. The shock is broadened and smoothed by the cometary ions with a thickness of the order of the cometary ion diffusion scale.
Understanding Methanol Coupling on SrTiO 3 from First Principles
Huang, Runhong; Fung, Victor; Zhang, Yafen; ...
2018-03-19
Perovskites are interesting materials for catalysis due to their great tunability. However, the correlation of many reaction processes to the termination of a perovskite surface is still unclear. In this paper, we use the methanol coupling reaction on the SrTiO 3(100) surface as a probe reaction to investigate direct C–C coupling from a computational perspective. We use density functional theory to assess methanol adsorption, C–H activation, and direct C–C coupling reactions on the SrTiO 3(100) surface of different terminations. We find that, although methanol molecules dissociatively adsorb on both A and B terminations with similar strength, the dehydrogenation and C–Cmore » coupling reactions have significantly lower activation energies on the B termination than on the A termination. The predicted formation of methoxy and acetate on the SrTiO 3(100) B termination can well explain the ambient-pressure XPS data of methanol on the single-crystal SrTiO 3(100) surface at 250 °C. Finally, this work suggests that a choice of B termination of perovskites would be beneficial for the C–C coupling reaction of methanol.« less
Simulating the formation of carbon-rich molecules on an idealized graphitic surface
NASA Astrophysics Data System (ADS)
Marshall, David W.; Sadeghpour, H. R.
2016-01-01
There is accumulating evidence for the presence of complex molecules, including carbon-bearing and organic molecules, in the interstellar medium. Much of this evidence comes to us from studies of chemical composition, photo- and mass spectroscopy in cometary, meteoritic and asteroid samples, indicating a need to better understand the surface chemistry of astrophysical objects. There is also considerable interest in the origins of life-forming and life-sustaining molecules on the Earth. Here, we perform reactive molecular dynamics simulations to probe the formation of carbon-rich molecules and clusters on carbonaceous surfaces resembling dust grains and meteoroids. Our results show that large chains form on graphitic surfaces at low temperatures (100-500 K) and smaller fullerene-like molecules form at higher temperatures (2000-3000 K). The formation is faster on the surface than in the gas at low temperatures but slower at high temperatures as surface interactions prevent small clusters from coagulation. We find that for efficient formation of molecular complexity, mobility about the surface is important and helps to build larger carbon chains on the surface than in the gas phase at low temperatures. Finally, we show that the temperature of the surface strongly determines what kind of structures forms and that low turbulent environments are needed for efficient formation.
Water and complex organic molecules in the warm inner regions of solar-type protostars
NASA Astrophysics Data System (ADS)
Coutens, A.; Jørgensen, J. K.; Persson, M. V.; Lykke, J. M.; Taquet, V.; van Dishoeck, E. F.; Vastel, C.; Wampfler, S. F.
2015-12-01
Water and complex organic molecules play an important role in the emergence of Life. They have been detected in different types of astrophysical environments (protostars, prestellar cores, outflows, protoplanetary disks, comets, etc). In particular, they show high abundances towards the warm inner regions of protostars, where the icy grain mantles thermally desorb. Can a part of the molecular content observed in these regions be preserved during the star formation process and incorporated into asteroids and comets, that can deliver it to planetary embryos through impacts? By comparison with cometary studies, interferometric observations of solar-type protostars can help to address this important question. We present recent results obtained with the Plateau de Bure interferometer about water deuteration, glycolaldehyde and ethylene glycol towards the low-mass protostar NGC 1333 IRAS2A.
A Chemical Model of the Coma of Comet C/2009 P1 (Garradd)
NASA Astrophysics Data System (ADS)
Boice, Daniel C.; Kawakita, H.; Kobayashi, H.; Naka, C.; Phelps, L.
2012-10-01
Modeling is essential to understand the important physical and chemical processes that occur in cometary comae. Photochemistry is a major source of ions and electrons that further initiate key gas-phase reactions, leading to the plethora of molecules and atoms observed in comets. The effects of photoelectrons that react via impacts are important to the overall ionization. We identify the relevant processes within a global modeling framework to understand simultaneous observations in the visible and near-IR of Comet C/2009 (Garradd) and to provide valuable insights into the intrinsic properties of its nucleus. Details of these processes are presented in the collision-dominated, inner coma of the comet to evaluate the relative chemical pathways and the relationship between parent and sibling molecules. Acknowledgements: We appreciate support from the NSF Planetary Astronomy Program.
Hydrogen isotope exchanges between water and methanol in interstellar ices
NASA Astrophysics Data System (ADS)
Faure, A.; Faure, M.; Theulé, P.; Quirico, E.; Schmitt, B.
2015-12-01
The deuterium fractionation of gas-phase molecules in hot cores is believed to reflect the composition of interstellar ices. The deuteration of methanol is a major puzzle, however, because the isotopologue ratio [CH2DOH]/[CH3OD], which is predicted to be equal to 3 by standard grain chemistry models, is much larger (~20) in low-mass hot corinos and significantly lower (~1) in high-mass hot cores. This dichotomy in methanol deuteration between low-mass and massive protostars is currently not understood. In this study, we report a simplified rate equation model of the deuterium chemistry occurring in the icy mantles of interstellar grains. We apply this model to the chemistry of hot corinos and hot cores, with IRAS 16293-2422 and the Orion KL Compact Ridge as prototypes, respectively. The chemistry is based on a statistical initial deuteration at low temperature followed by a warm-up phase during which thermal hydrogen/deuterium (H/D) exchanges occur between water and methanol. The exchange kinetics is incorporated using laboratory data. The [CH2DOH]/[CH3OD] ratio is found to scale inversely with the D/H ratio of water, owing to the H/D exchange equilibrium between the hydroxyl (-OH) functional groups of methanol and water. Our model is able to reproduce the observed [CH2DOH]/[CH3OD] ratios provided that the primitive fractionation of water ice [HDO]/[H2O] is ~2% in IRAS 16293-2422 and ~0.6% in Orion KL. We conclude that the molecular D/H ratios measured in hot cores may not be representative of the original mantles because molecules with exchangeable deuterium atoms can equilibrate with water ice during the warm-up phase.
NASA Astrophysics Data System (ADS)
Henderson, Bryana L.; Gudipati, Murthy S.
2015-02-01
As discovery of complex molecules and ions in our solar system and the interstellar medium has proliferated, several groups have turned to laboratory experiments in an effort to simulate and understand these chemical processes. So far only infrared (IR) and ultraviolet (UV) spectroscopy has been able to directly probe these reactions in ices in their native, low-temperature states. Here we report for the first time results using a complementary technique that harnesses two-step two-color laser ablation and ionization to measure mass spectra of energetically processed astrophysical and cometary ice analogs directly without warming the ices—a method for hands-off in situ ice analysis. Electron bombardment and UV irradiation of H2O, CH3OH, and NH3 ices at 5 K and 70 K led to complex irradiation products, including HCO, CH3CO, formamide, acetamide, methyl formate, and HCN. Many of these species, whose assignment was also strengthened by isotope labeling studies and correlate with IR-based spectroscopic studies of similar irradiated ices, are important ingredients for the building blocks of life. Some of them have been detected previously via astronomical observations in the interstellar medium and in cometary comae. Other species such as CH3CO (acetyl) are yet to be detected in astrophysical ices or interstellar medium. Our studies suggest that electron and UV photon processing of astrophysical ice analogs leads to extensive chemistry even in the coldest reaches of space, and lend support to the theory of comet-impact-induced delivery of complex organics to the inner solar system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinnaka, Yoshiharu; Kawakita, Hideyo; Kobayashi, Hitomi
2012-04-20
The ortho-to-para abundance ratio (OPR) of cometary molecules is considered to be one of the primordial characteristics of cometary ices, and contains information concerning their formation. Water is the most abundant species in cometary ices, and OPRs of water in comets have been determined from infrared spectroscopic observations of H{sub 2}O rovibrational transitions so far. In this paper, we present a new method to derive OPR of water in comets from the high-dispersion spectrum of the rovibronic emission of H{sub 2}O{sup +} in the optical wavelength region. The rovibronic emission lines of H{sub 2}O{sup +} are sometimes contaminated by othermore » molecular emission lines but they are not affected seriously by telluric absorption compared with near-infrared observations. Since H{sub 2}O{sup +} ions are mainly produced from H{sub 2}O by photoionization in the coma, the OPR of H{sub 2}O{sup +} is considered to be equal to that of water based on the nuclear spin conservation through the reaction. We have developed a fluorescence excitation model of H{sub 2}O{sup +} and applied it to the spectrum of comet C/2001 Q4 (NEAT). The derived OPR of water is 2.54{sup +0.32}{sub -0.25}, which corresponds to a nuclear spin temperature (T{sub spin}) of 30{sup +10}{sub -4} K. This is consistent with the previous value determined in the near-infrared for the same comet (OPR = 2.6 {+-} 0.3, T{sub spin} = 31{sup +11}{sub -5} K).« less
Terrestrial production vs. extraterrestrial delivery of prebiotic organics to the early Earth
NASA Technical Reports Server (NTRS)
Chyba, C. F.; Sagan, C.; Thomas, P. J.; Brookshaw, L.
1991-01-01
A comprehensive treatment of comet/asteroid interaction with the atmosphere, ensuring surface impact, and resulting organic pyrolysis is required to determine whether more than a negligible fraction of the organics in incident comets and asteroids actually survived collision with Earth. Results of such an investigation, using a smoothed particle hydrodynamic simulation of cometary and asteroidal impacts into both oceans and rock, demonstrate that organics will not survive impacts at velocities approx. greater than 10 km s(exp -1), and that even comets and asteroids as small as 100m in radius cannot be aerobraked to below this velocity in 1 bar atmospheres. However, for plausible dense (10 bar CO2) early atmospheres, there will be sufficient aerobraking during atmospheric passage for some organics to survive the ensuing impact. Combining these results with analytical fits to the lunar impact record shows that 4.5 Gyr ago Earth was accreting at least approx. 10(exp 6) kg yr(exp 1) of intact cometary organics, a flux which thereafter declined with a approx. 100 Myr half-life. The extent to which this influx was augmented by asteroid impacts, as well as the effect of more careful modelling of a variety of conservative approximations, is currently being quantified. These results may be placed in context by comparison with in situ organic production from a variety of terrestrial energy sources, as well as organic delivery by interplanetary dust. Which source dominated the early terrestrial prebiotic inventory is found to depend on the nature of the early terrestrial atmosphere. However, there is an intriguing symmetry: it is exactly those dense CO2 atmospheres where in situ atmospheric production of organic molecules should be the most difficult, in which intact cometary organics would be delivered in large amounts.
NASA Technical Reports Server (NTRS)
Luchini, Chris B.
1997-01-01
Development of camera and instrument simulations for space exploration requires the development of scientifically accurate models of the objects to be studied. Several planned cometary missions have prompted the development of a three dimensional, multi-spectral, anisotropic multiple scattering model of cometary coma.
Cometary kilometric radio waves and plasma waves correlated with ion pick-up effect at Comet Halley
NASA Technical Reports Server (NTRS)
Oya, H.; Morioka, A.; Miyake, W.; Smith, E. J.; Tsurutani, B. T.
1985-01-01
Bow-shock movements at Comet Halley are inferred from the discrete spectra of the cometary kilometric radiation (30-195 kHz); the observed emissions can be interpreted as being generated and propagating from the moving shock. The shock motion is possibly associated with the time variation of the solar wind and cometary outgassing. It is concluded that these plasma wave phenomena are manifestations of ion pick-up processes, which occur even in a remote region 7 million to 10 million km from the cometary nucleus.
Cometary jets in interaction with the solar wind: a hybrid simulation study
NASA Astrophysics Data System (ADS)
Wiehle, Stefan; Motschmann, Uwe; Gortsas, Nikolaos; Mueller, Joachim; Kriegel, Hendrik; Koenders, Christoph; Glassmeier, Karl-Heinz
The effect of a cometary jet on the solar wind interaction is studied using comet 67P/Churyumov-Gerasimenko as case study. This comet is the target of the Rosetta-mission which will arrive in 2014. Observations suggest that cometary outgassing is confined to only a few percent of the cometary surface; thus, the measurement of jets is expected. Most former comet simulations did not attend to this fact and used an isotropic outgassing scheme or simplified outgassing patterns. Here, a single sun-facing jet is set to be the only source of cometary gas produc-tion. Using an analytic profile, this outgassing jet was implemented in a hybrid simulation code which treats protons and cometary heavy ions as particles and electrons as massless fluid. In a simulation series, the geometric parameters of the jet were varied to study the effect of different opening angles while the integrated outgassing rate remained constant. It was shown that the resulting solar wind interaction is highly dependent on the geometry of the jet. The plasma-structures like the solar wind pile-up found in the situation with isotropic outgassing are moved more and more sunward as the opening angle of the jet decreases. Furthermore, the cometary ion tail shows some kind of splitting which is not known from isotropic models.
The EUV Emission in Comet-Solar Corona Interactions
NASA Technical Reports Server (NTRS)
Bryans, Paul; Pesnell, William Dean; Schrijver, Carolus J.; Brown, John C.; Battams, Karl; Saint-Hilaire, Pasal; Liu, Wei; Hudson, Hugh S.
2011-01-01
The Atmospheric Imaging Assembly (AlA) on the Solar Dynamics Observatory (SDO) viewed a comet as it passed through the solar corona on 2011 July 5. This was the first sighting of a comet by a EUV telescope. For 20 minutes, enhanced emission in several of the AlA wavelength bands marked the path of the comet. We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Water ice in the comet rapidly sublimates as it approaches the Sun. This water vapor is then photodissociated, primarily by Ly-alpha, by the solar radiation field to create atomic Hand O. Other molecules present in the comet also evaporate and dissociate to give atomic Fe and other metals. Subsequent ionization of these atoms can be achieved by a number of means, including photoionization, electron impact, and charge exchange with coronal protons and other highly-charged species. Finally, particles from the cometary atmosphere are thermalized to the background temperature of the corona. Each step could cause emission in the AlA bandpasses. We will report here on their relative contribution to the emission seen in the AlA telescopes.
Chirality, photochemistry and the detection of amino acids in interstellar ice analogues and comets.
Evans, Amanda C; Meinert, Cornelia; Giri, Chaitanya; Goesmann, Fred; Meierhenrich, Uwe J
2012-08-21
The primordial appearance of chiral amino acids was an essential component of the asymmetric evolution of life on Earth. In this tutorial review we will explore the original life-generating, symmetry-breaking event and summarise recent thoughts on the origin of enantiomeric excess in the universe. We will then highlight the transfer of asymmetry from chiral photons to racemic amino acids and elucidate current experimental data on the photochemical synthesis of amino and diamino acid structures in simulated interstellar and circumstellar ice environments. The chirality inherent within actual interstellar (cometary) ice environments will be considered in this discussion: in 2014 the Rosetta Lander Philae onboard the Rosetta space probe is planned to detach from the orbiter and soft-land on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko. It is equipped for the in situ enantioselective analysis of chiral prebiotic organic species in cometary ices. The scientific design of this mission will therefore be presented in the context of analysing the formation of amino acid structures within interstellar ice analogues as a means towards furthering understanding of the origin of asymmetric biological molecules.
Abundant molecular oxygen in the coma of comet 67P/Churyumov-Gerasimenko.
Bieler, A; Altwegg, K; Balsiger, H; Bar-Nun, A; Berthelier, J-J; Bochsler, P; Briois, C; Calmonte, U; Combi, M; De Keyser, J; van Dishoeck, E F; Fiethe, B; Fuselier, S A; Gasc, S; Gombosi, T I; Hansen, K C; Hässig, M; Jäckel, A; Kopp, E; Korth, A; Le Roy, L; Mall, U; Maggiolo, R; Marty, B; Mousis, O; Owen, T; Rème, H; Rubin, M; Sémon, T; Tzou, C-Y; Waite, J H; Walsh, C; Wurz, P
2015-10-29
The composition of the neutral gas comas of most comets is dominated by H2O, CO and CO2, typically comprising as much as 95 per cent of the total gas density. In addition, cometary comas have been found to contain a rich array of other molecules, including sulfuric compounds and complex hydrocarbons. Molecular oxygen (O2), however, despite its detection on other icy bodies such as the moons of Jupiter and Saturn, has remained undetected in cometary comas. Here we report in situ measurement of O2 in the coma of comet 67P/Churyumov-Gerasimenko, with local abundances ranging from one per cent to ten per cent relative to H2O and with a mean value of 3.80 ± 0.85 per cent. Our observations indicate that the O2/H2O ratio is isotropic in the coma and does not change systematically with heliocentric distance. This suggests that primordial O2 was incorporated into the nucleus during the comet's formation, which is unexpected given the low upper limits from remote sensing observations. Current Solar System formation models do not predict conditions that would allow this to occur.
Molecular interaction of (ethanol)2-water heterotrimers.
Mejía, Sol M; Espinal, Juan F; Restrepo, Albeiro; Mondragón, Fanor
2007-08-23
The potential energy surface of the (ethanol)2-water heterotrimers for the trans and gauche conformers of ethanol was studied using density functional theory. The same approximation was used for characterizing representative clusters of (ethanol)3, (methanol)3, and (methanol)2-water. Trimerization energies and enthalpies as well as the analysis of geometric parameters suggest that the structures with a cyclic pattern in the three hydrogen bonds of the type O-H---O (primary hydrogen bonds), where all molecules are proton donor-acceptor at the same time, are more stable than those with just two primary hydrogen bonds. Additionally, we propose the formation of "secondary hydrogen bonds" between hydrogen atoms of the methyl group of ethanol and the oxygen atom of water or other ethanol molecule (C-H---O), which were found to be weaker than the primary hydrogen bonds.
NASA Astrophysics Data System (ADS)
Lai, Ian-Lin; Su, Cheng-Chin; Ip, Wing-Huen; Wei, Chen-En; Wu, Jong-Shinn; Lo, Ming-Chung; Liao, Ying; Thomas, Nicolas
2016-03-01
With a combination of the Direct Simulation Monte Carlo (DSMC) calculation and test particle computation, the ballistic transport process of the hydroxyl radicals and oxygen atoms produced by photodissociation of water molecules in the coma of comet 67P/Churyumov-Gerasimenko is modelled. We discuss the key elements and essential features of such simulations which results can be compared with the remote-sensing and in situ measurements of cometary gas coma from the Rosetta mission at different orbital phases of this comet.
Burch, J L; Cravens, T E; Llera, K; Goldstein, R; Mokashi, P; Tzou, C-Y; Broiles, T
2015-07-16
As Rosetta was orbiting comet 67P/Churyumov-Gerasimenko, the Ion and Electron Sensor detected negative particles with angular distributions like those of the concurrently measured solar wind protons but with fluxes of only about 10% of the proton fluxes and energies of about 90% of the proton energies. Using well-known cross sections and energy-loss data, it is determined that the fluxes and energies of the negative particles are consistent with the production of H - ions in the solar wind by double charge exchange with molecules in the coma.
NASA Technical Reports Server (NTRS)
Reuter, D. C.; Mumma, M. J.; Nadler, S.
1989-01-01
Formaldehyde scattering strengths have been determined for equilibrium distributions of 100 K, 50 K, 20 K, and for the the non-LTE case of an essentially fully relaxed distribution. Integrated band g factors of 2.89 x 10 to the -4th photons/s per molecule for nu1 and 3.83 x 10 to the -4th for nu 5 are obtained. The results indicate that the most promising regions to search for cometary H2CO are at about 2782/cm, at 2794.5/cm, and at about 2835/cm.
Suganuma, Y; Dhirani, A-A
2011-04-01
The present study explores a novel apertured microchip conductance detector (AMCD) that is sensitive to dielectric constant. Fashioned on silicon oxide/silicon using optical microlithography, the detector has novel parallel-plate geometry with a top mesh electrode, a middle apertured insulator, and a bottom conducting electrode. This monolithic apertured architecture is planar and may be provided with a thin insulator layer enabling large capacitances, while the top mesh electrode and middle apertured-insulator enable access to regions of the capacitor where electric fields are strong. Hence, the detector is sensitive yet mechanically robust. To test its response, the AMCD was immersed in various solvents, namely water, methanol, acetonitrile, and hexanes. Its response was found to vary in proportion to the solvents' respective dielectric constants. The AMCD was also able to distinguish quantitatively the presence of various molecules in solution, including molecules with chromophores [such as acetylsalicylic acid (ASA)] in methanol and those without chrompohores [such as polyethylene glycol 200 Daltons (PEG200)] in methanol or water. The universal nature of dielectric constant and the microchip detector's sensitivity point to a wide range of potential applications. © 2011 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Runhong; Fung, Victor; Zhang, Yafen
Perovskites are interesting materials for catalysis due to their great tunability. However, the correlation of many reaction processes to the termination of a perovskite surface is still unclear. In this paper, we use the methanol coupling reaction on the SrTiO 3(100) surface as a probe reaction to investigate direct C–C coupling from a computational perspective. We use density functional theory to assess methanol adsorption, C–H activation, and direct C–C coupling reactions on the SrTiO 3(100) surface of different terminations. We find that, although methanol molecules dissociatively adsorb on both A and B terminations with similar strength, the dehydrogenation and C–Cmore » coupling reactions have significantly lower activation energies on the B termination than on the A termination. The predicted formation of methoxy and acetate on the SrTiO 3(100) B termination can well explain the ambient-pressure XPS data of methanol on the single-crystal SrTiO 3(100) surface at 250 °C. Finally, this work suggests that a choice of B termination of perovskites would be beneficial for the C–C coupling reaction of methanol.« less
The morphology of cometary nuclei
NASA Astrophysics Data System (ADS)
Keller, H. U.; Jorda, L.
The sudden appearance of a bright comet stretching over a large part of the night sky must have been one of the most awesome phenomena for early humans watching the sky. The nature of comets remained obscure well into the Middle Ages. Only with the introduction of astronomical techniques and analyses in Europe was the parallax of a comet determined by Tycho Brahe for the first time. He proved that comets are not phenomena of the Earth's atmosphere but are farther away than the Moon; in other words they are interplanetary objects. Later Kepler first predicted that comets follow straight lines, then Hevelius suggested parabolic orbits roughly a hundred years later. It was Halley who suggested that the comets of the years 1531, 1607 and 1682 were apparitions of one and the same comet that would return again in 1758. The success of this prediction made it clear that comets are members of our Solar System. While it was now established that periodic comets are objects of the planetary system, their origin and nature continued to be debated. Were they formed together with the planets from the solar nebula (Kant) or were they of extrasolar origin as suggested by Laplace? This debate lasted for 200 years until well into the second half of the last century. Öpik (1932) suggested that a cloud of comets surrounded our Solar System. This hypothesis was quantified and compared to the observed distribution of orbital parameters (essentially the semi-major axes) of new comets by Oort (1950) (Section 2.1). Comets are scattered into the inner Solar System by perturbations caused by galactic tides, passing stars and large molecular clouds. The Oort cloud would have a radius of 2 105AU, a dimension comparable to the distances of stars in our neighbourhood. The lifetime (limited by decay due to activity and by perturbations caused by encounters with planets) even of the new comets on almost parabolic orbits and typical periods of the order of 106 years is short compared to the age of the planetary system (4.5 Gy). Therefore, observed comets could only recently have arrived on their orbits dipping inside the inner Solar System. This reservoir of comets must have been established during the formation process of the planetary system itself. Cometesimals were agglomerated from interstellar/interplanetary gas and dust and scattered out of the inner Solar System by the giant outer planets (Section 2.3). This scheme implies that a central part of a comet, its nucleus, is stable enough to survive these perturbations. It must also be stable enough to pass the vicinity of the sun for many times in the case of a short-period comet. Comets are bright and large when they are close to the sun and fade quickly when they recede beyond about 2AU. Only with the advent of photography and large astronomical telescopes could a comet be followed until it becomes a starlike point source. What makes comets active near the Sun, blowing their appearances up to the order of 105 km? Bright comets often develop tails two orders of magnitude longer. In an attempt to explain the cometary appearance, Bredichin (1903) introduced a mechanical model where repulsive forces drive the particles away from a central condensation. Spectroscopy revealed that dust grains reflect the solar irradiation. In addition, simple molecules, radicals and ions were found as constituents of the cometary coma and tail. The nature of the central condensation remained mysterious for a long time because of the observational dilemma. When the comet is close to the Earth and therefore to the Sun the dense coma obscures the view into its centre. When activity recedes the comet is too far away and too dim for detailed observations of its central condensation. During the middle of the nineteenth century the connection between comets and meteor streams was established. Schiaparelli (1866) calculated the dispersion of cometary dust within the orbital plane. From this time on the perception that the central condensations of comets were agglomerations of dust particles prevailed for about a century. The gas coma was explained by desorption of molecules from dust particles with large surfaces (Levin 1943). The storage of highly reactive radicals (most observed species (CN, CH, NH2, etc.) were of this category) posed a major difficulty to be explained. The inference that these radicals should be dissociation products of stable parent molecules (such as (CN)2, CH4, NH3, etc.) by Wurm (1934, 1935, 1943) led to our present understanding that these molecules are stored as ices within the central nucleus of a comet. Whipple (1950a,b) combined the astrometrical observations of changes of the orbital periods of comets with the existence of an icy cometary nucleus. The sublimation of ices cause reactive (rocket) non-gravitational forces that increase or decrease the orbital period of an active comet according to the sense of rotation of its nucleus. Evidence in support of the icy conglomerate nucleus became more and more compelling by the derived high gas production rates that could not be stored by adsorption on dust grains (Biermann and Trefftz 1964, Huebner 1965, Keller 1976a,b) and by the same account by the large quantities of dust moving into the cometary tail (Finson and Probstein 1968b). The `sand bank' model (Lyttleton 1953) was clearly dismissed in favour of a solid icy nucleus. Its formation and origin could now be explored. While there was some knowledge about the chemical composition of the nucleus, its physical properties, even the basic ones like size, shape and mass, remained largely unknown because the nucleus could not be observed. Early attempts to derive the nucleus size from the `nuclear' magnitudes of comets at large heliocentric distances while they are inactive (Roemer 1966a,b) led to a systematic overestimation of the size because their residual activity could not be eliminated. The advent of modern detectors and large ground-based telescopes revealed that most comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of the Rosetta comet rendezvous mission) to about 50 km (comet Hale- Bopp, comet P/Schwassman-Wachmann 1). Their albedos are very low, about 0.04. Their shapes are irregular, axes ratios of 2:1 are often derived. Even though comets are characterized by their activity, in most cases only a small fraction of the nuclear surface (in some cases less than 1%) is active. An exception seems to be comet P/Wirtanen where all its surface is required to be active in order to explain its production rates (Rickman and Jorda 1998). The detection of trans-Neptunian objects (TNOs) in the Kuiper belt (Jewitt and Luu 1993) reveals a new population of cometary bodies with dimensions an order of magnitude bigger (100 km and larger) than the typical comet observed in the inner planetary system. Little is known about the extent, density, size distribution and physical characteristics of these objects. This region is supposedly the reservoir for short-period comets, manly those controlled by Jupiter (Jupiter family comets). Our present concept of a cometary nucleus has been strongly influenced by the first pictures of the nucleus of comet Halley achieved during the Giotto flyby in 1986. While this revelation seems to be confirmed as typical by modern observations it carries the danger of prototyping new observational results and inferences. Missions and spacecraft are already on their way (Deep Space, Contour, Stardust, Deep Impact) or in preparation (Rosetta) to diversify our knowledge. The morphology of cometary nuclei is determined by their formation process in the early solar nebula, their dynamics and evolution. The physics of the processes leading to their apparent activity while approaching the Sun are still obscure in many details but determine the small- and intermediate-scale morphology. The large-scale morphology, the shape, of a cometary nucleus is determined by its fragility and inner structure and by its generally complex rotational state. These topics will be reviewed in the following sections. Chemical and compositional aspects will be only discussed where they are important in the framework of the physical evolution of cometary nuclei. More details are given in Chapter 53. A brief survey of the current modelling efforts is given. The fate of cometary nuclei and their decay products follows. A summary and outlook ends this chapter on the morphology of cometary nuclei.
Progress in our understanding of cometary dust tails
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1976-01-01
Various analytical techniques are employed to analyze observations on the character, composition, and size distribution of solid particles in cometary dust tails. Emphasized is the mechanical theory that includes solar gravitational attraction and solar radiation pressure to explain dust particle motions in cometary tails, as well as interactions between dust and plasma.
Cometary exploration in the shuttle era
NASA Technical Reports Server (NTRS)
Farquhar, R. W.; Wooden, W. H., II
1978-01-01
A comprehensive program plan for cometary exploration in the 1980-2000 time frame is proposed. Plans for ground-based observations, a Spacelab cometary observatory, and the Space Telescope are included in the observational program. The cometary mission sequence begins with a dual-spacecraft flyby of Halley's comet. The nominal mission strategy calls for a simultaneous launch of two spacecraft towards an intercept with Halley in March 1986. After the Halley encounter, the spacecraft are retargeted: one to intercept comet Borrelly in January 1988 and the other to intercept comet Tempel-2 in September 1988. The additional cometary intercepts are accomplished by utilizing a novel Earth-swingby technique. The next mission in the cometary program plan, a rendezvous with Encke's comet, is scheduled for launch in early 1990. It is planned to rendezvous with Encke in September 1992 at a heliocentric distance of 4 AU. Following this near-aphelion rendezvous, the spacecraft will remain with with Encke through the next two perihelion passages in February 1994 and May 1997. The rendezvous mission will be terminated about seven months after the second perihelion passage.
Cometary Plasma Probed by Rosetta
NASA Astrophysics Data System (ADS)
Galand, Marina; Vigren, Erik; Raghuram, Susarla; Schwartz, Steve; Eriksson, Anders; Edberg, Niklas; Lebreton, Jean-Pierre; Henri, Pierre; Burch, Jim; Fuselier, Stephen; Haessig, Myrtha; Mandt, Kathy; Altwegg, Kathrin; Tzou, Chia-You
2015-04-01
In Fall 2014, comet 67P/Churyumov-Gerasimenko, the main target of the Rosetta mission, was at 3 AU from the Sun. Its outgassing rate was only of the order of 5×1025 s-1 based on Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) / Cometary Pressure Sensor (COPS). Despite such a thin coma, a plasma of cometary origin has been detected by Rosetta Plasma Consortium (RPC) sensors and ROSINA/ Double Focusing Mass Spectrometer (DFMS). Close to the comet they have revealed the presence of a cometary ionosphere, with a hot electron population, consistent with the deposition of Extreme UltraViolet (EUV) solar radiation. We will present a comparison between RPC sensors and an energy deposition model in terms of suprathermal electron intensities [RPC/ Ion and Electron Sensor (IES)] and electron temperature and density [RPC/ LAngmuir Probe (LAP) and RPC/ Mutual Impedance Probe (MIP)]. We will also compare ion composition among the main species, between our ionospheric model and ROSINA/DFMS. We will discuss effects of the space environment on the cometary plasma. Finally, we will highlight any evolution in the cometary plasma as the comet is getting closer to perihelion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holder, G.D.; Tierney, J.W.
Experimental work is presently being concentrated on a two-step synthesis of methanol from CO and H/sub 2/ Which consists of the carbonylation of a molecule of methanol to methyl formate followed by hydrogenation to form two molecules of methanol. Carrying out both reactions concurrently gives different results than predicted. One explanation is interaction between the two catalysts. Since one catalyst is homogeneous and the other heterogeneous, the interaction, due to absorption of the homogeneous catalyst on the heterogeneous one, at room temperature was measured and found to be significant. Measurements of mass transfer cooefficients from gas phase to liquid phasemore » for systems containing H/sub 2/, CO, methanol and methyl formate were made to verify that the reaction rate data being obtained are not influenced by mass transfer limitations. Mass transfer rates in the experimental reactor are a least 1000 times larger than reaction rates and hence are not rate limiting. Modeling of the unsteady state slurry phase Fischer-Tropsch reaction continued in order to investigate interactions among the Fischer-Tropsch reactions, the thermal effects, and the water gas shift reaction. A computer program for solution of the reaction equations was written. Also included in this report is the entire program for evaluating mass transfer coefficients under supercritical conditions is described and a review of current knowledge and planned correlational approaches is given. 61 refs., 22 figs, 7 tabs.« less
NASA Astrophysics Data System (ADS)
Tanışlı, Murat; Taşal, Erol
2017-06-01
Atmospheric-pressure low-temperature plasma jets and their applications are a topic of great interest in the fields of physics, technology, and medicine. In this study, the used self-made plasma jet is based on a dielectric barrier discharge (DBD) in neon (Ne) with typical processing parameters, such as frequency in the kHz range and voltage in the kV range. The plasma is characterized by optical emission spectroscopy (OES). These types of plasma can be used in various applications such as surface modification, inactivation of microorganisms, and chemical decomposition. This study is concerned with the Fourier transform infrared spectrum (FT-IR) and ultraviolet-visible (UV-vis) absorption spectroscopy of the large 7-acetoxy-6-(2,3-dibromopropyl)-4,8-dimethylcoumarin molecule (abbreviated as 7AC) dissolved in ethanol and methanol solvents and their modification after atmospheric-pressure plasma treatment (APPT) with the DBD. The research is motivated by the significance of this molecule in different fields of application. Also the changes in the structure are recorded. After APPT, the peak corresponding to the carbonyl bond at a wavenumber of 1715 cm-1 disappears in the IR spectrum of the ethanol solution, and when splitting at a wavenumber of 1405 cm-1 is observed, the peak at 1224 cm-1 is found to disappear after plasma is applied. It is seen new peaks at frequencies of 432 and 655 cm-1 are formed. When the same situation is analyzed for the 7AC molecule dissolved in methanol, a new peak is observed at 1634 cm-1. The intensities of the peaks at 3433 and 2075 cm-1 also increase and there is a large change in the wavenumber at 600 cm-1. In the UV spectra, a significant increase in the absorbance of the 7AC molecule dissolved in ethanol is observed after APPT, whereas a small decrease in the absorbance of the 7AC molecule dissolved in methanol is obtained. Owing to the lack of symmetry, many normal bands of vibrations are mixed.
Zhong, Yang; Warren, G. Lee; Patel, Sandeep
2014-01-01
We study bulk structural and thermodynamic properties of methanol-water solutions via molecular dynamics simulations using novel interaction potentials based on the charge equilibration (fluctuating charge) formalism to explicitly account for molecular polarization at the atomic level. The study uses the TIP4P-FQ potential for water-water interactions, and the CHARMM-based (Chemistry at HARvard Molecular Mechanics) fluctuating charge potential for methanol-methanol and methanol-water interactions. In terms of bulk solution properties, we discuss liquid densities, enthalpies of mixing, dielectric constants, self-diffusion constants, as well as structural properties related to local hydrogen bonding structure as manifested in radial distribution functions and cluster analysis. We further explore the electronic response of water and methanol in the differing local environments established by the interaction of each species predominantly with molecules of the other species. The current force field for the alcohol-water interaction performs reasonably well for most properties, with the greatest deviation from experiment observed for the excess mixing enthalpies, which are predicted to be too favorable. This is qualitatively consistent with the overestimation of the methanol-water gas-phase interaction energy for the lowest-energy conformer (methanol as proton donor). Hydration free energies for methanol in TIP4P-FQ water are predicted to be −5.6±0.2 kcal/mole, in respectable agreement with the experimental value of −5.1 kcal/mole. With respect to solution micro-structure, the present cluster analysis suggests that the micro-scale environment for concentrations where select thermodynamic quantities reach extremal values is described by a bi-percolating network structure. PMID:18074339
Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus.
Dror, Adi; Kanteev, Margarita; Kagan, Irit; Gihaz, Shalev; Shahar, Anat; Fishman, Ayelet
2015-11-01
Enzymatic production of biodiesel by transesterification of triglycerides and alcohol, catalyzed by lipases, offers an environmentally friendly and efficient alternative to the chemically catalyzed process while using low-grade feedstocks. Methanol is utilized frequently as the alcohol in the reaction due to its reactivity and low cost. However, one of the major drawbacks of the enzymatic system is the presence of high methanol concentrations which leads to methanol-induced unfolding and inactivation of the biocatalyst. Therefore, a methanol-stable lipase is of great interest for the biodiesel industry. In this study, protein engineering was applied to substitute charged surface residues with hydrophobic ones to enhance the stability in methanol of a lipase from Geobacillus stearothermophilus T6. We identified a methanol-stable variant, R374W, and combined it with a variant found previously, H86Y/A269T. The triple mutant, H86Y/A269T/R374W, had a half-life value at 70 % methanol of 324 min which reflects an 87-fold enhanced stability compared to the wild type together with elevated thermostability in buffer and in 50 % methanol. This variant also exhibited an improved biodiesel yield from waste chicken oil compared to commercial Lipolase 100L® and Novozyme® CALB. Crystal structures of the wild type and the methanol-stable variants provided insights regarding structure-stability correlations. The most prominent features were the extensive formation of new hydrogen bonds between surface residues directly or mediated by structural water molecules and the stabilization of Zn and Ca binding sites. Mutation sites were also characterized by lower B-factor values calculated from the X-ray structures indicating improved rigidity.
Reactivity of Hydrogen and Methanol on (001) Surfaces of WO3, ReO3, WO3/ReO3 and ReO3/WO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, Sanliang; Mei, Donghai; Gutowski, Maciej S.
2011-05-16
Bulk tungsten trioxide (WO3) and rhenium trioxide (ReO3) share very similar structures but display different electronic properties. WO3 is a wide bandgap semiconductor while ReO3 is an electronic conductor. With the advanced molecular beam epitaxy techniques, it is possible to make heterostructures comprised of layers of WO3 and ReO3. These heterostructures might display reactivity different than pure WO3 and ReO3. The interactions of two probe molecules (hydrogen and methanol) with the (001) surfaces of WO3, ReO3, and two heterostructures ReO3/WO3 and WO3/ReO3 were investigated at the density functional theory level. Atomic hydrogen prefers to adsorb at the terminal O1C sitesmore » forming a surface hydroxyl on four surfaces. Dissociative adsorption of a hydrogen molecule at the O1C site leads to formation of a water molecule adsorbed at the surface M5C site. This is thermodynamically the most stable state. A thermodynamically less stable dissociative state involves two surface hydroxyl groups O1CH and O2CH. The interaction of molecular hydrogen and methanol with pure ReO3 is stronger than with pure WO3 and the strength of the interaction substantially changes on the WO3/ReO3 and ReO3/WO3 heterostructures. The reaction barriers for decomposition and recombination reactions are sensitive to the nature of heterostructure. The calculated adsorption energy of methanol on WO3(001) of -65.6 kJ/mol is consistent with the previous experimental estimation of -67 kJ/mol. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.« less
Vega-Giotto flyby missions and cometary cosmogony
NASA Technical Reports Server (NTRS)
Lang, Bruno
1989-01-01
The most important implication of the Vega/Giotto flyby missions to Halley's Comet for cometary cosmogony is the opportunity to absorb the results of the in-situ measurements as made onboard the spacecrafts. Unfortunately the exploration of ejecta form the nucleus was unable to provide an unambiguous definition of the chemical-mineralogical nature of the nucleus: it failed to provide information comparable to that which was expected from a sample return mission. However, the obtained results are significant enough to affect and redirect cosmogonical thinking. Accordingly, the understanding of the cometary-matter dichotomy is modified as deduced from the distiction of water-dominated volitiles and silicate-based non-volitiles. Organic carbon compounds emerge as a major constituent of cometary nuclei. Presently, it is likely that the revision of Whipple's classic concept of the icy conglomerate cannot be avoided. Affected by the Vega/Giotto flyby missions to Hally's Comet, cometary cosmogony seems to enter a new conceptual period. The results of the in-situ measurements (mass spectrometric, UV spectroscopic, and IR spectroscopic) appear to be of basic importance. A chemical explanation is employed to explain the occurrence inside the nuclei of the variety of species, as inferred from the mass spectrometric data, to predict the results of the processes possibly involved. A cosmochemical factor is postulated to operate behind the observed cometary phenomena. The chemistry of the interstellar medium, covering the circumstellar and interstellar dust, advances cometary cosmogony.
Intraspecific Signals Inducing Aggregation in Periplaneta americana (Insecta: Dictyoptera).
Imen, Saïd; Christian, Malosse; Virginie, Durier; Colette, Rivault
2015-06-01
Chemical communication is necessary to induce aggregation and to maintain the cohesion of aggregates in Periplaneta americana (L.) cockroaches. We aimed to identify the chemical message inducing aggregation in this species. Two types of bioassays were used-binary choice tests in Petri dishes and tests in Y-olfactometer. Papers conditioned by direct contact of conspecifics induce aggregation when proposed in binary choice tests and were attractive in a Y-olfactometer. The identification of the molecules present on these conditioned papers indicated that dichloromethane extracts contained mainly cuticular hydrocarbons whereas methanol extracts contained more volatile molecules. Only a mixture of extracts in both solvents induced aggregation. High concentrations of cuticular hydrocarbons are necessary to induce aggregation when presented alone. When presented with volatile molecules present in methanol extracts, low concentrations of cuticular hydrocarbons are sufficient to induce aggregation if they are presented in contact. Among volatile molecules collected on filter paper, a mixture of three compounds-hexadecanoic acid, pentadecanoic acid, and pentaethylene glycol-induced aggregation. Our results provide evidence that aggregation processes in P. americana relies on a dual mechanism: attraction over long distances by three volatile molecules and maintenance on site by contact with cuticular hydrocarbons. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Insights into the nature of cometary organic matter from terrestrial analogues
NASA Astrophysics Data System (ADS)
Court, Richard W.; Sephton, Mark A.
2012-04-01
The nature of cometary organic matter is of great interest to investigations involving the formation and distribution of organic matter relevant to the origin of life. We have used pyrolysis-Fourier transform infrared (FTIR) spectroscopy to investigate the chemical effects of the irradiation of naturally occurring bitumens, and to relate their products of pyrolysis to their parent assemblages. The information acquired has then been applied to the complex organic matter present in cometary nuclei and comae. Amalgamating the FTIR data presented here with data from published studies enables the inference of other comprehensive trends within hydrocarbon mixtures as they are progressively irradiated in a cometary environment, namely the polymerization of lower molecular weight compounds; an increased abundance of polycyclic aromatic hydrocarbon structures; enrichment in 13C; reduction in atomic H/C ratio; elevation of atomic O/C ratio and increase in the temperature required for thermal degradation. The dark carbonaceous surface of a cometary nucleus will display extreme levels of these features, relative to the nucleus interior, while material in the coma will reflect the degree of irradiation experienced by its source location in the nucleus. Cometary comae with high methane/water ratios indicate a nucleus enriched in methane, favouring the formation of complex organic matter via radiation-induced polymerization of simple precursors. In contrast, production of complex organic matter is hindered in a nucleus possessing a low methane/water ration, with the complex organic matter that does form possessing more oxygen-containing species, such as alcohol, carbonyl and carboxylic acid functional groups, resulting from reactions with hydroxyl radicals formed by the radiolysis of the more abundant water. These insights into the properties of complex cometary organic matter should be of particular interest to both remote observation and space missions involving in situ analyses and sample return of cometary materials.
Three Dimensional Explicit Model for Cometary Tail Ions Interactions with Solar Wind
NASA Astrophysics Data System (ADS)
Al Bermani, M. J. F.; Alhamed, S. A.; Khalaf, S. Z.; Ali, H. Sh.; Selman, A. A.
