Triple F - A Comet Nucleus Sample Return Mission
NASA Technical Reports Server (NTRS)
Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi
2008-01-01
The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.
Triple F - A Comet Nucleus Sample Return Mission
NASA Technical Reports Server (NTRS)
Kueppers, Michael; Keller, H. U.; Kuehrt, E.; A'Hearn, M. F.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M. T.; Colangeli, L.; Davidsson, B.;
2008-01-01
The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.
Hummingbird Comet Nucleus Analysis Mission
NASA Technical Reports Server (NTRS)
Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.
2000-01-01
Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.
Workshop on Analysis of Returned Comet Nucleus Samples
NASA Technical Reports Server (NTRS)
1989-01-01
This volume contains abstracts that were accepted by the Program Committee for presentation at the workshop on the analysis of returned comet nucleus samples held in Milpitas, California, January 16 to 18, 1989. The abstracts deal with the nature of cometary ices, cryogenic handling and sampling equipment, origin and composition of samples, and spectroscopic, thermal and chemical processing methods of cometary nuclei. Laboratory simulation experimental results on dust samples are reported. Some results obtained from Halley's comet are also included. Microanalytic techniques for examining trace elements of cometary particles, synchrotron x ray fluorescence and instrument neutron activation analysis (INAA), are presented.
Insights into the nature of cometary organic matter from terrestrial analogues
NASA Astrophysics Data System (ADS)
Court, Richard W.; Sephton, Mark A.
2012-04-01
The nature of cometary organic matter is of great interest to investigations involving the formation and distribution of organic matter relevant to the origin of life. We have used pyrolysis-Fourier transform infrared (FTIR) spectroscopy to investigate the chemical effects of the irradiation of naturally occurring bitumens, and to relate their products of pyrolysis to their parent assemblages. The information acquired has then been applied to the complex organic matter present in cometary nuclei and comae. Amalgamating the FTIR data presented here with data from published studies enables the inference of other comprehensive trends within hydrocarbon mixtures as they are progressively irradiated in a cometary environment, namely the polymerization of lower molecular weight compounds; an increased abundance of polycyclic aromatic hydrocarbon structures; enrichment in 13C; reduction in atomic H/C ratio; elevation of atomic O/C ratio and increase in the temperature required for thermal degradation. The dark carbonaceous surface of a cometary nucleus will display extreme levels of these features, relative to the nucleus interior, while material in the coma will reflect the degree of irradiation experienced by its source location in the nucleus. Cometary comae with high methane/water ratios indicate a nucleus enriched in methane, favouring the formation of complex organic matter via radiation-induced polymerization of simple precursors. In contrast, production of complex organic matter is hindered in a nucleus possessing a low methane/water ration, with the complex organic matter that does form possessing more oxygen-containing species, such as alcohol, carbonyl and carboxylic acid functional groups, resulting from reactions with hydroxyl radicals formed by the radiolysis of the more abundant water. These insights into the properties of complex cometary organic matter should be of particular interest to both remote observation and space missions involving in situ analyses and sample return of cometary materials.
NASA Technical Reports Server (NTRS)
Sutton, S. R.
1989-01-01
The Synchrotron X ray Fluorescence (SXRF) microprobe at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, will be an excellent instrument for non-destructive trace element analyses of cometary nucleus samples. Trace element analyses of as-received cometary nucleus material will also be possible with this technique. Bulk analysis of relatively volatile elements will be important in establishing comet formation conditions. However, as demonstrated for meteorites, microanalyses of individual phases in their petrographic context are crucial in defining the histories of particular components in unequilibrated specimens. Perhaps most informative in comparing cometary material with meteorites will be the halogens and trace metals. In-situ, high spatial resolution microanalyses will be essential in establishing host phases for these elements and identifying terrestrial (collection/processing) overprints. The present SXRF microprobe is a simple, yet powerful, instrument in which specimens are excited with filtered, continuum synchrotron radiation from a bending magnet on a 2.5 GeV electron storage ring. A refrigerated cell will be constructed to permit analyses at low temperatures. The cell will consist essentially of an air tight housing with a cold stage. Kapton windows will be used to allow the incident synchrotron beam to enter the cell and fluorescent x rays to exit it. The cell will be either under vacuum or continuous purge by ultrapure helium during analyses. Several other improvements of the NSLS microprobe will be made prior to the cometary nucleus sample return mission that will greatly enhance the sensitivity of the technique.
NASA Technical Reports Server (NTRS)
Russell, Ray W.
1988-01-01
Laboratory studies related to cometary grains and the nuclei of comets can be broken down into three areas which relate to understanding the spectral properties, the formation mechanisms, and the evolution of grains and nuclei: (1) Spectral studies to be used in the interpretation of cometary spectra; (2) Sample preparation experiments which may shed light on the physical nature and history of cometary grains and nuclei by exploring the effects on grain emissivities resulting from the ways in which the samples are created; and (3) Grain processing experiments which should provide insight on the interaction of cometary grains with the environment in the immediate vicinity of the cometary nucleus as the comet travels from the Oort cloud through perihelion, and perhaps even suggestions regarding the relationship between interstellar grains and cometary matter. A summary is presented with a different view of lab experiments than is found in the literature, concentrating on measurement techniques and sample preparations especially relevant to cometary dust.
Laboratory Studies of Cometary Materials - Continuity Between Asteroid and Comet
NASA Technical Reports Server (NTRS)
Messenger, Scott; Walker, Robert M.
2015-01-01
Laboratory analysis of cometary samples have been enabled by collection of cometary dust in the stratosphere by high altitude aircraft and by the direct sampling of the comet Wild-2 coma by the NASA Stardust spacecraft. Cometary materials are composed of a complex assemblage of highly primitive, unprocessed interstellar and primordial solar system materials as well as a variety of high temperature phases that must have condensed in the inner regions of the protoplanetary disk. These findings support and contradict conclusions of comet properties based solely on astronomical observations. These sample return missions have instead shown that there is a continuity of properties between comets and asteroids, where both types of materials show evidence for primitive and processed materials. Furthermore, these findings underscore the importance and value of direct sample return. There will be great value in comparing the findings of the Stardust cometary coma sample return mission with those of future asteroid surface sample returns OSIRIS-REx and Hayabusa II as well as future comet nucleus sample returns.
Vega-Giotto flyby missions and cometary cosmogony
NASA Technical Reports Server (NTRS)
Lang, Bruno
1989-01-01
The most important implication of the Vega/Giotto flyby missions to Halley's Comet for cometary cosmogony is the opportunity to absorb the results of the in-situ measurements as made onboard the spacecrafts. Unfortunately the exploration of ejecta form the nucleus was unable to provide an unambiguous definition of the chemical-mineralogical nature of the nucleus: it failed to provide information comparable to that which was expected from a sample return mission. However, the obtained results are significant enough to affect and redirect cosmogonical thinking. Accordingly, the understanding of the cometary-matter dichotomy is modified as deduced from the distiction of water-dominated volitiles and silicate-based non-volitiles. Organic carbon compounds emerge as a major constituent of cometary nuclei. Presently, it is likely that the revision of Whipple's classic concept of the icy conglomerate cannot be avoided. Affected by the Vega/Giotto flyby missions to Hally's Comet, cometary cosmogony seems to enter a new conceptual period. The results of the in-situ measurements (mass spectrometric, UV spectroscopic, and IR spectroscopic) appear to be of basic importance. A chemical explanation is employed to explain the occurrence inside the nuclei of the variety of species, as inferred from the mass spectrometric data, to predict the results of the processes possibly involved. A cosmochemical factor is postulated to operate behind the observed cometary phenomena. The chemistry of the interstellar medium, covering the circumstellar and interstellar dust, advances cometary cosmogony.
Optical image of a cometary nucleus: 1980 flyby of Comet Encke
NASA Technical Reports Server (NTRS)
Wells, W. C.; Benson, R. S.; Anderson, A. D.; Gal, G.
1974-01-01
The feasibility was investigated of obtaining optical images of a cometary nucleus via a flyby of Comet Encke. A physical model of the dust cloud surrounding the nucleus was developed by using available physical data and theoretical knowledge of cometary physics. Using this model and a Mie scattering code, calculations were made of the absolute surface brightness of the dust in the line of sight of the on-board camera and the relative surface brightness of the dust compared to the nucleus. The brightness was calculated as a function of heliocentric distance and for different phase angles (sun-comet-spacecraft angle).
Are cometary nuclei primordial rubble piles?
NASA Technical Reports Server (NTRS)
Weissman, P. R.
1986-01-01
Whipple's icy conglomerate model for the cometary nucleus has had considerable sucess in explaining a variety of cometary phenomena such as gas production rates and nongravitational forces. However, as discussed here, both observational evidence and theoretical considerations suggest that the cometary nucleus may not be a well-consolidated single body, but may instead be a loosely bound agglomeration of smaller fragments, weakly bonded and subject to occasional or even frequent disruptive events. The proposed model is analogous to the 'rubble pile' model suggested for the larger main-belt asteroids, although the larger cometary fragments are expected to be primordial condensations rather than collisionally derived debris as in the asteroid case. The concept of cometary nuclei as primordial rubble piles is proposed as a modification of the basic Whipple model, not as a replacement for it.
Thermal modeling of cometary nuclei
NASA Astrophysics Data System (ADS)
Weissman, P. R.; Kieffer, H. H.
1981-09-01
A model of the sublimation of volatile ices from a cometary nucleus is presented which includes the effects of (1) diurnal heating and cooling, (2) rotation period and pole orientation, (3) the thermal properties of the ice and subsurface layers, and (4) the contributions from coma opacity, scattering and thermal emission where the properties of the coma are derived from the integrated rate of volatile production by the nucleus. In applying the model to the case of the 1986 apparition of Halley's comet, it is found that the generation of a cometary dust coma increases the total energy reaching the Halley nucleus due to the greater geometrical cross-section of the coma as compared with the bare nucleus. The calculated coma opacity of Halley is about 0.2 at 1 AU from the sun and 1.2 at perihelion. Possible consequences of the results obtained for the generation of nongravitational forces, volatile production rates for comets and cometary lifetimes against sublimation are discussed.
A Model for the Breakup of Comet Linear (C/1999 S4)
NASA Technical Reports Server (NTRS)
Samarasinha, Nalin H.
2001-01-01
We propose a mechanism based on the rubble-pile hypothesis of the cometary nucleus (Weissman 1986) to explain the catastrophic breakup of comet LINEAR (C/1999 S4) observed during July-August 2000. We suggest that a solid nucleus made up of 10-100 m "cometesimals" (Weidenschilling 1997) contains a network of inter-connected voids in the inter-cometesimal regions. The production of super-volatile (i.e., species more volatile than water) gases into these voids occurs due to the thermal wave propagating through the nucleus and associated phase transitions of water ice. The network of voids provides an efficient pathway for rapid propagation of these gases within the nucleus resulting in gas pressure caused stresses over a wide regime of the nucleus. This provides a mechanism for catastrophic breakups of small cometary nuclei such as comet LINEAR (C/1999 S4) as well as for some observed cometary outbursts including those that occur at large heliocentric distances (e.g., West et al. 1991). We emphasize the importance of techniques such as radar reflection tomography and radiowave transmission tomography (e.g., Kofman et al. 1998) aboard cometary missions to determine the three dimensional structure of the nucleus in particular the extent of large scale voids.
A continuing controversy: Has the cometary nucleus been resolved?
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1976-01-01
Evidence is presented for classifying cometary nuclei into two basic types, described by core mantle and coreless models. Mass loss related nongravitational effects in a comet's motion as a function of time are included in considering gradual evaporation of an icy envelope surrounding the meteoric matrix in the core of the nucleus.
NASA Technical Reports Server (NTRS)
Belton, Michael J. S.; Mueller, Beatrice
1991-01-01
The scientific objectives were as follows: (1) to construct a well sampled photometric time series of comet Halley extending to large heliocentric distances both post and pre-perihelion passage and derive a precise ephemeris for the nuclear spin so that the physical and chemical characteristics of individual regions of activity on the nucleus can be determined; and (2) to extend the techniques in the study of Comet Halley to the study of other cometary nuclei and to obtain new observational data.
NASA Technical Reports Server (NTRS)
Schleicher, David G.
1991-01-01
The physical properties of comets were studied by applying a wide variety of observational techniques. Emphasis is on simultaneous or coordinated observations in different spectral regions (e.g., visible and thermal IR or visible and far UV) or with different instrumentation (imaging, spectroscopy, and photometry). The aim was to: (1) measure the basic properties of cometary nuclei by studying comets whose comae are so anemic that the signal from the nucleus can be extracted; (2) investigate the group characteristics of comets by narrowband photometry applied uniformly to a large sample of comets; (3) understand the detailed physics and chemistry occurring in cometary comae through wide-field charge coupled device (CCD) imaging using narrow filters and through long-slit CCD spectroscopy; and (4) investigate the rotational states of comets through time-resolution photometry.
Non-destructive sampling of a comet
NASA Astrophysics Data System (ADS)
Jessberger, H. L.; Kotthaus, M.
1991-04-01
Various conditions which must be met for the development of a nondestructive sampling and acquisition system are outlined and the development of a new robotic sampling system suited for use on a cometary surface is briefly discussed. The Rosetta mission of ESA will take samples of a comet nucleus and return both core and volatile samples to earth. Various considerations which must be taken into account for such a project are examined including the identification of design parameters for sample quality; the identification of the most probable site conditions; the development of a sample acquisition system with respect to these conditions; the production of model materials and model conditions; and the investigation of the relevant material properties. An adequate sampling system should also be designed and built, including various tools, and the system should be tested under simulated cometary conditions.
Forced precession of the cometary nucleus with randomly placed active regions
NASA Technical Reports Server (NTRS)
Szutowicz, Slawomira
1992-01-01
The cometary nucleus is assumed to be triaxial or axisymmetric spheroid rotating about its axis of maximum moment of inertia and is forced to precess due to jets of ejected material. Randomly placed regions of exposed ice on the surface of the nucleus are assumed to produce gas and dust. The solution of the heat conduction equation for each active region is used to find the gas sublimation rate and the jet acceleration. Precession of the comet nucleus is followed numerically using a phase-averaged system of equations. The gas production curves and the variation of the spin axis during the orbital motion of the comet are presented.
Structure and density of cometary nuclei
NASA Astrophysics Data System (ADS)
Weissman, Paul R.; Lowry, Stephen C.
2008-09-01
Understanding the nature of the cometary nucleus remains one of the major problems in solar system science. Whipple’s (1950) icy conglomerate model has been very successful at explaining a range of cometary phenomena, including the source of cometary activity and the nongravitational orbital motion of the nuclei. However, the internal structure of the nuclei is still largely unknown. We review herein the evidence for cometary nuclei as fluffy aggregates or primordial rubble piles, as first proposed by Donn et al. (1985) and Weissman (1986). These models assume that cometary nuclei are weakly bonded aggregations of smaller, icy- onglomerate planetesimals, possibly held together only by self-gravity. Evidence for this model comes from studies of the accretion and subsequent evolution of material in the solar nebula, from observations of disrupted comets, and in particular comet Shoemaker-Levy 9, from measurements of the ensemble rotational properties of observed cometary nuclei, and from recent spacecraft missions to comets. Although the evidence for rubble pile nuclei is growing, the eventual answer to this question will likely not come until we can place a spacecraft in orbit around a cometary nucleus and study it in detail over many months to years. ESA’s Rosetta mission, now en route to comet 67P/Churyumov- Gerasimenko, will provide that opportunity.
Structure and origin of cometary nuclei
NASA Technical Reports Server (NTRS)
Donn, B.; Rahe, J.
1981-01-01
There is strong evidence that a comet nucleus consists of a single object whose basic structure is Whipple's icy conglomerate. A number of cometary phenomena indicate that the nucleus is a low density, fragile object with a large degree of radial uniformity in structure and composition. Details of the ice-dust pattern are more uncertain. A working model is proposed which is based on theories of accumulation of larger objects from grains. This nucleus is a distorted spherical aggregate of a hierarchy of ice-dust cometesimals. These cometesimals retain some separate identity which lead to comet fragmentation when larger components break off. The outer layers of new comets were modified by cosmic ray irradiation in the Oort Cloud. The evidence for meteorite-comet association is steill controversial. Current dynamical studies do not seem to require a cometary source of meteorites.
Thermal modeling of cometary nuclei
Weissman, P.R.; Kieffer, H.H.
1981-01-01
A new model of the sublimation of volatile ices from a cometary nucleus has been developed which includes the effects of diurnal heating and cooling, rotation period and pole orientation, and thermal properties of the ice and subsurface layers. The model also includes the contribution from coma opacity, scattering, and thermal emission, where the properties of the coma are derived from the integrated rate of volatile production by the nucleus. The model is applied to the specific case of the 1986 apparition of Halley's comet. It is found that the generation of a cometary dust coma actually increases the total energy reaching the Halley nucleus. This results because of the significantly greater geometrical cross section of the coma as compared with the bare nucleus, and because the coma provides an essentially isotropic source of multiply scattered sunlight and thermal emission over the entire nucleus surface. For Halley, the calculated coma opacity is approximately 0.2 at 1 AU from the Sun, and 1.2 at perihelion (0.587 AU). At 1 AU this has little effect on dayside temperatures (maximum ???200??K) but raises nightside temperatures (minimum ???150??K) by about 40??K. At perihelion the higher opacity results in a nearly isothermal nucleus with only small diurnal and latitudinal temperature variations. The general surface temperature is 205??K with a maximum of 209??K at local noon on the equator. Some possible consequences of the results with respect to the generation of nongravitational forces, observed volatile production rates for comets, and cometary lifetimes against sublimation are discussed. ?? 1981.
NASA Astrophysics Data System (ADS)
Berčič, L.; Behar, E.; Nilsson, H.; Nicolaou, G.; Wieser, G. Stenberg; Wieser, M.; Goetz, C.
2018-06-01
Aims: Cometary ions are constantly produced in the coma, and once produced they are accelerated and eventually escape the coma. We describe and interpret the dynamics of the cometary ion flow, of an intermediate active comet, very close to the nucleus and in the terminator plane. Methods: We analysed in situ ion and magnetic field measurements, and characterise the velocity distribution functions (mostly using plasma moments). We propose a statistical approach over a period of one month. Results: On average, two populations were observed, separated in phase space. The motion of the first is governed by its interaction with the solar wind farther upstream, while the second one is accelerated in the inner coma and displays characteristics compatible with an ambipolar electric field. Both populations display a consistent anti-sunward velocity component. Conclusions: Cometary ions born in different regions of the coma are seen close to the nucleus of comet 67P/Churyumov-Gerasimenko with distinct motions governed in one case by the solar wind electric field and in the other case by the position relative to the nucleus. A consistent anti-sunward component is observed for all cometary ions. An asymmetry is found in the average cometary ion density in a solar wind electric field reference frame, with higher density in the negative (south) electric field hemisphere. There is no corresponding signature in the average magnetic field strength.
ESA confirms ROSETTA and FIRST in its long-term science programme
NASA Astrophysics Data System (ADS)
1993-11-01
ROSETTA was originally conceived as a comet-nucleus sample-return mission that should have brought back cometary material to Earth to be able to study it with the most advanced laboratory analysis techniques available. The original mission could not be implemented as it was too ambitious and too complex. Therefore in 1992 the concept had to be revised. The mission was reconsidered as being performed by ESA alone on the basis of European technology and the Ariane 5 launch capability. However, the opportunity for other agencies to join and augment the scientific return was left open, and international partners have already indicated to ESA their interest to join. The new baseline mission is a rendezvous with a comet and at least one (most probably two) flybys of asteroids. After gravity-assist manoeuvres at the Earth and Mars or Venus to acquire the necessary energy to reach the comet at its aphelion (the part of the orbit farthest from the Sun), the spacecraft will stay with the comet along its trajectory into the inner solar system through perihelion (the orbital point nearest to the Sun) to study the material that constitutes the comet, and the cometary processes that evolve with the decreasing distance from the Sun. A Surface Science Station will be deployed onto the comets' nucleus surface to provide the means for in-situ studies of the nucleus. The mission retains as far as possible the objectives of the original comet-nucleus sample-return mission and concentrates on the in-situ investigations of cometary matter and the structure of the nucleus. "As we cannot bring the cometary material into our terrestrial laboratories, we will take our laboratories to the comet" said Dr. Roger Bonnet, ESA Director of Science. Potential target comets are Schwassmann- Wachmann 3, Wirtanen, Finlay and Brooks 2 for a launch in the time interval 2002-2004. "Both teams for ROSETTA and FIRST" added Dr. Bonnet, "defined excellent missions with exciting prospects for the science to be achieved. For programmatic reasons ROSETTA will be implemented as Cornerstone 3, following Cluster and SOHO and XMM". "However", he continued, "the work on FIRST will proceed at a very high level to further develop the critical technologies, like for instance the 3 m telescope mirror, the coolers and the detectors. The major elements of the Horizon 2000 science programme are now under way and we will start the process to define the 'post-Horizon 2000' programme".
Cometary coma chemical composition (C4) mission. [Abstract only
NASA Technical Reports Server (NTRS)
Carle, G. C.; Clark, B. C.; Niemann, H. B.; Alexander, M.; Knocke, P. C.; O'Hara, B. J.
1994-01-01
Cometary missions are of enormous fundamental importance for many different space science disciplines, including exobiology. Comets are presumed relics of the earliest, most primitive material in the solar nebula and are related to the planetesimals. They undoubtedly provided a general enrichment of volatiles to the inner solar system (contributing to atmospheres and oceans) and may have been key to the origin of life. A Discovery class, comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, was selected for further study by NASA earlier this year. The C4 Mission is a highly focused and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission, concentrating exclusively on measurements which will lead to an understanding of the chemical composition and make-up of the cometary nucleus. The scientific goals of the Cometary Coma Chemical Composition (C4) Mission are to rendezvous with a short-period comet and (1) to determine the elemental, chemical, and isotopic composition of the nucleus and (2) to characterize the chemical and isotopic nature of its atmosphere. Further, it is a goal to obtain preliminary data on the development of the coma (dust and gas composition) as a function of time and orbital position.
Parametric Dielectric Model of Comet Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Heggy, E.; Palmer, E. M.; Kofman, W. W.; Clifford, S. M.; Righter, K.; Herique, A.
2012-12-01
In 2014, the European Space Agency's Rosetta mission is scheduled to rendezvous with Comet 67P/Churyumov-Gerasimenko (Comet 67P). Rosetta's CONSERT experiment aims to explore the cometary nucleus' geophysical properties using radar tomography. The expected scientific return and inversion algorithms are mainly dependent on our understanding of the dielectric properties of the comet nucleus and how they vary with the spatial distribution of geophysical parameters. Using observations of comets 9P/Tempel 1 and 81P/Wild 2 in combination with dielectric laboratory measurements of temperature, porosity, and dust-to-ice mass ratio dependencies for cometary analog material, we have constructed two hypothetical three-dimensional parametric dielectric models of Comet 67P's nucleus to assess different dielectric scenarios of the inner structure. Our models suggest that dust-to-ice mass ratios and porosity variations generate the most significant measurable dielectric contrast inside the comet nucleus, making it possible to explore the structural and compositional hypotheses of cometary nuclei. Surface dielectric variations, resulting from temperature changes induced by solar illumination of the comet's faces, have also been modeled and suggest that the real part of the dielectric constant varies from 1.9 to 3.0, hence changing the surface radar reflectivity. For CONSERT, this variation could be significant at low incidence angles, when the signal propagates through a length of dust mantle comparable to the wavelength. The overall modeled dielectric permittivity spatial and temporal variations are therefore consistent with the expected deep penetration of CONSERT's transmitted wave through the nucleus. It is also clear that changes in the physical properties of the nucleus induce sufficient variation in the dielectric properties of cometary material to allow their inversion from radar tomography.
Physical Properties of Cometary Nucleus Candidates
NASA Technical Reports Server (NTRS)
Jewitt, David; Hillman, John (Technical Monitor)
2003-01-01
In this proposal we aim to study the physical properties of the Centaurs and the dead comets, these being the precursors to, and the remnants from, the active cometary nuclei. The nuclei themselves are very difficult to study, because of the contaminating effects of near-nucleus coma. Systematic investigation of the nuclei both before they enter the zone of strong sublimation and after they have depleted their near-surface volatiles should neatly bracket the properties of these objects, revealing evolutionary effects.
Challenges of deflecting an asteroid or cometary nucleus with a nuclear burst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, Paul A; Plesko, Cathy S; Clement, Ryan R C
2009-01-01
There are many natural disasters that humanity has to deal with over time. These include earthquakes, tsunami, hurricanes, floods, asteroid strikes, and so on. Many of these disasters occur slowly enough that some advance warning of which areas will be affected is possible. However, in almost all cases, the response is to evacuate the area to be affected and deal with the damage later. The evacuations for hurricanes Katrina and Rita on the US Gulf Coast in 2005 demonstrated the chaos that can result. In contrast with other natural disasters. it is likely that an asteroid or cometary nucleus onmore » a collision course with Earth is likely to be detected with enough warning time to possibly deflect it away from the collision course. Thanks to near-Earth object (NEO) surveys, people are working towards a goal of cataloging at least 90% of all near-Earth objects with diameters larger than {approx}140 meters in the next decade. The question is how to mitigate the threat from an asteroid or cometary nucleus found to be on a collision course. We briefly review some possible methods, describing their good and bad points, and then embark on a more detailed description of using a nuclear munition in standoff mode to deflect an asteroid or cometary nucleus before it can hit Earth.« less
NASA Astrophysics Data System (ADS)
Jost, Bernhard; Pommerol, Antoine; Poch, Olivier; Carrasco, Nathalie; Szopa, Cyril; Thomas, Nicolas
2015-11-01
The OSIRIS imaging system [1] onboard European Space Agency’s Rosetta mission has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014. It provides an enormous quantity of high resolution images of the nucleus in the visible spectral range. 67P revealed an unexpected diversity of complex surface structures and spectral properties have also been measured [2].To better interpret this data, a profound knowledge of laboratory analogs of cometary surfaces is essential. For this reason we have set up the LOSSy laboratory (Laboratory for Outflow Studies of Sublimating Materials) to study the spectrophotometric properties of ice-bearing cometary nucleus analogs. The main focus lies on the characterization of the surface evolution under simulated space conditions. The laboratory is equipped with two facilities: the PHIRE-2 radio-goniometer [3], designed to measure the bidirectional visible reflectance of samples under a wide range of geometries and the SCITEAS simulation chamber [4], designed to study the evolution of icy samples subliming under low pressure/temperature conditions by hyperspectral imaging in the VIS-NIR range. Different microscopes complement the two facilities.We present laboratory data of different types of fine grained ice particles mixed with non-volatile components (complex organic matter and minerals). As the ice sublimes, a deposition lag of non-volatile constituents is built-up on top of the ice, possibly mimic a cometary surface. The bidirectional reflectance of the samples have been characterized before and after the sublimation process.A comparison of our laboratory findings with recent OSIRIS data [5] will be presented.[1] Keller, H. U., et al., 2007, Space Sci. Rev., 128, 26[2] Thomas, N. , 2015, Science, 347, Issue 6220, aaa0440[3] Jost, B., submitted, Icarus[4] Pommerol, A., et al., 2015. Planet Space Sci 109:106-122.[5] Fornasier, S., et al., in press. Icarus, arXiv:1505.06888
Cometary kilometric radio waves and plasma waves correlated with ion pick-up effect at Comet Halley
NASA Technical Reports Server (NTRS)
Oya, H.; Morioka, A.; Miyake, W.; Smith, E. J.; Tsurutani, B. T.
1985-01-01
Bow-shock movements at Comet Halley are inferred from the discrete spectra of the cometary kilometric radiation (30-195 kHz); the observed emissions can be interpreted as being generated and propagating from the moving shock. The shock motion is possibly associated with the time variation of the solar wind and cometary outgassing. It is concluded that these plasma wave phenomena are manifestations of ion pick-up processes, which occur even in a remote region 7 million to 10 million km from the cometary nucleus.
Cometary Coma Chemical Composition (C4) Mission
NASA Technical Reports Server (NTRS)
Carle, Glenn C.; Clark, Benton C.; Knocke, Philip C.; OHara, Bonnie J.; Adams, Larry; Niemann, Hasso B.; Alexander, Merle; Veverka, Joseph; Goldstein, Raymond; Huebner, Walter;
1994-01-01
Cometary exploration remains of great importance to virtually all of space science. Because comets are presumed to be remnants of the early solar nebula, they are expected to provide fundamental knowledge as to the origin and development of the solar system as well as to be key to understanding of the source of volatiles and even life itself in the inner solar system. Clearly the time for a detailed study of the composition of these apparent messages from the past has come. A comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, is now being studied as a candidate for the new Discovery program. This mission is a highly-focussed and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission. The C4 mission will concentrate on measurements that will produce an understanding of the composition and physical makeup of a cometary nucleus. The core science goals of the C4 mission are 1) to determine the chemical, elemental, and isotopic composition of a cometary nucleus and 2) to characterize the chemical and isotopic nature of its atmosphere. A related goal is to obtain temporal information about the development of the cometary coma as a function of time and orbital position. The four short-period comets -- Tempel 1, Tempel 2, Churyumov-Gerasimenko, and Wirtanen -which all appear to have acceptable dust production rates, were identified as candidate targets. Mission opportunities have been identified beginning as early as 1998. Tempel I with a launch in 1999, however, remains the baseline comet for studies of and planning the C4 mission. The C4 mission incorporates two science instruments and two engineering instruments in the payload to obtain the desired measurements. The science instruments include an advanced version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX with a sample collection system, an X-ray Fluorescence Spectrometer and a Pyrolysis-Gas Chromatograph, and a simplified version of the Neutral Gas and Ion Mass Spectrometer (NIGMS). Both of these instruments have substantial heritage as they are based on those developed for the CRAF Mission. The engineering instruments include a simplified Comet Dust Environmental Monitor (SCODEM) and a navigational Camera, NAVCAM. While neither of the instruments will be permitted to establish science requirements, it is anticipated that significant science return will be accomplished Radio science will also be included.
'Peeling a comet': Layering of comet analogues
NASA Astrophysics Data System (ADS)
Kaufmann, E.; Hagermann, A.
2017-09-01
Using a simple comet analogue we investigate the influence of subsurface solar light absorption by dust. We found that a sample initially consisting of loose water ice grains and carbon particles becomes significantly harder after being irradiated with artificial sunlight for several hours. Further a drastic change of the sample surface could be observed. These results suggests that models should treat the nucleus surface as an interactive transitional zone to better represent cometary processes.
Primitive bodies - Molecular abundances in Comet Halley as probes of cometary formation environments
NASA Technical Reports Server (NTRS)
Lunine, Jonathan I.
1989-01-01
The most recent results on abundances of molecules in Halley's comet are examined in the context of various models for the environment in which comets formed. These environments include molecular clouds associated with star-forming regions, the solar nebula, gaseous disks around proto-planets, and combinations of these. Of all constituents in a cometary nucleus, the highly volatile molecules such as methane, ammonia, molecular nitrogen, and carbon monoxide are most sensitive to the final episode of cometary grain formation and incorporation in the comet's nucleus; hence they likely reflect at least some chemical processing in the solar nebula. Proper interpretation requires modeling of a number of physical processes including gas phase chemistry, chemistry on grain surfaces, and fractionation effects resulting from preferential incorporation of certain gases in proto-cometary grains. The abundance of methane in Halley's comet could be a key indicator of where that comet formed, provided the methane abundance on grains in star-forming regions can be observationally constrained.
NASA Astrophysics Data System (ADS)
Shou, Y.; Combi, M. R.; Toth, G.; Fougere, N.; Tenishev, V.; Huang, Z.; Jia, X.; Hansen, K. C.; Gombosi, T. I.; Bieler, A. M.; Rubin, M.
2016-12-01
Cometary dust observations may deepen our understanding of the role of dust in the formation of comets and in altering the cometary environment. Models including dust grains are in demand to interpret observations and test hypotheses. Several existing models have taken into account the gas-dust interaction, varying sizes of dust grains and the cometary gravitational force. In this work, we develop a multi-fluid dust model based on BATS-R-US in the University of Michigan's Space Weather Modeling Framework (SWMF). This model not only incorporates key features of previous dust models, but also has the capability of simulating time-dependent phenomena. Since the model is running in the rotating comet reference frame with a real shaped nucleus in the computational domain, the fictitious centrifugal and Coriolis forces are included. The boundary condition on the nucleus surface can be set according to the distribution of activity and the solar illumination. The Sun, which drives sublimation and the radiation pressure force, revolves around the comet in this frame. A newly developed numerical mesh is also used to resolve the real shaped nucleus in the center and to facilitate prescription of the outer boundary conditions that accommodate the rotating frame. The inner part of the grid is a box composed of Cartesian cells and the outer surface is a smooth sphere, with stretched cells filled in between the box and the sphere. The effects of the rotating nucleus and the activity region on the surface are discussed and preliminary results are presented. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta contracts JPL #1266313, JPL #1266314 and JPL #1286489.
The Rosetta mission orbiter science overview: the comet phase
Altobelli, N.; Buratti, B. J.; Choukroun, M.
2017-01-01
The international Rosetta mission was launched in 2004 and consists of the orbiter spacecraft Rosetta and the lander Philae. The aim of the mission is to map the comet 67P/Churyumov–Gerasimenko by remote sensing, and to examine its environment in situ and its evolution in the inner Solar System. Rosetta was the first spacecraft to rendezvous with and orbit a comet, accompanying it as it passes through the inner Solar System, and to deploy a lander, Philae, and perform in situ science on the comet's surface. The primary goals of the mission were to: characterize the comet's nucleus; examine the chemical, mineralogical and isotopic composition of volatiles and refractories; examine the physical properties and interrelation of volatiles and refractories in a cometary nucleus; study the development of cometary activity and the processes in the surface layer of the nucleus and in the coma; detail the origin of comets, the relationship between cometary and interstellar material and the implications for the origin of the Solar System; and characterize asteroids 2867 Steins and 21 Lutetia. This paper presents a summary of mission operations and science, focusing on the Rosetta orbiter component of the mission during its comet phase, from early 2014 up to September 2016. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554981
Ground truth of (sub-)micrometre cometary dust - Results of MIDAS onboard Rosetta
NASA Astrophysics Data System (ADS)
Mannel, Thurid; Bentley, Mark; Schmied, Roland; Torkar, Klaus; Jeszenszky, Harald; Romsted, Jens; Levasseur-Regourd, A.; Weber, Iris; Jessberger, Elmar K.; Ehrenfreund, Pascale; Köberl, Christian; Havnes, Ove
2016-10-01
The investigation of comet 67P by Rosetta has allowed the comprehensive characterisation of pristine cometary dust particles ejected from the nucleus. Flying alongside the comet at distances as small as a few kilometres, and with a relative velocity of only centimetres per second, the Rosetta payload sampled almost unaltered dust. A key instrument to study this dust was MIDAS (the Micro-Imaging Dust Analysis System), a dedicated atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre sized particles in 3D with resolutions down to nanometres. This offers the unique opportunity to explore the morphology of smallest cometary dust and expand our current knowledge about cometary material.Here we give an overview of dust collected and analysed by MIDAS and highlight its most important features. These include the ubiquitous agglomerate nature of the dust, which is found at all size scales from the largest (>10 µm) through to the smallest (<1 µm) dust particles. The sub-units show characteristic sizes and shapes that are compared with model predictions for interstellar dust.Our findings constrain key parameters of the evolution of the early Solar System. We will discuss which dust growth model is favoured by the observed morphology and how the results restrict cometary formation. Finally, dust particles detected by MIDAS resemble primitive interplanetary dust which is a strong argument for a common cometary origin.
NASA Technical Reports Server (NTRS)
Whipple, Fred L.
1991-01-01
Comments on the nature of cometary nuclei, some problems regarding cometary origin, and some correlations among cometary data are presented. Comparisons with an earlier report on cometary nuclei are noted, and most of the earlier advances in concept are substantiated. The mean density of the Halley nucleus may have been underestimated, while the nature of the rotation remains uncertain. The dust/gas ratio apparently needs to be increased by as much as two times, perhaps to unity or higher. CHON grains appear to be important sources of gas. Evidence is presented to support the thesis that aging among long-period comets increases statistically as the periods decrease. Data on the orientation of cometary axes with respect to the Galaxy and the properties of clusters defined by these axes are presented.
The Complex Outgassing of Comets and the Resulting Coma, a Direct Simulation Monte-Carlo Approach
NASA Astrophysics Data System (ADS)
Fougere, Nicolas
During its journey, when a comet gets within a few astronomical units of the Sun, solar heating liberates gases and dust from its icy nucleus forming a rarefied cometary atmosphere, the so-called coma. This tenuous atmosphere can expand to distances up to millions of kilometers representing orders of magnitude larger than the nucleus size. Most of the practical cases of coma studies involve the consideration of rarefied gas flows under non-LTE conditions where the hydrodynamics approach is not valid. Then, the use of kinetic methods is required to properly study the physics of the cometary coma. The Direct Simulation Monte-Carlo (DSMC) method is the method of choice to solve the Boltzmann equation, giving the opportunity to study the cometary atmosphere from the inner coma where collisions dominate and is in thermodynamic equilibrium to the outer coma where densities are lower and free flow conditions are verified. While previous studies of the coma used direct sublimation from the nucleus for spherically symmetric 1D models, or 2D models with a day/night asymmetry, recent observations of comets showed the existence of local small source areas such as jets, and extended sources via sublimating icy grains, that must be included into cometary models for a realistic representation of the physics of the coma. In this work, we present, for the first time, 1D, 2D, and 3D models that can take into account the full effects of conditions with more complex sources of gas with jets and/or icy grains. Moreover, an innovative work in a full 3D description of the cometary coma using a kinetic method with a realistic nucleus and outgassing is demonstrated. While most of the physical models used in this study had already been developed, they are included in one self-consistent coma model for the first time. The inclusion of complex cometary outgassing processes represents the state-of-the-art of cometary coma modeling. This provides invaluable information about the coma by refining the understanding of the material that constitutes comets. This helps us to comprehend the process of the Solar System formation, one of the top priority questions in the 2013-2022 Planetary Science Decadal survey.
CRAF Mission: An opportunity for exobiology
NASA Technical Reports Server (NTRS)
Neugebauer, Marcia; Weissman, Paul
1992-01-01
The Halley missions of 1986 gave us a first, quick glimpse of a comet nucleus and the first in situ measurements of cometary gas and dust. Many of our basic ideas about cometary nuclei were confirmed while a number of startling new discoveries were also made. However, in many respects the very fast Halley flybys raised more questions than they answered. We learned, for example, that comets contain a large amount of organic material but we were unable to determine precisely which organic molecules were present. We learned, too, that the nucleus of a comet is a dark, irregularly shaped body, but we could determine very little about the physical state and structure of the ices and grains within the comet nucleus.
Physical Processing of Cometary Nuclei
NASA Technical Reports Server (NTRS)
Weissman, Paul R.; Stern, S. Alan
1997-01-01
Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.
Comets: Dirty snowballs or icy dirtballs
NASA Astrophysics Data System (ADS)
Keller, H. U.
1989-12-01
The observations of comet Halley show that the non-volatile (dust) component of the cometary nucleus has become more dominant if compared to the perception based on the icy conglomerate nucleus. The in-situ observations on the Giotto spacecraft revealed an excess of large dust particles that dominate the mass distribution. Even larger particles were derived from the attitude changes of the spacecraft bridging the gap to the cloud of particles observed by radar techniques. A dust to gas ratio larger than one was derived for comet Halley. The importance of dust for the structure of the nucleus is corroborated by the amount of particles and their lifetime in meteor streams. Fireballs show that large (meter size) objects separate from the nucleus and are stable enough to survive hundreds of orbital periods. From the various lines of evidence it is concluded that the structure of cometary nuclei is determined by the non-volatile component rather than by ice or snow. Laboratory models based on icy agglomerations do not seem realistic as nucleus analogs.
NASA Technical Reports Server (NTRS)
Meech, Karen J.
1991-01-01
The question of physical aging in cometary nuclei is addressed in order to elucidate the relationship between the past conditions in the protosolar nebula and the present state of the cometary nucleus, and to understand the processes that will physically and chemically alter the nucleus as a function of time. Attention is given to some of the processes that might be responsible for causing aging in comets, namely, radiation damage in the upper layers of the nucleus during the long residences in the Oort cloud, processing from heating and collisions within the Oort cloud, loss of highly volatile species from the nucleus on the first passage through the inner solar system, buildup of a dusty mantle, which can eventually prohibit further sublimation, and a change in the porosity, and hence the thermal properties, of the nucleus. Recent observations suggest that there are distinct differences between 'fresh' Oort cloud comets and thermally processed periodic comets with respect to intrinsic brightness and rate of change of activity as a function of distance.
Comet Wild 2 and the two kinds of cometary sub-nuclei population
NASA Astrophysics Data System (ADS)
Illes-Almar, E.
On the 2nd January 2004 Stardust encountered the nucleus of comet Wild 2 by 240 km. 72 images have been collected - among them the up-till-now best views of a cometary nucleus. The "pockmarked" surface of the comet is peculiar as the "craters" are not normal craters: neither in shape nor in cross section. Their shapes are rather irregular and generally not central or axisymmetric. Furthermore they have flat bottoms and very steep walls that seem almost perpendicular to the surface. One has the feeling that they are not impact craters. In the framework of our `two kinds of cometary sub-nuclei population' hypothesis (Illés-Almár, 1995, 2002) the cavities can be explained by the stronger sublimation where the loose sub-nuclei are exposed to the surface. The almost vertical walls resemble to the vertical walls of the sublimated CO2 ice on the South polar cap of Mars. References: Illés-Almár, E.: On two different populations of cometary sub-nuclei. Antarctic Meteorites XX. June 6-8, 1995, Tokyo. Abstracts pp. 93-94, 1995. Illés-Almár, E.: Comet Borrelly and the two kinds of cometary sub-nuclei population. (submitted to Adv. Sp. Res. in 2002)
NASA Technical Reports Server (NTRS)
Mumma, M. J.; DiSanti, M. A.; Bonev, B. P.; Villanueva, G. L.; Magee-Sauer, K.; Gibb, E. L.; Paganini, L.; Radeva, Y. L.; Charnley, S. B.
2012-01-01
It is relatively easy to identify the reservoir from which a given comet was ejected. But dynamical models demonstrate that the main cometary reservoirs (Kuiper Belt, Oort Cloud) each contain icy bodies that formed in a range of environments in the protoplanetary disk, and the Oort Cloud may even contain bodies that formed in disks of sibling stars in the Sun s birth cluster. The cometary nucleus contains clues to the formative region(s) of its individual components. The composition of ices and rocky grains reflect a range of processes experienced by material while on the journey from the natal interstellar cloud core to the cometary nucleus. For that reason, emphasis is placed on classifying comets according to their native ices and dust (rather than orbital dynamics). Mumma & Charnley [1] reviewed the current status of taxonomies for comets and relation to their natal heritage.
NASA Astrophysics Data System (ADS)
Shou, Y.; Combi, M.; Toth, G.; Tenishev, V.; Fougere, N.; Jia, X.; Rubin, M.; Huang, Z.; Hansen, K.; Gombosi, T.
2017-11-01
Improving our capability to interpret observations of cometary dust is necessary to deepen our understanding of the role of dust in the formation of comets and in altering the cometary environments. Models including dust grains are in demand to interpret observations and test hypotheses. Several existing models have taken into account the gas-dust interaction, varying sizes of dust grains and the cometary gravitational force. In this work, we develop a multi-fluid dust model based on the BATS-R-US code. This model not only incorporates key features of previous dust models, but also has the capability of simulating time-dependent phenomena. Since the model is run in the rotating comet reference frame, the centrifugal and Coriolis forces are included. The boundary conditions on the nucleus surface can be set according to the distribution of activity and the solar illumination. The Sun revolves around the comet in this frame. A newly developed numerical mesh is also used to resolve the real-shaped nucleus in the center and to facilitate prescription of the outer boundary conditions that accommodate the rotating frame. The inner part of the mesh is a box composed of Cartesian cells and the outer surface is a smooth sphere, with stretched cells filled in between the box and the sphere. Our model achieved comparable results to the Direct Simulation Monte Carlo method and the Rosetta/OSIRIS observations. It is also applied to study the effects of the rotating nucleus and the cometary activity and offers interpretations of some dust observations of comet 67P/Churyumov-Gerasimenko.
Evolution of Icy Dust Grains in the Vicinity of a Cometary Nucleus
NASA Astrophysics Data System (ADS)
Hilchenbach, M.
2009-12-01
From late 2014 onwards, ESA's cornerstone mission ROSETTA will orbit the comet 67P/Churyumov-Gerasimenko. One instrument, COSIMA, will collect cometary dust grains and analyze the grains via secondary mass spectrometry. Models of the evolution of icy dust, accelerated by drag forces of subliming gas and exposed to solar radiation, should set constrains on the detection limits of the COSIMA instrument for volatile icy components. A straightforward modeling approach is applied as a baseline for the observational planing schedule of the instrument operations in the years 2014/2015 as ROSETTA escorts the comet nucleus up to perihelion and beyond.
Carbonaceous Components in the Comet Halley Dust
NASA Technical Reports Server (NTRS)
Fomenkova, M. N.; Chang, S.; Mukhin, L. M.
1994-01-01
Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.
NASA Astrophysics Data System (ADS)
Wesołowski, M.; Gronkowski, P.
2018-07-01
In the present article, we propose a new method of mass estimation which is ejected from a nucleus of a comet during its outburst of brightness. The phenomena of cometary outburst are often reported for both periodic and parabolic comets. The outburst of a comet brightness is a sudden increase in its brightness greater than one magnitude, average by 2-5 mag. This should not be confused with explosions such as outbreak of a bomb. The essence of the phenomenon is only a sudden brightening of the comet. Long-term observations and studies of this phenomenon lead to the conclusion that the very probable direct cause of the many outbursts is the ejection of the some part of surface layer of a comet's nucleus and an increase in the rate of a sublimation (Hughes (1990), Gronkowski (2007), Gronkowski and Wesołowski (2015)). The purpose of this article is presentation of a new simple method of the estimation of the mass which is ejected from the comet's nucleus during considered phenomenon. To estimate the mass released during an outburst, different probable coefficients of extinction for cometary matter was assumed. The scattering cross-sections of cometary grains were precisely calculated on the basis of Mie's theory. This method was applied to the outburst of a hypothetical comet X/PC belonging to the Jupiter-family comets and to the case of the comet 17P/Holmes outburst in 2007.
Curation and Analysis of Samples from Comet Wild-2 Returned by NASA's Stardust Mission
NASA Technical Reports Server (NTRS)
Nakamura-Messenger, Keiko; Walker, Robert M.
2015-01-01
The NASA Stardust mission returned the first direct samples of a cometary coma from comet 81P/Wild-2 in 2006. Intact capture of samples encountered at 6 km/s was enabled by the use of aerogel, an ultralow dense silica polymer. Approximately 1000 particles were captured, with micron and submicron materials distributed along mm scale length tracks. This sample collection method and the fine scale of the samples posed new challenges to the curation and cosmochemistry communities. Sample curation involved extensive, detailed photo-documentation and delicate micro-surgery to remove particles without loss from the aerogel tracks. This work had to be performed in highly clean facility to minimize the potential of contamination. JSC Curation provided samples ranging from entire tracks to micrometer-sized particles to external investigators. From the analysis perspective, distinguishing cometary materials from aerogel and identifying the potential alteration from the capture process were essential. Here, transmission electron microscopy (TEM) proved to be the key technique that would make this possible. Based on TEM work by ourselves and others, a variety of surprising findings were reported, such as the observation of high temperature phases resembling those found in meteorites, rarely intact presolar grains and scarce organic grains and submicrometer silicates. An important lesson from this experience is that curation and analysis teams must work closely together to understand the requirements and challenges of each task. The Stardust Mission also has laid important foundation to future sample returns including OSIRIS-REx and Hayabusa II and future cometary nucleus sample return missions.
The Comet Giacobini-Zinner magnetotail: Axial stresses and inferred near-nucleus properties
NASA Technical Reports Server (NTRS)
Mccomas, D. J.; Gosling, J. T.; Bame, S. J.; Slavin, J. A.; Smith, E. J.; Steinberg, J. L.
1986-01-01
Utilizing the electron and magnetic field data from the ICE tail traversal of comet Giacobini-Zinner along with the MHD equations, a steady state, stress balance model of the cometary magnetotail was developed, and used to infer important but unmeasured ion properties within the magnetotail at ICE and upstream at the average point along each streamline where cometary ions are picked-up. The derived tailward ion flow speed at ICE is quite constant at approx. -20 to -30 km/sec across the entire tail. The flow velocity, ion temperature, density, and ion source rates upstream from the lobes (current sheet) at the average pick-up locations are approx. -75 km/sec (approx. -12), approx. 4 million K (approx. 100,000), approx. 20 cc (approx. 400), and approx. 15 cu cm/sec. Gradients in the plasma properties between the two regions are quite strong. Implications of inferred plasma properties for the near-nucleus region and for cometary magnetotail formation are examined.
Three Dimensional Explicit Model for Cometary Tail Ions Interactions with Solar Wind
NASA Astrophysics Data System (ADS)
Al Bermani, M. J. F.; Alhamed, S. A.; Khalaf, S. Z.; Ali, H. Sh.; Selman, A. A.
2009-06-01
The different interactions between cometary tail and solar wind ions are studied in the present paper based on three-dimensional Lax explicit method. The model used in this research is based on the continuity equations describing the cometary tail-solar wind interactions. Three dimensional system was considered in this paper. Simulation of the physical system was achieved using computer code written using Matlab 7.0. The parameters studied here assumed Halley comet type and include the particle density rho, the particles velocity v, the magnetic field strength B, dynamic pressure p and internal energy E. The results of the present research showed that the interaction near the cometary nucleus is mainly affected by the new ions added to the plasma of the solar wind, which increases the average molecular weight and result in many unique characteristics of the cometary tail. These characteristics were explained in the presence of the IMF.
Modeling the cometary environment using a fluid approach
NASA Astrophysics Data System (ADS)
Shou, Yinsi
Comets are believed to have preserved the building material of the early solar system and to hold clues to the origin of life on Earth. Abundant remote observations of comets by telescopes and the in-situ measurements by a handful of space missions reveal that the cometary environments are complicated by various physical and chemical processes among the neutral gases and dust grains released from comets, cometary ions, and the solar wind in the interplanetary space. Therefore, physics-based numerical models are in demand to interpret the observational data and to deepen our understanding of the cometary environment. In this thesis, three models using a fluid approach, which include important physical and chemical processes underlying the cometary environment, have been developed to study the plasma, neutral gas, and the dust grains, respectively. Although models based on the fluid approach have limitations in capturing all of the correct physics for certain applications, especially for very low gas density environment, they are computationally much more efficient than alternatives. In the simulations of comet 67P/Churyumov-Gerasimenko at various heliocentric distances with a wide range of production rates, our multi-fluid cometary neutral gas model and multi-fluid cometary dust model have achieved comparable results to the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid in all collisional regimes. Therefore, our model is a powerful alternative to the particle-based model, especially for some computationally intensive simulations. Capable of accounting for the varying heating efficiency under various physical conditions in a self-consistent way, the multi-fluid cometary neutral gas model is a good tool to study the dynamics of the cometary coma with different production rates and heliocentric distances. The modeled H2O expansion speeds reproduce the general trend and the speed's nonlinear dependencies of production rate and heliocentric distance, which are found in remote observations. In the multi-fluid dust model, we use a newly developed numerical mesh to resolve the real shaped nucleus in the center and to facilitate prescription of the outer boundary conditions that accommodate the rotating frame. The model studies the effects of the rotating nucleus and the cometary activity in time-dependent simulations for the first time. The result also suggests that the rotation of the nucleus explains why there is no clear dust speed dependence on size in some of the dust observations. We developed a new multi-species comet MHD model to simulate the plasma environment of comet C/2006 P1 (McNaught) over a wide range of heliocentric distances from 0.17 AU to 1.75 AU, with the constraints provided by remote and in situ observations. Typical subsolar standoff distances of bow shock and contact surface are modeled and presented to characterize the solar wind interaction of the comet at various heliocentric distances. In addition, the model is also the first one to be used to study the composition and dynamics in the distant cometary tail. The results agree well with the measured water group ion abundances from the Ulysses/SWICS 1.7 AU down-tail from the comet and the velocity and temperature measured by Ulysses/SWOOPS.
Isotopic analysis of cometary organic matter
NASA Technical Reports Server (NTRS)
Kerridge, John F.
1991-01-01
Carbon isotope ratios have been measured for CN in the coma of Comet Halley and for several CHON particles emitted by Halley. Of these, only the CHON-particle data may be reasonably related to organic matter in the cometary nucleus, but the true range of (C-13)/(C-12) values in those particles is quite uncertain. The D/H ratio in H2O in the Halley coma resembles that in Titan/Uranus.
Comet composition and density analyzer
NASA Technical Reports Server (NTRS)
Clark, B. C.
1982-01-01
Distinctions between cometary material and other extraterrestrial materials (meteorite suites and stratospherically-captured cosmic dust) are addressed. The technique of X-ray fluorescence (XRF) for analysis of elemental composition is involved. Concomitant with these investigations, the problem of collecting representative samples of comet dust (for rendezvous missions) was solved, and several related techniques such as mineralogic analysis (X-ray diffraction), direct analysis of the nucleus without docking (electron macroprobe), dust flux rate measurement, and test sample preparation were evaluated. An explicit experiment concept based upon X-ray fluorescence analysis of biased and unbiased sample collections was scoped and proposed for a future rendezvous mission with a short-period comet.
Low encounter speed comet COMA sample return missions
NASA Technical Reports Server (NTRS)
Tsou, P.; Yen, C. W.; Albee, A. L.
1994-01-01
Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar-system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. The study of comets, and more especially, of material from them, provides an understanding of the physical, chemical, and mineralogical processes operative in the formation and earliest development of the solar systems. These return samples will provide valuable information on comets and serve as a rosetta stone for the analytical studies conducted on interplanetary dust particles over the past two decades, and will provide much needed extraterrestrial samples for the planetary materials community since the Apollo program. Lander sample return missions require rather complex spacecraft, intricate operations, and costly propulsion systems. By contrast, it is possible to take a highly simplified approach for sample capture and return in the case of a comet. In the past, we have considered Earth free-return trajectory to the comet, in which passive collectors intercept dust and volatiles from the cometary coma. However, standard short period cometary free-return trajectories results in the comet to the spacecraft encounter speeds in the range of 10 km/s. At these speeds the kinetic energy of the capture process can render significant modification of dust structure, change of solid phase as well as the lost of volatiles components. This paper presents a class of new missions with trajectories with significant reduction of encounter speeds by incorporating gravity assists and deep space maneuvering. Low encounter speed cometary flyby sample return will enable a marked increase in the value of the return science. Acquiring thousands of samples from a known comet and thousands of images of a comet nucleus would be space firsts. Applying new approach in flight mechanics to generate a new class of low encounter speed cometary sample return trajectories opens new possibilities in science. A systematic search of trajectories for the first decade of the twenty-first century will be made. The target encounter speed is for less than 7 km/s to short period comets.
Comets: Role and importance to exobiology
NASA Technical Reports Server (NTRS)
Delsemme, Armand H.
1992-01-01
The transfer of organic compounds from interstellar space to the outskirts of a protoplanetary disk, their accretion into cometary objects, and the transport of the latter into the inner solar system by orbital diffusion throw a new light on the central problem of exobiology. It suggests the existence of a cosmic mechanism, working everywhere, that can supply prebiotic compounds to ubiquitous rocky planets, in search of the proper environment to start life in many places in the Universe. Under the heading of chemistry of the cometary nucleus, the following topics are covered: radial homogeneity of the nucleus; the dust-to-ice ratio; nature of the dust grains; origin of the dust in comets; nature of the volatile fraction; the CO distribution in comet Halley; dust contribution to the volatile fraction; elemental balance sheet of comet Halley; quantitative molecular analysis of the volatile fraction; and isotopic ratios. Under the heading of exogenous origin of carbon on terrestrial planets the following topics are covered: evidence for a high-temperature phase; from planetesimals to planets; a veneer of volatile and organic material; and cometary contribution.
Physical Characteristics of Asteroid-like Comet Nucleus C/2001 OG108 (LONEOS)
NASA Technical Reports Server (NTRS)
Abell, P. A.; Fernandez, Y. R.; Pravec, P.; French, L. M.; Farnham, T. L.; Gaffey, M. J.; Hardersen, P. S.; Kusnirak, P.; Sarounova, L.; Sheppard, S. S.
2003-01-01
For many years several investigators have suggested that some portion of the near-Earth asteroid population may actually be extinct cometary nuclei. Evidence used to support these hypotheses was based on: observations of asteroid orbits and associated meteor showers (e.g. 3200 Phaethon and the Geminid meteor shower); low activity of short period comet nuclei, which implied nonvolatile surface crusts (e.g. Neujmin 1, Arend-Rigaux); and detections of transient cometary activity in some near-Earth asteroids (e.g. 4015 Wilson-Harrington). Recent investigations have suggested that approximately 5-10% of the near- Earth asteroid population may be extinct comets. However if members of the near-Earth asteroid population are extinct cometary nuclei, then there should be some objects within this population that are near their final stages of evolution and so should demonstrate only low levels of activity. The recent detections of coma from near-Earth object 2001 OG108 have renewed interest in this possible comet-asteroid connection. This paper presents the first high quality ground-based near-infrared reflectance spectrum of a comet nucleus combined with detailed lightcurve and albedo measurements.
Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs
NASA Astrophysics Data System (ADS)
Attree, N.; Groussin, O.; Jorda, L.; Nébouy, D.; Thomas, N.; Brouet, Y.; Kührt, E.; Preusker, F.; Scholten, F.; Knollenberg, J.; Hartogh, P.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; A'Hearn, M. F.; Auger, A.-T.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Gutiérrez, P. J.; Güttler, C.; Hviid, S.; Ip, W.-H.; Kovacs, G.; Kramm, J. R.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Lowry, S.; Marchi, S.; Marzari, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Toth, I.; Tubiana, C.; Vincent, J.-B.; Shi, X.
2018-03-01
We directly measured twenty overhanging cliffs on the surface of comet 67P/Churyumov-Gerasimenko extracted from the latest shape model and estimated the minimum tensile strengths needed to support them against collapse under the comet's gravity. We find extremely low strengths of around 1 Pa or less (1 to 5 Pa, when scaled to a metre length). The presence of eroded material at the base of most overhangs, as well as the observed collapse of two features andthe implied previous collapse of another, suggests that they are prone to failure and that the true material strengths are close to these lower limits (although we only consider static stresses and not dynamic stress from, for example, cometary activity). Thus, a tensile strength of a few pascals is a good approximation for the tensile strength of the 67P nucleus material, which is in agreement with previous work. We find no particular trends in overhang properties either with size over the 10-100 m range studied here or location on the nucleus. There are no obvious differences, in terms of strength, height or evidence of collapse, between the populations of overhangs on the two cometary lobes, suggesting that 67P is relatively homogenous in terms of tensile strength. Low material strengths are supportive of cometary formation as a primordial rubble pile or by collisional fragmentation of a small body (tens of km).
The mini-CIDEX GC/IMS: Analysis of cometary ice and dust
NASA Technical Reports Server (NTRS)
Kojiro, Daniel R.; Carle, Glenn C.; Humphry, Donald E.; Shao, Maxine; Takeuchi, Nori
1995-01-01
Comets are recognized as among the most scientifically important objects in the solar system. They are presumed relics of the early primitive material in the solar nebula and are believed to have provided a general enrichment of volatiles to the inner solar system. The Cometary Coma Chemical Composition (C4) Mission, a proposed Discovery-Class Mission, will analyze materials released into the coma, providing information leading to the understanding of the chemical composition and make-up of the cometary nucleus. As one of two scientific instruments in the C4 spacecraft, an advanced and streamlined version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX, will employ an X-Ray Fluorescence (XRF) spectrometer to determine bulk elemental composition of cometary dust grains and a Gas Chromatograph/Ion Mobility Spectrometer (GC/IMS) for determination of the molecular composition of dust and ices following stepwise pyrolysis and combustion. A description of the mini-CIDEX IMS will be provided as well as data from analyses conducted using the mini-CIDEX breadboard instrument.
On the dust zoning of rapidly rotating cometary nuclei
NASA Astrophysics Data System (ADS)
Houpis, H. L. F.; Mendis, D. A.
1981-12-01
The effects of nuclear rotation on the surface of a cometary nucleus (a comet at 1 AU that is H2O dominated and has a radius of 1 km) are considered. It is shown that this dust does not accumulate uniformly on the surface, which here is considered spherical. While dust particles in the two polar cap regions and an equatorial belt remain at rest on the surface, those in two midlatitude bands migrate toward the equator, stopping at the two low latitudes to form dust ridges. As the nucleus spins up, both the polar caps and the equatorial belt shrink in size, and the dust ridges move toward the equator, eventually spinning off the dust from the nucleus when the nuclear rotation period is less than about 3.3 hr. For larger particles for which the gas buoyancy is negligible, migration takes place only if the rotation period is not significantly larger than the critical value of 3.3 hr or if the surface friction is abnormally small.
NASA Astrophysics Data System (ADS)
Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew
2018-04-01
This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.