2009-06-01
The different interactions between cometary tail and solar wind ions are studied in the present paper based on three-dimensional Lax explicit method. The model used in this research is based on the continuity equations describing the cometary tail-solar wind interactions. Three dimensional system was considered in this paper. Simulation of the physical system was achieved using computer code written using Matlab 7.0. The parameters studied here assumed Halley comet type and include the particle density rho, the particles velocity v, the magnetic field strength B, dynamic pressure p and internal energy E. The results of the present research showed that the interaction near the cometary nucleus is mainly affected by the new ions added to the plasma of the solar wind, which increases the average molecular weight and result in many unique characteristics of the cometary tail. These characteristics were explained in the presence of the IMF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinnaka, Yoshiharu; Kawakita, Hideyo, E-mail: yoshiharu.shinnaka@nao.ac.jp
The icy materials present in comets provide clues to the origin and evolution of our solar system and planetary systems. High-resolution optical spectroscopic observations of comet C/2014 Q2 (Lovejoy) were performed on 2015 January 11 (at 1.321 au pre-perihelion) with the High Dispersion Spectrograph mounted on the Subaru Telescope on Maunakea, Hawaii. We derive the {sup 14}N/{sup 15}N ratio of NH{sub 2} (126 ± 25), as well as the ortho-to-para abundance ratios (OPRs) of the H{sub 2}O{sup +} ion (2.77 ± 0.24) and NH{sub 2} (3.38 ± 0.07), which correspond to nuclear spin temperatures of >24 K (3 σ lowermore » limit) and 27 ± 2 K, respectively. We also derive the intensity ratio of the green-to-red doublet of forbidden oxygen lines (0.107 ± 0.007). The ammonia in the comet must have formed under low-temperature conditions at ∼10 K or less to reproduce the observed {sup 14}N/{sup 15}N ratio in this molecule if it is assumed that the {sup 15}N-fractionation of ammonia occurred via ion–molecule chemical reactions. However, this temperature is inconsistent with the nuclear spin temperatures of water and ammonia estimated from the OPRs. The interpretation of the nuclear spin temperature as the temperature at molecular formation may therefore be incorrect. An isotope-selective photodissociation of molecular nitrogen by protosolar ultraviolet radiation might play an important role in the {sup 15}N-fractionation observed in cometary volatiles.« less
Kinetics of hydrogen/deuterium exchanges in cometary ices
NASA Astrophysics Data System (ADS)
Faure, Mathilde; Quirico, Eric; Faure, Alexandre; Schmitt, Bernard; Theulé, Patrice; Marboeuf, Ulysse
2015-11-01
The D/H composition of volatile molecules composing cometary ices brings key constraints on the origin of comets, on the extent of their presolar heritage, as well as on the origin of atmospheres and hydrospheres of terrestrial planets. Nevertheless, the D/H composition may have been modified to various extents in the nucleus when a comet approaches the Sun and experiences deep physical and chemical modifications in its subsurface. We question here the evolution of the D/H ratio of organic species by proton exchanges with water ice. We experimentally studied the kinetics of D/H exchanges on the ice mixtures H2O:CD3OD, H2O:CD3ND2 and D2O:HCN. Our results show that fast exchanges occur on the -OH and -NH2 chemical groups, which are processed through hydrogen bonds exchanges with water and by the molecular mobility triggered by structural changes, such as glass transition or crystallization. D/H exchanges kinetic is best described by a second-order kinetic law with activation energies of 4300 ± 900 K and 3300 ± 100 K for H2O:CD3OD and H2O:CD3ND2 ice mixtures, respectively. The corresponding pre-exponential factors ln(A(s-1)) are 25 ± 7 and 20 ± 1, respectively. No exchange was observed in the case of HCN trapped in D2O ice. These results strongly suggest that upon thermal heating (1) -OH and -NH2 chemical groups of any organic molecules loose their primordial D/H composition and equilibrate with water ice, (2) HCN does not experience proton transfer and keeps a primordial D/H composition and (3) C-H chemical groups are not isotopically modified.
Synthesis of formamide and isocyanic acid after ion irradiation of frozen gas mixtures
NASA Astrophysics Data System (ADS)
Kaňuchová, Z.; Urso, R. G.; Baratta, G. A.; Brucato, J. R.; Palumbo, M. E.; Strazzulla, G.
2016-01-01
Context. Formamide (NH2HCO) and isocyanic acid (HNCO) have been observed as gaseous species in several astronomical environments such as cometary comae and pre- and proto-stellar objects. A debate is open on the formation route of those molecules, in particular if they are formed by chemical reactions in the gas phase and/or on grains. In this latter case it is relevant to understand if the formation occurs through surface reactions or is induced by energetic processing. Aims: We present arguments that support the formation of formamide in the solid phase by cosmic-ion-induced energetic processing of ices present as mantles of interstellar grains and on comets. Formamides, along with other molecules, are expelled in the gas phase when the physical parameters are appropriate to induce the desorption of ices. Methods: We have performed several laboratory experiments in which ice mixtures (H2O:CH4:N2, H2O:CH4:NH3, and CH3OH:N2) were bombarded with energetic (30-200 keV) ions (H+ or He+). FTIR spectroscopy was performed before, during, and after ion bombardment. In particular, the formation of HNCO and NH2HCO was measured quantiatively. Results: Energetic processing of ice can quantitatively reproduce the amount of NH2HCO observed in cometary comae and in many circumstellar regions. HNCO is also formed, but additional formation mechanisms are requested to quantitatively account for the astronomical observations. Conclusions: We suggest that energetic processing of ices in the pre- and proto-stellar regions and in comets is the main mechanism to produce formamide, which, once it is released in the gas phase because of desorption of ices, is observed in the gas phase in these astrophysical environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordiner, M. A.; Milam, S. N.; Mumma, M. J.
2014-09-01
Results are presented from the first cometary observations using the Atacama Large Millimeter/Submillimeter Array (ALMA), including measurements of the spatially resolved distributions of HCN, HNC, H{sub 2}CO, and dust within the comae of two comets: C/2012 F6 (Lemmon) and C/2012 S1 (ISON), observed at heliocentric distances of 1.5 AU and 0.54 AU, respectively. These observations (with angular resolution ≈0.''5), reveal an unprecedented level of detail in the distributions of these fundamental cometary molecules, and demonstrate the power of ALMA for quantitative measurements of the distributions of molecules and dust in the inner comae of typical bright comets. In both comets, HCN ismore » found to originate from (or within a few hundred kilometers of) the nucleus, with a spatial distribution largely consistent with spherically symmetric, uniform outflow. By contrast, the HNC distributions are clumpy and asymmetrical, with peaks at cometocentric radii ∼500-1000 km, consistent with release of HNC in collimated outflow(s). Compared to HCN, the H{sub 2}CO distribution in comet Lemmon is very extended. The interferometric visibility amplitudes are consistent with coma production of H{sub 2}CO and HNC from unidentified precursor material(s) in both comets. Adopting a Haser model, the H{sub 2}CO parent scale length is found to be a few thousand kilometers in Lemmon and only a few hundred kilometers in ISON, consistent with the destruction of the precursor by photolysis or thermal degradation at a rate that scales in proportion to the solar radiation flux.« less
Modeling the neutral gas and dust coma of Comet 1P/Halley
NASA Astrophysics Data System (ADS)
Rubin, Martin; Tenishev, Valeriy M.; Combi, Michael R.; Hansen, Kenneth C.; Gombosi, Tamas I.; Altwegg, Kathrin; Balsiger, Hans
2010-05-01
The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer (NMS) and the Dust Impact Detection System (DIDSY) onboard the Giotto spacecraft which flew-by at comet 1P/Halley in 1986. We further show that our model is in good agreement to measurements obtained by the International Ultraviolet Explorer (IUE), sounding rocket experiments, and the International Halley Watch (IHW). The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique [Tenishev et al. (2008, Astrophys. J., 685, 659-677)] by tracking trajectories of gas molecules and dust grains under the influence of the comet's weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO). This work has been supported by JPL subcontract 1266313 under NASA grant NMO710889, NASA planetary atmospheres program grant NNX09AB59G, grant AST-0707283 from the NSF Planetary Astronomy program, and the Swiss National Science Foundation.
The Zeeman Effect in the 44 GHz Class I Methanol Maser Line toward DR21(OH)
NASA Astrophysics Data System (ADS)
Momjian, E.; Sarma, A. P.
2017-01-01
We report detection of the Zeeman effect in the 44 GHz Class I methanol maser line, toward the star-forming region DR21(OH). In a 219 Jy beam-1 maser centered at an LSR velocity of 0.83 km s-1, we find a 20-σ detection of zBlos = 53.5 ± 2.7 Hz. If 44 GHz methanol masers are excited at n ˜ 107-8 cm-3, then the B versus n1/2 relation would imply, from comparison with Zeeman effect detections in the CN(1 - 0) line toward DR21(OH), that magnetic fields traced by 44 GHz methanol masers in DR21(OH) should be ˜10 mG. Combined with our detected zBlos = 53.5 Hz, this would imply that the value of the 44 GHz methanol Zeeman splitting factor z is ˜5 Hz mG-1. Such small values of z would not be a surprise, as the methanol molecule is non-paramagnetic, like H2O. Empirical attempts to determine z, as demonstrated, are important because there currently are no laboratory measurements or theoretically calculated values of z for the 44 GHz CH3OH transition. Data from observations of a larger number of sources are needed to make such empirical determinations robust.
Beck, Jordan P; Cimas, Alvaro; Lisy, James M; Gaigeot, Marie-Pierre
2014-02-05
The structures of Cl(-)-(Methanol)1,2 clusters have been unraveled combining Infrared Predissociation (IR-PD) experiments and DFT-based molecular dynamics simulations (DFT-MD) at 100 K. The dynamical IR spectra extracted from DFT-MD provide the initial 600 cm(-1) large anharmonic red-shift of the O-H stretch from uncomplexed methanol (3682 cm(-1)) to Cl(-)-(Methanol)1 complex (3085 cm(-1)) as observed in the IR-PD experiment, as well as the subtle supplementary blue- and red-shifts of the O-H stretch in Cl(-)-(Methanol)2 depending on the structure. The anharmonic vibrational calculations remarkably provide the 100 cm(-1) O-H blue-shift when the two methanol molecules are simultaneously organized in the anion first hydration shell (conformer 2A), while they provide the 240 cm(-1) O-H red-shift when the second methanol is in the second hydration shell of Cl(-) (conformer 2B). RRKM calculations have also shown that 2A/2B conformers interconvert on a nanosecond time-scale at the estimated 100 K temperature of the clusters formed by evaporative cooling of argon prior to the IR-PD process. Copyright © 2013 Elsevier B.V. All rights reserved.
Transient isomers in the photodissociation of bromoiodomethane
NASA Astrophysics Data System (ADS)
Marcellini, Moreno; Nasedkin, Alexandr; Zietz, Burkhard; Petersson, Jonas; Vincent, Jonathan; Palazzetti, Federico; Malmerberg, Erik; Kong, Qingyu; Wulff, Michael; van der Spoel, David; Neutze, Richard; Davidsson, Jan
2018-04-01
The photochemistry of halomethanes is fascinating for the complex cascade reactions toward either the parent or newly synthesized molecules. Here, we address the structural rearrangement of photodissociated CH2IBr in methanol and cyclohexane, probed by time-resolved X-ray scattering in liquid solution. Upon selective laser cleavage of the C-I bond, we follow the reaction cascade of the two geminate geometrical isomers, CH2I-Br and CH2Br-I. Both meta-stable isomers decay on different time scales, mediated by solvent interaction, toward the original parent molecule. We observe the internal rearrangement of CH2Br-I to CH2I-Br in cyclohexane by extending the time window up to 3 μs. We track the photoproduct kinetics of CH2Br-I in methanol solution where only one isomer is observed. The effect of the polarity of solvent on the geminate recombination pathways is discussed.
NASA Astrophysics Data System (ADS)
Hays, Brian; Wehres, Nadine; Deprince, Bridget Alligood; Roy, Althea A. M.; Laas, Jacob; Widicus Weaver, Susanna L.
2015-06-01
While both the number of detected interstellar molecules and their chemical complexity continue to increase, understanding of the processes leading to their formation is lacking. Our research group combines laboratory spectroscopy, observational astronomy, and astrochemical modeling for an interdisciplinary examination of the chemistry of star and planet formation. This talk will focus on our laboratory studies of O(^1D) insertion reactions with organic molecules to produce molecules of astrophysical interest. By employing these reactions in a supersonic expansion, we are able to produce interstellar organic reaction intermediates that are unstable under terrestrial conditions; we then probe the products using millimeter and submillimeter spectroscopy. We benchmarked this setup using the well-studied O(^1D) + methane reaction to form methanol. After optimizing methanol production, we moved on to study the O(^1D) + ethylene reaction to form vinyl alcohol (CH_2CHOH), and the O(^1D) + methyl amine reaction to form aminomethanol (NH_2CH_2OH). Vinyl alcohol measurements have now been extended up to 450 GHz, and the associated spectral analysis is complete. A possible detection of aminomethanol has also been made, and continued spectral studies and analysis are underway. We will present the results from these experiments and discuss future applications of these molecular and spectroscopic techniques.
Abstracts for the International Conference on Asteroids, Comets, Meteors 1991
NASA Technical Reports Server (NTRS)
1991-01-01
Topics addressed include: chemical abundances; asteroidal belt evolution; sources of meteors and meteorites; cometary spectroscopy; gas diffusion; mathematical models; cometary nuclei; cratering records; imaging techniques; cometary composition; asteroid classification; radio telescopes and spectroscopy; magnetic fields; cosmogony; IUE observations; orbital distribution of asteroids, comets, and meteors; solar wind effects; computerized simulation; infrared remote sensing; optical properties; and orbital evolution.
NASA Technical Reports Server (NTRS)
Kazimirchak-Polonskaya, E. I.
1976-01-01
Methods are reviewed for calculating the evolution of cometary orbits with emphasis on the orbital changes that take place when comets pass within the spheres of action of giant planets. Topics discussed include: differences and difficulties in methods used for the calculation of large perturbations by Jupiter; the construction of numerical theories of motion covering the whole period of observations of each comet, allowing for planetary perturbations and the effects of nongravitational forces; and investigations of the evolution of cometary orbits over the 400 year interval 1660-2060. The classical theory of cometary capture is briefly discussed.
The Size Distribution of Jupiter-Family Cometary Nuclei
NASA Technical Reports Server (NTRS)
Weissman, Paul R.; Lowry, Stephen C.
2003-01-01
Introduction: We are continuing our program to determine the size distribution of cometary nuclei. We have compiled a catalog of 105 measurements of 57 cometary nuclei, drawn from the general literature, from our own program of CCD photometry of distant cometary nuclei (Lowry and Weissman), and from unpublished observations by colleagues. We model the cumulative size distribution of the nuclei as a power law. Previous determinations of the size distribution slope do not agree. Fernandez et al. found a slope of alpha = 2.65+/-0.25 whereas Lowry et al. and Weissman and Lowry each found a slope of alpha = 1.60+/-0.10.
P/2006 HR30 (Siding Spring): A Low-activity Comet in Near-Earth Space
NASA Technical Reports Server (NTRS)
Hicks, Michael D.; Bauer, James M.
2007-01-01
The low cometary activity of P/2006 HR30 (Siding Spring) allowed a unique opportunity to study the nucleus of a periodic comet while near perihelion. P/2006 HR30 was originally targeted as a potential extinct comet, and we measured spectral reflectance and dust production using long-slit CCD spectroscopy and wide-field imaging obtained at the Palomar Mountain 200 inch telescope on 2006 August 3 and 4. The dust production Afp = 19.7 +/- 0.4 cm and mass-loss rate Q(dust) 4.1 +/- 0.1 kg/sec of the comet were approximately 2 orders of magnitude dust less than 1P/Halley at similar heliocentric distance. The VRI colors derived from the spectral reflectance were compared to Kuiper Belt objects, Centaurs, and other cometary nuclei. We found that the spectrum of P/2006 HR30 was consistent with other comets. However, the outer solar system bodies have a color distribution statistically distinct from cometary nuclei. It is our conjecture that cometary activity, most likely the reaccretion of ejected cometary dust, tends to moderate and mute the visible colors of the surface of cometary nuclei.
Cometary coma chemical composition (C4) mission. [Abstract only
NASA Technical Reports Server (NTRS)
Carle, G. C.; Clark, B. C.; Niemann, H. B.; Alexander, M.; Knocke, P. C.; O'Hara, B. J.
1994-01-01
Cometary missions are of enormous fundamental importance for many different space science disciplines, including exobiology. Comets are presumed relics of the earliest, most primitive material in the solar nebula and are related to the planetesimals. They undoubtedly provided a general enrichment of volatiles to the inner solar system (contributing to atmospheres and oceans) and may have been key to the origin of life. A Discovery class, comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, was selected for further study by NASA earlier this year. The C4 Mission is a highly focused and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission, concentrating exclusively on measurements which will lead to an understanding of the chemical composition and make-up of the cometary nucleus. The scientific goals of the Cometary Coma Chemical Composition (C4) Mission are to rendezvous with a short-period comet and (1) to determine the elemental, chemical, and isotopic composition of the nucleus and (2) to characterize the chemical and isotopic nature of its atmosphere. Further, it is a goal to obtain preliminary data on the development of the coma (dust and gas composition) as a function of time and orbital position.
NASA Astrophysics Data System (ADS)
Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang
2018-04-01
The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.
2016-01-01
The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C–H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483–498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions. PMID:27413787
Methanol ice VUV photoprocessing: GC-MS analysis of volatile organic compounds
NASA Astrophysics Data System (ADS)
Abou Mrad, Ninette; Duvernay, Fabrice; Chiavassa, Thierry; Danger, Grégoire
2016-05-01
Next to water, methanol is one of the most abundant molecules in astrophysical ices. A new experimental approach is presented here for the direct monitoring via gas chromatography coupled to mass spectrometry (GC-MS) of a sublimating photoprocessed pure methanol ice. Unprecedentedly, in a same analysis, compelling evidences for the formation of 33 volatile organic compounds are provided. The latter are C1-C6 products including alcohols, aldehydes, ketones, esters, ethers and carboxylic acids. Few C3 and all C4 detected compounds have been identified for the first time. Tentative detections of few C5 and C6 compounds are also presented. GC-MS allows for the first time the direct quantification of C2-C4 photoproducts and shows that their abundances decrease with the increase of their carbon chain length. These qualitative and quantitative measurements provide important complementary results to previous experiments, and present interesting similarities with observations of sources rich in methanol.
On liquid phases in cometary nuclei
NASA Astrophysics Data System (ADS)
Miles, Richard; Faillace, George A.
2012-06-01
In this paper we review the relevant literature and investigate conditions likely to lead to melting of H2O ice, methanol (CH3OH) ice, ethane (C2H6) ice and other volatile ices in cometary nuclei. On the basis of a heat balance model which takes account of volatiles loss, we predict the formation of occasional aqueous and hydrocarbon liquid phases in subsurface regions at heliocentric distances, rh of 1-3 AU, and 5-12 AU, respectively. Low triple-point temperatures and low vapour pressures of C2H6, C3H8, and some higher-order alkanes and alkenes, favour liquid phase formation in cometary bodies at high rh. Microporosity and the formation of a stabilization crust occluding the escape of volatiles facilitate liquid-phase formation. Characteristics of the near-surface which favour subsurface melting include; low effective surface emissivity (at low rh), high amorphous carbon content, average pore sizes of ˜10 μm or less, presence of solutes (e.g. CH3OH), mixtures of C2-C6 hydrocarbons (for melting at high rh), diurnal thermal cycling, and slow rotation rate. Applying the principles of soil mechanics, capillary forces are shown to initiate pre-melting phenomena and subsequent melting, which is expected to impart considerable strength of ˜104 Pa in partially saturated layers, reducing porosity and permeability, enhancing thermal conductivity and heat transfer. Diurnal thermal cycling is expected to have a marked effect on the composition and distribution of H2O ice in the near-surface leading to frost heave-type phenomena even where little if any true melting occurs. Where melting does take place, capillary suction in the wetted zone has the potential to enhance heat transfer via capillary wetting in a low-gravity environment, and to modify surface topography creating relatively smooth flat-bottomed features, which have a tendency to be located within small depressions. An important aspect of the "wetted layer" model is the prediction that diurnal melt-freeze cycles alter the mixing ratio vs. depth of solutes present, or of other miscible components, largely through a process of fractional crystallization, but also potentially involving frost heave. Wetted layers are potentially durable and can involve significant mass transport of volatile materials in the near-surface, increasing in extent over many rotations of the nucleus prior to and just after perihelion passage, and causing stratification and trapping of the lowest-melting mixtures at depths of several metres. A possible mechanism for cometary outbursts is proposed involving a heat pulse reaching the liquid phase in the deepest wetted zone, leading to supersaturation and triggering the sudden release under pressure of dissolved gases, in particular CO2, CO, CH4 or N2, contained beneath a consolidated near-surface layer. This study indicates that liquid water can persist for long periods of time in the near-surface of some intermediate-sized bodies (102-103 km radius) within protoplanetary discs.
Excess electrons in methanol clusters: Beyond the one-electron picture
NASA Astrophysics Data System (ADS)
Pohl, Gábor; Mones, Letif; Turi, László
2016-10-01
We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, ("separators=" CH 3 OH ) n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.
Excess electrons in methanol clusters: Beyond the one-electron picture.
Pohl, Gábor; Mones, Letif; Turi, László
2016-10-28
We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, CH 3 OH n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.
Sarkar, Shubhra; Ramanathan, N; Sundararajan, K
2018-03-08
Hydrogen-bonded interactions of pyrrole with water and methanol have been studied using matrix isolation infrared spectroscopy and compared with the calculation performed on dimethyl ether. Computations carried out at MP2/aug-cc-pVDZ level of theory yielded two minima for the pyrrole-water and pyrrole-methanol complexes. The global and local minima correspond to the N-H···O and O-H···π complexes, respectively, where the N-H group of pyrrole interacts with oxygen of water/methanol and O-H of water and methanol interacts with the π cloud of pyrrole. Computations performed on the pyrrole-dimethyl ether gave only N-H···O type complex. From the experimental vibrational wavenumber shifts in the N-H stretching and N-H bending modes of pyrrole, as well as in the O-H stretching modes of water and methanol, the 1:1 N-H···O complexes were discerned. The strength of the N-H···O hydrogen bond and the corresponding shift in the N-H stretching vibrational wavenumbers increases in the order pyrrole-water < pyrrole-methanol < pyrrole-dimethyl ether, where a proton is successively replaced by a methyl group. Apart from the 1:1 complexes, higher clusters of 2:1 and 1:2 pyrrole-water and pyrrole-methanol complexes were also generated in N 2 matrix. Atoms in molecules and natural bond orbital analyses were carried out at the MP2/aug-cc-pVDZ level to understand the nature of interaction in the 1:1 pyrrole-water, pyrrole-methanol and pyrrole-dimethyl ether complexes.
Wongpanit, Panya; Rujiravanit, Ratana
2012-01-01
The present study was designed to examine the influence of the charge characteristics of silk fibroin on the sorption and release of charged dyes by varying the pH values of the sorption and release media as well as types of charged dyes. Negatively charged dyes (phenol red and chromotrope 2R) and positively charged dyes (crystal violet and indoine blue) were used as the model compounds. Silk fibroin films were prepared by using a solution casting technique. The prepared films were then treated with an aqueous methanol solution or annealed with water to control their conformation. The sorption behavior of the model compounds made by the methanol-treated and water-annealed silk fibroin films was investigated. Compared to the water- annealed silk fibroin films, a higher hydrophobicity of the methanol-treated silk fibroin films caused a higher sorption of the hydrophobic dyes. The dye molecules had a fairly high affinity to the silk fibroin film, even though the dye and the matrix possessed the same charge. However, in the presence of two charged groups in a single dye molecule, the electrostatic repulsion become more dominant. Stronger interaction was observed when the charges of the film and the dye were opposite. The results of dye sorption and release experiments showed that the degree of synergism or competition between electrostatic and hydrophobic interactions directly depended on the charges and chemical structure of the dye molecules and the environmental pH conditions of the existing silk fibroin film.
NASA Astrophysics Data System (ADS)
Kalenskii, S. V.; Shchurov, M. A.
2016-04-01
The results of spectral observations of the region of massive star formation L379IRS1 (IRAS18265-1517) are presented. The observations were carried out with the 30-m Pico Veleta radio telescope (Spain) at seven frequencies in the 1-mm, 2-mm, and 3-mm wavelength bands. Lines of 24 molecules were detected, from simple diatomic or triatomic species to complex eight- or nine-atom compounds such as CH3OCHO or CH3OCH3. Rotation diagrams constructed from methanol andmethyl cyanide lines were used to determine the temperature of the quiescent gas in this region, which is about 40-50 K. In addition to this warm gas, there is a hot component that is revealed through high-energy lines of methanol and methyl cyanide, molecular lines arising in hot regions, and the presence of H2O masers and Class II methanol masers at 6.7 GHz, which are also related to hot gas. One of the hot regions is probably a compact hot core, which is located near the southern submillimeter peak and is related to a group of methanol masers at 6.7 GHz. High-excitation lines at other positions may be associated with other hot cores or hot post-shock gas in the lobes of bipolar outflows. The rotation diagrams can be use to determine the column densities and abundances of methanol (10-9) and methyl cyanide (about 10-11) in the quiescent gas. The column densities of A- and E-methanol in L379IRS1 are essentually the same. The column densities of other observedmolecules were calculated assuming that the ratios of the molecular level abundances correspond to a temperature of 40 K. The molecular composition of the quiescent gas is close to that in another region of massive star formation, DR21(OH). The only appreciable difference is that the column density of SO2 in L379IRS1 is at least a factor of 20 lower than the value in DR21(OH). The SO2/CS and SO2/OCS abundance ratios, which can be used as chemical clocks, are lower in L379IRS1 than in DR21(OH), suggesting that L379IRS1 is probably younger than DR21(OH).
Martin, Scott; Lenz, Eva M; Smith, Robin; Temesi, David G; Orton, Alexandra L; Clench, Malcolm R
2017-01-15
The incubation of CPAQOP (1-[(2R)-2-[[4-[3-chloro-4-(2-pyridyloxy)anilino]quinazolin-5-yl]oxymethyl]-1-piperidyl]-2-hydroxy) with human liver microsomes generated several metabolites that highlighted the hydroxyacetamide side chain was a major site of metabolism for the molecule. The metabolites were derived predominantly from oxidative biotransformations; however, two unexpected products were detected by liquid chromatography/ultraviolet/mass spectrometry (LC/UV/MS) and identified as methanol adducts. This observation prompted further LC/MS investigations into their formation. Three separate incubations of CPAQOP were conducted in human liver microsomes; Naïve, fortified with methoxyamine and fortified with glutathione. Separation was achieved via ultra-high-performance liquid chromatography with either methanol or acetonitrile gradients containing formic acid. MS analysis was conducted by electrospray ionisation LTQ Orbitrap mass spectrometry acquiring accurate mass full scan, data-dependent MS 2 and all ion fragmentation. No methanol adducts were detected by MS when acetonitrile was used in the mobile phase instead of methanol, verifying that a metabolite was reacting with methanol on column. Although this reactive metabolite could not be isolated or structurally characterised by LC/MS directly, product ion spectra of the methanol adducts confirmed addition of methanol on the hydroxyacetamide side chain. Additional experiments using methoxyamine showed the disappearance of the two methanol adducts and appearance of a methoxyamine adduct, confirming the presence of an aldhyde. Product ion spectra of the methoxyamine adduct confirmed addition of methoxyamine to the hydroxyacetamide side chain. The proposed bioactivation of CPAQOP occurred via the reactive aldehyde intermediate, which readily reacted with methanol in the mobile phase to form a pair of isomeric hemiacetal methanol adducts. In acidified methanol the equilibrium favoured the methanol adduct and in acidified acetonitrile it favoured the hydrate; therefore, the reactive aldehyde metabolite was not detected and could not be structurally characterised directly. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
APPI-MS: Effects of mobile phases and VUV lamps on the detection of PAH compounds
Short, Luke Chandler; Cai, Sheng-Suan; Syage, Jack A.
2009-01-01
The technique of atmospheric pressure photoionization (APPI) has several advantages over electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), including efficient ionization of non-polar or low charge affinity compounds, reduced susceptibility to ion suppression, high sensitivity, and large linear dynamic range. These benefits are greatest at low flow rates (i.e., ≤100 μL/min), while at a higher flow, photon absorption and ion-molecule reactions become significant. Under certain circumstances, APPI signal and S/N have been observed to excel at higher flow, which may be due to a non-photoionzation mechanism. To better understand APPI at higher flow rates, we have selected three lamps (Xe, Kr and Ar) and four mobile phases typical for reverse-phase, high-pressure liquid chromatography: acetonitrile, methanol, (1:1) acetonitrile:water and (1:1) methanol:water. As test compounds, three polyaromatic hydrocarbons are studied: benzo[a]pyrene, indeno[1,2,3-c,d]pyrene and benz[a]anthracene. We find that solvent photoabsorption cross-section is not the only parameter in explaining relative signal intensity, but that solvent photo-ion chemistry can also play a significant role. Three conclusions from this investigation are: (i) Methanol photoionization leads to protonated methanol clusters that can result in chemical ionization of analyte molecule; (ii) Use of the Ar lamp often results in greater signal and S/N; (iii) Acetonitrile photoionization is less efficient and resulting clusters are too strongly bound to efficiently chemically ionize the analyte, so that analyte ion formation is dominated by direct photoionization. PMID:17188507
APPI-MS: effects of mobile phases and VUV lamps on the detection of PAH compounds.
Short, Luke Chandler; Cai, Sheng-Suan; Syage, Jack A
2007-04-01
The technique of atmospheric pressure photoionization (APPI) has several advantages over electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), including efficient ionization of nonpolar or low charge affinity compounds, reduced susceptibility to ion suppression, high sensitivity, and large linear dynamic range. These benefits are greatest at low flow rates (i.e.,
Zanith, Caroline C; Pliego, Josefredo R
2015-03-01
The continuum solvation models SMD and SM8 were developed using 2,346 solvation free energy values for 318 neutral molecules in 91 solvents as reference. However, no solvation data of neutral solutes in methanol was used in the parametrization, while only few solvation free energy values of solutes in dimethyl sulfoxide and acetonitrile were used. In this report, we have tested the performance of the models for these important solvents. Taking data from literature, we have generated solvation free energy, enthalpy and entropy values for 37 solutes in methanol, 21 solutes in dimethyl sulfoxide and 19 solutes in acetonitrile. Both SMD and SM8 models have presented a good performance in methanol and acetonitrile, with mean unsigned error equal or less than 0.66 and 0.55 kcal mol(-1) in methanol and acetonitrile, respectively. However, the correlation is worse in dimethyl sulfoxide, where the SMD and SM8 methods present mean unsigned error of 1.02 and 0.95 kcal mol(-1), respectively. Our results point out the SMx family of models need be improved for dimethyl sulfoxide solvent.
Gamez-Garcia, Victoria G; Galano, Annia
2017-10-05
A massive search for chemical routes leading to methanol formation in gas phase has been conducted using computational chemistry, at the CBS-QB3 level of theory. The calculations were performed at five different temperatures (100, 80, 50, 20, and 10 K) and at three pressures (0.1, 0.01, and 0.001 atm) for each temperature. The search was focused on identifying reactions with the necessary features to be viable in the interstellar medium (ISM). A searching strategy was applied to that purpose, which allowed to reduce an initial set of 678 possible reactions to a subset of 11 chemical routes that are recommended, for the first time, as potential candidates for contributing to methanol formation in the gas phase of the ISM. They are all barrier-less, and thus they are expected to take place at collision rates. Hopefully, including these reactions in the currently available models, for the gas-phase methanol formation in the ISM, would help improving the predicted fractional abundance of this molecule in dark clouds. Further investigations, especially those dealing with grain chemistry and electronic excited states, would be crucial to get a complete picture of the methanol formation in the ISM.
NASA Astrophysics Data System (ADS)
Zanith, Caroline C.; Pliego, Josefredo R.
2015-03-01
The continuum solvation models SMD and SM8 were developed using 2,346 solvation free energy values for 318 neutral molecules in 91 solvents as reference. However, no solvation data of neutral solutes in methanol was used in the parametrization, while only few solvation free energy values of solutes in dimethyl sulfoxide and acetonitrile were used. In this report, we have tested the performance of the models for these important solvents. Taking data from literature, we have generated solvation free energy, enthalpy and entropy values for 37 solutes in methanol, 21 solutes in dimethyl sulfoxide and 19 solutes in acetonitrile. Both SMD and SM8 models have presented a good performance in methanol and acetonitrile, with mean unsigned error equal or less than 0.66 and 0.55 kcal mol-1 in methanol and acetonitrile, respectively. However, the correlation is worse in dimethyl sulfoxide, where the SMD and SM8 methods present mean unsigned error of 1.02 and 0.95 kcal mol-1, respectively. Our results point out the SMx family of models need be improved for dimethyl sulfoxide solvent.
Pliego, Josefredo R; Miguel, Elizabeth L M
2013-05-02
Absolute solvation free energy of the lithium cation in methanol was calculated by the cluster-continuum quasichemical theory of solvation. Clusters with up to five methanol molecules were investigated using X3LYP, MP2, and MP4 methods with DZVP, 6-311+G(2df,2p), TZVPP+diff, and QZVPP+diff basis sets and including the cluster solvation through the PCM and SMD continuum models. Our calculations have determined a value of -118.1 kcal mol(-1) for the solvation free energy of the lithium, in close agreement with a value of -116.6 kcal mol(-1) consistent with the TATB assumption. Using data of solvation and transfer free energy of a pair of ions, electrode potentials and pKa, we have obtained the solvation free energy of 25 ions in methanol. Our analysis leads to a value of -253.6 kcal mol(-1) for the solvation free energy of the proton, which can be compared with the value of -263.5 kcal mol(-1) obtained by Kelly et al. using the cluster pair approximation. Considering that this difference is due to the methanol surface potential, we have estimated that it corresponds to -0.429 V.
Wang, Yanli; Liu, Weimin; Tang, Longteng; Oscar, Breland; Han, Fangyuan; Fang, Chong
2013-07-25
To understand chemical reactivity of molecules in condensed phase in real time, a structural dynamics technique capable of monitoring molecular conformational motions on their intrinsic time scales, typically on femtoseconds to picoseconds, is needed. We have studied a strong photoacid pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid, HPTS, pK(a)* ≈ 0) in pure methanol and observed that excited-state proton transfer (ESPT) is absent, in sharp contrast with our previous work on HPTS in aqueous solutions wherein ESPT prevails following photoexcitation. Two transient vibrational marker bands at ~1477 (1454) and 1532 (1528) cm(-1) appear in CH3OH (CD3OD), respectively, rising within the instrument response time of ~140 fs and decaying with 390-470 (490-1400) fs and ~200 ps time constants in CH3OH (CD3OD). We attribute the mode onset to small-scale coherent proton motion along the pre-existing H-bonding chain between HPTS and methanol, and the two decay stages to the low-frequency skeletal motion-modulated Franck-Condon relaxation within ~1 ps and subsequent rotational diffusion of H-bonding partners in solution before fluorescence. The early time kinetic isotope effect (KIE) of ~3 upon methanol deuteration argues active proton motions particularly within the first few picoseconds when coherent skeletal motions are underdamped. Pronounced quantum beats are observed for high-frequency modes consisting of strong phenolic COH rocking (1532 cm(-1)) or H-out-of-plane wagging motions (952 cm(-1)) due to anharmonic coupling to coherent low-frequency modes impulsively excited at ca. 96, 120, and 168 cm(-1). The vivid illustration of atomic motions of HPTS in varying H-bonding geometry with neighboring methanol molecules unravels the multidimensional energy relaxation pathways immediately following photoexcitation, and provides compelling evidence that, in lieu of ESPT, the photoacidity of HPTS promptly activates characteristic low-frequency skeletal motions to search phase space mainly concerning the phenolic end and to efficiently dissipate vibrational energy via skeletal deformation and proton shuttling motions within the intermediate, relatively confined excited-state HPTS-methanol complex on a solvent-dependent dynamic potential energy surface.
Fast Variations In Spectrum of Comet Halley
NASA Astrophysics Data System (ADS)
Borysenko, S. A.
The goal of this work is to research fast variations of spectral lines intensities in spectra of comet Halley. The present research was made on the basis of more then 500 high- resolution spectrogram obtained by L.M. Shulman and H.K. Nazarchuk in November- December, 1985 at the 6-m telescope (SAO, Russia). Some fast variations with different quasiperiods were detected in all the spectrograms. Quasiperiods of these variations were from 15 - 40 min to 1.5 - 2 hours. As data from spacecraft "Vega-2" show, more fast variations with quasiperiods 5 - 10 min are obviously present in cometary time variations. Only the most important lines so as C2, C3, CN, CH and NH2 were analyzed. False periods were checked by comparison of the power spectra of the variations with the computed spectral window of the data. Only false periods about 400 sec (the avarage period of exposition) were detected. An algorithm for analysis of locally Poisson's time series was proposed. Two types of fast variations are detected: 1)high amplitude variations with more long quasiperiods (1.5 - 2 hours) and the coefficient of crosscorrelations between line intensities about 0.9 - 0.95; 2)low amplitude variations with short periods (15 - 40 min), which look like white noise and have the coefficient of crosscorrelations about 0.1 - 0.3. This difference may be caused by nature of variations. The first type variations may be an effect of both active processes in cometary nucleus and streams of solar protons. Analysis of solar proton flux variation with energies >1 MeV in November - Decem- ber 1985 confirms the above-mentioned version. In the second case it may by only inner processes in the nucleus that generate the observed variations. For determination of general parameters of cometary atmosphere, such as the produc- tion rates of radicals C2, C3, CN, CH, and NH2 it was necessary to estimate the contri- bution of dust grains luminiscence into the continuum of the comet. Space and wave- length distribution of the lumminescent continuum was calculated. A simple model of a comet atmosphere (the Haser's model) was taken to make synthetic photomet- rical data and to calibrate the spectra by comparison the synthetic photometry with the data of the absolute photometry from the IHW archive. This way the gas obtained production rates and numbers of basic molecules in the cometary atmosphere.
Gold nanoparticles: novel catalyst for the preparation of direct methanol fuel cell.
Kuralkar, Mayuri; Ingle, Avinash; Gaikwad, Swapnil; Gade, Aniket; Rai, Mahendra
2015-04-01
The authors report the biosynthesis of gold nanoparticles (Au-NPs) using plant pathogenic Phoma glomerata (MTCC 2210). The synthesis of nanoparticles was characterised by visual observation followed UV-visible spectrophotometric analysis, Fourier transform infrared spectroscopy and nanoparticle tracking analysis. Later, direct methanol fuel cell (DMFC) was constructed using two chambers (anodic chamber and cathodic chamber). These Au-NPs as catalysts have various advantages over the other catalysts that are used in the DMFC. Most importantly, it is cheaper as compared with other catalysts like platinum, and showed higher catalytic activity because of its effective surface structure. Being nano in size, it provides more surface area for the attachment of reactant molecules (methanol molecules). The DMFC catalysed by Au-NPs are found to be suitable to replace lithium ion battery technology in consumer electronics like cell phones, laptops and so on due to the fact that they can produce a high amount of energy in a small space. As long as fuel and air are supplied to the DMFC, it will continue to produce power, so it does not need to be recharged. The use of Au-NPs as catalyst in DMFC has not been reported in the past; it is reported here the first time.
West, Caroline; Konjaria, Mari-Luiza; Shashviashvili, Natia; Lemasson, Elise; Bonnet, Pascal; Kakava, Rusudan; Volonterio, Alessandro; Chankvetadze, Bezhan
2017-05-26
Asymmetric sulfoxides is a particular case of chirality that may be found in natural as well as synthetic products. Twenty-four original molecules containing a sulfur atom as a centre of chirality were analyzed in supercritical fluid chromatography on seven polysaccharide-based chiral stationary phases (CSP) with carbon dioxide - methanol mobile phases. While all the tested CSP provided enantioseparation for a large part of the racemates, chlorinated cellulosic phases proved to be both highly retentive and highly enantioselective towards these species. Favourable structural features were determined by careful comparison of the enantioseparation of the probe molecules. Molecular modelling studies indicate that U-shaped (folded) conformations were most favorable to achieve high enantioresolution on these CSP, while linear (extended) conformations were not so clearly discriminated. For a subset of these species adopting different conformations, a broad range of mobile phase compositions, ranging from 20 to 100% methanol in carbon dioxide, were investigated. While retention decreased continuously in this range, enantioseparation varied in a non-monotonous fashion. Abrupt changes in the tendency curves of retention and selectivity were observed when methanol proportion reaches about 60%, suggesting that a change in the conformation of the analytes and/or chiral selector is occurring at this point. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bergantini, Alexandre; Góbi, Sándor; Abplanalp, Matthew J.; Kaiser, Ralf I.
2018-01-01
The underlying formation mechanisms of complex organic molecules (COMs)—in particular, structural isomers—in the interstellar medium (ISM) are largely elusive. Here, we report new experimental findings on the role of methanol (CH3OH) and methane (CH4) ices in the synthesis of two C2H6O isomers upon interaction with ionizing radiation: ethanol (CH3CH2OH) and dimethyl ether (CH3OCH3). The present study reproduces the interstellar abundance ratios of both species with ethanol to dimethyl ether branching ratios of (2.33 ± 0.14):1 suggesting that methanol and methane represents the key precursor to both isomers within interstellar ices. Exploiting isotopic labeling combined with reflectron time-of-flight mass spectrometry (Re-TOF-MS) after isomer selective vacuum ultra-violet (VUV) photoionization of the neutral molecules, we also determine the formation mechanisms of both isomers via radical–radical recombination versus carbene (CH2) insertion with the former pathway being predominant. Formation routes to higher molecular weight reaction products such as ethylene glycol (HOCH2CH2OH), dimethyl peroxide (CH3OOCH3), and methoxymethanol (CH3OCH2OH) are discussed briefly as well.
Löytynoja, T; Li, X; Jänkälä, K; Rinkevicius, Z; Ågren, H
2016-07-14
We study a newly devised quantum mechanics capacitance molecular mechanics (QMCMM) method for the calculation of core-electron binding energies in the case of molecules adsorbed on metal surfaces. This yet untested methodology is applied to systems with monolayer of methanol/methyl nitrite on an Ag(111) surface at 100 K temperature. It was found out that the studied C, N, and O 1s core-hole energies converge very slowly as a function of the radius of the metallic cluster, which was ascribed to build up of positive charge on the edge of the Ag slab. Further analysis revealed that an extrapolation process can be used to obtain binding energies that deviated less than 0.5 eV against experiments, except in the case of methanol O 1s where the difference was as large as 1.8 eV. Additional QM-cluster calculations suggest that the latter error can be connected to the lack of charge transfer over the QM-CMM boundary. Thus, the results indicate that the QMCMM and QM-cluster methods can complement each other in a holistic picture of molecule-adsorbate core-ionization studies, where all types of intermolecular interactions are considered.
NASA Astrophysics Data System (ADS)
Löytynoja, T.; Li, X.; Jänkälä, K.; Rinkevicius, Z.; Ågren, H.
2016-07-01
We study a newly devised quantum mechanics capacitance molecular mechanics (QMCMM) method for the calculation of core-electron binding energies in the case of molecules adsorbed on metal surfaces. This yet untested methodology is applied to systems with monolayer of methanol/methyl nitrite on an Ag(111) surface at 100 K temperature. It was found out that the studied C, N, and O 1s core-hole energies converge very slowly as a function of the radius of the metallic cluster, which was ascribed to build up of positive charge on the edge of the Ag slab. Further analysis revealed that an extrapolation process can be used to obtain binding energies that deviated less than 0.5 eV against experiments, except in the case of methanol O 1s where the difference was as large as 1.8 eV. Additional QM-cluster calculations suggest that the latter error can be connected to the lack of charge transfer over the QM-CMM boundary. Thus, the results indicate that the QMCMM and QM-cluster methods can complement each other in a holistic picture of molecule-adsorbate core-ionization studies, where all types of intermolecular interactions are considered.
Cravens, T. E.; Llera, K.; Goldstein, R.; Mokashi, P.; Tzou, C.‐Y.; Broiles, T.
2015-01-01
Abstract As Rosetta was orbiting comet 67P/Churyumov‐Gerasimenko, the Ion and Electron Sensor detected negative particles with angular distributions like those of the concurrently measured solar wind protons but with fluxes of only about 10% of the proton fluxes and energies of about 90% of the proton energies. Using well‐known cross sections and energy‐loss data, it is determined that the fluxes and energies of the negative particles are consistent with the production of H− ions in the solar wind by double charge exchange with molecules in the coma. PMID:27656008
NASA Technical Reports Server (NTRS)
Vette, J. I. (Editor); Runcorn, S. K. (Editor); Gruen, E. (Editor); Mcdonnell, J. A. M.
1982-01-01
Topics discussed include the magnetic history of the early solar system, impact processes in solid bodies (e.g., meteoroids and asteroids), and topics related to cometary missions. The section devoted to cometary missions lays particular stress on missions to Comet Halley; attention is given to such aspects of these missions as the investigation of hypervelocity impact on the Giotto Halley mission dust shield, the detection of energetic cometary and solar particles by the EPONA instrument on the Giotto mission, the dust hazard near Comet Halley in regard to the Vega project, and cometary ephemerides for spacecraft flyby missions.
Cometary Amino Acids from the STARDUST Mission
NASA Technical Reports Server (NTRS)
Cook, Jamie Elsila
2009-01-01
NASA's Stardust spacecraft returned samples from comet 81 P/WiId 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a cometary amino acid.
Sensing mechanism of SnO2/ZnO nanofibers for CH3OH sensors: heterojunction effects
NASA Astrophysics Data System (ADS)
Tang, Wei
2017-11-01
SnO2/ZnO composite nanofibers were synthesized by a simple electrospinning method. The prepared SnO2/ZnO gas sensors exhibited good linear and high response to methanol. The enhanced sensing behavior of SnO2/ZnO might be associated with the homotypic heterojunction effects formed in n-SnO2/n-ZnO nanograins boundaries. In addition, the possible sensing mechanisms of methanol on SnO2/ZnO surface were investigated by density functional theory in order to make the methanol adsorption and desorption process clear. Zn doped SnO2 model was adopted to approximate the SnO2/ZnO structure because of the calculation power limitations. Calculation results showed that when exposed to methanol, the methanol would react with bridge oxygen O2c , planar O3c and pre adsorbed oxygen vacancy on the lattice surface. The -CH3 and -OH of methanol molecule would both lose one H atom. The lost H atoms bonded with oxygen at the adsorption sites. The final products were HCHO and H2O. Electrons were transferred from methanol to the lattice surface to reduce the resistance of semiconductor gas sensitive materials, which is in agreement with the experimental phenomena. More adsorption models of other interfering gases, such as ethanol, formaldehyde and acetone will be built and calculated to explain the selectivity issue from the perspective of adsorption energy, transferred charge and density of states in the future work.
Ge, Hongyu; Chen, Xiangyang; Yang, Xinzheng
2017-07-03
Density functional theory study of the hydrogenation of carbon dioxide to methanol catalyzed by iron, cobalt, and manganese cyclopentadienone complexes reveals a self-promoted mechanism, which features a methanol- or water-molecule-assisted proton transfer for the cleavage of H 2 . The total free energy barrier of the formation of methanol from CO 2 and H 2 catalyzed by Knölker's iron cyclopentadienone complex, [2,5-(SiMe 3 ) 2 -3,4-(CH 2 ) 4 (η 5 -C 4 COH)]Fe(CO) 2 H, is 26.0 kcal mol -1 in the methanol solvent. We also evaluated the catalytic activities of 8 other experimentally reported iron cyclopentadienone complexes and 37 iron, cobalt, and manganese cyclopentadienone complexes proposed in this study. In general, iron and manganese complexes have relatively higher catalytic activities. Among all calculated complexes, [2,5-(SiMe 3 ) 2 -3,4-CH 3 CHSCH 2 (η 5 -C 4 COH)]Fe(CO) 2 H (1 Fe-Casey-S-CH3 ) is the most active one with a total free energy barrier of 25.1 kcal mol -1 in the methanol solvent. Such a low barrier indicates that 1 Fe-Casey-S-CH3 is a very promising low-cost and high efficiency catalyst for the conversion of CO 2 and H 2 to methanol under mild conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laboratory Studies of Cometary Materials - Continuity Between Asteroid and Comet
NASA Technical Reports Server (NTRS)
Messenger, Scott; Walker, Robert M.
2015-01-01
Laboratory analysis of cometary samples have been enabled by collection of cometary dust in the stratosphere by high altitude aircraft and by the direct sampling of the comet Wild-2 coma by the NASA Stardust spacecraft. Cometary materials are composed of a complex assemblage of highly primitive, unprocessed interstellar and primordial solar system materials as well as a variety of high temperature phases that must have condensed in the inner regions of the protoplanetary disk. These findings support and contradict conclusions of comet properties based solely on astronomical observations. These sample return missions have instead shown that there is a continuity of properties between comets and asteroids, where both types of materials show evidence for primitive and processed materials. Furthermore, these findings underscore the importance and value of direct sample return. There will be great value in comparing the findings of the Stardust cometary coma sample return mission with those of future asteroid surface sample returns OSIRIS-REx and Hayabusa II as well as future comet nucleus sample returns.
The mini-CIDEX GC/IMS: Analysis of cometary ice and dust
NASA Technical Reports Server (NTRS)
Kojiro, Daniel R.; Carle, Glenn C.; Humphry, Donald E.; Shao, Maxine; Takeuchi, Nori
1995-01-01
Comets are recognized as among the most scientifically important objects in the solar system. They are presumed relics of the early primitive material in the solar nebula and are believed to have provided a general enrichment of volatiles to the inner solar system. The Cometary Coma Chemical Composition (C4) Mission, a proposed Discovery-Class Mission, will analyze materials released into the coma, providing information leading to the understanding of the chemical composition and make-up of the cometary nucleus. As one of two scientific instruments in the C4 spacecraft, an advanced and streamlined version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX, will employ an X-Ray Fluorescence (XRF) spectrometer to determine bulk elemental composition of cometary dust grains and a Gas Chromatograph/Ion Mobility Spectrometer (GC/IMS) for determination of the molecular composition of dust and ices following stepwise pyrolysis and combustion. A description of the mini-CIDEX IMS will be provided as well as data from analyses conducted using the mini-CIDEX breadboard instrument.
The 2.5-12 micrometers spectrum of comet Halley from the IKS-VEGA experiment.
Combes, M; Moroz, V I; Crovisier, J; Encrenaz, T; Bibring, J P; Grigoriev, A V; Sanko, N F; Coron, N; Crifo, J F; Gispert, R; Bockelée-Morvan, D; Nikolsky YuV; Krasnopolsky, V A; Owen, T; Emerich, C; Lamarre, J M; Rocard, F
1988-01-01
The infrared instrument IKS flown on board the VEGA space probes was designed for the detection of emission bands of parent molecules, and for a measurement of the size and temperature of the thermal emitting nuclear region. The instrument had three channels with cooled detectors: an "imaging channel" designed to modulate the signal of the nucleus and two spectroscopic channels operating at 2.5-5 and 6-12 micrometers, respectively, equipped with circular variable filters of resolving power approximately 50. This paper presents and discusses the results from the spectral channels. On VEGA 1, usable spectra were obtained at distances D from the comet nucleus ranging from 250,000 to 40,000 km corresponding to fields of view 4000 and 700 km in diameter, respectively. The important internal background signal caused by the instrument itself, which could not be cooled, had to be eliminated. Since no sky chopping was performed, we obtain difference spectra between the current spectrum and a reference spectrum with little or no cometary signal taken at the beginning of the observing sequence (D approximately 200,000 km). Final discrimination between cometary signal and instrumental background is achieved using their different time evolution, since the instrumental background is proportional to the slow temperature drift of the instrument, and the cometary signal due to parent molecules or dust grains is expected to vary in first order as D-1. The 2.5-5 micrometers IKS spectra definitely show strong narrow signals at 2.7 and 4.25 micrometers, attributed to the nu 3 vibrational bands of H2O and CO2, respectively, and a broader signal in the region 3.2-3.5 micrometers, which may be attributed to CH-bearing molecules. All these signals present the expected D-1 intensity variation. Weaker emission features at 3.6 and 4.7 micrometers could correspond to the nu 1 and nu 5 bands of H2CO and the (1 - 0) band of CO, respectively. Molecular production rates are derived from the observed emissions, assuming that they are due to resonance fluorescence excited by the Sun's infrared radiation. For the strong bands of H2O and CO2, the rovibrational lines are optically thick, and radiative transfer is taken into account. We derive production rates, at the moment of the VEGA 1 flyby, of approximately 10(30) sec-1 for H2O, approximately 2.7 x 10(28) sec-1 for CO2, approximately 5 x 10(28) sec-1 for CO, and 4 x 10(28) sec-1 for H2CO, if attributions to CO and H2CO are correct. The production rate of carbon atoms in CH-bearing molecules is approximately 9 x 10(29) sec-1 assuming fluorescence of molecules in the gas phase, but could be much less if the 3.2-3.5 micrometers emission is attributed to C-H stretch in polycyclic aromatic hydrocarbons or small organic grains. In addition, marginal features are present at 4.85 and 4.45 micrometers, tentatively attributed to OCS and molecules with the CN group, respectively. Broad absorption at 2.8-3.0 micrometers, as well as a narrow emission at 3.15 micrometers, which follow well the D-1 intensity variation, might be due to water ice. Emission at 2.8 micrometers is also possibly present, and might be due to OH created in vibrationally excited states after water photodissociation. The 6-12 micrometers spectrum does not show any molecular emission, nor emission in the 7.5-micrometers region. The spectrum is dominated by silicate emission showing a double structure with maxima at 9.0 and 11.2 micrometers, which suggests the presence of olivine.
Cometary Dust: The Diversity of Primitive Matter
NASA Technical Reports Server (NTRS)
Wooden, D. H.; Ishiiii, H. A.; Zolensky, M. E.
2017-01-01
The connections between comet dust and primitive chondrites from asteroids has strengthened considerably over the past decade. Understanding the importance of the connections between Stardust samples and chondrites requires geochemistry lingo as well as a perspective of other cometary dust samples besides Stardust. We present the principal findings of an extensive review prepared for by us for the June 2016 "Cometary Science After Rosetta" meeting at The Royal Society, London.
Free energy of mixing of acetone and methanol: a computer simulation investigation.
Idrissi, Abdenacer; Polok, Kamil; Barj, Mohammed; Marekha, Bogdan; Kiselev, Mikhail; Jedlovszky, Pál
2013-12-19
The change of the Helmholtz free energy, internal energy, and entropy accompanying the mixing of acetone and methanol is calculated in the entire composition range by the method of thermodynamic integration using three different potential model combinations of the two compounds. In the first system, both molecules are described by the OPLS, and in the second system, both molecules are described by the original TraPPE force field, whereas in the third system a modified version of the TraPPE potential is used for acetone in combination with the original TraPPE model of methanol. The results reveal that, in contrast with the acetone-water system, all of these three model combinations are able to reproduce the full miscibility of acetone and methanol, although the thermodynamic driving force of this mixing is very small. It is also seen, in accordance with the finding of former structural analyses, that the mixing of the two components is driven by the entropy term corresponding to the ideal mixing, which is large enough to overcompensate the effect of the energy increase and entropy loss due to the interaction of the unlike components in the mixtures. Among the three model combinations, the use of the original TraPPE model of methanol and modified TraPPE model of acetone turns out to be clearly the best in this respect, as it is able to reproduce the experimental free energy, internal energy, and entropy of mixing values within 0.15 kJ/mol, 0.2 kJ/mol, and 1 J/(mol K), respectively, in the entire composition range. The success of this model combination originates from the fact that the use of the modified TraPPE model of acetone instead of the original one in these mixtures improves the reproduction of the entropy of mixing, while it retains the ability of the original model of excellently reproducing the internal energy of mixing.
Three dimensional Particle-in-Cell (PIC) simulations of the 67P environment
NASA Astrophysics Data System (ADS)
Divin, Andrey; Deca, Jan; Henri, Pierre; Horanyi, Mihaly; Markidis, Stefano; Lapenta, Giovanni; Olshevsky, Vyacheslav; Eriksson, Anders
2017-04-01
ESA's Rosetta orbiter spacecraft escorted comet 67P/Churyumov-Gerasimenko for two years, carrying 21 scientific instruments. Five of those were dedicated to plasma measurements. The mission revealed for the first time, and in unprecedented detail, the fascinating evolution of a comet and its interaction with our Sun as it races along its 6.45yr elliptical orbit around the Sun. Using a self-consistent 3-D fully kinetic electromagnetic particle-in-cell approach, we focus on the global cometary environment and, in particular, on the collisionless electron-kinetic interaction. We include cometary ions and electrons produced by the ionization of the outgassing cometary atmosphere in addition to the solar wind ion and electron plasma flow. We approximate mass-loading of the cold cometary ion and electron populations using a 1/r relation with distance to the comet with a total neutral production rate of Q = 1026 s-1. Our simulation results disentangle for the first time the kinetic ion and electron dynamics of the solar wind interaction with a weakly outgassing comet. The simulated global structure of the solar wind-comet interaction confirms the results reported in hybrid simulations of the induced cometary magnetosphere. Moreover, we show that cometary and solar wind electrons neutralize the solar wind protons and cometary ions, respectively, in the region of influence around the comet, representing to first order a four-fluid behavior. The electron energy distribution close to the comet is shown to be a mix of cometary and solar wind electrons that appear as, respectively, a thermal and a suprathermal components. Analyzing ion and electron energy distribution functions, and comparing with plasma measurements from ESA's Rosetta mission to comet 67P/Churyumov-Gerasimenko, we conclude that a detailed kinetic treatment of the electron dynamics is critical to fully capture the complex physics of mass-loading plasmas.
A one- and two-dimensional NMR study of the B to Z transition of (m5dC-dG)3 in methanolic solution.
Feigon, J; Wang, A H; van der Marel, G A; Van Boom, J H; Rich, A
1984-01-01
The deoxyribose hexanucleoside pentaphosphate (m5dC-dG)3 has been studied by 500 MHz 1H NMR in D2O (0.1 M NaCl) and in D2O/deuterated methanol mixtures. Two conformations, in slow equilibrium on the NMR time scale, were detected in methanolic solution. Two-dimensional nuclear Overhauser effect (NOE) experiments were used to assign the base and many of the sugar resonances as well as to determine structural features for both conformations. The results were consistent with the an equilibrium in solution between B-DNA and Z-DNA. The majority of the molecules have a B-DNA structure in low-salt D2O and a Z-DNA structure at high methanol concentrations. A cross-strand NOE between methyl groups on adjacent cytosines is observed for Z-DNA but not B-DNA. The B-DNA conformation predominates at low methanol concentrations and is stabilized by increasing temperature, while the Z-DNA conformation predominates at high methanol concentrations and low temperatures. 31P NMR spectra gave results consistent with those obtained by 1H NMR. Comparison of the 31P spectra with those obtained on poly(dG-m5dC) allow assignment of the lower field resonances to GpC in the Z conformation. PMID:6694910
Thz and Long Path Fourier Transform Spectroscopy of Methanol; Torsionally Coupled High-K Levels
NASA Astrophysics Data System (ADS)
Pearson, John C.; Yu, Shanshan; Drouin, Brian J.; Lees, Ronald M.; Xu, Li-Hong; Billinghurst, Brant E.
2012-06-01
Methanol is nearly ubiquitous in the interstellar gas. The presence of both a-type and b-type dipole moments, asymmetry, and internal rotation assure that any small astronomical observation window will contain multiple methanol transitions. This often allows a great deal about the local physical conditions to be deduced, but only insofar as the spectra are characterized. The Herschel Space Observatory has detected numerous, clearly beam diluted, methanol transitions with quanta surpassing J = 35 in many regions. Unfortunately, observations of methanol often display strong non-thermal behavior whose modeling requires many additional levels to be included in a radiative transfer analysis. Additionally, the intensities of many more highly excited transitions are strongly dependent on the accuracy of the wave functions used in the calculation. We report a combined Fourier Transform Infrared and THz study targeting the high J and K transitions in the ground torsional manifold. Microwave accuracy energy levels have been derived to J > 40 and K as high as 20. These levels illuminate a number of strongly resonant torsional interactions that dominate the high K spectrum of the molecule. Comparison with levels calculated from the rho-axis method Hamiltonian suggest that the rho-axis method should be able to model v_t = 0, 1 and probably v_t = 2 to experimental accuracy. The challenges in determining methanol wave functions to experimental accuracy will be discussed.
Observations of Carbon Isotopic Fractionation in Interstellar Formaldehyde
NASA Technical Reports Server (NTRS)
Wirstrom, E. S.; Charnley, S. B.; Geppert, W. D.; Persson, C. M.
2012-01-01
Primitive Solar System materials (e.g. chondrites. IDPs, the Stardust sample) show large variations in isotopic composition of the major volatiles (H, C, N, and O ) even within samples, witnessing to various degrees of processing in the protosolar nebula. For ex ample. the very pronounced D enhancements observed in IDPs [I] . are only generated in the cold. dense component of the interstellar medium (ISM), or protoplanetary disks, through ion-molecule reactions in the presence of interstellar dust. If this isotopic anomaly has an interstellar origin, this leaves open the possibility for preservation of other isotopic signatures throughout the form ation of the Solar System. The most common form of carbon in the ISM is CO molecules, and there are two potential sources of C-13 fractionation in this reservoir: low temperature chemistry and selective photodissociation. While gas-phase chemistry in cold interstellar clouds preferentially incorporates C-13 into CO [2], the effect of self-shielding in the presence of UV radiation instead leads to a relative enhancement of the more abundant isotopologue, 12CO. Solar System organic material exhibit rather small fluctuations in delta C-13 as compared to delta N-15 and delta D [3][1], the reason for which is still unclear. However, the fact that both C-13 depleted and enhanced material exists could indicate an interstellar origin where the two fractionation processes have both played a part. Formaldehyde (H2CO) is observed in the gas-phase in a wide range of interstellar environments, as well as in cometary comae. It is proposed as an important reactant in the formation of more complex organic molecules in the heated environments around young stars, and formaldehyde polymers have been suggested as the common origin of chondritic insoluable organic matter (IOM) and cometary refractory organic solids [4]. The relatively high gas-phase abundance of H2CO observed in molecular clouds (10(exp- 9) - 10(exp- 8) relative to H2) makes it feasible to observe its less common isotopologues. As a step in our investigation of C-13 fractionation patterns in the ISM, we here present comparisons between observations of the C-13 fraction in formaldehyde, and chemical fractionation models.
Meissner, Antje; Selle, Carmen; Drexler, Hans-Joachim; Heller, Detlef
2012-03-01
In the title complex, [RhCl(C(44)H(32)OP(2))]·CH(3)OH, the Rh(I) ion is coordinated by a naphthyl group of a partially oxidized 2,2'-bis-(diphenyl-phosphan-yl)-1,1'-binaphthyl (BINAP) ligand in a η(4) mode, one P atom of the diphenyl-phosphanyl group and one Cl atom. The P=O group does not inter-act with the Rh(I) ion but accepts an O-H⋯O hydrogen bond from the methanol solvent mol-ecule.
Reactions of water and C1 molecules on carbide and metal-modified carbide surfaces
Wan, Weiming; Tackett, Brian M.; Chen, Jingguang G.
2017-02-23
The formation of carbides can significantly modify the physical and chemical properties of the parent metals. In the current review, we summarize the general trends in the reactions of water and C1 molecules over transition metal carbide (TMC) and metal-modified TMC surfaces and thin films. Although the primary focus of the current review is on the theoretical and experimental studies of reactions of C1 molecules (CO, CO 2, CH 3OH, etc.), the reactions of water will also be reviewed because water plays an important role in many of the C1 transformation reactions. This review is organized by discussing separately thermalmore » reactions and electrochemical reactions, which provides insights into the application of TMCs in heterogeneous catalysis and electrocatalysis, respectively. In thermal reactions, we discuss the thermal decomposition of water and methanol, as well as the reactions of CO and CO 2 over TMC surfaces. In electrochemical reactions, we summarize recent studies in the hydrogen evolution reaction, electrooxidation of methanol and CO, and electroreduction of CO 2. Lastly, future research opportunities and challenges associated with using TMCs as catalysts and electrocatalysts are also discussed.« less
The Evolution of Volatile Production in Comet C-2009 P1(Garradd) During its 2011-2012 Apparition
NASA Technical Reports Server (NTRS)
Gicquel, A.; Milam, S. N.; Coulson, I. M.; Villaneuva, G. L.; Cordiner, M. A.; Charnley, S. B.; DiSanti, M. A.; Mumma, M. J.; Szutowicz, S.
2015-01-01
We report observations at millimeter and submillimeter wavelengths of comet C/2009 P1 (Garradd) from 2011 December 28 to 2012 April 24, using the Arizona Radio Observatory submillimeter telescope (SMT) and the James Clerk Maxwell Telescope (JCMT). Garradd is a dynamically young long-period comet from the Oort Cloud, with a periodicity of 127,000 years, that reached perihelion on 2011 December 23 (at Heliocentric distance (Rh) = 1.55 Astronomical Units and delta = 20.1 Astronomical Units ) and made its closest approach to the Earth on 2012 March 05 (at Heliocentric distance (Rh) = 1.84 Astronomical Units and delta = 1.26 Astronomical Units). We obtained gas production rates, and molecular abundances relative to water for HCN, ortho-H2CO, CS, CO and CH3OH. A rotational temperature, T (sub rot) approximately equal to 50 degrees Kelvin, was determined by observing multiple methanol lines with the JCMT. By averaging the abundance ratio relative to water from the SMT and the JCMT we derive: CO: 7.03 plus or minus 1.84 percent, HCN: 0.04 plus or minus 0.01 percent, ortho H2CO: 0.14 plus or minus 0.03 percent as a parent molecule (and 0.28 plus or minus 0.06 percent as an extended source), CS: 0.03 plus or minus 0.01 percent and CH3OH: 3.11 for a range from plus 1:86 to minus 0.51 percent. We concluded that Garradd is normal in CH3OH, depleted in HCN, ortho-H2CO and CS and slightly enriched in CO with respect to typically observed cometary mixing ratios. We also studied the temporal evolution of HCN and CO and find that the production of HCN has a trend similar to water (but with short-term variation), with a decrease after perihelion, while that of CO shows contrary behavior: remaining constant or increasing after perihelion.
Carbonaceous Components in the Comet Halley Dust
NASA Technical Reports Server (NTRS)
Fomenkova, M. N.; Chang, S.; Mukhin, L. M.
1994-01-01
Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.
NASA Astrophysics Data System (ADS)
Lepage, Martin
1998-12-01
Cette these est presentee a la Faculte de medecine de l'Universite de Sherbrooke en vue de l'obtention du grade de Ph.D. en Radiobiologie. Elle contient des resultats experimentaux enregistres avec un spectrometre d'electrons a haute resolution. Ces resultats portent sur la formation de resonances electroniques en phase condensee et de differents canaux pour leur decroissance. En premier lieu, nous presentons des mesures d'excitations vibrationnelles de l'oxygene dilue en matrice d'argon pour des energies des electrons incidents de 1 a 20 eV. Les resultats suggerent que le temps de vie des resonances de l'oxygene est modifie par la densite d'etats d'electrons dans la bande de conduction de l'argon. Nous presentons aussi des spectres de pertes d'energie d'electrons des molecules de tetrahydrofuranne (THF) et d'acetone. Dans les deux cas, la position en energie des pertes associees aux excitations vibrationnelles est en excellent accord avec les resultats trouves dans la litterature. Les fonctions d'excitation de ces modes revelent la presence de plusieurs nouvelles resonances electroniques. Nous comparons les resonances du THF et celles de la molecule de cyclopentane en phase gazeuse. Nous proposons une origine commune aux resonances ce qui implique qu'elles ne sont pas necessairement attribuees a l'excitation des electrons non-apparies de l'oxygene du THF. Nous proposons une nouvelle methode basee sur la spectroscopie par pertes d'energie des electrons pour detecter la production de fragments neutres qui demeurent a l'interieur d'un film mince condense a basse temperature. Cette methode se base sur la detection des excitations electroniques du produit neutre. Nous presentons des resultats de la production de CO dans un film de methanol. Le taux de production de CO en fonction de l'energie incidente des electrons est calibre en termes d'une section efficace totale de diffusion des electrons. Les resultats indiquent une augmentation lineaire du taux de production de CO en fonction de l'epaisseur du film et de la dose d'electrons incidente sur le film. Ces donnees experimentales cadrent dans un modele simple ou un electron cause la fragmentation de la molecule sans reaction avec les molecules avoisinantes. Le mecanisme propose pour la fragmentation unimoleculaire du methanol est la formation de resonances qui decroissent dans un etat electronique excite. Nous suggerons l'action combinee de la presence d'un trou dans une orbitale de coeur du methanol et de la presence de deux electrons dans la premiere orbitale vide pour expliquer la dehydrogenation complete du methanol pour des energies des electrons entre 8 et 18 eV. Pour des energies plus grandes, la fragmentation par l'intermediaire de l'ionisation de la molecule a deja ete suggeree. La methode de detection des etats electroniques offre une alternative a la detection des excitations vibrationnelles puisque les spectres de pertes d'energie des electrons sont congestionnes dans cette region d'energie pour les molecules polyatomiques.
Ground truth of (sub-)micrometre cometary dust - Results of MIDAS onboard Rosetta
NASA Astrophysics Data System (ADS)
Mannel, Thurid; Bentley, Mark; Schmied, Roland; Torkar, Klaus; Jeszenszky, Harald; Romsted, Jens; Levasseur-Regourd, A.; Weber, Iris; Jessberger, Elmar K.; Ehrenfreund, Pascale; Köberl, Christian; Havnes, Ove
2016-10-01
The investigation of comet 67P by Rosetta has allowed the comprehensive characterisation of pristine cometary dust particles ejected from the nucleus. Flying alongside the comet at distances as small as a few kilometres, and with a relative velocity of only centimetres per second, the Rosetta payload sampled almost unaltered dust. A key instrument to study this dust was MIDAS (the Micro-Imaging Dust Analysis System), a dedicated atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre sized particles in 3D with resolutions down to nanometres. This offers the unique opportunity to explore the morphology of smallest cometary dust and expand our current knowledge about cometary material.Here we give an overview of dust collected and analysed by MIDAS and highlight its most important features. These include the ubiquitous agglomerate nature of the dust, which is found at all size scales from the largest (>10 µm) through to the smallest (<1 µm) dust particles. The sub-units show characteristic sizes and shapes that are compared with model predictions for interstellar dust.Our findings constrain key parameters of the evolution of the early Solar System. We will discuss which dust growth model is favoured by the observed morphology and how the results restrict cometary formation. Finally, dust particles detected by MIDAS resemble primitive interplanetary dust which is a strong argument for a common cometary origin.
ACE-SWICS In Situ Plasma Composition of Fragmented Comet 73P/Schwassmann-Wachmann 3
NASA Astrophysics Data System (ADS)
Gilbert, J. A.; Lepri, S. T.; Rubin, M.; Zurbuchen, T.
2013-12-01
The interiors of comets contain some of the most pristine material in the solar system. Comet 73P/Schwassmann-Wachmann 3, discovered in 1930 with a double nucleus, is a Jupiter-family comet with a 5.34-year period. This comet split into 5 fragments in 1995 and disintegrated into nearly 70 pieces in 2006. In May and June of 2006, recently ionized cometary particles originating from some of these fragments were collected with the ACE-SWICS sensor. Due to a combination of the close proximity of the fragments passing between ACE-SWICS and the Sun, and the instrument characteristics, unique measurements regarding the charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during this time. The cometary material released from some of these fragments can be identified by the concentrations of water-group pick-up ions having a mass-per-charge of 16-18 amu/e. With a focus on Helium, Carbon, and water-group ions, we present an analysis of the cometary plasma. Charge state ratios of C+/O+ fall below 0.1 during detection of comet fragment plasma, and there is a clear increase in He+ during fragment crossings. The C/O ratio and He charge states are used to provide constraints on the activity of the cometary fragments and also the spatial distribution of the extended and ionized cometary tail.
Venkatesalu, V; Gopalan, N; Pillai, C R; Singh, Vineeta; Chandrasekaran, M; Senthilkumar, A; Chandramouli, N
2012-07-01
The anti-plasmodial activity of different solvent extracts of Adhatoda vasica (root), Caesalpinia pulcherrima (leaf), Carica papaya (pulp), Erythroxylum monogynum (leaf), Lantana camara (whole plant), Ocimum sanctum (root) and Phyllanthus niruri (whole plant) were studied against Plasmodium falciparum. Of the 35 extracts tested, seven extracts showed good anti-plasmodial activity. Methanol extract of C. pulcherrima showed the lowest IC50 value (10.96 μg/mL) followed by methanol extract of A. vasica (IC(50)=11.1 μg/mL), chloroform extract of O. sanctum (IC(50)=11.47 μg/mL), methanol extract of E. monogynum (IC(50)=12.23 μg/mL), acetone extract of C. pulcherrima (IC(50)=12.49 μg/mL), methanol extract of O. sanctum and acetone extract of A. vasica (IC(50)=14.04 μg/mL). The results of the present study justify the use of these medicinal plants in traditional practice, and also, a further study on the isolation of anti-plasmodial molecules from their active crude extracts is in progress.
Water outburst activity in Comet 17P/Holmes
NASA Astrophysics Data System (ADS)
de Almeida, Amaury A.; Boice, Daniel C.; Picazzio, Enos; Huebner, Walter F.
2016-08-01
Cometary outbursts are sporadic events whose mechanisms are not well known where the activity and consequently the brightness can increase hundreds of thousands of times within a few hours to several days. This indicates a dramatic departure from thermal equilibrium between the comet and interplanetary space and is usually documented by ;light curves;. In a typical cometary outburst, the brightness can increase by 2-5 magnitudes (Whitney, 1955; Gronkowski and Wesolowski, 2015). In only 42 h, Comet 17P/Holmes was reported to brighten from a magnitude of about 17 to about 2.4 at the height of the burst, representing the largest known outburst by a comet. We present the H2O production rate of Holmes for the megaburst occurring between 23 and 24 October 2007. For this, we selected more than 1900 photometric observations from the International Comet Quarterly Archive of Photometric Data (Green, 2007) and use the Semi-Empirical Method of Visual Magnitudes (SEMVM; de Almeida et al., 2007). We clearly show that the comet achieved an average water production rate of 5 × 1029 molecules s-1, corresponding to a water gas loss rate of 14,960 kg s-1, in very good agreement with Schleicher (2009) who derived the water production rate using OH measurements on 1 Nov 2007 (about 8 days after the outburst). We discuss possible physical processes that might cause cometary outbursts and propose a new qualitative mechanism, the Pressurized Obstructed Pore (POP) model. The key feature of POP is the recrystallization of water in the surface regolith as it cools, plugging pores and blocking the release of subsurface gas flow. As the interior gas pressure increases, an outburst is eventually triggered. POP is consistent with current observations and can be tested in the future with observations (e.g., Rosetta in situ measurements) and detailed simulations.
Cometary Jet Collimation Without Physical Confinement
NASA Astrophysics Data System (ADS)
Steckloff, Jordan; Melosh, H.
2012-10-01
Recent high-resolution images of comet nuclei reveal that gases and dust expelled by the comet are organized into narrow jets. Contemporary models postulate that these jets collimate when the expanding gases and dust pass through a physical aperture or nozzle [1]. However, recent high-resolution spacecraft observations fail to detect such apertures on cometary surfaces [2]. Additionally, observations of comet nuclei by visiting spacecraft have observed that jet activity is tied to the diurnal rotation of the comet. This suggests that jet emissions are driven by the sun, and therefore must emanate from close to the surface of the comet (order of 10 cm.) Here we describe a simplified computer model of jets emanating from Comet Tempel 1. We approximate the active areas (vents) of the comet as a region of smooth, level terrain on the order of 10 m in width. We assume that each element of the active area is emitting gas molecules with the same spatial distribution, and integrate over the active area in order to calculate the gas drag force. We consider two angular emission profiles (isotropic and lambertian), and assume plane-strain geometry. Uniformly sized particles are placed randomly on the surface of the vent, and their positions in time are tracked. For our simulation, spherical particles with radii of 1 µm to 1 cm were considered. We observe that the overwhelming majority of the particles remain close to the central axis of the active area, forming a well-collimated jet, with particles reaching escape velocity. This mechanism may explain cometary jets, given the physical and observational constraints. References: [1] Yelle R.V. (2004) Icarus 167, 30-36. [2] A’Hearn M.F. et al. (2011) Science 332, 1396-1400. [3] Belton M.J.S. and Melosh H.J. (2009) Icarus 200, 280-291. Acknowledgements: This research is supported by NASA grant PGG NNX10AU88G.
Formation environment of cometary nuclei in the primordial solar nebula
NASA Astrophysics Data System (ADS)
Yamamoto, T.
1985-01-01
The formation environment of comets in the primordial solar nebula is investigated from the point of view of the chemical composition of the ices of cometary nuclei. A sublimation sequence for various species of possible constituents of the nuclear ice, which would have condensed on the grain surface in the parent interstellar cloud was obtained by calculating the temperature of grains in the solar nebula. On this basis, an allowed range of the nebular temperature in the formation region of cometary nuclei is obtained from a condition for retention of the ices of the nuclear composition. Combining this result with models of the solar nebula, the region for the formation of cometary nuclei in the solar nebula is discussed. It is shown that cometary nuclei formed at least beyond the region between the formation regions of Saturn and Uranus. Finally, an upper limit is estimated for the grain temperature in the region of comet formation at an earlier stage of the solar nebula. The grain temperature is shown to be less than 60 K at this stage.
Dust in Cometary Comae: Present Understanding of the Structure and Composition of Dust Particles
NASA Technical Reports Server (NTRS)
Levasseur-Regourd, A. C.; Zolensky, M.; Lasue, J.
2007-01-01
In situ probing of a very few cometary comae has shown that dust particles present a low albedo and a low density, and that they consist of both rocky material and refractory organics. Remote observations of solar light scattered by cometary dust provide information on the properties of dust particles in the coma of a larger set of comets. The observations of the linear polarization in the coma indicate that the dust particles are irregular, with a size greater (on the average) than about one micron. Besides, they suggest, through numerical and experimental simulations, that both compact grains and fluffy aggregates (with a power law of the size distribution in the -2.6 to -3 range), and both rather transparent silicates and absorbing organics are present in the coma. Recent analysis of the cometary dust samples collected by the Stardust mission provide a unique ground truth and confirm, for comet 81P/Wild 2, the results from remote sensing observations. Future space missions to comets should, in the next decade, lead to a more precise characterization of the structure and composition of cometary dust particles.
VizieR Online Data Catalog: 18-cm OH lines in comets (Crovisier+, 2002)
NASA Astrophysics Data System (ADS)
Crovisier, J.; Colom, P.; Gerard, E.; Bockelee-Morvan, D.; Bourgois, G.
2002-10-01
Since the apparition of comet Kohoutek 1973 XII, the 18-cm lines of the OH radical have been systematically observed in a number of comets with the Nancay radio telescope. Between 1973 and 1999, 52 comets have been successfully detected. This allowed an evaluation of the cometary water production rates and their evolution with time, as well as a study of several physical processes such as the excitation mechanisms of the OH radio lines, the expansion of cometary atmospheres, their anisotropy in relation to non-gravitational forces, and the Zeeman effect in relation to the cometary magnetic field. Part of these observations and their analysis have already been published. The bulk of the results are now organized in a data base. The present paper is a general presentation of the Nancay cometary data base and a more specific description of the observations of 53 cometary apparitions between 1982 and 1999. Comets observed before 1982 are only partly incorporated in the data base. Observations of comets since 2000 have benefited from a major upgrade of the telescope; they will be presented in forthcoming publications. (5 data files).
The Role of Low-Energy (less than 20 eV) Electrons in Astrochemistry: A Tale of Two Molecules
NASA Astrophysics Data System (ADS)
Arumainayagam, Chris
2016-07-01
In the interstellar medium, UV photolysis of ice mantles encasing dust grains is thought to be the mechanism that drives the synthesis of "complex" molecules. The source of this reaction-initiating UV light is assumed to be local because externally-sourced UV radiation cannot pass through the ice-containing dark, dense molecular clouds. Externally sourced cosmic rays (E_{max} ˜10^{20} eV), in addition to producing UV light within these clouds, also produce large numbers of low-energy (≤ 20 eV) secondary electrons. The goal of our studies is to understand the low-energy electron-induced processes that occur when high-energy cosmic rays interact with interstellar ices. Using electron stimulated desorption (ESD), post-irradiation temperature-programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS), we have investigated the radiolysis initiated by electrons in condensed methanol and ammonia at ˜90K under ultrahigh vacuum (1 × 10^{-9} Torr) conditions. We have identified fifteen low-energy electron-induced methanol radiolysis products, many of which have been previously identified as being formed by methanol UV photolysis in the interstellar medium. We have also found evidence for the electron-induced formation from ammonia of hydrazine (N_2 H_4), diazene (N_2 H_2), cyclotriazane/triazene (N_3 H_3) and triazane (N_3 H_5). We have investigated the reaction yields' dependence on film thickness, irradiation time, incident current, electron energy, and metal substrate. These results provide a basis from which we can begin to understand the mechanisms by which methanol and ammonia can form more complex species in cosmic ices. Studies such as ours may ultimately help us better understand the initial stages of the genesis of life.
The Role of Low-Energy Electrons in Astrochemistry: A Tale of Two Molecules
NASA Astrophysics Data System (ADS)
Arumainayagam, Chris; Cambell, Jyoti; Leon Sanche, Michael Boyer, and Petra Swiderek.
2016-06-01
In the interstellar medium, UV photolysis of ice mantles encasing dust grains is thought to be the mechanism that drives the synthesis of “complex” molecules. The source of this reaction-initiating UV light is assumed to be local because externally-sourced UV radiation cannot pass through the ice-containing dark, dense molecular clouds. Externally sourced cosmic rays (Emax ~ 1020 eV), in addition to producing UV light within these clouds, also produce large numbers of low-energy (≤ 20 eV) secondary electrons. The goal of our studies is to understand the low-energy electron-induced processes that occur when high-energy cosmic rays interact with interstellar ices. Using electron stimulated desorption (ESD), post-irradiation temperature-programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS), we have investigated the radiolysis initiated by electrons in condensed methanol and ammonia at ~ 90 K under ultrahigh vacuum (1×10-9 Torr) conditions. We have identified fifteen low-energy (≤ 20 eV) electron-induced methanol radiolysis products, many of which have been previously identified as being formed by methanol UV photolysis in the interstellar medium. We have also found evidence for the electron-induced formation from ammonia of hydrazine (N2H4), diazene (N2H2), cyclotriazane/triazene (N3H3) and triazane (N3H5). We have investigated the reaction yields’ dependence on film thickness, irradiation time, incident current, electron energy, and metal substrate. These results provide a basis from which we can begin to understand the mechanisms by which methanol and ammonia can form more complex species in cosmic ices. Studies such as ours may ultimately help us better understand the initial stages of the genesis of life.
Adsorption of methanol, ethanol and water on well-characterized PtSn surface alloys
NASA Astrophysics Data System (ADS)
Panja, Chameli; Saliba, Najat; Koel, Bruce E.
1998-01-01
Adsorption and desorption of methanol (CH 3OH), ethanol (C 2H 5OH) and water on Pt(111) and two, ordered, PtSn alloys has been studied primarily using temperature-programmed desorption (TPD) mass spectroscopy. The two alloys studied were the {p(2 × 2) Sn}/{Pt(111) } and (√3 × √3) R30° {Sn}/{Pt(111) } surface alloys prepared by vapor deposition of Sn on Pt(111), with θSn = 0.25 and 0.33, respectively. All three molecules are weakly bonded and reversibly adsorbed under UHV conditions on all three surfaces, molecularly desorbing during TPD without any decomposition. The two PtSn surface alloys were found to chemisorb both methanol and ethanol slightly more weakly than on the Pt(111) surface. The desorption activation energies measured by TPD, and hence the adsorption energies, of both methanol and ethanol progressively decrease as the surface concentration of Sn increases, compared with Pt(111). The decreased binding energy leads one to expect a lower reactivity for these alcohols on the two alloys. The sticking coefficients and the monolayer coverages of these alcohols on the two alloys were identical to that on Pt(111) at 100 K, independent of the amount of Sn present in the surface layer. Alloying Sn in Pt(111) also slightly weakens the adsorption energy of water. Water clusters are formed even at low coverages on all three surfaces, eventually forming a water bilayer prior to the formation of a condensed ice phase. These results are relevant to a molecular-level explanation for the reactivity of Sn-promoted Pt surfaces that have been used in the electro-oxidation of simple organic molecules.
Abundance of complex organic molecules in comets
NASA Astrophysics Data System (ADS)
Biver, N.; Bockelée-Morvan, D.; Debout, V.; Crovisier, J.; Moreno, R.; Boissier, J.; Lis, D.; Colom, P.; Paubert, G.; Dello Russo, N.; Vervack, R.; Weaver, H.
2014-07-01
The IRAM-30m submillimetre radio telescope has now an improved sensitivity and versality thanks to its wide-band EMIR receivers and high-resolution FFT spectrometer. Since 2012, we have undertaken ~70 GHz wide spectral surveys in the 1-mm band in several comets: C/2009 P1 (Garradd), C/2011 L4 (PanSTARRS), C/2012 F6 (Lemmon), C/2012 S1 (ISON), and C/2013 R1 (Lovejoy). Since their discovery in comet C/1995 O1 (Hale-Bopp) in 1997 (Bockelée-Morvan et al. 2000, Crovisier et al. 2004a, 2004b), we have detected complex CHO(N)-molecules such as formic acid (HCOOH), formamide (NH_2CHO), acetaldehyde (CH_3CHO), and ethylene glycol ((CH_2OH)_2) in several other comets. HCOOH has now been detected in 6 other comets since 2004, and formamide, ethylene glycol, and acetaldehyde were re-detected for the first time in comets Lemmon or Lovejoy in 2013 (Biver et al. 2014). We will present the abundances relative to water we derive for these species, and the sensitive upper limits we obtain for other complex CHO-bearing molecules. We will discuss the implication of these findings on the origin of cometary material in comparison with observations of such molecules in the interstellar medium.
NASA Technical Reports Server (NTRS)
Yeomans, D. K. (Editor); West, R. M. (Editor); Harrington, R. S. (Editor); Marsden, B. G. (Editor)
1984-01-01
Modern techniques for making cometary astrometric observations, reducing these observations, using accurate reference star catalogs, and computing precise orbits and ephemerides are discussed in detail and recommendations and suggestions are given in each area.
Collecting cometary soil samples? Development of the ROSETTA sample acquisition system
NASA Technical Reports Server (NTRS)
Coste, P. A.; Fenzi, M.; Eiden, Michael
1993-01-01
In the reference scenario of the ROSETTA CNRS mission, the Sample Acquisition System is mounted on the Comet Lander. Its tasks are to acquire three kinds of cometary samples and to transfer them to the Earth Return Capsule. Operations are to be performed in vacuum and microgravity, on a probably rough and dusty surface, in a largely unknown material, at temperatures in the order of 100 K. The concept and operation of the Sample Acquisition System are presented. The design of the prototype corer and surface sampling tool, and of the equipment for testing them at cryogenic temperatures in ambient conditions and in vacuum in various materials representing cometary soil, are described. Results of recent preliminary tests performed in low temperature thermal vacuum in a cometary analog ice-dust mixture are provided.
Electron impact ionization in the vicinity of comets
NASA Astrophysics Data System (ADS)
Cravens, T. E.; Kozyra, J. U.; Nagy, A. F.; Gombosi, T. I.; Kurtz, M.
1987-07-01
The solar wind interacts very strongly with the extensive cometary coma, and the various interaction processes are initiated by the ionization of cometary neutrals. The main ionization mechanism far outside the cometary bow shock is photoionization by solar extreme ultraviolet radiation.Electron distributions measured in the vicinity of comets Halley and Giacobini-Zinner by instruments on the VEGA and ICE spacecraft, respectively, are used to calculate electron impact ionization frequencies. Ionization by electrons is of comparable importance to photoionization in the magnetosheaths of Comets Halley and Giacobini-Zinner. The ionization frequency in the inner part of the cometary plasma region of comet Halley is several times greater than the photoionization value. Tables of ionization frequencies as functions of electron temperature are presented for H2O, CO2, CO, O, N2, and H.
First Satellite Observations of Lower Tropospheric Ammonia and Methanol
NASA Technical Reports Server (NTRS)
Beer, Reinhard; Shephard, Mark W.; Kulawik, Susan S.; Clough, Shepard A.; Eldering, Annmarie; Bowman, Kevin W.; Sander, Stanley P.; Fisher, Brendan M.; Payne, Vivienne H.; Luo, Mingzhao;
2008-01-01
The Tropospheric Emission Spectrometer (TES) on the EOS Aura satellite makes global measurements of infrared radiances which are used to derive profiles of species such as O3, CO, H2O, HDO and CH4 as routine standard products. In addition, TES has a variety of special modes that provide denser spatial mapping over a limited geographical area. A continuous-coverage mode (called ''transect'', about 460 km long) has now been used to detect additional molecules indicative of regional air pollution. On 10 July 2007 at about 05:37 UTC (13:24 LMST) TES conducted such a transect observation over the Beijing area in northeast China. Examination of the residual spectral radiances following the retrieval of the TES standard products revealed surprisingly strong features attributable to enhanced concentrations of ammonia (NH3) and methanol (CH3OH), well above the normal background levels. This is the first time that these molecules have been detected in space-based nadir viewing measurements that penetrate into the lower atmosphere.