Physical characteristics of Comet Nucleus C/2001 OG 108 (LONEOS)
NASA Astrophysics Data System (ADS)
Abell, Paul A.; Fernández, Yanga R.; Pravec, Petr; French, Linda M.; Farnham, Tony L.; Gaffey, Michael J.; Hardersen, Paul S.; Kušnirák, Peter; Šarounová, Lenka; Sheppard, Scott S.; Narayan, Gautham
2005-12-01
A detailed description of the Halley-type Comet C/2001 OG 108 (LONEOS) has been derived from visible, near-infrared, and mid-infrared observations obtained in October and November 2001. These data represent the first high-quality ground-based observations of a bare Halley-type comet nucleus and provide the best characterization of a Halley-type comet other than 1P/Halley itself. Analysis of time series photometry suggests that the nucleus has a rotation period of 57.2±0.5 h with a minimum nuclear axial ratio of 1.3, a phase-darkening slope parameter G of -0.01±0.10, and an estimated H=13.05±0.10. The rotation period of C/2001 OG 108 is one of the longest observed among comet nuclei. The V- R color index for this object is measured to be 0.46±0.02, which is virtually identical to that of other cometary nuclei and other possible extinct comet candidates. Measurements of the comet's thermal emission constrain the projected elliptical nuclear radii to be 9.6±1.0 km and 7.4±1.0 km, which makes C/2001 OG 108 one of the larger cometary nuclei known. The derived geometric albedo in V-band of 0.040±0.010 is typical for comet nuclei. Visible-wavelength spectrophotometry and near-infrared spectroscopy were combined to derive the nucleus's reflectance spectrum over a 0.4 to 2.5 μm wavelength range. These measurements represent one of the few nuclear spectra ever observed and the only known spectrum of a Halley-type comet. The spectrum of this comet nucleus is very nearly linear and shows no discernable absorption features at a 5% detection limit. The lack of any features, especially in the 0.8 to 1.0 μm range such as are seen in the spectra of carbonaceous chondrite meteorites and many low-albedo asteroids, is consistent with the presence of anhydrous rather than hydrous silicates on the surface of this comet. None of the currently recognized meteorites in the terrestrial collections have reflectance spectra that match C/2001 OG 108. The near-infrared spectrum, the geometric albedo, and the visible spectrophotometry all indicate that C/2001 OG 108 has spectral properties analogous to the D-type, and possibly P-type asteroids. Comparison of the measured albedo and diameter of C/2001 OG 108 with those of Damocloid asteroids reveals similarities between these asteroids and this comet nucleus, a finding which supports previous dynamical arguments that Damocloid asteroids could be composed of cometary-like materials. These observations are also consistent with findings that two Jupiter-family comets may have spectral signatures indicative of D-type asteroids. C/2001 OG 108 probably represents the transition from a typical active comet to an extinct cometary nucleus, and, as a Halley-type comet, suggests that some comets originating in the Oort cloud can become extinct without disintegrating. As a near-Earth object, C/2001 OG 108 supports the suggestion that some fraction of the near-Earth asteroid population consists of extinct cometary nuclei.
NASA Astrophysics Data System (ADS)
Zwickl, R. D.; Baker, D. N.; Bame, S. J.; Feldman, W. C.; Fuselier, S. A.; Huebner, W. F.; McComas, D. J.; Young, D. T.
1986-04-01
The observation of three distinct components of the electron distribution function measured in the intermediate ionized coma (IIC) and plasma tail of Comet Giacobini-Zinner is reported. It is believed that the cold component represents electrons produced close to the comet nucleus by ionization of cometary matter and subsequent cooling by Coulomb collisions. The second component also appears to be composed of electrons produced by photoionization of cometary neutrals, but sufficiently far from the nucleus that the distributions are largely unaffected by Coulomb interactions. The hot component is probably a population of electrons originating in the solar wind. Throughout the IIC, the electrostatic potential of the spacecraft was very low (less than 0.8 eV), implying that ICE generated very little impact-produced plasma during its passage.
NASA Technical Reports Server (NTRS)
Ponnamperuma, C.
1981-01-01
Papers are presented concerning the characteristics of comets and their possible role in the origin of life. Specific topics include the characteristics, origin and structure of the cometary nucleus, cometary chemical abundances, the nature of interplanetary dust and its entry into terrestrial planet atmospheres, and the mechanism of ray closure in comet tails. Attention is also given to chemically evolved interstellar dust as a source of prebiotic material, the relation of comets to paleoatmospheric photochemistry, comets as a vehicle for panspermia, limits to life posed by extreme environments, and the status of cometary space missions as of 1980.
The morphology of cometary nuclei
NASA Astrophysics Data System (ADS)
Keller, H. U.; Jorda, L.
The sudden appearance of a bright comet stretching over a large part of the night sky must have been one of the most awesome phenomena for early humans watching the sky. The nature of comets remained obscure well into the Middle Ages. Only with the introduction of astronomical techniques and analyses in Europe was the parallax of a comet determined by Tycho Brahe for the first time. He proved that comets are not phenomena of the Earth's atmosphere but are farther away than the Moon; in other words they are interplanetary objects. Later Kepler first predicted that comets follow straight lines, then Hevelius suggested parabolic orbits roughly a hundred years later. It was Halley who suggested that the comets of the years 1531, 1607 and 1682 were apparitions of one and the same comet that would return again in 1758. The success of this prediction made it clear that comets are members of our Solar System. While it was now established that periodic comets are objects of the planetary system, their origin and nature continued to be debated. Were they formed together with the planets from the solar nebula (Kant) or were they of extrasolar origin as suggested by Laplace? This debate lasted for 200 years until well into the second half of the last century. Öpik (1932) suggested that a cloud of comets surrounded our Solar System. This hypothesis was quantified and compared to the observed distribution of orbital parameters (essentially the semi-major axes) of new comets by Oort (1950) (Section 2.1). Comets are scattered into the inner Solar System by perturbations caused by galactic tides, passing stars and large molecular clouds. The Oort cloud would have a radius of 2 105AU, a dimension comparable to the distances of stars in our neighbourhood. The lifetime (limited by decay due to activity and by perturbations caused by encounters with planets) even of the new comets on almost parabolic orbits and typical periods of the order of 106 years is short compared to the age of the planetary system (4.5 Gy). Therefore, observed comets could only recently have arrived on their orbits dipping inside the inner Solar System. This reservoir of comets must have been established during the formation process of the planetary system itself. Cometesimals were agglomerated from interstellar/interplanetary gas and dust and scattered out of the inner Solar System by the giant outer planets (Section 2.3). This scheme implies that a central part of a comet, its nucleus, is stable enough to survive these perturbations. It must also be stable enough to pass the vicinity of the sun for many times in the case of a short-period comet. Comets are bright and large when they are close to the sun and fade quickly when they recede beyond about 2AU. Only with the advent of photography and large astronomical telescopes could a comet be followed until it becomes a starlike point source. What makes comets active near the Sun, blowing their appearances up to the order of 105 km? Bright comets often develop tails two orders of magnitude longer. In an attempt to explain the cometary appearance, Bredichin (1903) introduced a mechanical model where repulsive forces drive the particles away from a central condensation. Spectroscopy revealed that dust grains reflect the solar irradiation. In addition, simple molecules, radicals and ions were found as constituents of the cometary coma and tail. The nature of the central condensation remained mysterious for a long time because of the observational dilemma. When the comet is close to the Earth and therefore to the Sun the dense coma obscures the view into its centre. When activity recedes the comet is too far away and too dim for detailed observations of its central condensation. During the middle of the nineteenth century the connection between comets and meteor streams was established. Schiaparelli (1866) calculated the dispersion of cometary dust within the orbital plane. From this time on the perception that the central condensations of comets were agglomerations of dust particles prevailed for about a century. The gas coma was explained by desorption of molecules from dust particles with large surfaces (Levin 1943). The storage of highly reactive radicals (most observed species (CN, CH, NH2, etc.) were of this category) posed a major difficulty to be explained. The inference that these radicals should be dissociation products of stable parent molecules (such as (CN)2, CH4, NH3, etc.) by Wurm (1934, 1935, 1943) led to our present understanding that these molecules are stored as ices within the central nucleus of a comet. Whipple (1950a,b) combined the astrometrical observations of changes of the orbital periods of comets with the existence of an icy cometary nucleus. The sublimation of ices cause reactive (rocket) non-gravitational forces that increase or decrease the orbital period of an active comet according to the sense of rotation of its nucleus. Evidence in support of the icy conglomerate nucleus became more and more compelling by the derived high gas production rates that could not be stored by adsorption on dust grains (Biermann and Trefftz 1964, Huebner 1965, Keller 1976a,b) and by the same account by the large quantities of dust moving into the cometary tail (Finson and Probstein 1968b). The `sand bank' model (Lyttleton 1953) was clearly dismissed in favour of a solid icy nucleus. Its formation and origin could now be explored. While there was some knowledge about the chemical composition of the nucleus, its physical properties, even the basic ones like size, shape and mass, remained largely unknown because the nucleus could not be observed. Early attempts to derive the nucleus size from the `nuclear' magnitudes of comets at large heliocentric distances while they are inactive (Roemer 1966a,b) led to a systematic overestimation of the size because their residual activity could not be eliminated. The advent of modern detectors and large ground-based telescopes revealed that most comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of the Rosetta comet rendezvous mission) to about 50 km (comet Hale- Bopp, comet P/Schwassman-Wachmann 1). Their albedos are very low, about 0.04. Their shapes are irregular, axes ratios of 2:1 are often derived. Even though comets are characterized by their activity, in most cases only a small fraction of the nuclear surface (in some cases less than 1%) is active. An exception seems to be comet P/Wirtanen where all its surface is required to be active in order to explain its production rates (Rickman and Jorda 1998). The detection of trans-Neptunian objects (TNOs) in the Kuiper belt (Jewitt and Luu 1993) reveals a new population of cometary bodies with dimensions an order of magnitude bigger (100 km and larger) than the typical comet observed in the inner planetary system. Little is known about the extent, density, size distribution and physical characteristics of these objects. This region is supposedly the reservoir for short-period comets, manly those controlled by Jupiter (Jupiter family comets). Our present concept of a cometary nucleus has been strongly influenced by the first pictures of the nucleus of comet Halley achieved during the Giotto flyby in 1986. While this revelation seems to be confirmed as typical by modern observations it carries the danger of prototyping new observational results and inferences. Missions and spacecraft are already on their way (Deep Space, Contour, Stardust, Deep Impact) or in preparation (Rosetta) to diversify our knowledge. The morphology of cometary nuclei is determined by their formation process in the early solar nebula, their dynamics and evolution. The physics of the processes leading to their apparent activity while approaching the Sun are still obscure in many details but determine the small- and intermediate-scale morphology. The large-scale morphology, the shape, of a cometary nucleus is determined by its fragility and inner structure and by its generally complex rotational state. These topics will be reviewed in the following sections. Chemical and compositional aspects will be only discussed where they are important in the framework of the physical evolution of cometary nuclei. More details are given in Chapter 53. A brief survey of the current modelling efforts is given. The fate of cometary nuclei and their decay products follows. A summary and outlook ends this chapter on the morphology of cometary nuclei.
Solar Sail Application to Comet Nucleus Sample Return
NASA Technical Reports Server (NTRS)
Taylor, Travis S.; Moton, Tryshanda T.; Robinson, Don; Anding, R. Charles; Matloff, Gregory L.; Garbe, Gregory; Montgomery, Edward
2003-01-01
Many comets have perihelions at distances within 1.0 Astronomical Unit (AU) from the sun. These comets typically are inclined out of the ecliptic. We propose that a solar sail spacecraft could be used to increase the inclination of the orbit to match that of these 1.0 AU comets. The solar sail spacecraft would match the orbit velocity for a short period of time, which would be long enough for a container to be injected into the comet's nucleus. The container would be extended from a long durable tether so that the solar sail would not be required to enter into the potentially degrading environment of the comet s atmosphere. Once the container has been filled with sample material, the tether is retracted. The solar sail would then lower its inclination and fly back to Earth for the sample return. In this paper, we describe the selection of cometary targets, the mission design, and the solar sailcraft design suitable for sail-comet rendezvous as well as possible rendezvous scenarios.
NASA Astrophysics Data System (ADS)
Blecka, M. I.; Coradini, A.; Capaccioni, F.; Capria, M. T.; De sanctis, M.
2011-12-01
The work we present deals with the spectrometric measurements of VIRTIS instrument of the Rosetta mission to the Comet 67P/Churyumov-Gerasimenko (C-G). The dust important constituent of cometary environment is always present on the surface of the nucleus and in the inner coma. The cometary spectra are strongly affected by the processes taking place in the coma and by the structure and composition of cometary materials. The particles of the dust , illuminated by solar light, scatter, absorb and emit radiation. The reflected and the emitted radiation are transmitted through the coma region before being collected by instruments such as VIRTIS .The reflection, absorption, scattering, and emission processes depend on the Comet-Sun geometry and on the thermal state of the nucleus. The main purposes of the paper are: 1) short review of the published models related to the topic of presence and distribution of the solid particles in the inner coma of the Comet 67/P (C-G) 2) description of numerical calculations done by means of an radiation transfer model and comparison the simulated radiance spectra 3) discussion on influence the geometry of the measurements and the particular parameters of the thermal models taken in consideration. 4) demonstration of simulated spectra of the total directional radiance which can help to recognize the optical characteristics of constituents of the environment of Comet 67P/(C-G) References J.Agarwal; M.Müller, G.Eberhard, Dust Environment Modelling of Comet 67P/Churyumov-Gerasimenko; Space Science Reviews, 128,1-4,2007 M. I. Blecka, M.T. Capria, A. Coradini, M.C. De Sanctis; Numerical simulations of the radiance from the Comet 46P/Wirtanen in the Ivarious configuration of the measurements during "Rosetta" Mission Adv. Space Res.31,12, 2501-2510,2003 M.C.De Sanctis, J.Lasue, M.T.Capria, G. Magni, D. Turrini, A. Coradini, Shape and obliquity effects on the thermal evolution of the Rosetta target 67P/Churyumov-Gerasimenko cometary nucleus, Icarus, 207,341-358,2010 The work was supported by the grant 123/N-ESA/2008/0;
Physics of Intact Capture of Cometary Coma Dust Samples
NASA Astrophysics Data System (ADS)
Anderson, William
2011-06-01
In 1986, Tom Ahrens and I developed a simple model for hypervelocity capture in low density foams, aimed in particular at the suggestion that such techniques could be used to capture dust during flyby of an active comet nucleus. While the model was never published in printed form, it became known to many in the cometary dust sampling community. More sophisticated models have been developed since, but our original model still retains superiority for some applications and elucidates the physics of the capture process in a more intuitive way than the more recent models. The model makes use of the small value of the Hugoniot intercept typical of highly distended media to invoke analytic expressions with functional forms common to fluid dynamics. The model successfully describes the deceleration and ablation of a particle that is large enough to see the foam as a low density continuum. I will present that model, updated with improved calculations of the temperature in the shocked foam, and show its continued utility in elucidating the phenomena of hypervelocity penetration of low-density foams.
The effect of electron collisions on rotational excitation of cometary water
NASA Technical Reports Server (NTRS)
Xie, Xingfa; Mumma, Michael J.
1991-01-01
The e-H2O collisional rate for exciting rotational transitions in cometary water is evaluated for conditions found in Comet Halley. The e-H2O collisional rate exceeds that for excitation by neutral-neutral collisions at distances exceeding 3000 km from the cometary nucleus, in the case of the O sub 00 yields 1 sub 11 transition. The estimates are based on theoretical and experimental studies of e-H2O collisions, on ion and electron parameters acquired in-situ by instruments on the Giotto and Vega spacecraft, and on results obtained from models of the cometary ionosphere. The contribution of electron collisions may explain the need for large water-water cross-sections in models which neglect the effect of electrons. The importance of electron collisions is enhanced for populations of water molecules in regions where their rotational lines are optically thick.
The effect of electron collisions on rotational populations of cometary water
NASA Technical Reports Server (NTRS)
Xie, Xingfa; Mumma, Michael J.
1992-01-01
The e-H2O collisional rate for exciting rotational transitions in cometary water is evaluated for conditions found in Comet Halley during the Giotto spacecraft encounter. In the case of the 0(00)-1(11) rotational transition, the e-H2O collisional rate exceeds that for excitation by neutral-neutral collisions at distances exceeding 3000 km from the cometary nucleus. The estimates are based on theoretical and experimental studies of e-H2O collisions, on ion and electron parameters acquired in situ by instruments on the Giotto and Vega spacecraft, and on results obtained from models of the cometary ionosphere. Thus, the rotational temperature of the water molecule in the intermediate coma may be controlled by collisions with electrons rather than with neutral molecules, and the rotational temperature retrieved from high-resolution IR spectra of water in Comet Halley may reflect electron temperatures rather than neutral gas temperatures in the intermediate coma.
Charge exchange in solar wind-cometary interactions
NASA Technical Reports Server (NTRS)
Gombosi, T. I.; Horanyi, M.; Kecskemety, K.; Cravens, T. E.; Nagy, A. F.
1983-01-01
A simple model of a cometary spherically symmetrical atmosphere and ionosphere is considered. An analytic solution of the governing equations describing the radial distribution of the neutral and ion densities is found. The new solution is compared to the well-known solution of the equations containing only ionization terms. Neglecting recombination causes a significant overestimate of the ion density in the vicinity of the comet. An axisymmetric model of the solar wind-cometary interaction is considered, taking into account the loss of solar wind ions due to charge exchange. The calculations predict that for active comets, solar wind absorption due to charge exchange becomes important at a few thousand kilometers from the nucleus, and a surface separating the shocked solar wind from the cometary ionosphere develops in this region. These calculations are in reasonable agreement with the few observations available for the ionopause location at comets.
The study of the physics of cometary nuclei
NASA Technical Reports Server (NTRS)
Whipple, F. L.; Marsden, B. G.; Sekanina, Z.
1976-01-01
A semiannual progress report describing the work completed during the period 1 September 1975 to 29 February 1976 on the physics of cometary nuclei was given. The following items were discussed: (1) a paper entitled ""A speculation about comets and the earth'', (2) a chapter entitled"" The physics of comets'' for ""Reviews of Astronomy and Astrophysics'', (3) continuing work on split comets, and (4) results dealing with a new application of nongravitational solar-radial forces as a measure of comet nucleus dimensions and activity.
P/2006 HR30 (Siding Spring): A Low-activity Comet in Near-Earth Space
NASA Technical Reports Server (NTRS)
Hicks, Michael D.; Bauer, James M.
2007-01-01
The low cometary activity of P/2006 HR30 (Siding Spring) allowed a unique opportunity to study the nucleus of a periodic comet while near perihelion. P/2006 HR30 was originally targeted as a potential extinct comet, and we measured spectral reflectance and dust production using long-slit CCD spectroscopy and wide-field imaging obtained at the Palomar Mountain 200 inch telescope on 2006 August 3 and 4. The dust production Afp = 19.7 +/- 0.4 cm and mass-loss rate Q(dust) 4.1 +/- 0.1 kg/sec of the comet were approximately 2 orders of magnitude dust less than 1P/Halley at similar heliocentric distance. The VRI colors derived from the spectral reflectance were compared to Kuiper Belt objects, Centaurs, and other cometary nuclei. We found that the spectrum of P/2006 HR30 was consistent with other comets. However, the outer solar system bodies have a color distribution statistically distinct from cometary nuclei. It is our conjecture that cometary activity, most likely the reaccretion of ejected cometary dust, tends to moderate and mute the visible colors of the surface of cometary nuclei.
On the development and global oscillations of cometary ionospheres
NASA Technical Reports Server (NTRS)
Houpis, H. L. F.; Mendis, D. A.
1981-01-01
Representing the cometary ionosphere by a single fluid model characterized by an average ionization time scale, both the ionosphere's development as a comet approaches the sun and its response to sudden changes in solar wind conditions are investigated. Three different nuclear sizes (small, average, very large) and three different modes of energy addition to the atmosphere (adiabatic, isothermal, suprathermal) are considered. It is found that the crucial parameter determining both the nature and the size of the ionosphere is the average ionization time scale within the ionosphere. Two different scales are identified. It is noted that the ionosphere can also be characterized by the relative sizes of three different scale lengths: the neutral standoff distance from the nucleus, the ion standoff distance from the nucleus, and the nuclear distance at which the ions and the neutrals decouple collisionally.
Photospheric mass ejections caused by cometary impacts
NASA Astrophysics Data System (ADS)
Ibadov, Subhon; Ibodov, Firuz S.
It is analytically shown that impacts of cometary nuclei with the Sun will be accompanied, due to action of ram aerodynamic pressure at the passage of the high-velocity, more than 600 km/s, nucleus through the chromosphere by its crushing, lateral expansion of the crushed mass and sharp stopping of the flattening structure in a relatively very thin near-photosphere layer. High value of the specific kinetic energy of the comet nucleus, essentially more than the heat of its sublimation - of the order of 10^10 erg/g, leads to generation of a high-temperature, 10^6-10^7 K, plasma as well as strong "blast" shock wave in the decelerating layer, so that hot layer plasma will be ejected to the lower solar corona. Space observations of the phenomenon are of interest for revealing mechanisms for generation of solar prominences.
NASA Astrophysics Data System (ADS)
Ksanfomality, L. V.
2017-05-01
On March 6 and 9, 1986, for the first time in the history of science, the Russian spacecraft Vega-1 and -2 approached the nucleus of comet 1P/Halley and flew by at a small distance. A while later, on March 14, 1986, the Giotto spacecraft (European Space Agency (ESA)) followed them. Together with the Japanese spacecraft Suisei (Japan Aerospace Exploration Agency (JAXA)), they obtained spaceborne investigations of cometary nuclei. Direct studies of cometary bodies that bear traces of the Solar System formation were continued in the next missions to comets. Starting from 2014 and up to 2016 September, the Rosetta spacecraft (ESA), being in a low orbit around the nucleus of comet 67P/Churyumov-Gerasimenko, has performed extremely sophisticated investigations of this comet. Here, we compare some results of these missions. The paper is based on the reports presented at the memorial conference dedicated to the 30th anniversary of the Vega mission, which took place at the Space Research Institute of the Russian Academy of Sciences in March, 2016, and does not pretend to comprehensively cover the problems of cometary physics.
The contribution of electron collisions to rotational excitations of cometary water
NASA Technical Reports Server (NTRS)
Xie, Xingfa; Mumma, Michael J.
1992-01-01
The e-H2O collisional rate for exciting rotational transitions in cometary water is evaluated for conditions found in comet Halley during the Giotto spacecraft encounter. In the case of the O(sub 00) yields 1(sub 11) rotational transition, the e-H2O collisional rate exceeds that for excitation by neutral-neutral collisions at distances exceeding 3000 km from the cometary nucleus. Thus, the rotational temperature of the water molecule in the intermediate coma may be controlled by collisions with electrons rather than with neutral collisions, and the rotational temperature retrieved from high resolution infrared spectra of water in comet Halley may reflect electron temperatures rather than neutral gas temperature in the intermediate coma.
Evidence for geologic processes on comets
NASA Astrophysics Data System (ADS)
Sunshine, Jessica M.; Thomas, Nicolas; El-Maarry, Mohamed Ramy; Farnham, Tony L.
2016-11-01
Spacecraft missions have resolved the nuclei of six periodic comets and revealed a set of geologically intriguing and active small bodies. The shapes of these cometary nuclei are dominantly bilobate reflecting their formation from smaller cometesimals. Cometary surfaces include a diverse set of morphologies formed from a variety of mechanisms. Sublimation of ices, driven by the variable insolation over the time since each nucleus was perturbed into the inner Solar System, is a major process on comets and is likely responsible for quasi-circular depressions and ubiquitous layering. Sublimation from near-vertical walls is also seen to lead to undercutting and mass wasting. Fracturing has only been resolved on one comet but likely exists on all comets. There is also evidence for mass redistribution, where material lifted off the nucleus by subliming gases is deposited onto other surfaces. It is surprising that such sedimentary processes are significant in the microgravity environment of comets. There are many enigmatic features on cometary surfaces including tall spires, kilometer-scale flows, and various forms of depressions and pits. Furthermore, even after accounting for the differences in resolution and coverage, significant diversity in landforms among cometary surfaces clearly exists. Yet why certain landforms occur on some comets and not on others remains poorly understood. The exploration and understanding of geologic processes on comets is only beginning. These fascinating bodies will continue to provide a unique laboratory for examining common geologic processes under the uncommon conditions of very high porosity, very low strength, small particle sizes, and near-zero gravity.
Time-dependent evolution of the near nuclear coma of cometary nuclei during their rotational motion
NASA Astrophysics Data System (ADS)
Szego, K.; Crifo, J.-F.; Fulle, M.; Rodionov, A. V.
2003-04-01
The new physical model of Rodionov et al. (Planetary and Space Sci., 50, 983, 2002) that describes the cometary activity based on a 3-d collisional gas dynamical model has been successfully applied to account for the dust features observed by the cameras flying onboard of the VEGA and Giotto probes during the encounter with comet Halley. This indicates, in particular, that these structures are dominantly controlled by the nucleus topography. An upgraded version of this model has been recently developed and is being applied to the vast body of data gathered in 1986 on comet Halley. This new version is tridimensional as previously, and, in addition, time-dependent. This allows the exact, self-consistent computation of the whole coma structure (primary and daughter molecules, dust), allowing to study its dependence upon nucleus shape, composition, and rotation. The results presented here assume that the coma is formed by solar-driven sublimation of a homogeneous dusty-ice nucleus with shape and rotational state derived for P/Halley. The results are, however, of quite general significance -- in particular they remain valid for different shapes and for inhomogeneous nucleus. This presentation focuses on the time dependence of the dust and gas features obtained around the nucleus. Movies will summarize the results of the calculations exhibiting the time development of the dust and gas coma and its relation to the surface orography for a rotating nucleus. The effect of nucleus activity on its rotational motion, and possible constraints hampering the observation of the activity will be also analyzed.
Mineral abundances of comet 17P/Holmes derived from the mid-infrared spectrum
NASA Astrophysics Data System (ADS)
Shinnaka, Yoshiharu; Yamaguchi, MItsuru; Ootsubo, Takafumi; Kawakita, Hideyo; Sakon, Itsuki; Honda, Mitsuhiko; Watanabe, Jun-ichi
2017-10-01
Dust grains of crystalline silicate, which is rarely presented in an interstellar space, were found in cometary nuclei (Messenger et al. 1996, LPI, 27, 867; Wooden et al. 1999, ApJ, 517, 1058, references therein). It is thought that these crystalline silicates had formed by annealing or condensations of amorphous grains near the Sun in the solar nebula, and incorporated into a cometary nucleus in a cold region (farther than formation regions of the crystalline silicates) by radial transportation in the solar nebula. It is considered that transportation mechanisms to outside of the solar nebula were turbulent and/or X-wind. An abundance of the crystalline dust grains was therefore expected to be smaller as far from the Sun (Gail, 2001, A&A, 378, 192; Bockelée-Morvan et al. 2002, A&A, 384, 1107). Namely, the abundance ratio of the crystalline silicate in cometary dust grains relates a degree of mass transportation and a distance from the Sun when cometary nucleus formed in the Solar nebula. The mass ratio of crystalline silicates of dust grains is determined from by Si-O stretching vibrational bands of silicate grains around 10 μm using difference of spectral band features between crystalline and amorphous grains. We present the crystalline-to-amorphous mass ratio of silicate grains in the comet 17P/Holmes by using the thermal emission mode of the dust grains (Ootsubo et al. 2007, P&SS, 55, 1044) applied to the mid-infrared spectra of the comet. These spectra were taken by the COMICS mounted on the Subaru Telescope on 2007 October 25, 26, 27 and 28 immediately after the great outburst of the comet (started on October 23). We discuss about formation conditions of the nucleus of the comet based on the derived mass ratio of silicate grains of the comet.
Handling and analysis of ices in cryostats and glove boxes in view of cometary samples
NASA Technical Reports Server (NTRS)
Roessler, K.; Eich, G.; Heyl, M.; Kochan, H.; Oehler, A.; Patnaik, A.; Schlosser, W.; Schulz, R.
1989-01-01
Comet nucleus sample return mission and other return missions from planets and satellites need equipment for handling and analysis of icy samples at low temperatures under vacuum or protective gas. Two methods are reported which were developed for analysis of small icy samples and which are modified for larger samples in cometary matter simulation experiments (KOSI). A conventional optical cryostat system was modified to allow for transport of samples at 5 K, ion beam irradiation, and measurement in an off-line optical spectrophotometer. The new system consists of a removable window plug containing nozzles for condensation of water and volatiles onto a cold finger. This plug can be removed in a vacuum system, changed against another plug (e.g., with other windows (IR, VIS, VUV) or other nozzles). While open, the samples can be treated under vacuum with cooling by manipulators (cut, removal, sample taking, irradiation with light, photons, or ions). After bringing the plug back, the samples can be moved to another site of analysis. For handling the 30 cm diameter mineral-ice samples from the KOSI experiments an 80x80x80 cm glove box made out of plexiglass was used. The samples were kept in a liquid nitrogen bath, which was filled from the outside. A stream a dry N2 and evaporating gas from the bath purified the glove box from impurity gases and, in particular, H2O, which otherwise would condense onto the samples.
Study of sampling systems for comets and Mars
NASA Technical Reports Server (NTRS)
Amundsen, R. J.; Clark, B. C.
1987-01-01
Several aspects of the techniques that can be applied to acquisition and preservation of samples from Mars and a cometary nucleus were examined. Scientific approaches to sampling, grounded in proven engineering methods are the key to achieving the maximum science value from the sample return mission. If development of these approaches for collecting and preserving does not preceed mission definition, it is likely that only suboptimal techniques will be available because of the constraints of formal schedule timelines and the normal pressure to select only the most conservative and least sophisticated approaches when development has lagged the mission milestones. With a reasonable investment now, before the final mission definition, the sampling approach can become highly developed, ready for implementation, and mature enough to help set the requirements for the mission hardware and its performance.
The Stardust: A Successful Encounter with the Remarkable Comet Wild 2
NASA Technical Reports Server (NTRS)
Brownlee, D. E.; Anderson, J. D.; Atkins, K.; Bhaskaran, S.; Cheuvront, A. R.; Clark, B. C.; Duxbury, T. C.; Economou, T.; Hanner, M. S.; Hoerz, F.
2004-01-01
On January 2, 2004 the Stardust spacecraft completed a close flyby of comet Wild2 (P81). Flying at a relative speed of 6.1 km/s within 237km of the 5 km nucleus, the spacecraft took 72 close-in images, measured the flux of impacting particles and did in-situ compositional analysis of freshly released dust with a time-of-flight mass spectrometer. The primary goal of the mission is to collect >500 particles >15 m diameter and return them to Earth on January 15, 2006. The cometary particles ranging in size from a micron to approx.100 microns were collected in low density silica aerogel. After returning over a hundred 2x4x3 cm aerogel collection cells will be processed at the curatorial facility at the NASA Johnson Space Center and 5 to 100 micron size extracted cometary particles will be distributed to analysts by a system that will be based on the allocation procedures for cosmic dust, Antarctic meteorites and lunar samples.
Rosetta at comet 67P/Churyumov-Gerasimenko: Spacecraft orbit modeling
NASA Astrophysics Data System (ADS)
Hahn, Matthias; Paetzold, Martin; Tellmann, Silvia; Haeusler, Bernd; Andert, Thomas
The Rosetta spacecraft has been successfully launched on 2nd March 2004 to its target comet 67P/Churyumov-Gerasimenko. The science objectives of the Rosetta Radio Science Investiga-tions (RSI) experiment addresses fundamental aspects of cometary science such as the deter-minations of the nucleus mass and bulk density, its size and shape, its gravity field and internal structure, and its perturbed interplanetary orbit. The radio carrier links at X-band (8.4 GHz) and S-band (2.3 GHz) between the Rosetta spacecraft and the Earth will be used for these investigations. The motion of the spacecraft will be perturbed near the comet nucleus. The Doppler frequency shifts of the transmitted radio signals can be used to reconstruct the flown orbit. In order to extract small changes of the Doppler frequency, a prediction of the orbit is needed which includes best known estimates for all forces acting on the spacecraft. These forces are the nucleus gravity field, third body perturbations, the solar radiation pressure, the solar wind pressure, the cometary outgassing, etc. It is then possible to determine iteratively low degree and order harmonic coefficients of the nucleus gravity field or the gas pressure force and the gas production rate from outgassing from the differences between the predicted and the observed frequency shifts.
Photometric Modeling of a Cometary Nucleus: Taking Hapke Modeling to the Limit
NASA Technical Reports Server (NTRS)
Buratti, B. J.; Hicks, M. D.; Soderblom, L.; Hillier, J.; Britt, D.
2002-01-01
In the past two decades, photometric models developed by Bruce Hapke have been fit to a wide range of bodies in the Solar System: The Moon, Mercury, several asteroids, and many icy and rocky satellites. These models have enabled comparative descriptions of the physical attributes of planetary surfaces, including macroscopic roughness, particle size and size-distribution, the single scattering albedo, and the compaction state of the optically active portion of the regolith. One challenging type of body to observe and model, a cometary nucleus, awaited the first space based mission to obtain images unobscured by coma. The NASA-JPL Deep Space 1 Mission (DS1) encountered the short-period Jupiter-family comet 19/P Borrelly on September 22, 2001, about 8 days after perihelion. Prior to its closest approach of 2171 km, the remote-sensing package on the spacecraft obtained 25 CCD images of the comet, representing the first closeup, unobscured view of a comet's nucleus. At closest approach, corresponding to a resolution of 47 meters per pixel, the intensity of the coma was less than 1% of that of the nucleus. An unprecedented range of high solar phase angles (52-89 degrees), viewing geometries that are in general attainable only when a comet is active, enabled the first quantitative and disk-resolved modeling of surface photometric physical parameters.
The atmosphere of a dirty-clathrate cometary nucleus - A two-phase, multifluid model
NASA Astrophysics Data System (ADS)
Marconi, M. L.; Mendis, D. A.
1983-10-01
The dynamical and thermal structure of a dirty-clathrate cometary nucleus' gas atmosphere is presently given a self-consistent, transonic multifluid solution in which, although the heavy neutron and ion species are treated as a single fluid in the collision-dominated region, the photoproduced H is treated separately. The thermal profile of the atmosphere thus obtained is entirely different from those predicted by the earlier, single-fluid models as well as the multifluid models which assumed equipartition of energy between electrons and ions. While the electron gas, like the neutrals and the ions, cools due to expansion, its main mode of energy loss in the inner coma is by way of inelastic collisions with the predominant H2O molecule. The high electron temperature in the outer coma also decreases the efficiency of electron removal by dissociative recombination, thereby increasing electron density throughout the coma.
Trajectories of charged dust grains in the cometary environment
NASA Astrophysics Data System (ADS)
Horanyi, M.; Mendis, D. A.
1985-07-01
Using a simple model of the particles and fields environment of a comet, the trajectories of the smallest (micron- and submicron-sized) dust grains that are expected to be released from a cometary nucleus are calculated. It is shown that electromagnetic forces play a crucial role in the dynamics of these particles. The present calculations indicate not only the asymmetry of the sunward dust envelopes that have been suggested earlier by other authors, but they also indicate the possible existence of wavy dust features far down the tail, reminiscent of the peculiar wavy dust feature observed in the dust tail of Comet Ikeya-Seki 1965f. The importance of these findings in studying the lower end of the cometary dust mass spectrum during the forthcoming fly-by missions to Comet Halley is underscored.
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1977-01-01
The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of the evolution of cometary dust. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tails is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.
Constraining the Compositional Heterogeneity in CO-Dominated Comet C/2016 R2 (PanSTARRS)
NASA Astrophysics Data System (ADS)
McKay, Adam; Kelley, Michael; DiSanti, Michael; Womack, Maria; Wierzchos, Kacper; Biver, Nicolas; de Val-Borro, Miguel; Cordiner, Martin; Dello Russo, Neil; Feaga, Lori; Bauer, James; Cochran, Anita; Harrington Pinto, Olga
2018-05-01
Comets exhibit a primitive volatile composition, making them invaluable tools for understanding the formation of the Solar System. Constraining the compositional heterogeneity of cometary nuclei is vital for interpreting cometary composition in terms of the physical conditions operating in the protosolar disk at the time of planet formation. Some comets exhibit variability in observed coma composition over the course of their orbit. This could be indicative of a heterogeneous nucleus consisting of cometesimals formed in different parts of the protosolar nebula under differing conditions. Alternatively, the observed heterogeneity could be post-formation evolution. We propose to use Spitzer IRAC observations of CO2 in the atypically CO-rich comet C/2016 R2 (PanSTARRS) to better understand the compositional heterogeneity of cometary nuclei.
Nucleus structure and dust morphology: Post-Rosetta understanding and implications
NASA Astrophysics Data System (ADS)
Levasseur-Regourd, A.; Bentley, Mark; Ciarletti, Valérie; Kofman, Woldek; Lasue, Jeremie; Mannel, Thurid; Herique, Alain
2017-10-01
The structure of cometary nuclei and the morphology of dust particles they eject have long been unknowns in cometary science. The combination of these two subjects, as revealed by the Rosetta mission at 67P/C-G, is currently providing an unprecedented insight about Solar System formation and early evolution.Rosetta has established that the bulk porosity of 67P/C-G nucleus is high, in the 70% to 85% range, both from the determination of its density and from permittivity measurements with CONSERT bistatic radar experiment [1-2]. CONSERT, through operations after Philae landing on 12-13 November 2014, has also allowed us to estimate that i) the porosity is likely to be higher inside the nucleus than on its subsurface, ii) a major component of the nucleus is refractory carbonaceous compounds, and iii) the small lobe is homogeneous at a scale of a few wavelengths (i.e., about 10 m), while heterogeneities in the 3-m range (similar to the rounded nodules noticed on walls of large pits) cannot be ruled out [2-4].Rosetta has also established, through its 26 months rendezvous with 67P/C-G, the aggregated structure of dust particles within a wide range of sizes in the inner cometary coma. The MIDAS atomic force microscope experiment has given us evidence (from 3D topographic images with nano- to micrometer resolution) for i) a hierarchical structure of aggregated dust particles, down to tens of nm-sized grains, ii) one extremely porous dust particle, with a fractal dimension of (1.7 ± 0.1) [5-6]. The accuracy of comparisons between cometary dust particles and interplanetary dust particles collected in the stratosphere (including CP-IDPs) could thus be improved.Such results should further refine the main processes (e.g., low velocity aggregation) that allowed the formation of comets in the early Solar System, and the implications of a possible late heavy bombardment on the interplanetary dust clouds and on telluric planets.References. 1. Pätzold et al. Nature 530 63 2016. 2. Kofman et al. Science 349 6247 2015. 3. Herique et al. MNRAS 462 S516 2016. 4. Ciarletti et al. A&A 583 A40 2015. 5. Bentley et al., Nature 537 73 2016. 6. Mannel et al., MNRAS 462 S304 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hines, Dean C.; Mutchler, Max; Hammer, Derek
2014-01-10
We present polarization images of Comet ISON (C/2012 S1) taken with the Hubble Space Telescope (HST) on UTC 2013 May 8 (r {sub h} = 3.81 AU, Δ = 4.34 AU), when the phase angle was α ≈ 12.°16. This phase angle is approximately centered in the negative polarization branch for cometary dust. The region beyond 1000 km (∼0.32 arcsec ≈ 6 pixels) from the nucleus shows a negative polarization amplitude of p% ∼ –1.6%. Within 1000 km of the nucleus, the polarization position angle rotates to be approximately perpendicular to the scattering plane, with an amplitude p% ∼ +2.5%. Such positive polarization has been observedmore » previously as a characteristic feature of cometary jets, and we show that Comet ISON does indeed harbor a jet-like feature. These HST observations of Comet ISON represent the first visible light, imaging polarimetry with subarcsecond spatial resolution of a Nearly Isotropic Comet beyond 3.8 AU from the Sun at a small phase angle. The observations provide an early glimpse of the properties of the cometary dust preserved in this Oort-Cloud comet.« less
A rapid decrease in the rotation rate of comet 41P/Tuttle–Giacobini–Kresák
NASA Astrophysics Data System (ADS)
Bodewits, Dennis; Farnham, Tony L.; Kelley, Michael S. P.; Knight, Matthew M.
2018-01-01
Cometary outgassing can produce torques that change the spin state of the cometary nucleus, which in turn influences the evolution and lifetime of the comet. If these torques increase the rate of rotation to the extent that centripetal forces exceed the material strength of the nucleus, the comet can fragment. Torques that slow down the rotation can cause the spin state to become unstable, but if the torques persist the nucleus can eventually reorient itself and the rotation rate can increase again. Simulations predict that most comets go through a short phase of rapid changes in spin state, after which changes occur gradually over longer times. Here we report observations of comet 41P/Tuttle–Giacobini–Kresák during its close approach to Earth (0.142 astronomical units, approximately 21 million kilometres, on 1 April 2017) that reveal a rapid decrease in rotation rate. Between March and May 2017, the apparent rotation period of the nucleus increased from 20 hours to more than 46 hours—a rate of change of more than an order of magnitude larger than has hitherto been measured. This phenomenon must have been caused by the gas emission from the comet aligning in such a way that it produced an anomalously strong torque that slowed the spin rate of the nucleus. The behaviour of comet 41P/Tuttle–Giacobini–Kresák suggests that it is in a distinct evolutionary state and that its rotation may be approaching the point of instability.
NASA Astrophysics Data System (ADS)
Graham, G. A.; Kearsley, A. T.; Dai, Z.; Leroux, H.; Teslich, N. E.; Stroud, R.; Borg, J.; Bradley, J. P.; Horz, F. P.; Zolensky, M.
2006-12-01
The study of comets is fundamental to the understanding of early solar system processes. Much of the current knowledge of cometary compositions comes from `fly-by' missions or remote sensing studies but not, until now, from the laboratory analyses of samples. The Stardust spacecraft (NASA's 4th Discovery mission) was launched in 1999 and in January 2004 had a successful fly-by close to the nucleus of comet Wild 2. During the encounter, the collector tray assembly containing the principle particle capture technology of low- density silica aerogel was deployed. In addition, the metallic foils (1100 series Aluminum) wrapped around the collector frame also picked up material from the 6.1 km/s cometary particle collisions. Since the retrieval of the sample return capsule in January 2006, and as part of the preliminary examination, a selected number of foils have been scanned using SEM-EDX to locate cometary dust derived impact craters. Craters ranging from 100 nanometers to several hundreds of micrometers in diameter, containing both monomineralic and polymineralic projectile melts, have been identified, measured and analyzed. Focused ion beam microscopy techniques have been used to take cross-section slices of either individual craters or specific residue fragments, and thin them to electron transparency. TEM-EDX analysis of these slices shows that crystalline grains are occasionally preserved, despite the high shock pressures and temperatures that caused most of the particle to melt. Observations from the crater residues make a useful addition to studies of the composition and mineralogy of the cometary particulates preserved within the impact tracks in the silica aerogel. This work was in part performed under the auspices of the U.S. Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Water/rock interactions in experimentally simulated dirty snowball and dirty iceball cometary nuclei
NASA Technical Reports Server (NTRS)
Gooding, James L.; Allton, Judith H.
1991-01-01
In the dirty snowball model for cometary nuclei, comet-nucleus materials are regarded as mixtures of volatile ices and relatively non-volatile minerals or chemical compounds. Carbonaceous chondrite meteorites are regarded as useful analogs for the rocky component. To help elucidate the possible physical geochemistry of cometary nuclei, preliminary results are reported of calorimetric experiments with two-component systems involving carbonaceous chondrites and water ice. Based on collective knowledge of the physics of water ice, three general types of interactions can be expected between water and minerals at sub-freezing temperatures: (1) heterogeneous nucleation of ice by insoluble minerals; (2) adsorption of water vapor by hygroscopic phases; and (3) freezing- and melting-point depression of liquid water sustained by soluble minerals. The relative and absolute magnitude of all three effects are expected to vary with mineral composition.
The Comet Halley dust and gas environment
NASA Technical Reports Server (NTRS)
Divine, N.; Hanner, M. S.; Newburn, R. L., Jr.; Sekanina, Z.; Yeomans, D. K.
1986-01-01
Quantitative descriptions of environments near the nucleus of comet P/Halley have been developed to support spacecraft and mission design for the flyby encounters in March, 1986. To summarize these models as they exist just before the encounters, the relevant data from prior Halley apparitions and from recent cometary research are reviewed. Orbital elements, visual magnitudes, and parameter values and analysis for the nucleus, gas and dust are combined to predict Halley's position, production rates, gas and dust distributions, and electromagnetic radiation field for the current perihelion passage. The predicted numerical results have been useful for estimating likely spacecraft effects, such as impact damage and attitude perturbations. Sample applications are cited, including design of a dust shield for spacecraft structure, and threshold and dynamic range selection for flight experiments. It is expected that the comet's activity may be more irregular than these smoothly varying models predict, and that comparison with the flyby data will be instructive.
Chemical and Hydrodynamical Models of Cometary Comae
NASA Technical Reports Server (NTRS)
Charnley, Steven
2012-01-01
Multi-fluid modelling of the outflowing gases which sublimate from cometary nuclei as they approach the Sun is necessary for understanding the important physical and chemical processes occurring in this complex plasma. Coma chemistry models can be employed to interpret observational data and to ultimately determine chemical composition and structure of the nuclear ices and dust. We describe a combined chemical and hydrodynamical model [1] in which differential equations for the chemical abundances and the energy balance are solved as a function of distance from the cometary nucleus. The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of 1P/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [2]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of new models for the chemistry of cometary comae that include atomic and molecular anions and calculate the impact of these anions on the coma physics and chemistry af the coma.
ACE-SWICS In Situ Plasma Composition of Fragmented Comet 73P/Schwassmann-Wachmann 3
NASA Astrophysics Data System (ADS)
Gilbert, J. A.; Lepri, S. T.; Rubin, M.; Zurbuchen, T.
2013-12-01
The interiors of comets contain some of the most pristine material in the solar system. Comet 73P/Schwassmann-Wachmann 3, discovered in 1930 with a double nucleus, is a Jupiter-family comet with a 5.34-year period. This comet split into 5 fragments in 1995 and disintegrated into nearly 70 pieces in 2006. In May and June of 2006, recently ionized cometary particles originating from some of these fragments were collected with the ACE-SWICS sensor. Due to a combination of the close proximity of the fragments passing between ACE-SWICS and the Sun, and the instrument characteristics, unique measurements regarding the charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during this time. The cometary material released from some of these fragments can be identified by the concentrations of water-group pick-up ions having a mass-per-charge of 16-18 amu/e. With a focus on Helium, Carbon, and water-group ions, we present an analysis of the cometary plasma. Charge state ratios of C+/O+ fall below 0.1 during detection of comet fragment plasma, and there is a clear increase in He+ during fragment crossings. The C/O ratio and He charge states are used to provide constraints on the activity of the cometary fragments and also the spatial distribution of the extended and ionized cometary tail.
Cometary nucleus release experiments and ice physics
NASA Technical Reports Server (NTRS)
Huebner, W. F.
1976-01-01
Some physical and chemical processes involved in the evaporation and sublimation of mixtures of frozen gases are discussed. Effects of zero gravity, vacuum, and solar radiation are emphasized. Relevant experiments that can be carried out with the aid of the space shuttle are proposed.
Accretion of Cometary Nuclei in the Solar Nebula: Boulders, Not Pebbles
NASA Astrophysics Data System (ADS)
Weissman, Paul R.; A'Hearn, Michael
2015-11-01
Comets are the most primitive bodies in the solar system. They retain a largely unprocessed record of conditions in the primordial solar nebula 4.56 Gyr ago, including the initial accretion of dust and ice particles into macroscopic bodies. Current accretion theory suggests that ice and dust aggregates grew to pebble (cm) sizes before streaming instabilities and gravitational collapse brought these pebble swarms together as km-sized (or larger) bodies. Recent imaging of the nucleus of comet 67P/Churyumov-Gerasimenko by the Rosetta OSIRIS camera team has revealed the existence of “goose bump” terrain on the nucleus surface and lining the interior walls of large, ~200 m diameter and 180 m deep cylindrical pits. These pits are believed to be sinkholes, formed when near-surface materials collapse into voids within the nucleus, revealing the fresh comet interior on the walls of the pits. The goose bump terrain consists of 3-4 m diameter “boulders” randomly stacked one on top of another. We propose that these boulders, likely with an icy-conglomerate composition, are the basic building blocks of cometary nuclei. This is the first observational confirmation of current accretion theories, with the caveat that rather than pebbles, the preferred size range is 3-4 m boulders for objects formed in the giant planets region of the solar system. The presence of icy grains beyond the solar nebula snow-line and the large heliocentric range of the giant planets region likely contribute to the formation of these larger boulders, before they are incorporated into cometary nuclei. This work was supported by NASA through the U.S. Rosetta Project.
Early Evolution of Comet 67P Studied with the RPC-LAP onboard Rosetta
NASA Astrophysics Data System (ADS)
Miloch, W. J.; Yang, L.; Paulsson, J. J.; Wedlund, C. S.; Odelstad, E.; Edberg, N. J. T.; Koenders, C.; Eriksson, A.
2016-12-01
In-situ measurements within the Rosetta mission allow for studies of the cometary environment at different stages of cometary evolution. The Rosetta Plasma Consortium (RPC) is a set of five instruments on board the spacecraft that specialise in the measurements of plasma environment of comet 67P. One of the instruments is RPC-LAP, which consists of two Langmuir Probes and can measure the density, temperature, and flow speed of the plasma in the vicinity of the comet. At the early stage of the Rosetta mission, when the spacecraft is far from the nucleus of comet 67P, the ion part of the current-voltage characteristics of RPC-LAP1 is dominated by the photoemission current, which surpasses the currents from the dilute solar wind plasma. As Rosetta starts orbiting around the nucleus in September 2014, LAP1 picks up signatures of local plasma density enhancements corresponding to variations of water-group ions observed in the vicinity of the comet. With the help of current-voltage characteristics and the spacecraft potential, we identify and characterise in space and time the entering of this coma-dominated, high-density plasma region. This high-density region is observed at the northern hemisphere of the comet during early activity. The transition manifests as a steep gradient in the density with respect to the distance to the comet nucleus. We discuss these RPC-LAP results together with the corresponding measurements by other instruments to provide a comprehensive picture of the transition. We show that the early cometary plasma can be seen as composed of two distinct regions: an outer region characterised by solar wind plasma and small quantities of pickup ions, and an inner region with enhanced plasma densities.
On the evolution and activity of cometary nuclei.
Prialnik, D; Bar-Nun, A
1987-02-15
The thermal evolution of a spherical cometary nucleus (initial radius of 2.5 km), composed initially of very cold amorphous ice and moving in comet Halley's orbit, is simulated numerically for 280 revolutions. It is found that the phase transition from amorphous to crystalline ice constitutes a major internal heat source. The transition does not occur continuously, but in five distinct rounds, during the following revolutions: 1, 7, 40-41, 110-112, and 248-252. Due to the (slow) heating of the amorphous ice between crystallization rounds, the phase transition front advances into the nucleus to progressively greater depths: 36 m on the first round, and then 91 m, 193 m, 381 m, and 605 m respectively. Each round of crystallization starts when when the boundary between amorphous and crystalline ice is brought to approximately 15 m below the surface, as the nucleus radius decreases due to sublimation. At the time of crystallization, the temperature of the transformed ice rises to 180 K. According to experimental studies of gas-laden amorphous ice, a large fraction of the gas trapped in the ice at low temperatures is released. Whereas some of the released gas may find its way out through cracks in the crystalline ice layer, the rest is expected to accumulate in gas pockets that may eventually explode, forming "volcanic calderas." The gas-laden amorphous ice thus exposed may be a major source of gas and dust jets into the coma, such as those observed on comet Halley by the Giotto spacecraft. The activity of new comets and, possibly, cometary outbursts and splits may also be explained in terms of explosive gas release following the transition from amorphous to crystalline ice.
Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse.
Vincent, Jean-Baptiste; Bodewits, Dennis; Besse, Sébastien; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F; Auger, Anne-Thérèse; Barucci, M Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Capanna, Claire; Cremonese, Gabriele; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; El-Maarry, Mohamed Ramy; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Giacomini, Lorenza; Groussin, Olivier; Guilbert-Lepoutre, Aurélie; Gutierrez-Marques, P; Gutiérrez, Pedro J; Güttler, Carsten; Hoekzema, Nick; Höfner, Sebastian; Hviid, Stubbe F; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M; Lazzarin, Monica; Lee, Vicky; Leyrat, Cédric; Lin, Zhong-Yi; Lopez Moreno, Josè J; Lowry, Stephen; Magrin, Sara; Maquet, Lucie; Marchi, Simone; Marzari, Francesco; Massironi, Matteo; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Preusker, Frank; Scholten, Frank; Thomas, Nicolas; Toth, Imre; Tubiana, Cecilia
2015-07-02
Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts. Alternative mechanisms like explosive activity have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.
NASA Technical Reports Server (NTRS)
Southworth, R. B.; Mccrosky, R. E.
1970-01-01
An overview of research on radio and radar meteors accomplished during the past decade is presented, and the work of the past year is highlighted. Velocity distribution and mass flux data are obtained for meteors in the range 10 to 0.0001 g, the size believed to be the principal hazard to space missions. The physical characteristics of mass, structure and density, luminosity, and ablation are briefly described, and the formulation of a theory for interactions of ionization and excitation during collision of atomic particles is mentioned. Five classes of meteoroids are identified, including the two of iron and stone meteorites. Stream meteors associated with known comets are Classes A or C, and parent comets of Class B streams are not observed. Class A meteoroids are identified with the core of a cometary nucleus, Class C with less dense surface of the nucleus after sublimation of ices, and Class B with less dense cores of smaller cometary nuclei. Atmospheric meteor phenomena associated with winds and gravity waves, density and temperature, atomic oxygen, and meteor rate changes are mentioned.
The solar wind structure that caused a large-scale disturbance of the plasma tail of comet Austin
NASA Technical Reports Server (NTRS)
Kozuka, Yukio; Konno, Ichishiro; Saito, Takao; Numazawa, Shigemi
1992-01-01
The plasma tail of Comet Austin (1989c1) showed remarkable disturbances because of the solar maximum periods and its orbit. Figure 1 shows photographs of Comet Austin taken in Shibata, Japan, on 29 Apr. 1990 UT, during about 20 minutes with the exposure times of 90 to 120 s. There are two main features in the disturbance; one is many bowed structures, which seem to move tailwards; and the other is a large-scale wavy structure. The bowed structures can be interpreted as arcade structures brushing the surface of both sides of the cometary plasma surrounding the nucleus. We identified thirteen structures of the arcades from each of the five photographs and calculated the relation between the distance of each structure from the cometary nucleus, chi, and the velocity, upsilon. The result is shown. This indicates that the velocity of the structures increases with distance. This is consistent with the result obtained from the observation at the Kiso Observatory.
NASA Astrophysics Data System (ADS)
Gersch, Alan; A'Hearn, M. F.
2012-05-01
We have adapted the Coupled Escape Probability method of radiative transfer calculations for use in asymmetrical spherical situations and applied it to modeling molecular emission spectra of potentially optically thick cometary comae. Recent space missions (e.g. Deep Impact & EPOXI) have provided spectra from comets of unprecedented spatial resolution of the regions of the coma near the nucleus, where the coma may be optically thick. Currently active missions (e.g. Rosetta) and hopefully more in the future will continue the trend and demonstrate the need for better modeling of comae with optical depth effects included. Here we present a brief description of our model and results of interest for cometary studies, especially for space based observations. Although primarily motivated by the need for comet modeling, our (asymmetric spherical) radiative transfer model could be used for studying other astrophysical phenomena as well.
The Giacobini-Zinner magnetotail - Tail configuration and current sheet
NASA Technical Reports Server (NTRS)
Mccomas, D. J.; Gosling, J. T.; Bame, S. J.; Slavin, J. A.; Smith, E. J.
1987-01-01
The configuration and properties of the draped Giacobini-Zinner magnetotail and its field-reversing current sheet are studied using the combined magnetic field and plasma electron data sets obtained from the International Cometary Explorer spacecraft when it traversed (in October 1985) the comet 7800 km downstream of the nucleus. The MHD equations are used to derive pressure balance and plasma acceleration conditions. The implications of the various properties derived are examined, particularly with regard to the upstream near-nucleus region where the tail formation process occurs.
Comets - Chemistry and chemical evolution
NASA Technical Reports Server (NTRS)
Donn, B.
1982-01-01
Research on the chemical composition and conditions in comets and their possible role in the origin of life on earth is surveyed. The inorganic and organic compounds and ions indicated in the ultraviolet and visible spectra of comets are noted, and evidence for the existence of at least a small proportion of complex organic molecules in comets is presented. It is then pointed out that while cometary material could have reached the earth and provided volatile elements from which biochemical compounds could have formed, it is unlikely that a cometary nucleus could have withstood the temperatures and pressures necessary to sustain an environment in which life could have originated.
Cometary atmospheres: Modeling the spatial distribution of observed neutral radicals
NASA Technical Reports Server (NTRS)
Combi, M. R.
1985-01-01
Progress on modeling the spatial distributions of cometary radicals is described. The Monte Carlo particle-trajectory model was generalized to include the full time dependencies of initial comet expansion velocities, nucleus vaporization rates, photochemical lifetimes and photon emission rates which enter the problem through the comet's changing heliocentric distance and velocity. The effect of multiple collisions in the transition zone from collisional coupling to true free flow were also included. Currently available observations of the spatial distributions of the neutral radicals, as well as the latest available photochemical data were re-evaluated. Preliminary exploratory model results testing the effects of various processes on observable spatial distributions are also discussed.
Stardust Encounters Comet 81P/Wild 2
NASA Technical Reports Server (NTRS)
Tsou, P.; Brownlee, D. E.; Anderson, J. D.; Bhaskaran, S.; Cheuvront, A. R.; Clark, B. C.; Duxbury, T.; Economou, T.; Green, S. F.; Hanner, M. S.;
2004-01-01
Stardust successfully encountered comet 81P/Wild 2 on 2 January 2004 at a distance of 236.4 +/- 1 km. All encounter investigations acquired valuable new and surprising findings. The time-of-flight spectrometer registered 29 spectra during flyby and measured the first negative ion mass spectra of cometary particles. The dust detectors recorded particles over a broad mass range, 10(exp -11) to 10(exp -4) g. Unexpectedly, the dust distribution along Stardust's flight path was far from uniform, but instead occurred in short 'bursts', suggesting in-flight breakup of fragments ejected from the nucleus. High-resolution, stunning images of the Wild 2 surface show a diverse and complex variety of landforms not seen from comets 1P/Halley and 19P/Borrelly or icy satellites of the outer solar system. Longer-exposure images reveal large numbers of jets projected nearly around the entire perimeter of the nucleus, many of which appear to be highly collimated. A triaxial ellipsoidal fit of the Wild 2 nucleus images yields the principal nucleus radii of 1.65 X 2.00 X2.75 km (+/- 0.05 km). The orientations and source locations on the nucleus surface of 20 highly collimated and partially overlapping jets have been traced. There is every indication that the expected samples were successfully collected from the Wild 2 coma and are poised for a return to Earth on 15 January 2006.
Isotope measurements of a comet by the Ptolemy instrument on Rosetta
NASA Astrophysics Data System (ADS)
Franchi, Ian; Morse, Andrew; Andrews, Dan; Sheridan, Simon; Barber, Simeon; Leese, Mark; Morgan, Geraint; Wright, Ian; Pillinger, Colin
Remote observations of comets (spacecraft fly-bys and telescopes) reveal a vast reservoir of volatile organic species, along with the water ice, other volatiles and silicate dust fractions that make up these very primitive bodies. Understanding the nature of cometary materials, in order to unravel their origin and history, is particularly challenging. Remote observation is only possible for the coma, the constituents of which are likely fractionated and modified compared to the primordial material within the comet. A number of opportunities exist for very detailed study of cometary material with ground-based laboratory instrumentation. How-ever, dissipation of energy during capture (e.g. NASA Stardust samples) or atmospheric entry (stratospheric interplanetary dust particles) has the potential to extensively modify, or even obliterate, detailed information about the nature and origin of the more volatile, biologically important organic species present. Collecting and returning pristine material from the surface of a comet remains very challenging and therefore direct study of the volatile portions can only readily be performed on the comet itself by remote instruments. The ESA Rosetta mission, that will make long-term measurements of a comet as it approaches the sun from 3.5 AU to 1.4 AU over a period of at least six months, includes the Philae lander as well as the orbiter spacecraft. Ptolemy, on board Philae, is a GC-MS instrument designed for the analysis of cometary volatiles, organic materials and silicates. The objectives of Ptolemy are to provide a complete description of the nature and distribution of light elements (H, C, N and O) present in the nucleus of the comet, as well as determining their stable isotopic compositions. Ptolemy also aims to provide ground-truth measurements of those volatiles that are subsequently detected further out from the nucleus in the coma. Samples from the surface and sub-surface, collected by the lander drilling system (SD2), are heated in an oven and can be injected into one of three gas chromatography columns (GC) for analysis by the mass spectrometer. Accurate isotopic analysis is achieved by chemical processing before and/or after the GC columns and by direct comparison with reference materials of known isotopic composition. Recent operations of the Ptolemy mass spectrometer during recent spacecraft checkouts have shown that the Ptolemy instrument is operational and should be capable of meeting its science aims.
NASA Astrophysics Data System (ADS)
Vincent, J.; Oklay, N.; Marchi, S.; Höfner, S.; Sierks, H.
2014-07-01
This paper reviews the observations of crater-like features on cometary nuclei. ''Pits'' have been observed on almost all cometary nuclei but their origin is not fully understood [1,2,3,4]. It is currently assumed that they are created mainly by the cometary activity with a pocket of volatiles erupting under a dust crust, leaving a hole behind. There are, however, other features which cannot be explained in this way and are interpreted alternatively as remnants of impact craters. This work focusses on the second type of pit features: impact craters. We present an in-depth review of what has been observed previously and conclude that two main types of crater morphologies can be observed: ''pit-halo'' and ''sharp pit''. We extend this review by a series of analysis of impact craters on cometary nuclei through different approaches [5]: (1) Probability of impact: We discuss the chances that a Jupiter Family Comet like 9P/Tempel 1 or the target of Rosetta 67P/Churyumov-Gerasimenko can experience an impact, taking into account the most recent work on the size distribution of small objects in the asteroid Main Belt [6]. (2) Crater morphology from scaling laws: We present the status of scaling laws for impact craters on cometary nuclei [7] and discuss their strengths and limitations when modeling what happens when a rocky projectile hits a very porous material. (3) Numerical experiments: We extend the work on scaling laws by a series of hydrocode impact simulations, using the iSALE shock physics code [8,9,10] for varying surface porosity and impactor velocity (see Figure). (4) Surface processes and evolution: We discuss finally the fate of the projectile and the effects of the impact-induced surface compaction on the activity of the nucleus. To summarize, we find that comets do undergo impacts although the rapid evolution of the surface erases most of the features and make craters difficult to detect. In the case of a collision between a rocky body and a highly porous cometary nucleus, two specific crater morphologies can be formed: a central pit surrounded by a shallow depression, or a pit, deeper than typical craters observed on rocky surfaces. After the impact, it is likely that a significant fraction of the projectile will remain in the crater. During its two years long escort of comet 67P/Churyumov-Gerasimenko, ESA's Rosetta mission should be able to detect specific silicate signatures on the bottom of craters or crater-like features, as evidence of this contamination. For large craters, structural changes in the impacted region, in particular, compaction of material, will affect the local activity. The increase of tensile strength can stop the activity by preventing the gas from lifting up dust grains. On the other hand, material compaction can help the heat flux to travel deeper in the nucleus, potentially reaching unexposed pockets of volatiles, and therefore increasing the activity [11]. Ground truth data from Rosetta will help us infer the relative importance of those two effects.
Collecting cometary soil samples? Development of the ROSETTA sample acquisition system
NASA Technical Reports Server (NTRS)
Coste, P. A.; Fenzi, M.; Eiden, Michael
1993-01-01
In the reference scenario of the ROSETTA CNRS mission, the Sample Acquisition System is mounted on the Comet Lander. Its tasks are to acquire three kinds of cometary samples and to transfer them to the Earth Return Capsule. Operations are to be performed in vacuum and microgravity, on a probably rough and dusty surface, in a largely unknown material, at temperatures in the order of 100 K. The concept and operation of the Sample Acquisition System are presented. The design of the prototype corer and surface sampling tool, and of the equipment for testing them at cryogenic temperatures in ambient conditions and in vacuum in various materials representing cometary soil, are described. Results of recent preliminary tests performed in low temperature thermal vacuum in a cometary analog ice-dust mixture are provided.
NASA Astrophysics Data System (ADS)
Edenhofer, Peter; Ulamec, Stephan
2015-04-01
The paper is devoted to results of doctoral research work at University of Bochum as applied to the radar transmission experiment CONSERT of the ESA cometary mission Rosetta. This research aims at achieving the limits of optimum spatial (and temporal) resolution for radar remote sensing by implementation of covariance informations concerned with error-balanced control as well as coherence of wave propagation effects through random composite media involved (based on Joel Franklin's approach of extended stochastic inversion). As a consequence the well-known inherent numerical instabilities of remote sensing are significantly reduced in a robust way by increasing the weight of main diagonal elements of the resulting composite matrix to be inverted with respect to off-diagonal elements following synergy relations as to the principle of correlation receiver in wireless telecommunications. It is shown that the enhancement of resolution for remote sensing holds for an integral and differential equation approach of inversion as well. In addition to that the paper presents a discussion on how the efficiency of inversion for radar data gets achieved by an overall optimization of inversion due to a novel neuro-genetic approach. Such kind of approach is in synergy with the priority research program "Organic Computing" of DFG / German Research Organization. This Neuro-Genetic Optimization (NGO) turns out, firstly, to take into account more detailed physical informations supporting further improved resolution such as the process of accretion for cometary nucleus, wave propagation effects from rough surfaces, ground clutter, nonlinear focusing, etc. as well as, secondly, to accelerate the computing process of inversion in a really significantly enhanced and fast way, e.g., enabling online-control of autonomous processes such as detection of unknown objects, navigation, etc. The paper describes in some detail how this neuro-genetic approach of optimization is incorporated into the procedure of data inversion by combining inverted artificial neural networks of adequately chosen topology and learning routines for short access times with the concept of genetic algorithms enabling to achieve a multi-dimensional global optimum subject to a properly constructed and problem-oriented target function, ensemble selection rules, etc. Finally the paper discusses how the power of realistic simulation of the structures of the interior of a cometary nucleus can be improved by applying Benoit Mandelbrot's concept of fractal structures. It is shown how the fractal volumetric modelling of the nucleus of a comet can be accomplished by finite 3D elements of flexibility (serving topography and morphology as well) such as of tetrahedron shape with specific scaling factors of self similarity and a Maxwellian type of distribution function. By applying the widely accepted fBm-concept of fractal Brownian motion basically each of the corresponding Hurst exponents 0 (rough) < H < 1 (smooth) can be derived for the multi-fractal depth (and terrain) profiles of the equivalent dielectric constant per tomographic angular orbital segment of intersection by transmissive radar ray paths with the nucleus of the comet. Cooperative efforts and work are in progress to achieve numerical results of depth profiles for the nucleus of comet 67P/Churyumov-Gerasimenko.
Hilchenbach, Martin; Fischer, Henning; Langevin, Yves; Merouane, Sihane; Paquette, John; Rynö, Jouni; Stenzel, Oliver; Briois, Christelle; Kissel, Jochen; Koch, Andreas; Schulz, Rita; Silen, Johan; Altobelli, Nicolas; Baklouti, Donia; Bardyn, Anais; Cottin, Herve; Engrand, Cecile; Fray, Nicolas; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Lehto, Harry; Mellado, Eva Maria; Modica, Paola; Le Roy, Lena; Siljeström, Sandra; Steiger, Wolfgang; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Zaprudin, Boris
2017-07-13
The in situ cometary dust particle instrument COSIMA (COmetary Secondary Ion Mass Analyser) onboard ESA's Rosetta mission has collected about 31 000 dust particles in the inner coma of comet 67P/Churyumov-Gerasimenko since August 2014. The particles are identified by optical microscope imaging and analysed by time-of-flight secondary ion mass spectrometry. After dust particle collection by low speed impact on metal targets, the collected particle morphology points towards four families of cometary dust particles. COSIMA is an in situ laboratory that operates remotely controlled next to the comet nucleus. The particles can be further manipulated within the instrument by mechanical and electrostatic means after their collection by impact. The particles are stored above 0°C in the instrument and the experiments are carried out on the refractory, ice-free matter of the captured cometary dust particles. An interesting particle morphology class, the compact particles, is not fragmented on impact. One of these particles was mechanically pressed and thereby crushed into large fragments. The particles are good electrical insulators and transform into rubble pile agglomerates by the application of an energetic indium ion beam during the secondary ion mass spectrometry analysis.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).
International Halley Watch: Discipline specialists for near-nucleus studies
NASA Technical Reports Server (NTRS)
Larson, S.; Sekanina, Z.; Rahe, J.
1986-01-01
The purpose of the Near-Nucleus Studies Net is to study the processes taking place in the near-nucleus environment as they relate to the nature of nucleus. This is accomplisghed by measuring the spatial and temporal distribution of dust, gases and ions in the coma on high resolution images taken from many observatories around the world. By modeling the motions of discrete dust features in Comet Halley, it is often possible to determine the locations of the emission sources on the surface and learn about the nucleus structure. In addition to the general goals shared by all IHW nets, the scientific goals of the net has been to determine (1)the gross surface structure of the nucleus, (2)the nucleus spin vector, (3)the distribution and evolution of jet sources and (4)the interrelationships between the gas, dust and ion components of the coma. An additional Comet Giacobini-Zinner watch was carried out by the NNSN in support of the NASA International Cometary Explorer flyby.
The bare nucleus of comet Neujmin 1
NASA Technical Reports Server (NTRS)
Campins, Humberto; A'Hearn, Michael F.; Mcfadden, Lucy-Ann
1987-01-01
Simultaneous visible and infrared observations of comet P/Neujmin 1 1984c are presented which show that the comet has a large (mean radius 10 km), dark (geometric albedo 2-3 percent) nucleus with a surface which is mostly inert material but which still shows a low level of gaseous activity. This is the first physical evidence that cometary nuclei can leave behind an inert body after the coma activity ceases. No asteroid or asteroid class has been found to match the reflectance and albedo of this comet except possibly some D asteroids.
The Nucleus of Comet 67P/Churyumov-Gerasimenko: Lots of Surprises
NASA Astrophysics Data System (ADS)
Weissman, Paul R.; Rosetta Science Working Team
2016-10-01
ESA's Rosetta mission has made many new and unexpected discoveries since its arrival at comet 67P/Churyumov-Gerasimenko in August 2014. The first of these was the unusual shape of the cometary nucleus. Although bilobate nuclei had been seen before, the extreme concavities on 67P were unexpected. Evidence gathered during the mission suggests that two independent bodies came together to form 67P, rather than the nucleus being a single body that was sculpted by sublimation and/or other processes. Although not a surprise, early observations showed that the nucleus rotation period had decreased by ~22 minutes since the previous aphelion passage. A similar rotation period decrease was seen post-perihelion during the encounter. These changes likely arise from asymmetric jetting forces from the irregular nucleus. Initially, Rosetta's instruments found little evidence for water ice on the surface; the presence of surface water ice increased substantially as the nucleus approached perihelion. The nucleus bulk density, 533 ± 6 kg/m3, was measured with Radio Science and OSIRIS imaging of the nucleus volume. This confirmed previous estimates based on indirect methods that the bulk density of cometary nuclei was on the order of 500-600 kg/m3 and on measurement of the density of 9P/Tempel 1's nucleus by Deep Impact. Nucleus topography proved to be highly varied, from smooth dust-covered plains to shallow circular basins, to the very rough terrain where the Philae lander came to rest. Evidence of thermal cracking is everywhere. The discovery of cylindrical pits on the surface, typically 100-200m in diameter with similar depths was a major surprise and has been interpreted as sinkholes. "Goose-bump" terrain consisting of apparently random piles of boulders 2-3 m in diameter was another unexpected discovery. Apparent layering with scales of meters to many tens of meters was seen but there was little or no evidence for impact features. Radar tomography of the interior of the "head" of the nucleus showed no evidence of large voids, > 100's of meters, in the interior and the RSI experiment also ruled out large voids > 600m in size. This work was supported by the U.S. Rosetta Project, funded by NASA.
A CO2-rich coma model applied to the neutral coma of Comet West
NASA Technical Reports Server (NTRS)
Mitchell, G. F.; Swift, M. B.; Huntress, W. T.
1982-01-01
Models of the cometary coma in which the dominant volatile is CO2 have been constructed for a range of heliocentric distances. Model coma abundances of C2, C3, and CN are compared with the abundances observed in Comet West and are found to be in good agreement. Furthermore, the variation with heliocentric distance of C2, C3, and CN model abundances agree well with the observed variation in Comet West. The present work lends detailed support to a previous suggestion that a substance more volatile than water, such as CO2, controls the evaporation of the nucleus of Comet West. The implications for cometary formation are briefly discussed.
Ephemeris data and error analysis in support of a Comet Encke intercept mission
NASA Technical Reports Server (NTRS)
Yeomans, D. K.
1974-01-01
Utilizing an orbit determination based upon 65 observations over the 1961 - 1973 interval, ephemeris data were generated for the 1976-77, 1980-81 and 1983-84 apparitions of short period comet Encke. For the 1980-81 apparition, results from a statistical error analysis are outlined. All ephemeris and error analysis computations include the effects of planetary perturbations as well as the nongravitational accelerations introduced by the outgassing cometary nucleus. In 1980, excellent observing conditions and a close approach of comet Encke to the earth permit relatively small uncertainties in the cometary position errors and provide an excellent opportunity for a close flyby of a physically interesting comet.
Study of Comets Composition and Structure
NASA Astrophysics Data System (ADS)
Khalaf, S. Z.; Selman, A. A.; Ali, H. S.
2008-12-01
The present paper focuses on the nature of the different interactions between cometary nucleus and tail with solar wind. The dynamics of the comet will impose many features that provide unique behavior of the comet when entering the solar system. These features are reviewed in this paper and few investigations are made. The calculations made in this work represent the analysis and interpretation of the different features of the comet, such as perihelion and eccentricity dependence on the gas production rate, and the dependence of the latter on the composition of the comet nucleus. The dependences of the heliocentric, bow shock, contact surface, and stand-off distances with gas production rate for many types of comets that cover linear and non-linear types are studied in this work. Important results are obtained which indicated the different physical interactions between cometary ions and solar wind. Furthermore, the important relation between mean molecular weight and gas production rate are analyzed and studied in this work and a conclusion is made that, as the gas production rate increases, the mean molecular weight will decrease exponentially. A detailed discussion for this unique relation is given.
Groundbased Observations of [C I] 9850A Emission from Comet Hale-Bopp
NASA Astrophysics Data System (ADS)
Doane, N. E.; Oliversen, R. J.; Scherb, F.; Morgenthaler, J. P.; Roesler, F. L.; Woodward, R. C.; Harris, W. M.; Hilton, G. M.
1999-05-01
High spectral resolution observations of Comet Hale-Bopp [C I] 9850A emission were obtained at the NSO McMath-Pierce main telescope on 13 nights during 1997 March 9 to 10 and April 7 to 19. Spectra with good signal-to-noise were obtained using a dual- etalon 50mm Fabry-Perot spectrometer (R 40,000) with a 6 arcmin field of view. The comet was observed over a 0.92-1.00 AU range of heliocentric distances. Most observations were centered on the comet nucleus where the surface brightness ranged from about 70 to 170 Rayleighs. Several observations were also centered approximately 5 arcmin sunward and tailward of the comet nucleus. The sunward [C I] emission was fainter than the tailward emission. Assuming that CO photodissociation is the source of cometary C(1D) (and neglecting quenching), for a surface brightness of 120 Rayleighs, we estimate a (lower limit) CO production rate of about 2x10(30) per sec. These [C I] observationsare the first extensive set reported for this cometary emission line.
NASA Astrophysics Data System (ADS)
Staines, K.; Balogh, A.; Cowley, S. W. H.; Hynds, R. J.; Yates, T. S.; Richardson, I. G.; Sanderson, T. R.; Wenzel, K. P.; McComas, D. J.; Tsurutani, B. T.
1991-03-01
The bulk parameters (number density and thermal energy density) of cometary water-group ions in the region surrounding Comet Giacobini-Zinner have been derived using data from the EPAS instrument on the ICE spacecraft. The derivation is based on the assumption that the pick-up ion distribution function is isotropic in the frame of the bulk flow, an approximation which has previously been shown to be reasonable within about 400,000 km of the comet nucleus along the spacecraft trajectory. The transition between the pick-up and mass-loaded regions occurs at the cometary shock, which was traversed at a cometocentric distance of about 100,000 km along the spacecraft track. Examination of the ion distribution functions in this region, transformed to the bulk flow frame, indicates the occurrence of a flattened distribution in the vicinity of the local pick-up speed, and a steeply falling tail at speeds above, which may be approximated as an exponential in ion speed.
Modeling Subsidence-Like Events on Cometary Nuclei
NASA Astrophysics Data System (ADS)
Rosenberg, Eric; Prialnik, Dina
2017-10-01
There is ample evidence, particularly from the Rosetta mission, that cometary nuclei have very low tensile strength. Consequently, morphological changes are expected to occur, caused by buildup of pressure due to gas release in the interior of the nucleus. Such changes have been observed on the surface of comet 67P/Churyumov-Gerasimenko, as reported for example by Groussin et al.(2015). A mechanism for explaining comet surface depressions has been recently proposed by Prialnik & Sierks (2017). Here we report on a numerical study, elaborating on this mechanism. Essentially, the model considers a cometary nucleus composed of a low-density mixture of ice and dust, assuming that the ice is amorphous and traps volatile gasses, such as CO and CO2. The model assumes that the tensile strength of the subsurface material is low and that the surface is covered by a thin crust of low permeability. As the comet evolves, the amorphous ice crystallizes, and the crystallization front recedes from the surface, releasing the trapped gasses, which accumulate beneath the surface, building up pressure. The gas pressure weakens the material strength, but sustains the gas-filled layer against hydrostatic pressure. Eventually, the gas will break its way through the outer crust in an outburst. The rapid pressure drop may cause the collapse of the gas depleted layer, as seen on the nucleus of 67P/Churyumov-Gerasimenko. This mechanism is similar to subsidence events in gas fields on earth.We have performed quasi-3D numerical simulations in an attempt to determine the extent of the area that would be affected by such a mechanism. The frequency of such subsidence events and the depth of the collapse are investigated as functions of solar angle and spin axis inclination. The necessary conditions for outburst-induced collapse are determined and confronted with observations.References:Groussin, O., Sierks, H., et al. 2015, A&A, 583, A35Prialnik, D. & Sierks, H., 2017, MNRAS, in press
Linking surface morphology, composition and activity on the 67P/Churyumov-Gerasimenko’s nucleus
NASA Astrophysics Data System (ADS)
Fornasier, Sonia; Hoang, Van Hong; Hasselmann, Pedro H.; Barucci, Maria Antonieta; Feller, Clement; Prasanna Deshapriya, Jasinghege Don; Keller, Horst Uwe; OSIRIS Team
2017-10-01
The Rosetta mission orbited around the comet 67P/Churyumov-Gerasimenko for more than 2 years, getting an incredible amount of unique data of the comet nucleus and inner coma. This has enabled us to study its activity continuously from 4 AU inbound to 3.6 AU outbound, including the perihelion passage at 1.25 AU.This work focuses on the identification of the regions sources of faint jets and outbursts, and on the study of their spectrophotometric properties, from observations acquired with the OSIRIS/NAC camera during the July-October 2015 period, i.e. close to perihelion. More than 150 jets of different intensities were identified directly on the nucleus from NAC color sequences acquired in 7-11 filters covering the 250-1000 nm wavelength range, and their spectrophotometric properties studied for the first time. Some spectacular outbursts appear dominated by water ice particles, while fainter jets often show colors redder than the nucleus and appear dominated by dusty particles. Some jets are very faint and were identified on the nucleus thanks to the unprecedented spatial and temporal resolution of the ROSETTA/OSIRIS observations. Some of them have an extremely short lifetime, appearing on the cometary surface during the color sequence observations, reaching their peak in flux and then vanishing in less than a couple of minutes.We will present the results on the location, duration, and colors of active sources on the 67P nucleus from the relatively low resolution (i.e. 6-10 m/pixel) images acquired close to the perihelion passage. Some of this active regions were observed and investigated in higher resolution (up to few dm per pixel) during other phases of the mission. These observations allow us to study the morphological and spectral evolution of the regions found to be active and to further investigate the link between morphology, composition, and activity on cometary nuclei.
NASA Astrophysics Data System (ADS)
Ivanovski, S. L.; Zakharov, V. V.; Della Corte, V.; Crifo, J.-F.; Rotundi, A.; Fulle, M.
2017-01-01
In-situ measurements of individual dust grain parameters in the immediate vicinity of a cometary nucleus are being carried by the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. For the interpretations of these observational data, a model of dust grain motion as realistic as possible is requested. In particular, the results of the Stardust mission and analysis of samples of interplanetary dust have shown that these particles are highly aspherical, which should be taken into account in any credible model. The aim of the present work is to study the dynamics of ellipsoidal shape particles with various aspect ratios introduced in a spherically symmetric expanding gas flow and to reveal the possible differences in dynamics between spherical and aspherical particles. Their translational and rotational motion under influence of the gravity and of the aerodynamic force and torque is numerically integrated in a wide range of physical parameters values including those of comet 67P/Churyumov-Gerasimenko. The main distinctions of the dynamics of spherical and ellipsoidal particles are discussed. The aerodynamic characteristics of the ellipsoidal particles, and examples of their translational and rotational motion in the postulated gas flow are presented.
Cometary activity and nucleus modelling: a new approach
NASA Astrophysics Data System (ADS)
Möhlmann, D.
1996-06-01
The phenomena of comet splittings with an average frequency of about one splitting per 100 years and comet (Chen and Jewitt, Icarus108, 265-271, 1994), and the restriction of cometary activity to well-defined small areas at the almost passive and mantle covered surface (Keller et al., ESA SP-250, Vol. II, pp. 363-364, 1986) are at present driving challenges to models of structure and evolution of comet nuclei. Extending the presently discussed models by incorporating lateral subsurface transport of sublimed volatiles, there appears the possibility that the places of sublimation are different from those of activity (the so-called active areas). Then, there is no necessity to distinguish between different surface properties at active and passive areas, assuming, e.g. an uncovered icy surface at active areas. Active areas are simply the very local "source sites" where the accumulated subsurface flows from distant regions reach the surface. The pressure driven subsurface flows of volatiles may not only leave the comet at its surface, they may penetrate via cracks, etc. also deeply into the nucleus. There they can cause a further growth of cracks and also new cracks. This can be a cause for the observed regular splittings. Furthermore, actual models (Kührt and Keller, Icarus109, 121-132, 1994; Skorov and Rickman, Planet. Space Sci.43, 1587-1594, 1995) of the gas transport through porous comet surface crusts can be interpreted as to give first indications for thermodynamical parameters in heat conducting and porous cometary crusts which are appropriate for 1 AU conditions to permit the temporary existence of a layer with fluid subsurface water within these crusts. This exciting result of the possible temporary existence of subsurface warm water in comets which approach the Sun within about 1 AU makes a cometary subsurface chemistry much more efficient than expected hitherto.
The Hummingbird GC-IMS: In Situ Analysis of a Cometary Nucleus
NASA Technical Reports Server (NTRS)
Kojiro, Daniel R.; Carle, Glenn C.; Cohen, Martin J.; Wernlund, Roger F.; Stimac, Robert M.; Takeuchi, Norishige; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Comets are of enormous scientific interest for many reasons. They are primitive bodies that date back to the earliest stages of solar system formation and, because of their small size and because they have been stored in the outer reaches of the solar system, their pristine nature has been preserved better than for any other class of body. They are extremely rich in highly volatile elements, many in the form of ices, and are richer in organic matter than any other known solar system body. It is strongly suspected that in addition to their content of primordial solar nebular material, they also incorporate unprocessed matter from the interstellar medium. Impacts by comets occur onto all the planets and satellites, often with major consequences (e.g., the dinosaur extinction event at the KIT boundary), or sometimes just providing a spectacular cosmic event (e.g., the collision of comet Shoemaker-Levy 9 with Jupiter). A mission to analyze a cometary nucleus must be capable of detecting and identifying over 30 molecular species among several different chemical groups. The Hummingbird Mission will rendezvous with, orbit, characterize, and make multiple descents to the nucleus of a comet. Hummingbird will employ a Gas Chromatograph - Ion Mobility Spectrometer (GC-IMS) as part-of a suite of sophisticated instruments for a comprehensive in situ elemental, molecular, and isotopic analysis of the comet.
Does a continuous solid nucleus exist in comets.
NASA Technical Reports Server (NTRS)
Lyttleton, R. A.
1972-01-01
The implication of actual cometary observations for the physical nature of comets is briefly reviewed, bringing out the complete conflict with observation of the ice-dust solid nucleus model put forward in recent years as representing the fundamental structure of comets. That under increasing solar heat the nucleus develops an expanding atmosphere is inconsistent with the well-established phenomenon that the coma contracts with decreasing distance from the sun. Several comets remaining always beyond Mars have nevertheless been strongly active and produced fine tails. That some comets show at times a star-like point of light is readily explicable on the dust-cloud structure and by no means establishes that a solid nucleus exists. With the nucleus-area corresponding not to a small solid mass but to an optical phenomenon, there would be no reason to expect that it would describe a precise dynamical orbit. On the hypothesis of a nucleus, it is necessary to postulate further some internal jet-propulsion mechanism to account for the orbital deviations.
NASA Astrophysics Data System (ADS)
Stevenson, Rachel Ann
On UT 2007 Oct. 23, Jupiter Family comet 17P/Holmes underwent the largest cometary outburst in recorded history when it brightened by a factor of nearly a million in less than 2 days. This unprecedented event prompted a four-month observing campaign to observe the aftermath of the outburst. The wide field imager, MegaCam mounted on the Canada-France-Hawaii telescope was used to obtain r' images of the nucleus and the rapidly expanding dust coma. These images are unequaled in their quality and scope, and form a unique dataset with which to study the outburst aftermath. This original work examines the morphology of the outburst, and constrains the characteristics of the ejected material. Spatial filtering of images obtained in 2007 Nov. revealed numerous fragments moving away from the nucleus. The fragments were too bright to have been inactive, monolithic blocks and must have been acting as mini-comets with their own sources of sublimating volatiles and dust comae. They represented a significant (~ 10%) of the total ejected mass. The fragments had unusually high velocities relative to the nucleus, suggesting that they were accelerated by high gas pressure inside the nucleus prior to ejection. This work presents the first detection of such large, rapidly moving cometary fragments. The scarcity of similar ejecta around other fragmenting comets may be due to observational biases, rather than being unique to 17P/Holmes. Aperture photometry was used to study the evolution of the inner coma, which faded rapidly in the weeks and months following the initial outburst. Despite the observed fading, the nucleus must have remained active, continuing to supply fresh material to the inner coma. A second, much smaller outburst was detected on UT 2007 Nov. 12, which released an estimated 106 kg of dust into the inner coma. The secondary outburst showed that the nucleus remained unstable for several weeks after the initial event. Surface brightness profiles of the inner coma were constructed for each night of observation. The slopes of the profiles between 10000 km and 25000 km are consistent with dust grains fragmenting near the nucleus. Such fragmenting may be caused by thermal stressing or sublimation of cohesive volatiles. As the comet moved away from the Sun, the profiles also showed a persistent bump, interpreted as a halo of freshly released ice grains. The expected sublimation rates of such grains were examined, and it is concluded that the ice grains must have been contaminated with albedo-lowering regolith that significantly shortened their life-times. The possible characteristics of these dirty ice grains are examined within the context of the observations. The mini-comet fragments, dirty ice grains, and continuing but declining activity together suggest that the outburst of 17P/Holmes excavated material from within the nucleus, and left exposed patches of sublimating volatiles on its surface. The long-term fate of 17P/Holmes is uncertain, but micro-outbursts are likely as the nucleus settles over coming apparitions.
Electron beam analysis of particulate cometary material
NASA Technical Reports Server (NTRS)
Bradley, John
1989-01-01
Electron microscopy will be useful for characterization of inorganic dust grains in returned comet nucleus samples. The choice of instrument(s) will depend primarily on the nature of the samples, but ultimately a variety of electron-beam methods could be employed. Scanning and analytical (transmission) electron microscopy are the logical choise for morphological, mineralogical, and bulk chemical analyses of dust grains removed from ices. It may also be possible to examine unmelted ice/dust mixtures using an environmental scanning electron microscope equipped with a cryo-transfer unit and a cold stage. Electron microscopic observations of comet nuclei might include: (1) porosities of dust grains; (2) morphologies and microstructures of individual mineral grains; (3) relative abundances of olivine, pyroxene, and glass; and (4) the presence of phases that might have resulted from aqueous alteration (layer silicates, carbonates, sulfates).
The colors of cometary nuclei and other primitive bodies
NASA Astrophysics Data System (ADS)
Toth, I.; Lamy, P. L.
2005-12-01
Primitive minor objects like Kuiper-belt objects (KBOs), Centaurs, cometary nuclei and low-albedo asteroids contain a considerable amount of information regarding the formation of early solar system planetesimals and some of the primordial processes. Broadband colors by themselves offer limited insight into surface composition but correlations either between different color indices or with other (e.g., orbital) parameters can shed some light on the questions of the composition and the evolution of the minor objects. Furthermore, a systematic comparison of the color indices of various populations may provide clues on their relationships, and concur along with dynamical studies, to establish a scenario of their formation and evolution in the solar system. We present new color results on cometary nuclei obtained with the Hubble Space Telescope (HST) whose superior resolution enables us to accurately isolate the nucleus signals from the surrounding comae. By combining with scrutinized available data obtained with ground-based telescopes, we accumulated a sample of 39 cometary nuclei, 34 ecliptic comets (ECs) and 5 nearly-isotropic comets (NICs) using the nomenclature of Levison (1996). We analyze color distributions and color-color correlations as well as correlations with other physical parameters. We present our own compilation of colors of 282 objects in the outer solar system, separately considering the different dynamical populations, classical KBOs in low and high-inclination orbits, resonant KBOs (practically Plutinos), scattered-disk objects (SDOs) and Centaurs. We perform a systematic analysis of color distributions of all plausible parent-child combinations and conclude by synthesizing the implications of the colors for the origin of ecliptic comets. We acknowledge the support of the French "Programme National de Planétologie", jointly funded by CNRS and CNES, and of the bilateral French--Hungarian cooperation program. I. Toth further acknowledges the support of the Université de Provence, of the Hungarian Academy of Sciences through grant No. 9871.
Comet giacobini-zinner: plasma description.
Bame, S J; Anderson, R C; Asbridge, J R; Baker, D N; Feldman, W C; Fuselier, S A; Gosling, J T; McComas, D J; Thomsen, M F; Young, D T; Zwickl, R D
1986-04-18
A strong interaction between the solar wind and comet Giacobini-Zinner was observed oh 11 September 1985 with the Los Alamos plasma electron experiment on the International Cometary Explorer (ICE) spacecraft. As ICE approached an intercept point 7800 kilometers behind the nucleus from the south and receded to the north, upstream phenomena due to the comet were observed. Periods of enhanced electron heat flux from the comet as well as almost continuous electron density fluctuations were measured. These effects are related to the strong electron heating observed in the cometary interaction region and to cometary ion pickup by the solar wind, respectively. No evidence for a conventional bow shock was found as ICE entered and exited the regions of strongest interaction of the solar wind with the cometary environment. The outer extent of this strong interaction zone was a transition region in which the solar wind plasma was heated, compressed, and slowed. Inside the inner boundary of the transition region was a sheath that enclosed a cold intermediate coma. In the transition region and sheath, small-scale enhancements in density were observed. These density spikes may be due to an instability associated with cometary ion pickup or to the passage of ICE through cometary ray structures. In the center of the cold intermediate coma a narrow, high-density core of plasma, presumably the developing plasma tail was found. In some ways this tail can be compared to the plasma sheet in Earth's magnetotail and to the current sheet in the tail at Venus. This type of configuration is expected in the double-lobe magnetic topology detected at the comet, possibly caused by the theoretically expected draping of the interplanetary magnetic field around its ionosphere.
Cometary Dust: The Diversity of Primitive Matter
NASA Technical Reports Server (NTRS)
Wooden, D. H.; Ishiiii, H. A.; Zolensky, M. E.
2017-01-01
The connections between comet dust and primitive chondrites from asteroids has strengthened considerably over the past decade. Understanding the importance of the connections between Stardust samples and chondrites requires geochemistry lingo as well as a perspective of other cometary dust samples besides Stardust. We present the principal findings of an extensive review prepared for by us for the June 2016 "Cometary Science After Rosetta" meeting at The Royal Society, London.
Will Deep Impact Make a Splash?
NASA Technical Reports Server (NTRS)
Sheldon, Robert B.; Hoover, Richard B.
2005-01-01
Recent cometary observations from spacecraft flybys support the hypothesis that short-period comets have been substantially modified by the presence of liquid water. Such a model can resolve many outstanding questions of cometary dynamics, as well as the differences between the flyby observations and the dirty snowball paradigm. The model also predicts that the Deep Impact mission, slated for a July 4, 2005 collision with Comet Temple-1, will encounter a layered, heterogenous nucleus with subsurface liquid water capped by dense crust. Collision ejecta will include not only vaporized material, but liquid water and large pieces of crust. Since the water will immediately boil, we predict that the water vapor signature of Deep Impact may be an order of magnitude larger than that expected from collisional vaporization alone.
The friable sponge model of a cometary nucleus
NASA Technical Reports Server (NTRS)
Horanyi, M.; Gombosi, T. I.; Korosmezey, A.; Kecskemety, K.; Szego, K.; Cravens, T. E.; Nagy, A. F.
1984-01-01
The mantle/core model of cometary nuclei, first suggested by Whipple and subsequently developed by Mendis and Brin, is modified and extended. New terms are added to the heat conduction equation for the mantle, which is solved in order to obtain the temperature distribution in the mantle and the gas production rate as a function of mantle thickness and heliocentric distance. These results are then combined with some specific assumptions about the mantle structure (the friable sponge model) in order to make predictions for the variation of gas production rate and mantle thickness as functions of heliocentric distance for different comets. A solution of the time-dependent heat conduction equation is presented in order to check some of the assumptions.
The 67P/Churyumov-Gerasimenko nucleus spectroscopic properties and their evolution over time
NASA Astrophysics Data System (ADS)
Fornasier, S.
2016-11-01
Comets are primitive small bodies witness of the Solar System formation. Our knowledge on cometary nuclei and on their evolution over time is very limited because they are dark, small, and thus faint objects, spatially unresolved by groundbased telescopes and masked by their atmosphere when they become brighter close to the Sun. Before the Rosetta mission, only 5 cometary nuclei have been directly imaged and investigated by space missions during relatively short fly-bys, catching thus a small fraction of the comet lifetime in its orbit. The Rosetta mission is orbiting around the 67P/Churyumov-Gerasimenko comet since August 2014, and provides the unique opportunity to continuously investigate the 67P nucleus during about 2 years, from large heliocentric distances (about 4 AU) to its perihelion passage (1.24 AU) and beyond. The OSIRIS cameras and VIRTIS spectrometer have shown that the 67P nucleus has a red spectral behavior with spectral properties similar to those of bare cometary nuclei, of primitive D-type asteroids like the Jupiter Trojans, and of the moderately red Transneptunians population (Sierks et al., 2015, Capaccioni et al., 2015). The surface is globally dominated by dehydrated and organic-rich refractory materials (Capaccioni et al., 2015), and shows some color heterogeneities. Three kind of terrains, from the spectrally bluer and water ice enriched terrains to the redder ones, associated mostly to dusty regions, have been identified by visible spectrophotometry from the first resolved images acquired in July-August 2014 (Fornasier et al., 2015), covering mostly the northern hemisphere of the nucleus. The southern hemisphere has become visible from Rosetta only since March 2015, and it shows a lack of spectrally red regions compared to the northern one, associated to the absence of wide spread smooth or dust covered terrains. Although water is the dominant volatile observed in the coma, exposed water ice has been detected only in small amounts in different regions of the comet (Pommerol et al., 2015; De Sanctis et al., 2015; Filacchione et al., 2016; Barucci et al. 2016). Thanks to the unprecedented spatial resolution, VIRTIS and OSIRIS instruments have detected the occurrence of water frost close to the morning shadows, putting in evidence the diurnal cycle of water. Seasonal color and spectral variations have also been observed when the comet approached perihelion, indicating that the increasing activity had progressively shed the surface dust, partially showing the underlying ice-rich layer. I will present an overview of the spectroscopic properties of the 67P nucleus and of their diurnal and seasonal variations over time and heliocentric distance.
NASA Astrophysics Data System (ADS)
Kargl, Günter; Macher, Wolfgang; Kömle, Norbert I.; Thiel, Markus; Rohe, Christian; Ball, Andrew J.
2001-04-01
In the years 2011-2013 the ESA mission Rosetta will explore the short period comet 46P/Wirtanen. The aims of the mission include investigation of the physical and chemical properties of the cometary nucleus and also the evolutionary processes of comets. It is planned to land a small probe on the surface of the comet, carrying a multitude of sensors devoted to in situ investigation of the material at the landing site. On touchdown at the nucleus, an anchoring harpoon will be fired into the surface to avoid a rebound of the lander and to supply a reaction force against mechanical operations such as sample drilling or instrument platform motion. The anchor should also prevent an ejection of the lander due to gas drag from sublimating volatiles when the comet becomes more active closer to the Sun. In this paper, we report on the development of one of the sensors of the MUPUS instrument aboard the Rosetta Lander, the MUPUS ANC-M (mechanical properties) sensor. Its purpose is to measure the deceleration of the anchor harpoon during penetration into the cometary soil. First the test facilities at the Max-Planck-Institute for Extraterrestrial Physics in Garching, Germany, are briefly described. Subsequently, we analyse several accelerometer signals obtained from test shots into various target materials. A procedure for signal reduction is described and possible errors that may be superimposed on the true acceleration or deceleration of the anchor are discussed in depth, with emphasis on the occurrence of zero line offsets in the signals. Finally, the influence of high-frequency resonant oscillations of the anchor body on the signals is discussed and difficulties faced when trying to derive grain sizes of granular target materials are considered. It is concluded that with the sampling rates used in this and several other space experiments currently under way or under development a reasonable resolution of strength distribution in soil layers can be achieved, but conclusions concerning grain size distribution would probably demand much higher sampling rates.
Spectral properties of the nucleus of short-period comets
NASA Astrophysics Data System (ADS)
Toth, I.; Lamy, P. L.
2000-10-01
Comets, Edgeworth-Kuiper-Belt Objects (EKBOs), Centaurs and low albedo asteroids contain a considerable amount of information regarding some of the primordial processes that governed the formation of the early Solar System planetesimals. Opportunities to determine the colors of cometary nuclei are rare and relevant ground-based observations are difficult to perform. Color diversities and similarities between different types of small bodies have already been considered ([1] and references therein). We pursue this analysis further by introducing new BVRI colors obtained from our survey of cometary nuclei with the Hubble Space Telescope [2] as well as recent data obtained on EKBOs. We present preliminary results on the distribution of the BVRI colors (histograms, two-color diagrams) and possible relationships between the colors and orbital elements as well as the determined body sizes. The mean colors of the selected sample of the short-period (s-p) comets are: < (B-V) > = 0.91, < (V-R) > = 0.52, and < (V-I) > = 0.84. Pearson's linear correlation analysis of the (B-V) versus (V-R) and (V-R) versus (V-I) colors show significant correlations for the EKBOs+Centaurs sample while the s-p sample seems to be uncorrelated, with a few outliers. The linear regression lines of the EKBOs+Centaurs sample crosses through the sample of the s-p comets. There are no correlations of the colors versus perihelion distances, effective radii and perihelion distances as well as the (a,sin(i)) diagrams. This work was supported by grants from CNRS and CNES, France and partially by the the Hungarian Research Foundation OTKA T025049. [1] Luu, J., 1993. Icarus 104, 138. [2] Lamy, P.L. et al., this conference
NASA Astrophysics Data System (ADS)
Ksanfomality, L. V.
2017-06-01
On March 6 and 9, 1986, for the first time in the history of science, the Russian spacecraft Vega-1 and Vega-2 approached and closely passed by the nucleus of Halley’s comet (1P/Halley). A few days later, on March 14, 1986, the same was done by the European Space Agency’s (ESA) Giotto spacecraft. These missions, together with the Japanese Suisei (JAXA), marked a successful start to spacecraft exploration of cometary nuclei. Subsequent missions to other comets have been aimed at directly studying cometary bodies carrying signs of the formation of the Solar System. The Rosetta spacecraft, inserted into a low orbit around the nucleus of the 67P/Churyumov-Gerasimenko comet, performed its complex measurements from 2014 to September 2016. In this review, some of the data from these missions are compared. The review draws on the proceedings of the Vega 30th anniversary conference held at the Space Research Institute (IKI) of the Russian Academy of Sciences in March 2016 and is not meant to be exhaustive in describing mission results and problems in the physics of comets.
The study of the physics of cometary nuclei
NASA Technical Reports Server (NTRS)
Whipple, F. L.
1984-01-01
The observations of comet P/Holmes 1892III, exhibiting two 8 to 10 magnitude bursts, were carefully analyzed. The phenomena are consistent with the grazing encounter of a small satellite with the nucleus. The grazing encounter produced, besides the first great burst, an active area on the nucleus, which was rotating retrograde with a period of 16.3 hr and inclination nearly 180 deg. After the final encounter, the spin period was essentially unchanged, but two areas became active, separated some 164 deg in longitude on the nucleus. After the first burst the total magnitude fell less than two magnitudes, while the nuclear region remained diffuse or complex, rarely if ever showing a stellar appearance. The fading was much more rapid after the second burst (barely naked eye at maximum) while the nucleus frequently stellar after the first day. It seems reasonable to conclude that the grazing encounter distributed a volume of large chunks in the neighborhood of the nucleus, maintaining activity for weeks.
Cometary showers and unseen solar companions
NASA Technical Reports Server (NTRS)
Weissman, P. R.
1984-01-01
The possibility that an invisible solar companion passing through the Oort cloud every 28 Myr precipitates a sufficiently high rate of cometary collisions with the earth to account for periodic mass species extinctions recorded in the fossil record is discussed. A Monte Carlo simulation shows that any hypothesized 'death star' with a 28 Myr orbit would experience an average 10 percent change in period per orbit. Production of an 18-fold increase in cometary impacts would be associated with a 0.055 probability that a 10 km nucleus would hit the earth in a shower once every 510 Myr, longer than the proposed extinction periodicity. However, if the death star orbit has a 0.6 eccentricity and the Oort cloud is sufficiently densely populated, a 2 billion comet shower may be possible. A survey of large terrestrial impact craters indicates that 6-12 craters with diameters over 10 km originated in periodic showers. The extinctions in any case occur at 26 Myr periods and cannot be correlated with the 33 Myr period of recrossing the galactic plane, or with any other known phenomena.
Cometary Amino Acids from the STARDUST Mission
NASA Technical Reports Server (NTRS)
Cook, Jamie Elsila
2009-01-01
NASA's Stardust spacecraft returned samples from comet 81 P/WiId 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a cometary amino acid.
Evolution of carbonaceous chondrite parent bodies: Insights into cometary nuclei
NASA Technical Reports Server (NTRS)
Mcsween, Harry Y., Jr.
1989-01-01
It is thought that cometary samples will comprise the most primitive materials that are able to be sampled. Although parent body alteration of such samples would not necessarily detract from scientists' interest in them, the possibility exists that modification processes may have affected cometary nuclei. Inferences about the kinds of modifications that might be encountered can be drawn from data on the evolution of carbonaceous chondrite parent bodies. Observations suggest that, of all the classes of chondrites, these meteorites are most applicable to the study of comets. If the proportion of possible internal heat sources such as Al-26 in cometary materials are similar to those in chondrites, and if the time scale of comet accretion was fast enough to permit incorporation of live radionuclides, comets might have had early thermal histories somewhat like those of carbonaceous chondrite parent bodies.
Cometary activity in 2060 Chiron
NASA Technical Reports Server (NTRS)
Luu, Jane X.; Jewitt, David C.
1990-01-01
Results of a 2-yr (1988-90) investigation of cometary activity in 2060 Chiron based on CCD photometry and spectroscopy are reported. The photometry observations include a new rotational light curve of Chiron, a newly refined rotation period, recent developments of its long-term photometric behavior and surface brightness profiles, a deep image of the coma of Chiron, and narrowband images at wavelengths ranging from 3200 to 6840 A. The spectroscopic data include moderate resolution CCD spectra (10-20 A FWHM). Major results include the detection of impulsive brightening on a time scale of hours, evidence for a secular change in the blue portion of the reflectivity spectrum of the nucleus, no evidence for Rayleigh scattering in the near ultraviolet, and an upper limit of the column density of CO(+) ions in the coma.
Preliminary studies of electromagnetic sounding of cometary nuclei
NASA Technical Reports Server (NTRS)
Gabriel, A.; Warne, L.; Bednarczyk, S.; Elachi, C.
1978-01-01
The internal structure of a comet could be determined with a spacecraft borne electromagnetic sounder. A dielectric profile of the comet could be produced in direct analogy with terrestrial glacier and ice sheet sounding experiments. This profile would allow the detection of a rocky core or ice layers if they exist, just as layers in the ice and the bedrock interface have been clearly observed through the Greenland ice sheet. It would also provide a gross estimate of the amount of dust in the icy region. Models for the response of the nucleus and cometary plasma to electromagnetic sounding are developed and used to derive experimental parameters. A point system design was completed. Preliminary engineering study results indicate that the sounder is well within the bounds of current space technology.
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1976-01-01
The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of evolution. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tail is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.
Dust Impact Monitor (SESAME-DIM) on-board Rosetta/Philae: Aerogel as comet analog material
NASA Astrophysics Data System (ADS)
Flandes, Alberto; Albin, Thomas; Arnold, Walter; Fischer, Hans-Herbert; Hirn, Attila; Loose, Alexander; Mewes, Cornelia; Podolak, Morris; Seidensticker, Klaus J.; Volkert, Cynthia; Krüger, Harald
2018-03-01
On 12 November 2014, during the descent of the Rosetta lander Philae to the surface of comet 67P/Churyumov-Gerasimenko the Dust Impact Monitor (DIM) on board Philae recorded an impact of a cometary dust impact of a cometary dust particle at 2.4 km from the comet surface (5 km from the nucleus' barycentre). In this work, we report further experiments that support the identification of this particle. We use aerogel as a comet analog material to characterise the properties of this particle. Our experiments show that this particle has a radius of 0.9 mm, a low density of 0.25 g/cm3 and a high porosity close to 90%. The particle likely moved at near 4 m/s with respect to the comet.
NASA Technical Reports Server (NTRS)
Berthelier, J. J.; Illiano, J. M.; Hodges, R. R.; Krankowsky, D.; Eberhardt, P.; Laemmerzahl, P.; Hoffman, J. H.; Herrwerth, I.; Woweries, J.; Dolder, U.
1986-01-01
During the early phase of the Giotto encounter with comet Halley, at distances from the nucleus greater than 350,000 km, the neutral mass spectrometer was operated in a mode allowing the measurement of low energy ions. Data reveal two important features of the outer coma: the presence of a sharp discontinuity in the plasma flow at 550,000 km from the nucleus which results in a significant decrease of the plasma flow accompanied by an increase in temperature; and the detection of newly born ions identified as O(+) and CO(+), at distances from the comet greater than 800,000 km.
Enantioselective Analysis in instruments onboard ROSETTA/PHILAE and ExoMars
NASA Astrophysics Data System (ADS)
Hendrik Bredehöft, Jan; Thiemann, Wolfram; Meierhenrich, Uwe; Goesmann, Fred
It has been suggested a number of times in the past, to look for chirality as a biomarker. So far, for lack of appropriate instrumentation, space missions have never included enantioselective analysis. The distinction between enantiomers is of crucial importance to the question of the origin of the very first (pre)biotic molecules. If molecules detected in situ on another celestial body were found to exhibit a chiral bias, this would mean that at least partial asymmetric synthesis could take place abiotically. If this chiral bias should be found to be near 100For the currently flying ESA mission ROSETTA an enantioselective instrument was built, to try for the first time to detect and separate chiral molecules in situ. This instrument is COSAC, the Cometary Sampling and Acquisition Experiment, an enantioselective GCMS device[1,2], which is included in the lander PHLIAE that will eventually in 2014 land on the nucleus of comet 67P/Churyumov-Gerasimenko. A similar but even more powerful type of enantioselective GC-MS is in preparation for ESA's ExoMars mission. This instrument is part of MOMA, the Mars Organic Molecules Analyser. It has the objective of identifying and quantifying chiral organic molecules in surface and subsurface samples of Mars. Currently ExoMars is scheduled for 2018. The newly developed enantioselective technique utilized by both COSAC and MOMA will be described, including sample acquisition, derivatization, and separation in space-resistant chiral stationary capillary columns with time-of-flight mass spectrometric detection. Results of enantioselective analyses of representative test samples with special emphasis on amino acids[3], the building blocks of protein polymers, will be presented and we will discuss potential results of space missions Rosetta and ExoMars. [1] Thiemann W.H.-P., Meierhenrich U.: ESA Mission ROSETTA Will Probe for Chirality of Cometary Amino Acids. Origins of Life and Evolution of Biospheres 31 (2001), 199-210. [2] Goesmann F., Rosenbauer H., Roll R., Szopa C., Raulin F., Sternberg R., Israel G., Meier-henrich U., Thiemann W., Muñoz Caro G.M.: COSAC, The cometary sampling and composi-n tion experiment on Philae. Space Science Reviews 128 (2007), 257-280. [3] Meierhenrich U.J.: Amino Acids and the Asymmetry of Life -Caught in the Act of Forma-tion. Springer, Heidelberg Berlin New York (2008).
Compressive Strength of Cometary Surfaces Derived from Radar Observations
NASA Astrophysics Data System (ADS)
ElShafie, A.; Heggy, E.
2014-12-01
Landing on a comet nucleus and probing it, mechanically using harpoons, penetrometers and drills, and electromagnetically using low frequency radar waves is a complex task that will be tackled by the Rosetta mission for Comet 67P/Churyumov-Gerasimenko. The mechanical properties (i.e. density, porosity and compressive strength) and the electrical properties (i.e. the real and imaginary parts of the dielectric constant) of the comet nucleus, constrain both the mechanical and electromagnetic probing capabilities of Rosetta, as well as the choice of landing site, the safety of the landing, and subsurface data interpretation. During landing, the sounding radar data that will be collected by Rosetta's CONSERT experiment can be used to probe the comet's upper regolith layer by assessing its dielectric properties, which are then inverted to retrieve the surface mechanical properties. These observations can help characterize the mechanical properties of the landing site, which will optimize the operation of the anchor system. In this effort, we correlate the mechanical and electrical properties of cometary analogs to each other, and derive an empirical model that can be used to retrieve density, porosity and compressive strength from the dielectric properties of the upper regolith inverted from CONSERT observations during the landing phase. In our approach we consider snow as a viable cometary material analog due to its low density and its porous nature. Therefore, we used the compressive strength and dielectric constant measurements conducted on snow at a temperature of 250 K and a density range of 0.4-0.9 g/cm3 in order to investigate the relation between compressive strength and dielectric constant under cometary-relevant density range. Our results suggest that compressive strength increases linearly as function of the dielectric constant over the observed density range mentioned above. The minimum and maximum compressive strength of 0.5 and 4.5 MPa corresponded to a dielectric constant of 2.2 and 3.4 over the density range of 0.4-0.9 g/cm3. This preliminary correlation will be applied to the case of porous and dust contaminated snow under different temperatures to assess the surface mechanical properties for Comet 67P.
Are 2P/Encke, the Taurid complex NEOs and CM chondrites related?
NASA Astrophysics Data System (ADS)
Tubiana, C.; Snodgrass, C.; Michelsen, R.; Haack, H.; Fitzsimmons, A.; Williams, I.; Boehnhardt, H.
2013-09-01
Comet 2P/Encke is a short-period comet that was discovered in 1786 and has been extensively observed and studied for more than 200 years. It has an orbital period of 3.3 years and its orbit is dynamically decoupled from Jupiter's control due to gravitational interaction with terrestrial planets [6]. It is the only comet known on such an orbit, making it unique. Capture from the outer solar system onto its current orbit is very unlikely and even a continuous smooth dynamical evolution has a low probability as this requires a continuous period when it is dormant in order to avoid the volatiles from the nucleus becoming exhausted and making the current observed activity impossible. An origin in the asteroid belt is a possibility especially in view of the recently discovered main belt comets. The nucleus of 2P/Encke is dark (geometric albedo of 0.047 ± 0.023 [3]), has an effective radius of 2.4 ± 0.3 km [3] and it has polarimetric properties that are unique compared to other measured types of solar system objects, such as asteroids, TNOs, cometary dust, Centaurs [2]. The colors of 2P/Encke's nucleus are typical for comets, but no spectra of the nucleus in the visible wavelength range exist so far. The Taurid meteoroid stream has long been linked with 2P/Encke, but the activity of the comet is not strong enough to explain the number of observed meteors. It has been suggested that the meteoroid stream was caused by the break up of a larger parent body, which left comet 2P/Encke and other various small bodies along with a stream of dust. Various small near-Earth objects (NEOs) have been discovered with orbits that can be linked with 2P/Encke and the Taurid meteoroid stream [1]. Though many of the associations are spurious due to the low inclination of 2P/Encke's orbit, many NEO's have evolved in a similar way to 2P/Encke overa period of 5000 years [8] suggesting some relationship. In addition to dynamical properties, common taxonomic properties can also provide an indication of a common origin for small bodies in the solar system. Taxonomic properties are poorly known for cometary nuclei and only few comets have measurements in the visible wavelength range. The existing spectra of bare nuclei are generally featureless and display different reddening slopes. Given the poor S/N ratio that is usually obtained in observations, more subtle features, such as ones from hydrated minerals, are beyond the detection limit in most cases. If the Taurid complex NEOs are fragments of the same body as 2P/Encke, we expect them to have the same spectral properties as the comet nucleus. Furthermore, it would be reasonable to expect that these NEOs could show cometary activity. Maribo is a type CM carbonaceous chondrite that fell in Denmark on 17 January 2009 [5]. The preatmospheric orbit of the object places it in the middle of the Taurid meteor stream [4], which raises the intriguing possibility that comet 2P/Encke could be the parent body of CM chondrites, meaning that these meteorites are potentially samples of cometary material we can study in the laboratory. CM chondrites show signs of extensive aqueous alteration, which suggest that the parent body was an icy body that was at least partially molten at some point. It is therefore possible that the parent body of the CM chondrites is a comet [7]. In order to investigate whether a relationship between comet 2P/Encke, the Taurid complex associated NEOs and CM chondrites exists, spectroscopic studies of these objects were performed. Here we present ground-based observations, in the visible wavelength range, of 2P/Encke and 12 candidate Taurid NEOs obtained on 2 August 2011 at the ESO-VLT in Chile, using the FORS2 instrument. We obtained the first optical spectrum of the inactive nucleus of comet 2P/Encke and optical spectra of the selected candidate Taurid NEOs. In addition we obtained deep images in the R filter of each NEO to search for activity and of 2P/Encke to confirm that the comet was not active at the time of the observation. Preliminary analysis shows that 2P/Encke has a starlike profile, confirming that no cometary activity was present at the time of the observation. Its spectrum is flat and does not show any obvious absorption or mission feature in the wavelength range 400 - 950 nm. The spectra of the 12 Taurid NEOs are featureless as well and two of them show moderate reddening. Using deep R-filter images we will investigate the presence of weak activity around the asteroids. We will look for similarities between the spectrum of 2P/Encke and the ones of the selected NEOs to test the link between the comet and the Taurid complex associated NEOs. Moreover, a comparison between chondritic meteorite spectra and that of 2P/Encke will provide information about the possible link between 2P/Encke and CM chondrites.
NASA Astrophysics Data System (ADS)
Kamoun, P.; Lamy, P. L.; Toth, I.; Herique, A.
2014-08-01
Context. Little is known about the internal structure of cometary nuclei. In addition to understanding their accretion in the early solar nebula and their subsequent evolution in the solar system, we find this question to be of acute and timely interest in the case of 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) due to be visited by the Rosetta spacecraft in the second half of 2014. In particular, the successful landing of the Philae surface module depends critically upon the bulk density of the nucleus and the structure of its surface layer. Aims: In addition to fostering our general knowledge of these properties, it is important to exploit all possible information to assist in preparing the delivery of Philae. Methods: We performed an in-depth analysis of the observations done with the radar system of the Arecibo Observatory in November 1982 when comet 67P/C-G had a close encounter with Earth at a geocentric distance of 0.4AU taking our present knowledge of the properties of its nucleus (size, rotational state) into account. Results: In the absence of a detectable radar echo, we determined a maximum radar cross section of 0.7 km2, leading to a maximum radar albedo of 0.05. This low albedo probably results from a combination of a low radar reflectivity material and a lightly packed upper layer of the nucleus with substantial roughness (rms slope of ≈55°), consistent with its low thermal inertia. Based on radar observations of other cometary nuclei and asteroids, it is unlikely that the albedo can be lower than 0.04 so that we were able to constrain the dielectric permittivity of the subsurface layer to a narrow range of 1.9 to 2.1. Laboratory measurements and our modeling of mixtures of ice and dust have led to a porosity in the range of approximately 55 to 65% and a density in the range of ≈600 to ≈1000 kg m-3 for the top ≈2.5 m layer of the nucleus. This would be the bulk density range for a homogeneous nucleus and would place the success of the landing at risk, but an inhomogeneous nucleus with an overall density below this range remains a possibility.
Cometary activity in 2060 Chiron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luu, J.X.; Jewitt, D.C.
Results of a 2-yr (1988-90) investigation of cometary activity in 2060 Chiron based on CCD photometry and spectroscopy are reported. The photometry observations include a new rotational light curve of Chiron, a newly refined rotation period, recent developments of its long-term photometric behavior and surface brightness profiles, a deep image of the coma of Chiron, and narrowband images at wavelengths ranging from 3200 to 6840 A. The spectroscopic data include moderate resolution CCD spectra (10-20 A FWHM). Major results include the detection of impulsive brightening on a time scale of hours, evidence for a secular change in the blue portionmore » of the reflectivity spectrum of the nucleus, no evidence for Rayleigh scattering in the near ultraviolet, and an upper limit of the column density of CO(+) ions in the coma. 46 refs.« less
Probing the presently tenuous link between comets and the origin of life
NASA Technical Reports Server (NTRS)
Hobbs, R. W.; Hollis, J. M.
1982-01-01
The possibilities of using millimeter-wave technology to probe the subsurface processes of comets to investigate links between cometary materials and the origins of life are explored. It is noted that current theories hold that the necessities for life to begin comprise a fairly uniform temperature, the presence of a solvent to give materials mobility, and the presence of atoms which can form long chains of molecules. Consideration is given to two cometary nuclei models: a core with an equal amount of liquid water and lunar material, and a nucleus with equal amounts of frozen water ice and lunar material. Solutions to the radiative transfer equation for the two models are presented to characterize identifiable emissions using radiometric spectrometer instrumentation on a spacecraft. Particular species such as OH, CN, HCN, and glycine are expected to be detectable if present.
NASA Astrophysics Data System (ADS)
Błęcka, M. I.; Rinaldi, G.; Fink, U.; Capacioni, F.; Tozzi, G. P.
2013-09-01
The work we present deals with the spectrometric measurements of the VIRTIS instrument part of the payload of the Rosetta mission to the Comet 67P/Churyumov-Gerasimenko. This spectrometer will monitor (VIRTIS M channel: 0.25μm - 0.98μm; Δκ=20cm-1 ; 0.980 - 5.0 μm; Δκ=5cm-1; VIRTIS H channel: 2.0 μm- 5.0 μm ; Δκ=5cm-1) the nucleus and the coma in order to provide a picture of coma's composition, the production of gas and dust, and the structure and variation of mineralogy of the nucleus surface. The dust is an important constituent of cometary environment and is always present on the surface of the nucleus and in the coma. The cometary spectra are strongly affected by the processes taking place in the coma and by the structure, composition and the spatial distribution of cometary solid particles. The particles of the dust, illuminated by solar light, scatter, absorb and emit radiation. The reflected and emitted radiation are transmitted through the coma region before being collected by instruments such as VIRTIS. The reflection, absorption, scattering, and emission processes in the coma depend on the Comet-Sun geometry. In the VIRTIS team we have initiated and effort to simulate the dust radiance using several radiative transfer models (see Rinaldi et al, this issue). In the present paper, which is the continuation of our previous works (e.g. AGU fall meeting 2011, EGU 2012, EPSC2012 -abstracts), we are mainly concentrated on the influence of optical parameters of dust on spectra we expect from the VIRTIS/Rosetta measurements. To this purposes the equation of radiative transfer in limb geometry through the assembly of various dust grains and gases is solved. The number density distribution of the dust grains around the coma and their size distribution are drawn from recent theoretical models (e.g.Tenishev et.al.2011). A few phenomenological scattering phase functions are taken into account. We have assumed in the simulation the presence on the surface of H2O ice, in which are embedded dust grains of various mineralogies. These grains, when freed by the gas sublimation, were considered as the main constituent of the dusty coma. At the beginning the particles are spherical. Such an assumption would be reasonable in many cases. We have confined ourselves to the compact dust particles only. But it should be noted here that fluffy grains would have different optical properties and their presence would lead to different conclusions. The main purposes of the paper are: 1) discussion of the influence of the mineralogical composition of cometary dust including mixtures with ices, the size distributions and optical parameters - using the various possible phase functions, extinction and symmetry factors 2) influence of cometary activity on parameters of the coma and then the signal to be measured by the VIRTIS spectrometer at various distances from the Sun (3.7AU; 3.5AU; 3.0AU; 1.24AU).
NASA Technical Reports Server (NTRS)
Milam, S. N.; Nuevo, M.; Sandford, S. A.; Cody, G. D.; Kilcoyne, A. L. D.; Stroud, R. M.; DeGregorio, B. T.
2010-01-01
The NASA Stardust mission successfully collected material from Comet 81P/Wild 2 [1], including authentic cometary grains [2]. X-ray absorption near-edge structure (XANES) spectroscopy analysis of these samples indicates the presence of oxygen-rich and nitrogen-rich organic materials, which contain a broad variety of functional groups (carbonyls, C=C bonds, aliphatic chains, amines, arnides, etc.) [3]. One component of these organics appears to contain very little aromatic carbon and bears some similarity to the organic residues produced by the irradiation of ices of interstellar/cometary composition, Stardust samples were also recently shown to contain glycine, the smallest biological amino acid [4]. Organic residues produced froth the UV irradiation of astrophysical ice analogs are already known to contain a large suite of organic molecules including amino acids [5-7], amphiphilic compounds (fatty acids) [8], and other complex species. This work presents a comparison between XANES spectra measured from organic residues formed in the laboratory with similar data of cometary samples collected by the Stardust mission
Cometary Glycine Detected in Stardust-Returned Samples
NASA Technical Reports Server (NTRS)
Elsila, Jamie E.; Glavin, D. P.; Dworkin, J. P.
2010-01-01
In January 2006, NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth. The Stardust cometary collector consisted of aerogel cells lined with aluminum foils designed to capture impacting particles and facilitate removal of the aerogel. Preliminary examinations of these comet-exposed materials revealed a suite of organic compounds, including several amines and amino acids which were later examined in more detail. Methylamine (NH2CH3) and ethylamine (NH2C2H5) were detected in the exposed aerogel at concentrations greatly exceeding those found in control samples, while the amino acid glycine (NH2CH2COOH) was detected in several foil samples as well as in the comet-exposed aerogel. None of these three compounds had been previously detected in comets, although methylamine had been observed in the interstellar medium. Although comparison with control samples suggested that the detected glycine was cometary. the previous work was not able to conclusively identify its origin. Here, we present the results of compound-specific carbon isotopic analysis of glycine in Stardust cometary collector foils. Several foils from the interstellar side of the Stardust collector were also analyzed for amino acid abundance, but concentrations were too low to perform isotopic ana!ysis.
Comet Science Working Group report on the Halley Intercept Mission
NASA Technical Reports Server (NTRS)
1980-01-01
The Halley Intercept Mission is described and the scientific benefits expected from the program are defined. One characteristic of the mission is the optical navigation and resulting accurate delivery of the spacecraft to a desired point near the nucleus. This accuracy of delivery has two important implications: (1) high probability that the mass spectrometers and other in situ measurement devices will reach the cometary ionosphere and the zone of parent molecules next to the nucleus; (2) high probability that sunlit, high resolution images of Halley's nucleus will be obtained under proper lighting conditions. In addition an observatory phase is included during which high quality images of the tail and coma structure will be obtained at progressively higher spatial resolutions as the spacecraft approaches the comet. Complete measurements of the comet/solar wind interaction can be made around the time of encounter. Specific recommendations are made concerning project implementation and spacecraft requirements.
Observation of CO2 in Comet C/2012 K5 LINEAR
NASA Astrophysics Data System (ADS)
McKay, Adam; Kelley, Michael; DiSanti, Michael; Chanover, Nancy
2012-12-01
The study of cometary composition is important to understanding the formation and evolution of our solar system. Comets have undergone very little thermal evolution in their lifetimes, which results in their near pristine composition. The nucleus of a comet is very rarely detected directly. Instead, we observe the coma that surrounds the nucleus. Physical and chemical processes in the coma affect its composition, and therefore coma composition is not a direct representation of nuclear composition. An important trend is the observed variation of coma composition with heliocentric distance, most likely influenced by the volatility of the main surface ices, H2O, CO2, and CO. Infrared studies of these molecules are complicated by telluric features, so often daughter molecules of these species such as OH are observed instead. A potentially effective tracer for these primary ices is atomic oxygen in the coma. However, the relationship between these ices and atomic oxygen is only understood at a qualitative level. We propose to use Spitzer observations in IRAC's 4.5 micron band pass to observe the CO2 v3 band at 4.26 microns in comet C/2012 K5 LINEAR. These observations will be coordinated with observations of atomic oxygen obtained at Apache Point Observatory and observations of H2O at Keck. These near simultaneous observations of H2O, CO2, and atomic oxygen in a cometary coma will increase our understanding of the link between these primary ices and atomic oxygen. With a complete understanding of the relationship between atomic oxygen and the primary ices on the nucleus, observations of atomic oxygen can serve as a powerful proxy for the production of these primary volatiles and aid our understanding of the variation in coma composition as a function of heliocentric distance, and therefore the composition of the nucleus and how our solar system was formed.