Kauppila, Tiina J; Wiseman, Justin M; Ketola, Raimo A; Kotiaho, Tapio; Cooks, R Graham; Kostiainen, Risto
2006-01-01
The performance of desorption electrospray ionization (DESI) in the analysis of a group of pharmaceuticals and their glucuronic acid conjugates is reported. The suitability of different sprayer solvents and different surfaces was examined. In the positive ion mode, water/methanol/trifluoroacetic acid performed best, whereas, in the negative ion mode, water/methanol/ammonium hydroxide was found to be the most suitable spray solvent. Of the surfaces investigated, polymethylmethacrylate (PMMA) was found to give the best performance in terms of sensitivity. Spray solution flow rate and the distance of the sprayer tip from the surface were also found to have significant effects on the signal intensity. Analytes with basic groups efficiently formed the corresponding protonated molecules in the positive ion mode, whereas acidic analytes, such as the glucuronic acid conjugates, formed intense signals due to the deprotonated molecules in the negative ion mode. Ionization of neutral compounds was less efficient and in many cases it was achieved through adduct formation with simple anions or cations. Copyright (c) 2005 John Wiley & Sons, Ltd.
First satellite observations of lower tropospheric ammonia and methanol
NASA Astrophysics Data System (ADS)
Beer, Reinhard; Shephard, Mark W.; Kulawik, Susan S.; Clough, Shepard A.; Eldering, Annmarie; Bowman, Kevin W.; Sander, Stanley P.; Fisher, Brendan M.; Payne, Vivienne H.; Luo, Mingzhao; Osterman, Gregory B.; Worden, John R.
2008-05-01
The Tropospheric Emission Spectrometer (TES) on the EOS Aura satellite makes global measurements of infrared radiances which are used to derive profiles of species such as O3, CO, H2O, HDO and CH4 as routine standard products. In addition, TES has a variety of special modes that provide denser spatial mapping over a limited geographical area. A continuous-coverage mode (called ``transect'', about 460 km long) has now been used to detect additional molecules indicative of regional air pollution. On 10 July 2007 at about 05:37 UTC (13:24 LMST) TES conducted such a transect observation over the Beijing area in northeast China. Examination of the residual spectral radiances following the retrieval of the TES standard products revealed surprisingly strong features attributable to enhanced concentrations of ammonia (NH3) and methanol (CH3OH), well above the normal background levels. This is the first time that these molecules have been detected in space-based nadir viewing measurements that penetrate into the lower atmosphere.
Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols.
Li, Meng; Liu, Ping; Adzic, Radoslav R
2012-12-06
The slow, incomplete oxidation of methanol and ethanol on platinum-based anodes as well as the high price and limited reserves of Pt has hampered the practical application of direct alcohol fuel cells. We describe the electrocatalysts consisting of one Pt monolayer (one atom thick layer) placed on extended or nanoparticle surfaces having the activity and selectivity for the oxidation of alcohol molecules that can be controlled with platinum-support interaction. The suitably expanded Pt monolayer (i.e., Pt/Au(111)) exhibits a factor of 7 activity increase in catalyzing methanol electrooxidation relative to Pt(111). Sizable enhancement is also observed for ethanol electrooxidation. Furthermore, a correlation between substrate-induced lateral strain in a Pt monolayer and its activity/selectivity is established and rationalized by experimental and theoretical studies. The knowledge we gained with single-crystal model catalysts was successfully applied in designing real nanocatalysts. These findings for alcohols are likely to be applicable for the oxidation of other classes of organic molecules.
Shin, Joong-Won; Bernstein, Elliot R
2017-09-28
Infrared plus vacuum ultraviolet (IR + VUV) photoionization vibrational spectroscopy of 2-butanone/methanol clusters [MEK·(MeOH) n , n = 1-4] is performed to explore structures associated with hydrogen bonding of MeOH molecules to the carbonyl functional group of the ketone. IR spectra and X3LYP/6-31++G(d,p) calculations show that multiple isomers of MEK·(MeOH) n are generated in the molecular beam as a result of several hydrogen bonding sites available to the clusters throughout the size range investigated. Isomer interconversion involving solvating MeOH rearrangement should probably occur for n = 1 and 2. The mode energy for a hydrogen bonded OH stretching transition gradually redshifts as the cluster size increases. Calculations suggest that the n = 3 cluster isomers adopt structures in which the MEK molecule is inserted into the cyclic MeOH hydrogen bond network. In larger structures, the cyclic network may be preserved.
Park, Hyun June; Joo, Jeong Chan; Park, Kyungmoon; Kim, Yong Hwan; Yoo, Young Je
2013-02-10
Enzyme reactions in organic solvent such as for organic synthesis have great industrial potential. However, enzymes lose their stability in hydrophilic organic solvents due to the deformation of the enzyme by the solvent. It is thus important to enhance the stability of enzymes in hydrophilic organic solvents. Previous approaches have not considered on the interaction between enzymes and solvents due to the lack of information. In this study, the structural motions of the enzyme in methanol cosolvent and the interaction between the enzyme surface and the solvent molecule were investigated using molecular dynamics simulation (MD). By analyzing the MD simulation results, the surface residues of Candida antarctica lipase B (CalB) with higher root mean square deviation (RMSD) in a methanol solvent were considered as methanol affecting site and selected for site-directed mutagenesis. The methanol affecting site was computationally redesigned by lowering the RMSD. Among the candidate mutants, the A8T, A92E, N97Q and T245S mutants showed higher organic solvent stability at various methanol concentrations. The rational approach developed in this study could be applied to the stabilization of other industrial enzymes used in organic solvents. Copyright © 2012 Elsevier B.V. All rights reserved.
Li, Yixuan; Liang, Liang; Liu, Changpeng; Li, Yang; Xing, Wei; Sun, Junqi
2018-04-30
Proton-exchange membranes (PEMs) that can heal mechanical damage to restore original functions are important for the fabrication of durable and reliable direct methanol fuel cells (DMFCs). The fabrication of healable PEMs that exhibit satisfactory mechanical stability, enhanced proton conductivity, and suppressed methanol permeability via hydrogen-bonding complexation between Nafion and poly(vinyl alcohol) (PVA) followed by postmodification with 4-carboxybenzaldehyde (CBA) molecules is presented. Compared with pure Nafion, the CBA/Nafion-PVA membranes exhibit enhanced mechanical properties with an ultimate tensile strength of ≈20.3 MPa and strain of ≈380%. The CBA/Nafion-PVA membrane shows a proton conductivity of 0.11 S cm -1 at 80 °C, which is 1.2-fold higher than that of a Nafion membrane. The incorporated PVA gives the CBA/Nafion-PVA membranes excellent proton conductivity and methanol resistance. The resulting CBA/Nafion-PVA membranes are capable of healing mechanical damage of several tens of micrometers in size and restoring their original proton conductivity and methanol resistance under the working conditions of DMFCs. The healing property originates from the reversibility of hydrogen-bonding interactions between Nafion and CBA-modified PVA and the high chain mobility of Nafion and CBA-modified PVA. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cometary Evolution: Clues on Physical Properties from Chondritic Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.; Mackinnon, Ian D. R.
1989-01-01
The degree of diversity or similarity detected in comets depends primarily on the lifetimes of the individual cometary nuclei at the time of analysis. It is inherent in our understanding of cometary orbital dynamics and the seminal model of comet origins by Oort that cometary evolution is the natural order of events in our Solar System. Thus, predictions of cometary behaviour in terms of bulk physical, mineralogical or chemical parameters should contain an appreciation of temporal variation(s). Previously, Rietmeijer and Mackinnon developed mineralogical bases for the chemical evolution of cometary nuclei primarily with regard to the predominantly silicate fraction of comet nuclei. We suggested that alteration of solids in cometary nuclei should be expected and that indications of likely reactants and products can be derived from judicious comparison with terrestrial diagenetic environments which include hydrocryogenic and low-temperature aqueous alterations. In a further development of this concept, Rietmeijer provides indirect evidence for the formation of sulfides and oxides in comet nuclei. Furthermore, Rietmeijer noted that timescales for hydrocryogenic and low-temperature reactions involving liquid water are probably adequate for relatively mature comets, e.g. P/comet Halley. In this paper, we will address the evolution of comet nuclei physical parameters such as solid particle grain size, porosity and density. In natural environments, chemical evolution (e.g. mineral reactions) is often accompanied by changes in physical properties. These concurrent changes are well-documented in the terrestrial geological literature, especially in studies of sediment diagenesis and we suggest that similar basic principles apply within the upper few meters of active comet nuclei. The database for prediction of comet nuclei physical parameters is, in principle, the same as used for the proposition of chemical evolution. We use detailed mineralogical studies of chondritic interplanetary dust particles (IDPS) as a guide to the likely constitution of mature comets traversing the inner Solar System. While there is, as yet, no direct proof that a specific sub-group or type of chondritic IDP is derived from a specific comet, it is clear that these particles are extraterrestrial in origin and that a certain portion of the interplanetary flux received by the Earth is cometary in origin. Two chondritic porous (CP) MPs, sample numbers W7010A2 and W7029Cl, from the Johnson Space Center Cosmic Dust Collection have been selected for this study of putative cometary physical parameters. This particular type of particle is considered a likely candidate for a cometary origin on the basis of mineralogy, bulk composition and morphology. While many IDPs have been subjected to intensive study over the past decade, we can develop a physical parameter model on only these two CP IDPs because few others have been studied in sufficient detail.
Cometary Evolution: Clues on Physical Properties from Chondritic Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Reitmeijer, Frans J. M.; Mackinnon, Ian D. R.
1997-01-01
The degree of diversity or similarity detected in comets depends primarily on the lifetimes of the individual cometary nuclei at the time of analysis. It is inherent in our understanding of cometary orbital dynamics and the seminal model of comet origins that cometary evolution is the natural order of events in our Solar System. Thus, predictions of cometary behaviour in terms of bulk physical, mineralogical or chemical parameters should contain an appreciation of temporal variation(s). Previously, Rietmeijer and Mackinnon [1987] developed mineralogical bases for the chemical evolution of cometary nuclei primarily with regard to the predominantly silicate fraction of comet nuclei. We suggested that alteration of solids in cometary nuclei should be expected and that indications of likely reactants and products can be derived from judicious comparison with terrestrial diagenetic environments which include hydrocryogenic and low-temperature aqueous alterations. In a further development of this concept, Rietmeijer [1988] provides indirect evidence for the formation of sulfides and oxides in comet nuclei. Furthermore, Rietmeijer [1988] noted that timescales for hydrocryogenic and low-temperature reactions involving liquid water are probably adequate for relatively mature comets, e.g. P/comet Halley. In this paper, we will address the evolution of comet nuclei physical parameters such as solid particle grain size, porosity and density. In natural environments, chemical evolution (e.g. mineral reactions) is often accompanied by changes in physical properties. These concurrent changes are well-documented in the terrestrial geological literature, especially in studies of sediment diagenesis and we suggest that similar basic principles apply within the upper few meters of active comet nuclei. The database for prediction of comet nuclei physical parameters is, in principle, the same as used for the proposition of chemical evolution. We use detailed mineralogical studies of chondritic interplanetary dust particles (IDPS) as a guide to the likely constitution of mature comets traversing the inner Solar System. While there is, as yet, no direct proof that a specific sub-group or type of chondritic IDP is derived from a specific comet, it is clear that these particles are extraterrestrial in origin and that a certain portion of the interplanetary flux received by the Earth is cometary in origin. Two chondritic porous (CP) IDPS, sample numbers W701OA2 and W7029CI, from the Johnson Space Center Cosmic Dust Collection have been selected for this study of putative cometary physical parameters. This particular type of particle is considered a likely candidate for a cometary origin on the basis of mineralogy, bulk composition and morphology. While many IDPs have been subjected to intensive study over the past decade, we can develop a physical parameter model on only these two CP IDPs because few others have been studied in sufficient detail.
Chen, Zongwei; Zhang, Qun; Luo, Yi
2018-05-04
An experimental scrutiny of the photoexcited hole dynamics in a prototypical system is presented in which hole-scavenging methanol molecules are chemisorbed on a graphitic carbon nitride (g-C 3 N 4 ) substrate. A set of comparison and control experiments by means of femtosecond time-resolved transient absorption (fs-TA) spectroscopy were conducted. The elusive reverse hole transfer (RHT) process was identified, which occurs on a timescale of a few hundred picoseconds. The critical role of interfacially chemisorbed methoxy (instead of methanol) as the dominant species responsible for hole scavenging was confirmed by a control experiment using protonated g-C 3 N 4 as the substrate. A hot-hole transfer effect was revealed by implementing different interband photoexcitation scenarios. The RHT rate is the key factor governing the hole-scavenging ability of different hole scavengers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fundamental data on the desorption of pure interstellar ices
NASA Astrophysics Data System (ADS)
Brown, Wendy A.; Bolina, Amandeep S.
2007-01-01
The desorption of molecular ices from grain surfaces is important in a number of astrophysical environments including dense molecular clouds, cometary nuclei and the surfaces and atmospheres of some planets. With this in mind, we have performed a detailed investigation of the desorption of pure water, pure methanol and pure ammonia ices from a model dust-grain surface. We have used these results to determine the desorption energy, order of desorption and the pre-exponential factor for the desorption of these molecular ices from our model surface. We find good agreement between our desorption energies and those determined previously; however, our values for the desorption orders, and hence also the pre-exponential factors, are different to those reported previously. The kinetic parameters derived from our data have been used to model desorption on time-scales relevant to astrophysical processes and to calculate molecular residence times, given in terms of population half-life as a function of temperature. These results show the importance of laboratory data for the understanding of astronomical situations whereby icy mantles are warmed by nearby stars and by other dynamical events.
Comets: Gases, ices, grains and plasma
NASA Technical Reports Server (NTRS)
Wilkening, L. L.
1981-01-01
The program and abstracts of the 97 papers delivered at the colloquium are presented. Cometary nuclei, comet dust, the coma, ion tails, several comet missions, and cometary origin and evolution were discussed.
NASA Astrophysics Data System (ADS)
Yang, Yonggang; Li, Donglin; Li, Chaozheng; Liu, YuFang; Jiang, Kai
2017-12-01
Researchers have proposed different effective mechanisms of hydrogen bonding (HB) on the fluorescence of 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and its derivatives. Herein, excited state transition and dynamics analysis confirm that the fluorescence of PD (a derivative of PRODAN with ethyl replaced by 3-hydroxy-2,2-dimethylpropan) emits from the planar intramolecular charge transfer (PICT) state rather than twist ICT (TICT) state, because the fluorescence emission and surface hopping from the TICT state to the twist ground (T-S0) state is energy forbidden. Nevertheless, the strengthening of intramolecular-HB (intra-HB) and intermolecular-HB (inter-HB) of PD-(methanol)2 smooth the pathway of surface hopping from TICT to T-S0 state and the external conversion going to planar ground state by decreasing the energy difference of the two states. This smoothing changes the fluorescence state of PD-(methanol)2 to the TICT state in which fluorescence emission does not occur but surface hopping, leading to the partial fluorescence quenching of PD in methanol solvent. This conclusion is different from previous related reports. Moreover, the inter-HB strengthening of PD-methanol in PICT state induces the cleavage of intra-HB and a fluorescence red-shift of 54 nm compared to PD. This red-shift increases to 66 nm for PD-(methanol)2 for the strengthening of the one intra-HB and two inter-HBs. The dipole moments of PD-methanol and PD-(methanol)2 respectively increase about 10.3D and 8.1D in PICT state compared to PD. The synergistic effect of intra-HB and inter-HB induces partial quenching of PD in methanol solvent by turning on the TICT state and fluorescence red-shift. This work gives a reasonable description on the fluorescence red-shift and partial quenching of PD in methanol solvent, which will bring insight into the study of spectroscopic properties of molecules owning better spectral characteristics.
Yang, Yonggang; Li, Donglin; Li, Chaozheng; Liu, YuFang; Jiang, Kai
2017-12-05
Researchers have proposed different effective mechanisms of hydrogen bonding (HB) on the fluorescence of 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and its derivatives. Herein, excited state transition and dynamics analysis confirm that the fluorescence of PD (a derivative of PRODAN with ethyl replaced by 3-hydroxy-2,2-dimethylpropan) emits from the planar intramolecular charge transfer (PICT) state rather than twist ICT (TICT) state, because the fluorescence emission and surface hopping from the TICT state to the twist ground (T-S 0 ) state is energy forbidden. Nevertheless, the strengthening of intramolecular-HB (intra-HB) and intermolecular-HB (inter-HB) of PD-(methanol) 2 smooth the pathway of surface hopping from TICT to T-S 0 state and the external conversion going to planar ground state by decreasing the energy difference of the two states. This smoothing changes the fluorescence state of PD-(methanol) 2 to the TICT state in which fluorescence emission does not occur but surface hopping, leading to the partial fluorescence quenching of PD in methanol solvent. This conclusion is different from previous related reports. Moreover, the inter-HB strengthening of PD-methanol in PICT state induces the cleavage of intra-HB and a fluorescence red-shift of 54nm compared to PD. This red-shift increases to 66nm for PD-(methanol) 2 for the strengthening of the one intra-HB and two inter-HBs. The dipole moments of PD-methanol and PD-(methanol) 2 respectively increase about 10.3D and 8.1D in PICT state compared to PD. The synergistic effect of intra-HB and inter-HB induces partial quenching of PD in methanol solvent by turning on the TICT state and fluorescence red-shift. This work gives a reasonable description on the fluorescence red-shift and partial quenching of PD in methanol solvent, which will bring insight into the study of spectroscopic properties of molecules owning better spectral characteristics. Copyright © 2017 Elsevier B.V. All rights reserved.
Bruzzi, E; Stace, A J
2014-10-09
A supersonic source of clusters has been used to prepare neutral complexes of methanol in association with an alkaline earth metal atom. From these complexes the following metal-containing dications have been generated through electron ionization: [Mg(CH3OH)n](2+), [Ca(CH3OH)n](2+), and [Sr(CH3OH)n](2+), and for n in the range 4-20, kinetic energy release measurements following the evaporation of a single molecule have been undertaken using a high resolution mass spectrometer. Using finite heat bath theory, these data have been transformed into binding energies for individual methanol molecules attached to each of the three cluster systems. In the larger complexes (n > 6) the results exhibit a consistent trend, whereby the experimental binding energy data for all three metal ions are similar, suggesting that the magnitude of the charge rather than charge density influences the strength of the interaction. From a comparison with data recorded previously for (CH3OH)nH(+) it is found that the 2+ charge on a metal ion has an effect on the binding energy of molecules in complexes containing up to 20 solvent molecules. The results recorded for [Ca(CH3OH)n](2+) show evidence of a very marked transition between n = 6 and 7, which is thought to coincide with the completion of a primary solvation shell and the onset of molecules starting to occupy a second and most probably a third shell.
Far ultraviolet excitation processes in comets
NASA Technical Reports Server (NTRS)
Feldman, P. D.; Opal, C. B.; Meier, R. R.; Nicolas, K. R.
1976-01-01
Recent observations of atomic oxygen and carbon in the far ultraviolet spectrum of comet Kohoutek have demonstrated the existence of these atomic species in the cometary coma. However, in order to identify the source of their origin, it is necessary to relate the observed ultraviolet flux to the atomic production rate. Analyses of observed OI wavelength 1304 and CI wavelength 1657 A multiplets have been carried out using high resolution solar spectra. Also examined is the possibility of observing ultraviolet fluorescence from molecules such as CO and H2, as well as resonance scattering either from atomic ions for which there are strong corresponding solar lines (CII) or from atoms for which there is an accidental wavelength coincidence (SI).
Organic chemistry and biology of the interstellar medium
NASA Technical Reports Server (NTRS)
Sagan, C.
1973-01-01
Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.
The Extreme-ultraviolet Emission from Sun-grazing Comets
NASA Technical Reports Server (NTRS)
Bryans, Paul; Pesnell, William D.
2012-01-01
The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory has observed two Sun-grazing comets as they passed through the solar atmosphere. Both passages resulted in a measurable enhancement of extreme-ultraviolet (EUV) radiance in several of the AIA bandpasses.We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Molecules in the comet rapidly sublimate as it approaches the Sun. They are then photodissociated by the solar radiation field to create atomic species. Subsequent ionization of these atoms produces a higher abundance of ions than normally present in the corona and results in EUV emission in the wavelength ranges of the AIA telescope passbands.
Modeling the cometary environment using a fluid approach
NASA Astrophysics Data System (ADS)
Shou, Yinsi
Comets are believed to have preserved the building material of the early solar system and to hold clues to the origin of life on Earth. Abundant remote observations of comets by telescopes and the in-situ measurements by a handful of space missions reveal that the cometary environments are complicated by various physical and chemical processes among the neutral gases and dust grains released from comets, cometary ions, and the solar wind in the interplanetary space. Therefore, physics-based numerical models are in demand to interpret the observational data and to deepen our understanding of the cometary environment. In this thesis, three models using a fluid approach, which include important physical and chemical processes underlying the cometary environment, have been developed to study the plasma, neutral gas, and the dust grains, respectively. Although models based on the fluid approach have limitations in capturing all of the correct physics for certain applications, especially for very low gas density environment, they are computationally much more efficient than alternatives. In the simulations of comet 67P/Churyumov-Gerasimenko at various heliocentric distances with a wide range of production rates, our multi-fluid cometary neutral gas model and multi-fluid cometary dust model have achieved comparable results to the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid in all collisional regimes. Therefore, our model is a powerful alternative to the particle-based model, especially for some computationally intensive simulations. Capable of accounting for the varying heating efficiency under various physical conditions in a self-consistent way, the multi-fluid cometary neutral gas model is a good tool to study the dynamics of the cometary coma with different production rates and heliocentric distances. The modeled H2O expansion speeds reproduce the general trend and the speed's nonlinear dependencies of production rate and heliocentric distance, which are found in remote observations. In the multi-fluid dust model, we use a newly developed numerical mesh to resolve the real shaped nucleus in the center and to facilitate prescription of the outer boundary conditions that accommodate the rotating frame. The model studies the effects of the rotating nucleus and the cometary activity in time-dependent simulations for the first time. The result also suggests that the rotation of the nucleus explains why there is no clear dust speed dependence on size in some of the dust observations. We developed a new multi-species comet MHD model to simulate the plasma environment of comet C/2006 P1 (McNaught) over a wide range of heliocentric distances from 0.17 AU to 1.75 AU, with the constraints provided by remote and in situ observations. Typical subsolar standoff distances of bow shock and contact surface are modeled and presented to characterize the solar wind interaction of the comet at various heliocentric distances. In addition, the model is also the first one to be used to study the composition and dynamics in the distant cometary tail. The results agree well with the measured water group ion abundances from the Ulysses/SWICS 1.7 AU down-tail from the comet and the velocity and temperature measured by Ulysses/SWOOPS.
Influence of a Confined Methanol Solvent on the Reactivity of Active Sites in UiO-66.
Caratelli, Chiara; Hajek, Julianna; Rogge, Sven M J; Vandenbrande, Steven; Meijer, Evert Jan; Waroquier, Michel; Van Speybroeck, Veronique
2018-02-19
UiO-66, composed of Zr-oxide bricks and terephthalate linkers, is currently one of the most studied metal-organic frameworks due to its exceptional stability. Defects can be introduced in the structure, creating undercoordinated Zr atoms which are Lewis acid sites. Here, additional Brønsted sites can be generated by coordinated protic species from the solvent. In this Article, a multilevel modeling approach was applied to unravel the effect of a confined methanol solvent on the active sites in UiO-66. First, active sites were explored with static periodic density functional theory calculations to investigate adsorption of water and methanol. Solvent was then introduced in the pores with grand canonical Monte Carlo simulations, followed by a series of molecular dynamics simulations at operating conditions. A hydrogen-bonded network of methanol molecules is formed, allowing the protons to shuttle between solvent methanol, adsorbed water, and the inorganic brick. Upon deprotonation of an active site, the methanol solvent aids the transfer of protons and stabilizes charged configurations via hydrogen bonding, which could be crucial in stabilizing reactive intermediates. The multilevel modeling approach adopted here sheds light on the important role of a confined solvent on the active sites in the UiO-66 material, introducing dynamic acidity in the system at finite temperatures by which protons may be easily shuttled from various positions at the active sites. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
THE ZEEMAN EFFECT IN THE 44 GHZ CLASS I METHANOL MASER LINE TOWARD DR21(OH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momjian, E.; Sarma, A. P., E-mail: emomjian@nrao.edu, E-mail: asarma@depaul.edu
2017-01-10
We report detection of the Zeeman effect in the 44 GHz Class I methanol maser line, toward the star-forming region DR21(OH). In a 219 Jy beam{sup −1} maser centered at an LSR velocity of 0.83 km s{sup −1}, we find a 20- σ detection of zB {sub los} = 53.5 ± 2.7 Hz. If 44 GHz methanol masers are excited at n ∼ 10{sup 7–8} cm{sup −3}, then the B versus n {sup 1/2} relation would imply, from comparison with Zeeman effect detections in the CN(1 − 0) line toward DR21(OH), that magnetic fields traced by 44 GHz methanol masersmore » in DR21(OH) should be ∼10 mG. Combined with our detected zB {sub los} = 53.5 Hz, this would imply that the value of the 44 GHz methanol Zeeman splitting factor z is ∼5 Hz mG{sup −1}. Such small values of z would not be a surprise, as the methanol molecule is non-paramagnetic, like H{sub 2}O. Empirical attempts to determine z , as demonstrated, are important because there currently are no laboratory measurements or theoretically calculated values of z for the 44 GHz CH{sub 3}OH transition. Data from observations of a larger number of sources are needed to make such empirical determinations robust.« less
Orbitrap-MS and FT-ICR-MS of Free and Labile Organic Matter from Carbonaceous Chondrites
NASA Astrophysics Data System (ADS)
Orthous-Daunay, F.-R.; Thissen, R.; Vuitton, V.; Somogyi, A.; Mespoulede, M.; Beck, P.; Bonnet, J.-Y.; Dutuit, O.; Schmitt, B.; Quirico, E.
2011-03-01
We used two types of high-resolution FT-MS to analyze the free and labile organic matter in carbonaceous chondrites of type 1 and 2. The methanol extraction and laser desorption gave access to highly and poorly functionalized molecules respectively.
Evaporation and condensation at a liquid surface. II. Methanol
NASA Astrophysics Data System (ADS)
Matsumoto, Mitsuhiro; Yasuoka, Kenji; Kataoka, Yosuke
1994-11-01
The rates of evaporation and condensation of methanol under the vapor-liquid equilibrium condition at the temperature of 300 and 350 K are investigated with a molecular dynamics computer simulation. Compared with the argon system (reported in part I), the ratio of self-reflection is similar (˜10%), but the ratio of molecule exchange is several times larger than the argon, which suggests that the conventional assumption of condensation as a unimolecular process completely fails for associating fluids. The resulting total condensation coefficient is 20%-25%, and has a quantitative agreement with a recent experiment. The temperature dependence of the evaporation-condensation behavior is not significant.
The diffuse interstellar bands: a tracer for organics in the diffuse interstellar medium?
NASA Technical Reports Server (NTRS)
Salama, F.
1998-01-01
The diffuse interstellar bands (DIBs) are absorption bands seen in the spectra of stars obscured by interstellar dust. DIBs are recognized as a tracer for free, organic molecules in the diffuse interstellar medium (ISM). The potential molecular carriers for the DIBs are discussed with an emphasis on neutral and ionized polycyclic aromatic hydrocarbons (PAHs) for which the most focused effort has been made to date. From the combined astronomical, laboratory and theoretical study, it is concluded that a distribution of free neutral and ionized complex organics (PAHs, fullerenes, unsaturated hydrocarbons) represents the most promising class of candidates to account for the DIBs. The case for aromatic hydrocarbons appears particularly strong. The implied widespread distribution of complex organics in the diffuse ISM bears profound implications for our understanding of the chemical complexity of the ISM, the evolution of prebiotic molecules and its impact on the origin and the evolution of life on early Earth through the exogenous delivery (cometary encounters and metoritic bombardments) of prebiotic organics.
Evolution of carbonaceous chondrite parent bodies: Insights into cometary nuclei
NASA Technical Reports Server (NTRS)
Mcsween, Harry Y., Jr.
1989-01-01
It is thought that cometary samples will comprise the most primitive materials that are able to be sampled. Although parent body alteration of such samples would not necessarily detract from scientists' interest in them, the possibility exists that modification processes may have affected cometary nuclei. Inferences about the kinds of modifications that might be encountered can be drawn from data on the evolution of carbonaceous chondrite parent bodies. Observations suggest that, of all the classes of chondrites, these meteorites are most applicable to the study of comets. If the proportion of possible internal heat sources such as Al-26 in cometary materials are similar to those in chondrites, and if the time scale of comet accretion was fast enough to permit incorporation of live radionuclides, comets might have had early thermal histories somewhat like those of carbonaceous chondrite parent bodies.
Cometary and meteorite swarm impact on planetary surfaces
NASA Technical Reports Server (NTRS)
Okeefe, J. D.; Ahrens, T. J.
1982-01-01
The impact-induced deformation from hypothetical cometary objects having initial densities in the 0.01 to 1 g/cu cm range and heats of vaporization in the approximately 2 kJ/g (corresponding to water) to approximately 10 to the 7th J/g range is examined for impacts in the 5 to 45 km/s range. Even though the direct effect of an atmosphere is neglected, the atmosphere may in fact cause a cometary object to break up into a shower or equivalent very porous impactor. Besides examining the partitioning of impact energy into internal energy of the impacted planet and impacting cometary material, calculations are made of the relative efficiency of shock-induced melting and vaporization by comets on planetary surface materials and the mass loss from a given planet for various escape velocities.
Hummingbird Comet Nucleus Analysis Mission
NASA Technical Reports Server (NTRS)
Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.
2000-01-01
Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.
Triple F - A Comet Nucleus Sample Return Mission
NASA Technical Reports Server (NTRS)
Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi
2008-01-01
The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.
Triple F - A Comet Nucleus Sample Return Mission
NASA Technical Reports Server (NTRS)
Kueppers, Michael; Keller, H. U.; Kuehrt, E.; A'Hearn, M. F.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M. T.; Colangeli, L.; Davidsson, B.;
2008-01-01
The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.
NASA Astrophysics Data System (ADS)
Berčič, L.; Behar, E.; Nilsson, H.; Nicolaou, G.; Wieser, G. Stenberg; Wieser, M.; Goetz, C.
2018-06-01
Aims: Cometary ions are constantly produced in the coma, and once produced they are accelerated and eventually escape the coma. We describe and interpret the dynamics of the cometary ion flow, of an intermediate active comet, very close to the nucleus and in the terminator plane. Methods: We analysed in situ ion and magnetic field measurements, and characterise the velocity distribution functions (mostly using plasma moments). We propose a statistical approach over a period of one month. Results: On average, two populations were observed, separated in phase space. The motion of the first is governed by its interaction with the solar wind farther upstream, while the second one is accelerated in the inner coma and displays characteristics compatible with an ambipolar electric field. Both populations display a consistent anti-sunward velocity component. Conclusions: Cometary ions born in different regions of the coma are seen close to the nucleus of comet 67P/Churyumov-Gerasimenko with distinct motions governed in one case by the solar wind electric field and in the other case by the position relative to the nucleus. A consistent anti-sunward component is observed for all cometary ions. An asymmetry is found in the average cometary ion density in a solar wind electric field reference frame, with higher density in the negative (south) electric field hemisphere. There is no corresponding signature in the average magnetic field strength.
NASA Astrophysics Data System (ADS)
Lee, Yu-Fang; Kelterer, Anne-Marie; Matisz, Gergely; Kunsági-Máté, Sándor; Chung, Chao-Yu; Lee, Yuan-Pern
2017-04-01
We recorded infrared (IR) spectra in the CH- and OH-stretching regions of size-selected clusters of methanol (M) with one water molecule (W), represented as MnW, n = 1-4, in a pulsed supersonic jet using the photoionization/IR-depletion technique. Vacuum ultraviolet emission at 118 nm served as the source of ionization in a time-of-flight mass spectrometer to detect clusters MnW as protonated forms Mn-1WH+. The variations in intensities of Mn-1WH+ were monitored as the wavelength of the IR laser light was tuned across the range 2700-3800 cm-1. IR spectra of size-selected clusters were obtained on processing of the observed action spectra of the related cluster-ions according to a mechanism that takes into account the production and loss of each cluster due to IR photodissociation. Spectra of methanol-water clusters in the OH region show significant variations as the number of methanol molecules increases, whereas those in the CH region are similar for all clusters. Scaled harmonic vibrational wavenumbers and relative IR intensities predicted with the M06-2X/aug-cc-pVTZ method for the methanol-water clusters are consistent with our experimental results. For dimers, absorption bands of a structure WM with H2O as a hydrogen-bond donor were observed at 3570, 3682, and 3722 cm-1, whereas weak bands of MW with methanol as a hydrogen-bond donor were observed at 3611 and 3753 cm-1. For M2W, the free OH band of H2O was observed at 3721 cm-1, whereas a broad feature was deconvoluted to three bands near 3425, 3472, and 3536 cm-1, corresponding to the three hydrogen-bonded OH-stretching modes in a cyclic structure. For M3W, the free OH shifted to 3715 cm-1, and the hydrogen-bonded OH-stretching bands became much broader, with a weak feature near 3179 cm-1 corresponding to the symmetric OH-stretching mode of a cyclic structure. For M4W, the observed spectrum agrees unsatisfactorily with predictions for the most stable cyclic structure, indicating significant contributions from branched isomers, which is distinctly different from M5 of which the cyclic form dominates.
Lee, Yu-Fang; Kelterer, Anne-Marie; Matisz, Gergely; Kunsági-Máté, Sándor; Chung, Chao-Yu; Lee, Yuan-Pern
2017-04-14
We recorded infrared (IR) spectra in the CH- and OH-stretching regions of size-selected clusters of methanol (M) with one water molecule (W), represented as M n W, n = 1-4, in a pulsed supersonic jet using the photoionization/IR-depletion technique. Vacuum ultraviolet emission at 118 nm served as the source of ionization in a time-of-flight mass spectrometer to detect clusters M n W as protonated forms M n-1 WH + . The variations in intensities of M n-1 WH + were monitored as the wavelength of the IR laser light was tuned across the range 2700-3800 cm -1 . IR spectra of size-selected clusters were obtained on processing of the observed action spectra of the related cluster-ions according to a mechanism that takes into account the production and loss of each cluster due to IR photodissociation. Spectra of methanol-water clusters in the OH region show significant variations as the number of methanol molecules increases, whereas those in the CH region are similar for all clusters. Scaled harmonic vibrational wavenumbers and relative IR intensities predicted with the M06-2X/aug-cc-pVTZ method for the methanol-water clusters are consistent with our experimental results. For dimers, absorption bands of a structure WM with H 2 O as a hydrogen-bond donor were observed at 3570, 3682, and 3722 cm -1 , whereas weak bands of MW with methanol as a hydrogen-bond donor were observed at 3611 and 3753 cm -1 . For M 2 W, the free OH band of H 2 O was observed at 3721 cm -1 , whereas a broad feature was deconvoluted to three bands near 3425, 3472, and 3536 cm -1 , corresponding to the three hydrogen-bonded OH-stretching modes in a cyclic structure. For M 3 W, the free OH shifted to 3715 cm -1 , and the hydrogen-bonded OH-stretching bands became much broader, with a weak feature near 3179 cm -1 corresponding to the symmetric OH-stretching mode of a cyclic structure. For M 4 W, the observed spectrum agrees unsatisfactorily with predictions for the most stable cyclic structure, indicating significant contributions from branched isomers, which is distinctly different from M 5 of which the cyclic form dominates.
NASA Astrophysics Data System (ADS)
Krüger, Harald; Stephan, Thomas; Engrand, Cécile; Briois, Christelle; Siljeström, Sandra; Merouane, Sihane; Baklouti, Donia; Fischer, Henning; Fray, Nicolas; Hornung, Klaus; Lehto, Harry; Orthous-Daunay, Francois-Régis; Rynö, Jouni; Schulz, Rita; Silén, Johan; Thirkell, Laurent; Trieloff, Mario; Hilchenbach, Martin
2015-11-01
COmetary Secondary Ion Mass Analyzer (COSIMA) is a time-of-flight secondary ion mass spectrometry (TOF-SIMS) instrument on board the Rosetta space mission. COSIMA has been designed to measure the composition of cometary dust particles. It has a mass resolution m/Δm of 1400 at mass 100 u, thus enabling the discrimination of inorganic mass peaks from organic ones in the mass spectra. We have evaluated the identification capabilities of the reference model of COSIMA for inorganic compounds using a suite of terrestrial minerals that are relevant for cometary science. Ground calibration demonstrated that the performances of the flight model were similar to that of the reference model. The list of minerals used in this study was chosen based on the mineralogy of meteorites, interplanetary dust particles and Stardust samples. It contains anhydrous and hydrous ferromagnesian silicates, refractory silicates and oxides (present in meteoritic Ca-Al-rich inclusions), carbonates, and Fe-Ni sulfides. From the analyses of these minerals, we have calculated relative sensitivity factors for a suite of major and minor elements in order to provide a basis for element quantification for the possible identification of major mineral classes present in the cometary particles.
High-Efficiency Small Molecule-Based Bulk-Heterojunction Solar Cells Enhanced by Additive Annealing.
Li, Lisheng; Xiao, Liangang; Qin, Hongmei; Gao, Ke; Peng, Junbiao; Cao, Yong; Liu, Feng; Russell, Thomas P; Peng, Xiaobin
2015-09-30
Solvent additive processing is important in optimizing an active layer's morphology and thus improving the performance of organic solar cells (OSCs). In this study, we find that how 1,8-diiodooctane (DIO) additive is removed plays a critical role in determining the film morphology of the bulk heterojunction OSCs in inverted structure based on a porphyrin small molecule. Different from the cases reported for polymer-based OSCs in conventional structures, the inverted OSCs upon the quick removal of the additive either by quick vacuuming or methanol washing exhibit poorer performance. In contrast, the devices after keeping the active layers in ambient pressure with additive dwelling for about 1 h (namely, additive annealing) show an enhanced power conversion efficiency up to 7.78% with a large short circuit current of 19.25 mA/cm(2), which are among the best in small molecule-based solar cells. The detailed morphology analyses using UV-vis absorption spectroscopy, grazing incidence X-ray diffraction, resonant soft X-ray scattering, and atomic force microscopy demonstrate that the active layer shows smaller-sized phase separation but improved structure order upon additive annealing. On the contrary, the quick removal of the additive either by quick vacuuming or methanol washing keeps the active layers in an earlier stage of large scaled phase separation.
Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA
NASA Astrophysics Data System (ADS)
Le Roy, Léna; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Bieler, Andre; Briois, Christelle; Calmonte, Ursina; Combi, Michael R.; De Keyser, Johan; Dhooghe, Frederik; Fiethe, Björn; Fuselier, Stephen A.; Gasc, Sébastien; Gombosi, Tamas I.; Hässig, Myrtha; Jäckel, Annette; Rubin, Martin; Tzou, Chia-Yu
2015-11-01
Context. The ESA Rosetta spacecraft (S/C) is tracking comet 67P/Churyumov-Gerasimenko in close vicinity. This prolonged encounter enables studying the evolution of the volatile coma composition. Aims: Our work aims at comparing the diversity of the coma of 67P/Churyumov-Gerasimenko at large heliocentric distance to study the evolution of the comet during its passage around the Sun and at trying to classify it relative to other comets. Methods: We used the Double Focussing Mass Spectrometer (DFMS) of the ROSINA experiment on ESA's Rosetta mission to determine relative abundances of major and minor volatile species. This study is restricted to species that have previously been detected elsewhere. Results: We detect almost all species currently known to be present in cometary coma with ROSINA DFMS. As DFMS measured the composition locally, we cannot derive a global abundance, but we compare measurements from the summer and the winter hemisphere with known abundances from other comets. Differences between relative abundances between summer and winter hemispheres are large, which points to a possible evolution of the cometary surface. This comet appears to be very rich in CO2 and ethane. Heavy oxygenated compounds such as ethylene glycol are underabundant at 3 AU, probably due to their high sublimation temperatures, but nevertheless, their presence proves that Kuiper belt comets also contain complex organic molecules.
NASA Astrophysics Data System (ADS)
Tzou, Chia-Yu; altwegg, kathrin; Bieler, Andre; Calmonte, Ursina; Gasc, Sébastien; Le Roy, Léna; Rubin, Martin
2016-10-01
ROSINA is the in situ Rosetta Orbiter Spectrometer for Ion and Neutral Analysis on board of Rosetta, one of the corner stone missions of the European Space Agency (ESA) to land and orbit the Jupiter family comet 67P/Churyumov-Gerasimenko (67P). ROSINA consists of two mass spectrometers and a pressure sensor. The Reflectron Time of Flight Spectrometer (RTOF) and the Double Focusing Mass Spectrometer (DFMS) complement each other in mass and time resolution.The Comet Pressure Sensor (COPS) provides density measurements of the neutral molecules in the cometary coma of 67P. COPS has two gauges, a nude gauge that measures the total neutral density and a ram gauge that measures the dynamic pressure from the comet. Combining the two COPS is also capable of providing gas dynamic information such as gas velocity and gas temperature of the coma.While Rosetta started orbiting around 67P in August 2014, COPS observed diurnal and seasonal variations of the neutral gas density in the coma. Surprisingly, additional to these major density variation patterns, COPS occasionally observed small spikes in the density that are associated with dust. These dust signals can be interpreted as a result of cometary dust releasing volatiles while heated up near COPS. A statistical analysis of dust signals detected by COPS will be presented.
Comment on the Pioneer Venus Orbiter event of February 11, 1982 - Of cometary or solar origin?
NASA Technical Reports Server (NTRS)
Intriligator, D. S.
1986-01-01
The evidence presented by Russell et al. (1985) for the cometary origin of the Pioneer Venus Orbiter event of Febr. 11, 1982, is examined critically. It is argued that the field fluctuations and He enhancements seen at Venus and near earth, the sequence of the events, and a number of related observations all indicate that the event is of solar origin. These objections are discussed individually in a reply by Russell et al., and the claim of cometary origin is defended.
Saveant, Jean-Michel; Tard, Cédric
2016-01-27
In the context of the electrochemical and photochemical conversion of CO2 to liquid fuels, one of the most important issues of contemporary energy and environmental issues, the possibility of pushing the reduction beyond the CO and formate level and catalytically generate products such as methanol is particularly attractive. Biomimetic 2e(-) + 2H(+) is often viewed as a potential hydride donor. This has been the object of a recent interesting attempt (J. Am. Chem. Soc. 2014, 136, 14007) in which 6,7-dimethyl-4-hydroxy-2-mercaptopteridine was reported as a catalyst of the electrochemical conversion of CO2 to methanol and formate, based on cyclic voltammetric, (13)C NMR, IR, and GC analyses. After checking electrolysis at the reported potential and at a more negative potential to speed up the reaction, it appears, on (1)H NMR and gas chromatographic grounds, that there is neither catalysis nor methanol and nor formate production. (1)H NMR (with H2O presaturation) brings about an unambiguous answer to the eventual production of methanol and formate, much more so than (13)C NMR, which can even be misleading when no internal standard is used as in the above-mentioned paper. IR analysis is even less conclusive. Use of a GC technique with sufficient sensitivity confirmed the lack of methanol formation. The direct or indirect hydride transfer electrochemical reduction of CO2 to formate and to methanol remains an open question. Original ideas and efforts such as those discussed here are certainly worth tempting. However, in view of the importance of the stakes, it appears necessary to carefully check reports in this area.