Mass spectra of heavy ions near comet Halley
NASA Astrophysics Data System (ADS)
Korth, A.; Richter, A. K.; Loidl, A.; Anderson, K. A.; Carlson, C. W.; Curtis, D. W.; Lin, R. P.; Reme, H.; Sauvaud, J. A.; D'Uston, C.; Cotin, F.; Cros, A.; Mendis, D. A.
1986-05-01
The heavy-ion analyser aboard the Giotto spacecraft, detected the first cometary ions at a distance of ≡1.05x106km from the nucleus of comet Halley. In the inner coma the major ions identified are associated with the H2O, CO and CO2 groups. Ions of larger atomic mass unit are also present, corresponding possibly to various hydrocarbons, heavy metals of the iron-group or to sulphur compounds.
Mass spectra of heavy ions near comet Halley
NASA Technical Reports Server (NTRS)
Korth, A.; Richter, A. K.; Loidl, A.; Anderson, K. A.; Carlson, C. W.
1986-01-01
The heavy-ion analyzer, RPA2-PICCA, aboard the Giotto spacecraft, detected the first cometary ions at a distance of about 1.05 million km from the nucleus of comet Halley. In the inner coma the major ions identified are associated with the H2O, CO and CO2 groups. Ions of larger atomic mass unit are also present, corresponding possibly to various hydrocarbons, heavy metals of the iron-group or to sulphur compounds.
Streaming Clumps Ejection Model and the Heterogeneous Inner Coma of Comet Wild 2
NASA Technical Reports Server (NTRS)
Clark, B. C.; Economou, T. E.; Green, S. F.; Sandford, S. A.; Zolensky, M. E.
2004-01-01
The conventional concept of cometary comae is that they are dominated by fine particulates released individually by sublimation of surface volatiles and subsequent entrainment in the near-surface gas. It has long been recognized that such particulates could be relatively large, with early estimates that objects perhaps up to one meter in size may be levitated from the surface of the typical cometary nucleus. However, the general uniformity and small average particulate size of observed comae and the relatively smooth, monotonic increases and decreases in particle density during the Giotto flythrough of comet Halley s coma in 1986 reinforced the view that the bulk of the particles are released at the surface, are fine-sized and inert. Jets have been interpreted as geometrically constrained release of these particulates. With major heterogeneities observed during the recent flythrough of the inner coma of comet Wild 2, these views deserve reconsideration.
NASA Astrophysics Data System (ADS)
Le Gall, Alice; Lethuillier, Anthony; Hamelin, Michel; Schimdt, Walter; Grard, Rejean; Ciarletti, Valérie; Seidensticker, Klaus; Caujolle-Bert, Sylvain; Fischer, Hans-Herbert
2016-04-01
On November 12, 2014, the Philae module landed on the surface of the nucleus of 67P/Churyumov-Gerasimenko. Among the instruments on-board Philae, the Permittivity Probe experiment (hereafter PP-SESAME), which is part of the SESAME (Surface Electric Sounding and Acoustic Monitoring Experiment) package, operated both during descent and on the surface. The primary scientific objective of this experiment is to measure the low frequency (10 Hz-10 kHz) complex permittivity i.e., the dielectric constant and electrical conductivity, of the first meters of the cometary nucleus. Doing so, it aims at providing insights into the composition of the mantle and in particular into the water content and porosity of the first meters below the surface. In this paper, we will present the data acquired at the final landing site of Philae known as Abydos and the approach we have developed to analyze them. We emphasize that, because the configuration of operation of PP-SESAME was far from nominal, we had to adapt our analysis method in order to account for all available constraints on Philae attitude and environment at Abydos. We also had to do without the in-flight calibration performed during the descent phase but unfortunately perturbed by the concurrent operations of the bistatic radar CONSERT. We find that the first meters of the nucleus at Abydos are made of a likely pure dielectric material (i.e., with a null conductivity) which dielectric constant is larger than 2.3. This lower bound of the dielectric constant is significantly higher than the value of 1.27 inferred from the propagation time of the CONSERT signals that propagated through the smaller lobe of the comet in the vicinity of Abydos reaching depths of a few hundreds of meters. Thus, while PP-SESAME measurements put no constraint on the dust-to-ice ratio, they strongly suggest that the first meters of the nucleus are significantly more compacted (with a porosity below 50%) than its interior as sensed by CONSERT (found to have a porosity in of 75 to 85%, consistent with the low density of the nucleus). In light of other Philae and Rosetta observations, we will discuss the implications of these findings in terms of formation and evolution of cometary mantles.
Water ice grains in comet C/2013 US10 (Catalina)
NASA Astrophysics Data System (ADS)
Protopapa, Silvia; Kelley, Michael S. P.; Yang, Bin; Woodward, Charles E.; Sunshine, Jessica M.
2017-10-01
Knowledge of the the physical properties of water ice in cometary nuclei is critical in determining how the Solar System was formed. While it is difficult to directly study the properties of water ice in comet nuclei, we can study comet interiors through their comae. Cometary activity makes the interiors of these objects available for characterization. However, the properties (grain size, abundance, purity, chemical state) of water-ice grains detected in the coma do not necessarily represent the characteristics of the water ice on the surface and/or in the interior of the nucleus. This is due to the potential physical and chemical evolution of the emitted material. Once in the coma, water-ice grains are heated by sunlight, and if temperatures are warm enough, they sublime. In this case, their sizes and potentially their ice-to-dust fractions are reduced.We present IRTF/SpeX measurements of the Oort cloud comet C/2013 US10 (Catalina), which reached perihelion in Nov 2015 at a heliocentric distance Rh=0.822 AU. Observations of US10 were acquired on UT 2014-08-13, 2016-01-12, and 2016-08-13 (Rh=5.9, 1.3, and 3.9 AU). This set of measurements, spanning a broad range in Rh, are rare and fundamental for estimating how ice grains evolve in the coma. The spectrum obtained close to perihelion is featureless and red sloped, which is consistent with a dust-dominated coma. Conversely, the spectra acquired on August 2014 and 2016 display neutral slopes and absorption bands at 1.5 and 2.0 μm, consistent with the presence of water-ice grains. These variations in water ice with heliocentric distance are correlated with sublimation rates. Additionally, the measurements obtained at 5.8 AU and 3.9 AU are nearly identical, suggesting that water-ice grains, once in the coma, do not sublime significantly. Therefore, the properties of these long-lived water-ice grains may represent their state in the nucleus or immediately after insertion into the coma. We will present radiative transfer models of the data and interpret the results in the context of spacecraft data of cometary nuclei, and of our on-going compositional survey of water-ice grain halos in cometary comae.This work was funded by NASA SSO, NASA PAST and NASA SOFIA grants.
Fast Variations In Spectrum of Comet Halley
NASA Astrophysics Data System (ADS)
Borysenko, S. A.
The goal of this work is to research fast variations of spectral lines intensities in spectra of comet Halley. The present research was made on the basis of more then 500 high- resolution spectrogram obtained by L.M. Shulman and H.K. Nazarchuk in November- December, 1985 at the 6-m telescope (SAO, Russia). Some fast variations with different quasiperiods were detected in all the spectrograms. Quasiperiods of these variations were from 15 - 40 min to 1.5 - 2 hours. As data from spacecraft "Vega-2" show, more fast variations with quasiperiods 5 - 10 min are obviously present in cometary time variations. Only the most important lines so as C2, C3, CN, CH and NH2 were analyzed. False periods were checked by comparison of the power spectra of the variations with the computed spectral window of the data. Only false periods about 400 sec (the avarage period of exposition) were detected. An algorithm for analysis of locally Poisson's time series was proposed. Two types of fast variations are detected: 1)high amplitude variations with more long quasiperiods (1.5 - 2 hours) and the coefficient of crosscorrelations between line intensities about 0.9 - 0.95; 2)low amplitude variations with short periods (15 - 40 min), which look like white noise and have the coefficient of crosscorrelations about 0.1 - 0.3. This difference may be caused by nature of variations. The first type variations may be an effect of both active processes in cometary nucleus and streams of solar protons. Analysis of solar proton flux variation with energies >1 MeV in November - Decem- ber 1985 confirms the above-mentioned version. In the second case it may by only inner processes in the nucleus that generate the observed variations. For determination of general parameters of cometary atmosphere, such as the produc- tion rates of radicals C2, C3, CN, CH, and NH2 it was necessary to estimate the contri- bution of dust grains luminiscence into the continuum of the comet. Space and wave- length distribution of the lumminescent continuum was calculated. A simple model of a comet atmosphere (the Haser's model) was taken to make synthetic photomet- rical data and to calibrate the spectra by comparison the synthetic photometry with the data of the absolute photometry from the IHW archive. This way the gas obtained production rates and numbers of basic molecules in the cometary atmosphere.
Chemical Evolution of Interstellar Dust into Planetary Materials
NASA Technical Reports Server (NTRS)
Fomenkova, M. N.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)
1995-01-01
Comets are believed to retain some interstellar materials, stored in fairly pristine conditions since-their formation. The composition and properties of cometary dust grains should reflect those of grains in the outer part of the protosolar nebula which, at least in part, were inherited from the presolar molecular cloud. However, infrared emission features in comets differ from their interstellar counterparts. These differences imply processing of interstellar material on its way to incorporation in comets, but C and N appear to be retained. Overall dust evolution from the interstellar medium (ISM) to planetary materials is accompanied by an increase in proportion of complex organics and a decrease in pure carbon phases. The composition of cometary dust grains was measured in situ during fly-by missions to comet Halley in 1986. The mass spectra of about 5000 cometary dust grains with masses of 5 x 10(exp -17) - 5 x 10(exp -12) g provide data about the presence and relative abundances of the major elements H, C, N, O,Na, Mg, Al, Si, S, Cl, K, Ca, Ti, Cr, Fe, Ni. The bulk abundances of major rock-forming elements integrated over all spectra were found to be solar within a factor of 2, while the volatile elements H, C, N, O in dust are depleted in respect to their total cosmic abundances. The abundances of C and N in comet dust are much closer to interstellar than to meteoritic and are higher than those of dust in the diffuse ISM. In dense molecular clouds dust grains are covered by icy mantles, the average composition of which is estimated to be H:C:N:O = 96:14:1:34. Up to 40% of elemental C and O may be sequestered in mantles. If we use this upper limit to add H, C, N and O as icy mantle material to the abundances residing in dust in the diffuse ISM, then the resulting values for H. C, and N match cometary abundances. Thus, ice mantles undergoing chemical evolution on grains in the dense ISM appear to have been transformed into less volatile and more complex organic residues wherein the H, C and N are largely retained and ultimately accreted in cometary dust. The abundance of O is about the same for cometary dust, meteorites and interstellar dust. In all these samples, most of O in a solid phase is bonded to silicates. In dense molecular clouds, the abundance of O in dust+mantles is significantly higher then in cometary dust. This difference may reflect the greater lability of oxygenated species toward astrophysical processing. Laboratory studies show that O-bearing functional groups in organic compounds tend to be relatively easily removed by heating and/or UV and particle irradiation . In Halley's coma, O-containing organic grains, being unstable, were located closest to the nucleus. The decomposition of the organic grain component in the coma provided a significant extended source contribution to O-containing gaseous species such as CO and H2CO.
Structure and dynamics of the umagnetized plasma around comet 67P/CG
NASA Astrophysics Data System (ADS)
Henri, P.; Vallières, X.; Gilet, N.; Hajra, R.; Moré, J.; Goetz, C.; Richter, I.; Glassmeier, K. H.; Galand, M. F.; Heritier, K. L.; Eriksson, A. I.; Nemeth, Z.; Tsurutani, B.; Rubin, M.; Altwegg, K.
2016-12-01
At distances close enough to the Sun, when comets are characterised by a significant outgassing, the cometary neutral density may become large enough for both the cometary plasma and the cometary gas to be coupled, through ion-neutral and electron-neutral collisions. This coupling enables the formation of an unmagnetised expanding cometary ionosphere around the comet nucleus, also called diamagnetic cavity, within which the solar wind magnetic field cannot penetrate. The instruments of the Rosetta Plasma Consortium (RPC), onboard the Rosetta Orbiter, enable us to better constrain the structure, dynamics and stability of the plasma around comet 67P/CG. Recently, magnetic field measurements (RPC-MAG) have shown the existence of such a diamagnetic region around comet 67P/CG [Götz et al., 2016]. Contrary to a single, large scale, diamagnetic cavity such as what was observed around comet Halley, Rosetta have crossed several diamagnetic structures along its trajectory around comet 67P/CG. Using electron density measurements from the Mutual Impedance Probe (RPC-MIP) during the different diamagnetic cavity crossings, identified by the flux gate magnetometer (RPC-MAG), we map the unmagnetised plasma density around comet 67P/CG. Our aims is to better constrain the structure, dynamics and stability of this inner cometary plasma layer characterised by cold electrons (as witnessed by the Langmuir Probes RPC-LAP). The ionisation ratio in these unmagnetised region(s) is computed from the measured electron (RPC-MIP) and neutral gas (ROSINA/COPS) densities. In order to assess the importance of solar EUV radiation as a source of ionisation, the observed electron density will be compared to a the density expected from an ionospheric model taking into account solar radiation absorption. The crossings of diamagnetic region(s) by Rosetta show that the unmagnetised cometary plasma is particularly homogeneous, compared to the highly dynamical magnetised plasma observed in adjacent magnetised regions. Moreover, during the crossings of multiple, successive diamagnetic region(s) over time scales of tens of minutes or hours, the plasma density is almost identical in the different unmagnetised regions, suggesting that these unmagnetised regions may be a single diamagnetic structure crossed several times by Rosetta.
Rosetta/VIRTIS investigation of the chemistry and activity of comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Bockelee-Morvan, Dominique; Drossart, Pierre; Piccioni, Giuseppe; Migliorini, Alessandra; Erard, Stéphane; Capaccioni, Fabrizio; Filacchione, Gianrico; Fougere, Nicolas; Leyrat, Cedric; Crovisier, Jacques; Capaccioni, Fabrizio
2016-07-01
The composition of cometary ices inside cometary nuclei provides clues to the chemistry of the protoplanetary disk where they formed, 4.6 Gyr ago. These ices sublimate when the body approches the Sun, so that the coma molecular species give insights on the nucleus surface and sub-surface composition. So far, most investigations of the coma chemical composition were performed from telescopic observations from the ground or space plateforms. Since August 2014, the ESA/Rosetta spacecraft has been investigating the nucleus and inner coma of 67P/Churyumov-Gerasimenko. This talk will present an overview of the results obtained by the Visual and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument onboard Rosetta, focussing on observations of molecular species. VIRTIS is composed of two channels. The VIRTIS-M channel is a spectro-imager covering the 0.27-5.1 microns range, which allowed us to map the spatial distribution of H2O and CO2 (Migliorini et al. 2016, A&A in press). VIRTIS-H is a high-spectral resolution spectrometer covering the 2-5 microns range. Spectra obtained with VIRTIS-H show signatures of H2O, CO2 (both fundamental and hot bands), 13CO2, CH4 and other C-H bearing species (Bockelee-Morvan et al. A&A, 583, A6,2015). VIRTIS is a key instrument to investigate regional, diurnal and seasonal variations of the comet outgassing.
Surface of the comet 67P from PHILAE/CIVA images as clues to the formation of the comet nucleus
NASA Astrophysics Data System (ADS)
Poulet, Francois; Bibring, Jean-Pierre; Carter, John; Eng, Pascal; Gondet, Brigitte; Jorda, Laurent; Langevin, Yves; Le Mouélic, Stéphane; Pilorget, Cédric
2015-04-01
The CIVA cameras onboard PHILAE provided the first ever in situ images of the surface of a comet (Bibring et al., this conf). The panorama acquired by CIVA at the landing site reveals a rough terrain dominated by agglomerates of consolidated materials similar to cm-sized pebbles. While the composition of these materials is unknown, their nature will be discussed in relation to both endogenic and exogenic processes that may sculpted the landscape of the landing site. These processes includes erosion (spatially non-uniform) by sublimation, redeposition of particles after ejection, fluidization and transport of cometary material on the surface, sintering effect, thermal fatigue, thermal stress, size segregation due to shaking, eolian erosion due to local outflow of cometary vapor and impact cratering at various scales. Recent advancements in planet formation theory suggest that the initial planetesimals (or cometestimals) may grow directly from the gravitational collapse of aerodynamically concentrated small particles, often referred to as "pebbles" (Johansen et al. 2007, Nature 448, 1022; Cuzzi et al. 2008, AJ 687, 1432). We will then discuss the possibility that the observed pebble pile structures are indicative of the formation process from which the initial nucleus formed, and how we can use this idea to learn about protoplanetary disks and the early processes involved in the Solar System formation.
Mass-loading of the solar wind at 67P/Churyumov-Gerasimenko. Observations and modelling
NASA Astrophysics Data System (ADS)
Behar, E.; Lindkvist, J.; Nilsson, H.; Holmström, M.; Stenberg-Wieser, G.; Ramstad, R.; Götz, C.
2016-11-01
Context. The first long-term in-situ observation of the plasma environment in the vicinity of a comet, as provided by the European Rosetta spacecraft. Aims: Here we offer characterisation of the solar wind flow near 67P/Churyumov-Gerasimenko (67P) and its long term evolution during low nucleus activity. We also aim to quantify and interpret the deflection and deceleration of the flow expected from ionization of neutral cometary particles within the undisturbed solar wind. Methods: We have analysed in situ ion and magnetic field data and combined this with hybrid modeling of the interaction between the solar wind and the comet atmosphere. Results: The solar wind deflection is increasing with decreasing heliocentric distances, and exhibits very little deceleration. This is seen both in observations and in modeled solar wind protons. According to our model, energy and momentum are transferred from the solar wind to the coma in a single region, centered on the nucleus, with a size in the order of 1000 km. This interaction affects, over larger scales, the downstream modeled solar wind flow. The energy gained by the cometary ions is a small fraction of the energy available in the solar wind. Conclusions: The deflection of the solar wind is the strongest and clearest signature of the mass-loading for a small, low-activity comet, whereas there is little deceleration of the solar wind.
NASA Astrophysics Data System (ADS)
Miles, Richard
2016-07-01
This paper is a continuation of Miles et al. (2015) [Icarus] and Miles (2015b) [Icarus], which detail new observations of Comet 29P/Schwassmann‒Wachmann, characterise its rotational period (∼57 d), and identify the presence of discrete sources of outburst on its nucleus: the latter ruling out amorphous-to-crystalline H2O ice transitions as the cause of its outbursts. Summary data are presented for 29P and a further 16 non-fragmenting comets which exhibit outbursts of >2 magnitudes. A comprehensive physicochemical mechanism is postulated to account for major outbursts based on melting of cometary ices and the exothermic dissolution of gases, especially CO and CO2 at pressures of 10‒200 kPa. The thermodynamics of enthalpy heating are described and heats of solution are calculated from gas-liquid solubility data yielding -6 kJ mol-1 for CO in CH4, and -15 kJ mol-1 for CO2 in CH3OH close to their freezing point. Heats of solution are ∼6 times greater (per mole) than the enthalpy of fusion of the pure CH4 and CH3OH ices, enabling gas pressures of >∼80 kPa to continually melt these ices. Supervolatile O2 and N2 gases may also participate by dissolving exothermically in liquid CH4 and other hydrocarbons potentially reaching high mixing ratios. H2S and NH3 gases dissolve exothermically in CH3OH liberating up to 20 kJ mol-1 and 13 kJ mol-1, respectively, and all three hydrophilic species facilitate sintering of H2O ice in the near-surface of comets. Localised melting and consolidation is favoured in slowly-rotating cometary nuclei of intermediate dust/gas ratios, at pressures of ∼1 kPa, and temperatures as low as 50‒65 K where O2 and N2 are abundant. Nyctogenic processes on the night-time side of the nucleus restock desiccated surface layers, reseal the crust, enabling fractionation of solutes in sub-crustal liquid phases via fractional sublimation/distillation of non-polar, hydrophobic CH4 and other hydrocarbons; and by fractional crystallisation of polar, hydrophilic phases rich in aqueous CH3OH and other organic oxygenates, e.g. CH2O, able to form low melting point eutectic mixtures. A generalised outburst mechanism is described involving the containment of gases as solutes in cryomagma beneath consolidated surface crustal regions. Disruption of the crust and associated pressure loss render the cryomagma supersaturated, and the concomitant explosive exsolution of gases provokes a cometary outburst. The CO gas-exsolution mechanism operates at ∼65 to 95 K and accounts for activity of 29P and other distant comets up to rh = ∼15 AU. A similar mechanism can operate at ∼150 to 200 K driven by CO2 in aqueous CH3OH and may account for rare outbursts of Jupiter-family comets such as 17P/Holmes. At least 10-15% of all periodic comets may be subject to gas-exsolution outbursts, the majority of which are weak and go undetected. Possible surface morphologies of the nucleus of Comet 29P are discussed. The mechanism may also explain the phenomenon of strong cometary outbursts triggering secondary events, as observed for 17P, 29P and 41P.
Interaction of the solar wind with comets: a Rosetta perspective
NASA Astrophysics Data System (ADS)
Glassmeier, Karl-Heinz
2017-05-01
The Rosetta mission provides an unprecedented possibility to study the interaction of comets with the solar wind. As the spacecraft accompanies comet 67P/Churyumov-Gerasimenko from its very low-activity stage through its perihelion phase, the physics of mass loading is witnessed for various activity levels of the nucleus. While observations at other comets provided snapshots of the interaction region and its various plasma boundaries, Rosetta observations allow a detailed study of the temporal evolution of the innermost cometary magnetosphere. Owing to the short passage time of the solar wind through the interaction region, plasma instabilities such as ring-beam and non-gyrotropic instabilities are of less importance during the early life of the magnetosphere. Large-amplitude ultra-low-frequency (ULF) waves, the `singing' of the comet, is probably due to a modified ion Weibel instability. This instability drives a cross-field current of implanted cometary ions unstable. The initial pick-up of these ions causes a major deflection of the solar wind protons. Proton deflection, cross-field current and the instability induce a threefold structure of the innermost interaction region with the characteristic Mach cone and Whistler wings as stationary interaction signatures as well as the ULF waves representing the dynamic aspect of the interaction. This article is part of the themed issue 'Cometary science after Rosetta'.
NASA Astrophysics Data System (ADS)
Lethuillier, Anthony; Hamelin, Michel; Le Gall, Alice; Caujolle-Bert, Sylvain; Schmidt, Walter; Grard, Réjean
2014-05-01
The ROSETTA probe has never been so close to its target; the comet Churyumov-Gerasimenko that it will reach later this year. Among the instruments on board the lander, Philae, the Permittivity Probe (PP) experiment, which is part of the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME) package, will measure the low frequency complex permittivity (i.e. dielectric constant and electrical conductivity) of the first 2 meters of the subsurface of the cometary nucleus. At frequencies below 10 kHz, the electrical signature of the matter is especially sensitive to the presence of water ice and its temperature behavior. PP will thus allow to determine the water ice content in the near-surface and to monitor its diurnal and orbital variations thus providing essential insight on the activity and evolution of the cometary nucleus. The PP instrument is based on the quadrupole array technique, which employs a set of transmitter and receiver electrodes for emitting alternating currents into a medium of interest. The complex permittivity of the cometary surface material is determined by measuring the magnitude and phase shift of both the emitted currents and the resulting potential difference at a pair of receiver electrodes. This technique has been used for many decades on Earth and recently helped to determine the electrical properties of the Huygens landing site on Titan (PWA/HASI experiment on Cassini-Huygens). In the case of PP, 5 electrodes can be used: 2 receiver electrodes are integrated into the lander feet while the transmitter electrodes are mounted on the third foot and on 2 other instruments. In this paper we will present results from numerical simulations performed in order to model PP operations and prepare the scientific return of this experiment. Though simple in theory, the inference of the complex permittivity from PP measurements is not straightforward in practice. In particular, the actual environment of the electrodes (lander body, feet, harpoons...) must be accounted for since the presence of nearby conducting objects will affect the data. We have thus developed a numerical model of the electrodes in their environment using COMSOL Multiphysics®. A simple version of this model was validated by comparison to laboratory measurements and analytical calculations. This model was then used to simulate PP operations during the Descent Phase of the lander (i.e. in the void and as the ground gets closer) and once at the surface of the nucleus considering different types of surfaces. The first set of simulations will be very useful to better understand the calibration data that will be acquired after separation from the ROSETTA Orbiter while the second will illustrate the idealistic sensitivity of PP to the ground electrical properties.
NASA Astrophysics Data System (ADS)
Hajra, R.; Bruce, T.; Pierre, H.; Galand, M. F.; Heritier, K. L.; Edberg, N. J. T.; Burch, J. L.; Broiles, T. W.; Goldstein, R.; Glassmeier, K. H.; Richter, I.; Goetz, C.; Nilsson, H.; Altwegg, K.; Rubin, M.; Tanimori, T.
2016-12-01
Cometary outbursts are one of the most spectacular aspects of comet behavior. They are characterized by an abrupt increase in cometary brightness followed by a gradual fall off to the pre-event brightness. Although there are several studies on outburst events, to our knowledge, no detailed analysis on the variation of the cometary plasma environment during an outburst has ever been reported. On 19 February 2016, when comet 67P/Churyumov-Gerasimenko was at a heliocentric distance of 2.4 AU, an outburst event, characterized by two orders of magnitude increase in coma surface brightness, took place. Rosetta was at a distance of 30 km from the comet nucleus, orbiting with a relative speed of 0.17 m/s. The Rosetta Plasma Consortium (RPC) provided in-situ measurements of the cometary plasma, embedded in the solar wind, and the associated magnetic field during this outburst, as the dust and gas expelled from the comet were passing by the spacecraft. While the neutral density (ROSINA/COPS) at the spacecraft position increased by a factor of 1.5, the local plasma density (RPC/MIP) was found to increase by a factor of 3 during the outburst event, driving the spacecraft potential more negative (RPC/LAP). The event was characterized by the energy degradation of energetic (10s of eV) electrons (RPC/IES). In response to the outburst, the local magnetic field exhibited a slight increase in amplitude and a slow rotation (RPC/MAG). A weakening of 10-100 mHz magnetic field fluctuations was also observed during the outburst. The RPC instruments show that the effects of the outburst on the plasma lasted for about 4 hours, from 1000 UT to 1400 UT. Detailed analyses of the observations made by RPC along with ROSINA/COPS will be presented in the paper.
A GREAT search for Deuterium in Comets
NASA Astrophysics Data System (ADS)
Mumma, Michael
2012-10-01
Comets are understood to be the most pristine bodies in the Solar System. Their compositions reflect the chemical state of materials at the very earliest evolutionary stages of the protosolar nebula and, as such, they provide detailed insight into the physical and chemical processes operating in planet-forming disks. Isotopic fractionation ratios of the molecular ices in the nucleus are regarded as signatures of formation processes. These ratios provide unique information on the natal heritage of those ices, and can also test the proposal that Earth's water and other volatiles were delivered by cometary bombardment. Measurement of deuterium fractionation ratios is thus a major goal in contemporary cometary science and the D/H ratio of water - the dominant volatile in comets - holds great promise for testing the formation history of cometary matter. The D/H ratio in cometary water has been measured in only seven comets. Six were from the Oort Cloud reservoir and the D/H ratio was about twice that of the Earth's oceans. However, the recent Herschel measurement of HDO/H2O in 103P/Hartley-2 (the first from the Kuiper Belt) was consistent with exogenous delivery of Earth's water by comets. Outstanding questions remain: are cometary HDO/H2O ratios consistent with current theories of nebular chemical evolution or with an interstellar origin? Does the HDO/H2O ratio vary substantially among comet populations? Hartley-2 is the only Kuiper Belt comet with measured HDO/H2O, are there comets with similar ratios in the Oort cloud? These questions can only be addressed by measuring HDO/H2O ratios in many more suitable bright comets. We therefore propose to measure the D/H ratio in water in a suitable target-of-opportunity comet by performing observations of HDO and OH with the GREAT spectrometer on SOFIA. A multi-wavelength, ground-based observing campaign will also be conducted in support of the airborne observations.
A GREAT search for Deuterium in Comets
NASA Astrophysics Data System (ADS)
Mumma, Michael
2013-10-01
Comets are understood to be the most pristine bodies in the Solar System. Their compositions reflect the chemical state of materials at the very earliest evolutionary stages of the protosolar nebula and, as such, they provide detailed insight into the physical and chemical processes operating in planet-forming disks. Isotopic fractionation ratios of the molecular ices in the nucleus are regarded as signatures of formation processes. These ratios provide unique information on the natal heritage of those ices, and can also test the proposal that Earth's water and other volatiles were delivered by cometary bombardment. Measurement of deuterium fractionation ratios is thus a major goal in contemporary cometary science and the D/H ratio of water - the dominant volatile in comets - holds great promise for testing the formation history of cometary matter. The D/H ratio in cometary water has been measured in only eight comets. Seven were from the Oort Cloud reservoir and the D/H ratio was about twice that of the Earth's oceans. However, the recent Herschel measurement of HDO/H2O in 103P/Hartley-2 (the first from the Kuiper Belt) was consistent with exogenous delivery of Earth's water by comets. Outstanding questions remain: are cometary HDO/H2O ratios consistent with current theories of nebular chemical evolution or with an interstellar origin? Does the HDO/H2O ratio vary substantially among comet populations? Hartley-2 is the only Kuiper Belt comet with measured HDO/H2O, are there comets with similar ratios in the Oort cloud? These questions can only be addressed by measuring HDO/H2O ratios in many more suitable bright comets. We therefore propose to measure the D/H ratio in water in a suitable target-of-opportunity comet by performing observations of HDO and OH with the GREAT spectrometer on SOFIA. A multi-wavelength, ground-based observing campaign will also be conducted in support of the airborne observations.
Comet Odyssey: Comet Surface Sample Return
NASA Astrophysics Data System (ADS)
Weissman, Paul R.; Bradley, J.; Smythe, W. D.; Brophy, J. R.; Lisano, M. E.; Syvertson, M. L.; Cangahuala, L. A.; Liu, J.; Carlisle, G. L.
2010-10-01
Comet Odyssey is a proposed New Frontiers mission that would return the first samples from the surface of a cometary nucleus. Stardust demonstrated the tremendous power of analysis of returned samples in terrestrial laboratories versus what can be accomplished in situ with robotic missions. But Stardust collected only 1 milligram of coma dust, and the 6.1 km/s flyby speed heated samples up to 2000 K. Comet Odyssey would collect two independent 800 cc samples directly from the surface in a far more benign manner, preserving the primitive composition. Given a minimum surface density of 0.2 g/cm3, this would return two 160 g surface samples to Earth. Comet Odyssey employs solar-electric propulsion to rendezvous with the target comet. After 180 days of reconnaissance and site selection, the spacecraft performs a "touch-and-go” maneuver with surface contact lasting 3 seconds. A brush-wheel sampler on a remote arm collects up to 800 cc of sample. A duplicate second arm and sampler collects the second sample. The samples are placed in a return capsule and maintained at colder than -70 C during the return flight and at colder than -30 C during re-entry and for up to six hours after landing. The entire capsule is then refrigerated and transported to the Astromaterials Curatorial Facility at NASA/JSC for initial inspection and sample analysis by the Comet Odyssey team. Comet Odyssey's planned target was comet 9P/Tempel 1, with launch in December 2017 and comet arrival in June 2022. After a stay of 300 days at the comet, the spacecraft departs and arrives at Earth in May 2027. Comet Odyssey is a forerunner to a flagship Cryogenic Comet Sample Return mission that would return samples from deep below the nucleus surface, including volatile ices. This work was supported by internal funds from the Jet Propulsion Laboratory.
Photometric study of cometary analogs in the LOSSy laboratory at the University of Bern
NASA Astrophysics Data System (ADS)
Pommerol, A.; Thomas, N.; Jost, B.; Poch, O.
2014-07-01
We have set up the LOSSy laboratory (Laboratory for Outflow Studies of Sublimating Materials) to study the spectro-photometric properties of various analogs of planetary-object surfaces, with a special emphasis on icy samples and their evolution under simulated space conditions. This laboratory is currently equipped with two facilities: the PHIRE-2 radio-goniometer, designed to measure the bidirectional visible reflectance of samples under a wide range of geometries and the SCITEAS simulation chamber, designed to follow the evolution of icy samples subliming under low temperature and low pressure conditions by means of VIS-NIR hyperspectral imaging. We will report on the characterization of cometary analogs using both facilities. We produce these analogs by mixing in various proportions fine-grained ice, mineral and organic matter. Various preparation protocols have been defined to produce different textures of sample. Using the PHIRE-2 radio-goniometer, we are building a catalog of bidirectional reflectance data for various cometary analogs, varying by steps the different parameters susceptible to affect the reflectance phase function. In particular, we have recently upgraded the instrument to be able to characterize in detail the opposition effect by allowing measurements of the reflectance at very low phase angle. This laboratory dataset is intended to be used for the analysis of the data acquired by the OSIRIS imager onboard Rosetta. Using the SCITEAS simulation chamber, we have followed for 30 hours the evolution of a cometary analog placed under secondary vacuum (<10^{-6} mbar) and maintained at low temperature (170-200 K) for more than 30 hours. We analyzed the temporal evolution of the morphology and the photometry of the surface of the sample to identify which processes affect the surfaces of cometary nuclei during sublimation and how they affect their visible and near-infrared surface properties.
Cometary science. Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko.
Hässig, M; Altwegg, K; Balsiger, H; Bar-Nun, A; Berthelier, J J; Bieler, A; Bochsler, P; Briois, C; Calmonte, U; Combi, M; De Keyser, J; Eberhardt, P; Fiethe, B; Fuselier, S A; Galand, M; Gasc, S; Gombosi, T I; Hansen, K C; Jäckel, A; Keller, H U; Kopp, E; Korth, A; Kührt, E; Le Roy, L; Mall, U; Marty, B; Mousis, O; Neefs, E; Owen, T; Rème, H; Rubin, M; Sémon, T; Tornow, C; Tzou, C-Y; Waite, J H; Wurz, P
2015-01-23
Comets contain the best-preserved material from the beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early solar system when comets formed. ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation. Measurements were made over many comet rotation periods and a wide range of latitudes. These measurements show large fluctuations in composition in a heterogeneous coma that has diurnal and possibly seasonal variations in the major outgassing species: water, carbon monoxide, and carbon dioxide. These results indicate a complex coma-nucleus relationship where seasonal variations may be driven by temperature differences just below the comet surface. Copyright © 2015, American Association for the Advancement of Science.
Correlated microanalysis of cometary organic grains returned by Stardust
NASA Astrophysics Data System (ADS)
de Gregorio, Bradley T.; Stroud, Rhonda M.; Cody, George D.; Nittler, Larry R.; David Kilcoyne, A. L.; Wirick, Sue
2011-09-01
Abstract- Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X-ray absorption near-edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen-rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl-containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule-like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.
Cometary coma ions. [which occur when water is the major constituent
NASA Technical Reports Server (NTRS)
Aikin, A. C.
1974-01-01
For comets whose nuclei are composed of water ice conglomerates it is shown that the ion H3O(+) can predominate to distances of 5000 km in the subsolar direction. Beyond this distance H2O(+) is the most important ion. The crossover point is a sensitive function of the rate of evaporation from the nucleus. The presence of ammonia or metals such as sodium, in concentrations greater than 0.1% H2O, can lead to NH4(+) and Na(+) ions.
Development of Sample Handling and Analytical Expertise For the Stardust Comet Sample Return
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, J; Bajt, S; Brennan, S
NASA's Stardust mission returned to Earth in January 2006 with ''fresh'' cometary particles from a young Jupiter family comet. The cometary particles were sampled during the spacecraft flyby of comet 81P/Wild-2 in January 2004, when they impacted low-density silica aerogel tiles and aluminum foils on the sample tray assembly at approximately 6.1 km/s. This LDRD project has developed extraction and sample recovery methodologies to maximize the scientific information that can be obtained from the analysis of natural and man-made nano-materials of relevance to the LLNL programs.
Dynamic molecular oxygen production in cometary comae.
Yao, Yunxi; Giapis, Konstantinos P
2017-05-08
Abundant molecular oxygen was discovered in the coma of comet 67P/Churyumov-Gerasimenko. Its origin was ascribed to primordial gaseous O 2 incorporated into the nucleus during the comet's formation. This thesis was put forward after discounting several O 2 production mechanisms in comets, including photolysis and radiolysis of water, solar wind-surface interactions and gas-phase collisions. Here we report an original Eley-Rideal reaction mechanism, which permits direct O 2 formation in single collisions of energetic water ions with oxidized cometary surface analogues. The reaction proceeds by H 2 O + abstracting a surface O-atom, then forming an excited precursor state, which dissociates to produce O 2 - . Subsequent photo-detachment leads to molecular O 2 , whose presence in the coma may thus be linked directly to water molecules and their interaction with the solar wind. This abiotic O 2 production mechanism is consistent with reported trends in the 67P coma and raises awareness of the role of energetic negative ions in comets.
Rosetta Langmuir Probe Photoelectron Emission and Solar Ultraviolet Flux at Comet 67P
NASA Astrophysics Data System (ADS)
Johansson, F. L.; Odelstad, E.; Paulsson, J. J.; Harang, S. S.; Eriksson, A. I.; Mannel, T.; Vigren, E.; Edberg, N. J. T.; Miloch, W. J.; Simon Wedlund, C.; Thiemann, E.; Epavier, F.; Andersson, L.
2017-12-01
The Langmuir Probe instrument on Rosetta monitored the photoelectron emission current of the probes during the Rosetta mission at comet 67P/Churyumov-Gerasimenko, in essence acting as a photodiode monitoring the solar ultraviolet radiation at wavelengths below 250 nm. We have used three methods of extracting the photoelectron saturation current from the Langmuir probe measurements. The resulting dataset can be used as an index of the solar far and extreme ultraviolet at the Rosetta spacecraft position, including flares, in wavelengths that are important for photoionisation of the cometary neutral gas. Comparing the photoemission current to data measurements by MAVEN/EUVM and TIMED/SEE, we find good correlation when 67P was at large heliocentric distances early and late in the mission, but up to 50 percent decrease of the expected photoelectron current at perihelion. We discuss possible reasons for the photoemission decrease, including scattering and absorption by nanograins created by disintegration of cometary dust far away from the nucleus.
Rosetta photoelectron emission and solar ultraviolet flux at comet 67P
NASA Astrophysics Data System (ADS)
Johansson, Fredrik L.; Odelstad, E.; Paulsson, J. J. P.; Harang, S. S.; Eriksson, A. I.; Mannel, T.; Vigren, E.; Edberg, N. J. T.; Miloch, W. J.; Simon Wedlund, C.; Thiemann, E.; Eparvier, F.; Andersson, L.
2017-07-01
The Langmuir Probe instrument on Rosetta monitored the photoelectron emission current of the probes during the Rosetta mission at comet 67P/Churyumov-Gerasimenko, in essence acting as a photodiode monitoring the solar ultraviolet radiation at wavelengths below 250 nm. We have used three methods of extracting the photoelectron saturation current from the Langmuir probe measurements. The resulting data set can be used as an index of the solar far and extreme ultraviolet at the Rosetta spacecraft position, including flares, in wavelengths which are important for photoionization of the cometary neutral gas. Comparing the photoemission current to data measurements by MAVEN/EUVM and TIMED/SEE, we find good correlation when 67P was at large heliocentric distances early and late in the mission, but up to 50 per cent decrease of the expected photoelectron current at perihelion. We discuss possible reasons for the photoemission decrease, including scattering and absorption by nanograins created by disintegration of cometary dust far away from the nucleus.
Optical polarimetry of Comet NEAT C/2001 Q4
NASA Astrophysics Data System (ADS)
Ganesh, S.; Joshi, U. C.; Baliyan, K. S.
2009-06-01
Comet NEAT C/2001 Q4 was observed for linear polarization using the optical polarimeter mounted at the 1.2 m telescope at Mt. Abu Observatory, during the months of May and June 2004. Observations were conducted through the International Halley Watch narrow band (continuum) and BVR broad band filters. During the observing run the phase angle ranged from 85.6° in May to 55° in June. As expected, polarization increases with wavelength in this phase angle range. Polarization colour in the narrow bands changes at different epochs, perhaps related to cometary activity or molecular emission contamination. The polarization was also measured in the cometary coma at different locations along a line, in the direction of the tail. As expected, we notice minor decrease in the polarization as photocenter (nucleus) is traversed while brightness decreases sharply away from it. Based on these polarization observations we infer that the Comet NEAT C/2001 Q4 has high polarization and a typical grain composition—mixture of silicates and organics.
Dynamic molecular oxygen production in cometary comae
NASA Astrophysics Data System (ADS)
Yao, Yunxi; Giapis, Konstantinos P.
2017-05-01
Abundant molecular oxygen was discovered in the coma of comet 67P/Churyumov-Gerasimenko. Its origin was ascribed to primordial gaseous O2 incorporated into the nucleus during the comet's formation. This thesis was put forward after discounting several O2 production mechanisms in comets, including photolysis and radiolysis of water, solar wind-surface interactions and gas-phase collisions. Here we report an original Eley-Rideal reaction mechanism, which permits direct O2 formation in single collisions of energetic water ions with oxidized cometary surface analogues. The reaction proceeds by H2O+ abstracting a surface O-atom, then forming an excited precursor state, which dissociates to produce O2-. Subsequent photo-detachment leads to molecular O2, whose presence in the coma may thus be linked directly to water molecules and their interaction with the solar wind. This abiotic O2 production mechanism is consistent with reported trends in the 67P coma and raises awareness of the role of energetic negative ions in comets.
Observations of a comet on collision course with the sun.
Michels, D J; Sheeley, N R; Howard, R A; Koomen, M J
1982-02-26
A brilliant new comet (1979 XI: Howard-Koomen-Michels) was discovered in data from the Naval Research Laboratory's orbiting SOLWIND coronagraph. An extensive sequence of pictures, telemetered from the P78-1 satellite, shows the coma, accompanied by a bright and well-developed tail, passing through the coronagraph's field of view at afew million kilometers from the sun. Preliminary orbital calculations based on the observed motion of the comet's head and morphology of the tail indicate that this previously unreported object is a sungrazing comet and may be one of the group of Kreutz sungrazers. It appears from the data that the perihelion distance was less than 1 solar radius, so that the cometary nucleus encountered dense regions of the sun's atmosphere, was completely vaporized, and did not reappear after the time of closest approach to the sun. After this time, however, cometary debris, scattered into the ambient solar wind, caused a brightening of the corona over one solar hemisphere and to heliocentric distances of 5 to 10 solar radii.
Dynamical and Physical Models of Ecliptic Comets
NASA Astrophysics Data System (ADS)
Dones, L.; Boyce, D. C.; Levison, H. F.; Duncan, M. J.
2005-08-01
In most simulations of the dynamical evolution of the cometary reservoirs, a comet is removed from the computer only if it is thrown from the Solar System or strikes the Sun or a planet. However, ejection or collision is probably not the fate of most active comets. Some, like 3D/Biela, disintegrate for no apparent reason, and others, such as the Sun-grazers, 16P/Brooks 2, and D/1993 F2 Shoemaker-Levy 9, are pulled apart by the Sun or a planet. Still others, like 107P/Wilson Harrington and D/1819 W1 Blanpain, are lost and then rediscovered as asteroids. Historically, amateurs discovered most comets. However, robotic surveys now dominate the discovery of comets (http://www.comethunter.de/). These surveys include large numbers of comets observed in a standard way, so the process of discovery is amenable to modeling. Understanding the selection effects for discovery of comets is a key problem in constructing models of cometary origin. To address this issue, we are starting new orbital integrations that will provide the best model to date of the population of ecliptic comets as a function of location in the Solar System and the size of the cometary nucleus, which we expect will vary with location. The integrations include the gravitational effects of the terrestrial and giant planets and, in some cases, nongravitational jetting forces. We will incorporate simple parameterizations for mantling and mass loss based upon detailed physical models. This approach will enable us to estimate the fraction of comets in different states (active, extinct, dormant, or disintegrated) and to track how the cometary size distribution changes as a function of distance from the Sun. We will compare the results of these simulations with bias-corrected models of the orbital and absolute magnitude distributions of Jupiter-family comets and Centaurs.
Interaction of the solar wind with comets: a Rosetta perspective
2017-01-01
The Rosetta mission provides an unprecedented possibility to study the interaction of comets with the solar wind. As the spacecraft accompanies comet 67P/Churyumov–Gerasimenko from its very low-activity stage through its perihelion phase, the physics of mass loading is witnessed for various activity levels of the nucleus. While observations at other comets provided snapshots of the interaction region and its various plasma boundaries, Rosetta observations allow a detailed study of the temporal evolution of the innermost cometary magnetosphere. Owing to the short passage time of the solar wind through the interaction region, plasma instabilities such as ring--beam and non-gyrotropic instabilities are of less importance during the early life of the magnetosphere. Large-amplitude ultra-low-frequency (ULF) waves, the ‘singing’ of the comet, is probably due to a modified ion Weibel instability. This instability drives a cross-field current of implanted cometary ions unstable. The initial pick-up of these ions causes a major deflection of the solar wind protons. Proton deflection, cross-field current and the instability induce a threefold structure of the innermost interaction region with the characteristic Mach cone and Whistler wings as stationary interaction signatures as well as the ULF waves representing the dynamic aspect of the interaction. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554976
NASA Technical Reports Server (NTRS)
Allton, Judith H.; Gooding, James L.
1991-01-01
Although results from the Giotto and Vega spacecraft flybys of comet P/Halley indicate a complex chemistry for both the ices and dust in the nucleus, carbonaceous chondrite meteorites are still regarded as useful analogs for the rocky components. Carbonaceous chondrites mixed with water enable simulation of water/rock interactions which may occur in cometary nuclei. Three general types of interactions can be expected between water and minerals at sub-freezing temperatures: heterogeneous nucleation of ice by insoluble minerals; adsorption of water vapor by hygroscopic phases; and freezing and melting point depression of liquid water sustained by soluble minerals. Two series of experiments were performed in a differential scanning calorimeter (DSC) with homogenized powders of the following whole-rock meteorites and comparison samples: Allende (CV3), Murchison (CM2), Orgueil (CI), Holbrook (L6), and Pasamonte (eucrite) meteorites as well as on peridotite (PCC-1, USGS), saponite (Sap-Ca-1, CMS), montmorillonite (STx-1, CMS), and serpentine (Franciscan Formation, California). Results are briefly discussed.
Insight into Primordial Solar System Oxygen Reservoirs from Returned Cometary Samples
NASA Technical Reports Server (NTRS)
Brownlee, D. E.; Messenger, S.
2004-01-01
The recent successful rendezvous of the Stardust spacecraft with comet Wild-2 will be followed by its return of cometary dust to Earth in January 2006. Results from two separate dust impact detectors suggest that the spacecraft collected approximately the nominal fluence of at least 1,000 particles larger than 15 micrometers in size. While constituting only about one microgram total, these samples will be sufficient to answer many outstanding questions about the nature of cometary materials. More than two decades of laboratory studies of stratospherically collected interplanetary dust particles (IDPs) of similar size have established the necessary microparticle handling and analytical techniques necessary to study them. It is likely that some IDPs are in fact derived from comets, although complex orbital histories of individual particles have made these assignments difficult to prove. Analysis of bona fide cometary samples will be essential for answering some fundamental outstanding questions in cosmochemistry, such as (1) the proportion of interstellar and processed materials that comprise comets and (2) whether the Solar System had a O-16-rich reservoir. Abundant silicate stardust grains have recently been discovered in anhydrous IDPs, in far greater abundances (200 5,500 ppm) than those in meteorites (25 ppm). Insight into the more subtle O isotopic variations among chondrites and refractory phases will require significantly higher precision isotopic measurements on micrometer-sized samples than are currently available.
NASA Astrophysics Data System (ADS)
Jewitt, David
2017-08-01
Disintegration may be the leading cause of the demise of cometary nuclei yet is rarely observed and not well understood. We propose to use an amazing but largely unpublished archival dataset on comet 73P/Schwassmann-Wachmann 3 from HST in order to characterize the breakup of this body, focussing on components 73-B, 73-C and 73-G from GO 8699, 10625 and 10992. We will measure the number, sizes, velocities and (short-term) photometric variability of the fragments in 73-B and 73-G and derive the ejection speeds and times. A nucleus/coma convolution model will be used to extract the best estimates of fragment and nucleus size. The size distributions and integral masses will be compared to the parent body masses to estimate lifetimes. Lightcurves will be determined to the test the possibility that disintegration is due to rotational instability.
NASA Astrophysics Data System (ADS)
Calvel, Bertrand; Castel, Didier; Standarovski, Eric; Rousset, Gérard; Bougoin, Michel
2017-11-01
The international Rosetta mission, now planned by ESA to be launched in January 2003, will provide a unique opportunity to directly study the nucleus of comet 46P/Wirtanen and its activity in 2013. We describe here the design, the development and the performances of the telescope of the Narrow Angle Camera of the OSIRIS experiment et its Silicon Carbide telescope which will give high resolution images of the cometary nucleus in the visible spectrum. The development of the mirrors has been specifically detailed. The SiC parts have been manufactured by BOOSTEC, polished by STIGMA OPTIQUE and ion figured by IOM under the prime contractorship of ASTRIUM. ASTRIUM was also in charge of the alignment. The final optical quality of the aligned telescope is 30 nm rms wavefront error.
Preliminary Examination of the Interstellar Collector of Stardust
NASA Technical Reports Server (NTRS)
Westphal, A. J.; Allen, C.; Bastien, R.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Butterworth, A. L.; Floss, C.; Flynn, G.;
2008-01-01
The findings of the Stardust spacecraft mission returned to earth in January 2006 are discussed. The spacecraft returned two unprecedented and independent extraterrestrial samples: the first sample of a comet and the first samples of contemporary interstellar dust. An important lesson from the cometary Preliminary Examination (PE) was that the Stardust cometary samples in aerogel presented a technical challenge. Captured particles often separate into multiple fragments, intimately mix with aerogel and are typically buried hundreds of microns to millimeters deep in the aerogel collectors. The interstellar dust samples are likely much more challenging since they are expected to be orders of magnitudes smaller in mass, and their fluence is two orders of magnitude smaller than that of the cometary particles. The goal of the Stardust Interstellar Preliminary Examination (ISPE) is to answer several broad questions, including: which features in the interstellar collector aerogel were generated by hypervelocity impact and how much morphological and trajectory information may be gained?; how well resolved are the trajectories of probable interstellar particles from those of interplanetary origin?; and, by comparison to impacts by known particle dimensions in laboratory experiments, what was the mass distribution of the impacting particles? To answer these questions, and others, non-destructive, sequential, non-invasive analyses of interstellar dust candidates extracted from the Stardust interstellar tray will be performed. The total duration of the ISPE will be three years and will differ from the Stardust cometary PE in that data acquisition for the initial characterization stage will be prolonged and will continue simultaneously and parallel with data publications and release of the first samples for further investigation.
NASA Technical Reports Server (NTRS)
Lowry, Stephen C.; Weissman, Paul R.; Sykes, Mark V.; Reach, William T.
2003-01-01
We are conducting an observational program designed to determine the overall distributions of size, shape, rotation period, and surface characteristics of cometary nuclei. Here, we present results from a study of the Jupiter- family comet 2P/Encke based on observations from Steward Observatory's 2.3m Bok Telescope at Kitt Peak. This comet has been observed extensively in the past and was one of the primary flyby targets of the recently failed CONTOUR mission.
Comets - Groundbased observations of spacecraft mission candidates
NASA Technical Reports Server (NTRS)
Osip, David J.; Schleicher, David G.; Millis, Robert L.
1992-01-01
Ground-based narrowband photometry results are presented for nine candidate comets for flyby and/or rendezvous missions. The comets include Churyumov-Gerasimenko, d'Arrest, Encke, Grigg-Skjellerup, Honda-Mrkos-Pajdusakova, Kopff, Tempel 1, Tempel 2, and Wild 2. On the basis of measured OH production rates and a model of the sublimation of water from the surface, limits are derived on the size of each cometary nucleus. A detailed analysis of the characteristics of these nine viable mission candidates can furnish the bases for the prioritization of targets of prospective missions.
Evolution of near UV Halley's spectrum in the inner coma
NASA Technical Reports Server (NTRS)
Rousselot, Phillippe; Clairemidi, Jacques; Vernotte, F.; Moreels, Guy
1992-01-01
A direct way to observe the photodissociation of water vapor in a cometary coma is to detect the OH prompt emission. This emission is shifted of delta lambda = 4 nm with respect to the OH 309 nm fluorescence band. The extended data set obtained with the three-channel spectrometer on-board Vega 2 reveals at short distance of the nucleus (i.e., less than 600 km) an excess of emission on the right wing of the OH band which may be interpreted as being mainly due to prompt emission.
Comet Halley - The orbital motion
NASA Technical Reports Server (NTRS)
Yeomans, D. K.
1977-01-01
The orbital motion of Comet Halley is investigated over the interval from A.D. 837 to 2061. Using the observations from 1607 through 1911, least-squares differential orbit corrections were successfully computed using the existing model for the nongravitational forces. The nongravitational-force model was found to be consistent with the outgassing-rocket effect of a water-ice cometary nucleus and, prior to the 1910 return, these forces are time-independent for nearly a millennium. For the 1986 return, viewing conditions are outlined for the comet and the related Orionid and Eta Aquarid meteor showers.
The Rosetta UV imaging spectrometer ALICE: First light optical and radiometric performance results
NASA Astrophysics Data System (ADS)
Slater, D. C.; Stern, S. A.; A'Hearn, M. F.; Bertaux, J. L.; Feldman, P. D.; Festou, M. C.
2000-10-01
We describe the design, scientific objectives, and "first-light" radiometric testing results of the Rosetta/ALICE instrument. ALICE is a lightweight (2.7 kg), low-power (4 W), and low-cost imaging spectrometer optimized for cometary ultraviolet spectroscopy. ALICE, which is funded by NASA (with hardware contributions from CNES, France), will fly on the ESA Rosetta Orbiter to characterize the cometary nucleus, coma, and nucleus/coma coupling of the target comet 46P/Wirtanen. It will obtain spatially-resolved, far-UV spectra of Wirtanen's nucleus and coma in the 700-2050 Å passband with a spectral resolution of 5-10 Å for extended sources that fill the entrance slit's field- of-view. ALICE is also the UV spectrometer model for the PERSI remote sensing suite proposed for the Pluto Kuiper Express (PKE) mission. ALICE uses modern technology to achieve its low mass and low power design specifications. It employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a concave (toroidal) holographic reflection grating. The imaging microchannel plate (MCP) detector utilizes dual solar-blind opaque photocathodes of KBr and CsI deposited on a cylindrically-curved (7.5-cm radius) MCP Z-stack, and a matching 2-D cylindrically-curved double delay-line readout array with a 1024 x 32 pixel array format. This array format provides a point source response that is twice that originally proposed (Δ λ 3 Å). Three data taking modes are possible: (i) histogram image mode for 2-D images, (ii) pixel list mode with periodic time hacks for temporal studies, and (iii) count rate mode for broadband photometric studies. Optical and radiometric sensitivity performance results based on subsystem tests of the flight optics, detector, and preliminary integrated system level tests of the integrated ALICE flight model are presented and discussed.
Exposed bright features on the comet 67P/Churyumov-Gerasimenko: distribution and evolution
NASA Astrophysics Data System (ADS)
Deshapriya, J. D. P.; Barucci, M. A.; Fornasier, S.; Hasselmann, P. H.; Feller, C.; Sierks, H.; Lucchetti, A.; Pajola, M.; Oklay, N.; Mottola, S.; Masoumzadeh, N.; Tubiana, C.; Güttler, C.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B. J. R.; Debei, S.; Cecco, M. De; Deller, J.; Fulle, M.; Groussin, O.; Gutierrez, P. J.; Hoang, H. V.; Hviid, S. F.; Ip, W.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kramm, R.; Kührt, E.; Küppers, M.; Lara, L.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Naletto, G.; Preusker, F.; Shi, X.; Thomas, N.; Vincent, J.-B.
2018-05-01
Context. Since its arrival at the comet 67P/Churyumov-Gerasimenko in August 2014, the Rosetta spacecraft followed the comet as it went past the perihelion and beyond until September 2016. During this time there were many scientific instruments operating on board Rosetta to study the comet and its evolution in unprecedented detail. In this context, our study focusses on the distribution and evolution of exposed bright features that have been observed by OSIRIS, which is the scientific imaging instrument aboard Rosetta. Aims: We envisage investigating various morphologies of exposed bright features and the mechanisms that triggered their appearance. Methods: We co-registered multi-filter observations of OSIRIS images that are available in reflectance. The Lommel-Seeliger disk function was used to correct for the illumination conditions and the resulting colour cubes were used to perform spectrophotometric analyses on regions of interest. Results: We present a catalogue of 57 exposed bright features observed on the nucleus of the comet, all of which are attributed to the presence of H2O ice on the comet. Furthermore, we categorise these patches under four different morphologies and present geometric albedos for each category. Conclusions: Although the nucleus of 67P/Churyumov-Gerasimenko appears to be dark in general, there are localised H2O ice sources on the comet. Cometary activity escalates towards the perihelion passage and reveals such volatile ices. We propose that isolated H2O ice patches found in smooth terrains in regions, such as Imhotep, Bes, and Hapi, result from frost as an aftermath of the cessation of the diurnal water cycle on the comet as it recedes from perihelion. Upon the comet's return to perihelion, such patches are revealed when sublimation-driven erosion removes the thin dust layers that got deposited earlier. More powerful activity sources such as cometary outbursts are capable of revealing much fresher, less contaminated H2O ice that is preserved with consolidated cometary material, as observed on exposed patches resting on boulders. This is corroborated by our albedo calculations that attribute higher albedos for bright features with formations related to outbursts.
Assessing the Main-Belt Comet Population with Comet Hunters
NASA Astrophysics Data System (ADS)
Schwamb, Megan E.; Hsieh, Henry H.; Zhang, Zhi-Wei; Chen, Ying-Tung; Lintott, Chris; Wang, Shiang-Yu; Mishra, Ishan
2017-01-01
Cometary activity in the asteroid belt is a recent discovery. Evidence suggests recent collisions play a role excavating subsurface water ice in these Main Belt Comets (MBCs). MBCs may be an alternative source of Earth’s water. The properties and origins of the MBCs remain elusive. To date ~15 MBCs are known, but only with many tens to 100s of MBCs can we fully explore this new reservoir and its implications for the early Earth.Automated routines identify cometary objects by comparing the point spread functions (PSFs) of moving objects to background stars. This approach may miss cometary activity with low-level dust comae or trails that are too weak or extended to affect an object's near-nucleus PSF profile. Direct visual inspection of moving objects by survey team members can often catch such unusual objects, but such an approach is impractical for the largest surveys to date, and will only become more intractable with the next generation wide-field surveys.With the Internet, tens of thousands of people can be engaged in the scientific process. With this citizen science approach, the combined assessment of many non-experts often equals or rivals that of a trained expert and in many cases outperforms automated algorithms. The Comet Hunters (http://www.comethunters.org) project enlists the public to search for MBCs in data from the Hyper Suprime-Cam (HSC) wide survey. HSC is to date the largest field-of-view camera (covering a 1.5 degree diameter circle on sky) on a 8-10-m class telescope. The HSC wide survey provides the sensitivity to detect cometary activity at lower levels than have been possible for previous surveys.We will give an overview of the Comet Hunters project. We will present the results from the first ~10,000 HSC asteroids searched and provide an estimate on the frequency of cometary activity in the Main Asteroid beltAcknowledgements: This work uses data generated via the Zooniverse.org platform, development of which was supported by a Global Impact Award from Google, and by the Alfred P. Sloan Foundation. The HSC collaboration includes the astronomical communities of Japan and Taiwan, and Princeton University.
Characterizing the interior of 67P in the vicinity of Abydos
NASA Astrophysics Data System (ADS)
Ciarletti, V.; Lasue, J.; Lemonnier, F.; Herique, A.; Kofman, W. W.; Guiffaut, C.; Levasseur-Regourd, A. C.; Plettemeier, D.
2016-12-01
Since the arrival of Rosetta at comet 67P, numerous pictures have been delivered by the cameras onboard both the main spacecraft and the Philae lander. They revealed, at the nucleus' surface and inside the walls of the deep pits, few-meters scale repeating structures, thus providing hints about the internal structure of the nucleus, and suggesting that primordial 'cometesimals' may be objects around 3m in size. The CONSERT (Comet Nucleus Sounding Experiment by Radiowave Transmission) experiment is a radar that has been designed to specifically sound the interior of the nucleus and to provide information on the nucleus internal structure. The work presented here is based on the CONSERT data collected during the First Science Sequence (FSS) and marginally during Philae's Separation Descent and Landing (SDL) for comparison. During FFS, the smaller lobe of the nucleus in the vicinity of Abydos has been actually sounded by CONSERT's electromagnetic waves at 90 MHz with a spatial resolution around 10 m. The propagation delays measured during FSS are consistent with a very low bulk permittivity value for the investigated cometary material, which confirms the high porosity of the nucleus. The sharp shape of the received pulses indicates that the electromagnetic waves suffered weak scattering when propagating through the nucleus. This suggests that the sounded part nucleus is thus fairly homogeneous on a spatial scale of tens of meters. We will present further results on the variation of the CONSERT's pulse shape transmitted through the small lobe of the nucleus. For a more accurate analysis and interpretation of the data, we split the FSS data into two distinct sets corresponding to soundings performed West and East of Philae in order to investigate potential differences. Tentative interpretation in terms of nucleus internal structure based on propagation simulations performed in non-homogeneous nucleus numerical models will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roskosz, Mathieu; Leroux, Hugues
2015-03-01
Crystalline silica (SiO{sub 2}) is recurrently identified at the percent level in the infrared spectra of protoplanetary disks. By contrast, reports of crystalline silica in primitive meteorites are very unusual. This dichotomy illustrates the typical gap existing between astrophysical observations and meteoritical records of the first solids formed around young stars. The cometary samples returned by the Stardust mission in 2006 offer an opportunity to have a closer look at a silicate dust that experienced a very limited reprocessing since the accretion of the dust. Here, we provide the first extended study of silica materials in a large range ofmore » Stardust samples. We show that cristobalite is the dominant form. It was detected in 5 out of 25 samples. Crystalline silica is thus a common minor phase in Stardust samples. Furthermore, olivine is generally associated with this cristobalite, which put constraints on possible formation mechanisms. A low-temperature subsolidus solid–solid transformation of an amorphous precursor is most likely. This crystallization route favors the formation of olivine (at the expense of pyroxenes), and crystalline silica is the natural byproduct of this transformation. Conversely, direct condensation and partial melting are not expected to produce the observed mineral assemblages. Silica is preserved in cometary materials because they were less affected by thermal and aqueous alterations than their chondritic counterparts. The common occurrence of crystalline silica therefore makes the cometary material an important bridge between the IR-based mineralogy of distant protoplanetary disks and the mineralogy of the early solar system.« less
Coma morphology of comet 67P controlled by insolation over irregular nucleus
NASA Astrophysics Data System (ADS)
Shi, X.; Hu, X.; Mottola, S.; Sierks, H.; Keller, H. U.; Rose, M.; Güttler, C.; Fulle, M.; Fornasier, S.; Agarwal, J.; Pajola, M.; Tubiana, C.; Bodewits, D.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Groussin, O.; Gutiérrez, P. J.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez-Moreno, J. J.; Marzari, F.; Naletto, G.; Oklay, N.; Toth, I.; Vincent, J.-B.