Infrared Spectra and Thermodynamic Properties of Co2/Methanol Ices
NASA Astrophysics Data System (ADS)
Maté, Belén; Gálvez, Óscar; Herrero, Víctor J.; Escribano, Rafael
2009-01-01
Ices of mixtures of carbon dioxide and methanol have been studied in a range of temperatures relevant for star-forming regions, comets, polar caps of planets and satellites, and other solar system bodies. We have performed temperature-programmed desorption measurements and recorded IR spectra of various types of samples. The presence of two slightly different structures of CO2 is manifest. A distorted CO2 structure is characterized by bandshifts between 5 cm-1 (ν3) and 10 cm-1 (ν2) with respect to normal CO2. If the samples are heated above 130 K, the distorted CO2 sublimates and only the normal structure remains. The latter can stay trapped until the sublimation of crystalline methanol (150 K). The desorption energy (E d ~ 20 kJ mol-1) of CO2 from methanol ice, and the specific adsorption surface area (6 m2 g-1) of amorphous CH3OH ice, have been determined. CO2 does not penetrate into crystalline ice. Whereas the desorption energy is similar to that of CO2/H2O samples, the specific surface of methanol is much smaller than that of amorphous solid water (ASW). The interaction of CO2 molecules with water and methanol is similar but ices of CH3OH are much less porous than ASW. The inclusion of CO2 into previously formed ices containing these two species would take place preferentially into ASW. However, in processes of simultaneous deposition, methanol ice can admit a larger amount of CO2 than water ice. CO2/CH3OH ices formed by simultaneous deposition admit two orders of magnitude more CO2 than sequentially deposited ices. These findings can have direct relevance to the interpretation of observations from protostellar environments (e.g., RAFGL7009S) and comet nuclei.
NASA Astrophysics Data System (ADS)
Altwegg, K.; Rubin, M.; Balsiger, H. R.; Jäckel, A.; Le Roy, L.; Wurz, P.; Gasc, S.; Calmonte, U.; Tzou, C. Y.; Mall, U. A.; Fiethe, B.; De Keyser, J. M.; Berthelier, J. J.; Reme, H.; Gombosi, T. I.; Fuselier, S.
2014-12-01
The European Space Agency's Rosetta spacecraft is now close in a bound orbit around comet 67P/Churyumov-Gerasimenko (67P/C-G). On board is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument suite. ROSINA consists of two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron-type Time-Of-Flight (RTOF), as well as the COmet Pressure Sensor (COPS). ROSINA is designed to detect and monitor the neutral gas and thermal plasma environment in the comet's coma by in situ investigation. The two mass spectrometers have high dynamic ranges and complement each other with high mass resolution (DFMS) and high time resolution and large mass range (RTOF). Especially the unprecedented sensitivity and mass resolution of DFMS together with the large mass range of RTOF will allow determining precisely light species (e.g. isotopologues) as well as detecting heavy organics. The pressure sensor COPS is capable to derive total gas densities, velocities, and temperatures. To date only limited data for the composition of cometary comae at heliocentric distances of more than 2.5 AU are available. The set is dominated by CO and daughter species of water from bright comets originating in the Oort cloud. While some molecules can be detected from far by remote sensing (e.g. CO) other molecules are much more difficult to observe from ground (e.g. CO2). The Rosetta mission presents a unique opportunity to directly probe the parent species in the thin cometary atmosphere of a Kuiper-belt object at more than 2.5 AU from the Sun and relate it to ground-based observations. Distances that far from the Sun are of particular interest as the comet's activity transitions from being super volatiles dominated to being water dominated. We will report on the first measurements of the volatile inventory obtained from ROSINA observations as Rosetta is following comet 67P/C-G in close vicinity.
Understanding Phosphorous Chemistry in Comets in Light of Rosetta Results
NASA Astrophysics Data System (ADS)
Boice, Daniel C.; de Almeida, Amaury A.
2016-10-01
Introduction: Phosphorous is a key element in all known forms of life. P-bearing compounds have been observed in the ISM and other regions of space. They are ubiquitous in meteorites, have been detected in the dust component in comets 1P/Halley and 81P/Wild 2, and in the gas phase (atomic P) of 67P/Churyumov-Gerasimenko by the Rosetta Mission. We present results from the first quantitative study of P-bearing molecules in comets to aid in future searches for this important element in comets, shedding light on issues of comet formation and prebiotic to biotic evolution of life. Results and Discussion: Our gas dynamics model of cometary comae with chemical kinetics has been adapted to study this problem. We used phosphine (PH3) as a native molecule with a cosmic abundance mixing ratio. Over 100 photo and gas-phase reactions and 30 P-bearing species were added to the chemical network. The chemistry of PH3 in the inner coma shows the major destruction channels are photo-dissociation and protonation with water-group ions, leading to the recycling of PH3 in this region and the eventual production of atomic P. Conclusion: The model identifies the relevant phosphine chemistry in cometary coma. Protonation reactions of PH3 with water-group ions are important due to its high proton affinity. Abundances are found to be on the order of 10-4 relative to water, about the same as isotopic species. The scale length of PH3 in the coma is about 13,000-16,000 km. We also comment on other Rosetta findings (e.g., O2 and H-). Collaborations with observers using modern telescopic facilities (e.g., Keck 2 and Subaru) are underway to search for phosphorus in comets. Acknowledgments: This work was supported by FAPESP under Grant No. 2015/03176-8 and the National Science Foundation Planetary Astronomy Program Grant No. 0908529.
Extraterrestrial organic matter: a review
NASA Technical Reports Server (NTRS)
Irvine, W. M.
1998-01-01
We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an increasingly debated topic over the last several years. The principal source for such intact organics was probably accretion of interplanetary dust particles of cometary origin.
Observation of CO2 in Comet C/2012 K5 LINEAR
NASA Astrophysics Data System (ADS)
McKay, Adam; Kelley, Michael; DiSanti, Michael; Chanover, Nancy
2012-12-01
The study of cometary composition is important to understanding the formation and evolution of our solar system. Comets have undergone very little thermal evolution in their lifetimes, which results in their near pristine composition. The nucleus of a comet is very rarely detected directly. Instead, we observe the coma that surrounds the nucleus. Physical and chemical processes in the coma affect its composition, and therefore coma composition is not a direct representation of nuclear composition. An important trend is the observed variation of coma composition with heliocentric distance, most likely influenced by the volatility of the main surface ices, H2O, CO2, and CO. Infrared studies of these molecules are complicated by telluric features, so often daughter molecules of these species such as OH are observed instead. A potentially effective tracer for these primary ices is atomic oxygen in the coma. However, the relationship between these ices and atomic oxygen is only understood at a qualitative level. We propose to use Spitzer observations in IRAC's 4.5 micron band pass to observe the CO2 v3 band at 4.26 microns in comet C/2012 K5 LINEAR. These observations will be coordinated with observations of atomic oxygen obtained at Apache Point Observatory and observations of H2O at Keck. These near simultaneous observations of H2O, CO2, and atomic oxygen in a cometary coma will increase our understanding of the link between these primary ices and atomic oxygen. With a complete understanding of the relationship between atomic oxygen and the primary ices on the nucleus, observations of atomic oxygen can serve as a powerful proxy for the production of these primary volatiles and aid our understanding of the variation in coma composition as a function of heliocentric distance, and therefore the composition of the nucleus and how our solar system was formed.
Infrared Observations of Cometary Dust and Nuclei
NASA Technical Reports Server (NTRS)
Lisse, Carey
2004-01-01
This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.
Charge exchange in solar wind-cometary interactions
NASA Technical Reports Server (NTRS)
Gombosi, T. I.; Horanyi, M.; Kecskemety, K.; Cravens, T. E.; Nagy, A. F.
1983-01-01
A simple model of a cometary spherically symmetrical atmosphere and ionosphere is considered. An analytic solution of the governing equations describing the radial distribution of the neutral and ion densities is found. The new solution is compared to the well-known solution of the equations containing only ionization terms. Neglecting recombination causes a significant overestimate of the ion density in the vicinity of the comet. An axisymmetric model of the solar wind-cometary interaction is considered, taking into account the loss of solar wind ions due to charge exchange. The calculations predict that for active comets, solar wind absorption due to charge exchange becomes important at a few thousand kilometers from the nucleus, and a surface separating the shocked solar wind from the cometary ionosphere develops in this region. These calculations are in reasonable agreement with the few observations available for the ionopause location at comets.
Cometary globules in the southeast quadrant of the Rosette nebula
NASA Technical Reports Server (NTRS)
Patel, Nimesh A.; Xie, Taoling; Goldsmith, Paul F.
1993-01-01
We present a study of newly identified cometary globules in the southeast quadrant of the Rosette nebula using the J = 1-0 transition of carbon monoxide. The globules are found to be blueshifted by about 6 km/s with respect to the adjacent Rosette molecular cloud. The masses of the globules vary from 50 to 300 solar masses, and their sizes are between 1 and 3 pc. Two of the globules have cometary morphology and show velocity gradients of about 1.5 km/s/pc along their symmetry axes. These globules are associated with the IRAS sources 06314+0421, X0632+043, 06322+0427, and 06327+0423 which coincide with local maxima in the (C-13)O emission. The derived physical parameters of the globules are found to be consistent with those predicted by recent theoretical models of photoevaporating cometary clouds. We suggest that star formation induced by radiation driven implosion has occurred.
Gas Dynamics and Kinetics in the Cometary Coma: Theory and Observations
NASA Technical Reports Server (NTRS)
Combi, Michael R.; Harris, Walter M.; Smyth, William H.
2005-01-01
Our ability to describe the physical state of the expanding coma affects fundamental areas of cometary study both directly and indirectly. In order to convert measured abundances of gas species in the coma to gas production rates, models for the distribution and kinematics of gas species in the coma are required. Conversely, many different types of observations, together with laboratory data and theory, are still required to determine coma model attributes and parameters. Accurate relative and absolute gas production rates and their variations with time and from comet to comet are crucial to our basic understanding of the composition and structure of cometary nuclei and their place in the solar system. We review the gas dynamics and kinetics of cometary comae from both theoretical and observational perspectives, which are important for understanding the wide variety of physical conditions that are encountered.
NASA Astrophysics Data System (ADS)
Paquette, J. A.; Engrand, C.; Hilchenbach, M.; Fray, N.; Stenzel, O. J.; Silen, J.; Rynö, J.; Kissel, J.
2018-07-01
The oxygen isotopic ratio 18O/16O has been measured in cometary gas for a wide variety of comets, but the only measurements in cometary dust were performed by the Stardust cometary sample return mission. Most such measurements find a value of the ratio that is consistent with Vienna Standard Mean Ocean Water (VSMOW) within errors. In this work we present the result of a measurement, using the COSIMA (the COmetary Secondary Ion Mass Analyser) instrument on the Rosetta orbiter, of the oxygen isotopic ratio in dust from Comet 67P/Churyumov-Gerasimenko. Measuring the 18O/16O ratio with COSIMA is challenging for a number of reasons, but it is possible with a reasonable degree of precision. We find a result of 2.00 × 10-3 ± 1.2 × 10-4, which is consistent within errors with VSMOW.
The volatile composition of comets
NASA Technical Reports Server (NTRS)
Weaver, H. A.
1988-01-01
Comets may be our best probes of the physical and chemical conditions in the outer regions of the solar nebula during that crucial period when the planets formed. The volatile composition of cometary nuclei can be used to decide whether comets are the product of a condensation sequence similar to that invoked to explain the compositions of the planets and asteroids, or if comets are simply agglomerations of interstellar grains which have been insignificantly modified by the events that shaped the other bodies in the solar system. Although cometary nuclei are not generally accessible to observation, observations of cometary comae can illuminate at least some of the mysteries of the nuclei provided one has a detailed knowledge of the excitation conditions in the coma and also has access to basic atomic and molecular data on the many species present in comets. Examined here is the status of our knowledge of the volatile composition of cometary nuclei and how these data are obtained.
First results from the Giotto magnetometer experiment at comet Halley
NASA Technical Reports Server (NTRS)
Neubauer, F. M.; Glassmeier, K. H.; Pohl, M.; Raeder, J.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.
1986-01-01
The Giotto magnetometer experiment at comet Halley has for the first time provided magnetic field measurements in all the important spatial regions characterizing the front-side interaction between the solar-wind magnetoplasma and a cometary atmosphere. Upstream waves of cometary origin have been observed at distances greater than two million km from the comet, both inbound and outbound. A cometary bow shock has been identified at 1.15 million inbound on the dawn side and a thick quasi-parallel cometary bow shock outbound. A turbulent magnetosheath has been observed further inside. A magnetic pile-up region has been identified inside 135,000 km, inbound, and 263,000 km, outbound, with fields up to 57 and 65 nT, respectively. A cavity region with essentially zero magnetic field has been discovered, with a width of 8500 km along the trajectory around closest approach.
Theoretical Studies of the Extra-terrestrial Chemistry of Biogenic Elements and Compounds
NASA Technical Reports Server (NTRS)
Woon, David E.
2003-01-01
Results are presented on the following:(A) Ab initio quantum chemical studies of reactions in astrophysical ices.Theoretical electronic structure calculations were used to investigate reactions between formaldehyde (H2CO) and both hydrogen cyanide (HCN) and isocyanide (HNC) in search of other favorable reactions such as ammonia-formaldehyde addition, which was found in a recent theoretical study to be strongly enhanced when it occurs within cold ices.The present study examines further reactions between this product and H2CO in ices.(B) Heterogeneous hydrogenation of CO and H2CO on icy grain mantles.Formaldehyde (H2CO) and methanol (CH30H) are thought to be produced in the interstellar medium by the successive hydrogenation of carbon monoxide (CO) on grain surfaces. In the gas phase, the steps in which H adds to CO and H2CO possess modest barriers and are too inefficient to account for the observed abundances. Recent laboratory work has confirmed that formaldehyde and methanol are formed when H atoms are deposited on CO ice at 12 K. The present study employed ab initio quantum chemical calculations to investigate the impact of water ice on the sequential hydrogenation of CO.(C) Ice-bound condensed-phase reactions involving formic acid (HCOOH), methylenimine (CH2NH), hydrogen cyanide (HCN), hydrogen isocyanide (HNC), and ammonia ( 3) were investigated in order to characterize possible pathways to larger organic species that are efficient at the cold temperatures prevalent in cometary nuclei and the interstellar medium. (D) Pathways to glycine and other amino acids in ultraviolet-irradiated ices determined via quantum chemical modeling.(E) Photoionization in ultraviolet processing of astrophysical ice analogs at cryogenic temperatures.
Desorption induced by solar wind electrons analogs in methanol ice
NASA Astrophysics Data System (ADS)
Bergantini, A. S.; Pilling, Sergio; Andrade, Diana; Boechat-Roberty, Heloisa Maria; Rocco, Maria Luiza M.
2012-07-01
Methanol (CH _{3}OH) has been detected in several environments in space, such as comets, asteroids, grains of interstellar dust and protostars forming regions such as W33A and RAFGL 7009. CH _{3}OH is the most abundant molecule (after H _{2}O) found in solid state in these objects. The action of ionizing agents in such environments induces changes in methanol ice which lead to the formation ionic species, reactive radicals and new compounds. In this experiment, frozen methanol (142 K) was irradiated with an electron beam (energies from 650 to 1500 eV) inside an ultra-high vacuum chamber (˜ 1×10^{-10} mbar), at the Surface Chemistry Laboratory of Federal University of Rio de Janeiro (LaQuiS/ UFRJ). The beam simulates the action of electrons from solar wind in frozen surfaces like as comets, asteroids and moons. Results show the desorption of several new ionized species such as (CH _{3}OH)H ^{+}, H _{2}COH ^{+}, C _{2}H _{3} ^{+}, HCO ^{+}, CO ^{+}, O ^{+}, C ^{+}, H ^{+}. The individual desorbed ion rate was calculated. The determined half-life of frozen methanol in Earth orbit due to the electron bombardment was about 4.2 yr. The ionic desorption rate is an important parameter in surface chemistry, since these parameters are often approximated in chemical evolution models of astrophysical environments, due to the lack of laboratory data.
Cometary Jet Collimation Without Physical Confinement
NASA Astrophysics Data System (ADS)
Steckloff, J. K.; Melosh, H. J.
2012-12-01
Recent high-resolution images of comet nuclei reveal that gases and dust expelled by the comet are organized into narrow jets. Contemporary models postulate that these jets collimate when the expanding gases and dust pass through a physical aperture or nozzle. However, recent high-resolution spacecraft observations fail to detect such apertures on cometary surfaces. Furthermore, these models do not explain why cometary jets appear to be directed normal to the local gravitational potential, and/or appear to originate on the faces of scarps. Additionally, observations of comet nuclei by visiting spacecraft have observed that jet activity is tied to the diurnal rotation of the comet. This suggests that jet emissions are powered by the sun, and therefore must emanate from close to the surface of the comet due to a thermal skin depth on the order of ~10 cm. Here we describe a simplified computer model of jets emanating from Comet Tempel 1. Our novel mechanism is based on the occurrence of fluidized flows, which have gained observational support from the Deep Impact and Stardust-NExT flyby missions We approximate the vents of the comet as a region of smooth terrain on the order of ~10 m in width. We assume that each element of the active area is emitting gas molecules with the same spatial distribution function, and integrate over the active area in order to calculate the gas drag force due to the vent. We consider two angular emission profiles (isotropic and lambertian), and assume plane-strain geometry. The vent surfaces were modeled at various angles with respect to the gravitational potential. To approximate scarps, we modeled a non-venting region located above the vent and at the same angle as the vent. The size of this non-venting region was allowed to vary. We assumed that the scarp face, which is composed of the vent and non-venting regions, eroded uniformly. Particles of a constant size are placed randomly on the surface of the vent, and their positions in time are tracked. After a set time interval, the particles are allowed to split in half. The particles are assumed to be ice grains emitting H2O molecules isotropically. The resulting repulsive drag force was modeled as a one-time impulse. For our simulation, spherical particles with radii of 1 μm to 1 cm were considered. We observe that, when the vent is level, the overwhelming majority of the particles remain close to the central axis of the active area, forming a well-collimated jet. When the vent was at an angle, the particles emanating from the vent itself rose normal to the vent, with smaller particles reaching escape velocity in this direction while larger particles fell out of the jet and impacted the surface. Material from the non-venting region slumped down the slope, hit the upslope edge of the vent, which then ejected this material in a well-collimated cone roughly normal to the gravitational potential. The calculated opacity from this material overwhelmed the opacity of the material originating from the vent. The degree and angle of collimation depended on the initial particle size and time between splitting events. This mechanism may explain cometary jets, given the physical and observational constraints.
NASA Astrophysics Data System (ADS)
La Forgia, F.; A'Hearn, M. F.; Lazzarin, M.; Magrin, S.; Bodewits, D.; Bertini, I.; Pajola, M.; Barbier, C.; Sierks, H.
2014-04-01
The OH radical, observed in cometary comae, is the direct dissociation product of water. Given the strong A2∑ - X2II (0, 0) emission band in the near-UV at 308.5 nm due to resonance fluorescence, the OH radical has been used, for years, as a tracer of the water parent molecule. Specifically, the OH fluorescence band provides an immediate tool to monitor the water production rate and its variations with the comet's heliocentric distance, rotational period and possible activity changes. Photolysis of water in cometary comae gives rise, with a non negligible branching ratio, to OH fragments in the first electronically excited state (OH*). This state is very unstable, with a lifetime of about 10-6s (Becker and Haaks, 1973), therefore OH* molecules promptly decay to the ground state. This process, generally referred to as prompt emission (PE), is responsible for an emission band in the near-UV ranging approximatelly from 306 to 325 nm. Original studies and tentative detections of OH PE have been put forth by Bertaux (1986), Budzien and Feldman (1991), Bonev et al. (2004), A'Hearn et al. (2007) using ground and space observations. Both from the above mentioned works together with our analysis, this process is expected to be prominent at short distances from the nucleus, where there is high density of water molecules, requiring the need of spacecraft observations to reach the necessary resolution. The hyperactive Jupiter family comet 103P/Hartley 2 has been visited by EPOXI spacecraft on 4 November 2010 at a minimum distance of 694 km, when it was at 1.064 AU from the Sun (A'Hearn et al. 2011). We present the analysis of photometric observations in OH filter acquired by MRI camera onboard EPOXI used to investigate the spatial distribution of OH in the coma of Hartley 2. The data revealed a radial OH structure within 35 km from the nucleus, appearing to be coming directly from the nucleus, in the region of the central waist. A theoretical computation evidencing a strong possibility that this OH structure could be partially associated with OH PE has been performed. This is strongly supported by the agreement of the OH spatial distribution with the water spatial distribution derived from HRI IR spectrometer observations (A'Hearn et al. 2011). Given the results on comet Hartley 2, we present our expectations and preliminary analysis of OH fluorescence and prompt emission mechanisms in the coma of 67P/Churyumov-Gerasimenko, target of the Rosetta mission. The OSIRIS WAC camera on board Rosetta is equipped with 7 narrowband filters centered on molecular emission bands, including the OH gas filter. This will enable us to investigate OH fluorescence and PE at increasing resolution as Rosetta will approach the comet. This analysis, supported by accompanying observations acquired by OSIRIS WAC camera in the forbidden OI band at 630 nm, will help in further constrain the water photochemistry and the fluorescence and PE processes occurring in the cometary comae.
The Complete, Temperature Resolved Experimental Spectrum of Methanol (CH3OH) between 560 and 654 GHz
NASA Astrophysics Data System (ADS)
Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.
2014-02-01
The complete spectrum of methanol (CH3OH) has been characterized over a range of astrophysically significant temperatures in the 560.4-654.0 GHz spectral region. Absolute intensity calibration and analysis of 166 experimental spectra recorded over a slow 248-398 K temperature ramp provide a means for the simulation of the complete spectrum of methanol as a function of temperature. These results include contributions from vt = 3 and other higher states that are difficult to model via quantum mechanical (QM) techniques. They also contain contributions from the 13C isotopologue in terrestrial abundance. In contrast to our earlier work on semi-rigid species, such as ethyl cyanide and vinyl cyanide, significant intensity differences between these experimental values and those calculated by QM methods were found for many of the lines. Analysis of these differences shows the difficulty of the calculation of dipole matrix elements in the context of the internal rotation of the methanol molecule. These results are used to both provide catalogs in the usual line frequency, linestrength, and lower state energy format, as well as in a frequency point-by-point catalog that is particularly well suited for the characterization of blended lines.
A DFT approach for methanol synthesis via hydrogenation of CO on gallia, ceria and ZnO surfaces
NASA Astrophysics Data System (ADS)
Reimers, Walter; Zubieta, Carolina; Baltanás, Miguel Angel; Branda, María Marta
2018-04-01
A systematic theoretical study of the consecutive hydrogenation reactions of the CO molecule for the methanol synthesis catalyzed by different oxides of Zn, Ce and Ga is reported in this work. First, the CO hydrogenation with the formation of formyl species (HCO) was analyzed, followed by the successive hydrogenations that lead to formaldehyde (H2CO), methoxy (H3CO) and, finally, methanol (H3COH). The co-adsorption with H, in almost all the intermediate species, allows the corresponding hydrogenation reaction. Oxygen vacancies promote the reactivity in the generation of both formaldehyde and methoxy species. The formation of these species involves an important geometric difference between the initial and the final states, leading to high activation barriers. Comparing the surfaces studied in this work, we found that ZnO (0001)vacO has shown to be of a greater interest for methanol synthesis. However, the foregoing is not the most relevant of our results, but, instead, that the Brönsted Evans Polanyi (BEP) relationships between the initial or the final states and the transition states (TS) allowed to find a very good correlation between surface structure and reactivity.
NASA Astrophysics Data System (ADS)
Marty, B.; Altwegg, K.; Balsiger, H. R.; Calmonte, U.; Hässig, M.; Le Roy, L.; Rubin, M.; Bieler, A. M.; Fuselier, S. A.; De Keyser, J. M.; Mousis, O.
2015-12-01
The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument suite is part of the payload of the European Space Agency's Rosetta spacecraft. Part of this suite, the Double Focusing Mass Spectrometer (DFMS) has been analyzing major (e.g., H2O,) as well as minor (CO, CO2, N2, NHx, noble gases) species and elements and some of their isotopes thanks to its high mass resolution of 3,000 at 1% peak height and its high sensitivity. In parallel to the presentation by Rubin et al. (this meeting) who discuss temporal variation of the coma composition as a function of heliospheric distance, we present here the on-going measurements done on the above species and isotopes. Besides temporal variability, one of the goals of ROSINA is to document the composition of cometary volatiles in the context of the formation of planets and of the origin of atmospheres. The first detection of a noble gas, Ar, in a cometary coma (Balsiger et al, in press), together with the measured D/H isotope ratio and carbon species, constrains the origin of the inner planet atmospheres and the terrestrial oceans. Assuming that 67P is representative of the cometary reservoir, major volatiles (H, C, N) of the inner planets are unlikely to have originated from comets, but a cometary origin for atmospheric noble gases is a viable hypothesis. However, these cometary measurements were done during a short interval of time (in autumn 2014) when the comet was at 3.5 AU from the Sun, which raises the question of how well they represent the bulk cometary composition. Further measurements of the bulk composition are planned close to the perihelion. Also of interest is the isotope composition of nitrogen in N-bearing compounds. Spectroscopic measurements of cometary HCN and NH2+ done so far indicate a two-fold enrichment in 15N, that needs to be confirmed by in-situ mass spectrometry. Measurements of other noble gases, in particular Xe (a very difficult measurement), may set stringent constraints on the nature (clathrate vs. amorphous) of cometary ice. Results from these measurements before and after the perihelion will be presented.
Cometary Coma Chemical Composition (C4) Mission
NASA Technical Reports Server (NTRS)
Carle, Glenn C.; Clark, Benton C.; Knocke, Philip C.; OHara, Bonnie J.; Adams, Larry; Niemann, Hasso B.; Alexander, Merle; Veverka, Joseph; Goldstein, Raymond; Huebner, Walter;
1994-01-01
Cometary exploration remains of great importance to virtually all of space science. Because comets are presumed to be remnants of the early solar nebula, they are expected to provide fundamental knowledge as to the origin and development of the solar system as well as to be key to understanding of the source of volatiles and even life itself in the inner solar system. Clearly the time for a detailed study of the composition of these apparent messages from the past has come. A comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, is now being studied as a candidate for the new Discovery program. This mission is a highly-focussed and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission. The C4 mission will concentrate on measurements that will produce an understanding of the composition and physical makeup of a cometary nucleus. The core science goals of the C4 mission are 1) to determine the chemical, elemental, and isotopic composition of a cometary nucleus and 2) to characterize the chemical and isotopic nature of its atmosphere. A related goal is to obtain temporal information about the development of the cometary coma as a function of time and orbital position. The four short-period comets -- Tempel 1, Tempel 2, Churyumov-Gerasimenko, and Wirtanen -which all appear to have acceptable dust production rates, were identified as candidate targets. Mission opportunities have been identified beginning as early as 1998. Tempel I with a launch in 1999, however, remains the baseline comet for studies of and planning the C4 mission. The C4 mission incorporates two science instruments and two engineering instruments in the payload to obtain the desired measurements. The science instruments include an advanced version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX with a sample collection system, an X-ray Fluorescence Spectrometer and a Pyrolysis-Gas Chromatograph, and a simplified version of the Neutral Gas and Ion Mass Spectrometer (NIGMS). Both of these instruments have substantial heritage as they are based on those developed for the CRAF Mission. The engineering instruments include a simplified Comet Dust Environmental Monitor (SCODEM) and a navigational Camera, NAVCAM. While neither of the instruments will be permitted to establish science requirements, it is anticipated that significant science return will be accomplished Radio science will also be included.
Stability of Sulphur Dimers (S2) in Cometary Ices
NASA Astrophysics Data System (ADS)
Mousis, O.; Ozgurel, O.; Lunine, J. I.; Luspay-Kuti, A.; Ronnet, T.; Pauzat, F.; Markovits, A.; Ellinger, Y.
2017-02-01
S2 has been observed for decades in comets, including comet 67P/Churyumov-Gerasimenko. Despite the fact that this molecule appears ubiquitous in these bodies, the nature of its source remains unknown. In this study, we assume that S2 is formed by irradiation (photolysis and/or radiolysis) of S-bearing molecules embedded in the icy grain precursors of comets and that the cosmic ray flux simultaneously creates voids in ices within which the produced molecules can accumulate. We investigate the stability of S2 molecules in such cavities, assuming that the surrounding ice is made of H2S or H2O. We show that the stabilization energy of S2 molecules in such voids is close to that of the H2O ice binding energy, implying that they can only leave the icy matrix when this latter sublimates. Because S2 has a short lifetime in the vapor phase, we derive that its formation in grains via irradiation must occur only in low-density environments such as the ISM or the upper layers of the protosolar nebula, where the local temperature is extremely low. In the first case, comets would have agglomerated from icy grains that remained pristine when entering the nebula. In the second case, comets would have agglomerated from icy grains condensed in the protosolar nebula and that would have been efficiently irradiated during their turbulent transport toward the upper layers of the disk. Both scenarios are found consistent with the presence of molecular oxygen in comets.
The gas phase origin of complex organic molecules precursors in prestellar cores
NASA Astrophysics Data System (ADS)
Bacmann, A.; Faure, A.
2015-05-01
Complex organic molecules (COMs) have long been observed in the warm regions surrounding nascent protostars. The recent discovery of oxygen-bearing COMs like methyl formate or dimethyl ether in prestellar cores (Bacmann et al. [2]), where gas and dust temperatures rarely exceed 10-15 K, has challenged the previously accepted models according to which COM formation relied on the diffusion of heavy radicals on warm (˜30 K) grains. Following these detections, new questions have arisen: do non-thermal processes play a role in increasing radical mobility or should new gas-phase routes be explored? The radicals involved in the formation of the aforementioned COMs, HCO and CH3O represent intermediate species in the grain-surface synthesis of methanol which proceeds via successive hydrogenations of CO molecules in the ice. We present here observations of methanol and its grain-surface precursors HCO, H2CO, CH3O in a sample of prestellar cores and derive their relative abundances. We find that the relative abundances HCO:H2CO:CH3O:CH3OH are constant across the core sample, close to 10:100:1:100. Our results also show that the amounts of HCO and CH3O are consistent with a gas-phase synthesis of these species from H2CO and CH3OH via radical-neutral or ion-molecule reactions followed by dissociative recombinations. Thus, while grain chemistry is necessary to explain the abundances of the parent volatile CH3OH, and possibly H2CO, the reactive species HCO and CH3O might be daughter molecules directly produced in the gas-phase.
Uptake of methanol on mixed HNO3/H2O clusters: An absolute pickup cross section
NASA Astrophysics Data System (ADS)
Pysanenko, A.; Lengyel, J.; Fárník, M.
2018-04-01
The uptake of atmospheric oxidized organics on acid clusters is relevant for atmospheric new particle formation. We investigate the pickup of methanol (CH3OH) on mixed nitric acid-water clusters (HNO3)M(H2O)N by a combination of mass spectrometry and cluster velocity measurements in a molecular beam. The mass spectra of the mixed clusters exhibit (HNO3)m(H2O)nH+ series with m = 0-3 and n = 0-12. In addition, CH3OH.(HNO3)m(H2O)nH+ series with very similar patterns appear in the spectra after the methanol pickup. The velocity measurements prove that the undoped (HNO3)m(H2O)nH+ mass peaks in the pickup spectra originate from the neutral (HNO3)M(H2O)N clusters which have not picked up any CH3OH molecule, i.e., methanol has not evaporated upon the ionization. Thus the fraction of the doped clusters can be determined and the mean pickup cross section can be estimated, yielding σs ¯ ≈ 20 Å2. This is compared to the lower estimate of the mean geometrical cross section σg ¯ ≈ 60 Å2 obtained from the theoretical cluster geometries. Thus the "size" of the cluster corresponding to the methanol pickup is at least 3-times smaller than its geometrical size. We have introduced a method which can yield the absolute pickup cross sections relevant to the generation and growth of atmospheric aerosols, as illustrated in the example of methanol and nitric acid clusters.
Genistein Binding to Copper(II)-Solvent Dependence and Effects on Radical Scavenging.
Yang, Jing; Xu, Yi; Liu, Hao-Yu; Han, Rui-Min; Zhang, Jian-Ping; Skibsted, Leif H
2017-10-18
Genistein, but not daidzein, binds to copper(II) with a 1:2 stoichiometry in ethanol and with a 1:1 stoichiometry in methanol, indicating chelation by the 5-phenol and the 4-keto group of the isoflavonoid as demonstrated by the Jobs method and UV-visible absorption spectroscopy. In ethanol, the stability constants had the value 1.12 × 10 11 L²∙mol -2 for the 1:2 complex and in methanol 6.0 × 10⁵ L∙mol -1 for the 1:1 complex at 25 °C. Binding was not detected in water, as confirmed by an upper limit for the 1:1 stability constant of K = 5 mol -1 L as calculated from the difference in solvation free energy of copper(II) between methanol and the more polar water. Solvent molecules compete with genistein as demonstrated in methanol where binding stoichiometry changes from 1:2 to 1:1 compared to ethanol and methanol/chloroform (7/3, v / v ). Genistein binding to copper(II) increases the scavenging rate of the stable, neutral 2,2-diphenyl-1-picrylhydrazyl radical by more than a factor of four, while only small effects were seen for the short-lived but more oxidizing β -carotene radical cation using laser flash photolysis. The increased efficiency of coordinated genistein is concluded to depend on kinetic rather than on thermodynamic factors, as confirmed by the small change in reduction potential of -0.016 V detected by cyclic voltammetry upon binding of genistein to copper(II) in methanol/chloroform solutions.
Mhlongo, M I; Tugizimana, F; Piater, L A; Steenkamp, P A; Madala, N E; Dubery, I A
2017-01-22
To counteract biotic stress factors, plants employ multilayered defense mechanisms responsive to pathogen-derived elicitor molecules, and regulated by different phytohormones and signaling molecules. Here, lipopolysaccharide (LPS), a microbe-associated molecular pattern (MAMP) molecule, was used to induce defense responses in Nicotiana tabacum cell suspensions. Intracellular metabolites were extracted with methanol and analyzed using a liquid chromatography-mass spectrometry (UHPLC-qTOF-MS/MS) platform. The generated data were processed and examined with multivariate and univariate statistical tools. The results show time-dependent dynamic changes and accumulation of glycosylated signaling molecules, specifically those of azelaic acid, salicylic acid and methyl-salicylate as contributors to the altered metabolomic state in LPS-treated cells. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gerolis, Luanai Grazieli Luquini; Lameiras, Fernando Soares; Krambrock, Klaus; Neves, Maria Jose.
2017-01-01
Tea is a traditional plant extract with important cultural ties. It is the most widely consumed beverage in the world. Tea consumption has some health benefits including antioxidant stimulus. Gamma radiation is currently used to control of postharvest pathogens on tea herb. However, free radicals can be generated, which consumes antioxidant molecules. A positive relation was found between radiation doses used and free radicals generation in green tea (Camellia sinensis), yerba mate (Ilex paraguariensis), and chamomile tea (Matricaria recutita). Total antioxidant capacity (TAC) of aqueous and methanol extracts of these herbs was determined by various methods to compare the effect of irradiation of herb on antioxidant capacity of the extracts. TAC was evaluated by measuring: total phenols (decreased with irradiation in mate and green teas), total flavonoids (stable in aqueous extracts and decreased with irradiation in methanol extract of mate and chamomile), Trolox equivalent or ABTS (unchanged under irradiation), DPPH* scavenging capacity (stable on aqueous extract but diminished in methanol extract after irradiation), β carotene/acid linoleic ability (stable with the exception of chamomile tea that increased after irradiation) and, capacity to chelate ferrous ions (unchanged with irradiation). In conclusion, gamma irradiation reduced the capacity of some antioxidants but preserved the capacity of others. This study showed that one isolated test does not suffice to perform this evaluation reliably, which is a reflection of the diversity and complexity of the effects of irradiation on antioxidant molecules present in different samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira
2016-08-10
Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH{sub 2}DOH at 10 K. Five amino acids (glycine, α -alanine, β -alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warmingmore » up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α -alanine and β -alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.« less
Cometary science after Rosetta
Knight, Matthew M.; Fitzsimmons, Alan
2017-01-01
The European Space Agency’s Rosetta mission ended operations on 30 September 2016 having spent over 2 years in close proximity to its target comet, 67P/Churyumov–Gerasimenko. Shortly before this, in summer 2016, a discussion meeting was held to examine how the results of the mission could be framed in terms of cometary and solar system science in general. This paper provides a brief history of the Rosetta mission, and gives an overview of the meeting and the contents of this associated special issue. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554982
Workshop on Analysis of Returned Comet Nucleus Samples
NASA Technical Reports Server (NTRS)
1989-01-01
This volume contains abstracts that were accepted by the Program Committee for presentation at the workshop on the analysis of returned comet nucleus samples held in Milpitas, California, January 16 to 18, 1989. The abstracts deal with the nature of cometary ices, cryogenic handling and sampling equipment, origin and composition of samples, and spectroscopic, thermal and chemical processing methods of cometary nuclei. Laboratory simulation experimental results on dust samples are reported. Some results obtained from Halley's comet are also included. Microanalytic techniques for examining trace elements of cometary particles, synchrotron x ray fluorescence and instrument neutron activation analysis (INAA), are presented.
NASA Astrophysics Data System (ADS)
Walker, Theodore, Jr.
2012-06-01
In contrast to the Copernican revolution in astro-geometry, the Hoyle-Wickramasinghe contribution to the recent and continuing revolution in astrobiology - "cometary panspermia" - features astronomy and biology converging toward theology. They employed astro-biotic reasoning (often labeled "anthropic" reasoning) to demonstrate that life is made possible by the deliberate controlling influence of the living all-embracing "intelligent universe." This is consistent with panentheism [pan-en-theos-ism, not pantheism]. As advanced by Hoyle and Wickramasinghe, cometary panspermia is panentheistic. Also, neoclassical panentheism requires generic panspermia, and favors cometary panspermia.
Evaluating some computer exhancement algorithms that improve the visibility of cometary morphology
NASA Technical Reports Server (NTRS)
Larson, Stephen M.; Slaughter, Charles D.
1992-01-01
Digital enhancement of cometary images is a necessary tool in studying cometary morphology. Many image processing algorithms, some developed specifically for comets, have been used to enhance the subtle, low contrast coma and tail features. We compare some of the most commonly used algorithms on two different images to evaluate their strong and weak points, and conclude that there currently exists no single 'ideal' algorithm, although the radial gradient spatial filter gives the best overall result. This comparison should aid users in selecting the best algorithm to enhance particular features of interest.
The pick-up of cometary protons by the solar wind
NASA Technical Reports Server (NTRS)
Neugebauer, M.; Goldstein, B. E.; Goldstein, R.; Lazarus, A. J.; Altwegg, K.; Balsiger, H.
1987-01-01
The HERS detector of the Ion Mass Spectrometer on the Giotto spacecraft measured the 3-dimensional distribution of picked-up cometary protons over a distance of about 8 million km upstream of the bow shock of comet P/Hally. The protons were observed to be elastically scattered out of their original cycloidal trajectories such that they were nonuniformly distributed over a spherical shell in velocity space. The shell radius (relative to its expected radius) and thickness increased as the bow shock was approached. Down-stream of the shock, the cometary protons could not be distinguished from the heated solar wind protons.
Comet Wild 2 and the two kinds of cometary sub-nuclei population
NASA Astrophysics Data System (ADS)
Illes-Almar, E.
On the 2nd January 2004 Stardust encountered the nucleus of comet Wild 2 by 240 km. 72 images have been collected - among them the up-till-now best views of a cometary nucleus. The "pockmarked" surface of the comet is peculiar as the "craters" are not normal craters: neither in shape nor in cross section. Their shapes are rather irregular and generally not central or axisymmetric. Furthermore they have flat bottoms and very steep walls that seem almost perpendicular to the surface. One has the feeling that they are not impact craters. In the framework of our `two kinds of cometary sub-nuclei population' hypothesis (Illés-Almár, 1995, 2002) the cavities can be explained by the stronger sublimation where the loose sub-nuclei are exposed to the surface. The almost vertical walls resemble to the vertical walls of the sublimated CO2 ice on the South polar cap of Mars. References: Illés-Almár, E.: On two different populations of cometary sub-nuclei. Antarctic Meteorites XX. June 6-8, 1995, Tokyo. Abstracts pp. 93-94, 1995. Illés-Almár, E.: Comet Borrelly and the two kinds of cometary sub-nuclei population. (submitted to Adv. Sp. Res. in 2002)
Angle-resolved photoelectron spectroscopy of formaldehyde and methanol
NASA Astrophysics Data System (ADS)
Keller, P. R.; Taylor, J. W.; Grimm, F. A.; Carlson, Thomas A.
1984-10-01
Angle-resolved photoelectron spectroscopy was employed to obtain the angular distribution parameter, β, for the valence orbitals (IP < 21.1 eV) of formaldehyde and methanol over the 10-30 eV photon energy range using dispersed polarized synchrotron radiation as the excitation source. It was found that the energy dependence of β in the photoelectron energy range between 2 and 10 eV can be related to the molecular-orbital type from which ionization occurs. This generalized energy behavior is discussed with regard to earlier energy-dependence studies on molecules of different orbital character. Evidence is presented for the presence of resonance photoionization phenomena in formaldehyde in agreement with theoretical cross-section calculations.
Study of intermolecular interactions in binary mixtures of ethanol in methanol
NASA Astrophysics Data System (ADS)
Maharolkar, Aruna P.; Khirade, P. W.; Murugkar, A. G.
2016-05-01
Present paper deals with study of physicochemical properties like viscosity, density and refractive index for the binary mixtures of ethanol and methanol over the entire concentration range were measured at 298.15 K. The experimental data further used to determine the excess properties viz. excess molar volume, excess viscosity, excess molar refraction. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure making factor in the mixture predominates in the system.
Formation of ions and radicals from icy grains in comets
NASA Technical Reports Server (NTRS)
Jackson, William M.; Gerth, Christopher; Hendricks, Charles
1991-01-01
Ion and radical formation in comets are thought to occur primarily by photodissociation of gas phase molecules. Experimental evidence and theoretical calculations are presented that show that some of the radical and ions can come directly from ice grains. The experimental evidence suggest that if the frozen molecules on the surface of grains undergo direct dissociation then they may be able to release radicals directly in the gas phase. If the molecules undergo predissociation it is unlikely that they will release radicals in the gas phase since they should be quenched. Calculations of this direct photodissociation mechanism further indicate that even if the parent molecule undergoes direct dissociation, the yield will not be high enough to explain the rays structure in comets unless the radicals are stored in the grains and then released when the grain evaporates. Calculations were also performed to determine the maximum number of ions that can be stored in an icy grain's radius. This number is compared with the ratio of the ion to neutral molecular density. The comparison suggests that some of the ions observed near the nucleus of the comet could have originally been present in the cometary nucleus. It is also pointed out that the presence of these ions in icy grains could lead to radical formation via electron recombination. Finally, an avalanche process was evaluated as another means of producing ions in comets.
Vectorial Modeling Of NH In Comet 2P/Encke
NASA Astrophysics Data System (ADS)
Dorman, Garrett; Pierce, D.; Cochran, A.
2010-10-01
Encke is an ideal comet for studying the relationship of radicals to their photodissociative parent molecules due to its low dust content. On 2003 October 22 - 24, we used the the 2.7 m telescope at the McDonald Observatory of the University of Texas to obtain spectra of several cometary radical species. Using a version of the Vectorial Model that has been modified to simulate Encke's prominent sunward-facing fan, we examined the spacial distribution of NH in the coma. Potential photochemical parents of NH were studied in order to understand its production and spacial distribution in the coma. Derived production rates are compared to values in other comets to constrain the primary parent of NH in Encke.
Modelling the neutral gas environment of comets with special application to P/Halley
NASA Technical Reports Server (NTRS)
Newburn, R. L., Jr.
1982-01-01
A technique has been developed which allows relatively accurate modelling of cometary gas production from nothing more than a visible light curve. Application to P/Halley suggests that the production rate of parent molecules will be about 2.6 x 10 to the 29th/second on March 10, 1986, for example. The uncertainties and intrinsic limitations in this approach are outlined. The theory is then extended to predictions of abundance of other gaseous species, and a photometric model of these gases is provided.Combined with the dust model of Divine (1981), preliminary predictions of the luminance of P/Halley, as seen in any direction from inside the coma or outside, can be provided for in the 3000-7000 A wavelength range.
Organic Synthesis via Irradiation and Warming of Ice Grains in the Solar Nebula
NASA Technical Reports Server (NTRS)
Ciesla, Fred J.; Sanford, Scott A.
2012-01-01
Complex organic compounds, including many important to life on Earth, are commonly found in meteoritic and cometary samples, though their origins remain a mystery. We examined whether such molecules could be produced within the solar nebula by tracking the dynamical evolution of ice grains in the nebula and recording the environments they were exposed to. We found that icy grains originating in the outer disk, where temperatures were less than 30 K, experienced UV irradiation exposures and thermal warming similar to that which has been shown to produce complex organics in laboratory experiments. These results imply that organic compounds are natural byproducts of protoplanetary disk evolution and should be important ingredients in the formation of all planetary systems, including our own.
NASA Astrophysics Data System (ADS)
Gómez-Álvarez, Paula; Romaní, Luis; González-Salgado, Diego
2013-05-01
Mixtures containing associated substances show a singular thermodynamic behaviour that has attracted to scientific community during the last century. Particularly, binary systems composed of an associating fluid and an inert solvent, where association occurs only between molecules of the same kind, have been extensively studied. A number of theoretical approaches were used in order to gain insights into the effect of the association on the macroscopic behaviour, especially on the second-order thermodynamic derivatives (or response functions). Curiously, to our knowledge, molecular simulations have not been used to that end despite describing the molecules and their interactions in a more complete and realistic way than theoretical models. With this in mind, a simple methodology developed in the framework of Monte Carlo molecular simulation is used in this work to quantify the association contribution to a wide set of thermodynamic properties for the {methanol + Lennard Jones} specific system under room conditions and throughout the composition range. Special attention was paid to the response functions and their respective excess properties, for which a detailed comparison with selected previous works in the field has been established.
NASA Astrophysics Data System (ADS)
Nagarajan, Satyakumar; McMillan, James P.; Burkhardt, Andrew M.; Neese, Christopher F.; De Lucia, Frank C.; Remijan, Anthony
2016-06-01
Individual spectral lines in astrophysical data are ordinarily assigned by comparison with line frequency and intensities predicted by catalogs. Here we seek to fit the spectra of specific sources within Orion KL that are first selected by ALMA's angular resolution and then by Doppler velocity class. For each molecule in this study, astrophysical reference lines are selected. Subsequent analyses of individual velocity components provide the astrophysical column density and temperature for these velocity regimes. These column densities and temperatures are then combined with results from the complete experimental spectra obtained from our laboratory spectra to model the molecule's contribution to the entire astrophysical spectrum [1]. Effects due to optical thickness and spectral overlap are included in the analyses. Examples for ethyl cyanide in the hot core and methanol in the compact ridge will be presented. [1] J. P. McMillan, S. M. Fortman, C. F. Neese, and F. C. De Lucia, "The Complete, Temperature Resolved Experi- mental Spectrum of Methanol (CH3OH) between 214.6 and 265.4 GHz," Astrophys. J., vol. 795, pp. 56(1-9), 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Weiming; Tackett, Brian M.; Chen, Jingguang G.
The formation of carbides can significantly modify the physical and chemical properties of the parent metals. In the current review, we summarize the general trends in the reactions of water and C1 molecules over transition metal carbide (TMC) and metal-modified TMC surfaces and thin films. Although the primary focus of the current review is on the theoretical and experimental studies of reactions of C1 molecules (CO, CO 2, CH 3OH, etc.), the reactions of water will also be reviewed because water plays an important role in many of the C1 transformation reactions. This review is organized by discussing separately thermalmore » reactions and electrochemical reactions, which provides insights into the application of TMCs in heterogeneous catalysis and electrocatalysis, respectively. In thermal reactions, we discuss the thermal decomposition of water and methanol, as well as the reactions of CO and CO 2 over TMC surfaces. In electrochemical reactions, we summarize recent studies in the hydrogen evolution reaction, electrooxidation of methanol and CO, and electroreduction of CO 2. Lastly, future research opportunities and challenges associated with using TMCs as catalysts and electrocatalysts are also discussed.« less
NASA Technical Reports Server (NTRS)
Dworkin, Jason P.; Sandford, Scott A.; Deamer, David W.; Gillette, J. Seb; Zare, Richard N.; Allamandola, Louis J. (Technical Monitor)
1999-01-01
The combination of realistic laboratory simulations and infrared observations have revolutionized our understanding of interstellar dust and ice-the main component of comets. Since comets and carbonaceous micrometeorites may have been important sources of volatiles and carbon compounds on the early Earth, their organic composition may be related to the origin of life. Ices on grains in molecular clouds contain a variety of simple molecules. The D/H ratios of the comets Hale-Bopp and Hyakutake are consistent with a primarily interstellar ice mixture. Within the cloud and especially in the presolar nebula through the early solar system, these icy grains would have been photoprocessed by the ultraviolet producing more complex species such as hexamethylenetetramine, polyoxymethylenes, and simple keones. We reported at the 1999 Bioastronomy meeting laboratory simulations studied to identify the types of molecules which could have been generated in pre-cometary ices. Experiments were conducted by forming a realistic interstellar mixed-molecular ice (H2O, CH3OH, NH3 and CO) at approximately 10 K under high vacuum irradiated with UV light from a hydrogen plasma lamp. The gas mixture was typically 100:50:1:1, however when different ratios were used material with similar characteristics was still produced. The residue that remained after warming to room temperature was analyzed by HPLC, and by several mass spectrometric methods. This material contains a rich mixture of complex compounds with mass spectral profiles resembling those found in IDPs and meteorites. Surface tension measurements show that an amphiphilic component is also present. These species do not appear in various controls or in unphotolyzed samples. Residues from the simulations were also dispersed in aqueous media for microscopy. The organic material forms 10-40 gm diameter droplets that fluoresce at 300-450 nm under UV excitation. These droplets have a morphology and internal structure which appear strikingly similar to those produced by extracts of the Murchison meteorite. Together, these results suggest a link between organic material photochemically synthesized on the cold grains in dense, interstellar molecular clouds and compounds that may have contributed to the organic inventory of the primitive Earth. For example, the amphiphilic properties of such compounds permit self-assembly into the membranous boundary structures that required for the first forms of cellular life.
NASA Astrophysics Data System (ADS)
Mahfouz, R. M.; Siddiqui, M. R. H.; Al-Wassil, A. I.; Al-Resayes, S. I.; Al-Otaibi, A. M.
2005-05-01
The present work is a study on radiolyses of 4-iodophenol in aqueous methanol solutions. The radiolysis products are separated and identified using spectrophotometric and chromatographic techniques. The radiolytic products (I-2, I- and IO3-) formed in aerated solutions at room temperature were identified and the yields are investigated as a function of absorbed gamma-ray dose. The formation of I-2 is mainly dependent on the acidity of solution and produced via the pathway of secondary free radical reactions. Aromatic products of lower and higher molecular weight than the corresponding investigated compound were analysed and separated by HPLC. The results have been discussed in view of mechanisms based on free radicals and ion-molecule interactions. The chemical effects induced by gamma-irradiation in solid 4-iodophenol have also been investigated and the degradation products were identified in solid state by NMR, GC/MS experiments and HPLC after dissolution in aqueous methanol. The results were evaluated and compared with radiolysis data.
Schmidt, Joel E.; Poplawsky, Jonathan D.; Mazumder, Baishakhi; ...
2016-08-03
Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using 13C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30–60 13C atoms. These clusters correlate with local increases in Brønsted acid sitemore » density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. Here, this nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnanakaran, S
2008-01-01
We determine the shift and line-shape of the amide I band of a model AK-peptide from molecular dynamics (MD) simulations of the peptide dissolved in methanol/water mixtures with varying composition. The IR-spectra are determined from a transition dipole coupling exciton model. A simplified empirical model Hamiltonian is employed, taking both the effect of hydrogen bonding, as well as intramolecular vibrational coupling into account. We consider a single isolated AK-peptide in a mostly helical conformation, while the solvent is represented by 2600 methanol or water molecules, simulated for a pressure of 1 bar and a temperature of 300 K. Over themore » course of the simulations minor reversible conformational changes at the termini are observed, which are found to only slightly affect the calculated spectral properties. Over the entire composition range, varying from pure water to the pure methanol solvent, a monotonous blue-shift of the IR amide I band of about 8 wavenumbers is observed. The shift is found to be caused by two counter-compensating effects: An intramolecular red-shift of about 1.2 wavenumbers, due to stronger intramolecular hydrogen-bonding in a methanol-rich environment. Dominating, however, is the intermolecular solvent-dependent blue-shift of about 10 wavenumbers, being attributed to the less effective hydrogen bond donor capabilities of methanol compared to water. The importance of solvent-contribution to the IR-shift, as well as the significantly different hydrogen formation capabilities of water and methanol make the amide I band sensitive to composition changes in the local environment close the peptide/solvent interface. This allows, in principle, an experimental determination of the composition of the solvent in close proximity to the peptide surface. For the AK-peptide case they observe at low methanol concentrations a significantly enhanced methanol concentration at the peptide/solvent-interface, supposedly promoted by the partially hydrophobic character of the AK-peptide's solvent accessible surface.« less
Comet giacobini-zinner: plasma description.
Bame, S J; Anderson, R C; Asbridge, J R; Baker, D N; Feldman, W C; Fuselier, S A; Gosling, J T; McComas, D J; Thomsen, M F; Young, D T; Zwickl, R D
1986-04-18
A strong interaction between the solar wind and comet Giacobini-Zinner was observed oh 11 September 1985 with the Los Alamos plasma electron experiment on the International Cometary Explorer (ICE) spacecraft. As ICE approached an intercept point 7800 kilometers behind the nucleus from the south and receded to the north, upstream phenomena due to the comet were observed. Periods of enhanced electron heat flux from the comet as well as almost continuous electron density fluctuations were measured. These effects are related to the strong electron heating observed in the cometary interaction region and to cometary ion pickup by the solar wind, respectively. No evidence for a conventional bow shock was found as ICE entered and exited the regions of strongest interaction of the solar wind with the cometary environment. The outer extent of this strong interaction zone was a transition region in which the solar wind plasma was heated, compressed, and slowed. Inside the inner boundary of the transition region was a sheath that enclosed a cold intermediate coma. In the transition region and sheath, small-scale enhancements in density were observed. These density spikes may be due to an instability associated with cometary ion pickup or to the passage of ICE through cometary ray structures. In the center of the cold intermediate coma a narrow, high-density core of plasma, presumably the developing plasma tail was found. In some ways this tail can be compared to the plasma sheet in Earth's magnetotail and to the current sheet in the tail at Venus. This type of configuration is expected in the double-lobe magnetic topology detected at the comet, possibly caused by the theoretically expected draping of the interplanetary magnetic field around its ionosphere.
NASA Astrophysics Data System (ADS)
Meinert, C.; Jones, N. C.; Hoffmann, S. V.; Nahon, L.; d'Hendecourt, L.; Meierhenrich, U. J.
2017-07-01
Simulated cometary ice experiments have indicated that circularly polarised light could be the initial source of life's handedness. We detected chiral sugars, amino acids and their molecular precursors within these interstellar achiral ice analogues.
Thermal modeling of cometary nuclei
NASA Astrophysics Data System (ADS)
Weissman, P. R.; Kieffer, H. H.
1981-09-01
A model of the sublimation of volatile ices from a cometary nucleus is presented which includes the effects of (1) diurnal heating and cooling, (2) rotation period and pole orientation, (3) the thermal properties of the ice and subsurface layers, and (4) the contributions from coma opacity, scattering and thermal emission where the properties of the coma are derived from the integrated rate of volatile production by the nucleus. In applying the model to the case of the 1986 apparition of Halley's comet, it is found that the generation of a cometary dust coma increases the total energy reaching the Halley nucleus due to the greater geometrical cross-section of the coma as compared with the bare nucleus. The calculated coma opacity of Halley is about 0.2 at 1 AU from the sun and 1.2 at perihelion. Possible consequences of the results obtained for the generation of nongravitational forces, volatile production rates for comets and cometary lifetimes against sublimation are discussed.
Physical characteristics of cometary dust from dynamical studies - A review
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1980-01-01
Progress made in the determination of the physical characteristics of cometary dust particles from studies of dust tail dynamics is reviewed. Applications of the combined dynamical photometric approach of Finson and Probstein (1968) to studies of cometary tails exhibiting continuous light intensity variations are discussed, with attention given to determinations of the particle-size-related distribution function of the solar radiation pressure exerted on the particles, the contribution of comets to the interplanetary dust, calculations of dust ejection rates and a Monte Carlo approach to the analysis of dust tails. Investigations of dust streamers and striae, which are believed to be related to comet outbursts entailing brief but sharp enhancements of dust production, are then reviewed, with particular attention given to observations of Comet West 1976 VI. Finally, the question of cometary particle type is addressed, and it is pointed out that the presence of submicron absorbing particles in the striae of Comet West is not incompatible with the presence of micron-size dielectric particles in the inner coma.
The Giotto radio-science experiment
NASA Technical Reports Server (NTRS)
Edenhofer, P.; Bird, M. K.; Buschert, H.; Esposito, P. B.; Porsche, H.; Volland, H.
1986-01-01
The scientific objectives of the Giotto Radio Science Experiment (GRE) are to determine the columnar electron content of Comet Halley/s ionosphere and the cometary mass fluence from atmospheric drag by using the radio signals from Giotto during the Halley encounter. The radio science data (S and X-band Doppler and range measurements) will be collected at NASA/s deep-space 64 m tracking antenna at Tidbinbilla near Canberra, in Australia. In order to separate the effects of the terrestrial ionosphere and the interplanetary plasma, S-band Doppler measurements will also be taken at Tidbinbilla along the line-of-sight of Japan/s cometary probe Sakigake during the Giotto-Halley Encounter. The measurements of cometary electron content and mass fluence will be inverted to derive the spatial distribution of the electron and mass (dust and gas) density within Halley/s coma. The GRE is the only experiment on Giotto capable of measuring the low-energy (10 eV) electron bulk population of Halley/s ionosphere and the total cometary mass flow impacting upon the spacecraft.
Kumaran, R; Varalakshmi, T; Malar, E J Padma; Ramamurthy, P
2010-09-01
Photophysical studies of photoinduced electron transfer (PET) and non-PET based acridinedione dyes with guanidine hydrochloride (GuHCl) were carried out in water and methanol. Addition of GuHCl to photoinduced electron transfer (PET) based acridinedione dye (ADR 1) results in a fluorescence enhancement, whereas a non-PET based dye (ADR 2) shows no significant change in the fluorescence intensity and lifetime. Addition of GuHCl to ADR 1 dye in methanol results in single exponential decay behaviour, on the contrary a biexponential decay pattern was observed on the addition of GuHCl in water. Absorption and emission spectral studies of ADR 1 dye interaction with GuHCl reveals that the dye molecule is not in the protonated form in aqueous GuHCl solution, and the dye is confined to two distinguishable microenvironment in the aqueous phase. A large variation in the microenvironment around the dye molecule is created on the addition of GuHCl and this was ascertained by time-resolved area normalized emission spectroscopy (TRANES) and time-resolved emission spectroscopy (TRES). The dye molecule prefers to reside in the hydrophobic microenvironment, rather in the hydrophilic aqueous phase is well emphasized by time-resolved fluorescence lifetime studies. The mechanism of fluorescence enhancement of ADR 1 dye by GuHCl is attributed to the suppression of the PET process occurring through space.
Optical image of a cometary nucleus: 1980 flyby of Comet Encke
NASA Technical Reports Server (NTRS)
Wells, W. C.; Benson, R. S.; Anderson, A. D.; Gal, G.
1974-01-01
The feasibility was investigated of obtaining optical images of a cometary nucleus via a flyby of Comet Encke. A physical model of the dust cloud surrounding the nucleus was developed by using available physical data and theoretical knowledge of cometary physics. Using this model and a Mie scattering code, calculations were made of the absolute surface brightness of the dust in the line of sight of the on-board camera and the relative surface brightness of the dust compared to the nucleus. The brightness was calculated as a function of heliocentric distance and for different phase angles (sun-comet-spacecraft angle).
Clathrate hydrates in cometary nuclei and porosity
NASA Technical Reports Server (NTRS)
Smoluchowski, R.
1988-01-01
Possible mechanisms of formation and decomposition of CO2-clathrate hydrate in cometary nuclei are discussed. As far as it is known, this is the only clathrate hydrate which is unstable at low temperatures. Calculation shows that, in accord with other evidence, neither volume nor grain boundary diffusion in the clathrate lattice can be responsible for the rate of these reactions and that a surface mechanism with the attendant sensitivity to pressure must play a crucial role. Density changes accompanying CO2-clathrate decomposition and formation can lead to microporosity and enhanced brittleness or even to fracture of cometary nuclei at low temperatures. Other clathrate hydrates and mixed clathrates are also discussed.
Cometary atmospheres: Modeling the spatial distribution of observed neutral radicals
NASA Technical Reports Server (NTRS)
Combi, M. R.
1986-01-01
New data for the spatial distribution of cometary C2 are presented. A recompilation of the Haser scale lengths for C2 and CN resolves the previously held anomalous drop of the C2/CN ratio for heliocentric distances larger than 1 AU. Clues to the source of cometary C2 have been found through fitting the sunward-antisunward brightness profiles with the Monte Carlo particle-trajectory model. A source (parent) lifetime of 3.1 x 10,000 seconds is found, and an ejection speed for C2 radicals upon dissociation of the parent(s) of approx. 0.5 km 1/5 is calculated.
Alcohol molecules adsorption on graphane nanosheets - A first-principles investigation
NASA Astrophysics Data System (ADS)
Nagarajan, V.; Chandiramouli, R.
2018-05-01
The geometric structure, electronic and adsorption properties of methanol, ethanol and 1-propanol molecules on hydrogenated graphene (graphane) were investigated using first-principles calculations. The stability of graphane base material is confirmed using formation energy and phonon band structures. The adsorption of alcohol molecules on bare graphane and hydrogen vacant graphane nanosheet is found to be prominent and the selectivity of alcohol molecules can be achieved using bare or hydrogen vacant graphane nanosheet. Moreover, the interaction of alcohol molecules on bare and hydrogen vacant graphane nanosheets is studied using the adsorption energy, energy band gap variation, Bader charge transfer and average energy band gap variation. The adsorption energy ranges from -0.149 to -0.383 eV upon alcohol adsorption. The energy gap varies from 4.71 to 2.62 eV for bare graphane and from 4.02 to 3.60 eV for hydrogen vacant graphane nanosheets upon adsorption of alcohol molecules. The adsorption properties of alcohol molecules provide useful information for the possible application of graphane nanosheet as a base material for the detection of alcohol molecules.
Asteroids, Comets, Meteors 1991
NASA Technical Reports Server (NTRS)
Harris, Alan W. (Editor); Bowell, Edward (Editor)
1992-01-01
Papers from the conference are presented and cover the following topics with respect to asteroids, comets, and/or meteors: interplanetary dust, cometary atmospheres, atmospheric composition, comet tails, astronomical photometry, chemical composition, meteoroid showers, cometary nuclei, orbital resonance, orbital mechanics, emission spectra, radio astronomy, astronomical spectroscopy, photodissociation, micrometeoroids, cosmochemistry, and interstellar chemistry.
Hilchenbach, Martin; Fischer, Henning; Langevin, Yves; Merouane, Sihane; Paquette, John; Rynö, Jouni; Stenzel, Oliver; Briois, Christelle; Kissel, Jochen; Koch, Andreas; Schulz, Rita; Silen, Johan; Altobelli, Nicolas; Baklouti, Donia; Bardyn, Anais; Cottin, Herve; Engrand, Cecile; Fray, Nicolas; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Lehto, Harry; Mellado, Eva Maria; Modica, Paola; Le Roy, Lena; Siljeström, Sandra; Steiger, Wolfgang; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Zaprudin, Boris
2017-07-13
The in situ cometary dust particle instrument COSIMA (COmetary Secondary Ion Mass Analyser) onboard ESA's Rosetta mission has collected about 31 000 dust particles in the inner coma of comet 67P/Churyumov-Gerasimenko since August 2014. The particles are identified by optical microscope imaging and analysed by time-of-flight secondary ion mass spectrometry. After dust particle collection by low speed impact on metal targets, the collected particle morphology points towards four families of cometary dust particles. COSIMA is an in situ laboratory that operates remotely controlled next to the comet nucleus. The particles can be further manipulated within the instrument by mechanical and electrostatic means after their collection by impact. The particles are stored above 0°C in the instrument and the experiments are carried out on the refractory, ice-free matter of the captured cometary dust particles. An interesting particle morphology class, the compact particles, is not fragmented on impact. One of these particles was mechanically pressed and thereby crushed into large fragments. The particles are good electrical insulators and transform into rubble pile agglomerates by the application of an energetic indium ion beam during the secondary ion mass spectrometry analysis.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).
Salazar-Aguilar, Sandra; Ruiz-Posadas, Lucero Del Mar; Cadena-Iñiguez, Jorge; Soto-Hernández, Marcos; Santiago-Osorio, Edelmiro; Aguiñiga-Sánchez, Itzen; Rivera-Martínez, Ana Rocío; Aguirre-Medina, Juan Francisco
2017-07-25
The Sechium edule Perla Negra cultivar is a recently-obtained biological material whose progenitors are S. edule var. nigrum minor and S. edule var. amarus silvestrys, the latter of which has been reported to have antiproliferative activity against the HeLa P-388 and L-929 cancer cell lines. The present study aimed to determine if the methanolic extract of the fruit of the Perla Negra cultivar had the same biological activity. The methanolic extract was phytochemically characterized by thin layer chromatography (TLC) and column chromatography (CC), identifying the terpenes and flavonoids. The compounds identified via high performance liquid chromatography (HPLC) were Cucurbitacins B, D, E, and I for the terpene fractions, and Rutin, Phlorizidin, Myricetin, Quercetin, Naringenin, Phloretin, Apigenin, and Galangin for the flavonoid fractions). Biological activity was evaluated with different concentrations of the methanolic extract in the HeLa cell line and normal lymphocytes. The methanolic extract inhibited the proliferation of HeLa cells (IC 50 1.85 µg·mL -1 ), but the lymphocytes were affected by the extract (IC 50 30.04 µg·mL -1 ). Some fractions, and the pool of all of them, showed inhibition higher than 80% at a concentration of 2.11 µg·mL -1 . Therefore, the biological effect shown by the methanolic extract of the Perla Negra has some specificity in inhibiting tumor cells and not normal cells; an unusual feature among molecules investigated as potential biomedical agents.
Salazar-Aguilar, Sandra; Ruiz-Posadas, Lucero del Mar; Cadena-Iñiguez, Jorge; Santiago-Osorio, Edelmiro; Aguiñiga-Sánchez, Itzen; Rivera-Martínez, Ana Rocío; Aguirre-Medina, Juan Francisco
2017-01-01
The Sechium edule Perla Negra cultivar is a recently-obtained biological material whose progenitors are S. edule var. nigrum minor and S. edule var. amarus silvestrys, the latter of which has been reported to have antiproliferative activity against the HeLa P-388 and L-929 cancer cell lines. The present study aimed to determine if the methanolic extract of the fruit of the Perla Negra cultivar had the same biological activity. The methanolic extract was phytochemically characterized by thin layer chromatography (TLC) and column chromatography (CC), identifying the terpenes and flavonoids. The compounds identified via high performance liquid chromatography (HPLC) were Cucurbitacins B, D, E, and I for the terpene fractions, and Rutin, Phlorizidin, Myricetin, Quercetin, Naringenin, Phloretin, Apigenin, and Galangin for the flavonoid fractions). Biological activity was evaluated with different concentrations of the methanolic extract in the HeLa cell line and normal lymphocytes. The methanolic extract inhibited the proliferation of HeLa cells (IC50 1.85 µg·mL−1), but the lymphocytes were affected by the extract (IC50 30.04 µg·mL−1). Some fractions, and the pool of all of them, showed inhibition higher than 80% at a concentration of 2.11 µg·mL−1. Therefore, the biological effect shown by the methanolic extract of the Perla Negra has some specificity in inhibiting tumor cells and not normal cells; an unusual feature among molecules investigated as potential biomedical agents. PMID:28757593
Optical Detection of Anomalous Nitrogen in Comets
NASA Astrophysics Data System (ADS)
2003-12-01
VLT Opens New Window towards Our Origins Summary A team of European astronomers [1] has used the UVES spectrograph on the 8.2-m VLT KUEYEN telescope to perform a uniquely detailed study of Comet LINEAR (C/2000 WM1) . This is the first time that this powerful instrument has been employed to obtain high-resolution spectra of a comet. At the time of the observations in mid-March 2002, Comet LINEAR was about 180 million km from the Sun, moving outwards after its perihelion passage in January. As comets are believed to carry "pristine" material - left-overs from the formation of the solar system, about 4,600 million years ago - studies of these objects are important to obtain clues about the origins of the solar system and the Earth in particular. The high quality of the data obtained of this moving 9th-magnitude object has permitted a determination of the cometary abundance of various elements and their isotopes [2]. Of particular interest is the unambiguous detection and measurement of the nitrogen-15 isotope. The only other comet in which this isotope has been observed is famous Comet Hale-Bopp - this was during the passage in 1997, when it was much brighter than Comet LINEAR. Most interestingly, Comet LINEAR and Comet Hale-Bopp display the same isotopic abundance ratio, about 1 nitrogen-15 atom for each 140 nitrogen-14 atoms ( 14 N/ 15 N = 140 ± 30) . That is about half of the terrestrial value (272). It is also very different from the result obtained by means of radio measurements of Comet Hale-Bopp ( 14 N/ 15 N = 330 ± 75). Optical and radio measurements concern different molecules (CN and HCN, respectively), and this isotopic anomaly must be explained by some differentiation mechanism. The astronomers conclude that part of the cometary nitrogen is trapped in macromolecules attached to dust particles . The successful entry of UVES into cometary research now opens eagerly awaited opportunities for similiar observations in other, comparatively faint comets. These studies will provide crucial information about the detailed composition of a much larger number of comets than hitherto possible and hence, more information about the primordial matter from which the solar system formed. A better understanding of the origins of the cometary material (in particular the HCN and CN molecules [3]) and the connection with heavier organic molecules is highly desirable. This is especially so in view of the probable rôle of comets in bringing to the young Earth materials essential for the subsequent formation of life on our planet . PR Photo 28a/03 : Comet LINEAR (C/2000 WM1) - direct image and UVES slit position. PR Photo 28b/03 : Part of the UVES spectrum of Comet LINEAR (C/2000 WM1) with CN-band. PR Photo 28c/03 : Identification of nitrogen-15 in the spectrum. Cometary material Knowledge of the abundance of the stable isotopes [2] of the light elements in different solar system objects provides critical clues to the origin and early evolution of these objects and of the system as a whole. In order to gain the best possible insight into the origins and formation of the niche in which we live, it is therefore important to determine such isotopic abundance ratios in as many members of the solar family as possible. This is particularly true for comets, believed to be carriers of well-preserved specimens of the pristine material from which the solar system was made, some 4,600 million years ago. However, the detailed study of cometary material is a difficult task. Measurements of isotopic ratios is an especially daunting undertaking, mainly because of the extreme weakness of the spectral signatures (emissions) of the less abundant species like carbon-13, nitrogen-15, etc.. Measurements of microwave emission from those atoms suffer from additional, inherent uncertainties connected to the much stronger emission of the more abundant species. Measurements in the optical spectral region thus take on particular importance in this context. However, it is exceedingly difficult to procure the high-quality, high-resolution spectra needed to show the very faint emissions of the rare species. So far, they were only possible when a very bright comet happened to pass by, perhaps once a decade, thereby significantly limiting such studies. And there has always been some doubt whether the brightest comets are also truly representative of this class of objects. Observations of fainter, more typical comets had to await the advent of powerful instruments and telescopes. First UVES spectrum of a comet ESO PR Photo 28a/03 ESO PR Photo 28a/03 [Preview - JPEG: 495 x 400 pix - 183k [Normal - JPEG: 990 x 800 pix - 450k] ESO PR Photo 28b/03 ESO PR Photo 28b/03 [Preview - JPEG: 502 x 400 pix - 115k [Normal - JPEG: 1004 x 800 pix - 290K] Captions : PR Photo 28a/03 displays an image of Comet LINEAR (C/2000 WM1) with the UVES slit viewer image. The colour composite in the large frame (sky field: 16 x 16 arcmin 2 ) was obtained by Gordon Garradd (Loomberah, NSW, Australia). [Image Copyright (c) 2002 Gordon Garradd (loomberah@ozemail.com.au]. The UVES slit viewer photo (small frame; 40 x 40 arcsec 2 ) is a false-colour image taken in the (red) R-band with UVES+KUEYEN on March 22, 2002; it shows the position of the narrow spectrograph slit (0.45 arcsec wide and 8 arcsec long) crossing the inner coma and through which the comet's light was captured to produce the high-resolution spectra. The slit has been offset from the center of light to reduce contamination from solar light reflected off dust particles in the comet's coma - there is most dust near the nucleus. PR Photo 28b/03 shows a small part of the UVES spectrum with an emission band (ultraviolet light at wavelength 390 nm) from CN molecules [3] in the comet's atmosphere. The emission lines are produced by absorption of the solar light by these molecules, followed by re-emission of lines of specific wavelengths. This physical process is known as "resonance-fluorescence" - it is the same process that causes glowing teeth and shirts in a Disco. The upper panel displays the "raw" spectrum; the lower is the "extracted" spectrum, now clearly displaying the individual emission lines. Observations of Comet LINEAR (C/2000 WM1) were carried out with the UV-Visual Echelle Spectrograph (UVES) mounted on the 8.2-m VLT KUEYEN telescope at the ESO Paranal Observatory (Chile) on four occasions during March 2002. At that time, the comet had moved past its perihelion and was by far the faintest comet for which such a detailed spectral analysis had ever been attempted. A number of 25-min exposures were secured, resulting in a total observing time of about 4 hours. The final spectrum covers the entire visual region (330 - 670 nm) and is one of the most detailed and information-rich cometary spectra ever obtained. PR Photo 28b/03 displays a small part of this spectrum. These observations are the first high resolution spectra of a comet taken with the VLT. Identification of nitrogen-15 ESO PR Photo 28c/03 ESO PR Photo 28c/03 [Preview - JPEG: 400 x 524 pix - 109k [Normal - JPEG: 800 x 1047 pix - 285k] Captions : PR Photo 28c/03 is an enlarged view of a small section of the high-resolution UVES spectrum of Comet LINEAR ( PR Photo 28b/03 ) with emission lines from CN-molecules (blue line), compared to the "synthetic" spectrum based on theoretical calculations and laboratory measurements (black line ; some of the lines are labeled with quantum numbers). In the upper panel, the synthetic spectrum has been produced on the basis of the most abundant isotopic species ( 12 C 14 N). The lower panel shows that the observed spectrum is in nearly perfect agreement with a synthetic spectrum which includes contributions from two other isotopic species, 13 C 14 N (emission lines at wavelengths indicated by red ticks) and 12 C 15 N (blue ticks); they are added in proportions of 1/115 and 1/140, respectively. The isotopic abundances of carbon-13 and nitrogen-15 are measured accordingly. Introducing instead the terrestrial ratio for nitrogen-15 (1/272) significantly degrades the fit and thus that ratio can clearly be ruled out in Comet LINEAR. At the time of the VLT observations, the comet was of 9th magnitude, i.e. about 15 times fainter than what can be perceived with the unaided eye. The distance from the Sun was about 180 million km; the distance from the Earth was 186 million km. The observations included calibration spectra of sunlight reflected from the lunar surface; they were used to "subtract" the solar signatures in the comet's spectrum, caused by reflection of sunlight from the dust particles around the comet. As expected, in addition to emission from "normal" CN-molecules ( 12 C 14 N), the UVES data also show emission lines of the 13 C 14 N-molecule that contains the rare isotope carbon-13. The derived 12 C/ 13 C isotopic ratio is 115 ± 20, quite similar to the "standard" solar system value of 89. However, there is also a series of weak features that are positioned exactly at the theoretical wavelengths of emission lines from 12 C 15 N-molecules, cf. PR Photo 28c/03 . The excellent fit that is evident in this diagram proves beyond any doubt the presence of nitrogen-15 in Comet LINEAR and allows a quite accurate determination of the isotopic ratio. The "anomalous" nitrogen isotope ratio in comets In 1997, the same group of astronomers obtained spectra of the (at that time) much brighter Comet Hale-Bopp with the 2.6-m NOT telescope (Roque de los Muchachos Observatory, La Palma, Canary Islands, Spain) in order to investigate the isotopic ratio of carbon-12 to carbon-13. Claude Arpigny remembers: " Interestingly, our spectra of Hale-Bopp showed a number of weak and unidentified emission lines. We later realised that they were positioned close to the theoretical wavelengths of some lines from the 12 C 15 N-molecule. This was a pleasant surprise, as lines from that molecular species were previously believed to be so faint that they would not be observable." He continues: "This identification is now fully confirmed with the UVES observations of Comet LINEAR. Our detections in these two comets are the first ever of those emission lines in comets ". The estimates of the 14 N/ 15 N isotopic ratios are very similar, 140 ± 35 for Hale-Bopp and 140 ± 30 for LINEAR. These ratios are remarkably low and different from the terrestrial value of 272. This means that these comets have comparatively more nitrogen-15 than has the Earth. No measurement has yet been made of the abundance of nitrogen-15 in the Sun. So which of the values corresponds to the composition of the material from which the solar system was made? Different origins? To date, only four cometary values of the 14 N/ 15 N isotopic ratio have been reported: two in the radio wavelength range and the two now measured by means of optical spectra. The radio measurements concern the HCN-molecule (hydrocyanic acid) in Comet Hale-Bopp, a "parent" molecule for the CN-molecules present in comets. Contrary to the optical measurements, the radio values (about 330 ± 75) are compatible with the terrestrial value (272). But radio measurements of carbon and nitrogen isotopic ratios are only possible on extraordinarily bright comets like Hale-Bopp, and even then, the achievable accuracy is very limited. This emphasizes the importance of performing this kind of research by means of optical observations. The origin of the isotopic discrepancy between different CN parents is likely due to fractionation mechanisms in the forming presolar nebula, e.g. when oxygen- and carbon-bearing molecules in high-density nebulae stick to cold (10K) dust grains. Macromolecules in space The astronomers think that the new results indicate that the HCN-molecule cannot be the only "parent" of the CN-molecule; the latter must also be produced by some as yet unknown parent(s) in which the nitrogen-15 isotope is even more abundant. In this connection, it is very interesting that an "excess" of nitrogen-15 is also known to exist in interplanetary dust particles (IDPs), captured by high-flying aircraft in the Earth's atmosphere. They represent the oldest material in the solar system that can be subjected to detailed laboratory analysis. Many of these particles are thought to originate from passing comets - this possibility is obviously supported by the new measurements. The nitrogen-15 carriers in IDPs have not been securely identified but are possibly organic macromolecules or polycyclic aromatic hydrocarbons (PAHs). It is thus possible that the additional parent(s) of cometary CN may belong to this ensemble of organic substances. Whatever the case, the longstanding question of nitrogen and its isotopic ratio(s) in the solar system, whether present and primordial, is notoriously enigmatic in several respects. However, the present results demonstrate that a detailed study of comets may deliver very useful clues. The team has now been granted more observing time with UVES and KUEYEN in order to pursue this important study by observing more comets.
Radical-induced chemistry from VUV photolysis of interstellar ice analogues containing formaldehyde
NASA Astrophysics Data System (ADS)
Butscher, Teddy; Duvernay, Fabrice; Danger, Grégoire; Chiavassa, Thierry
2016-09-01
Surface processes and radical chemistry within interstellar ices are increasingly suspected to play an important role in the formation of complex organic molecules (COMs) observed in several astrophysical regions and cometary environments. We present new laboratory experiments on the low-temperature solid state formation of complex organic molecules - glycolaldehyde, ethylene glycol, and polyoxymethylene - through radical-induced reactivity from VUV photolysis of formaldehyde in water-free and water-dominated ices. Radical reactivity and endogenous formation of COMs were monitored in situ via infrared spectroscopy in the solid state and post photolysis with temperature programmed desorption (TPD) using a quadripole mass spectrometer. We show the ability of free radicals to be stored when formed at low temperature in water-dominated ices, and to react with other radicals or on double bonds of unsaturated molecules when the temperature increases. It experimentally confirms the role of thermal diffusion in radical reactivity. We propose a new pathway for formaldehyde polymerisation induced by HCO radicals that might explain some observations made by the Ptolemy instrument on board the Rosetta lander Philae. In addition, our results seem to indicate that H-atom additions on H2CO proceed preferentially through CH2OH intermediate radicals rather than the CH3O radical.
Posada-Pérez, Sergio; Ramírez, Pedro J.; Gutiérrez, Ramón A.; ...
2016-02-01
Here, the conversion of CO 2 into methanol catalyzed by β-Mo 2C and Cu/β-Mo 2C surfaces has been investigated by means of a combined experimental and theoretical study. Experiments have shown the direct activation and dissociation of the CO 2 molecule on bare β-Mo 2C, whereas on Cu/β-Mo 2C, CO 2 must be assisted by hydrogen for its conversion. Methane and CO are the main products on the clean surface and methanol production is lower. However, the deposition of Cu clusters avoids methane formation and increases methanol production even above that corresponding to a model of the technical catalyst. DFTmore » calculations on surface models of both possible C- and Mo-terminations corroborate the experimental observations. Calculations for the clean Mo-terminated surface reveal the existence of two possible routes for methane production (C + 4H → CH 4; CH 3O + 3H → CH 4 + H 2O) which are competitive with methanol synthesis, displaying slightly lower energy barriers. On the other hand, a model for Cu deposited clusters on the Mo-terminated surface points towards a new route for methanol and CO production avoiding methane formation. The new route is a direct consequence of the generation of a Mo 2C–Cu interface. The present experimental and theoretical results entail the interesting catalytic properties of Mo 2C as an active support of metallic nanoparticles, and also illustrate how the deposition of a metal can drastically change the activity and selectivity of a carbide substrate for CO 2 hydrogenation.« less
The role of organic polymers in the structure of cometary dust
NASA Technical Reports Server (NTRS)
Vanysek, Vladimir; Boehnhardt, Hermann; Fechtig, H.
1992-01-01
Several phenomena observed in P/Halley and other comets indicate additional fragmentation of dust particles or dust aggregates in cometary atmospheres. The disintegration of dust aggregates may be explained by sublimation of polymerized formaldehyde - POM - which play a role as binding material between submicron individual particles.
NASA Astrophysics Data System (ADS)
Sagdeev, R. Z.; Shapiro, V. D.; Shevchenko, V. I.; Szego, K.
1987-02-01
The neutral gas emitted by comets is partly photoionized along its path. The interaction of the ions with the solar wind leads to observable particle and wave effects in the ambient plasma. These are described in the present paper.
Two-dimensional molecular line transfer for a cometary coma
NASA Astrophysics Data System (ADS)
Szutowicz, S.
2017-09-01
In the proposed axisymmetric model of the cometary coma the gas density profile is described by an angular density function. Three methods for treating two-dimensional radiative transfer are compared: the Large Velocity Gradient (LVG) (the Sobolev method), Accelerated Lambda Iteration (ALI) and accelerated Monte Carlo (MC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritti, Fabrice; Guiochon, Georges A
2005-09-01
The retention mechanisms of n-propylbenzoate, 4-t ert-butylphenol, and caffeine on the endcapped Symmetry-C{sub 18} and the non-endcapped Resolve-C{sub 18} are compared. The adsorption isotherms were measured by frontal analysis (FA), using as the mobile phase mixtures of methanol or acetonitrile and water of various compositions. The isotherm data were modeled and the adsorption energy distributions calculated. The surface heterogeneity increases faster with decreasing methanol concentration on the non-endcapped than on the endcapped adsorbent. For instance, for methanol concentrations exceeding 30% (v/v), the adsorption of caffeine is accounted for by assuming three and two different types of adsorption sites on Resolve-C{submore » 18} and Symmetry-C{sub 18}, respectively. This is explained by the effect of the mobile phase composition on the structure of the C{sub 18}-bonded layer. The bare surface of bonded silica appears more accessible to solute molecules at high water contents in the mobile phase. On the other hand, replacing methanol by a stronger organic modifier like acetonitrile dampens the differences between non-endcapped and endcapped stationary phase and decreases the degree of surface heterogeneity of the adsorbent. For instance, at acetonitrile concentrations exceeding 20%, the surface appears nearly homogeneous for the adsorption of caffeine.« less
Terahertz Time Domain Spectroscopy of Complex Organic Molecules in Astrophysically Relevant Ices
NASA Astrophysics Data System (ADS)
McGuire, Brett A.; Ioppolo, Sergio; Allodi, Marco A.; Kelley, Matthew J.; Blake, Geoffrey A.
2013-06-01
We have constructed a new system to study the spectra of astrophysically-relevant ice analogs using THz time-domain spectroscopy from 300 GHz - 7 THz. Here, we present our initial efforts to explore the spectra of pure ices of simple, abundant interstellar species as well as complex organic molecules (COMs) and COM-doped ice mixtures. We will present preliminary spectra of pure H_2O, CO_2, methanol (CH_3OH), and methyl formate (CH_3COOH) ices, as well as spectra of these molecules embedded in a variety of other relevant interstellar analogs. Our results are discussed in the context of astronomical observations and the possibility of probing ice compositions in the absence of a background radiation source.
Structure and magnetism of a Mn(III)-Mn(II)-Mn(II)-Mn(III) chain complex.
Uhrecký, Róbert; Moncoľ, Ján; Koman, Marian; Titiš, Ján; Boča, Roman
2013-07-14
A novel tetranuclear manganese(II/III) complex with anions of pyridine-2,6-dicarboxylic acid (dipicolinic acid) has been synthesised and magneto-structurally characterised. The crystal structure of [Mn(II)2Mn(III)2(dipic)6(H2O)4]·2CH3OH·4H2O has been determined by single-crystal X-ray diffraction. The tetranuclear complex molecule [Mn(II)2Mn(III)2(dipic)6(H2O)4] is centrosymmetric and two manganese(II) and two manganese(III) atoms are bridged by four dipicolinate ligands. The complex molecules and uncoordinated water and methanol molecules are connected through hydrogen bonds and they form a 3D supramolecular hydrogen-bonding network.
Prebiotic chemicals-amino acid and phosphorus-in the coma of comet 67P/Churyumov-Gerasimenko.
Altwegg, Kathrin; Balsiger, Hans; Bar-Nun, Akiva; Berthelier, Jean-Jacques; Bieler, Andre; Bochsler, Peter; Briois, Christelle; Calmonte, Ursina; Combi, Michael R; Cottin, Hervé; De Keyser, Johan; Dhooghe, Frederik; Fiethe, Bjorn; Fuselier, Stephen A; Gasc, Sébastien; Gombosi, Tamas I; Hansen, Kenneth C; Haessig, Myrtha; Jäckel, Annette; Kopp, Ernest; Korth, Axel; Le Roy, Lena; Mall, Urs; Marty, Bernard; Mousis, Olivier; Owen, Tobias; Rème, Henri; Rubin, Martin; Sémon, Thierry; Tzou, Chia-Yu; Hunter Waite, James; Wurz, Peter
2016-05-01
The importance of comets for the origin of life on Earth has been advocated for many decades. Amino acids are key ingredients in chemistry, leading to life as we know it. Many primitive meteorites contain amino acids, and it is generally believed that these are formed by aqueous alterations. In the collector aerogel and foil samples of the Stardust mission after the flyby at comet Wild 2, the simplest form of amino acids, glycine, has been found together with precursor molecules methylamine and ethylamine. Because of contamination issues of the samples, a cometary origin was deduced from the (13)C isotopic signature. We report the presence of volatile glycine accompanied by methylamine and ethylamine in the coma of 67P/Churyumov-Gerasimenko measured by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) mass spectrometer, confirming the Stardust results. Together with the detection of phosphorus and a multitude of organic molecules, this result demonstrates that comets could have played a crucial role in the emergence of life on Earth.
On the CO and N2 abundance in Comet Halley
NASA Technical Reports Server (NTRS)
Eberhardt, P.; Krankowsky, D.; Schulte, W.; Dolder, U.; Laemmerzahl, P.; Berthelier, J. J.; Woweries, J.; Stubbemann, U.; Hodges, R. R.; Hoffmann, J. H.