2018-05-01
While the structural complexity of cometary comae is already recognizable from telescopic observations1, the innermost region, within a few radii of the nucleus, was not resolved until spacecraft exploration became a reality2,3. The dust coma displays jet-like features of enhanced brightness superposed on a diffuse background1,4,5. Some features can be traced to specific areas on the nucleus, and result conceivably from locally enhanced outgassing and/or dust emission6-8. However, diffuse or even uniform activity over topographic concavity can converge to produce jet-like features9,10. Therefore, linking observed coma morphology to the distribution of activity on the nucleus is difficult11,12. Here, we study the emergence of dust activity at sunrise on comet 67P/Churyumov-Gerasimenko using high-resolution, stereo images from the OSIRIS camera onboard the Rosetta spacecraft, where the sources and formation of the jet-like features are resolved. We perform numerical simulations to show that the ambient dust coma is driven by pervasive but non-uniform water outgassing from the homogeneous surface layer. Physical collimations of gas and dust flows occur at local maxima of insolation and also via topographic focusing. Coma structures are projected to exhibit jet-like features that vary with the perspective of the observer. For an irregular comet such as 67P/Churyumov-Gerasimenko, near-nucleus coma structures can be concealed in the shadow of the nucleus, which further complicates the picture.
On the CO and N2 abundance in Comet Halley
NASA Technical Reports Server (NTRS)
Eberhardt, P.; Krankowsky, D.; Schulte, W.; Dolder, U.; Laemmerzahl, P.; Berthelier, J. J.; Woweries, J.; Stubbemann, U.; Hodges, R. R.; Hoffmann, J. H.
1986-01-01
The mass 28 amu/e signal observed in the neutral mode of the Giotto neutral gas mass spectrometer (NMS) is evaluated. At 1000 km from the nucleus number density n(CO)/ n(H2O) is less than or = 0.07. The production rate of CO as a parent molecule directly from the nucleus is thus less than 7% of the H2O production rate. However, CO is also produced from an extended source in the inner coma (r is less than 20,000 km) and at 20,000 km from the nucleus, for the total equivalent CO production rate 0.05 is less than or = Q(CO)/Q(H2O) is less than or = 0.15. For N2 an upper limit Q(N2)/Q(H2O) is less than or = 0.1 is derived. No parent molecule for the CO is identified in agreement with the NMS measurements. It is proposed that CO or a very short-lived parent is released in the coma from cometary dust grains, such as the CHON particles.
The ion population between 1300 km and 230000 km in the coma of comet P/Halley
NASA Technical Reports Server (NTRS)
Altwegg, K.; Balsiger, H.; Geiss, J.; Goldstein, R.; Ip, W. -H.; Meier, A.; Neugebauer, M.; Rosenbauer, H.; Shelley, E.
1993-01-01
During the encounter of the spacecraft Giotto with Comet Halley the two sensors of the ion mass spectrometer (IMS), high energy range spectrometer (HERS) and high intensity spectrometer (HIS), measured the mass and the three-dimensional velocity distributions of cometary ions. HIS looked mainly at the cold, slow part of the distribution close to the nucleus, HERS at the more energetic pick-up ions further out. After a thorough recalibration of the HIS flight spare unit and an extensive data analysis we present here continuous ion density-, composition-, velocity-, and temperature profiles for the water group ion (mass range 16-19 amu/e) along Giotto's inbound trajectory from 230,000 to 1300 km from the comet nucleus. The two sensors are in very good agreement in the region where their measurements overlap thus giving an excellent data base for the discussion of theoretical comet models. The most prominent feature where models and observations disagree is the so called pile up region between 8000 and 15,000 km from the nucleus.
Dust in Cometary Comae: Present Understanding of the Structure and Composition of Dust Particles
NASA Technical Reports Server (NTRS)
Levasseur-Regourd, A. C.; Zolensky, M.; Lasue, J.
2007-01-01
In situ probing of a very few cometary comae has shown that dust particles present a low albedo and a low density, and that they consist of both rocky material and refractory organics. Remote observations of solar light scattered by cometary dust provide information on the properties of dust particles in the coma of a larger set of comets. The observations of the linear polarization in the coma indicate that the dust particles are irregular, with a size greater (on the average) than about one micron. Besides, they suggest, through numerical and experimental simulations, that both compact grains and fluffy aggregates (with a power law of the size distribution in the -2.6 to -3 range), and both rather transparent silicates and absorbing organics are present in the coma. Recent analysis of the cometary dust samples collected by the Stardust mission provide a unique ground truth and confirm, for comet 81P/Wild 2, the results from remote sensing observations. Future space missions to comets should, in the next decade, lead to a more precise characterization of the structure and composition of cometary dust particles.
Short-wavelength infrared (1.3-2.6 μm) observations of the nucleus of Comet 19P/Borrelly
Soderblom, L.A.; Britt, D.T.; Brown, R.H.; Buratti, B.J.; Kirk, R.L.; Owen, T.C.; Yelle, R.V.
2004-01-01
During the last two minutes before closest approach of Deep Space 1 to Comet 19P/Borrelly, a long exposure was made with the short-wavelength infrared (SWIR) imaging spectrometer. The observation yielded 46 spectra covering 1.3–2.6 μm; the footprint of each spectrum was ∼160 m × width of the nucleus. Borrelly's highly variegated and extremely dark 8-km-long nucleus exhibits a strong red slope in its short-wavelength infrared reflection spectrum. This slope is equivalent to J–K and H–K colors of ∼0.82 and ∼0.43, respectively. Between 2.3–2.6 μm thermal emission is clearly detectable in most of the spectra. These data show the nucleus surface to be hot and dry; no trace of H2O ice was detected. The surface temperature ranged continuously across the nucleus from ⩽300 K near the terminator to a maximum of ∼340 K, the expected sub-solar equilibrium temperature for a slowly rotating body. A single absorption band at ∼2.39 μm is quite evident in all of the spectra and resembles features seen in nitrogen-bearing organic molecules that are reasonable candidates for compositional components of cometary nuclei. However as of yet the source of this band is unknown.
Beyond topography - enhanced imaging of cometary dust with the MIDAS AFM
NASA Astrophysics Data System (ADS)
Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.
2013-09-01
The MIDAS atomic force microscope (AFM) onboard the Rosetta spacecraft is primarily designed to return the 3D shape and structure of cometary dust particles collected at comet 67P/Churyumov-Gerasimenko [1]. Commercial AFMs have, however, been further developed to measure many other sample properties. The possibilities to make such measurements with MIDAS are explored here.
NASA Astrophysics Data System (ADS)
Schmidt, Carl
2016-02-01
Neutral and ion species in cometary comae exhibit significant differences in their spatial distributions. These distributions reflect the combined effects of sublimation, ion pickup, collisions, solar radiation pressure, photolysis scale lengths of any parent molecules, and photolysis of the species of interest. An image-slicer spectrograph (R ∼ 20,000) is used here to measure C2, NH2, Na, and H2O+ emission lines in Comet C/2012 S1 ISON's coma within a narrow spectral window spanning 5868-5926 Å. These species are mapped over a 1.6 × 2.7 arcmin field made up of 240 individual spectra. While prior cometary observations have found that peak column densities of these species appear either sunward or anti-sunward, ISON's coma was elongated several thousand kilometers along an axis perpendicular to its motion and the sunward vector. The peak brightness of each species was located within 5000 km of the dusty continuum concentration. ISON's water ion tail appeared distinctly broader than the neutral Na tail and no evidence is seen for an extended source of Na by dissociative recombination of a molecular ion. The Na D2/D1 ratio in the head is 1.49 ± 0.06 despite being optically thin, increasing to 1.93 ± 0.07 in the tail. The dust distribution falls off less steeply than the canonical inverse with distance from the nucleus and C2 and NH2 scale lengths indicate an extended source, possibly due to nucleus fragmentation.
Hydrogen cyanide polymers, comets and the origin of life.
Matthews, Clifford N; Minard, Robert D
2006-01-01
Hydrogen cyanide polymers--heterogeneous solids ranging in colour from yellow to orange to brown to black--could be major components of the dark matter observed on many bodies of the outer solar system including asteroids, moons, planets and, especially, comets. The presence on cometary nuclei of frozen volatiles such as methane, ammonia and water subjected to high energy sources makes them attractive sites for the ready formation and condensed-phase polymerization of hydrogen cyanide. This could account for the dark crust observed on Comet Halley in 1986 by the Vega and Giotto missions. Dust emanating from its nucleus would arise partly from HCN polymers as suggested by the Giotto detection of free hydrogen cyanide, CN radicals, solid particles consisting only of H, C and N, or only of H, C, N, O, and nitrogen-containing organic compounds. Further evidence for cometary HCN polymers could be expected from in situ analysis of the ejected material from Comet Tempel 1 after collision with the impactor probe from the two-stage Deep Impact mission on July 4, 2005. Even more revealing will be actual samples of dust collected from the coma of Comet Wild 2 by the Stardust mission, due to return to Earth in January 2006 for analyses which we have predicted will detect these polymers and related compounds. In situ results have already shown that nitriles and polymers of hydrogen cyanide are probable components of the cometary dust that struck the Cometary and Interstellar Dust Analyzer of the Stardust spacecraft as it approached Comet Wild 2 on January 2, 2004. Preliminary evidence (January 2005) obtained by the Huygens probe of the ongoing Cassini-Huygens mission to Saturn and its satellites indicates the presence of nitrogen-containing organic compounds in the refractory organic cores of the aerosols that give rise to the orange haze high in the atmosphere of Titan, Saturn's largest moon. Our continuing investigations suggest that HCN polymers are basically of two types: ladder structures with conjugated -C=N- bonds and polyamidines readily converted by water to polypeptides. Thermochemolysis GC-MS studies show that cleavage products of the polymer include alpha-amino acids, nitrogen heterocycles such as purines and pyrimidines, and provide evidence for peptide linkages. Hydrogen cyanide polymers are a plausible link between cosmochemistry and the origin of informational macromolecules. Implications for prebiotic chemistry are profound. Following persistent bolide bombardment, primitive Earth may have been covered by water and carbonaceous compounds, particularly HCN polymers which would have supplied essential components for establishing protein/nucleic acid life.
Diamagnetic region(s): structure of the unmagnetized plasma around Comet 67P/CG
NASA Astrophysics Data System (ADS)
Henri, P.; Vallières, X.; Hajra, R.; Goetz, C.; Richter, I.; Glassmeier, K.-H.; Galand, M.; Rubin, M.; Eriksson, A. I.; Nemeth, Z.; Vigren, E.; Beth, A.; Burch, J. L.; Carr, C.; Nilsson, H.; Tsurutani, B.; Wattieaux, G.
2017-07-01
The ESA's comet chaser Rosetta has monitored the evolution of the ionized atmosphere of comet 67P/Churyumov-Gerasimenko (67P/CG) and its interaction with the solar wind, during more than 2 yr. Around perihelion, while the cometary outgassing rate was highest, Rosetta crossed hundreds of unmagnetized regions, but did not seem to have crossed a large-scale diamagnetic cavity as anticipated. Using in situ Rosetta observations, we characterize the structure of the unmagnetized plasma found around comet 67P/CG. Plasma density measurements from RPC-MIP are analysed in the unmagnetized regions identified with RPC-MAG. The plasma observations are discussed in the context of the cometary escaping neutral atmosphere, observed by ROSINA/COPS. The plasma density in the different diamagnetic regions crossed by Rosetta ranges from ˜100 to ˜1500 cm-3. They exhibit a remarkably systematic behaviour that essentially depends on the comet activity and the cometary ionosphere expansion. An effective total ionization frequency is obtained from in situ observations during the high outgassing activity phase of comet 67P/CG. Although several diamagnetic regions have been crossed over a large range of distances to the comet nucleus (from 50 to 400 km) and to the Sun (1.25-2.4 au), in situ observations give strong evidence for a single diamagnetic region, located close to the electron exobase. Moreover, the observations are consistent with an unstable contact surface that can locally extend up to about 10 times the electron exobase.
Collisional Processing of Olivine and Pyroxene in Cometary Dust
NASA Technical Reports Server (NTRS)
Lederer, S. M.; Cintala, M. J.; Olney, R. D.; Keller, L. P.; Nakamura-Messenger, K.; Zolensky, M.
2008-01-01
According to the nebular theory of solar-system formation, collisions between bodies occurred frequently early in the solar system s history and continue at a lower rate even today. Collisions have reworked the surface compositions and structures of cometary nuclei, though to an unknown degree. The majority of the collisional history of a typical Jupiter-family comet takes place while it resides in the Kuiper Belt. Impacts occur on the surfaces of small bodies over a large range of velocities by impactors of all sizes, but typical encounter speeds within the Kuiper Belt are 1.5 to 2.0 km/s[1]. Durda and Stern suggest that the interiors of most cometary nuclei with diameters <5 km have been heavily damaged by collisions [2]. They estimate that over a period of 3.5 Gy, a nucleus with a diameter of 2 km and an orbit between 35-45 AU will experience 90-300 collisions with objects greater than 8 m in diameter. In this same time interval, collisions between a typical Trans-Neptunian Object (TNO) 200 km in diameter and objects with d > 8 m would rework up to one-third of that TNO s surface. In fact, it has been proposed that most short-period comets from the Kuiper Belt (90%) are collisional fragments from larger TNOs - not primordial objects themselves [3] - and that most short-period comets from the Kuiper Belt will be collisionally processed both on their surfaces as well as in their interiors.
NASA Technical Reports Server (NTRS)
Broderick, Daniel
2010-01-01
A computational model calculates the excitation of water rotational levels and emission-line spectra in a cometary coma with applications for the Micro-wave Instrument for Rosetta Orbiter (MIRO). MIRO is a millimeter-submillimeter spectrometer that will be used to study the nature of cometary nuclei, the physical processes of outgassing, and the formation of the head region of a comet (coma). The computational model is a means to interpret the data measured by MIRO. The model is based on the accelerated Monte Carlo method, which performs a random angular, spatial, and frequency sampling of the radiation field to calculate the local average intensity of the field. With the model, the water rotational level populations in the cometary coma and the line profiles for the emission from the water molecules as a function of cometary parameters (such as outgassing rate, gas temperature, and gas and electron density) and observation parameters (such as distance to the comet and beam width) are calculated.
NASA Astrophysics Data System (ADS)
Paquette, J. A.; Engrand, C.; Hilchenbach, M.; Fray, N.; Stenzel, O. J.; Silen, J.; Rynö, J.; Kissel, J.
2018-07-01
The oxygen isotopic ratio 18O/16O has been measured in cometary gas for a wide variety of comets, but the only measurements in cometary dust were performed by the Stardust cometary sample return mission. Most such measurements find a value of the ratio that is consistent with Vienna Standard Mean Ocean Water (VSMOW) within errors. In this work we present the result of a measurement, using the COSIMA (the COmetary Secondary Ion Mass Analyser) instrument on the Rosetta orbiter, of the oxygen isotopic ratio in dust from Comet 67P/Churyumov-Gerasimenko. Measuring the 18O/16O ratio with COSIMA is challenging for a number of reasons, but it is possible with a reasonable degree of precision. We find a result of 2.00 × 10-3 ± 1.2 × 10-4, which is consistent within errors with VSMOW.
NASA Technical Reports Server (NTRS)
Alexander, W. M.; Tanner, William G.; Mcdonald, R. A.; Schaub, G. E.; Stephenson, Stepheni L.; Mcdonnell, J. A. M.; Maag, Carl R.
1994-01-01
The return of a pristine sample from a comet would lead to greater understanding of cometary structures, as well as offering insights into exobiology. The paper presented at the Discovery Program Workshop outlined a set of measurements for what was identified as a SOCCER-like interplanetary mission. Several experiments comprised the total instrumentation. This paper presents a summary of CCSR with an overview of three of the four major instruments. Details of the major dust dynamics experiment including trajectory are given in this paper. The instrument proposed here offers the opportunity for the return of cometary dust particles gathered in situ. The capture process has been employed aboard the space shuttle with successful results in returning samples to Earth for laboratory analysis. In addition, the sensors will measure the charge, mass, velocity, and size of cometary dust grains during the encounter. This data will help our understanding of dusty plasmas.
Physical process in the coma of comet 67P derived from narrowband imaging of fragment species
NASA Astrophysics Data System (ADS)
Perez Lopez, F.; Küppers, M.; Marín-Yaseli de la Parra, J.; Besse, S.; Moissl, R.
2017-09-01
During the rendezvous of the Rosetta spacecraft with comet 67P/Churyumov-Gerasimenko, the OSIRIS scientific cameras monitored the near-nucleus gas environment in various narrow-band filters, observing various fragment species. It turned out that the excitation processes in the innermost coma are significantly different from the overall coma, as observed from the ground [1]. In particular, some of the observed emissions of fragments (daughter molecules) are created by direct dissociation of parent molecules, and in those cases the spatial distribution of the emission directly maps the distribution of parent molecules. We investigate the evolution of the brightness and distribution of the emissions over time to improve our understanding of the underlying emission mechanisms and to derive the spatial distribution of H2O and CO2. The outcome will provide constraints on the homogeneity of the cometary nucleus.
NASA Technical Reports Server (NTRS)
Wdowiak, Thomas J.; Robinson, Edward L.; Flickinger, Gregory C.; Boyd, David A.
1989-01-01
During the Giotto and Vega encounters with Comet Halley both organic particles called CHON and energetic ions were detected. The acceleration of ions to hundreds of keV in the vicinity of the bow shock and near the nucleus may be a demonstration of a situation occurring in the early solar system (perhaps during the T Tauri stage) that led to the formation of organic particles only now released. Utilizing a Van de Graaff accelerator and a target chamber having cryogenic and mass spectrometer capabilities, frozen gases were bombarded at 10 K with 175 keV protons with the result that fluffy solid material remains after sublimation of the ice. Initial experiments were carried out with a gas mixture in parts of 170 carbon monoxide, 170 argon, 25 water, 20 nitrogen, and 15 methane formulated to reflect an interstellar composition in experiments involving the freezing out of the products of a plasma. The plasma experiments resulted in a varnish-like film residue that exhibited luminescence when excited with ultraviolet radiation, while the ion bombardment created particulate material that was not luminescent.
NASA Astrophysics Data System (ADS)
Kofman, W.; Herique, A.; Ciarletti, V.; Lasue, J.; Levasseur-Regourd, AC.; Zine, S.; Plettemeier, D.
2017-09-01
The structure of the nucleus is one of the major unknowns in cometary science. The scientific objectives of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) aboard ESA's spacecraft Rosetta are to perform an interior characterization of comet 67P/Churyumov-Gerasimenko nucleus. This is done by means of a bistatic sounding between the lander Philae laying on the comet's surface and the orbiter Rosetta. Current interpretation of the CONSERT signals is consistent with a highly porous carbon rich primitive body. Internal inhomogeneities are not detected at the wavelength scale and are either smaller, or present a low dielectric contrast. Given the high bulk porosity of 75% inside the sounded part of the nucleus, a likely interior model would be obtained by a mixture, at this 3-m size scale, of voids (vacuum) and blobs with material made of ices and dust with porosity larger than 60%. The absence of any pulse spreading due to scattering allows us to exclude heterogeneity with higher contrast (0.25) and larger size (3m) (but smaller than few wavelengths scale, since larger scales would be responsible for multipath propagation). CONSERT is the first successful radar probe to study the sub-surface of a small body.
GIADA On-Board Rosetta: Early Dust Grain Detections and Dust Coma Characterization of Comet 67P/C-G
NASA Astrophysics Data System (ADS)
Rotundi, A.; Della Corte, V.; Accolla, M.; Ferrari, M.; Ivanovski, S.; Lucarelli, F.; Mazzotta Epifani, E.; Sordini, R.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Fulle, M.; Bussoletti, E.; Crifo, J. F.; Esposito, F.; Green, S.; Grün, E.; Lamy, P. L.; McDonnell, T.; Mennella, V.; Molina, A.; Moreno, F.; Ortiz, J. L.; Palomba, E.; Perrin, J. M.; Rodrigo, R.; Weissman, P. R.; Zakharov, V.; Zarnecki, J.
2014-12-01
GIADA (Grain Impact Analyzer and Dust Accumulator) flying on-board Rosetta is devoted to study the cometary dust environment of 67P/Churiumov-Gerasimenko. GIADA is composed of 3 sub-systems: the GDS (Grain Detection System), based on grain detection through light scattering; an IS (Impact Sensor), giving momentum measurement detecting the impact on a sensed plate connected with 5 piezoelectric sensors; the MBS (MicroBalances System), constituted of 5 Quartz Crystal Microbalances (QCMs), giving cumulative deposited dust mass by measuring the variations of the sensors' frequency. The combination of the measurements performed by these 3 subsystems provides: the number, the mass, the momentum and the velocity distribution of dust grains emitted from the cometary nucleus.No prior in situ dust dynamical measurements at these close distances from the nucleus and starting from such large heliocentric distances are available up to date. We present here the first results obtained from the beginning of the Rosetta scientific phase. We will report dust grains early detection at about 800 km from the nucleus in August 2014 and the following measurements that allowed us characterizing the 67P/C-G dust environment at distances less than 100 km from the nucleus and single grains dynamical properties. Acknowledgements. GIADA was built by a consortium led by the Univ. Napoli "Parthenope" & INAF-Oss. Astr. Capodimonte, IT, in collaboration with the Inst. de Astrofisica de Andalucia, ES, Selex-ES s.p.a. and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with a support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developped from a PI proposal supported by the University of Kent; sci. & tech. contribution given by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank the RSGS/ESAC, RMOC/ESOC & Rosetta Project/ESTEC for their outstanding work. Science support provided by NASA through the US Rosetta Project managed by JPL/California Institute of Technology. GIADA calibrated data will be available through the ESA's PSA web site (www.rssd.esa.int/index.php?project=PSA&page=index). Thanks Angioletta.
NASA Astrophysics Data System (ADS)
Krüger, Harald; Stephan, Thomas; Engrand, Cécile; Briois, Christelle; Siljeström, Sandra; Merouane, Sihane; Baklouti, Donia; Fischer, Henning; Fray, Nicolas; Hornung, Klaus; Lehto, Harry; Orthous-Daunay, Francois-Régis; Rynö, Jouni; Schulz, Rita; Silén, Johan; Thirkell, Laurent; Trieloff, Mario; Hilchenbach, Martin
2015-11-01
COmetary Secondary Ion Mass Analyzer (COSIMA) is a time-of-flight secondary ion mass spectrometry (TOF-SIMS) instrument on board the Rosetta space mission. COSIMA has been designed to measure the composition of cometary dust particles. It has a mass resolution m/Δm of 1400 at mass 100 u, thus enabling the discrimination of inorganic mass peaks from organic ones in the mass spectra. We have evaluated the identification capabilities of the reference model of COSIMA for inorganic compounds using a suite of terrestrial minerals that are relevant for cometary science. Ground calibration demonstrated that the performances of the flight model were similar to that of the reference model. The list of minerals used in this study was chosen based on the mineralogy of meteorites, interplanetary dust particles and Stardust samples. It contains anhydrous and hydrous ferromagnesian silicates, refractory silicates and oxides (present in meteoritic Ca-Al-rich inclusions), carbonates, and Fe-Ni sulfides. From the analyses of these minerals, we have calculated relative sensitivity factors for a suite of major and minor elements in order to provide a basis for element quantification for the possible identification of major mineral classes present in the cometary particles.
MONTE CARLO SIMULATION OF METASTABLE OXYGEN PHOTOCHEMISTRY IN COMETARY ATMOSPHERES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisikalo, D. V.; Shematovich, V. I.; Gérard, J.-C.
2015-01-01
Cometary atmospheres are produced by the outgassing of material, mainly H{sub 2}O, CO, and CO{sub 2} from the nucleus of the comet under the energy input from the Sun. Subsequent photochemical processes lead to the production of other species generally absent from the nucleus, such as OH. Although all comets are different, they all have a highly rarefied atmosphere, which is an ideal environment for nonthermal photochemical processes to take place and influence the detailed state of the atmosphere. We develop a Monte Carlo model of the coma photochemistry. We compute the energy distribution functions (EDF) of the metastable O({supmore » 1}D) and O({sup 1}S) species and obtain the red (630 nm) and green (557.7 nm) spectral line shapes of the full coma, consistent with the computed EDFs and the expansion velocity. We show that both species have a severely non-Maxwellian EDF, that results in broad spectral lines and the suprathermal broadening dominates due to the expansion motion. We apply our model to the atmosphere of comet C/1996 B2 (Hyakutake) and 103P/Hartley 2. The computed width of the green line, expressed in terms of speed, is lower than that of the red line. This result is comparable to previous theoretical analyses, but in disagreement with observations. We explain that the spectral line shape does not only depend on the exothermicity of the photochemical production mechanisms, but also on thermalization, due to elastic collisions, reducing the width of the emission line coming from the O({sup 1}D) level, which has a longer lifetime.« less
NASA Astrophysics Data System (ADS)
Merouane, Sihane; Stenzel, Oliver; Hilchenbach, Martin; Schulz, Rita; Altobelli, Nicolas; Fischer, Henning; Hornung, Klaus; Kissel, Jochen; Langevin, Yves; Mellado, Eva; Rynö, Jouni; Zaprudin, Boris
2017-07-01
The Cometary Secondary Ion Mass Analyzer (COSIMA) collects dust particles in the coma of 67P/Churyumov-Gerasimenko, images them with a resolution of 14 μm × 14 μm, and measures their composition via time-of-flight secondary ion mass spectrometry. The particles are collected on targets exposed to the cometary flux for periods ranging from several hours to a week. Images are acquired with the internal camera, the COSISCOPE, before and after each exposure period. This paper focuses on the evolution of the dust flux and of the size distribution of the particles derived from the COSISCOPE images during the two years of the mission. The dust flux reaches its maximum at perihelion. We suggest that the delay of 20 d between the activity measured by COSIMA and the gas activity measured by the other instruments on Rosetta is caused by the presence of a volatile-poor dust layer on the nucleus that is removed around perihelion, uncovering volatile-rich layers that then become active. The difference in morphology between the northern and southern hemispheres observed by OSIRIS, the south being more sintered, is also recorded in the COSIMA data by a change in the size distribution during the southern summer, as the large porous aggregates disappear from the COSIMA collection. The properties of the particles collected during an outburst in early September 2016 indicate that these particles were ejected by a violent event and might originate from regions of low tensile strength.
TOF-SIMS Analysis of Crater Residues from Wild 2 Cometary on Stardust Aluminum Foil
NASA Technical Reports Server (NTRS)
Leutner, Jan; Stephan, Thomas; Kearsley, T.; Horz, Friedrich; Flynn, George J.; Sandford, Scott A.
2006-01-01
Impact residues of cometary particles on aluminum foils from the Stardust mission were investigated with TOF-SIMS for their elemental and organic composition. The residual matter from comet 81P/Wild 2 shows a wide compositional range, from nearly monomineralic grains to polymict aggregates. Despite the comparably small analyzed sample volume, the average element composition of the investigated residues is similar to bulk CI chondritic values. Analysis of organic components in impact residues is complicated, due to fragmentation and alteration of the compounds during the impact process and by the presence of contaminants on the aluminum foils. Nevertheless, polycyclic aromatic hydrocarbons (PAHs) that are unambiguously associated with the impact residues were observed, and thus are most likely of cometary origin.
The Comet Radar Explorer Mission
NASA Astrophysics Data System (ADS)
Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul
2014-11-01
Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and texture, probing surface materials attainable by future robotic excavation missions. Thermal images will reveal areas of sublimation cooling around vents and pits, and the secular response of the outer meters as the nucleus moves farther from the Sun.
NASA Technical Reports Server (NTRS)
Cook, Jamie Elisla
2009-01-01
NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.
NASA Astrophysics Data System (ADS)
Mumma, Michael J.
2008-10-01
As messengers from the early Solar System, comets contain key information from the time of planet formation and even earlier some may contain material formed in our natal interstellar cloud. Along with water, the cometary nucleus contains ices of natural gases (CH4, C2H6), alcohols (CH3OH), acids (HCOOH), embalming fluid (H2CO), and even anti-freeze (ethylene glycol). Comets today contain some ices that vaporize at temperatures near absolute zero (CO, CH4), demonstrating that their compositions remain largely unchanged after 4.5 billion years. By comparing their chemical diversity, several distinct cometary classes have been identified but their specific relation to chemical gradients in the proto-planetary disk remains murky. How does the compositional diversity of comets relate to nebular processes such as chemical processing, radial migration, and dynamical scattering? No current reservoir holds a unique class, but their fractional abundance can test emerging dynamical models for origins of the scattered Kuiper disk, the Oort cloud, and the (proposed) main-belt comets. I will provide a simplified overview emphasizing what we are learning, current issues, and their relevance to the subject of this Symposium.
Chirality, photochemistry and the detection of amino acids in interstellar ice analogues and comets.
Evans, Amanda C; Meinert, Cornelia; Giri, Chaitanya; Goesmann, Fred; Meierhenrich, Uwe J
2012-08-21
The primordial appearance of chiral amino acids was an essential component of the asymmetric evolution of life on Earth. In this tutorial review we will explore the original life-generating, symmetry-breaking event and summarise recent thoughts on the origin of enantiomeric excess in the universe. We will then highlight the transfer of asymmetry from chiral photons to racemic amino acids and elucidate current experimental data on the photochemical synthesis of amino and diamino acid structures in simulated interstellar and circumstellar ice environments. The chirality inherent within actual interstellar (cometary) ice environments will be considered in this discussion: in 2014 the Rosetta Lander Philae onboard the Rosetta space probe is planned to detach from the orbiter and soft-land on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko. It is equipped for the in situ enantioselective analysis of chiral prebiotic organic species in cometary ices. The scientific design of this mission will therefore be presented in the context of analysing the formation of amino acid structures within interstellar ice analogues as a means towards furthering understanding of the origin of asymmetric biological molecules.
Abundant molecular oxygen in the coma of comet 67P/Churyumov-Gerasimenko.
Bieler, A; Altwegg, K; Balsiger, H; Bar-Nun, A; Berthelier, J-J; Bochsler, P; Briois, C; Calmonte, U; Combi, M; De Keyser, J; van Dishoeck, E F; Fiethe, B; Fuselier, S A; Gasc, S; Gombosi, T I; Hansen, K C; Hässig, M; Jäckel, A; Kopp, E; Korth, A; Le Roy, L; Mall, U; Maggiolo, R; Marty, B; Mousis, O; Owen, T; Rème, H; Rubin, M; Sémon, T; Tzou, C-Y; Waite, J H; Walsh, C; Wurz, P
2015-10-29
The composition of the neutral gas comas of most comets is dominated by H2O, CO and CO2, typically comprising as much as 95 per cent of the total gas density. In addition, cometary comas have been found to contain a rich array of other molecules, including sulfuric compounds and complex hydrocarbons. Molecular oxygen (O2), however, despite its detection on other icy bodies such as the moons of Jupiter and Saturn, has remained undetected in cometary comas. Here we report in situ measurement of O2 in the coma of comet 67P/Churyumov-Gerasimenko, with local abundances ranging from one per cent to ten per cent relative to H2O and with a mean value of 3.80 ± 0.85 per cent. Our observations indicate that the O2/H2O ratio is isotropic in the coma and does not change systematically with heliocentric distance. This suggests that primordial O2 was incorporated into the nucleus during the comet's formation, which is unexpected given the low upper limits from remote sensing observations. Current Solar System formation models do not predict conditions that would allow this to occur.
NASA Technical Reports Server (NTRS)
Marconi, M. L.; Mendis, D. A.; Korth, A.; Lin, R. P.; Mitchell, D. L.
1990-01-01
A sharp peak in the mass spectrum at 35 amu is observed by the heavy ion analyzer on board the Giotto spacecraft just inside the ionopause. This peak is identified with H3S(+) and it is argued that the dominant source of its likely parent molecule (H2S) is the observed distributed source of circumnuclear dust, rather than the central nucleus. In this case, the total production rate of H2S is more than about 0.5 percent that of the dominant cometary molecule H2O.
Dynamics of landslides on comets of irregular shape
NASA Astrophysics Data System (ADS)
Czechowski, Leszek
2017-04-01
Landslides were observed on a few comet's nuclei, e.g. [1], [2]. The mechanism of their origin is not obvious because of very low gravity. According to [2] fluidization and multiphase transport of cometary material could be an explanation. We investigate here motion of the mass on a comet of irregular shape. The mechanism responsible for the low friction is not considered here. In fact, mass motion often occurs without contact with the surface. The motion could be triggered by meteoroids impacts or by the tidal forces. Comets nuclei are believed to be built of soft materials like snow and dust. The landing of Philae on the comet 67P/Czuriumow-Gierasimienko indicates a different situation. According to [1]: "thermal probe did not fully penetrate the near-surface layers, suggesting a local resistance of the ground to penetration of >4 megapascals, equivalent to >2 megapascal uniaxial compressive strength". Here we assume that elastic properties of comet's nuclei could be similar to elastic properties of dry snow, namely Young modulus is assumed to be 1 - 100 MPa, see [3] and [4]. We consider nucleus of the shape of 67P/Churyumov-Gerasimenko with density 470 kg/m3. The impact or tidal forces result in changing of rotation of the comet. In general, the vector of angular velocity will be a subject to nutation that results in changing of centrifugal force, and consequently could be a factor triggering landslides. Note that nucleus' shape does not resemble the shape of surface of constant value of gravitational potential (i.e. 'geoid'). Our numerical models indicate the parts of the nucleus where landslides start and other parts where landslides stop. Of course, the regolith from the first type of regions would be removed to the regions of the second class. The motion of the mass is often complicated because of complicated distribution of the gravity and complicated shape of the nucleus. Acknowledgement: The research is partly supported by Polish National Science Centre NCN) (decision 2014/15/B/ST 10/02117) References [1] T. Spohn, et al. (2015) Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov- Gerasimenko. Science 31 July 2015: Vol. 349 no. 6247 DOI: 10.1126/science.aab0464 [2] Belton M. J.S., Melosh J. (2009). Fluidization and multiphase transport of particulate cometary material as an explanation of the smooth terrains and repetitive outbursts on 9P/Tempel 1. Icarus 200 (2009) 280-291 [3] Reuter B. (2013) On how to measure snow mechanical properties relevant to slab avalanche release. International Snow Science Workshop Grenoble - Chamonix Mont-Blanc - 2013 007 [4] Ball A.J. (1997) Ph. D. Thesis: Measuring Physical Properties at the Surface of a Comet Nucleus, Univ.of Kent U.K.
NASA Astrophysics Data System (ADS)
Gersch, Alan M.; A’Hearn, Michael F.; Feaga, Lori M.
2018-04-01
We have applied our asymmetric spherical adaptation of Coupled Escape Probability to the modeling of optically thick cometary comae. Expanding on our previously published work, here we present models including asymmetric comae. Near-nucleus observations from the Deep Impact mission have been modeled, including observed coma morphology features. We present results for two primary volatile species of interest, H2O and CO2, for comet 9P/Tempel 1. Production rates calculated using our best-fit models are notably greater than those derived from the Deep Impact data based on the assumption of optically thin conditions, both for H2O and CO2 but more so for CO2, and fall between the Deep Impact values and the global pre-impact production rates measured at other observatories and published by Schleicher et al. (2006), Mumma et al. (2005), and Mäkinen et al. (2007).
Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko.
Filacchione, G; De Sanctis, M C; Capaccioni, F; Raponi, A; Tosi, F; Ciarniello, M; Cerroni, P; Piccioni, G; Capria, M T; Palomba, E; Bellucci, G; Erard, S; Bockelee-Morvan, D; Leyrat, C; Arnold, G; Barucci, M A; Fulchignoni, M; Schmitt, B; Quirico, E; Jaumann, R; Stephan, K; Longobardo, A; Mennella, V; Migliorini, A; Ammannito, E; Benkhoff, J; Bibring, J P; Blanco, A; Blecka, M I; Carlson, R; Carsenty, U; Colangeli, L; Combes, M; Combi, M; Crovisier, J; Drossart, P; Encrenaz, T; Federico, C; Fink, U; Fonti, S; Ip, W H; Irwin, P; Kuehrt, E; Langevin, Y; Magni, G; McCord, T; Moroz, L; Mottola, S; Orofino, V; Schade, U; Taylor, F; Tiphene, D; Tozzi, G P; Beck, P; Biver, N; Bonal, L; Combe, J-Ph; Despan, D; Flamini, E; Formisano, M; Fornasier, S; Frigeri, A; Grassi, D; Gudipati, M S; Kappel, D; Mancarella, F; Markus, K; Merlin, F; Orosei, R; Rinaldi, G; Cartacci, M; Cicchetti, A; Giuppi, S; Hello, Y; Henry, F; Jacquinod, S; Reess, J M; Noschese, R; Politi, R; Peter, G
2016-01-21
Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation.
Porosity Gradient at the Surface of Comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Christou, C.; Dadzie, S. K.; Thomas, N.; Hartogh, P.; Jorda, L.; Kuhrt, E.; Wright, I.; Zarnecki, J.
2017-12-01
The Rosetta mission has provided invaluable and unexpected information about our knowledge and understanding of comets until now. The on-board instruments, ROSINA and VIRTIS showed the non-uniformly outgassing of H2O over the surface of the nucleus. After Philae landing in a small lobe and the attempt to intrude MUPUS into the surface led to estimate the minimum compressive strength of material > 4MPa. This high strength of material (at least locally) along with different porosity ranges that have been presented for the 67P/Churyumov-Gerasimenko (67P) challenge our understanding of the surface and outgassing processes. Here we used the micro computed tomography (micro-CT) technology to represent 3D Earth rock samples with different porosity to investigate outgassing in the near surface boundary layer. The Direct Simulation of Monte Carlo (DSMC) method is used to simulate the rarefied cometary atmosphere. We presented results with H2O outgassing at a maximum production rate near perihelion. We show that an existence of a possible porosity gradient at the surface of the comet may explain some of the structures observed on 67P.
HUBBLE SEES MINI-COMET FRAGMENTS FROM COMET LINEAR
NASA Technical Reports Server (NTRS)
2002-01-01
[lower right] In one stunning Hubble picture the fate of the mysteriously vanished solid nucleus of Comet LINEAR has been settled. The Hubble picture shows that the comet nucleus has been reduced to a shower of glowing 'mini-comets' resembling the fiery fragments from an exploding aerial firework. This is the first time astronomers have ever gotten a close-up look at what may be the smallest building blocks of cometary nuclei, the icy solid pieces called 'cometesimals', which are thought to be less than 100 feet across. The farthest fragment to the left, which is now very faint, may be the remains of the parent nucleus that fragmented into the cluster of smaller pieces to the right. The comet broke apart around July 26, when it made its closest approach to the Sun. The picture was taken with Hubble's Wide Field Planetary Camera 2 on August 5, 2000, when the comet was at a distance of 64 million miles (102 million kilometers) from Earth. Credit: NASA, Harold Weaver (the Johns Hopkins University), and the HST Comet LINEAR Investigation Team [upper left] A ground-based telescopic view (2.2-meter telescope) of Comet LINEAR taken on August 5, at nearly the same time as the Hubble observations. The comet appears as a diffuse elongated cloud of debris without any visible nucleus. Based on these images, some astronomers had concluded that the ices in the nucleus had completely vaporized, leaving behind a loose swarm of dust. Hubble's resolution was needed to pinpoint the remaining nuclei (inset box shows HST field of view as shown in lower right). Credit: University of Hawaii
Distant Jupiter family Comet P/2011 P1 (McNaught)
NASA Astrophysics Data System (ADS)
Korsun, Pavlo P.; Ivanova, Oleksandra V.; Afanasiev, Viktor L.; Kulyk, Irina V.
2016-03-01
The spectra and images obtained through broadband BVRc filters for Jupiter family Comet P/2011 P1 (McNaught) were analyzed. We observed the comet on November 24, 2011, when its heliocentric distance was 5.43 AU. Two dimensional long slit spectra and photometric images were obtained using the focal reducer SCORPIO attached to the prime focus of the 6-m telescope BTA (SAO RAS, Russia). The spectra cover the wavelength range of 4200-7000 Å. No emissions of C2 and CO+, which are expected in this wavelength region, were detected above 3σ level. An upper limit in gas production rate of C2 is expected to be 1.1 × 1024 mol s-1. The continuum shows a reddening effect with the normalized gradient of reflectivity along dispersion of 5.1 ± 1.2% per 1000 Å. The color indices (B-V) = 0.89 ± 0.09 and (V-Rc) = 0.42 ± 0.07 for the nucleus region or (B-V) = 0.68 ± 0.12 and (V-Rc) = 0.39 ± 0.10 for the coma region, which are derived from the photometric data, also evidence that the color of the cometary nucleus and dust are redder with respect to the Sun. The normalized gradients of 5.9 ± 2.9% per 1000 Å and 2.6 ± 1.9% per 1000 Å for VRc filters were obtained for the cometary nucleus and the dust coma, respectively. The estimated dust mass production rate is about 12 kg s-1 for Rc filter. The dust coma like a spiral galaxy edge-on was fitted using a Monte Carlo model. Since it is expected that the particles forming the dust coma consist of ;dirty; ice, Greenberg's model was adopted to track grains with an icy component that evaporates slowly when exposed to solar radiation. The observed coma was fitted assuming two isolated active zones located at the cometocentric latitudes of -8° and -35° with outflow of the dust within the cones having half opening angles of 8° and 70°, respectively. About, 45% and 55% of the observed dust were originated from the high collimated and low collimated active zones, respectively. The spin-axis of the rotating nucleus is positioned in the comet's orbit plane. The sizes of the dust particles were ranged from 5 μm to 1 mm with a power index of -3.0 for the adopted exponential dust size distribution.
NASA Astrophysics Data System (ADS)
Remijan, Anthony J.; Milam, Stefanie N.; Womack, Maria; Apponi, A. J.; Ziurys, L. M.; Wyckoff, Susan; A'Hearn, M. F.; de Pater, Imke; Forster, J. R.; Friedel, D. N.; Palmer, Patrick; Snyder, L. E.; Veal, J. M.; Woodney, L. M.; Wright, M. C. H.
2008-12-01
We present an interferometric and single-dish study of small organic species toward Comets C/1995 O1 (Hale-Bopp) and C/2002 T7 (LINEAR) using the BIMA interferometer at 3 mm and the ARO 12 m telescope at 2 mm. For Comet Hale-Bopp, both the single-dish and interferometer observations of CH3OH indicate an excitation temperature of 105 +/- 5 K and an average production rate ratio Q(CH3OH)/Q(H2O) ~ 1.3% at ~1 AU. In addition, the aperture synthesis observations of CH3OH suggest a distribution well described by a spherical outflow and no evidence of significant extended emission. Single-dish observations of CH3CN in Comet Hale-Bopp indicate an excitation temperature of 200 +/- 10 K and a production rate ratio of Q(CH3CN)/Q(H2O) ~ 0.017% at ~1 AU. The nondetection of a previously claimed transition of cometary (CH2OH)2 toward Comet Hale-Bopp with the 12 m telescope indicates a compact distribution of emission, D < 9'' (<8500 km). For the single-dish observations of Comet T7 LINEAR, we find an excitation temperature of CH3OH of 35 +/- 5 K and a CH3OH production rate ratio of Q(CH3OH)/Q(H2O) ~ 1.5% at ~0.3 AU. Our data support current chemical models that CH3OH, CH3CN, and (CH2OH)2 are parent nuclear species distributed into the coma via direct sublimation off cometary ices from the nucleus with no evidence of significant production in the outer coma.
Presolar Materials in a Giant Cluster IDP of Probable Cometary Origin
NASA Technical Reports Server (NTRS)
Messenger, S.; Brownlee, D. E.; Joswiak, D. J.; Nguyen, A. N.
2015-01-01
Chondritic porous interplanetary dust particles (CP-IDPs) have been linked to comets by their fragile structure, primitive mineralogy, dynamics, and abundant interstellar materials. But differences have emerged between 'cometary' CP-IDPs and comet 81P/Wild 2 Stardust Mission samples. Particles resembling Ca-Al-rich inclusions (CAIs), chondrules, and amoeboid olivine aggregates (AOAs) in Wild 2 samples are rare in CP-IDPs. Unlike IDPs, presolar materials are scarce in Wild 2 samples. These differences may be due to selection effects, such as destruction of fine grained (presolar) components during the 6 km/s aerogel impact collection of Wild 2 samples. Large refractory grains observed in Wild 2 samples are also unlikely to be found in most (less than 30 micrometers) IDPs. Presolar materials provide a measure of primitive-ness of meteorites and IDPs. Organic matter in IDPs and chondrites shows H and N isotopic anomalies attributed to low-T interstellar or protosolar disk chemistry, where the largest anomalies occur in the most primitive samples. Presolar silicates are abundant in meteorites with low levels of aqueous alteration (Acfer 094 approximately 200 ppm) and scarce in altered chondrites (e.g. Semarkona approximately 20 ppm). Presolar silicates in minimally altered CP-IDPs range from approximately 400 ppm to 15,000 ppm, possibly reflecting variable levels of destruction in the solar nebula or statistical variations due to small sample sizes. Here we present preliminary isotopic and mineralogical studies of a very large CP-IDP. The goals of this study are to more accurately determine the abundances of presolar components of CP-IDP material for comparison with comet Wild 2 samples and meteorites. The large mass of this IDP presents a unique opportunity to accurately determine the abundance of pre-solar grains in a likely cometary sample.
Pre- and Post-perihelion Observations of C/2009 P1 (Garradd): Evidence for an Oxygen-rich Heritage?
NASA Technical Reports Server (NTRS)
Disanti, Michael Antonio; Villanueva, Geronimo Luis; Paganini, Lucas; Bonev, Boncho P.; Keane, Jacqueline V.; Meech, Karen J.; Mumma, Michael Jon
2013-01-01
We conducted pre- and post-perihelion observations of Comet C/2009 P1 (Garradd) on UT 2011 October 13 and 2012 January 8, at heliocentric distances of 1.83 and 1.57 AU, respectively, using the high-resolution infrared spectrometer (NIRSPEC) at the Keck II 10-m telescope on Mauna Kea, HI. Pre-perihelion, we obtained production rates for nine primary volatiles (native ices): H2O, CO, CH3OH, CH4, C2H6, HCN, C2H2, H2CO, and NH3. Post-perihelion, we obtained production rates for three of these (H2O, CH4, and HCN) and sensitive upper limits for three others (C2H2, H2CO, and NH3). CO was enriched and C2H2 was depleted, yet C2H6 and CH3OH were close to their currentmean values asmeasured in a dominant group of Oort cloud comets. This may indicate processing of its pre-cometary ices in a relatively oxygen-rich environment. Our measurements indicate consistent pre- and post-perihelion abundance ratios relative to H2O, suggesting we were measuring compositional homogeneity among measured species to the depths in the nucleus sampled. However, the overall gas production was lower post-perihelion despite its smaller heliocentric distance on January 8. This is qualitatively consistent with other studies of C/2009 P1, perhaps due to seasonal differences in the heating of one or more active regions on the nucleus. On October 13, the water profile showed a pronounced excess towards the Sun-facing hemisphere that was not seen in other molecules, including H2O on January 8, nor in the dust continuum. Inter-comparison of profiles from October 13 permitted us to quantify contributions due to release of H2O from the nucleus, and fromits release in the coma. This resulted in the latter source contributing 25-30% of the total observed water within our slit, which covered roughly +/-300 km by +/-4500 km from the nucleus. We attribute this excess H2O, which peaked at a mean projected distance of 1300-1500 km from the nucleus, to release from water-rich, relatively pure icy grains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, Tobias; Noack, Matthias
2016-05-20
The Rosetta probe around comet 67P/Churyumov–Gerasimenko (67P) reveals an anisotropic dust distribution of the inner coma with jet-like structures. The physical processes leading to jet formation are under debate, with most models for cometary activity focusing on localized emission sources, such as cliffs or terraced regions. Here we suggest, by correlating high-resolution simulations of the dust environment around 67P with observations, that the anisotropy and the background dust density of 67P originate from dust released across the entire sunlit surface of the nucleus rather than from few isolated sources. We trace back trajectories from coma regions with high local dustmore » density in space to the non-spherical nucleus and identify two mechanisms of jet formation: areas with local concavity in either two dimensions or only one. Pits and craters are examples of the first case; the neck region of the bi-lobed nucleus of 67P is an example of the latter case. The conjunction of multiple sources, in addition to dust released from all other sunlit areas, results in a high correlation coefficient (∼0.8) of the predictions with observations during a complete diurnal rotation period of 67P.« less
Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples.
Dominguez, Gerardo; Mcleod, A S; Gainsforth, Zack; Kelly, P; Bechtel, Hans A; Keilmann, Fritz; Westphal, Andrew; Thiemens, Mark; Basov, D N
2014-12-09
Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 μm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples.
NASA Sample Return Missions: Recovery Operations
NASA Technical Reports Server (NTRS)
Pace, L. F.; Cannon, R. E.
2017-01-01
The Utah Test and Training Range (UTTR), southwest of Salt Lake City, Utah, is the site of all NASA unmanned sample return missions. To date these missions include the Genesis solar wind samples (2004) and Stardust cometary and interstellar dust samples (2006). NASA’s OSIRIS-REx Mission will return its first asteroid sample at UTTR in 2023.
The application of simple mass spectrometers to planetary sub-surface sampling using penetrators
NASA Astrophysics Data System (ADS)
Sheridan, Simon; Morse, Andrew; Bardwell, Max; Barber, Simeon; Wright, Ian
2010-05-01
Ptolemy is an ion trap based gas-chromatograph isotope ratio mass spectrometer which is on-board the Rosetta Lander [Wright et al., 2006; Todd et al., 2007]. The instrument uses the principles of MODULUS (Methods of Determining and Understanding Light Elements From Unequivocal Stable Isotope Compositions [Pillinger and Wright, 1993], to enable results obtained in space to be interpreted directly in the context of terrestrial analyses of meteorites and returned samples. MODULUS typically involves use of a complex sample processing system to purify and separate individual species from a complex starting sample, allowing analysis by a relatively simple, low resolution, but stable and precise mass spectrometer instrumentation. A number of exciting future mission opportunities are arising where it is unlikely that it will be feasible to incorporate the full MODULUS-style sample processing system. Of particular interest are missions that offer the opportunity to gain access to surface and sub-surface material through the deployment of mass spectrometers from either high-speed penetrator platforms [Smith et al., 2009] or from sub-surface penetrating mole devices deployed by soft landers [Richter et al., 2003]. We will present work aimed at overcoming the resolution restrictions of ion trap mass spectrometers. It is anticipated that this will enable MODULUS style science return from relatively simple instrumentation which is compatible with the future miniaturised sampling platforms currently under consideration for Mars, asteroids, comets and planetary moons. References: Wright I. P., Barber S. J., Morgan G. H., Morse A. D., Sheridan S., Andrews D. J., Maynard J., Yau D., Evans S. T., Leese M. R., Zarnecki J. C., Kent B. J., Waltham N. R., Whalley M. S., Heys S., Drummond D. L., Edeson R. L., Sawyer E. C., Turner R. F., and Pillinger C. T. (2006). Ptolemy - an instrument to measure stable isotopic ratios of key volatiles on a cometary nucleus. Space Science Reviews, 128 (1-4), 363-387. Todd, J.F.J., Barber, S.J., Wright, I.P., Morgan, G.H., Morse, A.D., Sheridan, S., Leese, M.R., Maynard, J., Evans, S.T., Pillinger, C.T. et al. (2007). Ion trap mass spectrometry on a comet nucleus: the Ptolemy instrument and the Rosetta space mission. J. Mass Spectrom. 42,1-10. Pillinger C. T., and Wright I. P. (1993). MODULUS - Methods Of Determining and Understanding Light elements from Unequivocal Stable isotope composition. A type 2 proposal submitted to the RoLand Cometary Lander of the ESA International Rosetta Mission for the provision of Ptolemy - an evolved gas analyser. Richter L., Coste P., Grzesik A., Magnani P., Nadalini R., Neuhaus D., Re E., Romstedt J., Sims M. and Sohl F. (2005). Instrumented Moles for Planetary Subsurface Regolith Studies. Geophysical Research Abstracts, Vol. 7, 08659 A. Smith A.,. Crawford I. A., Gowen R. A., Ball A. J., Barber S. J., Church P., Coates A. J., Gao Y., Griffiths A. D., Hagermann A.,•Joy K. H., Phipps A., Pike W. T., Scott R., Sheridan S., Sweeting M., Talboys D.,•Tong V.,•Wells N.,• Biele J., Chela-Flores J.,•Dabrowski B., Flannagan J., Grande M., Grygorczuk J., Kargl G.,. Khavroshkin O. B.,•Klingelhoefer G., Knapmeyer M.,• Marczewski W., McKenna-Lawlor S.,•Richter L., Rothery D. A., Seweryn K., Ulamec S., Wawrzaszek R., Wieczorek M., Wright I. P. and Sims M. (2009). LunarEX - a proposal to cosmic vision. Exp Astron 23:711-740: DOI 10.1007/s10686-008-9109-6
PREVAILING DUST-TRANSPORT DIRECTIONS ON COMET 67P/CHURYUMOV–GERASIMENKO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, Tobias; Noack, Matthias
Dust transport and deposition behind larger boulders on the comet 67P/Churyumov–Gerasimenko (67P/C–G) have been observed by the Rosetta mission. We present a mechanism for dust-transport vectors based on a homogeneous surface activity model incorporating in detail the topography of 67P/C–G. The combination of gravitation, gas drag, and Coriolis force leads to specific dust transfer pathways, which for higher dust velocities fuel the near-nucleus coma. By distributing dust sources homogeneously across the whole cometary surface, we derive a global dust-transport map of 67P/C–G. The transport vectors are in agreement with the reported wind-tail directions in the Philae descent area.
The study of the physics of cometary nuclei
NASA Technical Reports Server (NTRS)
Whipple, Fred L.
1987-01-01
The numerical calculations of stability for many possible orbits of the double nucleus for P/Holmes showed that the likelihood of such a precollision history was quite high. A number of investigations were made of hypothetical orbits for particles about the asteroid Amphitrite to test for stability. The purpose was to establish more favorable fly-by orbits close to the asteroid for the Galileo missions en-route to Jupiter, reducing the collisional hazards. A statistical study was made of the orbits of long-period comets with small original semi-major axes recently perturbed from the great Opik-Oort Cloud. The results from the space missions to Halley's comet are partially reported in the two papers in the appendices.
NASA Technical Reports Server (NTRS)
Sekanina, Zdenek
1991-01-01
One of the more attractive among the plausible scenarios for the major emission event recently observed on Comet Halley at a heliocentric distance of 14.3 AU is activation of a source of ejecta driven by an icy substance much more volatile than water. As prerequisite for the forthcoming detailed analysis of the imaging observations of this event, a simple model is proposed that yields the sublimation rate versus time at any location on the surface of a rotating cometary nucleus for two candidate ices: carbon monoxide and carbon dioxide. The model's variable parameters are the comet's heliocentric distance r and the Sun's instantaneous zenith angle z.
Interstellar and Solar Nebula Materials in Cometary Dust
NASA Technical Reports Server (NTRS)
Messenger, Scott; Nakamura-Messenger, Keiko; Keller, Lindsay; Nguyen, Ann; Clemett, Simon
2017-01-01
Laboratory studies of cometary dust collected in the stratosphere and returned from comet 81P/Wild 2 by the Stardust spacecraft have revealed ancient interstellar grains and molecular cloud organic matter that record a range of astrophysical processes and the first steps of planetary formation. Presolar materials are rarer meteorites owing to high temperature processing in the solar nebula and hydrothermal alteration on their asteroidal parent bodies. The greater preservation of presolar materials in comets is attributed to their low accretion temperatures and limited planetary processing. Yet, comets also contain a large complement of high temperature materials from the inner Solar System. Owing to the limited and biased sampling of comets to date, the proportions of interstellar and Solar System materials within them remains highly uncertain. Interstellar materials are identified by coordinated isotopic, mineralogical, and chemical measurements at the scale of individual grains. Chondritic porous interplanetary dust particles (CP IDPs) that likely derive from comets are made up of 0.1 - 10 micron-sized silicates, Fe-Ni-sulfides, oxides, and other phases bound by organic material. As much as 1% of the silicates are interstellar grains that have exotic isotopic compositions imparted by nucleosynthetic processes in their parent stars. Crystalline silicates in CP IDPs dominantly have normal isotopic compositions and probably formed in the Solar System. 81P samples include isotopically normal refractory minerals that resemble Ca-Al rich inclusions and chondrules common in meteorites. The origins of sub-micron amorphous silicates in IDPs are not certain, but at least a few % of them are interstellar grains. The remainder have isotopic compositions consistent with Solar System origins and elemental compositions that are inconsistent with interstellar grain properties, thus favoring formation in the solar nebula [4]. The organic component in comets and primitive meteorites has large enrichments in D/H and N-15/N-14 relative to terrestrial materials. These isotopic signatures are probably due to low temperature chemical processes in cold molecular clouds or the outermost reaches of the protoplanetary disk. The greatest isotopic anomalies are found in sub-micron organic nanoglobules that show chemical signatures of interstellar chemistry. The observation that cometary dust is mostly composed of isotopically normal minerals within isotopically anomalous organic matter is difficult to reconcile with the formation models of each component. The mineral component likely formed in high temperature processes in the inner Solar System, while the organic fraction shows isotopic and chemical signatures of formation near 10 K. Studying more primitive remnants of the Solar System starting materials would help in resolving this paradox. Comets formed across a vast expanse of the outer disk under differing thermal and collisional regimes, and some are likely to be better preserved than others. Finding truly pristine aggregates of presolar materials may require return of a pristine sample of comet nucleus material.
Scientific returns from a program of space missions to comets
NASA Technical Reports Server (NTRS)
Delsemme, A. H.
1979-01-01
A program of cometary missions is proposed. The nature and size of interstellar dust, its origin and evolution; identification of new interstellar molecules; clarification of interstellar chemistry; accretion of grains into protosolar cometesimals; role of a T Tauri wind in the dissipation of the protosolar nebula; record of isotopic anomalies, better preserved in comets than in meteorites; cosmogenic and radiogenic dating of comets; cosmochronology and mineralogy of meteorites, as compared with that of cometary samples; origin of the earth's biosphere, and the origin of life are topics discussed in relation to comet exploration.
NASA Astrophysics Data System (ADS)
Barucci, Maria Antonietta; Fulchignoni, Marcello; Pommerol, Antoine; Erard, Stéphane; Oklay, Nilda; Tosi, Federico; Capaccioni, Fabrizio; Sierks, Holger; Filacchione, Gianrico; Bockelee-Morvan, Dominique; Guettler, Carsten; Fornasier, Sonia; Raponi, Andrea; Deshapriya, J. D. P.; Feller, Clement; Ciarniello, Mauro; Leyrat, Cedric
2016-07-01
Since the Rosetta mission arrived at the comet 67P/Churyumov-Gerasimenko (67/P C-G) on August 2014, the comet nucleus has been mapped by both OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System), and VIRTIS (Visible Infrared Thermal Imaging Spectrometer) acquiring a huge quantity of surface's images and spectra, producing the most detailed maps at the highest spatial resolution of a cometary nucleus. The OSIRIS imaging system (NAC & WAC) has a set of filters at different wavelengths from the ultraviolet (269 nm) to the near-infrared (989 nm). The OSIRIS imaging system has been the first instrument with the capability to map a comet surface at a high resolution reaching a maximum resolution of 11cm/px during the closest fly-by on February 14, 2015 at a distance of about 6 km from the nucleus surface while the VIRTIS spectro-imager (with two channels M and H) operates from 0.25 to 5m with medium and high spectral resolution. The spectral analysis on global scale from the VIRTIS data indicates that the nucleus presents different terrains covered by a very dark and dehydrated organic-rich material [1]. OSIRIS images indicate a morphologically complex and dark surface with a variety of terrain types and several intricate features [2]. The surface shows albedo variation and from the spectrophotometric analysis a large heterogeneity on the surface properties [3, 4, 5]. Limited evidences of exposed H2O ice have been found on the surface of 67/P C-G up to now [6, 7, 8], even though ices are considered to be a major constituent of cometary nuclei. The aim of this work is, taking advantage of the high resolution of the OSIRIS images, i) to detect the bright spots at all dimensions by albedo and spectral slope analyses, ii) to select those spots which could be resolved by VIRTIS and iii ) to deeply analyse the corresponding spectra. The OSIRIS analysis has been carried out on the colours and spectrophotometry of the whole 67/P C-G nucleus from images acquired since the first Rosetta bound orbits in August 2014 up to the end of 2015. The bright spots are spread everywhere on the surface. The analysis of the VIRTIS spectra on the selected positions by OSIRIS allowed us to detect eight spots with positive H2O ice signatures detection. The obtained results with the computed models will be presented and discussed. References : [1] Capaccioni et al. 2015. Science 347, DOI: 10.1126/science.aaa0628 [2] Sierks et al. 2015. Science 347, DOI: 10.1126/science.aaa1044 [3] Fornasier et al. 2015. A&A, 583, A30 [4] Ciarniello et al., 2015, A&A, 583, A31 [5] Oklay et al. 2016. A&A 586, A80 [6] Pommerol et al. 2015. A&A, 583, A25 [7] De Sanctis et al. 2015. Nature 525, 500 [8] Filacchione et al. 2016. Nature 529, 368.
Cometary Evolution: Clues on Physical Properties from Chondritic Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.; Mackinnon, Ian D. R.