1986-01-01
The mass 28 amu/e signal observed in the neutral mode of the Giotto neutral gas mass spectrometer (NMS) is evaluated. At 1000 km from the nucleus number density n(CO)/ n(H2O) is less than or = 0.07. The production rate of CO as a parent molecule directly from the nucleus is thus less than 7% of the H2O production rate. However, CO is also produced from an extended source in the inner coma (r is less than 20,000 km) and at 20,000 km from the nucleus, for the total equivalent CO production rate 0.05 is less than or = Q(CO)/Q(H2O) is less than or = 0.15. For N2 an upper limit Q(N2)/Q(H2O) is less than or = 0.1 is derived. No parent molecule for the CO is identified in agreement with the NMS measurements. It is proposed that CO or a very short-lived parent is released in the coma from cometary dust grains, such as the CHON particles.
Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko
Altwegg, Kathrin; Balsiger, Hans; Bar-Nun, Akiva; Berthelier, Jean-Jacques; Bieler, Andre; Bochsler, Peter; Briois, Christelle; Calmonte, Ursina; Combi, Michael R.; Cottin, Hervé; De Keyser, Johan; Dhooghe, Frederik; Fiethe, Bjorn; Fuselier, Stephen A.; Gasc, Sébastien; Gombosi, Tamas I.; Hansen, Kenneth C.; Haessig, Myrtha; Jäckel, Annette; Kopp, Ernest; Korth, Axel; Le Roy, Lena; Mall, Urs; Marty, Bernard; Mousis, Olivier; Owen, Tobias; Rème, Henri; Rubin, Martin; Sémon, Thierry; Tzou, Chia-Yu; Hunter Waite, James; Wurz, Peter
2016-01-01
The importance of comets for the origin of life on Earth has been advocated for many decades. Amino acids are key ingredients in chemistry, leading to life as we know it. Many primitive meteorites contain amino acids, and it is generally believed that these are formed by aqueous alterations. In the collector aerogel and foil samples of the Stardust mission after the flyby at comet Wild 2, the simplest form of amino acids, glycine, has been found together with precursor molecules methylamine and ethylamine. Because of contamination issues of the samples, a cometary origin was deduced from the 13C isotopic signature. We report the presence of volatile glycine accompanied by methylamine and ethylamine in the coma of 67P/Churyumov-Gerasimenko measured by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) mass spectrometer, confirming the Stardust results. Together with the detection of phosphorus and a multitude of organic molecules, this result demonstrates that comets could have played a crucial role in the emergence of life on Earth. PMID:27386550
Theoretical investigation of the weak interaction between graphene and alcohol solvents
NASA Astrophysics Data System (ADS)
Wang, Haining; Chen, Sian; Lu, Shanfu; Xiang, Yan
2017-05-01
The dispersion of graphene in five different alcohol solvents was investigated by evaluating the binding energy between graphene and alcohol molecules using DFT-D method. The calculation showed the most stable binding energy appeared at the distance of ∼3.5 Å between graphene and alcohol molecules and increased linearly as changing the alcohol from methanol to 1-pentanol. The weak interaction was further graphically illustrated using the reduced density gradient method. The theoretical study revealed alcohols with more carbon atoms could be a good starting point for screening suitable solvents for graphene dispersion.
Organic Chemistry of Southern Sources: Microwave Spectroscopy of Cha-MMS1 and IRAS 15194-5115
NASA Technical Reports Server (NTRS)
Cordiner, Martin; Charnley, Steven
2011-01-01
We report new spectra of molecule-rich sources in the southern hemisphere obtained using the 22-meter Mopra telescope. Spectra and maps are presented of organic molecules detected between 30 and 50 GHz in the young Class 0 protostar Chamaeleon MMS-1. The large abundances of polyynes, cyanopolyynes and methanol may be indicative of a warm carbon chemistry in the dense gas surrounding this protostar. Spectra are also presented from a 78-96 GHz scan of the carbon-rich AGB star IRAS 15194-5115, including new detections of HC5N, CCS and C13CH.
Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun
2012-05-02
A facile and general method has been developed to synthesize well-defined PdPt and PdAu alloy nanowires, which exhibit significantly enhanced activity towards small molecules, such as ethanol, methanol, and glucose electro-oxidation in an alkaline medium. Considering the important role of one-dimensional alloy nanowires in electrocatalytic systems, the present Pd-based alloy nanostructures could offer a promising new class of advanced electrocatalysts for direct alcohol fuel cells and electrochemical sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inter/intra molecular dynamics in gases and liquids studied by terahertz time-domain spectroscopy
NASA Astrophysics Data System (ADS)
Xin, Xuying
This thesis presents a description of the low-frequency terahertz (THz) absorption spectrum of a variety of materials that are of interest to many biological and chemical processes. The work described here encompasses the development of time-domain THz spectrometers, based on amplified Ti: Sapphire lasers systems as well as mode-locked Erbium doped fiber lasers as the driving source. These systems were applied to characterize the absorption spectrum of liquid water and water vapor, heavy water vapor, methanol vapor and tryptophan in the 0.2-2.2THz frequency range. The absorption profiles observed are closely related to the intermolecular or intramolecular motions in the materials of interest. In liquid water, the absorption profile shows evidence for modes due to large-scale structure amongst individual water molecules. The effects on the overall absorption profile are further deduced by the addition of various solutes which can enhance or break the formation of molecule networks. Various solutions are examined such as KCl in liquid water. Ions can change the strength of hydrogen bond in liquid water in the similar way as temperature does. Both K+ and Cl- are considered to be strong "structure breakers" in terms of their functions as softening the strength of hydrogen bond in liquid water. Theoretically, this will cause a red shift of some mode frequencies, reducing the absorption intensity at those frequencies and, at the same time, increasing the absorption at non-mode frequencies toward the vicinity of the low frequencies. For liquid water, the vapor phase was also examined, where for varying concentrations (humidity) Beer's Law does not hold to explain the observed absorption profiles. Again the reduced absorption of certain modes is explained by interactions between water monomers and their nature due to hydrogen spins. There are two species of water molecules in terms of the nuclear spin effect of hydrogen atoms in water molecule, ortho-water and para-water. The two types of water molecules present significantly different properties, e.g. different surface adsorption on metals. The effects of para-water and ortho-water on the THz absorption profile are discussed. Finally, I discuss the absorption profile of methanol vapor and tryptophan. In methanol vapor we observe coherent echoes after absorption by a THz transient and attribute it to the relaxation of the molecule due to the regularly spaced rotational manifold. In tryptophan two distinct absorption modes are observed due to torsional modes. These "soft-modes" are calculated and attributed to intramolecular motions between various atoms. The results of this body of work are discussed in the context of applications ranging from medicine, pharmaceuticals and the cosmetics industries.
Chemical composition of the semi-volatile grains of comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Wurz, Peter; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Bieler, André; Calmonte, Ursina; De Keyser, Johan; Fiethe, Björn; Fuselier, Stefan; Gasc, Sébastien; Gombosi, Tamas; Jäckel, Annette; Korth, Axel; Le Roy, Lena; Mall, Urs; Rème, Henri; Rubin, Martin; Tzou, Chia-Yu
2017-04-01
The European Space Agency's Rosetta spacecraft (Glassmeier et al., 2007) has been in orbit of the comet 67P/Churyumov-Gerasimenko (67P/C-G) since August 2014. On board is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument suite (Balsiger et al., 2007). ROSINA consists of two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron-type Time-Of-Flight (RTOF) (Scherer et al., 2006), as well as the COmet Pressure Sensor (COPS). ROSINA is designed to detect and monitor the neutral gas and thermal plasma environment in the comet's coma by in situ investigation. The two mass spectrometers have high dynamic ranges and complement each other with high mass resolution (DFMS) and high time resolution and large mass range (RTOF). Especially the unprecedented sensitivity and mass resolution of DFMS together with the large mass range of RTOF allow determining precisely light species (e.g. isotopologues) as well as detecting heavy organic species. The pressure sensor COPS measures total gas densities, bulk velocities, and gas temperatures. ROSINA has been collecting data on the composition of the coma and activity of the comet from 3.5 AU to pericentre and out again to 3.5 AU. The Rosetta mission presents a unique opportunity to directly sample the parent species in the thin cometary atmosphere of a Kuiper-belt object at distances in excess of 2.5 AU from the Sun all the way to the pericentre of the cometary orbit at 1.24 AU. The ROSINA experiment continuously measured the chemical composition of the gases in the cometary coma. Occasionally, a dust grain of cometary origin enters the ion source of a ROSINA instrument where the volatile part evaporates since these ion sources are hot. We will report on the first measurements of the volatile inventory of such dust grains. Volatile release from cometary dust grains was observed with all three ROSINA instruments on several occasions. Because the volatile content of such a dust grain is completely evaporated in such an ion source after a few 100 seconds, the RTOF instrument is best suited for the investigation of its chemical composition since several complete mass spectra are recorded during this time. The rate of dust grains recorded in RTOF is small, and we report on the collection and analysis of 9 dust grains during the October 2014 to July 2016 time period. It is estimated that these grains contain about 1E-15 g of volatiles, which would correspond to a grain of the order of 100 nm in size if made up of volatiles alone. We fitted the recorded mass spectra of RTOF with a set of 61 molecules, and their molecular fragments resulting from the ionisation. The major groups of chemical species are hydrocarbons, oxygenated hydrocarbons, nitrogen-bearing molecules, sulphur-bearing molecules, halogenated molecules and others (including water and CO2). About 70% of these grains are depleted in water compared to the comet coma, thus, can be considered as semi-volatile dust grains, and the other about 30% are water grains. The mineral phase of these grains, if there is any, cannot be investigated in these measurements. However, in an earlier investigation the bulk composition of mineral grains on the surface of the comet was inferred from solar wind sputtering of these grains (Wurz et al., 2015). H. Balsiger, K. Altwegg, P. Bochsler, P. Eberhardt, J. Fischer, S. Graf, A. Jäckel, E. Kopp, U. Langer, M. Mildner, J. Müller, T. Riesen, M. Rubin, S. Scherer, P. Wurz, S. Wüthrich, E. Arijs, S. Delanoye, J. De Keyser, E. Neefs, D. Nevejans, H. Rème, C. Aoustin, C. Mazelle, J.-L. Médale, J.A. Sauvaud, J.-J. Berthelier, J.-L. Ber-taux, L. Duvet, J.-M. Illiano, S.A. Fuselier, A.G. Ghielmetti, T. Magoncelli, E.G. Shelley, A. Korth, K. Heerlein, H. Lauche, S. Livi, A. Loose, U. Mall, B. Wilken, F. Gliem, B. Fiethe, T.I. Gombosi, B. Block, G.R. Carignan, L.A. Fisk, J.H. Waite, D.T. Young, and H. Wollnik, ROSINA - Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Space Science Review 128 (2007), 745-801. K.-H Glassmeier, H. Boehnhardt, D. Koschny, E. Kührt, and I. Richter, The Rosetta Mission: Flying To-wards the Origin of the Solar System, Space Science Reviews 128 (2007), 1-21. S. Scherer, K. Altwegg, H. Balsiger, J. Fischer, A. Jäckel, A. Korth, M. Mildner, D. Piazza, H. Rème, and P. Wurz, A novel principle for an ion mirror design in time-of-flight mass spectrometry, Int. Jou. Mass Spectr. 251 (2006) 73-81. P. Wurz, M. Rubin, K. Altwegg, H. Balsiger, S. Gasc, A. Galli, A. Jäckel, L. Le Roy, U. Calmonte, C. Tzou, U.A. Mall, B. Fiethe, J. De Keyser, J.J. Berthelier, H. Rème, A. Bieler, V. Tenishev, T.I. Gombosi, and S.A. Fuselier, Solar Wind Sputtering of Dust on the Surface of 67P/Churyumov-Gerasimenko, Astron. Astrophys. 583, A22 (2015) 1-9, DOI: 10.1051/0004-6361/201525980.
DFT study of CO2 conversion on InZr3(110) surface.
Zhang, Minhua; Dou, Maobin; Yu, Yingzhe
2017-11-01
Methanol and methane synthesis from CO 2 hydrogenation on a InZr 3 (110) surface has been studied using density functional theory calculations. The CO 2 can be chemically adsorbed via a polydentated configuration and the H 2 molecule can dissociate to H atoms spontaneously. The methanol is primarily formed via the HCOO route instead of the RWGS route, due to its higher activation barrier of 1.35 eV for HCO hydrogenation. In the HCOO route, the adsorbed CO 2 consecutively hydrogenates to form HCOO, H 2 COO and the H 3 CO species. The H 3 COH is produced via the reaction of H 3 CO with a surface OH group. Furthermore, the C-O bonds of CO, CHO, CH 2 O and CH 3 O species prefer to dissociate to C, CH, CH 2 CH 3 and surface O species. Methane is formed via the hydrogenation of CH x (x = 0-3) monomers with the highest activation barrier of 1.19 eV for CH 3 hydrogenation, which is higher than that of the hydrogenation of H 2 COO in methanol synthesis via the HCOO route. The surface O species formed during CO 2 hydrogenation reacts with the adsorbed H 2 molecule to produce an OH group which reacts with a surface H atom to form H 2 O with an activation barrier of 1.13 eV, which then desorbs to the gas phase. Our calculated results indicate that the InZr 3 alloy is a potential candidate catalyst for CO 2 utilization and conversion.
Fang, Hua; Kim, Yongho
2011-12-01
The excited-state tautomerization of 7-azaindole (7AI) complexes bonded with either one or two methanol molecule(s) was studied by systematic quantum mechanical calculations in the gas phases. Electronic structures and energies for the reactant, transition state (TS), and product were computed at the complete active space self-consistent field (CASSCF) levels with the second-order multireference perturbation theory (MRPT2) to consider the dynamic electron correlation. The time-dependent density functional theory (TDDFT) was also used for comparison. The excited-state double proton transfer (ESDPT) in 7AI-CH(3)OH occurs in a concerted but asynchronous mechanism. Similarly, such paths are also found in the two transition states during the excited-state triple proton transfer (ESTPT) of the 7AI-(CH(3)OH)(2) complex. In the first TS, the pyrrole ring proton first migrated to methanol, while in the second the methanol proton moved first to the pyridine ring. The CASSCF level with the MRPT2 correction showed that the former path was much preferable to the latter, and the ESDPT is much slower than the ESTPT. Additionally, the vibrational-mode enhanced tautomerization in the 7AI-(CH(3)OH)(2) complex was also studied. We found that the excitation of the low-frequency mode shortens the reaction path to increase the tautomerization rate. Overall, most TDDFT methods used in this study predicted different TS structures and barriers from the CASSCF methods with MRPT2 corrections. © 2011 American Chemical Society
Discovery of Non-random Spatial Distribution of Impacts in the Stardust Cometary Collector
NASA Technical Reports Server (NTRS)
Horz, Friedrich; Westphal, Andrew J.; Gainsforth, Zack; Borg, Janet; Djouadi, Zahia; Bridges, John; Franchi, Ian; Brownlee, Donald E.; Cheng. Andrew F.; Clark, Benton C.;
2007-01-01
We report the discovery that impacts in the Stardust cometary collector are not distributed randomly in the collecting media, but appear to be clustered on scales smaller than 10 cm. We also report the discovery of at least two populations of oblique tracks. We evaluated several hypotheses that could explain the observations. No hypothesis was consistent with all the observations, but the preponderance of evidence points toward at least one impact on the central Whipple shield of the spacecraft as the origin of both clustering and low-angle oblique tracks. High-angle oblique tracks unambiguously originate from a non-cometary impact on the spacecraft bus just forward of the collector.
NASA Technical Reports Server (NTRS)
Ponnamperuma, C.
1981-01-01
Papers are presented concerning the characteristics of comets and their possible role in the origin of life. Specific topics include the characteristics, origin and structure of the cometary nucleus, cometary chemical abundances, the nature of interplanetary dust and its entry into terrestrial planet atmospheres, and the mechanism of ray closure in comet tails. Attention is also given to chemically evolved interstellar dust as a source of prebiotic material, the relation of comets to paleoatmospheric photochemistry, comets as a vehicle for panspermia, limits to life posed by extreme environments, and the status of cometary space missions as of 1980.
NASA Astrophysics Data System (ADS)
Michael, Manesh; Willington, Neethu T.; Jayakumar, Neethu; Sebastian, Sijo; Sreekala, G.; Venugopal, Chandu
2016-12-01
We investigate the existence of ion-acoustic shock waves in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdVB equation has been derived for the system, and its solution plotted for different kappa values, oxygen ion densities, as well as the temperature ratios for the ions. It is found that the amplitude of the shock wave decreases with increasing kappa values. The strength of the shock profile decreases with increasing temperatures of the positively charged oxygen ions and densities of negatively charged oxygen ions.
CARBON CHAINS AND METHANOL TOWARD EMBEDDED PROTOSTARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graninger, Dawn M.; Wilkins, Olivia H.; Öberg, Karin I., E-mail: dgraninger@cfa.harvard.edu
2016-03-10
Large interstellar organic molecules are potential precursors of prebiotic molecules. Their formation pathways and chemical relationships with one another and simpler molecules are therefore of great interest. In this paper we address the relationships between two classes of large organic molecules, carbon chains and saturated complex organic molecules at the early stages of star formation through observations of C{sub 4}H and CH{sub 3}OH. We surveyed these molecules with the IRAM 30 m telescope toward 16 deeply embedded low-mass protostars selected from the Spitzer c2d ice survey. We find that CH{sub 3}OH and C{sub 4}H are positively correlated, indicating that thesemore » two classes of molecules can coexist during the embedded protostellar stage. The C{sub 4}H/CH{sub 3}OH gas abundance ratio tentatively correlates with the CH{sub 4}/CH{sub 3}OH ice abundance ratio in the same lines of sight. This relationship supports a scenario where carbon chain formation in protostellar envelopes begins with CH{sub 4} ice desorption.« less
Lipid extraction of wet BLT0404 microalgae for biofuel application
NASA Astrophysics Data System (ADS)
Mansur, Dieni; Fitriady, Muhammad Arifuddin; Susilaningsih, Dwi; Simanungkalit, Sabar Pangihutan; Agustian, Egi
2017-01-01
Recently, research and development of microalgae for biodiesel production were conducted by researchers in the world. This research becomes popular because of an exponential growth of the microalgae under nutrient limitation. Lipid of microalgae grows faster than oil producing land crops. Therefore, microalgae lipid content could improve the economics of biodiesel production. The aim of this study was to investigate yield of lipid extract and chemicals compounds containing in non-acylglycerol neutral lipid from BLT 0404 microalga. The study was conducted because lipid extraction was an important step for biodiesel as well as biofuel production. The extraction was carried out using polar and non-polar mixture solvents. The polar solvent was methanol and non-polar one was chloroform. Process extraction was conducted under various stirring time between the microalgae and methanol and volume ratio between the methanol and chloroform. Methanol as a polar solvent was able to extract polar lipid (phospholipid and glycolipid) because it removed polar membrane lipid and lipid-associated to polar molecule. Moreover, the non-polar solvent was used for extraction non-acylglycerol neutral lipid (hydrocarbons, sterols, ketones, free fatty acids, carotenes, and chlorophylls) for biofuel production. Under ratio of microalgae: methanol: chloroform of 0.8: 4: 2 that stirring time of the microalgae with methanol was 30 min yielded 58% of total lipid extract. The yield value consisted of 14.5% of non-acylglycerol neutral lipid and 43.5% of polar lipid. The non-acylglycerol neutral lipid will be converted into biofuel. Therefore, analysis of its chemical compounds was required. The non-acylglycerol neutral lipid was analyzed by GCMS and found that the extract contained long chains of hydrocarbon compounds. The hydrocarbons consisted of C18-C30 that high peaks with larger percentage area were C20-C26. The results suggested that stirring between microalgae and methanol for 30 min was needed before additional of chloroform. Moreover, the ratio of methanol must be higher than chloroform due to the higher portion of polar lipid content in the microalgae.
The pristine nature of comets. [primeval composition of solar bodies
NASA Technical Reports Server (NTRS)
Delsemme, A. H.
1977-01-01
Abundance considerations suggest that comets are likely to be the most pristine minor bodies in the solar system. In proportion to solar abundances, the present scanty data suggest that cometary oxygen is not depleted, whereas carbon is by a factor of 4 and hydrogen, by a factor of 2000. This implies that comets are less depleted in H, C, N, O than CI chondrites, namely 10:1 in hydrogen, 4:1 in carbon and 3:1 in oxygen. These results have been obtained by using dust-to-gas ratios in comets to measure the relative abundance of silicon and metals to volatile material, and the spectra of atomic lines, mainly from the vacuum ultraviolet, to determine the H/O and C/O ratios of the mixture of volatile molecules.
Organic synthesis via irradiation and warming of ice grains in the solar nebula.
Ciesla, Fred J; Sandford, Scott A
2012-04-27
Complex organic compounds, including many important to life on Earth, are commonly found in meteoritic and cometary samples, though their origins remain a mystery. We examined whether such molecules could be produced within the solar nebula by tracking the dynamical evolution of ice grains in the nebula and recording the environments to which they were exposed. We found that icy grains originating in the outer disk, where temperatures were less than 30 kelvin, experienced ultraviolet irradiation exposures and thermal warming similar to that which has been shown to produce complex organics in laboratory experiments. These results imply that organic compounds are natural by-products of protoplanetary disk evolution and should be important ingredients in the formation of all planetary systems, including our own.
Cosmic Carbon Chemistry: From the Interstellar Medium to the Early Earth
Ehrenfreund, Pascale; Cami, Jan
2010-01-01
Astronomical observations have shown that carbonaceous compounds in the gas and solid state, refractory and icy are ubiquitous in our and distant galaxies. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly large number of molecules that are used in contemporary biochemistry on Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites, and interplanetary dust particles. In this article we review the current knowledge of abundant organic material in different space environments and investigate the connection between presolar and solar system material, based on observations of interstellar dust and gas, cometary volatiles, simulation experiments, and the analysis of extraterrestrial matter. Current challenges in astrochemistry are discussed and future research directions are proposed. PMID:20554702
Observations of the Hydroxyl Radical in C/2013 US10 (Catalina) at 18 cm Wavelength
NASA Astrophysics Data System (ADS)
Wang, Zhen; Chen, Xi; Gao, Feng; Zhang, Shaobo; Zheng, Xing-Wu; Ip, Wing-Huen; Wang, Na; Liu, Xiang; Zuo, Xiu-Ting; Gou, Wei; Chang, Sheng-Qi
2017-12-01
The hydroxyl (OH) radical produced by photodissociation of water molecule is one of the most important indicators for cometary outgassing activity. The absorption lines of the OH radical at 1665 and 1667 MHz in the coma of comet C/2013 US10 Catalina were detected between 2015 December 3 and 5 by the Tian Ma Radio Telescope of Shanghai Astronomical Observatory. The source flux intensity was derived to be about -209 mJy km s-1 and -86 mJy km s-1 at 1665 MHz and 1667 MHz, respectively. The corresponding gas production rate was estimated to be (8.78 ± 1.47) × 1028 H2O s-1 and (5.94 ± 1.27) × 1028 H2O s-1, accordingly.
NASA Astrophysics Data System (ADS)
O'Mara, A.; Busemann, H.; Clay, P. L.; Crowther, S. A.; Gilmour, J. D.; Wieler, R.
2014-09-01
Xenon detection in comet Wild 2 stardust is hampered by the large adsorption of Xe on aerogel. In-vacuum etching presented here may enable the stepwise separation of terrestrial Xe, cometary Xe trapped in melted aerogel and Xe in cometary silicates.
A continuing controversy: Has the cometary nucleus been resolved?
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1976-01-01
Evidence is presented for classifying cometary nuclei into two basic types, described by core mantle and coreless models. Mass loss related nongravitational effects in a comet's motion as a function of time are included in considering gradual evaporation of an icy envelope surrounding the meteoric matrix in the core of the nucleus.
Radar meteor orbital structure of Southern Hemisphere cometary dust streams
NASA Technical Reports Server (NTRS)
Baggaley, W. Jack; Taylor, Andrew D.
1992-01-01
The Christchurch, New Zealand meteor orbit radar (AMOR) with its high precision and sensitivity, permits studies of the orbital fine structure of cometary streams. PC generated graphics are presented of data on some Southern Hemisphere Streams. Such data can be related to the formation phase and subsequent dynamical processes of dust streams.
Physical characteristics of cometary dust from optical studies
NASA Technical Reports Server (NTRS)
Hanner, M. S.
1980-01-01
Observations of the sunlight scattered and thermal emission from cometary dust, which may be used to infer the physical properties of the dust grains, are reviewed. Consideration is given to the observed wavelength dependence of the scattered light from cometary coma and tails, the average scattering function of the dust grains, the average grain Bond albedo, the polarization of the scattered light, and grain temperatures deduced from thermal infrared emission. The thermal properties of dust grains are illustrated for models based on magnetite or olivine grain materials, with consideration given to the variation of thermal properties with particle radius and heliocentric distance. Comparison of the models with observations indicates that a disordered or amorphous olivine composition can give a reasonable fit to the data for appropriate grain sizes and temperatures. The observations acquired are noted to indicate an optically important particle size of 1 micron, with silicate particles not larger than a few microns usually present although pure silicate grains can not be responsible for the thermal emission, and the cometary dust grains are most likely not spherical. Further observations needed in the infrared are indicated.
Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse.
Vincent, Jean-Baptiste; Bodewits, Dennis; Besse, Sébastien; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F; Auger, Anne-Thérèse; Barucci, M Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Capanna, Claire; Cremonese, Gabriele; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; El-Maarry, Mohamed Ramy; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Giacomini, Lorenza; Groussin, Olivier; Guilbert-Lepoutre, Aurélie; Gutierrez-Marques, P; Gutiérrez, Pedro J; Güttler, Carsten; Hoekzema, Nick; Höfner, Sebastian; Hviid, Stubbe F; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M; Lazzarin, Monica; Lee, Vicky; Leyrat, Cédric; Lin, Zhong-Yi; Lopez Moreno, Josè J; Lowry, Stephen; Magrin, Sara; Maquet, Lucie; Marchi, Simone; Marzari, Francesco; Massironi, Matteo; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Preusker, Frank; Scholten, Frank; Thomas, Nicolas; Toth, Imre; Tubiana, Cecilia
2015-07-02
Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts. Alternative mechanisms like explosive activity have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.
A radio source occultation experiment with comet Austin 1982g, with unusual results
NASA Technical Reports Server (NTRS)
De Pater, I.; Ip, W.-H.
1984-01-01
A radio source occultation by comet Austin 1982g was observed on September 15-16, 1982. A change in the apparent position of 1242 + 41 by 1.3 arcsec occurred when the source was 220,000 km away from the cometary ion tail. If this change was due to refraction by the cometary plasma, it indicates an electron density of the plasma of about 10,000/cu cm. When the radio source was on the other side of the plasma tail, at a distance of 230,000 km, the position angle of the electric vector of the radio source changed gradually over about 140 deg within two hours. This observation cannot be explained in terms of ionospheric Faraday rotation, and results from either an intrinsic change in the radio source or Faraday rotation in the cometary plasma due to a change in the direction and/or strength of the magnetic field. In the latter case, the cometary coma must have an electron density and a magnetic field strength orders of magnitude larger than current theories predict.
Analysis of the Cometary Plasma Environment of 67P/Churyumov-Gerasimenko Near Perihelion
NASA Astrophysics Data System (ADS)
Ostaszewski, K.; Goetz, C.; Motschmann, U.; Glassmeier, K. H.
2017-09-01
Over the course of its two year escort phase the Rosetta spacecraft has provided various observations that furthered our understanding of the cometary plasma environment. The use of numerical simulations is essential for this understanding because they allow to place the in situ measurements in a global context, in turn, through observations the numerical models can be ex- tended and improved. We use the simulation code A.I.K.E.F (Müller [7]) to simulate the cometary plasma environment of 67P/Churyumov-Gerasimenko (67P/CG). Based on observations made by the Rosetta spacecraft we extend the numerical model by electron impact ionization and the anisotropic outgassing model by Hansen et al. (2016). Both extensions result in an increase in the cometary ion production rate on the dayside. Therefore, the size of the interaction region and the contained structures increases. This causes the position of the different boundaries, e.g. bow shock, to shift further away from the comet. Considering this we can explain why no bow shock crossings could be observed during the dayside excursion of Rosetta in September 2015.
Oxygen chemistry in the circumstellar envelope of the carbon-rich star IRC+10216
NASA Astrophysics Data System (ADS)
Agúndez, Marcelino; Cernicharo, José
IRC+10216 is a low mass AGB star losing mass at a rate of 2-4 × 10-5 Msol yr-1 in the form of a wind that produces an extended circumstellar envelope (CSE). The processes of dredge-up during this thermal pulsating evolutionary phase has enhanced the C/O ratio above 1. Local thermodynamic equilibrium (LTE) calculations, valid in the high temperature and density region (T ~ 2500 K and ρ ~ 1014 cm-3) near the photosphere, show that in such a C-rich environment the CO molecule locks almost all the oxygen, due to its high stability, and allow for the carbon in excess to form C-bearing molecules, which dominate the circumstellar chemistry. However, recently some O-bearing molecules have been detected towards IRC+10216 with moderate abundances, H2O (Melnick et al. 2001; Nature, 412, 160), OH (Ford et al. 2003; ApJ, 589, 430) and H2CO (Ford et al. 2004; ApJ, 614, 990). The presence of water, not expected in this source, was interpreted by these authors as the evaporation of cometary ices from a Kuiper belt-analog. Can the presence of water in a C-rich CSE be univoquely assigned to a cometary origin?. We have studied the possible chemical routes leading to the formation of H2O as well as other O-bearing molecules in the conditions of the C-rich expanding envelope of IRC+10216. We distinguish two zones of the CSE: inner and outer envelope, with well differentiated properties. The former extends from the photosphere up to some few stellar radii, in which phenomena such as pulsational driven shocks and dust condensation make the gas to expands. LTE calculations predict that H2O become very abundant when temperature decreases below ~ 700 K but gas phase chemical reactions are not rapid enough for transforming CO into H2O in the dynamical timescales of the expanding envelope. Only processes on grain surfaces acting as a catalyst would be able of such transformation, as have been proposed by Willacy 2004 (ApJ, 600, L87). In the expanding outer envelope some O-bearing species increase its abundances when CO photodissociates due to the interstellar standard UV field. Neutral-neutral reactions without activation energy and radiative associations are competitive in producing O-bearing species until they are also photodissociated. At this moment we just have some preliminary results: H2CO abundance predicted by these routes reach a peak values of 4 × 10-9, somewhat lower than the observational estimation of 1.3 × 10-8. Predictions for H2O and OH abundances are some orders of magnitude lower than the ones derived from line observations, but these depends on the assumptions for the size of the emitting region. The higher the size, the lower the abundance needed for explaining a given line intensity. HCO+ is also predicted with an abundance that ranges from 1 × 10-10 to 6 × 10-10 depending on the H2 ionization rate by cosmic rays. Using these values in a non-local radiative transfer modelling, the 1-0 line of HCO+, which has an intensity of ~ 20 mK, can be well reproduced. Future observations of submillimeter lines of H2O with the HIFI instrument on board the Herschel satellite together with detailed radiative transfer modelling of the lines will help to constraint the water abundance, the location from where it comes as well as the chemical origin, i.e. cometary ices, grain surface processes or chemistry in the outer envelope.
The Complex Outgassing of Comets and the Resulting Coma, a Direct Simulation Monte-Carlo Approach
NASA Astrophysics Data System (ADS)
Fougere, Nicolas
During its journey, when a comet gets within a few astronomical units of the Sun, solar heating liberates gases and dust from its icy nucleus forming a rarefied cometary atmosphere, the so-called coma. This tenuous atmosphere can expand to distances up to millions of kilometers representing orders of magnitude larger than the nucleus size. Most of the practical cases of coma studies involve the consideration of rarefied gas flows under non-LTE conditions where the hydrodynamics approach is not valid. Then, the use of kinetic methods is required to properly study the physics of the cometary coma. The Direct Simulation Monte-Carlo (DSMC) method is the method of choice to solve the Boltzmann equation, giving the opportunity to study the cometary atmosphere from the inner coma where collisions dominate and is in thermodynamic equilibrium to the outer coma where densities are lower and free flow conditions are verified. While previous studies of the coma used direct sublimation from the nucleus for spherically symmetric 1D models, or 2D models with a day/night asymmetry, recent observations of comets showed the existence of local small source areas such as jets, and extended sources via sublimating icy grains, that must be included into cometary models for a realistic representation of the physics of the coma. In this work, we present, for the first time, 1D, 2D, and 3D models that can take into account the full effects of conditions with more complex sources of gas with jets and/or icy grains. Moreover, an innovative work in a full 3D description of the cometary coma using a kinetic method with a realistic nucleus and outgassing is demonstrated. While most of the physical models used in this study had already been developed, they are included in one self-consistent coma model for the first time. The inclusion of complex cometary outgassing processes represents the state-of-the-art of cometary coma modeling. This provides invaluable information about the coma by refining the understanding of the material that constitutes comets. This helps us to comprehend the process of the Solar System formation, one of the top priority questions in the 2013-2022 Planetary Science Decadal survey.
Process assessment of small scale low temperature methanol synthesis
NASA Astrophysics Data System (ADS)
Hendriyana, Susanto, Herri; Subagjo
2015-12-01
Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H2 to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H2 for increasing H2/CO ratio. CO2 removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic analysis. The presented study is an attempt to compile most of these efforts in order to guide future work to get cheaper low cost investment. From our study the interesting configuration to the next development is D configuration with methanol yield 112 ton/day and capital cost with 526.4 106 IDR. The configuration of D with non-discounted and discounted rate had the break-even point approximately six and eight years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Löytynoja, T., E-mail: tuomas.loytynoja@oulu.fi; Division of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm; Li, X.
We study a newly devised quantum mechanics capacitance molecular mechanics (QMCMM) method for the calculation of core-electron binding energies in the case of molecules adsorbed on metal surfaces. This yet untested methodology is applied to systems with monolayer of methanol/methyl nitrite on an Ag(111) surface at 100 K temperature. It was found out that the studied C, N, and O 1s core-hole energies converge very slowly as a function of the radius of the metallic cluster, which was ascribed to build up of positive charge on the edge of the Ag slab. Further analysis revealed that an extrapolation process canmore » be used to obtain binding energies that deviated less than 0.5 eV against experiments, except in the case of methanol O 1s where the difference was as large as 1.8 eV. Additional QM-cluster calculations suggest that the latter error can be connected to the lack of charge transfer over the QM–CMM boundary. Thus, the results indicate that the QMCMM and QM-cluster methods can complement each other in a holistic picture of molecule-adsorbate core-ionization studies, where all types of intermolecular interactions are considered.« less
Nagarajan, V; Chandiramouli, R
2017-05-01
The electronic properties of borophane nanosheet and adsorption behavior of three distinct alcohol vapors namely methanol, ethanol and 1-propanol on borophane nanosheet is studied using density functional theory method for the first time. The state-of-the-art provides insights on to the development of new two dimensional materials with the surface passivation on boron nanostructures. The density of states spectrum provides a clear perception on charge transfer upon adsorption of alcohol vapors on borophane nanosheets. The monolayer of borophane band gap widens upon adsorption of alcohol vapors, which can be used for the detection for volatile organic vapors. The adsorption properties of alcohol vapors on borophane base material are analyzed in terms of natural bond orbital, average energy gap variation, adsorption energy and energy gap. The most suitable adsorption sites of methanol, ethanol and 1-propanol molecules on borophane nanosheet are investigated in atomistic level. The adsorption of alcohol molecules on borophane nanosheet is found to be more favorable. The findings suggest that the monolayer borophane nanosheet can be utilized to detect the presence of alcohol vapors in the atmosphere. Copyright © 2017 Elsevier Inc. All rights reserved.
Cintrón, Michael Santiago; Johnson, Glenn P; French, Alfred D
2017-04-18
The interaction of two methanol molecules, simplified models of carbohydrates and cellulose, was examined using a variety of quantum mechanics (QM) levels of theory. Energy plots for hydrogen bonding distance (H⋯O) and angle (OH⋯O) were constructed. All but two experimental structures were located in stabilized areas on the vacuum phase energy plots. Each of the 399 models was analyzed with Bader's atoms-in-molecules (AIM) theory, which showed a widespread ability by the dimer models to form OH⋯O hydrogen bonds that have bond paths and Bond Critical Points. Continuum solvation calculations suggest that a portion of the energy-stabilized structures could occur in the presence of water. A survey of the Cambridge Structural Database (CSD) for all donor-acceptor interactions in β-D-glucose moieties examined the similarities and differences among the hydroxyl groups and acetal oxygen atoms that participate in hydrogen bonds. Comparable behavior was observed for the O2H, O3H, O4H, and O6H hydroxyls, acting either as acceptors or donors. Ring O atoms showed distinct hydrogen bonding behavior that favored mid-length hydrogen bonds. Published by Elsevier Ltd.
Kharlova, Marharyta I; Piletska, Kseniia O; Domasevitch, Kostiantyn V; Shtemenko, Alexander V
2017-04-01
In the title compound, [ReBr(C 16 H 16 N 4 O 3 )(CO) 3 ]·CH 3 OH, the Re I atom adopts a distorted octa-hedral coordination sphere with a facial arrangement of the three carbonyl ligands. Two N atoms of the chelating 5-(3,4,5-tri-meth-oxy-phen-yl)-3-(pyridin-2-yl)-1 H -1,2,4-triazole ligand and two carbonyl ligands define the equatorial plane of the complex, with the third carbonyl ligand and the bromide ligand in axial positions. Conventional hydrogen bonds including the methanol solvent mol-ecules assemble the complex mol-ecules through mutual N-H⋯O-H⋯Br links [N⋯O = 2.703 (3) Å and O⋯Br = 3.255 (2) Å] into centrosymmetric dimers, whereas weaker C-H⋯O and C-H⋯Br hydrogen bonds [C⋯O = 3.215 (3)-3.390 (4) Å and C⋯Br = 3.927 (3) Å] connect the dimers into double layers parallel to the (111) plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Nikolay G.; Kimmel, Greg A.; Shen, Mingmin
Using temperature programmed desorption (TPD) and photon-stimulated desorption (PSD), we show that coadsorbates of varying binding energies on the rutile TiO 2(110) surface exert a commensurate inhibiting influence on the hole-mediated photodesorption of adsorbed O 2. A variety of coadsorbates (Ar, Kr, Xe, N 2, CO, CO 2, CH 4, N 2O, acetone, methanol or water) were shown to quench O 2 photoactivity, with the extent correlating with the coadsorbate's gas phase basicity, which in turn determines the strength of the coadsorbate–Ti 4+ bond. Coadsorbed rare gases inhibited the photodesorption of O 2 by ~ 10–25%, whereas strongly bound speciesmore » (water, methanol, and acetone) nearly completely inhibited O 2 PSD. We suggest that coadsorption of these molecules inhibit the arrival probability of holes to the surface. Band-bending effects, which vary with the extent of charge transfer between the coadsorbate and the TiO 2(110) surface, are not expected to be significant in the cases of the rare gases and physisorbed species. Furthermore, these results indicate that neutral coadsorbates can exert a significant influence on charge transfer events by altering the interfacial dipole in the vicinity of the target molecule.« less
Methanol clusters (CH3OH)n, n = 3-6 in external electric fields: density functional theory approach.
Rai, Dhurba; Kulkarni, Anant D; Gejji, Shridhar P; Pathak, Rajeev K
2011-07-14
Structural evolution of cyclic and branched-cyclic methanol clusters containing three to six molecules, under the influence of externally applied uniform static electric field is studied within the density functional theory. Akin to the situation for water clusters, the electric field is seen to stretch the intermolecular hydrogen bonds, and eventually break the H-bonded network at certain characteristic threshold field values of field strength in the range 0.009-0.016 a.u., yielding linear or branched structures with a lower energy. These structural transitions are characterized by an abrupt increase in the electric dipole moment riding over its otherwise steady nonlinear increase with the applied field. The field tends to rupture the H-bonded structure; consequently, the number of hydrogen bonds decreases with increasing field strength. Vibrational spectra analyzed for fields applied perpendicular to the cyclic ring structures bring out the shifts in the OH ring vibrations (blueshift) and the CO stretch vibrations (redshift). For a given field strength, the blueshifts increase with the number of molecules in the ring and are found to be generally larger than those in the corresponding water cluster counterparts.
NASA Astrophysics Data System (ADS)
Song, Yahui; Miao, Tingting; Zhang, Peina; Bi, Cuixia; Xia, Haibing; Wang, Dayang; Tao, Xutang
2015-04-01
We investigate the effect of gold (Au) seeds prepared in cetyltrimethylammonium chloride solution (CTAC-Au seeds) on the index facets of trisoctahedral gold nanocrystals (TOH Au NCs). We demonstrate that monodisperse {331}-faceted TOH Au NCs with controllable sizes (from 60 to 255 nm) can be successfully prepared in high yield by using 3.0 nm CTAC-Au seeds or as-prepared 70 nm TOH Au NCs as seeds. We find that the electrocatalytic performance on methanol oxidation and surface enhancement Raman spectroscopy (SERS) activity of {331}-faceted TOH Au NCs is size-dependent. In comparison with well-known nanoporous gold (0.088 mA cm-2), {331}-faceted TOH Au NCs with sizes of 110 nm exhibit fairly high catalytic activity (0.178 mA cm-2) on methanol oxidation (1.0 M) in alkaline media due to the presence of increasing density of atomic steps, ledges, and kinks on the NC surfaces. Their current density is reduced by less than 7% after 500 cycling tests. {331}-Faceted TOH Au NCs with sizes of 175 nm exhibit the highest SERS activity for 4-aminothiophenol (4-ATP) molecules. The enhancement factors of a1 modes of 4-ATP molecules can reach the order of 109 when the 4-ATP concentration is 3 × 10-6 M. Moreover, Raman signals (ag modes) of 4,4'-dimercaptoazobenzene (DMAB) molecules on TOH Au NCs are stronger than those on spherical Au NCs of comparable size due to the enhanced laser-induced transformation of 4-ATP molecules by high-index {331}-facets during SERS measurement. Furthermore, the SERS intensities of 4-methylbenzenethiol (4-MTP) molecules on TOH Au NCs are also higher than those on spherical Au NCs of comparable size due to sharp extremities.We investigate the effect of gold (Au) seeds prepared in cetyltrimethylammonium chloride solution (CTAC-Au seeds) on the index facets of trisoctahedral gold nanocrystals (TOH Au NCs). We demonstrate that monodisperse {331}-faceted TOH Au NCs with controllable sizes (from 60 to 255 nm) can be successfully prepared in high yield by using 3.0 nm CTAC-Au seeds or as-prepared 70 nm TOH Au NCs as seeds. We find that the electrocatalytic performance on methanol oxidation and surface enhancement Raman spectroscopy (SERS) activity of {331}-faceted TOH Au NCs is size-dependent. In comparison with well-known nanoporous gold (0.088 mA cm-2), {331}-faceted TOH Au NCs with sizes of 110 nm exhibit fairly high catalytic activity (0.178 mA cm-2) on methanol oxidation (1.0 M) in alkaline media due to the presence of increasing density of atomic steps, ledges, and kinks on the NC surfaces. Their current density is reduced by less than 7% after 500 cycling tests. {331}-Faceted TOH Au NCs with sizes of 175 nm exhibit the highest SERS activity for 4-aminothiophenol (4-ATP) molecules. The enhancement factors of a1 modes of 4-ATP molecules can reach the order of 109 when the 4-ATP concentration is 3 × 10-6 M. Moreover, Raman signals (ag modes) of 4,4'-dimercaptoazobenzene (DMAB) molecules on TOH Au NCs are stronger than those on spherical Au NCs of comparable size due to the enhanced laser-induced transformation of 4-ATP molecules by high-index {331}-facets during SERS measurement. Furthermore, the SERS intensities of 4-methylbenzenethiol (4-MTP) molecules on TOH Au NCs are also higher than those on spherical Au NCs of comparable size due to sharp extremities. Electronic supplementary information (ESI) available: Extra TEM images and extinction spectra of the corresponding TOH Au NCs obtained with CTAB-Au seeds and CTAC-Au seeds, cyclic voltammograms of the corresponding TOH Au NCs with {221} facets and {331} facets in 0.50 M H2SO4 medium, cyclic voltammograms of TOH Au NCs with different sizes in 0.50 M H2SO4 medium and in 0.50 M KOH medium, the variation of oxidation peak current density of the GCEs modified by the 110 nm TOH Au NCs at different scanning cycle numbers, experimental extinction spectra of TOH Au NCs of different sizes, SERS spectra of 4-ATP molecules on the aggregates of 175 nm TOH Au NCs and 170 nm spherical Au NCs, the normal Raman spectrum of the neat film of the 4-ATP molecule, and summarized data of the Raman intensity and SERS enhancement factors of the TOH Au NCs with different sizes in specific Raman bands. See DOI: 10.1039/c5nr01049g
Faroque, Muhammad Umer; Noureen, Sajida; Ahmed, Maqsood; Tahir, Muhammad Nawaz
2018-01-01
The crystal structure of the cocrystal salt form of the antimalarial drug pyrimethamine with 2,4-dihydroxybenzoic acid in methanol [systematic name: 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2,4-dihydroxybenzoate methanol monosolvate, C 12 H 14 ClN 4 + ·C 7 H 5 O 4 - ·CH 3 OH] has been studied using X-ray diffraction data collected at room temperature. The crystal structure was refined using the classical Independent Atom Model (IAM) and the Multipolar Atom Model by transferring electron-density parameters from the ELMAM2 database. The Cl atom was refined anharmonically. The results of both refinement methods have been compared. The intermolecular interactions have been characterized on the basis of Hirshfeld surface analysis and topological analysis using Bader's theory of Atoms in Molecules. The results show that the molecular assembly is built primarily on the basis of charge transfer between 2,4-dihydroxybenzoic acid and pyrimethamine, which results in strong intermolecular hydrogen bonds. This fact is further validated by the calculation of the electrostatic potential based on transferred electron-density parameters.