1989-01-01
The degree of diversity or similarity detected in comets depends primarily on the lifetimes of the individual cometary nuclei at the time of analysis. It is inherent in our understanding of cometary orbital dynamics and the seminal model of comet origins by Oort that cometary evolution is the natural order of events in our Solar System. Thus, predictions of cometary behaviour in terms of bulk physical, mineralogical or chemical parameters should contain an appreciation of temporal variation(s). Previously, Rietmeijer and Mackinnon developed mineralogical bases for the chemical evolution of cometary nuclei primarily with regard to the predominantly silicate fraction of comet nuclei. We suggested that alteration of solids in cometary nuclei should be expected and that indications of likely reactants and products can be derived from judicious comparison with terrestrial diagenetic environments which include hydrocryogenic and low-temperature aqueous alterations. In a further development of this concept, Rietmeijer provides indirect evidence for the formation of sulfides and oxides in comet nuclei. Furthermore, Rietmeijer noted that timescales for hydrocryogenic and low-temperature reactions involving liquid water are probably adequate for relatively mature comets, e.g. P/comet Halley. In this paper, we will address the evolution of comet nuclei physical parameters such as solid particle grain size, porosity and density. In natural environments, chemical evolution (e.g. mineral reactions) is often accompanied by changes in physical properties. These concurrent changes are well-documented in the terrestrial geological literature, especially in studies of sediment diagenesis and we suggest that similar basic principles apply within the upper few meters of active comet nuclei. The database for prediction of comet nuclei physical parameters is, in principle, the same as used for the proposition of chemical evolution. We use detailed mineralogical studies of chondritic interplanetary dust particles (IDPS) as a guide to the likely constitution of mature comets traversing the inner Solar System. While there is, as yet, no direct proof that a specific sub-group or type of chondritic IDP is derived from a specific comet, it is clear that these particles are extraterrestrial in origin and that a certain portion of the interplanetary flux received by the Earth is cometary in origin. Two chondritic porous (CP) MPs, sample numbers W7010A2 and W7029Cl, from the Johnson Space Center Cosmic Dust Collection have been selected for this study of putative cometary physical parameters. This particular type of particle is considered a likely candidate for a cometary origin on the basis of mineralogy, bulk composition and morphology. While many IDPs have been subjected to intensive study over the past decade, we can develop a physical parameter model on only these two CP IDPs because few others have been studied in sufficient detail.
Cometary Evolution: Clues on Physical Properties from Chondritic Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Reitmeijer, Frans J. M.; Mackinnon, Ian D. R.
1997-01-01
The degree of diversity or similarity detected in comets depends primarily on the lifetimes of the individual cometary nuclei at the time of analysis. It is inherent in our understanding of cometary orbital dynamics and the seminal model of comet origins that cometary evolution is the natural order of events in our Solar System. Thus, predictions of cometary behaviour in terms of bulk physical, mineralogical or chemical parameters should contain an appreciation of temporal variation(s). Previously, Rietmeijer and Mackinnon [1987] developed mineralogical bases for the chemical evolution of cometary nuclei primarily with regard to the predominantly silicate fraction of comet nuclei. We suggested that alteration of solids in cometary nuclei should be expected and that indications of likely reactants and products can be derived from judicious comparison with terrestrial diagenetic environments which include hydrocryogenic and low-temperature aqueous alterations. In a further development of this concept, Rietmeijer [1988] provides indirect evidence for the formation of sulfides and oxides in comet nuclei. Furthermore, Rietmeijer [1988] noted that timescales for hydrocryogenic and low-temperature reactions involving liquid water are probably adequate for relatively mature comets, e.g. P/comet Halley. In this paper, we will address the evolution of comet nuclei physical parameters such as solid particle grain size, porosity and density. In natural environments, chemical evolution (e.g. mineral reactions) is often accompanied by changes in physical properties. These concurrent changes are well-documented in the terrestrial geological literature, especially in studies of sediment diagenesis and we suggest that similar basic principles apply within the upper few meters of active comet nuclei. The database for prediction of comet nuclei physical parameters is, in principle, the same as used for the proposition of chemical evolution. We use detailed mineralogical studies of chondritic interplanetary dust particles (IDPS) as a guide to the likely constitution of mature comets traversing the inner Solar System. While there is, as yet, no direct proof that a specific sub-group or type of chondritic IDP is derived from a specific comet, it is clear that these particles are extraterrestrial in origin and that a certain portion of the interplanetary flux received by the Earth is cometary in origin. Two chondritic porous (CP) IDPS, sample numbers W701OA2 and W7029CI, from the Johnson Space Center Cosmic Dust Collection have been selected for this study of putative cometary physical parameters. This particular type of particle is considered a likely candidate for a cometary origin on the basis of mineralogy, bulk composition and morphology. While many IDPs have been subjected to intensive study over the past decade, we can develop a physical parameter model on only these two CP IDPs because few others have been studied in sufficient detail.
Terrestrial analysis of the organic component of comet dust.
Sandford, Scott A
2008-01-01
The nature of cometary organics is of great interest, both because these materials are thought to represent a reservoir of the original carbon-containing materials from which everything else in our solar system was made and because these materials may have played key roles in the origin of life on Earth. Because these organic materials are the products of a series of universal chemical processes expected to operate in the interstellar media and star-formation regions of all galaxies, the nature of cometary organics also provides information on the composition of organics in other planetary systems and, by extension, provides insights into the possible abundance of life elsewhere in the universe. Our current understanding of cometary organics represents a synthesis of information from telescopic and spacecraft observations of individual comets, the study of meteoritic materials, laboratory simulations, and, now, the study of samples collected directly from a comet, Comet P81/Wild 2.
NASA Astrophysics Data System (ADS)
Paquette, J. A.; Engrand, C.; Hilchenbach, M.; Fray, N.; Stenzel, O. J.; Silen, J.; Rynö, J.; Kissel, J.
2018-03-01
The oxygen isotopic ratio 18O/16O has been measured in cometary gas for a wide variety of comets, but the only measurements in cometary dust were performed by the Stardust cometary sample return mission. Most such measurements find a value of the ratio that is consistent with Vienna Standard Mean Ocean Water (VSMOW) within errors. In this work we present the result of a measurement, using the COSIMA instrument on the Rosetta orbiter, of the oxygen isotopic ratio in dust from Comet 67P/Churyumov-Gerasimenko. Measuring the 18O/16O ratio with COSIMA is challenging for a number of reasons, but it is possible with a reasonable degree of precision. We find a result of 2.00 × 10-3 ± 1.2 × 10-4 which is consistent within errors with VSMOW.
The Philae lander mission and science overview.
Boehnhardt, Hermann; Bibring, Jean-Pierre; Apathy, Istvan; Auster, Hans Ulrich; Ercoli Finzi, Amalia; Goesmann, Fred; Klingelhöfer, Göstar; Knapmeyer, Martin; Kofman, Wlodek; Krüger, Harald; Mottola, Stefano; Schmidt, Walter; Seidensticker, Klaus; Spohn, Tilman; Wright, Ian
2017-07-13
The Philae lander accomplished the first soft landing and the first scientific experiments of a human-made spacecraft on the surface of a comet. Planned, expected and unexpected activities and events happened during the descent, the touch-downs, the hopping across and the stay and operations on the surface. The key results were obtained during 12-14 November 2014, at 3 AU from the Sun, during the 63 h long period of the descent and of the first science sequence on the surface. Thereafter, Philae went into hibernation, waking up again in late April 2015 with subsequent communication periods with Earth (via the orbiter), too short to enable new scientific activities. The science return of the mission comes from eight of the 10 instruments on-board and focuses on morphological, thermal, mechanical and electrical properties of the surface as well as on the surface composition. It allows a first characterization of the local environment of the touch-down and landing sites. Unique conclusions on the organics in the cometary material, the nucleus interior, the comet formation and evolution became available through measurements of the Philae lander in the context of the Rosetta mission.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).
Formation of C3 and C2 in Cometary Comae
NASA Astrophysics Data System (ADS)
Hölscher, Alexander
2015-03-01
Comets are remnants from the Solar System formation. They reside at large distances from the Sun and are believed to store deep freeze imprints of the chemical and physical conditions at the time the Solar System formed. The main ice component of a comet is H2O followed by CO and CO2 with additional small amounts of molecules with varying complexity. Comets also contain large amounts of dust. If a comet approaches the Sun the ices begin to sublimate giving rise to the cometary coma. The molecules producing the coma can be observed in the infrared, the radio wavelength range and at optical wavelengths. To constrain the formation of the Solar System, models require knowledge of the composition for a statistically significant number of comets. This favors optical observations of e.g. C3 (tricarbon) and C2 (dicarbon) since these species allow observations even of relatively faint comets and do not require space missions (infrared observations). However, one has to link these observed photodissociation product species (daughter species) to the molecules that originally sublimated from the comet nucleus surface, i.e. the so-called parent molecules, as e.g. C2H2 (acetylene) for C2. However, for C3 no parent molecules have been identified so far. This thesis investigates the formation of C3 and C2 radicals in cometary comae due to photodissociation of observed and in the literature proposed hydrocarbon parent molecules. For this purpose a one-dimensional multi-fluid coma chemistry model has been improved and applied. This work added new photo reactions to the model, updated the hydrocarbon photo rate coefficients and quantified their uncertainty. A sensitivity analysis has been carried out to determine the reactions whose uncertainty most affect the model output uncertainty. Special attention should be paid to these so-called key reactions in future laboratory experiments and quantum chemical computations to reduce the model output uncertainty more effectively. This will allow to better constrain which parent molecules are responsible for the observational C3 and C2 column densities. Based on observations of the four sample comets C/2001 Q4 (NEAT), C/2002 T7 (LINEAR), 9P (Tempel 1) and C/1995 O1 (Hale-Bopp), this work investigates which combination of the following proposed parent molecules C4H2 (diacetylene), CH2C2H2 (allene), CH3C2H (propyne), C2H4 (ethene) and observed parent molecules C2H2 and HC3N (cyanoacetylene) can best reproduce the observational C3 and C2 column densities in cometary comae, taking into account the uncertainties in photodissociation rate coefficients. It was found that the investigated photodissociation rate coefficients have large uncertainties and also a significant effect on the C3 and C2 model column densities. The responsible key reactions were determined with the sensitivity analysis. The important result of this thesis is that one can reasonably well reproduce the observations of comets with the improved model at rh = 1.00 AU (NEAT) and rh = 3.78 AU (Hale-Bopp), within the photodissociation uncertainties using realistic parent molecule production rate ratios and by various combinations of the investigated parent molecules. To confirm the agreement (NEAT, Hale-Bopp) and to clearify remaining discrepancies (LINEAR, Tempel 1) between model and observations requires additional observations of parent and daughter molecules in the coma of comets as well as in situ measurements of cometary ices (Rosetta).zeige weniger
NASA Astrophysics Data System (ADS)
Stephan, K.; Ciarniello, M.; Beck, P.; Filacchione, G.; Moroz, L.; Pilorget, C.; Pommerol, A.; Quirico, E.; Raponi, A.; Schröder, S.; Kappel, D.; Vinogradoff, V.; Istiqomah, I.; Rousseau, B.
2017-12-01
Remote sensing observations at visible-infrared (VIS-IR) wavelengths of the nucleus of comet 67P/Churyumov-Gerasimenko performed by VIRTIS (Coradini et al., 2007) aboard the Rosetta mission have revealed a surface ubiquitously covered by low-albedo material (Capaccioni et al., 2015; Ciarniello et al., 2015), characterized by the presence of refractory and semi-volatile organics and dark opaque phases (Capaccioni et al., 2015; Quirico et al., 2016). However, a quantitative determination of the physical properties (grain size, porosity) and chemical composition of the surface regolith, from spectrophotometric analysis, is still missing. This subject will be investigated within an international team hosted by ISSI (International Space Science Institute), taking advantage of available and dedicated laboratory reflectance measurements on cometary analogue samples and radiative transfer models (Hapke, 2012; Shkuratov et al., 1999; Monte Carlo ray-tracing), applied to Rosetta spectrophotometric observations of the nucleus. The convergence between models and measurements will allow us to provide a thorough characterization of 67P/Churyumov-Gerasimenko surface. At the same time, the comparison of theoretical predictions with results from laboratory reflectance spectroscopy on powders of analog materials give us the possibility to constrain the capability of the models to characterize their composition (endmember abundances and mixing modalities) and physical properties. We report about the state of the art of laboratory reflectance spectroscopy and spectral modeling applied to 67P/Churyumov-Gerasimenko VIS-IR spectrum as well as preliminary results of the team activity and planned future work. Acknowledgements: the team thanks ISSI-Switzerland for the logistic and financial support.
Penetrator Coring Apparatus for Cometary Surfaces
NASA Technical Reports Server (NTRS)
Braun, David F.; Heinrich, Michael; Ai, Huirong Anita; Ahrens, Thomas J.
2004-01-01
Touch and go impact coring is an attractive technique for sampling cometary nuclei and asteroidal surface on account of the uncertain strength properties and low surface gravities of these objects. Initial coring experiments in low temperature (approx. 153K polycrystalline ice) and porous rock demonstrate that simultaneous with impact coring, measurements of both the penetration strength and constraints on the frictional properties of surface materials can be obtained upon core penetration and core sample extraction. The method of sampling an asteroid, to be deployed, on the now launched MUSES-C mission, employs a small gun device that fires into the asteroid and the resulted impact ejecta is collected for return to Earth. This technique is well suited for initial sampling in a very low gravity environment and deployment depends little on asteroid surface mechanical properties. Since both asteroids and comets are believed to have altered surface properties a simple sampling apparatus that preserves stratigraphic information, such as impact coring is an attractive alternate to impact ejecta collection.
Correlated Microanalysis of Cometary Organic Grains Returned by Stardust
NASA Technical Reports Server (NTRS)
DeGregorio, B. T.; Stroud, R. M.; Nittler, L. R.; Cody, G. D,; Kilcoyne, A. L. D.
2011-01-01
Preliminary examination (PE) of samples returned from Comet 81P/Wild 2 by the NASA Stardust mission revealed a wide variety of carbonaceous samples [e.g. 1]. Carbonaceous matter is present as inclusions, rinds, and films in polyminerallic terminal particles [2-4], as carbon-rich particles along track walls [2, 5, 6], and as organic matter in aerogel around tracks [7, 8]. The organic chemistry of these samples ranges from purely aliphatic hydrocarbons to highly-aromatic material, often modified by various organic functional groups [2, 4, 5, 9-11]. Difficulty arises when interpreting the genesis of these carbonaceous samples, since contaminants could be introduced from the spacecraft [12], aerogel [1, 8], or during sample preparation. In addition, hypervelocity capture into aerogel may have heated cometary material in excess of 1000 C, which could have significantly altered the structure and chemistry of carbonaceous matter. Fortunately, much of this contamination or alteration can be identified through correlated microanalysis with transmission electron microscopy (TEM), scanning-transmission X-ray microscopy (STXM), and nanoscale secondary ion mass spectroscopy (SIMS).
The Puzzle of HCN in Comets: Is it both a Product and a Primary Species?
NASA Astrophysics Data System (ADS)
Mumma, Michael J.; Bonev, Boncho P.; Charnley, Steven B.; Cordiner, Martin A.; DiSanti, Michael A.; Gibb, Erika L.; Magee-Sauer, Karen; Paganini, Lucas; Villanueva, Geronimo L.
2014-11-01
Hydrogen cyanide has long been regarded as a primary volatile in comets, stemming from its presence in dense molecular cloud cores and its supposed storage in the cometary nucleus. Here, we examine the observational evidence for and against that hypothesis, and argue that HCN may also result from near-nucleus chemical reactions in the coma. The distinction (product vs. primary species) is important for multiple reasons: 1. HCN is often used as a proxy for water when the dominant species (H2O) is not available for simultaneous measurement, as at radio wavelengths. 2. HCN is one of the few volatile carriers of nitrogen accessible to remote sensing. If HCN is mainly a product species, its precursor becomes the more important metric for compiling a taxonomic classification based on nitrogen chemistry. 3. The stereoisomer HNC is now confirmed as a product species. Could reaction of a primary precursor (X-CN) with a hydrocarbon co-produce both HNC and HCN? 4. The production rate for CN greatly exceeds that of HCN in some comets, demonstrating the presence of another (more important) precursor of CN. Several puzzling lines of evidence raise issues about the origin of HCN: a. The production rates of HCN measured through rotational (radio) and vibrational (infrared) spectroscopy agree in some comets - in others the infrared rate exceeds the radio rate substantially. b. With its strong dipole moment and H-bonding character, HCN should be linked more strongly in the nuclear ice to other molecules with similar properties (H2O, CH3OH), but instead its spatial release in some comets seems strongly coupled to volatiles that lack a dipole moment and thus do not form H-bonds (methane, ethane). c. The nucleus-centered rotational temperatures measured for H2O and other species (C2H6, CH3OH) usually agree within error, but those for HCN are often slightly smaller. d. In comet ISON, ALMA maps of HCN and the dust continuum show a slight displacement 80 km) in the centroids. We will discuss these points, and suggest ways to test the primary and product origins of cometary HCN. NASA’s Planetary Astronomy, Planetary Atmospheres, and Astrobiology Programs supported this work.
NASA Technical Reports Server (NTRS)
Gary, G. A. (Editor); Clifton, K. S. (Editor)
1976-01-01
The prospects of cometary research from the space shuttle are examined. Topics include: the shuttle as research environment; on-board experiments at zero-gravity and release of gas and dust to simulate cometary phenomena; and cometary observations from space.
Rosetta/VIRTIS-M spectral data: Comet 67P/CG compared to other primitive small bodies.
NASA Astrophysics Data System (ADS)
De Sanctis, M. C.; Capaccioni, F.; Filacchione, G.; Erard, S.; Tosi, F.; Ciarniello, M.; Raponi, A.; Piccioni, G.; Leyrat, C.; Bockelée-Morvan, D.; Drossart, P.; Fornasier, S.
2014-12-01
VIRTIS-M, the Visible InfraRed Thermal Imaging Spectrometer, onboard the Rosetta Mission orbiter (Coradini et al., 2007) acquired data of the comet 67P/Churyumov-Gerasimenko in the 0.25-5.1 µm spectral range. The initial data, obtained during the first mission phases to the comet, allow us to derive albedo and global spectral properties of the comet nucleus as well as spectra of different areas on the nucleus. The characterization of cometary nuclei surfaces and their comparison with those of related populations such as extinct comet candidates, Centaurs, near-Earth asteroids (NEAs), trans-Neptunian objects (TNOs), and primitive asteroids is critical to understanding the origin and evolution of small solar system bodies. The acquired VIRTIS data are used to compare the global spectral properties of comet 67P/CG to published spectra of other cometary nuclei observed from ground or visited by space mission. Moreover, the spectra of 67P/Churyumov-Gerasimenko are also compared to those of primitive asteroids and centaurs. The comparison can give us clues on the possible common formation and evolutionary environment for primitive asteroids, centaurs and Jupiter-family comets. Authors acknowledge the funding from Italian and French Space Agencies. References: Coradini, A., Capaccioni, F., Drossart, P., Arnold, G., Ammannito, E., Angrilli, F., Barucci, A., Bellucci, G., Benkhoff, J., Bianchini, G., Bibring, J. P., Blecka, M., Bockelee-Morvan, D., Capria, M. T., Carlson, R., Carsenty, U., Cerroni, P., Colangeli, L., Combes, M., Combi, M., Crovisier, J., De Sanctis, M. C., Encrenaz, E. T., Erard, S., Federico, C., Filacchione, G., Fink, U., Fonti, S., Formisano, V., Ip, W. H., Jaumann, R., Kuehrt, E., Langevin, Y., Magni, G., McCord, T., Mennella, V., Mottola, S., Neukum, G., Palumbo, P., Piccioni, G., Rauer, H., Saggin, B., Schmitt, B., Tiphene, D., Tozzi, G., Space Science Reviews, Volume 128, Issue 1-4, 529-559, 2007.
NASA Astrophysics Data System (ADS)
Jost, Bernhard; Pommerol, Antoine; Poch, Olivier; Yoldi, Zuriñe; Fornasier, Sonia; Hasselmann, Pedro Henrique; Feller, Clément; Carrasco, Nathalie; Szopa, Cyril; Thomas, Nicolas
2017-10-01
This work is intended to be the second publication in a series of papers reporting on the spectro-photometric properties of cometary analogues measured in the laboratory. Herein, we provide in-situ hyperspectral imaging data in the 0.40-2.35 μm range from three sublimation experiments under simulated space conditions in thermal vacuum from samples made of water ice, carbonaceous compounds and complex organic molecules. The dataset is complemented by measurements of the bidirectional reflectance in the visible (750 nm) spectral range before and after sublimation. A qualitative characterization of surface evolution processes is provided as well as a description of morphological changes during the simulation experiment. The aim of these experiments is to mimic the spectrum of comet 67P/Churyumov-Gerasimenko (67P) as acquired by the Rosetta mission by applying sublimation experiments on the mixtures of water ice with a complex organic material (tholins) and carbonaceous compounds (carbon black; activated charcoal) studied in our companion publication (Jost et al., submitted). Sublimation experiments are needed to develop the particular texture (high porosity), expected on the nucleus' surface, which might have a strong influence on spectro-photometric properties. The spectrally best matching mixtures of non volatile organic molecules from Jost et al. (submitted) are mixed with fine grained water ice particles and evolved in a thermal vacuum chamber, in order to monitor the influence of the sublimation process on their spectro-photometric properties. We demonstrate that the way the water ice and the non-volatile constituents are mixed, plays a major role in the formation and evolution of a surface residue mantle as well as having influence on the consolidation processes of the underlying ice. Additionally it results in different activity patterns under simulated insolation cycles. Further we show that the phase curves of samples having a porous surface mantle layer display higher coincidence with data of 67P than the phase curves of the samples having a more compact surface layer with smooth texture. The analysis of spectral absorption bands of water ice in the near-infrared (NIR) range, similar to those acquired by the VIRTIS instrument onboard Rosetta, allows to link compositional considerations with surface activity and texture.
Capaccioni, F; Coradini, A; Filacchione, G; Erard, S; Arnold, G; Drossart, P; De Sanctis, M C; Bockelee-Morvan, D; Capria, M T; Tosi, F; Leyrat, C; Schmitt, B; Quirico, E; Cerroni, P; Mennella, V; Raponi, A; Ciarniello, M; McCord, T; Moroz, L; Palomba, E; Ammannito, E; Barucci, M A; Bellucci, G; Benkhoff, J; Bibring, J P; Blanco, A; Blecka, M; Carlson, R; Carsenty, U; Colangeli, L; Combes, M; Combi, M; Crovisier, J; Encrenaz, T; Federico, C; Fink, U; Fonti, S; Ip, W H; Irwin, P; Jaumann, R; Kuehrt, E; Langevin, Y; Magni, G; Mottola, S; Orofino, V; Palumbo, P; Piccioni, G; Schade, U; Taylor, F; Tiphene, D; Tozzi, G P; Beck, P; Biver, N; Bonal, L; Combe, J-Ph; Despan, D; Flamini, E; Fornasier, S; Frigeri, A; Grassi, D; Gudipati, M; Longobardo, A; Markus, K; Merlin, F; Orosei, R; Rinaldi, G; Stephan, K; Cartacci, M; Cicchetti, A; Giuppi, S; Hello, Y; Henry, F; Jacquinod, S; Noschese, R; Peter, G; Politi, R; Reess, J M; Semery, A
2015-01-23
The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 1.5 to 5% kÅ(-1)), and the broad absorption feature in the 2.9-to-3.6-micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups. In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice. However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun. Copyright © 2015, American Association for the Advancement of Science.
Nucleus Characterization of Main-Belt Comet P/Garradd
NASA Astrophysics Data System (ADS)
Hsieh, Henry H.; Kaluna, Heather; Meech, Karen J.
2012-02-01
We seek SOAR time to physically characterize the nucleus of main- belt comet (MBC) P/2008 R1 (Garradd). Our primary objectives include determination of P/Garradd's rotation period, shape, and colors. MBCs are mysterious objects that exhibit cometary activity yet are dynamically indistinguishable from main-belt asteroids. Studying these apparently icy objects so close to the Sun is important for understanding the distribution of volatile material in our solar system as well as the origin of Earth's water. Five MBCs are currently known: only two have well-characterized nuclei, while the others have only been partially characterized. With so little known about this population, it is crucial to obtain the best possible physical characterizations for as many of the few currently known MBCs as possible. This information will aid us in developing a global understanding of the population's characteristics, such as the level of diversity as well as any commonalities. This will then help answer larger scientific questions such as how abundant MBCs may be and what they can tell us about the past and present distribution of ice in the inner solar system.
NASA Astrophysics Data System (ADS)
Greenberg, J. M.
The density of typical comet nuclei is estimated on the basis of published empirical and theoretical density data on meteors. The nuclei are assumed to consist of aggregated interstellar dust (silicate cores with complex organic refractory mantles) as proposed by Greenberg (1982 and 1983) and Van de Bult et al. (1985). The theoretical density (0.5 g/cu cm) of a compact nucleus of this type is contrasted with the observed densities of meteors associated with short-period comets (0.2 g/cu cm) and the Draconids associated with comet Giacobini-Zinner (0.01 g/cu cm), and it is inferred that the original comet debris was less than fully packed. A birdsnest structure comprising elongated crystals and about 60 percent empty space is proposed; its albedo is estimated as about 0.05 (in the range predicted by observations); and it is shown to undergo much less internal heating by the sun than a solid ice nucleus. The mean density of reconstituted cometary matter is found to be in the range 0.54-0.03 g/cu cm, consistent with the estimates (0.1 g/cu cm) of Lin (1966) and Donn (1963).
NASA Astrophysics Data System (ADS)
Luspay-Kuti, A.; Altwegg, K.; Berthelier, J. J.; Beth, A.; Dhooghe, F.; Fiethe, B.; Fuselier, S. A.; Gombosi, T. I.; Hansen, K. C.; Hässig, M.; Mall, U.; Mandt, K.; Mousis, O.; Steven, P. M.; Rubin, M.; Trattner, K. J.; Tzou, C. Y.; Wurz, P.
2017-12-01
Pre-equinox ROSINA/DFMS measurements revealed a strongly heterogeneous coma. The concentrations of major and various minor volatile species were found to depend on the latitude and longitude of the nadir point of the spacecraft. The observed time variability of coma species remained consistent for about three months up to equinox. The chemical variability could be generally interpreted in terms of temperature and seasonal effects superposed on some kind of nucleus heterogeneity. We compare here pre-equinox (inbound) ROSINA/DFMS measurements from 2014 to measurements taken after the outbound equinox in 2016, both at heliocentric distances larger than 3 AU. For a direct comparison we limit our observations to the southern, poorly illuminated hemisphere only. We report the similarities and differences in the concentrations and time variability of neutral species under similar insolation conditions (heliocentric distance, season) pre- and post-equinox, and interpret them in light of the pre-equinox observations. Such direct comparison of the neutral behavior is important to better understand the evolution of cometary outgassing.
NASA Astrophysics Data System (ADS)
Levasseur-Regourd, Anny-Chantal; Gaboriaud, Alain; Buil, Christian; Ressouche, Antoine; Lasue, J.; Palun, Adrien; Apper, Fabien; Elmaleh, Marc
Intensity and linear polarization observations of the solar light scattered by interplanetary dust, the so-called zodiacal light, provide information on properties of the dust particles, such as their spatial density, local changes, morphology and albedo. Earth-based polarimetric observations, with a resolution of 5° or more, have been used to derive the polarization phase curve of interplanetary dust particles and to establish that the polarization at 90° phase angle increases with increasing solar distance, at least up to 1.5 au in the ecliptic, while the albedo decreases [1, 2]. Analysis of such studies will be revisited. Numerical simulations of the polarimetric behavior of interplanetary dust particles strongly suggest that, in the inner solar system, interplanetary dust particles consist of absorbing (e.g., organic compounds) and less absorbing (e.g., silicates) materials, that radial changes originate in a decrease of organics with decreasing solar distance (probably due to alteration processes), and that a significant fraction of the interplanetary dust is of cometary origin, in agreement with dynamical studies [3, 4]. The polarimetric behaviors of interplanetary dust and cometary dust particles seem to present striking similarities. The properties of cometary dust particles, as derived from remote polarimetric observations of comets including 67P/Churyumov-Gerasimenko, the target of the Rosetta rendezvous mission, at various wavelengths, will be summarized [5, 6]. The ground truth expected from Rosetta dust experiments, i.e., MIDAS, COSIMA, GIADA, about dust particles’ morphology, composition, and evolution (with distance to the nucleus before Philae release and with distance to the Sun before and after perihelion passage) over the year and a half of nominal mission, will be discussed. Finally, the Eye-Sat nanosatellite will be presented. This triple cubesat, developed by students from engineering schools working as interns at CNES, is to be launched in 2016 [7]. Its main purpose is to study the zodiacal light intensity and polarization from a Sun-synchronous orbit, for the first time at the high spatial resolution of 1° over a wide portion of the sky and at four different wavelengths (in the visible and near-IR domains). The instrumental choices and new on-board technologies will be summarized, together with the results that may be expected on local properties of the interplanetary dust particles and thus on their similarities and differences with cometary dust particles. Support from CNES is warmly acknowledged. [1] Leinert, C., Bowyer, S., Haikala, L.K., et al. The 1997 reference of diffuse night sky brightness, Astron. Astrophys. Supp., 127, 1-99, 1998. [2] Levasseur-Regourd, A.C., Mann, I., Dumont, R., et al. Optical and thermal properties of interplanetary dust. In Interplanetary dust (Grün, E. et al. Eds), 57-94, Springer-Verlag, Berlin, 2001. [3] Lasue, J., Levasseur-Regourd, A.C., Fray, N., et al. Inferring the interplanetary dust properties from remote observations and simulations, Astron. Astrophys., 473, 641-649, 2007. [4] Nesvorny, D., Jenniskens, P., Levison, H.F., et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites: implications for hot debris disks. Astrophys. J. 713, 816-836, 2010. [5] Levasseur-Regourd, A.C., Mukai, T., Lasue, J., et al. Physical properties of cometary and interplanetary dust, Planet. Space Sci., 55, 1010-1020, 2007. [6] Hadamcik, E., Sen, A.K., Levasseur-Regourd, A.C., et al., Astron. Astrophys., 517, A86, 2010. [7] CNES internal report. Eye-Sat end of phase A internal review, EYESAT-PR-0-022-CNES, 2013.
The 67P nucleus composition and temporal variations observed by the OSIRIS cameras onboard Rosetta
NASA Astrophysics Data System (ADS)
Fornasier, Sonia; Barucci, Maria Antonietta; Feller, Clement; Deshapriya, Prasanna J. D.; Pommerol, Antoine; Lara, Luisa; Oklay, Nilda; A'Hearn, Mike; Davidsson, Bjorn; Perna, Davide; Sierks, Holger
2015-11-01
Since August 2014, the comet 67P/Churyumov-Gerasimenko has been mapped by the NAC and WAC cameras of the OSIRIS imaging system in the 250-1000 nm wavelength range. OSIRIS got the most detailed maps at the highest spatial resolution of a comet nucleus surface. Here we report on the colors and spectrophotometry of the whole 67P nucleus from images acquired since the first Rosetta bound orbits in August 2014 up to the comet perihelion passage. Globally, the nucleus shows a red spectral behavior and it has spectrophotometric properties similar to those of bare cometary nuclei, of primitive D-type asteroids such us Jupiter Trojans, and of the moderately red Transneptunians. No clear absorption bands have been identified yet in the UV-VIS-NIR range, except for a potential absorption centered at 290 nm, possibly due to SO2 ice. The nucleus shows an important phase reddening, with disk-averaged spectral slopes increasing from 11%/(100 nm) to 16%/(100 nm) in the 1.3-54° phase angle range. On the basis of the spectral slope, we identified three different groups of regions, characterized by a low, medium, and high spectral slope, respectively. The three groups are distributed everywhere on the nucleus, with no evident distinction between the two lobes of the comet. The comet southern hemisphere, that has been observed by Rosetta since April 2015, shows a lack of spectrally red regions associated to the absence of wide spread smooth or dust covered terrains. Several local bright and spectrally blue patches have been identified on the nucleus and attributed to exposed water ice on the surface. In particular we observed big (> 1500 m2) bright ice rich areas in the southern hemisphere which completely sublimated in a few weeks. We see evidence of very bright patches in the NUV-blue region close to the morning shadows that are compatible with the presence of frosts/ices. These patches disappear when fully illuminated by the Sun indicating that important processes of sublimation and recondensation of volatiles are taking place on the nucleus.
NASA Astrophysics Data System (ADS)
Colangeli, L.; Mennella, V.; Bussoletti, E.; Merluzzi, P.; Rotundi, A.; Palumbo, P.; di Marino, C.
1993-07-01
It is well known that the infrared emission of many comets is characterized by a broad feature at 10 micrometers, that has been attributed to a Si-O stretching resonance in amorphous and/or hydrated silicate grains. In the case of comets Halley [1,2], Bradfield [3] and Levy [4] two spectral components have been observed: the wide peak centered at 9.8 micrometers and a sharp feature at 11.3 micrometers. This last band has been interpreted with crystalline olivine silicatic grains [1,2,5]. However, recently, it has been pointed out [6] that the laboratory data frequently used in the fits refer to grains embedded in a matrix, which should produce a significant shift of the peak position, according to Mie computations. We have performed laboratory experiments on various silicatic samples with the perspective of determining their optical properties, to study experimentally the influence of matrix effects, and to use the final spectra to perform comparisons with observations. The samples are four terrestrial materials, olivine forsterite, jadeite pyroxene, andesite feldspar and impactite glass, and two meteoritic samples, chondrite (Zacatecas, Mexico) and pallasite (Atacama, Chile). Fine powders of the bulk materials were obtained by grinding calibrated mass amounts of the various samples in an agata mill. The morphological characterization of the samples was performed by means of S.E.M. (scanning electron microscopy) technique. EDX analysis was also performed to determine elemental composition. IR transmission spectra were obtained by using a double beam spectrophotometer that covers the spectral range 2.5-50 micrometers. The standard pellet technique was used by embedding dust samples in KBr or CsI matrices. For comparison, measurements were also performed by depositing small amounts of dust onto KBr windows. In this last case, dust-matrix interaction should be practically absent as grains are simply sitting onto the matrix. The data obtained from the spectroscopic analysis have allowed us to evidence the following main results. Matrix effects do not appear as relevant as suggested by computations performed by the Mie theory. In particular, the peak shift observed for crystalline olivine is from 11.3 micrometers in CsI (n(sub)o = 1.7) to 11.2 micrometers in vacuum (n(sun)o = 1.0). On the other hand, jadeite and andesite grains present main peaks around 10 micrometers, in contrast to cometary spectra. We can, therefore, conclude that crystalline olivine grains are good candidates to simulate the cometary 11.3 micrometer sharp feature, even when matrix effects are accounted for. The impactite sample presents a main broad band around 9.2 micrometers, due to its mainly amorphous composition. This band could resemble the broad 10 micron cometary band; however, its profile is rather broader than that observed for cometary dust. Concerning the meteoritic samples, both chondrite and pallasite show a well defined main peak at 11.3-11.4 micrometers, comparable to cometary spectra. Again, chondrite band profile is too broad. On the contrary, pallasite appears to be a good candidate to reproduce observations. This result appears reasonable if one considers that the sample is formed by small olivine crystals embedded in a iron matrix. In conclusion, the comparison between the spectra of olivine-rich meteoritic grains and cometary dust could suggest either a common origin of the two classes of materials or, at least, a similarity in the processes experienced by them during past evolution. This result appears very relevant because it could imply that the systematic study in the laboratory of meteoritic materials can provide information about the past history of comets. Acknowledgements: This work was partly supported by ASI, CNR, and MURST 40% and 60%. References: [1] Bregman J. D. et al. (1987) Astron. Astrophys., 187, 616. [2] Campins H. and Ryan E. V. (1989) Ap. J., 341, 1059. [3] Hanner M. S. et al. (1990) Ap. J., 348, 312. [4] Lynch D. K. et al. (1990) 22nd annual meeting of the division for planetary sciences, Charlottesville, Virginia. [5] Sandford S. A. and Walker R. M. (1985) Ap. J., 291, 838. [6] Orofino V. et al. (1993) Astron. Astrophys., submitted.
NASA Astrophysics Data System (ADS)
La Forgia, F.; A'Hearn, M. F.; Lazzarin, M.; Magrin, S.; Bodewits, D.; Bertini, I.; Pajola, M.; Barbier, C.; Sierks, H.
2014-04-01
The OH radical, observed in cometary comae, is the direct dissociation product of water. Given the strong A2∑ - X2II (0, 0) emission band in the near-UV at 308.5 nm due to resonance fluorescence, the OH radical has been used, for years, as a tracer of the water parent molecule. Specifically, the OH fluorescence band provides an immediate tool to monitor the water production rate and its variations with the comet's heliocentric distance, rotational period and possible activity changes. Photolysis of water in cometary comae gives rise, with a non negligible branching ratio, to OH fragments in the first electronically excited state (OH*). This state is very unstable, with a lifetime of about 10-6s (Becker and Haaks, 1973), therefore OH* molecules promptly decay to the ground state. This process, generally referred to as prompt emission (PE), is responsible for an emission band in the near-UV ranging approximatelly from 306 to 325 nm. Original studies and tentative detections of OH PE have been put forth by Bertaux (1986), Budzien and Feldman (1991), Bonev et al. (2004), A'Hearn et al. (2007) using ground and space observations. Both from the above mentioned works together with our analysis, this process is expected to be prominent at short distances from the nucleus, where there is high density of water molecules, requiring the need of spacecraft observations to reach the necessary resolution. The hyperactive Jupiter family comet 103P/Hartley 2 has been visited by EPOXI spacecraft on 4 November 2010 at a minimum distance of 694 km, when it was at 1.064 AU from the Sun (A'Hearn et al. 2011). We present the analysis of photometric observations in OH filter acquired by MRI camera onboard EPOXI used to investigate the spatial distribution of OH in the coma of Hartley 2. The data revealed a radial OH structure within 35 km from the nucleus, appearing to be coming directly from the nucleus, in the region of the central waist. A theoretical computation evidencing a strong possibility that this OH structure could be partially associated with OH PE has been performed. This is strongly supported by the agreement of the OH spatial distribution with the water spatial distribution derived from HRI IR spectrometer observations (A'Hearn et al. 2011). Given the results on comet Hartley 2, we present our expectations and preliminary analysis of OH fluorescence and prompt emission mechanisms in the coma of 67P/Churyumov-Gerasimenko, target of the Rosetta mission. The OSIRIS WAC camera on board Rosetta is equipped with 7 narrowband filters centered on molecular emission bands, including the OH gas filter. This will enable us to investigate OH fluorescence and PE at increasing resolution as Rosetta will approach the comet. This analysis, supported by accompanying observations acquired by OSIRIS WAC camera in the forbidden OI band at 630 nm, will help in further constrain the water photochemistry and the fluorescence and PE processes occurring in the cometary comae.
NASA Astrophysics Data System (ADS)
Lamy, Philippe L.; Romeuf, David; Faury, Guillaume; Durand, Joelle; Beigbeder, Laurent; Groussin, Olivier
2017-10-01
The Narrow Angle Camera (NAC) of the OSIRIS imaging system aboard ESA’s Rosetta spacecraft has acquired approximately 25000 images of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko at various spatial scales down to centimeters per pixel. The bulk of these images have been obtained in sequences and the combined displacement of the Rosetta orbiter along its trajectory and the rotation of the nucleus allow associating many pairs of images appropriate to stereoscopic viewing. This is achieved by constructing anaglyphs after rotating the images so that the relative shift appears horizontal. The shift is set to limit the parallax to approximately 2° (with a maximum value of 4°) for the foreground (to avoid image deformation) and the scene is placed behind the screen for optimal visual comfort. The rotation of the nucleus may have the adverse effect of introducing temporal incoherence, prominently from the variation of the cast shadows. Various solutions are implemented to circumvent this problem, usually by cropping the maximum extent of the shadows. A time of writing, approximately 900 anaglyphs have been produced and we expect to reach several thousand once the systematic search of suitable pairs will be completed. We will present examples of anaglyphs. They will be searchable thanks to a dedicated data base that will document each one including its location on a 3D numerical model of the nucleus. Many possibilities of querying the parameters will be offered. It is anticipated that this atlas available online in the near future will be a valuable tool for fostering our understanding of the complex morphology of the cometary surface and of the processes at work , as well as offering spectacular stereoscopic views of the nucleus enjoyable by a general public.
NASA Technical Reports Server (NTRS)
Nakamura-Messenger, K.; Zolensky, M. E.; Bastien, R.; See, T. H.; Warren, J. L.; Bevill, T. J.; Cardenas, F.; Vidonic, L. F.; Horz, F.; McNamara, K. M.;
2007-01-01
Dust particles released from comet 81P/Wild-2 were captured in silica aerogel on-board the STARDUST spacecraft and successfully returned to the Earth on January 15, 2006. STARDUST recovered thousands of particles ranging in size from 1 to 100 micrometers. The analysis of these samples is complicated by the small total mass collected ( < 1mg), its entrainment in the aerogel collection medium, and the fact that the cometary dust is comprised of submicrometer minerals and carbonaceous material. During the six month Preliminary Examination period, 75 tracks were extracted from the aerogel cells , but only 25 cometary residues were comprehensively studied by an international consortium of 180 scientists who investigated their mineralogy/petrology, organic/inorganic chemistry, optical properties and isotopic compositions. These detailed studies were made possible by sophisticated sample preparation methods developed for the STARDUST mission and by recent major advances in the sensitivity and spatial resolution of analytical instruments.
Methods for computing comet core temperatures
NASA Astrophysics Data System (ADS)
McKay, C. P.; Squyres, S. W.; Reynolds, R. T.
1986-06-01
The temperature profile within the comet nucleus provides the key to an understanding of the history of the volatiles within a comet. Certain difficulties arise in connection with current cometary temperature models. It is shown that the constraint of zero net heat flow can be used to derive general analytical expressions which will allow for the determination of comet core temperature for a spherically symmetric comet, taking into account information about the surface temperature and the thermal conductivity. The obtained results are compared with the expression for comet core temperatures considered by Klinger (1981). Attention is given to analytical results, an example case, and numerical models. The formalization developed makes it possible to determine the core temperature on the basis of the numerical models of the surface temperature.
Rosetta Lander - Philae: preparations for landing on comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Ulamec, S.; Biele, J.; Jurado, E.; Gaudon, P.; Geurts, K.
2013-12-01
Rosetta is a Cornerstone Mission of the ESA Horizon 2000 programme. It is going to rendezvous with comet 67P/Churyumov-Gerasimenko after a ten year cruise and will study both its nucleus and coma with an orbiting spacecraft as well as with a Lander, Philae, that has been designed to land softly on the comet nucleus. Aboard Philae, a payload consisting of ten scientific instruments will perform in-situ studies of the cometary material. Philae will be separated from the mother spacecraft from a dedicated delivery trajectory. It then descends, ballistically, to the surface of the comet, stabilized with an internal flywheel. At touch-down anchoring harpoons will be fired and a damping mechanism within the landing gear will provide the lander from re-bouncing. Currently the characteristics of the nucleus of the comet are hardly known. Mapping with the orbiter cameras (shape, slopes, surface roughness) and essential measurements like gravity field, state of rotation or outgassing parameters can only be performed after arrival of the main spacecraft, between May and October 2014. These data will be used for selecting a landing site and defining the detailed landing strategy. Landing is foreseen for November 2014 at a heliocentric distance of 3 AU. The paper describes the Rosetta Lander system and its payload, but emphasizes on the preparations for landing, the landing site selection process and the planned operational timeline.
Trajectory analysis for the nucleus and dust of comet C/2013 A1 (Siding Spring)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farnocchia, Davide; Chesley, Steven R.; Chodas, Paul W.
Comet C/2013 A1 (Siding Spring) will experience a high velocity encounter with Mars on 2014 October 19 at a distance of 135,000 km ± 5000 km from the planet center. We present a comprehensive analysis of the trajectory of both the comet nucleus and the dust tail. The nucleus of C/2013 A1 cannot impact on Mars even in the case of unexpectedly large nongravitational perturbations. Furthermore, we compute the required ejection velocities for the dust grains of the tail to reach Mars as a function of particle radius and density and heliocentric distance of the ejection. A comparison between ourmore » results and the most current modeling of the ejection velocities suggests that impacts are possible only for millimeter to centimeter size particles released more than 13 AU from the Sun. However, this level of cometary activity that far from the Sun is considered extremely unlikely. The arrival time of these particles spans a 20-minute time interval centered at 2014 October 19 at 20:09 TDB, i.e., around the time that Mars crosses the orbital plane of C/2013 A1. Ejection velocities larger than currently estimated by a factor >2 would allow impacts for smaller particles ejected as close as 3 AU from the Sun. These particles would reach Mars from 19:13 TDB to 20:40 TDB.« less
Numerical Simulations of Lightcurves of Non-principal Axis Rotators
NASA Astrophysics Data System (ADS)
Mueller, Beatrice E. A.; Samarasinha, N. H.
2012-10-01
Theory predicts that most short-period comets should be in non-principal axis (NPA) rotational states (Jewitt 1997) due to torques caused by outgassing from the nuclei. However the fraction that is currently observed to be in such a state is small (less than 15%; Samarasinha et al 2004, and references therein). This suggests that NPA states naturally occurring as a consequence of cometary jetting are more rapidly damped because comets are structurally far weaker than has been assumed. However, there is a serious question whether this discrepancy is real or an artifact of interpreting lightcurve observations. We will present initial results of our numerical simulation of the observational manifestation of lightcurves over the range of possible NPA rotation states and determine the effects of observing geometry, signal-to-noise, and sampling. References: Jewitt, D. 1997. Cometary Rotation: An Overview. Earth, Moon, and Planets 79, 35-53. Samarasinha, N.H., B.E.A. Mueller, M.J.S. Belton,L. Jorda 2004. Rotation of Cometary Nuclei. In Comets II, pp. 281-299.
Comet-toolbox: Numerical simulations of cometary dust tails in your browser
NASA Astrophysics Data System (ADS)
Vincent, J.
2014-07-01
The last few years have seen a rise in the popularity of comets, on both professional and amateur levels. Many cometary events, sometimes visible without a telescope, have triggered worldwide campaigns of ground- and space-based observations: for instance, the explosion of comet 17P/Holmes, the sungrazers C/2006 P1 (McNaught) and C/2012 S1 (ISON), or the forthcoming close encounter of C/2013 A1 (Siding Springs) and Mars. With the overwhelming amount of data available, it becomes more and more important to release the models we use to analyze these events. This ensures not only that more people get the opportunity to investigate the data, but is also beneficial for the science itself as everybody is able to see, use, and improve the models. As a professional planetary scientist, I have written many tools to process the data I use, especially in the field of cometary and asteroid science [1-6]. With the progress of modern computers, it is now possible to translate these tools to simple HTML/Javascript interfaces and run the models in an Internet browser. I have decided to make my tools available in this way, to be used by anybody interested in modeling cometary processes. The first tool being released at ACM 2014 is the Finson-Probstein diagram. The motion of dust particles in a cometary environment is a complex process. A precise description of the grain trajectories requires advanced hydrodynamic models. In the tail, dust and gas are decoupled and the only significant forces affecting the grain trajectories are the solar gravity and radiation pressure. Both forces depend on the square of the heliocentric distance but work in opposite directions. Their sum can be seen as a reduced solar gravity, and the equation of motion is simply m × a = (1-β) × Sun_{gravity}, where β is the ratio P_{radiation}/Sun_{gravity}, and is inversely proportional to the size of the grains for particles larger than 1 micron. From this relation, Finson & Probstein (1968, [7]) proposed a model which describes the full tail geometry with a grid of synchrones and syndynes, i.e., lines representing, respectively, the locations of particles released at the same time or with the same β. This model is simple because it considers only particles released in the orbital plane of the comet, and with zero initial velocity, but it provides a very good approximation of the shape of the tail, and has been used successfully to study many comets. One of the many strengths of this approach is the possibility to date events in the tail. For instance, one can understand if regions of higher density are related to outbursts of the nucleus, or are a result of fragmentation of large chunks of material within the trail. It can also be used to disentangle between continuous activity, short outbursts, or impacts, when all these events produce a feature which at first look like a normal cometary tail. The model can be found at http://www.comet-toolbox.com.
Volatiles (H, C, N, O, noble gases) in comets as tracers of early solar system events (Invited)
NASA Astrophysics Data System (ADS)
Marty, B.
2013-12-01
Volatiles (H, C, N, O, noble gases) present the largest variations in their relative abundances and, importantly, in their isotopic ratios, among solar system elements. The original composition of the protosolar nebula has been investigated through the measurements of primitive meteorites and of in-situ (e.g. Galileo probe analysis of the Jupiter's atmosphere) and sample-return (Genesis, recovery and analysis of solar wind) missions. The protosolar gas was poor in deuterium, in 15N and in 17,18O. Variations among solar system reservoir reach several hundreds of percents for the D/H and 15N/14N ratios. These variations are possibly : (i) due to interactions between XUV photons of the proto-Sun and the-dust, (ii) result from low temperature ion-molecule reactions, or (iii) constitute an heritage on interstellar volatiles trapped in dust (e.g., organics). Likewise, noble gases are elementally and isotopically (1% per amu for xenon) fractionated with respect to the composition of the solar wind (our best proxy for the protosolar nebula composition). Cometary matter directly measured on coma, or in Stardust material, or in IDPs, seems to present among the largest heterogeneities in their stable isotope compositions but knowledge on their precise compositions of the different phases and species is partial and mosty lacking. Among the several important issues requiring a better knowledge of cometary volatiles are the origin(s) of volatile elements on Earth and Moon, on Mars and on Venus, understanding large scale circulation of matter between hot and frozen zones, and the possibility of interstellar heritage for organics. Critical measurements to be made by the next cometary missions include the value of the D/H ratio in water ice, in NH3 and organics. Nitrogen is particularly interesting as cometary HCN and CN are rich in 15N, but an isotoppe mass balance will require to measure the main host species (N2 ?). Noble gases are excellent tracers of physical processes, including the delivery of volatile elements onto planets and atmospheric escape processes, but their cometary inventory is almost not known. The only noble gas (helium and neon) measurement in cometary matter from Stardust suggests that they may be genetically linked to organic matter found in primitive meteorites rather than to the proto-solar gas. Trapping of noble gases in comets is an important issue not only for the physical conditions of cometary formation and evolution, but also for better understanding the possible contribution of cometary matter to Earth and Moon.
NASA Astrophysics Data System (ADS)
Tenishev, V.; Fougere, N.; Rubin, M.; Tzou, C. Y.; Combi, M. R.; Altwegg, K.; Gombosi, T. I.; Shou, Y.; Huang, Z.; Hansen, K. C.; Toth, G.
2017-12-01
A cometary coma is a unique phenomenon in the Solar system that represents an example of a planetary atmosphere influenced by little or no gravity. Due to the negligible gravity of a comet's nucleus, a coma has a characteristic size that exceeds that of the nucleus itself by many orders of magnitude. An extended dusty gas cloud that forms a coma is affected mainly by molecular collisions, radiative cooling, and photolytic, charge-exchange, and impact-ionization reactions. Such an environment has been extensively observed during the recent Rosetta mission, which was the first mission that escorts a comet along its way through the Solar system for an extended amount of time with the main scientific objectives of characterizing comet's nucleus, determining the surface composition, and studying the comet's activity development. The ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) Comet Pressure Sensor (COPS) onboard the Rosetta spacecraft has performed one of the most exciting observations of the innermost coma during the spacecraft descend maneuver during the last ten hours of the mission when the random and outflow directed pressures in the coma have been measured all the way down to the comet's surface. Performed at such close proximity to the nucleus, these observations can help to characterize effects due to topological features and/or the gas local conditions at the surface of the nucleus. The major focus of the presented study is analyzing of the end-of-mission pressure measurements by the ROSINA/COPS instrument. Because the coma at a heliocentric distance of 3.8 AU was in a collisionless regime, it can be described by solving the Liouville equation, as we have done in our analysis. We have used the SHAP5 nucleus model to account for the topology of the volatile source. Spacecraft trajectory and the instrument pointing with respect to the comet's nucleus have been obtained with the SPICE library. Here, we present results of our analysis and discuss the effects of the surface topology and that of the local surface volatile injection on the distribution of gas in the innermost coma of comet 67P/Churyumov-Gerasimenko.
NASA Astrophysics Data System (ADS)
Tenishev, Valeriy; Combi, Michael R.; Fougere, Nicolas; Rubin, Martin; Tzou, Chia-Yu; Shou, Yinsi; Gombosi, T. I.; Altwegg, Kathrin; Huang, Zhenguang; Toth, Gabor; Hansen, Kenneth C.
2017-10-01
A cometary coma is a unique phenomenon in the Solar system that represents an example of a planetary atmosphere influenced by little or no gravity. Due to the negligible gravity of a comet’s nucleus, a coma has a characteristic size that exceeds that of the nucleus itself by many orders of magnitude. An extended dusty gas cloud that forms a coma is affected mainly by molecular collisions, radiative cooling, and photolytic, charge-exchange, and impact-ionization reactions.Such an environment has been extensively observed during the recent Rosetta mission, which was the first mission that escorts a comet along its way through the Solar system for an extended amount of time with the main scientific objectives of characterizing comet’s nucleus, determining the surface composition, and studying the comet’s activity development.The ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) Comet Pressure Sensor (COPS) onboard the Rosetta spacecraft has performed one of the most exciting observations of the innermost coma during the spacecraft descend maneuver during the last ten hours of the mission when the random and outflow directed pressures in the coma have been measured all the way down to the comet’s surface. Performed at such close proximity to the nucleus, these observations can help to characterize effects due to topological features and/or the gas local conditions at the surface of the nucleus.The major focus of the presented study is analyzing of the end-of-mission pressure measurements by the ROSINA/COPS instrument. Because the coma at a heliocentric distance of 3.8 AU was in a collisionless regime, it can be described by solving the Liouville equation, as we have done in our analysis. We have used the SHAP5 nucleus model to account for the topology of the volatile source. Spacecraft trajectory and the instrument pointing with respect to the comet’s nucleus have been obtained with the SPICE library. Here, we present results of our analysis and discuss the effects of the surface topology and that of the local surface volatile injection on the distribution of gas in the innermost coma of comet 67P/Churyumov-Gerasimenko.
Interior of 67P/C-G comet as seen by CONSERT bistatic radar on Rosetta
NASA Astrophysics Data System (ADS)
Ciarletti, V.; Kofman, W. W.; Herique, A.; Levasseur-Regourd, A. C.; Lasue, J.; Zine, S.; Plettemeier, D.
2017-12-01
The scientific objectives of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) aboard ESA spacecraft's Rosetta was to perform an interior characterization of comet 67P/C-G nucleus. This characterization is important to understand the formation and evolution of comets. The measurements were done by means of a bi-static sounding between Philae lander on the nucleus surface and Rosetta orbiter. CONSERT operated during 9 hours after Philae's landing and made measurements through the small lobe (head) of 67P/ C-G. The analyses and interpretation have been done using the shape of the received signals and 3D modeling of the signal propagation. The propagation time inside the nucleus allowed us to derive the average permittivity value (1.27+/- 0.05 ) of the cometary interior. Permittivity data for ices and dust particles were compared with our measurements, providing constraints on the nucleus constituents (ices, silicates and organics) and the bulk porosity (70-85%). The shape of the received signals, very close to the calibration signal's one, showed that no significant scattering by heterogeneities is occurring inside the nucleus. This indicates that the interior is homogeneous at a scale of a few CONSERT's 3-m wavelengths. This conclusion lead to 3D simulations of the signal propagation in non-homogeneous nuclei models, to define the sensitivity of CONSERT to detect potential inhomogeneities and to find constrains on the internal structures in terms of size and composition at a scale commensurate with the wavelength. Given the high bulk porosity of 75% inside the sounded part of the nucleus, a likely model would be obtained by a mixture, at 3m-size scale, of voids (vacuum) and blobs with material made of ices and dust with a porosity above 60%. The absence of any pulse spreading by scattering excludes heterogeneities with higher contrast (0.25) and larger size (3m) (but remaining on the few wavelengths scale, since larger scales can be responsible for multipath propagation). These very important results provide clues to a better understanding of the comet formation processes.
Centaurs and Activity Beyond the Water Sublimation Zone
NASA Astrophysics Data System (ADS)
Jewitt, David
2017-08-01
Centaurs are icy objects in dynamical transition between the Kuiper belt, where they originate, and the Jupiter family comets. Water ice in inward drifting Centaurs should begin to sublimate measurably when their perihelion reaches the orbit of Jupiter (5 AU). Instead, a fraction of Centaurs become active (have a cometary appearance) even with perihelia at Saturn (10 AU). Of the many suggestions made for the origin of this distant activity, the current favorite and the one with the largest impact on cometary science is the crystallization of amorphous water ice. Amorphous ice is an excellent carrier of supervolatiles (e.g. CO, N2) which are released upon the exothermic transition to crystalline ice. If Centaur ice is amorphous, then so must be Kuiper belt ice, setting strong constraints on the internal temperature vs. time history of the Kuiper belt objects. If the crystallization hypothesis is correct, we should never find an active Centaur with a perihelion substantially beyond the so-called crystallization line at about 12 AU (because temperatures there are too low to trigger crystallization). We propose a simple search for distant activity in Centaurs with perihelia 15 to 20 AU, in which crystallization cannot occur, in order to challenge the crystallization hypothesis. The search is made possible by the tight and stable point spread function and sensitivity to near-nucleus coma of HST.
NASA Astrophysics Data System (ADS)
Raymond, J. C.; Downs, Cooper; Knight, Matthew M.; Battams, Karl; Giordano, Silvio; Rosati, Richard
2018-05-01
Comet C/2011 W3 (Lovejoy) is the first sungrazing comet in many years to survive perihelion passage. We report ultraviolet observations with the Ultraviolet Coronagraph Spectrometer (UVCS) spectrometer aboard the Solar and Heliospheric Observatory satellite at five heights as the comet approached the Sun. The brightest line, Lyα, shows dramatic variations in intensity, velocity centroid, and width during the observation at each height. We derive the outgassing rates and the abundances of N, O, and Si relative to H, and we estimate the effective diameter of the nucleus to be several hundred meters. We consider the effects of the large outgassing rate on the interaction between the cometary gas and the solar corona and find good qualitative agreement with the picture of a bow shock resulting from mass loading by cometary neutrals. We obtain estimates of the solar wind density, temperature, and speed, and compare them with predictions of a global magnetohydrodynamic simulation, finding qualitative agreement within our uncertainties. We also determine the sublimation rate of silicate dust in the comet’s tail by comparing the visible brightness from the Large Angle Spectroscopic Coronagraphs with the Si III intensity from UVCS. The sublimation rates lie between the predicted rates for olivines and pyroxenes, suggesting that the grains are composed of a mixture of those minerals.
NASA Technical Reports Server (NTRS)
Sandford, S. A.; Aleon, J.; Alexander, C. M. O'D.; Araki, T.; Bajt, S.; Baratta, G. A.; Borg, J.; Bradley J. P.; Brownlee, D. E.; Brucato, J. R.;
2007-01-01
STARDUST is the first mission designed to bring samples back to Earth from a known comet. The captured samples were successfully returned to Earth on 15 Jan 2006, after which they were subjected to a preliminary examination by a number of teams of scientists from around the world. This abstract describes the efforts of the Organics Preliminary Examination Team (PET). More detailed discussions of specific analyses of the samples can be found in other papers presented at this meeting by individual members of the Organics PET (see the author list above for team members). The studied Wild 2 gas and dust samples were collected by impact onto aerogel tiles and Al foils when the spacecraft flew through the coma of 81P/Wild 2 on 2 Jan 2004 at a relative velocity of approx.6.1 kilometers per second. After recovery of the Sample Return Capsule (SRC) on 15 Jan 2006, the aerogel collector trays were removed in a clean room at JSC. After documentation of the collection, selected aerogel tiles and aluminum foils were removed and aerogel and cometary samples extracted for study.
Ion Composition of Comet 19P/Borrelly as Measured by the PEPE Ion Mass Spectrometer on DS1
NASA Astrophysics Data System (ADS)
Nordholt, J. E.; Reisenfeld, D. B.; Wiens, R. C.; Gary, P.
2002-12-01
Cometary compositions are of great interest because they hold important clues to the formation of the outer solar system, and to the sources of volatiles in the solar system, including the terrestrial planets. In order to understand the primordial compositions of cometary nuclei, it is important to also understand their evolution, as many of the comets most accessible to spacecraft are highly evolved. It is also important to understand the ion and neutral chemistry that occurs in the coma surrounding the nucleus if the coma ion composition is to be used to determine the original composition of the nucleus. Deep Space One (DS1) was only the second spacecraft, after Giotto, to use an ion mass-resolving instrument to explore cometary coma compositions in-situ, which it did during the flyby of Comet Borrelly on September 22, 2001. Borrelly is significantly more evolved than Halley. In addition, the encounter occurred at a significantly greater distance from the sun (1.36 AU vs 0.9 AU for Giotto at Halley). The Plasma Experiment for Planetary Exploration (PEPE) on board DS1 was capable of resolving electron and ion energy, angle of incidence, and ion mass composition. The PEPE ion data from the seven minutes surrounding closest approach (2171 km) have been extensively analyzed. The instrument response was modeled using SIMION and TRIM codes for all of the major species through 20 AMU plus CO (at its operating voltage PEPE was very insensitive to heavier molecules). Chi-squared minimization analysis is being carried out to determine the best fit and the uncertainties. Preliminary results for the predominant heavy ions are OH+ at (72 +/- 9)% of the total water-group ion density, H2O+ at (25 +/- 7)%, CH3+ at (5 +/- 3)%, and O+ at (4 +/- 5)%. Uncertainties are quoted at the 90% confidence level. Comparison with reported Halley compositions from Giotto shows that Borrelly clearly has a lower H3O+ abundance (< 9%), consistent with a more evolved comet. The presence of relatively high amounts of CH3+, proposed in the context of Halley to be produced by protonation of CH2+, is somewhat surprising in this context. Because the H3O+/H2O+ ratio is an indicator of the degree of protonation in the coma, a low H3O+/H2O+ ratio would predict a low CH3+/CH2+ ratio as well. However, this is not the case at Borrelly. The CH3+/H3O+ ratio will need further study in future comet models and observations.
Mission strategy for cometary exploration in the 1980's
NASA Technical Reports Server (NTRS)
Farquhar, R. W.
1976-01-01
A specific plan for a sequence of cometary intercept missions in the 1980's is reported. Each mission is described in detail and the supporting role of ground based cometary observations is included. Only three launches are required in the proposed mission sequence for six cometary encounters with comets Encke, Giacobini-Zinner, Borrelly and Halley. Cometary ephemerics errors are reduced to very small values because of a favorable earth-comet orbital geometry for Encke 1980, and excellent earth based sighting conditions exist for the entire 1985 mission set.