Reegan, Appadurai Daniel; Kinsalin, Arokia Valan; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu
2015-01-01
To evaluate the larvicidal, ovicidal and repellent properties of solvent extracts of marine sponge Cliona celata (C. celata) (Grant) against the malarial vector Anopheles stephensi (An. stephensi) Liston. Marine sponge C. celata was thoroughly washed with distilled water and shade dried for 48 h. Then the sponges were homogenized and extracted sequentially with hexane, ethyl acetate and methanol. Larvicidal and ovicidal activities were tested at four different concentrations viz., 62.5, 125.0, 250.0 and 500.0 ppm. For repellent study extracts were taken in three different concentrations viz., 5.0, 2.5, 1.0 mg/cm at. Among the three solvent extracts of C. celata, methanol extract showed the highest larvicidal activity at 500 ppm against the fourth instar larvae of An. stephensi. The LC50 and LC90 values of C. celata methanol extract were recorded as 80.61 and 220.81 ppm against An. stephensi larvae respectively. High ovicidal activity of 91.2% was recorded at 500 ppm concentration of methanol extract. The haxane extract was found to be the most effective protectant against the adult female mosquitoes of An. stephensi. The mean protection time recorded in hexane extract was up to 245 min at 5 mg/cm(2) dosage against An. stephensi adults. The screening results suggest that the hexane and methanol extracts of C. celata are promising in mosquito control. Considering these bioactivities, C. celata could be probed further to obtain some novel pesticidal molecules. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
Formation and Recondensation of Complex Organic Molecules During Protostellar Luminosity Outbursts
NASA Technical Reports Server (NTRS)
Taquet, Vianney; Wirstrom, Eva S.; Charnley, Steven B.
2016-01-01
During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.
Formation and Recondensation of Complex Organic Molecules during Protostellar Luminosity Outbursts
NASA Astrophysics Data System (ADS)
Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.
2016-04-01
During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.
NASA Technical Reports Server (NTRS)
Miller, R. H.; Gombosi, T. I.; Gary, S. P.; Winske, D.
1991-01-01
The direction of propagation of low frequency magnetic fluctuations generated by cometary ion pick-up is examined by means of 1D electromagnetic hybrid simulations. The newborn ions are injected at a constant rate, and the helicity and direction of propagation of magnetic fluctuations are explored for cometary ion injection angles of 0 and 90 deg relative to the solar wind magnetic field. The parameter eta represents the relative contribution of wave energy propagating in the direction away from the comet, parallel to the beam. For small (quasi-parallel) injection angles eta was found to be of order unity, while for larger (quasi-perpendicular) angles eta was found to be of order 0.5.
NASA Technical Reports Server (NTRS)
Schleicher, David G.
1991-01-01
The physical properties of comets were studied by applying a wide variety of observational techniques. Emphasis is on simultaneous or coordinated observations in different spectral regions (e.g., visible and thermal IR or visible and far UV) or with different instrumentation (imaging, spectroscopy, and photometry). The aim was to: (1) measure the basic properties of cometary nuclei by studying comets whose comae are so anemic that the signal from the nucleus can be extracted; (2) investigate the group characteristics of comets by narrowband photometry applied uniformly to a large sample of comets; (3) understand the detailed physics and chemistry occurring in cometary comae through wide-field charge coupled device (CCD) imaging using narrow filters and through long-slit CCD spectroscopy; and (4) investigate the rotational states of comets through time-resolution photometry.
Opportunities for ballistic missions to Halley's comet
NASA Technical Reports Server (NTRS)
Farquhar, R. W.; Wooden, W. H., II
1977-01-01
Alternative strategies for ballistic missions to Halley's comet in 1985-86 are described. A large scientific return would be acquired from a ballistic Halley intercept in spite of the high flyby speeds that are associated with this mission mode. The possibility of retargeting the cometary spacecraft to additional comets after the Halley intercept also exists. Two cometary spacecraft of identical design would be used to carry out four separate cometary encounters over a 3 year period. One spacecraft would intercept Halley's comet before its perihelion passage in December 1985 and then go on to comet Borrelly with an encounter in January 1988. The other spacecraft would be targeted for a postperihelion Halley intercept in March 1986 before proceeding toward an encounter with comet Tempel 2 in September 1988.
STIP Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
The study of travelling interplanetary phenomena has continued over a period of years. The STIP (Study of Travelling Interplanetary Phenomena) Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals was held in Huntsville, Alabama, on May 12-15, 1987, the first of these meetings to be held in the United States. The Symposium's objective was to coordinate and disseminate new science gained from the recent solar-terrestrial and cometary intervals which can be used to better understand the linkage of physical events to the Sun's vagaries (flares, coronal holes, eruptive prominences) from their initial detection to their consequence. Fifty-one presentations were made during the four-day period. Abstracts of these reports are included as Appendix A.
TOF-SIMS Analysis of Crater Residues from Wild 2 Cometary on Stardust Aluminum Foil
NASA Technical Reports Server (NTRS)
Leutner, Jan; Stephan, Thomas; Kearsley, T.; Horz, Friedrich; Flynn, George J.; Sandford, Scott A.
2006-01-01
Impact residues of cometary particles on aluminum foils from the Stardust mission were investigated with TOF-SIMS for their elemental and organic composition. The residual matter from comet 81P/Wild 2 shows a wide compositional range, from nearly monomineralic grains to polymict aggregates. Despite the comparably small analyzed sample volume, the average element composition of the investigated residues is similar to bulk CI chondritic values. Analysis of organic components in impact residues is complicated, due to fragmentation and alteration of the compounds during the impact process and by the presence of contaminants on the aluminum foils. Nevertheless, polycyclic aromatic hydrocarbons (PAHs) that are unambiguously associated with the impact residues were observed, and thus are most likely of cometary origin.
Bibring, J-P; Langevin, Y; Carter, J; Eng, P; Gondet, B; Jorda, L; Le Mouélic, S; Mottola, S; Pilorget, C; Poulet, F; Vincendon, M
2015-07-31
The structure and composition of cometary constituents, down to their microscopic scale, are critical witnesses of the processes and ingredients that drove the formation and evolution of planetary bodies toward their present diversity. On board Rosetta's lander Philae, the Comet Infrared and Visible Analyser (CIVA) experiment took a series of images to characterize the surface materials surrounding the lander on comet 67P/Churyumov-Gerasimenko. Images were collected twice: just after touchdown, and after Philae finally came to rest, where it acquired a full panorama. These images reveal a fractured surface with complex structure and a variety of grain scales and albedos, possibly constituting pristine cometary material. Copyright © 2015, American Association for the Advancement of Science.
Chemical Selectivity and Sensitivity of a 16-Channel Electronic Nose for Trace Vapour Detection
Strle, Drago; Trifkovič, Mario; Van Miden, Marion; Kvasić, Ivan; Zupanič, Erik; Muševič, Igor
2017-01-01
Good chemical selectivity of sensors for detecting vapour traces of targeted molecules is vital to reliable detection systems for explosives and other harmful materials. We present the design, construction and measurements of the electronic response of a 16 channel electronic nose based on 16 differential microcapacitors, which were surface-functionalized by different silanes. The e-nose detects less than 1 molecule of TNT out of 10+12 N2 molecules in a carrier gas in 1 s. Differently silanized sensors give different responses to different molecules. Electronic responses are presented for TNT, RDX, DNT, H2S, HCN, FeS, NH3, propane, methanol, acetone, ethanol, methane, toluene and water. We consider the number density of these molecules and find that silane surfaces show extreme affinity for attracting molecules of TNT, DNT and RDX. The probability to bind these molecules and form a surface-adsorbate is typically 10+7 times larger than the probability to bind water molecules, for example. We present a matrix of responses of differently functionalized microcapacitors and we propose that chemical selectivity of multichannel e-nose could be enhanced by using artificial intelligence deep learning methods. PMID:29292764
Hydration shell parameters of aqueous alcohols: THz excess absorption and packing density.
Matvejev, V; Zizi, M; Stiens, J
2012-12-06
Solvation in water requires minimizing the perturbations in its hydrogen bonded network. Hence solutes distort water molecular motions in a surrounding domain, forming a molecule-specific hydration shell. The properties of those hydration shells impact the structure and function of the solubilized molecules, both at the single molecule and at higher order levels. The size of the hydration shell and the picoseconds time-scale water dynamics retardation are revealed by terahertz (THz) absorption coefficient measurements. Room-temperature absorption coefficient at f = 0.28 [THz] is measured as a function of alcohol concentration in aqueous methanol, ethanol, 1,2-propanol, and 1-butanol solutions. Highly diluted alcohol measurements and enhanced overall measurement accuracy are achieved with a THz absorption measurement technique of nL-volume liquids in a capillary tube. In the absorption analysis, bulk and interfacial molecular domains of water and alcohol are considered. THz ideal and excess absorption coefficients are defined in accordance with thermodynamics mixing formulations. The parameter extraction method is developed based on a THz excess absorption model and hydrated solute molecule packing density representation. First, the hydration shell size is deduced from the hydrated solute packing densities at two specific THz excess absorption nonlinearity points: at infinite alcohol dilution (IAD) and at the THz excess absorption extremum (EAE). Consequently, interfacial water and alcohol molecular domain absorptions are deduced from the THz excess absorption model. The hydration shell sizes obtained at the THz excess absorption extremum are in excellent agreement with other reports. The hydration shells of methanol, ethanol, 1- and 2-propanol consist of 13.97, 22.94, 22.99, and 31.10 water molecules, respectively. The hydration shell water absorption is on average 0.774 ± 0.028 times the bulk water absorption. The hydration shell parameters might shed light on hydration dynamics of biomolecules.
Design and analysis of optically pumped submillimeter waveguide maser amplifiers and oscillators
NASA Technical Reports Server (NTRS)
Galantowicz, T. A.
1975-01-01
The design and experimental measurements are described of an optically pumped far-infrared (FIR) waveguide maser; preliminary measurements on a FIR waveguide amplifier are presented. The FIR maser was found to operate satisfactorily in a chopped CW mode using either methanol (CH3OH) or acetonitrile (CH3CN) as the active molecule. Two other gases, difluoroethane and difluoroethylene, produced an unstable output with high threshold and low output power when operated in the chopped CW mode. Experimental measurements include FIR output versus cavity length, output beam pattern, output power versus pressure, and input power. The FIR output was the input to an amplifier which was constructed similar to the oscillator. An increase of 10% in output power was noted on the 118.8 microns line of methanol.
NASA Astrophysics Data System (ADS)
Ciaravella, A.; Jiménez-Escobar, A.; Cosentino, G.; Cecchi-Pestellini, C.; Peres, G.; Candia, R.; Collura, A.; Barbera, M.; Di Cicca, G.; Varisco, S.; Venezia, A. M.
2018-05-01
An important issue in the chemistry of interstellar ices is the role of dust materials. In this work, we study the effect of an amorphous water-rich magnesium silicate deposited onto ZnSe windows on the chemical evolution of ultraviolet-irradiated methanol ices. For comparison, we also irradiate similar ices deposited onto bare ZnSe windows. Silicates are produced at relatively low temperatures exploiting a sol–gel technique. The chemical composition of the synthesized material reflects the forsterite stoichiometry. Si–OH groups and magnesium carbonates are incorporated during the process. The results show that the substrate material does affect the chemical evolution of the ice. In particular, the CO2/CO ratio within the ice is larger for methanol ices deposited onto the silicate substrate as a result of concurrent effects: the photolysis of carbonates present in the adopted substrate as a source of CO2, CO, and carbon and oxygen atoms; reactions of water molecules and hydroxyl radicals released from the substrate with the CO formed in the ice by the photolysis of the methanol ice; and changes in the structure and energy of the silicate surface by ultraviolet irradiation, leading to more favorable conditions for chemical reactions or catalysis at the grain surface. The results of our experiments allow such chemical effects contributed by the various substrate material components to be disentangled.
Miolo, Giorgia; Tucci, Marianna; Mazzoli, Alessandra; Ferrara, Santo Davide; Favretto, Donata
2016-07-15
The UVA and UVB light-induced behaviour of 6-monoacetylmorphine (6-MAM) and morphine, the main metabolites of heroin, was studied in methanol, aqueous solution and in the dry state. UVA and UVB irradiations were performed for different times (radiant energies of 20-300J/cm(2)). UV spectra of irradiated samples were compared with samples kept in the dark. To estimate the extent of photolysis, positive ion electrospray ionization experiments were performed on the irradiated samples by LC-HRMS. Tentative identification of photoproducts was performed on the basis of their elemental formula as calculated by HRMS results. Morphine and 6-MAM demonstrated to be quite stable under UVA light but very sensitive to UVB irradiation. In methanol solutions they undergo a similar pattern, both reaching 90% photodegradation after 100J/cm(2) of UVB, with a slightly faster kinetic for morphine at lower doses. In water, the yields of photodegradation are nearly one third lower than in methanol. In the solid state, the yield of photodegradation is lower than in solution. The structures of some UVB-induced degradation products are proposed. Photoaddition of the solvent and photooxidation seem the main pathways of phototransformation of these molecules. Moreover, both compounds revealed to generate singlet oxygen under UVB exposure. Copyright © 2016 Elsevier B.V. All rights reserved.
Mejía, Sol M; Flórez, Elizabeth; Mondragón, Fanor
2012-04-14
A computational study of (ethanol)(n)-water, n = 1 to 5 heteroclusters was carried out employing the B3LYP∕6-31+G(d) approach. The molecular (MO) and atomic (AO) orbital analysis and the topological study of the electron density provided results that were successfully correlated. Results were compared with those obtained for (ethanol)(n), (methanol)(n), n = 1 to 6 clusters and (methanol)(n)-water, n = 1 to 5 heteroclusters. These systems showed the same trends observed in the (ethanol)(n)-water, n = 1 to 5 heteroclusters such as an O---O distance of 5 Å to which the O-H---O hydrogen bonds (HBs) can have significant influence on the constituent monomers. The HOMO of the hetero(clusters) is less stable than the HOMO of the isolated alcohol monomer as the hetero(cluster) size increases, that destabilization is higher for linear geometries than for cyclic geometries. Changes of the occupancy and energy of the AO are correlated with the strength of O-H---O and C-H---O HBs as well as with the proton donor and/or acceptor character of the involved molecules. In summary, the current MO and AO analysis provides alternative ways to characterize HBs. However, this analysis cannot be applied to the study of H---H interactions observed in the molecular graphs.
NASA Astrophysics Data System (ADS)
Dong, Feng; Heinbuch, Scott; Bernstein, Elliot; Rocca, Jorge
2006-05-01
A desk-top soft x-ray laser is applied to the study of water, methanol, ammonia, sulfur dioxide, carbon dioxide, mixed sulfur dioxide-water, and mixed carbon dioxide-water clusters through single photon ionization time of flight mass spectroscopy. Almost all of the energy above the vertical ionization energy is removed by the ejected electron. Protonated water, methanol, and ammonia clusters dominate the mass spectra for the first three systems. The temperatures of the neutral water and methanol clusters can be estimated. In the case of pure SO2 and CO2, the mass spectra are dominated by (SO2)n^+ and (CO2)n^+ cluster series. When a high or low concentration of SO2/CO2 is mixed with water, we observe (SO2/CO2)nH2O^+ or SO2/CO2(H2O)nH^+ in the mass spectra, respectively. The unimolecular dissociation rate constants for reactions involving loss of one neutral molecule are calculated for the protonated water, methanol, and ammonia clusters as well as for SO2 and CO2 clusters. We find that the 26.5 eV soft x-ray laser is a nearly ideal tool for the study of hydrogen bonded and van der Waals cluster systems and we are currently exploring its usefulness for other more strongly bound systems.
Dhayanithi, N B; Kumar, T T Ajith; Kalaiselvam, M; Balasubramanian, T; Sivakumar, N
2012-08-01
To screen the anti-fungal effects and find out the active metabolites from sponge, Sigmadocia carnosa (S. carnosa) against four dermatophytic fungi. The methanol, ethyl acetate and acetone extract of marine sponge, S. carnosa was examined against Trichophyton mentagrophytes (T. mentagrophytes), Trichophyton rubrum (T. rubrum), Epidermophyton floccosum (E. floccosum) and Microsporum gypseum (M. gypseum) and qualitative analysed to find out the active molecules. The methanol extract of sponge was expressed significant activity than ethyl acetate and acetone. The minimum inhibitory concentration (MIC) of methanol extract of sponge that resulted in complete growth inhibition of T. mentagrophytes, T. rubrum, E. floccosum and M. gypseum were found to 125, 250, 250 and 250 µg/mL respectively. But, 100 % inhibition of fungal spore germination was observed in T. mentagrophytes at 500 µg/mL concentration followed by T. rubrum, E. floccosum and M. gypseum at 1 000 µg/mL concentration. Other two extracts showed weak anti spore germination activity against the tested dermatophytic fungi. Methanol extracts showed presence of terpenoids, steroids, alkaloids, saponins and glycosides. Based on the literature, this is the first study which has conducted to inhibit the growth and spore germination of dermatophytic fungi with S. carnosa. Further research also needs to purify and characterize the secondary metabolites from the sponge, S. carnosa for the valuable source of novel substances for future drug discovery.
Dhayanithi, NB; Kumar, TT Ajith; Kalaiselvam, M; Balasubramanian, T; Sivakumar, N
2012-01-01
Objective To screen the anti-fungal effects and find out the active metabolites from sponge, Sigmadocia carnosa (S. carnosa) against four dermatophytic fungi. Methods The methanol, ethyl acetate and acetone extract of marine sponge, S. carnosa was examined against Trichophyton mentagrophytes (T. mentagrophytes), Trichophyton rubrum (T. rubrum), Epidermophyton floccosum (E. floccosum) and Microsporum gypseum (M. gypseum) and qualitative analysed to find out the active molecules. Results The methanol extract of sponge was expressed significant activity than ethyl acetate and acetone. The minimum inhibitory concentration (MIC) of methanol extract of sponge that resulted in complete growth inhibition of T. mentagrophytes, T. rubrum, E. floccosum and M. gypseum were found to 125, 250, 250 and 250 µg/mL respectively. But, 100 % inhibition of fungal spore germination was observed in T. mentagrophytes at 500 µg/mL concentration followed by T. rubrum, E. floccosum and M. gypseum at 1 000 µg/mL concentration. Other two extracts showed weak anti spore germination activity against the tested dermatophytic fungi. Methanol extracts showed presence of terpenoids, steroids, alkaloids, saponins and glycosides. Conclusion Based on the literature, this is the first study which has conducted to inhibit the growth and spore germination of dermatophytic fungi with S. carnosa. Further research also needs to purify and characterize the secondary metabolites from the sponge, S. carnosa for the valuable source of novel substances for future drug discovery. PMID:23569985
An Alcohol Test for Drifting Constants
NASA Astrophysics Data System (ADS)
Jansen, P.; Bagdonaite, J.; Ubachs, W.; Bethlem, H. L.; Kleiner, I.; Xu, L.-H.
2013-06-01
The Standard Model of physics is built on the fundamental constants of nature, however without providing an explanation for their values, nor requiring their constancy over space and time. Molecular spectroscopy can address this issue. Recently, we found that microwave transitions in methanol are extremely sensitive to a variation of the proton-to-electron mass ratio μ, due to a fortuitous interplay between classically forbidden internal rotation and rotation of the molecule as a whole. In this talk, we will explain the origin of this effect and how the sensitivity coefficients in methanol are calculated. In addition, we set a limit on a possible cosmological variation of μ by comparing transitions in methanol observed in the early Universe with those measured in the laboratory. Based on radio-astronomical observations of PKS1830-211, we deduce a constraint of Δμ/μ=(0.0± 1.0)× 10^{-7} at redshift z = 0.89, corresponding to a look-back time of 7 billion years. While this limit is more constraining and systematically more robust than previous ones, the methanol method opens a new search territory for probing μ-variation on cosmological timescales. P. Jansen, L.-H. Xu, I. Kleiner, W. Ubachs, and H.L. Bethlem Phys. Rev. Lett. {106}(100801) 2011. J. Bagdonaite, P. Jansen, C. Henkel, H.L. Bethlem, K.M. Menten, and W. Ubachs Science {339}(46) 2013.
Short-time microscopic dynamics of aqueous methanol solutions
NASA Astrophysics Data System (ADS)
Kalampounias, A. G.; Tsilomelekis, G.; Boghosian, S.
2012-12-01
In this paper we present the picosecond vibrational dynamics of a series of methanol aqueous solutions over a wide concentration range from dense to dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating the time correlation functions of vibrational relaxation by fits in the frequency domain. This method is applied to aqueous methanol solutions xMeOH-(1 - x)H2O, where x = 0, 0.2, 0.4, 0.6, 0.8 and 1. The important finding is that the vibrational dynamics of the system become slower with increasing methanol concentration. The removal of many-body effects by having the molecules in less-crowded environments seems to be the key factor. The interpretation of the vibrational correlation function in the context of Kubo theory, which is based on the assumption that the environmental modulation arises from a single relaxation process and applied to simple liquids, is inadequate for all solutions studied. We found that the vibrational correlation functions of the solutions over the whole concentration range comply with the Rothschild approach, assuming that the environmental modulation is described by a stretched exponential decay. The evolution of the dispersion parameter α with dilution indicates the deviation of the solutions from the model simple liquid and the results are discussed in the framework of the current phenomenological status of the field.
NASA Technical Reports Server (NTRS)
Sutton, S. R.
1989-01-01
The Synchrotron X ray Fluorescence (SXRF) microprobe at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, will be an excellent instrument for non-destructive trace element analyses of cometary nucleus samples. Trace element analyses of as-received cometary nucleus material will also be possible with this technique. Bulk analysis of relatively volatile elements will be important in establishing comet formation conditions. However, as demonstrated for meteorites, microanalyses of individual phases in their petrographic context are crucial in defining the histories of particular components in unequilibrated specimens. Perhaps most informative in comparing cometary material with meteorites will be the halogens and trace metals. In-situ, high spatial resolution microanalyses will be essential in establishing host phases for these elements and identifying terrestrial (collection/processing) overprints. The present SXRF microprobe is a simple, yet powerful, instrument in which specimens are excited with filtered, continuum synchrotron radiation from a bending magnet on a 2.5 GeV electron storage ring. A refrigerated cell will be constructed to permit analyses at low temperatures. The cell will consist essentially of an air tight housing with a cold stage. Kapton windows will be used to allow the incident synchrotron beam to enter the cell and fluorescent x rays to exit it. The cell will be either under vacuum or continuous purge by ultrapure helium during analyses. Several other improvements of the NSLS microprobe will be made prior to the cometary nucleus sample return mission that will greatly enhance the sensitivity of the technique.
Detection of CN emission from (2060) Chiron
NASA Technical Reports Server (NTRS)
Bowell, Edward
1991-01-01
Spectrophotometric observations of (2060) Chiron were obtained. Their primary goal was to look for the subtle differences in color between Chiron and its surrounding coma, and to search for possible absorption or emission features in Chiron's spectrum. The presence of the CN(0-0) emission band was identified. It proves Chiron's cometary nature and breaks the record heliocentric distance for cometary gaseous emission.
Cometary particles - Thin sectioning and electron beam analysis
NASA Technical Reports Server (NTRS)
Bradley, J. P.; Brownlee, D. E.
1986-01-01
Thin sections (500 to 1000 angstroms thick) of individual micrometeorites (5 to 15 micrometers) have been prepared with an ultramicrotome equipped with a diamond knife. Electron microscope examination of these sections has revealed the internal structures of chondritic micrometeorites, and a subset of highly porous, fragile particles has been identified. Delicate meteoritic materials such as these are characteristic of debris from cometary meteors.
Beyond topography - enhanced imaging of cometary dust with the MIDAS AFM
NASA Astrophysics Data System (ADS)
Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.
2013-09-01
The MIDAS atomic force microscope (AFM) onboard the Rosetta spacecraft is primarily designed to return the 3D shape and structure of cometary dust particles collected at comet 67P/Churyumov-Gerasimenko [1]. Commercial AFMs have, however, been further developed to measure many other sample properties. The possibilities to make such measurements with MIDAS are explored here.
Laboratory Measurements of Cometary Photochemical Phenomena.
1981-12-04
PROGFIAM ELEMENT.PROJECT TASK Laser .Chemistry Division AREA & WORK UNIT NUMaZRS Department of Chemistry - Howard University NR.051-733 Wash’ ngtQn, D. C...William M. Jackson Laser Chemistry Division Department of Chemistry Howard University .Washington, D. C. 20059 / Published by Jet Propulsion Laboratory...MEASUREMENTS OF COMETARY PHOTOCHEMICAL PHENOMENA William M. Jackson Howard University Washington, DC 20059 Abstract Laboratory experiments are described
From C/Mrkos to P/Halley: 30 years of cometary spectroscopy
NASA Technical Reports Server (NTRS)
Arpigny, C.; Dossin, F.; Woszczyk, A.; Donn, B.; Rahe, J.; Wyckoff, Susan
1991-01-01
An Atlas of Cometary Spectra was compiled, as a sequel to the well-known Atlas published by Swings and Haser in 1956. The new atlas comprises some 400 reproductions of cometary spectra secured in the world's largest observatories during the three decades or so from the passage of comet Mrkos 1957 V, for which the very first high-dispersion spectrum was obtained, to the return of Halley's comet. The illustrations refer to 40 different comet apparitions; they are grouped into a set of 186 loose 11 x 14 in. plates, while the texts, comments, and relevant data are given in a separate booklet. The main purpose of this atlas is to show in detail the tremendous progress which was achieved in cometary spectroscopy during the period covered, essentially thanks to the use of high-resolution coude spectrographs and large telescopes, the considerable extension of the observed wavelength range, and the advent of electronic detectors. It is divided into two parts. Part 1, which contains about two-thirds of the selected material, presents photographic spectra, while electronically recorded spectra covering the vacuum ultraviolet, through the optical, infrared, and radio regions appear in Part 2.
NASA Technical Reports Server (NTRS)
Fries, M.; Archer, D.; Christou, T.; Conrad, P.; Eigenbrode, J.; Kate, I. L. ten; Steele, A.
2018-01-01
In previous work we proposed a hypothesis wherein debris moving along cometary orbits interacting with Mars (e.g. meteor showers) may be responsible for transient local increases of methane observed in the martian atmosphere (henceforth 'the hypothesis' ). An examination of the literature of methane detections dating back to 1997 showed that each detection was made, at most, 16 days after an interaction between Mars and one of seven small bodies (six comets and the unusual object 5335 Damocles)[ibid]. Two observations of high-altitude, transient visible plumes on Mars also correlate with cometary interactions, one occurring on the same day as the plume observation and the second observation occurring three days afterwards, and with two of the same seven small bodies. The proposed mechanism for methane production is dissemination of carbon-rich cometary material on infall into Mars' atmosphere followed by methane production via UV photolysis, a process that has been observed in laboratory experiments. Given this set of observations it is necessary and indeed conducive to the scientific process to explore and robustly test the hypothesis.
Gas flow through through a porous mantle: implications of fluidisation
NASA Astrophysics Data System (ADS)
Bentley, Mark; Koemle, Norbert; Kargl, Guenter; Huetter, Mag. Erika Sonja
Understanding the interaction of dust and gas in the upper layers of a cometary mantle is critical for understanding cometary evolution. The state of knowledge of conditions in these layers is currently rather low, and a wide range of flow conditions and phenomena can be imagined. A model is presented here that examines the conditions under which so-called "fluidized beds" might be possible in a cometary mantle. This phenomenon, well studied in industry, occurs when the weight of a bed of particles is equal to the gas drag of a gas or fluid flowing upwards through it. Wherever fluidisation occurs in a cometary mantle, it could change the dominant heat transfer mechanism by removing intimate particle contacts (creating an expanded bed) or allowing particle convection in the now fluid-like mantle. There are also implications for the stability of the Rosetta lander, Philae, if such a state were to occur in the vicinity of the deployed anchor. A two-fluid model is used, with necessarily restricted geometries, to demonstrate the conditions (gravity, pressure, gas velocity, particle size etc.) under which fluidisation could occur, and the scientific results and implications for the Rosetta mission are explored.
Cometary Glycine Detected in Stardust-Returned Samples
NASA Technical Reports Server (NTRS)
Elsila, Jamie E.; Glavin, D. P.; Dworkin, J. P.
2010-01-01
In January 2006, NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth. The Stardust cometary collector consisted of aerogel cells lined with aluminum foils designed to capture impacting particles and facilitate removal of the aerogel. Preliminary examinations of these comet-exposed materials revealed a suite of organic compounds, including several amines and amino acids which were later examined in more detail. Methylamine (NH2CH3) and ethylamine (NH2C2H5) were detected in the exposed aerogel at concentrations greatly exceeding those found in control samples, while the amino acid glycine (NH2CH2COOH) was detected in several foil samples as well as in the comet-exposed aerogel. None of these three compounds had been previously detected in comets, although methylamine had been observed in the interstellar medium. Although comparison with control samples suggested that the detected glycine was cometary. the previous work was not able to conclusively identify its origin. Here, we present the results of compound-specific carbon isotopic analysis of glycine in Stardust cometary collector foils. Several foils from the interstellar side of the Stardust collector were also analyzed for amino acid abundance, but concentrations were too low to perform isotopic ana!ysis.
Cometary atmospheres: Modeling the spatial distribution of observed neutral radicals
NASA Technical Reports Server (NTRS)
Combi, Michael R.
1986-01-01
Progress during the second year of a program of research on the modeling of the spatial distributions of cometary radicals is discussed herein in several major areas. New scale length laws for cometary C2 and CN were determined which explain that the previously-held apparent drop of the C2/CN ratio for large heliocentric distances does not exist and that there is no systematic variation. Monte Carlo particle trajectory model (MCPTM) analysis of sunward and anti-sunward brightness profiles of cometary C2 was completed. This analysis implies a lifetime of 31,000 seconds for the C2 parent and an ejection speed for C2 of approximately 0.5 km/sec upon dissociation from the parent. A systematic reanalysis of published C3 and OH data was begun. Preliminary results find a heliocentric distance dependence for C3 scale lengths with a much larger variation than for C2 and CN. Scale lengths for OH are generally somewhat larger than currently accepted values. The MCPTM was updated to include the coma temperature. Finally, the collaborative effort with the University of Arizona programs has yielded some preliminary CCD images of Comet P/Halley.
Modelling of 67P cometary grains dynamic in the vicinity of the Rosetta spacecraft
NASA Astrophysics Data System (ADS)
Cipriani, F.; Altobelli, N.; Taylor, M.; Fulle, M.; Della Corte, V.; Rotundi, A.
2017-09-01
The interpretation of a number of Rosetta datasets (e.g. GIADA, COSIMA, MIDAS...), relies on the description of cometary grains dynamic in the close vicinity of the spacecraft. In particular the charged grains behaviour in the 3D spacecraft sheath open to the instrument entrances is complex and has not been described at such scales. The existence of a warm electrons population (a few 10eVs energy) in the cometary plasma as revealed during the Rendez-vous phase has been driving the spacecraft potential to negative values typically in the range -1 to -20V as inferred from RPC measurements [1]. Observation of cometary grains in the 10μm to mm range by GIADA and COSIMA[2] allowed to distinguish so called 'compact' grains of processed materials from the solar nebula from 'fluffy' aggregates of more primitive origin. When detected such grains have been observed to reach the instruments at m/s or less velocities. On particular it was inferred that fluffy aggregates are disrupted by electrostatic forces in the vicinity of the spacecraft due to the effects of local plasma hence resulting in particle showers observed by the instruments.
In Situ Plasma Measurements of Fragmented Comet 73P Schwassmann-Wachmann 3
NASA Astrophysics Data System (ADS)
Gilbert, J. A.; Lepri, S. T.; Rubin, M.; Combi, M.; Zurbuchen, T. H.
2015-12-01
The interiors of comets contain some of the most pristine material in the solar system. Comet 73P/Schwassmann-Wachmann 3, discovered in 1930, is a Jupiter-family comet with a 5.34-year period. This comet split into 5 fragments in 1995 and disintegrated into nearly 70 major pieces in 2006. In 2006 May and June, recently ionized cometary particles originating from fragments including and surrounding some of these major objects were collected with the ACE/SWICS and Wind/STICS sensors. Due to a combination of the instrument characteristics and the close proximity of the fragments passing between those spacecraft and the Sun, unique measurements regarding the charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during that time. The cometary material released from some of these fragments can be identified by the concentrations of water-group pickup ions having a mass-per-charge ratio of 16-18 amu e-1, indicating that while these fragments are small, they are still actively sublimating. We present an analysis of cometary composition, spatial distribution, and heliospheric interactions, with a focus on helium, C+/O+, and water-group ions.
IN SITU PLASMA MEASUREMENTS OF FRAGMENTED COMET 73P SCHWASSMANN–WACHMANN 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, J. A.; Lepri, S. T.; Combi, M.
2015-12-10
The interiors of comets contain some of the most pristine material in the solar system. Comet 73P/Schwassmann–Wachmann 3, discovered in 1930, is a Jupiter-family comet with a 5.34-year period. This comet split into 5 fragments in 1995 and disintegrated into nearly 70 major pieces in 2006. In 2006 May and June, recently ionized cometary particles originating from fragments including and surrounding some of these major objects were collected with the ACE/SWICS and Wind/STICS sensors. Due to a combination of the instrument characteristics and the close proximity of the fragments passing between those spacecraft and the Sun, unique measurements regarding themore » charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during that time. The cometary material released from some of these fragments can be identified by the concentrations of water-group pickup ions having a mass-per-charge ratio of 16–18 amu e{sup −1}, indicating that while these fragments are small, they are still actively sublimating. We present an analysis of cometary composition, spatial distribution, and heliospheric interactions, with a focus on helium, C{sup +}/O{sup +}, and water-group ions.« less
Time-dependent evolution of the near nuclear coma of cometary nuclei during their rotational motion
NASA Astrophysics Data System (ADS)
Szego, K.; Crifo, J.-F.; Fulle, M.; Rodionov, A. V.
2003-04-01
The new physical model of Rodionov et al. (Planetary and Space Sci., 50, 983, 2002) that describes the cometary activity based on a 3-d collisional gas dynamical model has been successfully applied to account for the dust features observed by the cameras flying onboard of the VEGA and Giotto probes during the encounter with comet Halley. This indicates, in particular, that these structures are dominantly controlled by the nucleus topography. An upgraded version of this model has been recently developed and is being applied to the vast body of data gathered in 1986 on comet Halley. This new version is tridimensional as previously, and, in addition, time-dependent. This allows the exact, self-consistent computation of the whole coma structure (primary and daughter molecules, dust), allowing to study its dependence upon nucleus shape, composition, and rotation. The results presented here assume that the coma is formed by solar-driven sublimation of a homogeneous dusty-ice nucleus with shape and rotational state derived for P/Halley. The results are, however, of quite general significance -- in particular they remain valid for different shapes and for inhomogeneous nucleus. This presentation focuses on the time dependence of the dust and gas features obtained around the nucleus. Movies will summarize the results of the calculations exhibiting the time development of the dust and gas coma and its relation to the surface orography for a rotating nucleus. The effect of nucleus activity on its rotational motion, and possible constraints hampering the observation of the activity will be also analyzed.
NASA Astrophysics Data System (ADS)
Schmidt, Carl
2016-02-01
Neutral and ion species in cometary comae exhibit significant differences in their spatial distributions. These distributions reflect the combined effects of sublimation, ion pickup, collisions, solar radiation pressure, photolysis scale lengths of any parent molecules, and photolysis of the species of interest. An image-slicer spectrograph (R ∼ 20,000) is used here to measure C2, NH2, Na, and H2O+ emission lines in Comet C/2012 S1 ISON's coma within a narrow spectral window spanning 5868-5926 Å. These species are mapped over a 1.6 × 2.7 arcmin field made up of 240 individual spectra. While prior cometary observations have found that peak column densities of these species appear either sunward or anti-sunward, ISON's coma was elongated several thousand kilometers along an axis perpendicular to its motion and the sunward vector. The peak brightness of each species was located within 5000 km of the dusty continuum concentration. ISON's water ion tail appeared distinctly broader than the neutral Na tail and no evidence is seen for an extended source of Na by dissociative recombination of a molecular ion. The Na D2/D1 ratio in the head is 1.49 ± 0.06 despite being optically thin, increasing to 1.93 ± 0.07 in the tail. The dust distribution falls off less steeply than the canonical inverse with distance from the nucleus and C2 and NH2 scale lengths indicate an extended source, possibly due to nucleus fragmentation.
Telecommunications in cometary environments
NASA Technical Reports Server (NTRS)
Flock, W. L.
1981-01-01
Propagation effects on telecommunications in a cometary environment include those due to dust, the inhomogeneous plasma of the coma and tail, and ionization generated by impact of neutral molecules and dust on the spacecraft. Attenuation caused by dust particles is estimated to be on the order of 10 to the minus 5th power dB for the Halley Intercept Mission. Ionization generated by impact on the spacecraft is estimated to result in an electron content of 10 to the 12th power to 10 to the 13th power el/sq meters (3 eV electrons) along the telecommunications path. An estimate of the electron content due to Comet Halley itself is 10 to the 16th power to 10 to the 17th power el/sq meters, compared to a content of 10 to the 16th power to 10 to the 18th power el/sq meters for the Earth's ionosphere and 10 to the 17th power to 10 to the 18th power el/sq meters for the interplanetary medium. The electron content of the plasma near Comet Halley will cause excess range delay, and a Doppler shift of the signal from the spacecraft will occur in propagation to the rate of change of the path electron content. It is recommended that S and X down-link frequencies by employed to monitor the path electron content and amplitude scintillation and spectral broadening of the received signals. These measurements will provide a quantitative base of knowledge that will be valuable for radio science and telecommunications system design purposes.
New Limits to CO Outgassing in Centaurs
NASA Astrophysics Data System (ADS)
Drahus, Michał; Yang, Bin; Lis, Dariusz C.; Jewitt, David
2017-07-01
Centaurs are small Solar system objects orbiting between Jupiter and Neptune. They are widely believed to be escapees from the trans-Neptunian region on their way to become Jupiter-family comets. Indeed, some Centaurs exhibit the characteristic cometary appearance. The sublimation of carbon monoxide has been proposed as a driver of activity in distant comets, but no strong detection of gaseous CO in a Centaur other than 29P/Schwassmann-Wachmann 1 has been reported to date. Here we report the results of a deep search for CO outgassing in three Centaurs: (315898), (342842), and (382004). Our survey was carried out using the Caltech Submillimeter Observatory on nine nights in late 2011. The targeted rotational line J(2-1) of CO is undetected in all three objects in spite of high instrumental sensitivity. We find the model-dependent 3σ upper limits to the CO production rate of 2.13 × 1027 molecules s-1 for (315898), 1.32 × 1027 molecules s-1 for (342842), and 1.17 × 1027 molecules s-1 for (382004), which are among the most sensitive obtained to date. These upper limits are consistently analysed in the context of published CO data of 14 Centaurs and one well-observed long-period comet, C/1995 O1 (Hale-Bopp), and support an earlier suggestion that the surfaces of most Centaurs are not dominated by exposed CO ice.
Interstellar grain chemistry and organic molecules
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Sandford, S. A.
1990-01-01
The detection of prominant infrared absorption bands at 3250, 2170, 2138, 1670 and 1470 cm(-1) (3.08, 4.61, 4.677, 5.99 and 6.80 micron m) associated with molecular clouds show that mixed molecular (icy) grain mantles are an important component of the interstellar dust in the dense interstellar medium. These ices, which contain many organic molecules, may also be the production site of the more complex organic grain mantles detected in the diffuse interstellar medium. Theoretical calculations employing gas phase as well as grain surface reactions predict that the ices should be dominated only by the simple molecules H2O, H2CO, N2, CO, O2, NH3, CH4, possibly CH3OH, and their deuterated counterparts. However, spectroscopic observations in the 2500 to 1250 cm(-1)(4 to 8 micron m) range show substantial variation from source reactions alone. By comparing these astronomical spectra with the spectra of laboratory-produced analogs of interstellar ices, one can determine the composition and abundance of the materials frozen on the grains in dense clouds. Experiments are described in which the chemical evolution of an interstellar ice analog is determined during irradiation and subsequent warm-up. Particular attention is paid to the types of moderately complex organic materials produced during these experiments which are likely to be present in interstellar grains and cometary ices.
Sugahara, Haruna; Meinert, Cornelia; Nahon, Laurent; Jones, Nykola C; Hoffmann, Søren V; Hamase, Kenji; Takano, Yoshinori; Meierhenrich, Uwe J
2018-07-01
Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.
Trajectories of charged dust grains in the cometary environment
NASA Astrophysics Data System (ADS)
Horanyi, M.; Mendis, D. A.
1985-07-01
Using a simple model of the particles and fields environment of a comet, the trajectories of the smallest (micron- and submicron-sized) dust grains that are expected to be released from a cometary nucleus are calculated. It is shown that electromagnetic forces play a crucial role in the dynamics of these particles. The present calculations indicate not only the asymmetry of the sunward dust envelopes that have been suggested earlier by other authors, but they also indicate the possible existence of wavy dust features far down the tail, reminiscent of the peculiar wavy dust feature observed in the dust tail of Comet Ikeya-Seki 1965f. The importance of these findings in studying the lower end of the cometary dust mass spectrum during the forthcoming fly-by missions to Comet Halley is underscored.
The density of cometary protons upstream of Comet Halley's bow shock
NASA Astrophysics Data System (ADS)
Neugebauer, M.; Goldstein, B. E.; Balsiger, H.; Neubauer, F. M.; Schwenn, R.; Shelley, E. G.
1989-02-01
Cometary protons picked up by the solar wind were detected by the high energy range spectrometer of the Giotto ion mass spectrometer starting at a cometocentric distance of about 12 million km. On the average, the density of cometary protons varied approximately as the inverse square of the cometocentric distance, reaching a value of 0.11/cu cm just outside the bow shock. The data can be successfully fit to models that include substantial amounts of both slow (1 km/s) and fast (8 km/s or greater) H atoms beyond the bow shock. Large local variations in the density of picked-up protons can be explained on the basis of variations in the direction of the interplanetary magnetic field in upstream regions where pitch angle scattering was weak.
Martian Methane From a Cometary Source: A Hypothesis
NASA Technical Reports Server (NTRS)
Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.;
2016-01-01
In recent years, methane in the martian atmosphere has been detected by Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. An additional potential source exists: meteor showers from the emission of large comet dust particles could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, generating methane via UV photolysis.