Could life have evolved in cometary nuclei
NASA Technical Reports Server (NTRS)
Bar-Nun, A.; Lazcano-Araujo, A.; Oro, J.
1981-01-01
The suggestion by Hoyle and Wickramasinghe (1978) that life might have originated in cometary nuclei rather than directly on the earth is discussed. Factors in the cometary environment including the conditions at perihelion passage leading to the ablation of cometary ices, ice temperatures, the absence of an atmosphere and discrete liquid and solid surfaces, weak cometary structure incapable of supporting a liquid core, and radiation are presented as arguments against biopoesis in comets. It is concluded that although the contribution of cometary and meteoritic matter was significant in shaping the earth environment, the view that life on earth originally arose in comets is untenable, and the proposition that the process of interplanetary infection still occurs is unlikely in view of the high specificity of host-parasite relationships.
NASA Astrophysics Data System (ADS)
Bemporad, Alessandro
Thanks to the launch of SOHO in the end of 1995 and to the continuous monitoring of the white light (WL) corona offered by the LASCO coronagraphs, it was discovered that sungrazing comets are much more common than previously thought. More than 2500 comets have been discovered over about 17 years, hence slightly less than a comet every 2 days is observed by coronagraphs. The white light emission seen by SOHO/LASCO and more recently also by the STEREO/SECCHI instruments provides information not only on the comet orbits (hence on its origin), but also on the dust-tail formation, dust-tail disconnection, occurrence of nucleus fragmentation and nucleus disintegration processes. Very interestingly, a few sungrazing comets have been also observed in the UV spectra by the SOHO UV Coronagraph Spectrometer (UVCS) and the strong emission observed in the H I Lyman-alpha lambda 1216 Å line provided direct information also on the water outgassing rate, tail chemical composition, nucleus size and occurrence of nucleus fragmentations. Moreover, the UV cometary emission provides a new method to estimate physical parameters of the coronal plasma met by the comet (like electron density, proton temperature and solar wind velocity), in a way that these comets can be considered as “local probes” for the solar corona. Unique observations of comets will be provided in the next future by the METIS coronagraph on board the Solar Orbiter mission: METIS will contemporary observe the corona in WL and in UV (HI Lyman-alpha), hence will be a unique instrument to study at the same time the transiting comets and the solar corona being crossed by the comets. Previous results and new possibilities offered by METIS on these topics are summarized and discussed here.
Outbursts of H2O in Comet P/Halley
NASA Astrophysics Data System (ADS)
Larson, H. P.; Hu, H.-Y.; Mumma, M. J.; Weaver, H. A.
1990-07-01
Comet Halley gas-production monitoring efforts in March 1986 with the NASA Kuiper Airborne Observatory's Fourier transform spectrometer have indicated rapid temporal variations in H2O emissions; a continuous record of an H2O outburst was thus obtained. The event, in which H2O brightness increased by a factor of 2.2 in less than 10 min, is ascribable to an energetic process in the nucleus whose character may have been that of amorphous H2O ice crystallization, chemical explosion, thermal stress, or a compressed gas pocket. The timing and energy of the event appear to require an internal energy source; amorphous ice crystallization is held to be most consistent with compositional and thermal models of cometary nuclei as well as the observations.
An investigation of water production rates by irregularly shaped cometary nuclei.
NASA Astrophysics Data System (ADS)
Gutierrez, P. J.; Ortiz, J. L.; Rodrigo, R.; Lopez-Moreno, J. J.
1999-09-01
A computer code has been developed to derive water production rates for rotating irregularly shaped nuclei with topography (both craters and mountains) as a function of heliocentric distance. The code solves the surface energy balance equation including heat diffusion in the normal direction and taking into account shadowing effects, for any combination of orbital parameters, spin axis orientation, rotation period, and physical properties of the nucleus (geometric albedo, emissivity, thermodynamical properties). Preliminary results are presented for several representative objects. The research described in this abstract is being carried out at the Instituto de Astrofísica de Andalucía and is supported by the Comision Interministerial de Ciencia y Tecnología under contracts ESP96-0623 and ESP97-1773-CO3-01.
NASA Technical Reports Server (NTRS)
Palmer, Patrick; De Pater, Imke; Snyder, Lewis E.
1989-01-01
In comparison with Comet Halley, the radio OH emission from Comet Wilson behaved very erratically, changing rapidly in position as well as in velocity, while the emission and brightness distribution from Comet Halley displayed apparent stability. A few months later, nearer perihelion, just the opposite behavior was observed at UV wavelengths. Another difference between the two comets is that the OH emission from Comet Halley seemed confined to a region a few times 100.000 km in size, while the emission from Comet Wilson showed up in sporadic blobs, with variable intensities and velocities, at distances as far as 10 to the 6th km from the nucleus. This behavior in Comet Wilson may be associated with the disintegration of the outer frosting associated with new comets and possibly with the fragmentation and ejection of cometesimals from the nucleus. As part of the data analysis, it is demonstrated that lengthening the integration time and lowering the velocity resolution affects the symmetry of the OH images and spectral-line profiles. As a consequence, asymmetric cometary OH line profiles may be more common than previously thought.
NASA Astrophysics Data System (ADS)
Bonev, Boncho P.; DiSanti, Michael; Mumma, Michael; Gibb, Erika; Villanueva, Geronimo; Paganini, Lucas; Combi, Michael; Magee-Sauer, Karen
2014-02-01
Using NIRSPEC at Keck 2 we propose spatially-resolved high- resolution spectroscopic observations of H_2O emission in the coma of the Jupiter-family comet 209P/LINEAR. The exceptionally small geocentric distance - 0.06 AU - will afford very high spatial resolution. Using long-slit spectroscopy we will measure the spatial variation of the temperature and column density of water, providing a very rare direct quantitative view of the physical state in the innermost region of a cometary atmosphere, within 50-100 km from the nucleus. To maximize the science return, we will also measure the abundances of CH_3OH and C_2H_6 simultaneously with H_2O. Only one instrument setting is required for our entire investigation, thereby optimizing observing efficiency. Our proposed study targets improved understanding of the near-nucleus coma physics, and of the primary volatile composition of Jupiter-family comets, a dynamical group which remains underrepresented in modern taxonomical studies. In addition, this project will provide a context for interpreting results from the Rosetta mission, and also a test of state-of-the-art physical models of the coma.
Hst Measurements Of Main Belt Comet 300163
NASA Astrophysics Data System (ADS)
Jewitt, David; Weaver, H.; Agarwal, J.; Mutchler, M.; Larson, S.
2012-10-01
Asteroid 300163 (semimajor axis 3.05 AU, eccentricity 0.20, inclination 3 deg., Tisserand parameter 3.20) is a source of dust, giving it the dual cometary designation P/2006 VW139. It satisfies the definition of a main-belt comet (MBC) by having the orbital character of a main-belt asteroid but the diffuse appearance of a comet. We obtained Hubble Space Telescope observations of this object in December 2011 in order to study the morphology of the ejected dust at the highest angular resolution and to determine the cause of the mass loss from the nucleus. One of the two HST observing epochs was carefully timed to coincide with the Earth's crossing of the orbital plane (out of plane angle 0.01 deg.) to obtain a measure of the vertical velocity dispersion free from the effects of projection. We find an extraordinarily thin dust sheet and infer a sub-meter per second dust ejection velocity. Observations at the second epoch show a change in the near-nucleus dust morphology that indicates continuing ejection (i.e. the dust emission is not impulsive). We use the low velocity ejection, coupled with the absence of an observable coma, to help constrain the possible source mechanisms for the dust.
NASA Astrophysics Data System (ADS)
Matonti, C.; Auger, A. T.; Groussin, O.; Jorda, L.; Attree, N.; Viseur, S.; El Maarry, M. R.
2016-12-01
Fractures and faults are widespread and pervasive in Earth crustal and sedimentary rocks. They result from deviatoric stresses applied on brittle materials. In various contexts, their geometry often allows one to infer the direction and sometimes the magnitude of the stress that led to their formation. The Rosetta spacecraft has orbited comet 67P for two years and has acquired images of the nucleus surface with an unprecedented spatial resolution, down to 20 cm/px. These data open the way for entirely new geological interpretations of the structures observed at the surface of cometary nuclei. In this work, we focus on the structural interpretations of the meter to hectometer scale lineaments observed on the surface from the OSIRIS-NAC images. To improve interpretations, we performed the digitalization of lineaments in selected zones. In brittle material regions (essentially Atum and Khonsu), we observed structures that nicely match fault splay, duplexes blocks and anastomosing or "en-échelon" patterns. Such structures strongly suggest the occurrence of sheared zones and "strike-slip fault" arrays, which are observed here for the first time at the surface of a comet nucleus. Despite the large differences in the gravity magnitude and nucleus material strength compared to Earth, the observation of such structures seems to confirm comparable gravity to strength ratio between 67P and the Earth (Groussin et al., 2015). Most of these shear structures are sub-parallel and located inside or near the nucleus neck regions (Hapi, Sobek and Wosret), which is consistent with an increased relative shear stress at the boundary of the two lobes (Hirabayashi et al., 2016). These results emphasize mechanisms that may have important implications on the nucleus strength estimation and how it is eroded. Indeed, considering the fault propagation laws along with multiple angles views of structures, the observed faults likely propagate inside the nucleus over several tenths to hundreds of meters. Moreover, possible "faults offsets" observations suggest that relatively important/durable "tectonic-like" processes happened or are still happening in the nucleus. Further comparative analyses of successive images from pre-to-post perihelion phases might allow quantifying the timescale at which these processes occur.
Physical properties of asteroids in comet-like orbits in the infrared asteroidal survey catalogs
NASA Astrophysics Data System (ADS)
Kim, Y.; Ishiguro, M.; Usui, F.
2014-07-01
Dormant comet and Infrared Asteroidal Survey Catalogs. Comet nucleus is a solid body consisting of dark refractory material and ice. Cometary volatiles sublimate from subsurface layer by solar heating, leaving behind large dust grains on the surface. Eventually, the appearance could turn into asteroidal rather than cometary. It is, therefore, expected that there would be ''dormant comets'' in the list of known asteroids. Over past decade, several ground-based studies have been performed to dig out such dormant comets. One common approach is applying a combination of optical and dynamical properties learned from active comet nucleus to the list of known asteroids. Typical comet nucleus has (i) Tisserand parameter with respect to Jupiter, T_{J}<3, (ii) low geometric albedo, p_{v}<0.1 and (iii) reddish or neutral spectra, similar to P, D, C-type asteroids. Following past ground-based surveys, infrared space missions gave us an opportunity to work on further study of dormant comets. To the present, three infrared asteroidal catalogs taken with IRAS[1], AKARI[2] and WISE[3] are available, providing information of sizes and albedos which are useful to study the physical properties of dormant comets as well as asteroids. Usui et al. (2014) merged three infrared asteroidal catalogs with valid sizes and albedos into single catalog, what they called I-A-W[4]. We applied a huge dataset of asteroids in I-A-W to investigate the physical properties of asteroids in comet-like orbits (ACOs, whose orbits satisfy Q>4.5 au and T_{J}<3). Here we present a study of ACOs in infrared asteroidal catalogs taken with AKARI, IRAS and WISE. In this presentation, we aim to introduce albedo and size properties of ACOs in infrared asteroidal survey catalogs, in combination with orbital and spectral properties from literature. Results and Implications. We summarize our finding and implication as followings: - are 123 ACOs (Q>4.5 au and T_J<3) in I-A-W catalog after rejection of objects with large orbital uncertainties. - Majority (˜80 %) of ACOs have low albedo (p_{v}<0.1), showing similar albedo distribution to active comet nuclei. - Low-albedo ACOs have the cumulative size distribution shallower than that of active comet nuclei. - High-albedo (p_{v}≥0.1) ACOs consist of small (D<3 km) bodies are concentrated in near-Earth space. - We suggest that such high-albedo, small near-Earth asteroids are susceptible to Yarkovsky effect and injected into comet-like orbits.
NASA Astrophysics Data System (ADS)
Spohn, T.; MUPUS Team
1996-09-01
The Surface Science Package, which will be deployed in course of the ROSETTA mission on the surface of the target comet, offers the unprecedented opportunity to study the physical properties and dominating processes of a comet nucleus in situ. While most SSP experiments focuse on composition and chemistry, the MUPUS instrument package is aimed to study the energy balance of the nucleus/coma interface and the evolution of key thermal and mechanical parameters. Unlike planetary evolution, cometary evolution is influenced by the energy input at the surface. The near surface layers are accessible with some effort and may thus be directly studied. A penetrator equipped with temperature sensors and heaters (MUPUS--PEN) aims to measure the vertical temperature distribution (PEN--TP) and the thermal conductivity (PEN--THC) in the first tens of centimeters of the nucleus as they evolve with time. A combined evaluation of the PEN--TP and PEN--THC data will allow to understand vertical surface heat flow into or from the comet nucleus and the energy balance of the comet. The surface temperature will be measured with an infrared thermal mapper (MUPUS TM). Both thermal sensors will provide a ground truth for IR data from the orbiter. The PEN--M sensor will measure mechanical properties like hardness and grain size during penetration. A compton backscatter densitometer (CBD) will be used to measure the density. Additional temperature sensors and penetrometers in the SSP's anchor(s) will supplement the data and expand the volume probed. The results will help to understand the onset of activity, gas and dust emission, which will be measured by the orbiter. Understanding the dominating processes and their time scales allows to determine the present state of the surface material ("Is the matter found close to the surface pristine?") as well as extrapolation both into the past and the future.
NASA Technical Reports Server (NTRS)
Borg, J.; Horz, F.; Bridges, J. C.; Burchell, M. J.; Djouadi, Z.; Floss, C.; Graham, G. A.; Green, S. F.; Heck, P. R.; Hoppe, P.;
2007-01-01
Aluminium foils were used on Stardust to stabilize the aerogel specimens in the modular collector tray. Part of these foils were fully exposed to the flux of cometary grains emanating from Wild 2. Because the exposed part of these foils had to be harvested before extraction of the aerogel, numerous foil strips some 1.7 mm wide and 13 or 33 mm long were generated during Stardusts's Preliminary Examination (PE). These strips are readily accommodated in their entirety in the sample chambers of modern SEMs, thus providing the opportunity to characterize in situ the size distribution and residue composition - employing EDS methods - of statistically more significant numbers of cometary dust particles compared to aerogel, the latter mandating extensive sample preparation. We describe here the analysis of nearly 300 impact craters and their implications for Wild 2 dust.
Electromagnetic instabilities in solar wind interaction with dusty cometary plasmas
NASA Technical Reports Server (NTRS)
Verheest, Frank; Meuris, Peter
1995-01-01
Dusty plasmas contain charged dust grains which are much more massive than protons, carry high negative charges due to preferential capture of electrons, and do not have a fixed charge. Fluctuations in the grain charges due to liberation or capture of additional electrons and protons translate as mass and momentum losses or gains for these species, which can render linear modes unstable. On the other hand, many authors have addressed the pickup of ions of cometary origin by the solar wind, which for the parallel part is due to relative streaming between cometary and solar wind ions which excites low-frequency electromagnetic turbulence. In the present work we look again at those instabilities by including effects due to the presence of charged dust in the cometary environments. We have investigated several frequency regimes: nonresonant below the cometary watergroup gyrofrequency, nonresonant below the cometary charged dust gyrofrequency (new and interesting but highly unlikely!) and resonant with the cometary watergroup ions. For most parameter ranges either the existing instabilities are enhanced, showing that the presence of charged dust facilitates the cometary ion pickup by the solar wind, or new instabilities have been shown to exist. Similar conclusions might be relevant for other kinds of astrophysical and heliospheric plasmas containing charged dust, as in planetary rings.
The puzzle of HCN in comets: Is it both a product and a primary species?
NASA Astrophysics Data System (ADS)
Mumma, M.; Bonev, B.; Charnley, S.; Cordiner, M.; DiSanti, M.; Gibb, E.; Magee-Sauer, K.; Paganini, L.; Villanueva, G.
2014-07-01
Hydrogen cyanide has long been regarded as a primary volatile in comets, stemming from its presence in dense molecular-cloud cores and its supposed storage in the cometary nucleus. Here, we examine the observational evidence for and against that hypothesis, and argue that HCN may also result from near-nucleus chemical reactions in the coma. The distinction (product vs. primary species) is important for multiple reasons: - HCN is often used as a proxy for water when the dominant species (H_2O) is not available for simultaneous measurement, as at radio wavelengths. If much HCN is sometimes produced in the coma, its adoption as a water proxy could introduce unwanted bias to taxonomies based on composition. - HCN is one of the few volatile carriers of nitrogen accessible to remote sensing, with NH_3 being the dominant nitrile. If HCN is mainly a product species, its precursor becomes the more important metric for compiling a taxonomic classification based on nitrogen chemistry. - The stereoisomer HNC is regarded as a product species, thought to result from coma chemistry involving HCN. But, could another reaction of a primary precursor (X-CN) with a hydrocarbon co-produce both HNC and HCN? - The production rate for CN greatly exceeds the possible production from HCN in some comets, demonstrating the presence of another (more important) precursor of CN radicals in them. - The production rates of HCN measured through rotational (radio) and vibrational (infrared) spectroscopy agree in some comets, but in others the infrared rate exceeds the radio rate substantially. Is prompt emission from vibrationally excited HCN responsible? - With its strong dipole moment and H-bonding character, HCN should be linked more strongly in the nuclear ice to other molecules with similar properties (H_2O, CH_3OH), but instead its spatial release in some comets seems strongly coupled to volatiles that lack a dipole moment and thus do not form H-bonds (methane, ethane). We will present the evidence for and against these points, and suggest ways to test the primary and product origins of cometary HCN.
Landslide on comets as a result of impacts
NASA Astrophysics Data System (ADS)
Czechowski, Leszek
2016-04-01
Introduction: Landslides were observed on a few comet's nuclei, e.g. [1], [2]. The mechanism of their origin is not obvious because of very low gravity. According to [2] fluidization and multiphase transport of cometary material could be an explanation. We consider another option, namely, earthquakes resulted from meteoroids impacts as a trigging mechanism. Material of comets: Comets nuclei are believed to built of soft materials like snow and dust. The recent landing of Philae on the comet 67P/Czuriumow-Gierasimienko indicates a different situation. According to [1]: "thermal probe did not fully penetrate the near-surface layers, suggesting a local resistance of the ground to penetration of >4 megapascals, equivalent to >2 megapascal uniaxial compressive strength". Here we assume that elastic properties of comet's nuclei could be similar to elastic properties of dry snow, namely Young modulus is assumed to be 106 - 108Pa, see [3] and [4]. The model and results: We consider cometary nucleus in the shape of two spheres (with radius 1400 m each) connected by a cylinder (with radius of 200 m and length of 200 m). Density is 470 kg m-3. This shape corresponds approximately to shapes of some comets (e.g. 67P/Churyumov- Gerasimenko [1], 103P/Hartley 2 [5]) A few vibration modes of such body are possible. In present research we consider 3 modes: bending, lengthening-shortening along axis of symmetry, and torsion. We calculated periods of basic oscillation in each of these modes for different values of Young modulus - Table 1. Table 1 Basic results of calculations Young modulus [MPa]Periods [s] of vibrationMaximum acceleration [m s-2] 4 110 - 950 0.0001- 0.0004 40 38 - 290 0.0004- 0.0014 400 12 - 92 0.0012- 0.0045 Rotation and nutation: the impact results in changing of rotation of the comet. In general, the vector of angular velocity will be a subject to nutation that results in changing of centrifugal force, and consequently could be an additional factor triggering landslides. Discussion: Let assume that the comet are hit by small meteoroid of the mass of 1 kg and velocity 20 km s-1. The mode of excited vibrations and their amplitudes depends on many factors. Of course, the energy of vibration cannot exceed energy released during impact. Generally a few modes of vibration are excited but for some special place of impact and the special velocity vector of the impactor one mode could take most of the energy and this mode will prevail. In calculations for Table 1 we assume that only one mode is generated. The maximum values of acceleration of the surface resulting from the impact are given in Table 1. The acceleration of the cometary surface could be vertical, horizontal or inclined with respect to local gravity or local normal to the surface. Note that acceleration is often higher than acceleration of the gravity of the comet. Consequently, the vibrations could throw loose material into space that could lead to massive instability of loose material, i.e. to landslides. It could be alternative mechanism to that presented in [2] (i.e. fluidization). Acknowledgement: The research is partly supported by Polish National Science Centre NCN) (decision 2014/15/B/ST 10/02117) References [1] T. Spohn, et al. (2015) Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov- Gerasimenko. Science 31 July 2015: Vol. 349 no. 6247 DOI: 10.1126/science.aab0464 [2] Belton M. J.S., Melosh J. (2009). Fluidization and multiphase transport of particulate cometary material as an explanation of the smooth terrains and repetitive outbursts on 9P/Tempel 1. Icarus 200 (2009) 280-291 [3] Reuter B. (2013) On how to measure snow mechanical properties relevant to slab avalanche release. International Snow Science Workshop Grenoble - Chamonix Mont-Blanc - 2013 007 [4] Ball A.J. (1997) Ph. D. Thesis: Measuring Physical Properties at the Surface of a Comet Nucleus, Univ.of Kent U.K. [5] Thomas P.C. et al.(2013) Shape, density, and geology of the nucleus of Comet 103P/Hartley 2. Icarus 222 (2013) 550-558
NASA Astrophysics Data System (ADS)
Basilevsky, A. T.; Mall, U.; Keller, H. U.; Skorov, Yu. V.; Hviid, S. F.; Mottola, S.; Krasilnikov, S. S.; Dabrowski, B.
2017-03-01
This paper is based on geologic analysis of the surface morphology of nucleus of the Jupiter family comet 67P. This comet was visited by the ESA mission Rosetta, which escorted the comet since May 2014 till the end of September 2016 and studied it by 11 instruments of the mission orbiter and 10 instruments of the lander. The nucleus is 4 km in diameter, has a bilobate shape with the smaller (Head) and larger (Body) lobes, and the narrow neck between them. For the analysis, primarily images taken by the Rosetta Navigation camera (NavCam) were used and then complemented by selected images from the ROLIS and OSIRIS cameras. Two major types of the nucleus material are distinguished by us and other researchers: 1) the consolidated nucleus material and 2) the loose material, a kind of cometary regolith, covering the nucleus consolidated material. On the surface of the consolidated material rather long (up to hundreds meters) straight lineaments are distinguishable. They probably correspond to fractures and in some cases to strata. Their presence suggests that the consolidated material is rather compact and lacks voids larger than tens of meters across. Surfaces of consolidated nucleus material typically show knobby appearance at the scales from tens of meters and meters to centimeters and millimeters. This suggests that this material is grainy, consisting of more and less resistant (to surface weathering) ;particles; on the scale of the visible knobs. The geometric analysis of steep slopes based on the nucleus shape model allowed us to estimate a tensile, shear and compressive strength of the consolidated material. It was shown that the 67P consolidated nucleus material is very fragile, and taking into account the scale effect one can conclude that it is as fragile as fresh fallen snow and maybe even more fragile. In addition, estimates of the compressive strength of the surface material were considered at the sites of the first and the last contacts of the Philae lander with the surface. Observations also showed evidence of various downslope and lateral movements of rather large material masses (landslide? avalanche?) as well as boulders and ;fines;, which are driven primarily by gravity and then by the acquired inertia, but in some cases a material transport by dust-gas jets/outbursts could play a role. The latter could also be responsible for formation of the eolian-type ripples.
Comet 67P/Churyumov-Gerasimenko: Non-Gravitational Forces Based on its Detailed Shape
NASA Astrophysics Data System (ADS)
Keller, Horst Uwe; Mottola, Stefano; Skorov, Yuri; Davidsson, Björn; Gutiérrez, Pedro; Jorda, Laurent; Maquet, Lucie
2015-11-01
Non-gravitational forces caused by sublimation on a cometary nucleus influence its orbital parameters and its rotational properties. Based on thermal models and rough estimates of the nucleus shape properties such as its mass and density can be derived [1, 2]. The uncertainty of the nucleus shape influences the quality of the results. Changes of the angular momentum of the nucleus rotation are more strongly influenced by details of the shape and surface. The long term observations of the nucleus of comet 67P/Churyumov-Gerasimenko by OSIRIS [3] during the rendezvous with ESA’s Rosetta spacecraft result in a very detailed shape model [3]. We use a shape model with > 105 facets to simulate the distributed forces due to sublimation and to calculate their exerted torques. The determination of the overall activity and its spatial and timely distribution over the nucleus remains a major challenge. Early observations revealed that the rotation period had changed from its last perihelion passage in 2009 [4]. The detailed shape model along with thermal modeling makes it possible to calculate the diurnal activity of the facets [6, 7]. The net torque integrated over the whole surface causes a change in the angular momentum. We also calculate the forces acting on the motion of the nucleus. This can be monitored by determinations of the spacecraft positions during the Rosetta mission. We will compare our results with the traditional approach to calculate the non-gravitational forces [8].[1, 2] Davidsson, B. J. R. & Gutiérrez, P. J., Icarus, 168, 392, 2004, Icarus, 176, 453, 2005[3] H. U. Keller, C. Barbieri, P. Lamy, H. Rickman, R. Rodrigo, K.-P. Wenzel, H. Sierks, M. A’Hearn, F. Angrilli, M. Angulo, et al., SSR, 128 (1-4): 433-506, 2007.[4] Preusker, F., Scholten, F., Matz, K.-D., et al., Astronomy & Astrophysics, accepted, 2015[5] S. Mottola, S. Lowry, C. Snodgrass, P. Lamy, I. Toth, et al. A&A, 569: L2, Sept. 2014.[6] H. U. Keller, S. Mottola, B. Davidsson, S. Schröder, Y. Skorov, E. Kührt, et al.. A&A, in press[7] H. U. Keller, S. Mottola, Y. V. Skorov, and L. Jorda, Astronomy and Astrophysics Letter , 2015.[8] B. G. Marsden, Z. Sekanina, and D. K. Yeomans, Astronomical Journal, 78: 211, Mar. 1973.
Systematics of the CHON and other light-element particle populations in Comet Halley
NASA Technical Reports Server (NTRS)
Clark, Benton; Mason, Larry W.; Kissel, Jochen
1986-01-01
Based on chemical signatures measured by the PIA experiment during the Giotto flyby of comet Halley, particle classifications were designated. In addition to silicate-like grains and particles of mixed (cosmic) composition, there appear to be several light-element rich populations, including the CHON, (H,C), (H,C,O), and (H,C,N) particle types. These compositional classes are further distinguished by differences in mass distributions, a density indicator, and variations in relative abundance within the coma. These particle populations are evidence for chemical heterogeneity in the surface of the cometary nucleus. Particles found mainly in the inner coma may be volatile icy grains. Most of the N of the comet may be found in up to three different populations of grains; one or more of these may be responsible for the observation of cyanojets.
A Chemical Model of the Coma of Comet C/2009 P1 (Garradd)
NASA Astrophysics Data System (ADS)
Boice, Daniel C.; Kawakita, H.; Kobayashi, H.; Naka, C.; Phelps, L.
2012-10-01
Modeling is essential to understand the important physical and chemical processes that occur in cometary comae. Photochemistry is a major source of ions and electrons that further initiate key gas-phase reactions, leading to the plethora of molecules and atoms observed in comets. The effects of photoelectrons that react via impacts are important to the overall ionization. We identify the relevant processes within a global modeling framework to understand simultaneous observations in the visible and near-IR of Comet C/2009 (Garradd) and to provide valuable insights into the intrinsic properties of its nucleus. Details of these processes are presented in the collision-dominated, inner coma of the comet to evaluate the relative chemical pathways and the relationship between parent and sibling molecules. Acknowledgements: We appreciate support from the NSF Planetary Astronomy Program.
The cometary and asteroidal origins of meteors
NASA Technical Reports Server (NTRS)
Kresak, L.
1973-01-01
A quantitative examination of the gravitational and nongravitational changes of orbits shows that for larger interplanetary bodies the perturbations by Jupiter strongly predominate over all other effects, which include perturbations by other planets, splitting of comet nuclei and jet effects of cometary ejections. The structure of meteor streams, indicates that the mutual compensation of the changes in individual elements entering the Jacobian integral, which is characteristic for the comets, does not work among the meteoroids. It appears that additional forces of a different kind must exert appreciable influence on the motion of interplanetary particles of meteoroid size. Nevertheless, the distribution of the Jacobian constant in various samples of meteor orbits furnishes some information on the type of their parent bodies and on the relative contribution of individual sources.
NASA Technical Reports Server (NTRS)
Zank, G. P.; Khabibrakhmanov, I. KH.; Story, T.
1993-01-01
A new two-fluid model which describes mass loading in the solar wind (e.g., the interaction of the solar wind with a cometary coma or the local interstellar medium) is presented. The self-consistent back-reaction of the mass-loaded ions is included through their effective scattering in low-frequency MHD turbulence and the invocation of a diffusive approximation. Such an approximation has the advantage of introducing self-consistent dissipation coefficients into the governing equations, thereby facilitating the investigation of the internal structure of shocks in mass-loading environments. To illustrate the utility of the new model, we consider the structure of cometary shocks in the hypersonic one-dimensional limit, finding that the incoming solar wind is slowed by both mass loading and the development of a large cometary ion pressure gradient. The shock is broadened and smoothed by the cometary ions with a thickness of the order of the cometary ion diffusion scale.
NASA Technical Reports Server (NTRS)
Stadermann, Frank J.; Hoppe, Peter; Floss, Christine; Heck, Philipp R.; Hoerz, Friedrich; Huth, Joachim; Kearsley, Anton T.; Leitner, Jan; Marhas, Kuljeet K.; McKeegan, Kevin D.;
2007-01-01
In January 2006, the Stardust mission successfully returned dust samples from the tail of comet 81P/Wild 2 in two principal collection media, low density silica aerogel and Al foil. While hypervelocity impacts at the Stardust encounter velocity of 6.1 kilometers per second into Al foils are generally highly disruptive for natural, silicate-dominated impactors, previous studies have shown that many craters retain sufficient residue to allow a determination of the elemental and isotopic compositions of the original projectile. We have used two NanoSIMS ion microprobes to perform C, N, and O isotope imaging measurements on four large (59-295 micrometer diameter) and on 47 small (0.32-1.9 micrometer diameter) Al foil impact craters as part of the Stardust Preliminary Examination. Most analyzed residues in and around these craters are isotopically normal (solar) in their C, N, and O isotopic compositions. However, the debris in one large crater shows an average N-15 enrichment of approx. 450%o, which is similar to the bulk composition of some isotopically primitive interplanetary dust particles and to components of some primitive meteorites. A 250 nm grain in another large crater has an O-17 enrichment with approx. 2.65 times the solar O-17/O-16 ratio. Such an O isotopic composition is typical for circumstellar oxide or silicate grains from red giant or asymptotic giant branch stars. The discovery of this circumstellar grain clearly establishes that there is authentic stardust in the cometary samples returned by the Stardust mission. However, the low apparent abundance of circumstellar grains in Wild 2 samples and the preponderance of isotopically normal material indicates that the cometary matter is a diverse assemblage of presolar and solar system materials.
NASA Technical Reports Server (NTRS)
Stadermann, Frank J.; Hoppe, Peter; Floss, Christine; Hoerz, Friedrich; Huth, Joachim; Kearsley, Anton T.; Leitner, Jan; Marhas, Kuljeet K.; McKeegan, Kevin D.; Stephan, Thomas;
2007-01-01
In January 2006, the STARDUST mission successfully returned dust samples from the tail of comet 81P/Wild 2 in two principal collection media, low density silica aerogel and Al foil. While hypervelocity impacts at 6.1 km/s, the encounter velocity of STARDUST, into Al foils are generally highly disruptive for natural, silicate-dominated impactors, previous studies have shown that many craters retain sufficient residue to allow a determination of the elemental and isotopic compositions of the original projectile. We have used the NanoSIMS to perform C, N, and O isotope imaging measurements on four large (59-370 microns diameter) and on 47 small (0.32-1.9 microns diameter) Al foil impact craters as part of the STARDUST Preliminary Examination. Most analyzed residues in and around these craters are isotopically normal (solar) in their C, N, and O isotopic compositions. However, the debris in one large crater shows an average 15N enrichment of approx. 450 %, which is similar to the bulk composition of some isotopically primitive interplanetary dust particles. A 250 nm grain in another large crater has an O-17 enrichment with approx. 2.65 times the solar O-17/O-16 ratio. Such an O isotopic composition is typical for circumstellar oxide or silicate grains from red giant or asymptotic giant branch stars. The discovery of this circumstellar grain clearly establishes that there is authentic stardust in the cometary samples returned by the STARDUST mission. However, the low apparent abundance of circumstellar grains in Wild 2 samples and the preponderance of isotopically normal material indicates that the cometary matter is a diverse assemblage of presolar and solar system materials.
A new hybrid particle/fluid model for cometary dust
NASA Astrophysics Data System (ADS)
Shou, Y.; Combi, M. R.; Tenishev, V.; Toth, G.; Hansen, K. C.; Huang, Z.; Gombosi, T. I.; Fougere, N.; Rubin, M.
2017-12-01
Cometary dust grains, which originate from comets, are believed to contain clues to the formation and the evolution of comets. They also play an important role in shaping the cometary environment, as they are able to decelerate and heat the gas through collisions, carry charges and interact with the plasma environment, and possibly sublimate gases. Therefore, the loss rate and behavior of dust grains are of interest to scientists. Currently, mainly two types of numerical dust models exist: particle models and fluid models have been developed. Particle models, which keep track of the positions and velocities of all gas and dust particles, allow crossing dust trajectories and a more accurate description of returning dust grains than the fluid model. However, in order to compute the gas drag force, the particle model needs to follow more gas particles than dust particles. A fluid model is usually more computationally efficient and is often used to provide simulations on larger spatial and temporal scales. In this work, a new hybrid model is developed to combine the advantages of both particle and fluid models. In the new approach a fluid model based on the University of Michigan BATSRUS code computes the gas properties, and feeds the gas drag force to the particle model, which is based on the Adaptive Mesh Particle Simulator (AMPS) code, to calculate the motion of dust grains. The coupling is done via the Space Weather Modeling Framework (SWMF). In addition to the capability of simulating the long-term dust phenomena, the model can also designate small active regions on the nucleus for comparison with the temporary fine dust features in observations. With the assistance of the newly developed model, the effect of viewing angles on observed dust jet shapes and the transportation of heavy dust grains from the southern to the northern hemisphere of comet 67P/Churyumov-Gerasimenko will be studied and compared with Rosetta mission images. Preliminary results will be presented. Support from contracts JPL #1266314 and #1266313 from the US Rosetta Project and grant NNX14AG84G from the NASA Planetary Atmospheres Program are gratefully acknowledged.
Modeling the Thermodynamic Properties of the Inner Comae of Comets
NASA Astrophysics Data System (ADS)
Boice, Daniel C.
2017-10-01
Introduction: Modeling is central to understand the important properties of the cometary environment. We have developed a comet model, SUISEI, that self-consistently includes the relevant physicochemical processes within a global modeling framework, from the porous subsurface layers of the nucleus to the interaction with the solar wind. Our goal is to gain valuable insights into the intrinsic properties of cometary nuclei so we can better understand observations and in situ measurements. SUISEI includes a multifluid, reactive gas dynamics simulation of the dusty coma (ComChem) and a suite of other coupled numerical simulations. This model has been successfully applied to a variety of comets in previous studies over the past three decades. We present results from a quantitative study of the thermodynamic properties and chemistry of cometary comae as a function of cometocentric and heliocentric distance to aid in interpretation of observations and in situ measurements of comets.Results and Discussion: ComChem solves the fluid dynamic equations for the mass, momentum, and energy of three neutral fluids (H, H2, and the heavier bulk fluid), ions, and electrons. In the inner coma, the gas expands, cools, accelerates, and undergoes many photolytic and gas-phase chemical reactions tracking hundreds of sibling species. The code handles the transition to free molecular flow and describes the spatial distribution of species in the coma of a comet. Variations of neutral gas temperature and velocity with cometocentric distance and heliocentric distance for a comet approaching the Sun from 2.5 to 0.3 AU are presented. Large increases in the gas temperatures (>400 K) due to photolytic heating in the coma within ~0.5 AU are noted, with dramatic effects on the chemistry, optical depth, and other coma properties. Results are compared to observations when available.Conclusions: SUISEI has proven to be a unique and valuable model to understand the relevant physical processes and properties of small Solar System bodies, including near-Sun comets and asteroids.Acknowledgments: This work was supported by FAPESP under Grant No. 2015/03176-8 and the National Science Foundation Planetary Astronomy Program Grant No. 0908529.
Small is different: RPC observations of a small scale comet interacting with the solar wind
NASA Astrophysics Data System (ADS)
Nilsson, Hans; Burch, James L.; Carr, Christopher M.; Eriksson, Anders I.; Glassmeier, Karl-Heinz; Henri, Pierre; Rosetta Plasma Consortium Team
2016-10-01
Rosetta followed comet 67P from low activity at more than 3 AU heliocentric distance to peak activity at perihelion and then out again. We study the evolution of the dynamic plasma environment using data from the Rosetta Plasma Consortium (RPC). Observations of cometary plasma began in August 2014, at a distance of 100 km from the comet nucleus and at 3.6 AU from the Sun. As the comet approached the Sun, outgassing from the comet increased, as did the density of the cometary plasma. Measurements showed a highly heterogeneous cold ion environment, permeated by the solar wind. The solar wind was deflected due to the mass loading from newly added cometary plasma, with no discernible slowing down. The magnetic field magnitude increased significantly above the background level, and strong low frequency waves were observed in the magnetic field, a.k.a. the "singing comet". Electron temperatures were high, leading to a frequently strongly negative spacecraft potential. In mid to late April 2015 the solar wind started to disappear from the observation region. This was associated with a solar wind deflection reaching nearly 180°, indicating that mass loading became efficient enough to form a solar wind-free region. Accelerated water ions, moving mainly in the anti-sunward direction, kept being observed also after the solar wind disappearance. Plasma boundaries began to form and a collisionopause was tentatively identified in the ion and electron data. At the time around perihelion, a diamagnetic cavity was also observed, at a surprisingly large distance from the comet. In late 2016 the solar wind re-appeared at the location of Rosetta, allowing for studies of asymmetry of the comet ion environment with respect to perihelion. A nightside excursion allowed us to get a glimpse of the electrodynamics of the innermost part of the plasma tail. Most of these phenomena are dependent on the small-scale physics of comet 67P, since for most of the Rosetta mission the solar wind - comet atmosphere interaction region is smaller than the pickup ion gyroradius in the undisturbed solar wind.
Understanding the Physical Structure of the Comet Shoemaker-Levy 9 Fragments
NASA Astrophysics Data System (ADS)
Rettig, Terrence
2000-07-01
Images of the fragmented comet Shoemaker-Levy 9 {SL9} as it approached Jupiter in 1994 provided a unique opportunity to {1} probe the comae, {2} understand the structure of the 20 cometary objects, and {3} provide limits on the Jovian impact parameters. The primary cometary questions were: how were the fragments formed and what was their central structure? There still remains a diversity of opinion regarding the structure of the 21 comet-like fragments as well as the specifics of the disruption event itself. We have shown from Monte Carlo modeling of surface brightness profiles that SL9 fragments had unusual dust size distributions and outflow velocities. Further work of a preliminary nature showed some of the central reflecting area excesses derived from surface brightness profile fitting {w/psf} appeared distributed rather than centrally concentrated as would be expected for comet- like objects, some central excesses were negative and also, the excesses could vary with time. With an improved coma subtraction technique we propose to model each coma surface brightness profile, extract central reflecting areas or central brightness excesses for the non-star-contaminated WFPC-2 SL9, to determine the behavior and characteristics of the central excesses as the fragments approached Jupiter. A second phase of the proposal will be to use numerical techniques {in conjunction with D. Richardson} to investigate the various fragment models. This is a difficult modeling process that will allow us to model the structure and physical characteristics of the fragments and thus constrain parameters for the Jovian impact events. The results will be used to constrain the structure of the central fragment cores of SL9 and how the observed dust comae were produced. The results will provide evidence to discriminate between the parent nucleus models {i.e., were the fragments solid objects or swarms of particles?} and provide better constraints on the atmospheric impact models. The physical characteristics of cometary nuclei are not well understood and the SL9 data provides an important opportunity to constrain these parameters.
Chemical Recycling of HCN in Cometary Comae
NASA Astrophysics Data System (ADS)
Boice, Daniel C.; Kawakita, Hideyo; Shinnaka, Yoshiharu; Mumma, Michael J.; Kobayashi, Hitomi; Ogawa, Sayuri
2014-11-01
Modeling is essential to understand the important physical and chemical processes that occur in cometary comae, especially the relationship between putative parent and daughter molecules, such as, HCN and CN. Photochemistry is a major source of ions and electrons that further initiate key gas-phase reactions, contributing to the plethora of molecules and atoms observed in comets. The effects of photoelectrons that interact via impacts are important to the overall excitation and dissociation processes in the inner coma. We consider the relevant processes in the collision-dominated, inner coma of a comet within a global modeling framework to understand observations of HCN and CN. The CN source(s) must be able to produce highly collimated jets, be consistent with the observed CN parent scale length, and have a production rate consistent with the observed CN production. HCN fulfills these conditions in some comets (e.g., 1P/Halley, Hale-Bopp) while it does not in others (e.g., 8P/Tuttle, 6P/d’Arrest, 73P/S-W3, 2P/Encke, 9P/Temple 1 and C/2007 W1).We investigate the chemistry of HCN with our chemical kinetics coma model including a network with other possible CN parents, as well as a dust component that may be a potential source of CN. It is seen that the major destruction pathways of HCN are via photo dissociation (into H and CN) and protonation with water group ions - primarily H3O+. We point out the intriguing “recycling” of HCN via protonation reactions with H3O+, H2O+, OH+, and subsequent dissociative recombination. It seems that HCN molecules observed in the coma can consist of those initially released from the nucleus and those that are freshly formed at different locations in the coma via these protonation/dissociation reactions. We will investigate implications for reconciling discrepancies between observations of HCN and CN in cometary comae.Acknowledgements: We appreciate support from the NSF Planetary Astronomy Program. This program is partially supported by the MEXT Supported Program for the Strategic Research Foundation at Private Universities, 2014-2018.
Comet coma sample return instrument
NASA Technical Reports Server (NTRS)
Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.
1994-01-01
The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.
NASA Technical Reports Server (NTRS)
Luchini, Chris B.
1997-01-01
Development of camera and instrument simulations for space exploration requires the development of scientifically accurate models of the objects to be studied. Several planned cometary missions have prompted the development of a three dimensional, multi-spectral, anisotropic multiple scattering model of cometary coma.
Cosmogenic nuclides in cometary materials: Implications for rate of mass loss and exposure history
NASA Astrophysics Data System (ADS)
Herzog, G. F.; Englert, P. A. J.; Reedy, R. C.
As planned, the Rosetta mission will return to earth with a 10-kg core and a 1-kg surface sample from a comet. The selection of a comet with low current activity will maximize the chance of obtaining material altered as little as possible. Current temperature and level of activity, however, may not reliably indicate previous values. Fortunately, from measurements of the cosmogenic nuclide contents of cometary material, one may estimate a rate of mass loss in the past and perhaps learn something about the exposure history of the comet. Perhaps the simplest way to estimate the rate of mass loss is to compare the total inventories of several long-lived cosmogenic radionuclides with the values expected on the basis of model calculations. Although model calculations have become steadily more reliable, application to bodies with the composition of comets will require some extension beyond the normal range of use. In particular, the influence of light elements on the secondary particle cascade will need study, in part through laboratory irradiations of volatile-rich materials. In the analysis of cometary data, it would be valuable to test calculations against measurements of short-lived isotopes.
Cometary dust: the diversity of primitive refractory grains
Ishii, H. A.
2017-01-01
Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive cometary particles has expanded significantly through microscale investigations of cosmic dust samples (anhydrous interplanetary dust particles (IDPs), chondritic porous (CP) IDPs and UltraCarbonaceous Antarctic micrometeorites, Stardust and Rosetta), as well as through remote sensing (Spitzer IR spectroscopy). Comet dust are aggregate particles of materials unequilibrated at submicrometre scales. We discuss the properties and processes experienced by primitive matter in comets. Primitive particles exhibit a diverse range of: structure and typology; distribution of constituents; concentration and form of carbonaceous and refractory organic matter; Mg- and Fe-contents of the silicate minerals; sulfides; existence/abundance of type II chondrule fragments; high-temperature calcium–aluminium inclusions and ameboid-olivine aggregates; and rarely occurring Mg-carbonates and magnetite, whose explanation requires aqueous alteration on parent bodies. The properties of refractory materials imply there were disc processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disc present at the time and in the region where the comets formed. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554979
Non-Random Spatial Distribution of Impacts in the Stardust Cometary Collector
NASA Technical Reports Server (NTRS)
Westphal, Andrew J.; Bastien, Ronald K.; Borg, Janet; Bridges, John; Brownlee, Donald E.; Burchell, Mark J.; Cheng, Andrew F.; Clark, Benton C.; Djouadi, Zahia; Floss, Christine
2007-01-01
In January 2004, the Stardust spacecraft flew through the coma of comet P81/Wild2 at a relative speed of 6.1 km/sec. Cometary dust was collected at in a 0.1 sq m collector consisting of aerogel tiles and aluminum foils. Two years later, the samples successfully returned to earth and were recovered. We report the discovery that impacts in the Stardust cometary collector are not distributed randomly in the collecting media, but appear to be clustered on scales smaller than approx.10 cm. We also report the discovery of at least two populations of oblique tracks. We evaluated several hypotheses that could explain the observations. No hypothesis was consistent with all the observations, but the preponderance of evidence points toward at least one impact on the central Whipple shield of the spacecraft as the origin of both clustering and low-angle oblique tracks. High-angle oblique tracks unambiguously originate from a noncometary impact on the spacecraft bus just forward of the collector. Here we summarize the observations, and review the evidence for and against three scenarios that we have considered for explaining the impact clustering found on the Stardust aerogel and foil collectors.
Cometary jets in interaction with the solar wind: a hybrid simulation study
NASA Astrophysics Data System (ADS)
Wiehle, Stefan; Motschmann, Uwe; Gortsas, Nikolaos; Mueller, Joachim; Kriegel, Hendrik; Koenders, Christoph; Glassmeier, Karl-Heinz
The effect of a cometary jet on the solar wind interaction is studied using comet 67P/Churyumov-Gerasimenko as case study. This comet is the target of the Rosetta-mission which will arrive in 2014. Observations suggest that cometary outgassing is confined to only a few percent of the cometary surface; thus, the measurement of jets is expected. Most former comet simulations did not attend to this fact and used an isotropic outgassing scheme or simplified outgassing patterns. Here, a single sun-facing jet is set to be the only source of cometary gas produc-tion. Using an analytic profile, this outgassing jet was implemented in a hybrid simulation code which treats protons and cometary heavy ions as particles and electrons as massless fluid. In a simulation series, the geometric parameters of the jet were varied to study the effect of different opening angles while the integrated outgassing rate remained constant. It was shown that the resulting solar wind interaction is highly dependent on the geometry of the jet. The plasma-structures like the solar wind pile-up found in the situation with isotropic outgassing are moved more and more sunward as the opening angle of the jet decreases. Furthermore, the cometary ion tail shows some kind of splitting which is not known from isotropic models.
Advanced Curation Preparation for Mars Sample Return and Cold Curation
NASA Technical Reports Server (NTRS)
Fries, M. D.; Harrington, A. D.; McCubbin, F. M.; Mitchell, J.; Regberg, A. B.; Snead, C.
2017-01-01
NASA Curation is tasked with the care and distribution of NASA's sample collections, such as the Apollo lunar samples and cometary material collected by the Stardust spacecraft. Curation is also mandated to perform Advanced Curation research and development, which includes improving the curation of existing collections as well as preparing for future sample return missions. Advanced Curation has identified a suite of technologies and techniques that will require attention ahead of Mars sample return (MSR) and missions with cold curation (CCur) requirements, perhaps including comet sample return missions.
Abundant Solar Nebula Solids in Comets
NASA Technical Reports Server (NTRS)
Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.
2016-01-01
Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of materials that were formed across a wide swath of the early protoplanetary disk.
Progress in our understanding of cometary dust tails
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1976-01-01
Various analytical techniques are employed to analyze observations on the character, composition, and size distribution of solid particles in cometary dust tails. Emphasized is the mechanical theory that includes solar gravitational attraction and solar radiation pressure to explain dust particle motions in cometary tails, as well as interactions between dust and plasma.
Cometary exploration in the shuttle era
NASA Technical Reports Server (NTRS)
Farquhar, R. W.; Wooden, W. H., II
1978-01-01
A comprehensive program plan for cometary exploration in the 1980-2000 time frame is proposed. Plans for ground-based observations, a Spacelab cometary observatory, and the Space Telescope are included in the observational program. The cometary mission sequence begins with a dual-spacecraft flyby of Halley's comet. The nominal mission strategy calls for a simultaneous launch of two spacecraft towards an intercept with Halley in March 1986. After the Halley encounter, the spacecraft are retargeted: one to intercept comet Borrelly in January 1988 and the other to intercept comet Tempel-2 in September 1988. The additional cometary intercepts are accomplished by utilizing a novel Earth-swingby technique. The next mission in the cometary program plan, a rendezvous with Encke's comet, is scheduled for launch in early 1990. It is planned to rendezvous with Encke in September 1992 at a heliocentric distance of 4 AU. Following this near-aphelion rendezvous, the spacecraft will remain with with Encke through the next two perihelion passages in February 1994 and May 1997. The rendezvous mission will be terminated about seven months after the second perihelion passage.
Cometary Plasma Probed by Rosetta
NASA Astrophysics Data System (ADS)
Galand, Marina; Vigren, Erik; Raghuram, Susarla; Schwartz, Steve; Eriksson, Anders; Edberg, Niklas; Lebreton, Jean-Pierre; Henri, Pierre; Burch, Jim; Fuselier, Stephen; Haessig, Myrtha; Mandt, Kathy; Altwegg, Kathrin; Tzou, Chia-You
2015-04-01
In Fall 2014, comet 67P/Churyumov-Gerasimenko, the main target of the Rosetta mission, was at 3 AU from the Sun. Its outgassing rate was only of the order of 5×1025 s-1 based on Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) / Cometary Pressure Sensor (COPS). Despite such a thin coma, a plasma of cometary origin has been detected by Rosetta Plasma Consortium (RPC) sensors and ROSINA/ Double Focusing Mass Spectrometer (DFMS). Close to the comet they have revealed the presence of a cometary ionosphere, with a hot electron population, consistent with the deposition of Extreme UltraViolet (EUV) solar radiation. We will present a comparison between RPC sensors and an energy deposition model in terms of suprathermal electron intensities [RPC/ Ion and Electron Sensor (IES)] and electron temperature and density [RPC/ LAngmuir Probe (LAP) and RPC/ Mutual Impedance Probe (MIP)]. We will also compare ion composition among the main species, between our ionospheric model and ROSINA/DFMS. We will discuss effects of the space environment on the cometary plasma. Finally, we will highlight any evolution in the cometary plasma as the comet is getting closer to perihelion.
Models for Cometary Comae Containing Negative Ions
NASA Technical Reports Server (NTRS)
Cordiner, M. A.; Charnley, S. B.
2012-01-01
The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [I]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of our new models for the chemistry of cometary comae that include atomic and molecular anions. We calculate the impact of these anions on the charge balance and examine their importance for cometary coma chemistry.
Cometary pick-up ions observed near Giacobini-Zinner
NASA Technical Reports Server (NTRS)
Gloeckler, G.; Hovestadt, D.; Ipavich, F. M.; Scholer, M.; Klecker, B.
1986-01-01
The number and energy density of cometary water-group ions observed near Comet Giacobini-Zinner are derived using the rest-frame distribution functions. The data reveal that density profiles of inbound and outbound passes and their shape correlate with pick-up ion production model predictions. The lose rate and production rate of water-group cometary molecules calculated from predicted and measured density profiles are 2 x 10 to the -6th/sec and 2.6 x 10 to the 28th/sec respectively. The shapes of the distribution functions are examined to study the solar wind/cometary ions interaction process.
Cometary pick-up ions observed near Giacobini-Zinner
NASA Astrophysics Data System (ADS)
Gloeckler, G.; Hovestadt, D.; Ipavich, F. M.; Scholer, M.; Klecker, B.; Galvin, A. B.
1986-03-01
The number and energy density of cometary water-group ions observed near Comet Giacobini-Zinner are derived using the rest-frame distribution functions. The data reveal that density profiles of inbound and outbound passes and their shape correlate with pick-up ion production model predictions. The lose rate and production rate of water-group cometary molecules calculated from predicted and measured density profiles are 2 x 10 to the -6th/sec and 2.6 x 10 to the 28th/sec respectively. The shapes of the distribution functions are examined to study the solar wind/cometary ions interaction process.
Rapid evolution of the spin state of comet 41P/Tuttle-Giacobini-Kresak
NASA Astrophysics Data System (ADS)
Bodewits, Dennis; Farnham, Tony; Kelley, Michael S. P.; Manning Knight, Matthew
2018-01-01
Cometary outgassing can produce torques that change the spin state of the nucleus, influencing the evolution and lifetimes of comets. If these torques spin up the rotation to the point that centripetal forces exceed the material strength of the nucleus, the comet may fragment. Comet 41P/Tuttle-Giacobini-Kresak passed Earth as close as 0.142 au in April 2017, allowing observations of the inner coma and an assessment of the rotational state of the nucleus. We acquired observations of comet 41P between March and May 2017 using the 4.3-m Discovery Channel Telescope and the UltraViolet-Optical Telescope (UVOT) on board the Earth-orbiting Swift Gamma Ray Burst Mission.We combined CN narrowband imaging and aperture photometry and found that the apparent rotation period of comet 41P more than doubled between March and May 2017, increasing from 20 hours to over 46 hours. Measurements of the periodicity in late-March by Knight et al. (CBET 4377, 2017) are consistent with this rate of increase. Comet 41P is the ninth comet for which a rotation period change has been observed (c.f. Samarasinha et al., in Comets II, 2004), but both the fractional change and the rate of change of the period far exceed those observed in the other comets. It is the combination of a slow rotation, high activity, and a small nucleus that contribute to the rapid changes of the rotation state of 41P. In addition, the active regions on the surface of 41P are likely oriented in a way such that its torques are highly optimized in comparison to many other comets.Extrapolating the comet’s rotation period using its current gas production rates and a simple activity model suggests that the nucleus will continue to spin down, possibly leading to an excited spin state in the next apparitions. Finally, 41P is known for its large outbursts, and our extrapolation suggest that the comet’s rotation period may have been close to the critical period for splitting in 2001, when it exhibited two significant outbursts.
A possible detection of infrared emission from carbon monoxide in Comet Austin (1989c1)
NASA Technical Reports Server (NTRS)
Disanti, Michael A.; Mumma, Michael J.; Lacy, John H.; Parmar, Parvinder
1992-01-01
A cryogenic IR echelle grating spectrometer has been used to probe the nu = 1-0 rovibrational band of the CO molecule in Comet Austin. Line emission has been detected at the Doppler-shifted frequency expected for the cometary P(3) line, in scans which are noted to cover only the first 3000 sec of May 16, 1990 observations; this is suggested to be due to an outburst of comparable duration. No detections were made of the P(2) line, which was predicted by models to occur at the 3.5 sigma level even for relatively high coma temperatures. If the outburst was accompanied by enhanced dust production, an increase by a factor of 2.5 is consistent with the present observational data and CO/dust may have been enriched in the outbursting volume relative to the remainder of the nucleus.
NASA Astrophysics Data System (ADS)
Huang, Z.; Toth, G.; Gombosi, T.; Jia, X.; Rubin, M.; Fougere, N.; Tenishev, V.; Combi, M.; Bieler, A.; Hansen, K.; Shou, Y.; Altwegg, K.
2015-10-01
We develop a 3-D four fluid model to study the plasma environment of comet Churyumov- Gerasimenko (CG), which is the target of the Rosetta mission. Our model is based on BATS-R-US within the SWMF (Space Weather Modeling Framework) that solves the governing multifluid MHD equations and and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates mass loading processes, including photo and electron impact ionization, furthermore taken into account are charge exchange, dissociative ion-electron recombination, as well as collisional interactions between different fluids. We simulate the near nucleus plasma and neutral gas environment with a realistic shape model of CG near perihelion and compare our simulation results with Rosetta observations.
NASA Astrophysics Data System (ADS)
Huang, Z.; Toth, G.; Gombosi, T. I.; Jia, X.; Rubin, M.; Hansen, K. C.; Fougere, N.; Bieler, A. M.; Shou, Y.; Altwegg, K.; Combi, M. R.; Tenishev, V.
2015-12-01
The neutral and plasma environment is critical in understanding the interaction of comet Churyumov-Gerasimenko (CG), the target of the Rosetta mission, and the solar wind. To serve this need and support the Rosetta mission, we develop a 3-D four fluid model, which is based on BATS-R-US within the SWMF (Space Weather Modeling Framework) that solves the governing multi-fluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates different mass loading processes, including photo and electron impact ionization, charge exchange, dissociative ion-electron recombination, and collisional interactions between different fluids. We simulate the near nucleus plasma and neutral gas environment near perihelion with a realistic shape model of CG and compare our simulation results with Rosetta observations.
The comet Halley meteoroid stream: just one more model
NASA Astrophysics Data System (ADS)
Ryabova, G. O.
2003-05-01
The present attempt to simulate the formation and evolution of the comet Halley meteoroid stream is based on a tentative physical model of dust ejection of large particles from comet Halley. Model streams consisting of 500-5000 test particles have been constructed according to the following ejection scheme. The particles are ejected from the nucleus along the cometary orbit (r < 9 au) within the sunward 70° cone, and the rate of ejection has been taken as proportional to r-4. Two kinds of spherical particles have been considered: 1 and 0.001 g with density equal to 0.25 g cm-3. Ejections have been simulated for 1404 BC, 141 AD and 837 AD. The equations of motion have been numerically integrated using the Everhart procedure. As a result, a complicated fine structure of the comet Halley meteoroid stream, consisting not of filaments but of layers, has been revealed.
Solar nebula condensates and the composition of comets
NASA Technical Reports Server (NTRS)
Lunine, J. I.
1989-01-01
Interpretation of the volatile abundances in Halley's comet in terms of models for chemical and physical processes in the solar nebula are discussed. Key ratios of the oxidized and reduced species of nitrogen and carbon are identified which tell something of the chemical history of the environment in which cometary grains accreted to form the nucleus. Isotopic abundances are also applied to this problem. It will be shown that the abundances of methane and carbon monoxide are consistent both with models of solar nebula chemistry and chemical processing on grains in star-forming regions. Ultimately, limitations of the current data set on molecular abundances in comets and star-forming regions prevent a definitive choice between the two. Processes important to the composition of outer solar system bodies are: (1) gas phase chemistry in the solar nebula; (2) imperfect mixing in the solar nebula; (3) condensation; (4) clathration; (5) adsorption; and (6) processing of interstellar material.
Mass Determination of Small Bodies in the Solar System
NASA Astrophysics Data System (ADS)
Paetzold, M.
2017-12-01
The masses and gravity fields of the planetary bodies were determined by radio tracking of spacecraft flying by or orbiting that body at a suffiently close distance. Small bodies (asteroids, cometary nuclei...) of the solar system pose certain challenges in order to reveal their masses and gravity fields. Those challenges mostly concerns spacecraft safety and/or optimal instrment operations. In order to resolve an acceptable Doppler shift with regard to the frequency noise, a spacecraft shall flyby at close distances, at slow speed and at an optimal flyby geometry for a given body mass. This cannot always be achieved. The flybys of Mars Express at Phobos, the flyby of Rosetta at asteroid Lutetia, its orbiting about the nucleus of 67P/Churyumov-Gerasimenko shall be reviewed. The prospects and challenges of future flybys like New Horizons at 2016MU69 and Lucy at the Trojan asteroids shall be presented.
NASA Astrophysics Data System (ADS)
Žáček, P.; Wolf, M.
2017-10-01
This paper contains necessary modification of Bessel's equations for the axial cometary syndyne. This correction provides the accurate values of molecular acceleration in a cometary tail and precise values of decay constants for radiating molecules and their lifetimes. In consequence the hypothesis of the predissociation of molecules seems to be useless.
Thermal infrared and optical photometry of Asteroidal Comet C/2002 CE10
NASA Astrophysics Data System (ADS)
Sekiguchi, Tomohiko; Miyasaka, Seidai; Dermawan, Budi; Mueller, Thomas; Takato, Naruhisa; Watanabe, Junichi; Boehnhardt, Hermann
2018-04-01
C/2002 CE10 is an object in a retrograde elliptical orbit with Tisserand parameter - 0.853 indicating a likely origin in the Oort Cloud. It appears to be a rather inactive comet since no coma and only a very weak tail was detected during the past perihelion passage. We present multi-color optical photometry, lightcurve and thermal mid-IR observations of the asteroidal comet. With the photometric analysis in BVRI, the surface color is found to be redder than asteroids, corresponding to cometary nuclei and TNOs/Centaurs. The time-resolved differential photometry supports a rotation period of 8.19 ± 0.05 h. The effective diameter and the geometric albedo are 17.9 ± 0.9 km and 0.03 ± 0.01, respectively, indicating a very dark reflectance of the surface. The dark and redder surface color of C/2002 CE10 may be attribute to devolatilized material by surface aging suffered from the irradiation by cosmic rays or from impact by dust particles in the Oort Cloud. Alternatively, C/2002 CE10 was formed of very dark refractory material originally like a rocky planetesimal. In both cases, this object lacks ices (on the surface at least). The dynamical and known physical characteristics of C/2002 CE10 are best compatible with those of the Damocloids population in the Solar System, that appear to be exhaust cometary nucleus in Halley-type orbits. The study of physical properties of rocky Oort cloud objects may give us a key for the formation of the Oort cloud and the solar system.
NASA Astrophysics Data System (ADS)
Skorov, Yu; Reshetnyk, V.; Rezac, L.; Zhao, Y.; Marschall, R.; Blum, J.; Hartogh, P.
2018-07-01
A significant fraction of cometary dust grains leaving the nucleus surface are extremely porous and fluffy particles as revealed by recent observation from the Rosetta mission. In this paper our aim is to investigate the dynamics of such grains when subjected to a gas flow, representing the cometary outgassing. We perform numerical experiments to quantify how the internal porous texture is reflected in quantities such as effective cross-section, gas drag coefficient, and light scattering efficiency. We also derive particle speeds for the different types of aggregates as a function of radial distance and compare them to the observations by the GIADA instrument. Using our original method for constructing hierarchical aggregates we increase the level of aggregation to reach particle sizes up to few millimeters, consistent with the observations. In addition, a non-constant gas velocity is now considered in the framework of free molecular as well as fully collisional flow models, and radiation pressure calculations use the effective medium theory appropriate for such particles. These improvements lead us to conclude that dynamical models should account for accelerating gas flow, which leads to a smaller terminal speed of fluffy dust grains. Secondly, solar radiation pressure calculated based on the Mie theory approximation can lead to orders of magnitude error for the very porous particles, instead the effective medium theory should be used. Finally, although numerical simulations can reproduce the GIADA measurements of dust speeds, we cannot conclude that there exists a preferred model of porous particles build as a ballistic cluster aggregate.
NASA Astrophysics Data System (ADS)
Skorov, Yu; Reshetnyk, V.; Rezac, L.; Zhao, Y.; Marschall, R.; Blum, J.; Hartogh, P.
2018-04-01
A significant fraction of cometary dust grains leaving the nucleus surface are extremely porous and fluffy particles as recent observation from the Rosetta mission revealed. In this paper our aim is to investigate the dynamics of such grains when subjected to a gas flow, representing the cometary outgassing. We perform numerical experiments to quantify how the internal porous texture is reflected in quantities such as: effective cross-section, gas drag coefficient, and light scattering efficiency. We also derive particle speeds for the different types of aggregates as a function of radial distance and compare them to the observations by the GIADA instrument. Using our original method for constructing hierarchical aggregates we increase the level of aggregation to reach particle sizes up to few millimeters, consistent with the observations. In addition, a non-constant gas velocity is now considered in the framework of free molecular as well as fully collisional flow models, and radiation pressure calculations use the effective medium theory appropriate for such particles. These improvements lead us to conclude that dynamical models should account for accelerating gas flow, which leads to a smaller terminal speed of fluffy dust grains. Second, solar radiation pressure calculated based on the Mie theory approximation can lead to orders of magnitude error for the very porous particles, instead the effective medium theory should be used. Finally, although numerical simulations can reproduce the GIADA measurements of dust speeds, we cannot conclude that there exists a preferred model of porous particles build as a ballistic cluster aggregate.
Periodicity Signatures of Lightcurves of Active Comets in Non-Principal-Axis Rotational States
NASA Astrophysics Data System (ADS)
Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Barrera, Jose G.
2016-10-01
There are two comets (1P/Halley, 103P/Hartley 2) that are unambiguously in non-principal-axis (NPA) rotational states in addition to a few more comets that are candidates for NPA rotation. Considering this fact, and the ambiguities associated with how to accurately interpret the periodicity signatures seen in lightcurves of active comets, we have started an investigation to identify and characterize the periodicity signatures present in simulated lightcurves of active comets. We carried out aperture photometry of simulated cometary comae to generate model lightcurves and analyzed them with Fourier techniques to identify their periodicity signatures. These signatures were then compared with the input component periods of the respective NPA rotational states facilitating the identification of how these periodicity signatures are related to different component periods of the NPA rotation. Ultimately, we also expect this study to shed light on why only a small fraction of periodic comets is in NPA rotational states, whereas theory indicates a large fraction of them should be in NPA states (e.g., Jewitt 1999, EMP, 79, 35). We explore the parameter space with respect to different rotational states, different orientations for the total rotational angular momentum vector, and different locations on the nucleus for the source region(s). As for special cases, we also investigate potential NPA rotational states representative of comet 103P/Hartley2, the cometary target of the EPOXI mission. The initial results from our investigation will be presented at the meeting. The NASA DDAP Program supports this work through grant NNX15AL66G.
NASA Technical Reports Server (NTRS)
Charnley, Steven B.
2011-01-01
The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.
Description and Analysis of Core Samples: The Lunar Experience
NASA Technical Reports Server (NTRS)
McKay, David S.; Allton, Judith H.
1997-01-01
Although no samples yet have been returned from a comet, extensive experience from sampling another solar system body, the Moon, does exist. While, in overall structure, composition, and physical properties the Moon bears little resemblance to what is expected for a comet, sampling the Moon has provided some basic lessons in how to do things which may be equally applicable to cometary samples. In particular, an extensive series of core samples has been taken on the Moon, and coring is the best way to sample a comet in three dimensions. Data from cores taken at 24 Apollo collection stations and 3 Luna sites have been used to provide insight into the evolution of the lunar regolith. It is now well understood that this regolith is very complex and reflects gardening (stirring of grains by micrometeorites), erosion (from impacts and solar wind sputtering), maturation (exposure on the bare lunar surface to solar winds ions and micrometeorite impacts) and comminution of coarse grains into finer grains, blanket deposition of coarse-grained layers, and other processes. All of these processes have been documented in cores. While a cometary regolith should not be expected to parallel in detail the lunar regolith, it is possible that the upper part of a cometary regolith may include textural, mineralogical, and chemical features which reflect the original accretion of the comet, including a form of gardening. Differences in relative velocities and gravitational attraction no doubt made this accretionary gardening qualitatively much different than the lunar version. Furthermore, at least some comets, depending on their orbits, have been subjected to impacts of the uppermost surface by small projectiles at some time in their history. Consequently, a more recent post-accretional gardening may have occurred. Finally, for comets which approach the sun, large scale erosion may have occurred driven by gas loss. The uppermost material of these comets may reflect some of the features of this erosional process, such as crust formation, and variations with depth might be expected. Overall, the upper few meters of a comet may be as complex in their own way as the upper few meters of the lunar regolith have proven to be, and by analogy, detailed studies of core samples containing this depth information will be needed to understand these processes and the details of the accretional history and the subsequent alteration history of comets.
NASA Technical Reports Server (NTRS)
Kearsley, A. T.; Burchell, M. J.; Horz, F.; Cole, M. J.; Schwandt, C. S.
2006-01-01
Metallic aluminium alloy foils exposed on the forward, comet-facing surface of the aerogel tray on the Stardust spacecraft are likely to have been impacted by the same cometary particle population as the dedicated impact sensors and the aerogel collector. The ability of soft aluminium alloy to record hypervelocity impacts as bowl-shaped craters offers an opportunistic substrate for recognition of impacts by particles of a wide potential size range. In contrast to impact surveys conducted on samples from low Earth orbit, the simple encounter geometry for Stardust and Wild 2, with a known and constant spacecraft-particle relative velocity and effective surface-perpendicular impact trajectories, permits closely comparable simulation in laboratory experiments. For a detailed calibration programme we have selected a suite of spherical glass projectiles of uniform density and hardness characteristics, with well-documented particle size range from 10 microns to nearly 100 microns. Light gas gun buckshot firings of these particles at approximately 6km s)exp -1) onto samples of the same foil as employed on Stardust have yielded large numbers of craters. Scanning electron microscopy of both projectiles and impact features has allowed construction of a calibration plot, showing a linear relationship between impacting particle size and impact crater diameter. The close match between our experimental conditions and the Stardust mission encounter parameters should provide another opportunity to measure particle size distributions and fluxes close to the nucleus of Wild 2, independent of the active impact detector instruments aboard the Stardust spacecraft.
The Mineralogy of Comet Wild 2
NASA Technical Reports Server (NTRS)
Zolensky, Michael
2007-01-01
The nature of cometary solids is of fundamental importance to our understanding of the early solar nebula and protoplanetary history. Samples of Comet Wild 2, provided by the Stardust Mission, have now been examined in terrestrial labs for two years, and are very surprising! Here we describe mainly the critical phases olivine, pyroxene and Fe-Ni sulfides in Wild 2 grains, as a guide to the general mineralogy of the returned comet samples.
Abstracts for the International Conference on Asteroids, Comets, Meteors 1991
NASA Technical Reports Server (NTRS)
1991-01-01
Topics addressed include: chemical abundances; asteroidal belt evolution; sources of meteors and meteorites; cometary spectroscopy; gas diffusion; mathematical models; cometary nuclei; cratering records; imaging techniques; cometary composition; asteroid classification; radio telescopes and spectroscopy; magnetic fields; cosmogony; IUE observations; orbital distribution of asteroids, comets, and meteors; solar wind effects; computerized simulation; infrared remote sensing; optical properties; and orbital evolution.
NASA Technical Reports Server (NTRS)
Kazimirchak-Polonskaya, E. I.
1976-01-01
Methods are reviewed for calculating the evolution of cometary orbits with emphasis on the orbital changes that take place when comets pass within the spheres of action of giant planets. Topics discussed include: differences and difficulties in methods used for the calculation of large perturbations by Jupiter; the construction of numerical theories of motion covering the whole period of observations of each comet, allowing for planetary perturbations and the effects of nongravitational forces; and investigations of the evolution of cometary orbits over the 400 year interval 1660-2060. The classical theory of cometary capture is briefly discussed.
The Size Distribution of Jupiter-Family Cometary Nuclei
NASA Technical Reports Server (NTRS)
Weissman, Paul R.; Lowry, Stephen C.
2003-01-01
Introduction: We are continuing our program to determine the size distribution of cometary nuclei. We have compiled a catalog of 105 measurements of 57 cometary nuclei, drawn from the general literature, from our own program of CCD photometry of distant cometary nuclei (Lowry and Weissman), and from unpublished observations by colleagues. We model the cumulative size distribution of the nuclei as a power law. Previous determinations of the size distribution slope do not agree. Fernandez et al. found a slope of alpha = 2.65+/-0.25 whereas Lowry et al. and Weissman and Lowry each found a slope of alpha = 1.60+/-0.10.
Infrared molecular emissions from comets
NASA Technical Reports Server (NTRS)
Weaver, H. A.; Mumma, M. J.
1983-01-01
The possibility of detecting IR molecular line emission from cometary parent molecules is explored. Due to the non-LTE conditions in the inner coma and the large amount of near IR solar flux, IR fluorescence will be a significant source of cometary emission and, in fact, will dominate the grain radiation in a sufficiently high resolution instrument. The detection of this line emission will be difficult due to absorption in the terrestrial atmosphere, but it appears possible to measure cometary H2O emission from airplane altitudes. As IR molecular line emission represents one of the few promising methods of detecting cometary parent molecules directly, further research on this problem should be vigorously pursued.
NASA Technical Reports Server (NTRS)
Liu, Y.-G.; Schmitt, R. A.
1993-01-01
A number of geological and palaeontological evidences support multiple impacts of cometary showers within a short time (approximately 1-3 Ma) and their connection with mass extinctions. Observations include clustered crater ages, stratigraphic horizons of impact ejecta closely spaced in time, and evidence for stepwise mass extinctions spanning intervals of 1-3 Ma. For the K/T boundary, three candidates, Popigai, Manson, and Yucatan, have been proposed as impact craters. Two distinct strata at the K/T boundary in western North America have been interpreted as evidence for two sequential impacts. If multiple impacts occurred within a time span of about 1 Ma then multiple Ir enrichments should be observed. DSDP Hole 577B on the Shatsky Plateau in the northern Pacific at K/T time is the first site. Samples contain approximately greater than 97 percent CaCO3, which exhibit clear chemical signals associated with asteroidal/cometary impact. Ir, Fe, and Cr data are presented. From the Th-normalized data, two satellite peaks below the major peak at 78 cm and 81 cm of 577B-1-4 are clearly shown. The major Ir peak (K/T boundary) is at 72 cm. Fe and Cr, from C1-like impactor ejecta fallout, also show two peaks at the same positions. For hole 738C on the southern Kerguelen Plateau, Ir values reach a peak concentration of 18 ppb in the clay layer at 96.0-96.2 cm in section 20R-5, and gradually tail off. In the sample 115 cm above the boundary, Ir concentrations have still not reached background levels. From the Ir peak downward to the lowermost sample analyzed at 102 cm, the Ir concentration is still as high as 1.7 ppb. From the Th-normalized data, we observe a small Ir/Th peak at 100-101 cm. Though this peak is within the error margin, the trend is clear. Fe and Cr exhibit the same pattern. The third case is Hole 690C on the Queen Maud Ridge. Again, the Ir/Th plot indicates the strong possibility of satellite peaks at approximately 52 cm. The main peak is at 39-40 cm. For the Stevns Klint K/T boundary layers, the stratification of trace elements appears threefold with peak concentrations in sublayers A1, A3, and B2 for different element groups, including Ir. C1 ratios for many siderophile elements found in combined layers III and IV, corresponding to layers A, B, C, and D, strongly support the impact hypothesis. Also, multiple Ir anomalies in the K/T section at Lattengebirge, Bavarian Alps are reported. Recent works on Ni-rich spinels and Ir at the K/T boundaries clearly establish cometary/asteroidal impacts at the K/T boundary. Lastly, cometary showers can explain the enhanced Ir contents over approximately a 1 Ma interval in Gubbio shales.
NASA Astrophysics Data System (ADS)
Christou, Chariton; Kokou Dadzie, S.; Thomas, Nicolas; Hartogh, Paul; Jorda, Laurent; Kührt, Ekkehard; Whitby, James; Wright, Ian; Zarnecki, John
2017-04-01
While ESA's Rosetta mission has formally been completed, the data analysis and interpretation continues. Here, we address the physics of the gas flow at the surface of the comet. Understanding the sublimation of ice at the surface of the nucleus provides the initial boundary condition for studying the inner coma. The gas flow at the surface of the comet 67P/Churyumov-Gerasimenko can be in the rarefaction regime and a non-Maxwellian velocity distribution may be present. In these cases, continuum methods like Navier-Stokes-Fourier (NSF) set of equations are rarely applicable. Discrete particle methods such as Direct Simulation Monte Carlo (DSMC) method are usually adopted. DSMC is currently the dominant numerical method to study rarefied gas flows. It has been widely used to study cometary outflow over past years .1,2. In the present study, we investigate numerically, gas transport near the surface of the nucleus using DSMC. We focus on the outgassing from the near surface boundary layer into the vacuum (˜20 cm above the nucleus surface). Simulations are performed using the open source code dsmcFoam on an unstructured grid. Until now, artificially generated random porous media formed by packed spheres have been used to represent the comet surface boundary layer structure .3. In the present work, we used instead Micro-computerized-tomography (micro-CT) scanned images to provide geologically realistic 3D representations of the boundary layer porous structure. The images are from earth basins. The resolution is relatively high - in the range of some μm. Simulations from different rock samples with high porosity (and comparable to those expected at 67P) are compared. Gas properties near the surface boundary layer are presented and characterized. We have identified effects of the various porous structure properties on the gas flow fields. Temperature, density and velocity profiles have also been analyzed. .1. J.-F. Crifo, G. Loukianov, A. Rodionov and V. Zakharov, Icarus 176 (1), 192-219 (2005). 2. Y. Liao, C. Su, R. Marschall, J. Wu, M. Rubin, I. Lai, W. Ip, H. Keller, J. Knollenberg and E. Kührt, Earth, Moon, and Planets 117 (1), 41-64 (2016). 3. Y. V. Skorov, R. Van Lieshout, J. Blum and H. U. Keller, Icarus 212 (2), 867-876 (2011).
Ulysses feels the brush of a comet's tail
NASA Astrophysics Data System (ADS)
2000-04-01
"Ulysses's prime task is to map the solar wind above the Sun's poles: it had not been looking for Hyakutake, which happened to be at its closest approach to the Sun on 1 May 1996, or any other comet", says Richard Marsden, ESA's Ulysses Project Scientist. "Ulysses was just in the right place at the right time." The two teams stumbled across the telltale signature of a comet quite independently when poring over old Ulysses data. Jones and colleagues found their evidence in magnetic field data: "the magnetic field lines were draped in a way that you'd expect in a comet's tail," says Jones. The other instrument team, lead by George Gloeckler from the University of Maryland, found their evidence when looking at the composition of the solar wind. Cometary tails are rich in oxygen and carbon compared with the solar wind, but depleted in nitrogen and neon. The Imperial College team identified Hyakutake as the source of the anomalous readings. On 1 May 1996, Ulysses was aligned with the Sun and the position Hyakutake had occupied eight days earlier, which Jones calculated was the time needed for material leaving the comet's nucleus to travel the distance to Ulysses. One of the most surprising aspects of the discovery is the length of Hyakutake's tail. Cometary experts had thought that comet tails eventually spread out and lose their integrity. "We found that the whole thing is preserved as an entity and doesn't spread out very much," says Gloeckler. "If it can persist as far as Ulysses, there's no reason to presume that it wouldn't continue to the edge of the heliosphere (the boundary about 100AU from the Sun between the solar wind and the interstellar medium)," says Jones. "This discovery makes us wonder whether Ulysses or other spacecraft have crossed a comet tail before. So we're going back to look again for other signatures. But it's probably a rare event," says Jones. The comet nucleus has to be in exactly the right position with respect to the Sun and the spacecraft for the tail to pass over the spacecraft at the right time - and the chances of that happening very often are probably small.
Tidal Effects on the Oort Cloud Comets and Dynamics of the Sun in the Spiral Arms of the Galaxy
NASA Astrophysics Data System (ADS)
De Biasi, Alice
2014-01-01
The Solar System presents a complex dynamical structure and is not isolated from the Galaxy. In particular the comet reservoir of our planetary system, the Oort cloud, is extremely sensitive to the the galactic environment due to its peripheral collocation inside the Solar System. In this framework, the growing evidences about a possible migration of the Sun open new research scenarios relative to the effects that such kind of migration might induce on the cometary motion. Following several previous studied, we identified the spiral arm structure as the main perturbation that is able to produce an efficient solar migration through the disk. Widening the classical model for the spiral arms, provided by Lin& Shu to a 3D formalism, we verified the compatibility between the presence of the spiral perturbation and a significant solar motion for an inner Galactic position to the current one, in agreement with the constrains in position, velocity and metallicity due to the present conditions of our star. The main perturbers of the Oort cloud, the close stellar passages and the tidal field of the Galaxy, might be both affected by the variation of Galactic environment that the solar migration entails. Despite that, in order to isolate the effects to the two different perturbators, we decided to focus our attention only on the Galactic tide. The perturbation due to the spiral structure was included in the study on the cometary motion, introducing the solar migration and adding the direct presence of the non-axisymmetric component in the Galactic potential of the tidal field. The results show a significant influence of the spiral arm in particular on cometary objects belonged to the outer shell of the Oort cloud, for which provides an injection rate three times bigger than the integration performed without the spiral arms. The introduction of the spiral perturbation seems to bolster the planar component of the tide, indeed it produces the most significant variation of the perihelion distance for moderate inclination orbits with respect to the plane. The peak for the cometary injections has been registered between 6 and 7 kpc. If this evidence will be confirmed by more realistic cometary sample, it might involve a redefinition of the habitability edges in the Galaxy (GHZ). In particular regions not precluded to the formation of life, may compromise the development of the life with a high cometary impact risk
Thermophysics of fractures on comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Höfner, S.; Vincent, J.-B.; Blum, J.; Davidsson, B. J. R.; Sierks, H.; El-Maarry, M. R.; Deller, J.; Hofmann, M.; Hu, X.; Pajola, M.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; A'Hearn, M. F.; Auger, A.-T.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Fornasier, S.; Fulle, M.; Gicquel, A.; Groussin, O.; Gutiérrez, P. J.; Gutiérrez-Marqués, P.; Güttler, C.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lazzarin, M.; Lopez-Moreno, J. J.; Marzari, F.; Michalik, H.; Moissl-Fraund, R.; Moreno, F.; Mottola, S.; Naletto, G.; Oklay, N.; Preusker, F.; Scholten, F.; Shi, X.; Thomas, N.; Toth, I.; Tubiana, C.; Zitzmann, S.
2017-12-01
Context. The camera OSIRIS on board Rosetta obtained high-resolution images of the nucleus of comet 67P/Churyumov-Gerasimenko (67P). Great parts of the nucleus surface are composed of fractured terrain. Aims: Fracture formation, evolution, and their potential relationship to physical processes that drive activity are not yet fully understood. Observed temperatures and gas production rates can be explained or interpreted with the presence of fractures by applying appropriate modelling methods. Methods: We followed a transient thermophysical model approach that includes radiative, conductive, and water-ice sublimation fluxes by considering a variety of heliocentric distances, illumination conditions, and thermophysical properties for a set of characteristic fracture geometries on the nucleus of 67P. We computed diurnal temperatures, heat fluxes, and outgassing behaviour in order to derive and distinguish the influence of the mentioned parameters on fractured terrain. Results: Our analysis confirms that fractures, as already indicated by former studies about concavities, deviate from flat-terrain topographies with equivalent properties, mostly through the effect of self-heating. Compared to flat terrain, illuminated cometary fractures are generally warmer, with smaller diurnal temperature fluctuations. Maximum sublimation rates reach higher peaks, and dust mantle quenching effects on sublimation rates are weaker. Consequently, the rough structure of the fractured terrain leads to significantly higher inferred surface thermal inertia values than for flat areas with identical physical properties, which might explain the range of measured thermal inertia on 67P. Conclusions: At 3.5 AU heliocentric distance, sublimation heat sinks in fractures converge to maximum values >50 W / m2 and trigger dust activity that can be related mainly to H2O. Fractures are likely to grow through the erosive interplay of alternating sublimation and thermal fatigue.
Coordinated Observations of Comet Hale-Bopp between 32 and 860 GHz
NASA Astrophysics Data System (ADS)
Wink, J. E.; Altenhoff, W. J.; Bieging, J.; Butler, B.; Butner, H.; Haslam, C. G. T.; Kreysa, E.; Martin, R.; Mauersberger, R.; McMullin, J.; Muders, D.; Peters, W.; Schmidt, J.; Schraml, J. B.; Sievers, A.; Stumpff, P.; von Kapp-Herr, A.; Thum, C.; Zylka, R.
1997-05-01
The concept of simultaneous multifrequency continuum observations, successfully tested on Comet Hyakutake, was applied to Comet Hale-Bopp, using the Heinrich Hertz Submillimeter Telescope (HHT) with the four color bolometer between 250 and 870 GHz, the IRAM 30m telescope at 240 Ghz, the MPIfR 100-m telescope at 32 GHz, and the IRAM interferometer near 90 and 240 GHz. Near-simultaneous measurements were done between February 15 and April 26, 1997, mainly concentrated in mid March shortly before perigee of the comet. The measurements gave the following preliminary results: Interferometer detection of the nuclear thermal emission. If the signal at the longest interferometer spacing of 170 m is due to thermal emission from the nucleus only, its equivalent diameter is ~49 km. If, however, this signal contains a contribution from a strongly centrally peaked halo distribution (e.g., r^-2 density variation) the diameter may be as low as 35 km. The emission found interferometrically was always 5arcsec north and 0.1 sec east from the position predicted by Yeoman's solution 55. The comparison of the interferometric continuum emission with the simultanously obtained molecular line observations (reported on this conference) shows the origin of the strongest line emission concentrated on the nucleus. The 30-m observations show a radio halo with a gaussian FWHP of ~11, corresponding to a diameter of 11000 km at geocentric distance of 1.2 a.u. A spectral index of ~3.0 for the total signal, which may indicate a smaller mean particle size than for Hyakutake. Assuming an average cometary density of 0.5 gcm^-3, the mass contained in the nucleus is ~1-3 10^19 g and 10^12 g in the particle halo.
NASA Technical Reports Server (NTRS)
Vette, J. I. (Editor); Runcorn, S. K. (Editor); Gruen, E. (Editor); Mcdonnell, J. A. M.
1982-01-01
Topics discussed include the magnetic history of the early solar system, impact processes in solid bodies (e.g., meteoroids and asteroids), and topics related to cometary missions. The section devoted to cometary missions lays particular stress on missions to Comet Halley; attention is given to such aspects of these missions as the investigation of hypervelocity impact on the Giotto Halley mission dust shield, the detection of energetic cometary and solar particles by the EPONA instrument on the Giotto mission, the dust hazard near Comet Halley in regard to the Vega project, and cometary ephemerides for spacecraft flyby missions.
Infrared molecular emissions from comets
NASA Technical Reports Server (NTRS)
Weaver, H. A.; Mumma, M. J.
1984-01-01
The possibility of detecting IR molecular line emission from cometary parent molecules is explored. Due to the non-LTE conditions in the inner coma and the large amount of near IR solar flux, IR fluorescence will be a significant source of cometary emission and, in fact, will dominate the grain radiation in a sufficiently high resolution instrument. The detection of this line emission will be difficult due to absorption in the terrestrial atmosphere, but it appears possible to measure cometary H2O emission from airplane altitudes. As IR molecular line emission represents one of the few promising methods of detecting cometary parent molecules directly, further research on this problem should be vigorously pursued. Previously announced in STAR as N83-30344
Asteroid-comet continuum objects in the solar system.
Hsieh, Henry H
2017-07-13
In this review presented at the Royal Society meeting, 'Cometary science after Rosetta', I present an overview of studies of small solar system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). Sometimes referred to as 'transition objects', these bodies are perhaps more appropriately described as 'continuum objects', to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of small solar system bodies that happen to exhibit a continuous range of observational, physical and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g. relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the solar system that would otherwise be inaccessible), while allowing us to study regions of the solar system that are not sampled by classical comets.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Andrews, D. J.; Morse, A. D.; Barber, S. J.; Leese, M. R.; Morgan, G. H.; Sheridan, S.; Wright, I. P.; Pillinger, C. T.
2011-10-01
Rosetta is the European Space Agency 'Planetary Cornerstone' mission intended to solve many of the unanswered questions surrounding the small bodies of the Solar System. Launched in March 2004 it is now over halfway through its decade long cruise, leading up to entering orbit around the nucleus of comet 67P/Churyumov-Gerasimenko in mid-2014. To date, this cruise has included three gravitational assist manoeuvres using Earth and one such manoeuvre using the gravity well of Mars. In addition, targeted flybys of two asteroids have returned a plethora of data to be compared with the comet observations to come. These flybys were of the 5.3 km diameter E-type asteroid 2867 Šteins on September 5th 2008, and a similar 3,162 km flyby of the 100 km diameter asteroid 21 Lutetia on July 10th 2010, the focus of this work. Recent ground based observations of the main belt asteroid 24 Themis have shown this body to have an organic-rich surface with exposed water ice [1]. It is also known that there at least four main belt comets - comets residing within the main belt, the prototype being 133P/Elst-Pizarro - and there are likely to be many more such bodies undergoing lower levels of cometary activity yet to be discovered [2]. The once clear-cut differentiation between volatile rich comets and volatile depleted asteroids has been somewhat eroded by these findings. Ptolemy is a miniature chemical analysis laboratory aboard the Rosetta lander 'Philae', and is intended to determine the chemical and isotopic composition of cometary material sourced from beneath, on and above the surface of the target comet. Samples are taken from the Sampler, Drill and Distribution system (SD2) and are then processed in a chemical preparation suite before delivery to a three channel gas chromatograph (GC). Elution products from the GC are passed to a quadrupole ion trap mass spectrometer for detection and quantitation [3]. As well as analysing solid samples, Ptolemy can passively adsorb coma material onto CarbosphereTM molecular sieve contained within one of the 26 SD2 sample ovens for later thermal release and analysis. Ptolemy can also make direct 'sniff' detections of the current spacecraft environment, bypassing the sample inlet and GC system, instead directly analyzing the inside of the mass spectrometer which is connected to space via a vent pipe. Based on the demonstrated instrument performance (a sensitivity of one ion count per 1x10-11 mbar for a particular mass), and knowing that the state of knowledge concerning the volatile composition and outgassing nature of main belt asteroids is only loosely constrained, it was decided to attempt to detect any extant, tenuous exosphere surrounding asteroid 21 Lutetia during the 2010 flyby opportunity. This body was thought to have both carbonaceous material and hydrated minerals on its surface - potential sources of outgassing - and therefore worthwhile of study [4].
NASA Astrophysics Data System (ADS)
Kawakita, Hideyo; Shinnaka, Yoshiharu; Jehin, Emmanuel; Decock, Alice; Hutsemekers, Damien; Manfroid, Jean
2016-10-01
Since molecules having identical protons can be classified into nuclear-spin isomers (e.g., ortho-H2O and para-H2O for water) and their inter-conversions by radiative and non-destructive collisional processes are believed to be very slow, the ortho-to-para abundance ratios (OPRs) of cometary volatiles such as H2O, NH3 and CH4 in coma have been considered as primordial characters of cometary molecules [1]. Those ratios are usually interpreted as nuclear-spin temperatures although the real meaning of OPRs is in strong debate. Recent progress in laboratory studies about nuclear-spin conversion in gas- and solid-phases [2,3] revealed short-time nuclear-spin conversions for water, and we have to reconsider the interpretation for observed OPRs of cometary volatiles. We have already performed the survey for OPRs of NH2 in more than 20 comets by large aperture telescopes with high-resolution spectrographs (UVES/VLT, HDS/Subaru, etc.) in the optical wavelength region [4]. The observed OPRs of ammonia estimated from OPRs of NH2, cluster around ~1.1 (cf. 1.0 as a high-temperature limit), indicative of ~30 K as nuclear-spin temperatures. We present our latest results for OPRs of cometary NH2 and discuss about the real meaning of OPRs of cometary ammonia, in relation to OPRs of water in cometary coma. Chemical processes in the inner coma may play an important role to achieve un-equilibrated OPRs of cometary volatiles in coma.This work was financially supported by MEXT Supported Program for the Strategic Research Foundation at Private Universities, 2014-2018 (No. S1411028) (HK) and by Graint-in-Aid for JSPS Fellows, 15J10864 (YS).References:[1] Mumma & Charnley, 2011, Annu. Rev. Astro. Astrophys. 49, 471.[2] Hama & Watanabe, 2013, Chem. Rev. 113, 8783.[3] Hama et al., 2008, Science 351, 6268.[4] Shinnaka et al., 2011, ApJ 729, 81.
Three dimensional Particle-in-Cell (PIC) simulations of the 67P environment
NASA Astrophysics Data System (ADS)
Divin, Andrey; Deca, Jan; Henri, Pierre; Horanyi, Mihaly; Markidis, Stefano; Lapenta, Giovanni; Olshevsky, Vyacheslav; Eriksson, Anders
2017-04-01
ESA's Rosetta orbiter spacecraft escorted comet 67P/Churyumov-Gerasimenko for two years, carrying 21 scientific instruments. Five of those were dedicated to plasma measurements. The mission revealed for the first time, and in unprecedented detail, the fascinating evolution of a comet and its interaction with our Sun as it races along its 6.45yr elliptical orbit around the Sun. Using a self-consistent 3-D fully kinetic electromagnetic particle-in-cell approach, we focus on the global cometary environment and, in particular, on the collisionless electron-kinetic interaction. We include cometary ions and electrons produced by the ionization of the outgassing cometary atmosphere in addition to the solar wind ion and electron plasma flow. We approximate mass-loading of the cold cometary ion and electron populations using a 1/r relation with distance to the comet with a total neutral production rate of Q = 1026 s-1. Our simulation results disentangle for the first time the kinetic ion and electron dynamics of the solar wind interaction with a weakly outgassing comet. The simulated global structure of the solar wind-comet interaction confirms the results reported in hybrid simulations of the induced cometary magnetosphere. Moreover, we show that cometary and solar wind electrons neutralize the solar wind protons and cometary ions, respectively, in the region of influence around the comet, representing to first order a four-fluid behavior. The electron energy distribution close to the comet is shown to be a mix of cometary and solar wind electrons that appear as, respectively, a thermal and a suprathermal components. Analyzing ion and electron energy distribution functions, and comparing with plasma measurements from ESA's Rosetta mission to comet 67P/Churyumov-Gerasimenko, we conclude that a detailed kinetic treatment of the electron dynamics is critical to fully capture the complex physics of mass-loading plasmas.
Formation of ions and radicals from icy grains in comets
NASA Technical Reports Server (NTRS)
Jackson, William M.; Gerth, Christopher; Hendricks, Charles
1991-01-01
Ion and radical formation in comets are thought to occur primarily by photodissociation of gas phase molecules. Experimental evidence and theoretical calculations are presented that show that some of the radical and ions can come directly from ice grains. The experimental evidence suggest that if the frozen molecules on the surface of grains undergo direct dissociation then they may be able to release radicals directly in the gas phase. If the molecules undergo predissociation it is unlikely that they will release radicals in the gas phase since they should be quenched. Calculations of this direct photodissociation mechanism further indicate that even if the parent molecule undergoes direct dissociation, the yield will not be high enough to explain the rays structure in comets unless the radicals are stored in the grains and then released when the grain evaporates. Calculations were also performed to determine the maximum number of ions that can be stored in an icy grain's radius. This number is compared with the ratio of the ion to neutral molecular density. The comparison suggests that some of the ions observed near the nucleus of the comet could have originally been present in the cometary nucleus. It is also pointed out that the presence of these ions in icy grains could lead to radical formation via electron recombination. Finally, an avalanche process was evaluated as another means of producing ions in comets.
NASA Astrophysics Data System (ADS)
Hadamcik, E.; Levasseur-Regourd, A. C.
2007-08-01
1.Introduction Remote observations of solar light scattered by cometary dust particles provide information on the dust properties for a large variety of comets, in complement to the exceptional in-situ observations (with or without sample returns). The scattered light is partially linearly polarized, with a polarization degree depending on the geometry of observations (phase angle ?) and on the physical properties of the particles. Differences in polarization have been found in cometary comae, pointing to different physical properties of the dust (e.g. sizes of the grains, of the aggregates, structures and porosities, complex refractive indices) [1, 2]. Such differences, as well as an observed polarimetric wavelength effect, tend to show that large aggregates made of submicron-sized grains could be present in some cometary comae regions [3, 4]. On the opposite, more compact particles seem to be present in other comae regions and/or comets [5, 6]. 2. Results We will present observations of different comets. The variations of the dust properties in the coma and their evolution will be discussed. The results will be compared to the results obtained by other observational techniques. On the images of comet 9P/Tempel 1 (at ?=41°) some hours after Deep Impact, two kinds of dust particles are detected: more compact particles with small velocities and fluffy particles ejected by the impact with larger velocities. On the images of comet 73P/Schwassmann-Wachmann 3, in the tail direction of fragment B, a disruption is observed. The dust coma around fragment C is more symmetric. For both A and B, important dust jets are ejected by the nucleus, which are visible on the intensity images in the solar and antisolar directions, and on the polarization maps. 3. Interpretation and conclusion Numerical (7,8,9) and experimental simulations provide an interpretation of the observations in terms of the physical properties of the particles. Experimental simulations have been performed on numerous levitating samples (compact and fluffy) with the PROGRA2 experiment, either in reduced gravity conditions (parabolic flights) [10,11], or lifted by an air-draught (laboratory conditions) [12,13]. The variations of the polarization are correlated to variations in the size of the grains and aggregates and are a function of the complex refractive index and its evolution. The correlation between the variations of the scattered intensity and the linear polarization maps allows us to disentangle different physical properties of the dust. The results are compared to results obtained from previous observations by the same methods. References [1] E. Hadamcik and A.C. Levasseur-Regourd, JQSRT 79-80, 661-678 (2003) [2] A.C. Levasseur-Regourd, E. Hadamcik, JQSRT 79-80, 903-910 (2003) [3] E. Hadamcik, A.C. Levasseur-Regourd, A&A 403, 757- 768 (2003) [4] L. Kolokolova et al., In: Comets II, M.C. Festou et al. (eds), pp 577 (2004) [5] E. Hadamcik, A.C. Levasseur-Regourd, Icarus 166, 188-194 (2003) [6] E. Hadamcik et al., Icarus, accepted. [7] J. Lasue, A.C. Levasseur-Regourd, JQSRT 100, 220-236 (2006) [8] H. Kimura et al., A&A 449, 1243-1254 (2006) [9] A.C. Levasseur-Regourd et al., PSS, in press, available on line (2007) [10] J.-B. Renard et al. Appl. Opt 41, 609-618 (2002) [11] J.-B. Renard et al., Adv. Space Res. 31, 2511-2518 (2003) [12] E. Hadamcik et al., JQSRT 100, 143-156 (2006) [13] E. Hadamcik et al., Icarus, in press, available on line (2007)
"CHON" particles: The interstellar component of cometary dust
NASA Technical Reports Server (NTRS)
Lien, David J.
1998-01-01
Interstellar dust is characterized by strong absorption in the ultraviolet and the mid-IR. Current models of interstellar dust are based on three chemically distinct components: a form of carbon (usually graphite), a silicate, and a blend of polycyclic aromatic hydrocarbons or other carbonaceous material. Previous work using effective medium theories to understand the optical properties of cometary dust suggested that an amalgam of materials could reproduce the observed interstellar and cometary dust features. Recently, Lawler and Brownlee (1992) re-analyzed the PIA and PUMA-1 data sets from the Giotto flyby of P/Halley and discovered that the so-called "CHON" particles were actually composed of a blend of carbon-bearing and silicon-bearing materials. Based on effective medium theories, the absorption spectrum of such a material would display the spectral features of each of the components - strong UV absorption from the carbonaceous component and strong absorption in the IR from the silicate component. To test this idea, vapor-deposited samples were created using two different deposition techniques: sputtering with an argon RF magnetron and deposition from an argon plasma torch. Two different compositions were tested: a blend of graphite and silica in a 7:1 ratio and an amalgam of materials whose approximate composition matches the "CHON"-silicate abundances for the uncompressed PIA data set of Lawler and Brownlee: graphite, iron oxide, magnesium oxide, ammonium sulfate, calcium carbonate, and silica in mass ratios of 6:4.3:4:2.2:1:9. The samples were finely ground and pressed into 2" diameter disks using a 40 ton press. In all, four different experiments were performed: one with each of the compositions (C:SiO and "CHON") in both the RF magnetron and the plasma torch chambers. The RF magnetron created a uniform dark thin film on the substrate surface, and the plasma torch created a coating of small (<100 micron) diameter grey particles. The spectra of all four samples show a strong, broad absorption feature at around 220 nm as well as a strong but narrower absorption peak near 10 microns. The RF magnetron sputtered samples showed some sub-structure in the UV, and the peak of the absorption was shifted toward longer wavelengths. The UV absorption in the plasma torch deposited samples have no sub-structure, and the peak absorption is very near 220 nm. Strong absorption near 9 microns is seen in the spectra from both sample preparation techniques, and is consistent with the IR spectra of some terrestrial silicates. Other features, particularly at 6.2 and 8.6 microns, are seen in the interstellar medium. A strong feature near 2 microns is due to absorbed water in the sample. Based on the results of these experiments, there is evidence that a material with a composition similar to that detected in "CHON" particles in the coma of P/Halley have a spectral signature which reproduces the main absorption features of interstellar dust. This suggests that the "CHON" particles could be the interstellar component of cometary dust.
The Diversity of Carbon in Cometary Refractory Dust Particles
NASA Technical Reports Server (NTRS)
Wooden, D. H.
2018-01-01
When comparing the dark icy surfaces of outer solar system small bodies and the composition of carbonaceous chondrites derived from dark asteroids we find a significant discrepancy in the assessed amounts of elemental carbon: up to 80% amorphous carbon is used to model the dark surfaces of Kuiper Belt Objects and Centaurs whereas at most 5% of elemental carbon is found in carbonaceous chondrites. If we presume that regimes of comet nuclei formation are analogous to disk regimes where other outer solar system ice-rich bodies formed then we can turn to comet dust to gain insights into the diversity in the concentration and forms of carbon available in the outer disk. Comet dust offers important insights into the diversity in the amounts and forms of carbon that were incorporated into aggregate dust particles in the colder parts of the protoplanetary disk out of which comet nuclei accreted. Comet nuclei are amongst the most primitive bodies because they have remained cold and unequilibrated. Comet dust particles reveal the presence of forms of elemental carbon and of soluble and insoluble organic matter, and in a great diversity of concentrations from very little, e.g., Stardust samples of comet 81P/Wild 2, to 80% by volume for Ultra Carbonaceous Antarctic Micro Meteorites (UCAMMs). Cometary outbursts and/or jet activity also demonstrate variations in the concentration of carbon in the grains at different grain sizes within a single comet. We review the diversity of carbon-bearing dust grains in cometary samples, flyby measurements and deduced from remote-sensing to enrich the discussion about the diversity of carbonaceous matter available in the outer ice-rich disk at the time of comet nuclei formation.
The 8-13 micron spectra of comets and the composition of silicate grains
NASA Technical Reports Server (NTRS)
Hanner, Martha S.; Lynch, David K.; Russell, Ray W.
1994-01-01
We have analyzed the existing spectra of seven comets which show an emission feature at 7.8-13 micrometers. Most have been converted to a common calibration, taking into account the SiO feature in late-type standard stars. The spectra are compared with spectra of the Trapezium, interplanetary dust particles (IDPs), laboratory mineral samples, and small particle emission models. The emission spectra show a variety of shapes; there is no unique 'cometary silicate'. A peak at 11.20-11.25 micrometers, indicative of small crystalline olivine particles, is seen in only three comets of this sample, P/Halley, Bradfield 1987 XXIX, and Levy 1990 XX. The widths of the emission features range from 2.6 to 4.1 micrometers (FWHM). To explain the differing widths and the broad 9.8 micrometers maximum, glassy silicate particles, including both pyroxene and olivine compositions, are the most plausible candidates. Calculations of emission models confirm that small grains of glassy silicate well mixed with carbonaceous material are plausible cometary constituents. No single class of chondritic aggregate IDPs exhibits spectra closely matching the comet spectra. A mixture of IDP spectra, particularly the glass-rich aggregates, approximately matches the spectra of comets P/Halley, Levy, and Bradfield 1987 XXIX. Yet, if comets are simply a mix of IDP types, it is puzzling that the classes of IDPs are so distinct. None of the comet spectra match the spectrum of the Trapezium. Thus, the mineralogy of the cometary silicates is not the same as that of the interstellar medium. The presence of a component of crystalline silicates in comets may be evidence of mixing between high- and low-temperature regions in the solar nebula.
The Search for Interstellar Sulfide Grains
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.; Messenger, Scott
2010-01-01
The lifecycle of sulfur in the galaxy is poorly understood. Fe-sulfide grains are abundant in early solar system materials (e.g. meteorites and comets) and S is highly depleted from the gas phase in cold, dense molecular cloud environments. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium, indicating that little sulfur is incorporated into solid grains in this environment. It is widely believed that sulfur is not a component of interstellar dust grains. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. Fe sulfide grains are ubiquitous in cometary samples where they are the dominant host of sulfur. The Fe-sulfides (primarily pyrrhotite; Fe(1-x)S) are common, both as discrete 0.5-10 micron-sized grains and as fine (5-10 nm) nanophase inclusions within amorphous silicate grains. Cometary dust particles contain high abundances of well-preserved presolar silicates and organic matter and we have suggested that they should contain presolar sulfides as well. This hypothesis is supported by the observation of abundant Fe-sulfides grains in dust around pre- and post-main sequence stars inferred from astronomical spectra showing a broad 23 micron IR feature due to FeS. Fe-sulfide grains also occur as inclusions in bona fide circumstellar amorphous silicate grains and as inclusions within deuterium-rich organic matter in cometary dust samples. Our irradiation experiments show that FeS is far more resistant to radiation damage than silicates. Consequently, we expect that Fe sulfide stardust should be as abundant as silicate stardust in solar system materials.
Detection of cometary amines in samples returned by Stardust
NASA Astrophysics Data System (ADS)
Glavin, D. P.; Dworkin, J. P.; Sandford, S. A.
2008-02-01
The abundances of amino acids and amines, as well as their enantiomeric compositions, were measured in samples of Stardust comet-exposed aerogel and foil using liquid chromatography with UV fluorescence detection and time of flight mass spectrometry (LC-FD/ToF-MS). A suite of amino acids and amines including glycine, L-alanine, β-alanine (BALA), γ-amino-n-butyric acid (GABA), ɛ-amino-n-caproic acid (EACA), ethanolamine (MEA), methylamine (MA), and ethylamine (EA) were identified in acid-hydrolyzed, hot-water extracts of these Stardust materials above background levels. With the exception of MA and EA, all other primary amines detected in cometexposed aerogel fragments C2054,4 and C2086,1 were also present in the flight aerogel witness tile that was not exposed to the comet, indicating that most amines are terrestrial in origin. The enhanced relative abundances of MA and EA in comet-exposed aerogel compared to controls, coupled with MA to EA ratios (C2054,4: 1.0 ± 0.2; C2086,1: 1.8 ± 0.2) that are distinct from preflight aerogels (E243-13C and E243-13F: 7 ± 3), suggest that these volatile amines were captured from comet Wild 2. MA and EA were present predominantly in an acid-hydrolyzable bound form in the aerogel, rather than as free primary amines, which is consistent with laboratory analyses of cometary ice analog materials. It is possible that Wild 2 MA and EA were formed on energetically processed icy grains containing ammonia and approximately equal abundances of methane and ethane. The presence of cometary amines in Stardust material supports the hypothesis that comets were an important source of prebiotic organic carbon and nitrogen on the early Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Floss, Christine; Stadermann, Frank J.; Ong, W. J.
We carried out hypervelocity impact experiments in order to test the possibility that presolar grains are preferentially destroyed during impact of the comet 81P/Wild 2 samples into the Stardust Al foil collectors. Powdered samples of the ungrouped carbonaceous chondrite Acfer 094 were shot at 6 km s{sup -1} into Stardust flight spare Al foil. Craters from the Acfer 094 test shots, as well as ones from the actual Stardust cometary foils, were analyzed by NanoSIMS ion imaging to search for presolar grains. We found two O-rich presolar grains and two presolar SiC grains in the Acfer 94 test shots, withmore » measured abundances in the foils of 4 and 5 ppm, respectively, significantly lower than the amount of presolar grains actually present in this meteorite. Based on known abundances of these phases in Acfer 094, we estimate a loss of over 90% of the O-rich presolar grains; the fraction of SiC lost is lower, reflecting its higher resistance to destruction. In the Stardust cometary foils, we identified four O-rich presolar grains in 5000 {mu}m{sup 2} of crater residue. Including a presolar silicate grain found by Leitner et al., the overall measured abundance of O-rich presolar grains in Wild 2 is {approx}35 ppm. No presolar SiC has been found in the foil searches, although one was identified in the aerogel samples. Based on the known abundances of presolar silicates and oxides in Acfer 094, we can calculate the pre-impact abundances of these grains in the Stardust samples. Our calculations indicate initial abundances of 600-830 ppm for O-rich presolar grains. Assuming a typical diameter of {approx}300 nm for SiC suggests a presolar SiC abundance of {approx}45 ppm. Analyses of the Stardust samples indicated early on that recognizable presolar components were not particularly abundant, an observation that was contrary to expectations that the cometary material would, like interplanetary dust particles, be dominated by primitive materials from the early solar system (including abundant presolar grains), which had remained essentially unaltered over solar system history in the cold environment of the Kuiper Belt. Our work shows that comet Wild 2, in fact, does contain more presolar grains than measurements on the Stardust samples suggest, with abundances similar to those observed in primitive IDPs.« less
Deuterated Water in Comet C/1996 B2 (Hyakutake) and its Implications for the Origin of Comets
NASA Technical Reports Server (NTRS)
Bockelee-Morvan, D.; Gautier, D.; Lis, D. C.; Young, K.; Keene, J.; Phillips, T. G.; Owen, T.; Crovisier, J.; Goldsmith, P. F.; Bergin, E. A.;
1998-01-01
The close approach to the Earth of comet C/1996 B2 (Hyakutake) in March 1996 allowed searches for minor volatile species outgassing from the nucleus. We report the detection of deuterated water (HDO) through its 1(sub 01)-0(sub 00) rotational transition at 464.925 GHz using the Caltech Submillimeter Observatory. We also present negative results of a sensitive research for the J(5-4) line of deuterated hydrogen cyanide (DCN) at 362.046 GHz. Simultaneous observations of two rotational lines of methanol together with HDO in the same spectrum allow us to determine the average gas temperature within the telescope beam to be 69 +/- 10 K. We are thus able to constrain the excitation conditions in the inner coma and determine reliably the HDO production rate as (1.20 +/- 0.28) x 10(exp 26)/s on March 23-24, 1996. Available IR, UV and radio measurements lead to a water production rate of (2.1 +/- 0.5) x 10(exp 29)/s at the time of our HDO observations. The resulting D/H ratio in cometary water is thus (29 +/- 10) x 10(exp -5) in good agreement with the values of (30.8(sub - 5.3, sup +3.8) (Balsiger et al. 1995) and (31.6 +/- 3.4) x 10(exp -5) (Eberhardt et al. 1995) determined in comet P/Halley from in situ ion mass spectra. The inferred 3 a upper limit for the D/H ratio in HCN is 1%. Deuterium abundance is a key parameter for studying the origin and the early evolution of the Solar System and of its individual bodies. Our HDO measurement confirms that, in cometary water, deuterium is enriched by a factor of at least 10 relative to the protosolar ratio, namely the D/H ratio in H2 in the primitive Solar Nebula which formed from the collapse of the protosolar cloud. This indicates that cometary water has preserved a major part of the high D/H ratio acquired in this protosolar cloud through ion-molecule isotopic exchanges or grain-surface reactions and was not re-equilibrated with H2 in the Solar Nebula. Scenarios of formation of comets consistent with these results are discussed.
Modeling the ejecta cloud in the first seconds after Deep Impact
NASA Astrophysics Data System (ADS)
Nagdimunov, L.; Kolokolova, L.; Wolff, M.; A'Hearn, M.; Farnham, T.
2014-07-01
Although the Deep Impact experiment was performed nine years ago, analysis of its data continues to shed light on our understanding of cometary atmospheres, surfaces, and interiors. We analyze the images acquired by the Deep Impact spacecraft High Resolution Instrument (HRI) in the first seconds after impact. These early images reflect the development of the material excavation from the cometary nucleus, enabling a study of fresh, unprocessed nuclear material, and potentially allowing a peek into the interior. Simply studying the brightness of the ejecta plume and its distribution as a function of height and time after impact could provide some insight into the characteristics of the ejecta. However, the optical thickness of the ejecta offers an additional source of information through the resultant shadow on the surface of the nucleus and brightness variations within it. Our goal was to reproduce both the distribution of brightness in the plume and in its shadow, thus constraining the characteristics of the ejecta. To achieve this, we used a 3D radiative-transfer package HYPERION [1], which allows an arbitrary spatial distribution and multiple dust components, for simulations of multiple scattering with realistic scattering and observational geometries. The parameters of our dust modeling were composition, size distribution, and number density of particles at the base of the ejecta cone (the last varied with the height, h, as h^{-3}). Composition was created as a mixture of so called Halley-like dust (silicates, carbon, and organics, see [2]), ice, and voids to account for particle porosity. We performed a parameter survey, searching for dust/ice ratios and particle porosity that could reproduce a density of the individual particles equal to the bulk density of the nucleus, 0.4 g/(cm^3), or 1.75 g/(cm^3) used in [3] to model crater development. The size distribution was taken from [4] and the number density was varied to achieve the best fit. To further constrain the results, we compared them with those of crater modeling [3]. Based on the approach given in [3] and using the crater diameter from [5], the mass of the ejecta 1 sec. after impact was estimated as 9×10^3-2×10^4 kg. The best fit to Deep Impact data and excavated mass constraints was achieved with ˜10% Halley dust, ˜20% ice, and the rest voids by volume for density 0.4 g/(cm^3) and ˜65% Halley dust with 38-8 % ice, depending on porosity, for density 1.75 g/(cm^3). Both cases result in a number density of ˜(10^4) particles/(cm^3). The dust/ice mass ratio for each density is ≥1, which is consistent with [6]. To reproduce the correct position and geometry of the shadow, we had to modify the geometry of the ejecta cone originally prescribed in [3]. This was required, in part, by the use of a revised nuclear shape model [7]. Our estimate of cone tilt differs from the previous one by 13.2°. It appeared that the observed change in brightness of the plume and shadow during the first second cannot be reproduced by a hollow cone. This is consistent with lab simulations of oblique impacts [8] which showed that hollowness of the ejecta cone can develop somewhat later in the plume evolution. Variations of brightness within the plume and the shadow can reveal the structure of the upper layers of the nucleus.
2008-01-08
Artist Paul Henry Ramirez captured symbolically the Stardust mission in this peice titled "Stardust". The Stardust mission in January of 2006 completed a seven-year, 2.8 billion mile journey to fly by a comet and return samples to Earth. The material is a first sample of pristine cometary material which will increase human understanding of interstellar dust. Stardust, 2007. Acrylic Micaceous Iron Oxide, Aluminum and crystal, hologram glitter Mylar 20" round canvas. Copyrighted: For more information contact Curator, NASA Art Program.
Synthesis and chirality of amino acids under interstellar conditions.
Giri, Chaitanya; Goesmann, Fred; Meinert, Cornelia; Evans, Amanda C; Meierhenrich, Uwe J
2013-01-01
Amino acids are the fundamental building blocks of proteins, the biomolecules that provide cellular structure and function in all living organisms. A majority of amino acids utilized within living systems possess pre-specified orientation geometry (chirality); however the original source for this specific orientation remains uncertain. In order to trace the chemical evolution of life, an appreciation of the synthetic and evolutional origins of the first chiral amino acids must first be gained. Given that the amino acids in our universe are likely to have been synthesized in molecular clouds in interstellar space, it is necessary to understand where and how the first synthesis might have occurred. The asymmetry of the original amino acid synthesis was probably the result of exposure to chiral photons in the form of circularly polarized light (CPL), which has been detected in interstellar molecular clouds. This chirality transfer event, from photons to amino acids, has been successfully recreated experimentally and is likely a combination of both asymmetric synthesis and enantioselective photolysis. A series of innovative studies have reported successful simulation of these environments and afforded production of chiral amino acids under realistic circumstellar and interstellar conditions: irradiation of interstellar ice analogues (CO, CO2, NH3, CH3OH, and H2O) with circularly polarized ultraviolet photons at low temperatures does result in enantiomer enriched amino acid structures (up to 1.3% ee). This topical review summarizes current knowledge and recent discoveries about the simulated interstellar environments within which amino acids were probably formed. A synopsis of the COSAC experiment onboard the ESA cometary mission ROSETTA concludes this review: the ROSETTA mission will soft-land on the nucleus of the comet 67P/Churyumov-Gerasimenko in November 2014, anticipating the first in situ detection of asymmetric organic molecules in cometary ices.
NASA Astrophysics Data System (ADS)
Shinnaka, Yoshiharu; Kawakita, Hideyo; Kondo, Sohei; Ikeda, Yuji; Kobayashi, Naoto; Hamano, Satoshi; Sameshima, Hiroaki; Fukue, Kei; Matsunaga, Noriyuki; Yasui, Chikako; Izumi, Natsuko; Mizumoto, Misaki; Otsubo, Shogo; Takenaka, Keiichi; Watase, Ayaka; Kawanishi, Takafumi; Nakanishi, Kenshi; Nakaoka, Tetsuya
2017-08-01
Although high-resolution spectra of the CN red-system band are considered useful in cometary sciences, e.g., in the study of isotopic ratios of carbon and nitrogen in cometary volatiles, there have been few reports to date due to the lack of high-resolution (R ≡ λ/Δλ > 20,000) spectrographs in the near-infrared region around ˜1 μm. Here, we present the high-resolution emission spectrum of the CN red-system band in comet C/2013 R1 (Lovejoy), acquired by the near-infrared high-resolution spectrograph WINERED mounted on the 1.3 m Araki telescope at the Koyama Astronomical Observatory, Kyoto, Japan. We applied our fluorescence excitation models for CN, based on modern spectroscopic studies, to the observed spectrum of comet C/2013 R1 (Lovejoy) to search for CN isotopologues (13C14N and 12C15N). We used a CN fluorescence excitation model involving both a “pure” fluorescence excitation model for the outer coma and a “fully collisional” fluorescence excitation model for the inner coma region. Our emission model could reproduce the observed 12C14N red-system band of comet C/2013 R1 (Lovejoy). The derived mixing ratio between the two excitation models was 0.94(+0.02/-0.03):0.06(+0.03/-0.02), corresponding to the radius of the collision-dominant region of ˜800-1600 km from the nucleus. No isotopologues were detected. The observed spectrum is consistent, within error, with previous estimates in comets of 12C/13C (˜90) and 14N/15N (˜150).
Cometary Nuclei and Tidal Disruption: The Geologic Record of Crater Chains on Callisto and Ganymede
NASA Technical Reports Server (NTRS)
Schenk, Paul M.; Asphaug, Erik; McKinnon, William B.; Melosh, H. J.; Weissman, Paul R.
1996-01-01
Prominent crater chains on Ganymede and Callisto are most likely the impact scars of comets tidally disrupted by Jupiter and are not secondary crater chains. We have examined the morphology of these chains in detail in order to place constraints on the properties of the comets that formed them and the disruption process. In these chains, intercrater spacing varies by no more than a factor of 2 and the craters within a given chain show almost no deviation from linearity (although the chains themselves are on gently curved small circles). All of these crater chains occur on or very near the Jupiter-facing hemisphere. For a given chain, the estimated masses of the fragments that formed each crater vary by no more than an order of magnitude. The mean fragment masses for all the chains vary by over four orders of magnitude (W. B. McKinnon and P. M. Schenk 1995, Geophys. Res. Lett. 13, 1829-1832), however. The mass of the parent comet for each crater chain is not correlated with the number of fragments produced during disruption but is correlated with the mean mass of the fragments produced in a given disruption event. Also, the larger fragments are located near the center of each chain. All of these characteristics are consistent with those predicted by disruption simulations based on the rubble pile cometary nucleus model (in which nuclei are composed on numerous small fragments weakly bound by self-gravity), and with those observed in Comet D/Shoemaker-Levy 9. Similar crater chains have not been found on the other icy satellites, but the impact record of disrupted comets on Callisto and Ganymede indicates that disruption events occur within the Jupiter system roughly once every 200 to 400 years.
Kinetics of hydrogen/deuterium exchanges in cometary ices
NASA Astrophysics Data System (ADS)
Faure, Mathilde; Quirico, Eric; Faure, Alexandre; Schmitt, Bernard; Theulé, Patrice; Marboeuf, Ulysse
2015-11-01
The D/H composition of volatile molecules composing cometary ices brings key constraints on the origin of comets, on the extent of their presolar heritage, as well as on the origin of atmospheres and hydrospheres of terrestrial planets. Nevertheless, the D/H composition may have been modified to various extents in the nucleus when a comet approaches the Sun and experiences deep physical and chemical modifications in its subsurface. We question here the evolution of the D/H ratio of organic species by proton exchanges with water ice. We experimentally studied the kinetics of D/H exchanges on the ice mixtures H2O:CD3OD, H2O:CD3ND2 and D2O:HCN. Our results show that fast exchanges occur on the -OH and -NH2 chemical groups, which are processed through hydrogen bonds exchanges with water and by the molecular mobility triggered by structural changes, such as glass transition or crystallization. D/H exchanges kinetic is best described by a second-order kinetic law with activation energies of 4300 ± 900 K and 3300 ± 100 K for H2O:CD3OD and H2O:CD3ND2 ice mixtures, respectively. The corresponding pre-exponential factors ln(A(s-1)) are 25 ± 7 and 20 ± 1, respectively. No exchange was observed in the case of HCN trapped in D2O ice. These results strongly suggest that upon thermal heating (1) -OH and -NH2 chemical groups of any organic molecules loose their primordial D/H composition and equilibrate with water ice, (2) HCN does not experience proton transfer and keeps a primordial D/H composition and (3) C-H chemical groups are not isotopically modified.
Discovery of Main-belt Comet P/2006 VW139 by Pan-STARRS1
NASA Astrophysics Data System (ADS)
Hsieh, Henry H.; Yang, Bin; Haghighipour, Nader; Kaluna, Heather M.; Fitzsimmons, Alan; Denneau, Larry; Novaković, Bojan; Jedicke, Robert; Wainscoat, Richard J.; Armstrong, James D.; Duddy, Samuel R.; Lowry, Stephen C.; Trujillo, Chadwick A.; Micheli, Marco; Keane, Jacqueline V.; Urban, Laurie; Riesen, Timm; Meech, Karen J.; Abe, Shinsuke; Cheng, Yu-Chi; Chen, Wen-Ping; Granvik, Mikael; Grav, Tommy; Ip, Wing-Huen; Kinoshita, Daisuke; Kleyna, Jan; Lacerda, Pedro; Lister, Tim; Milani, Andrea; Tholen, David J.; Vereš, Peter; Lisse, Carey M.; Kelley, Michael S.; Fernández, Yanga R.; Bhatt, Bhuwan C.; Sahu, Devendra K.; Kaiser, Nick; Chambers, K. C.; Hodapp, Klaus W.; Magnier, Eugene A.; Price, Paul A.; Tonry, John L.
2012-03-01
The main-belt asteroid (300163) 2006 VW139 (later designated P/2006 VW139) was discovered to exhibit comet-like activity by the Pan-STARRS1 (PS1) survey telescope using automated point-spread-function analyses performed by PS1's Moving Object Processing System. Deep follow-up observations show both a short (~10'') antisolar dust tail and a longer (~60'') dust trail aligned with the object's orbit plane, similar to the morphology observed for another main-belt comet (MBC), P/2010 R2 (La Sagra), and other well-established comets, implying the action of a long-lived, sublimation-driven emission event. Photometry showing the brightness of the near-nucleus coma remaining constant over ~30 days provides further evidence for this object's cometary nature, suggesting it is in fact an MBC, and not a disrupted asteroid. A spectroscopic search for CN emission was unsuccessful, though we find an upper limit CN production rate of Q CN < 1.3 × 1024 mol s-1, from which we infer a water production rate of Q_H_2O<10^{26} mol s-1. We also find an approximately linear optical spectral slope of 7.2%/1000 Å, similar to other cometary dust comae. Numerical simulations indicate that P/2006 VW139 is dynamically stable for >100 Myr, while a search for a potential asteroid family around the object reveals a cluster of 24 asteroids within a cutoff distance of 68 m s-1. At 70 m s-1, this cluster merges with the Themis family, suggesting that it could be similar to the Beagle family to which another MBC, 133P/Elst-Pizarro, belongs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordiner, M. A.; Milam, S. N.; Mumma, M. J.
2014-09-01
Results are presented from the first cometary observations using the Atacama Large Millimeter/Submillimeter Array (ALMA), including measurements of the spatially resolved distributions of HCN, HNC, H{sub 2}CO, and dust within the comae of two comets: C/2012 F6 (Lemmon) and C/2012 S1 (ISON), observed at heliocentric distances of 1.5 AU and 0.54 AU, respectively. These observations (with angular resolution ≈0.''5), reveal an unprecedented level of detail in the distributions of these fundamental cometary molecules, and demonstrate the power of ALMA for quantitative measurements of the distributions of molecules and dust in the inner comae of typical bright comets. In both comets, HCN ismore » found to originate from (or within a few hundred kilometers of) the nucleus, with a spatial distribution largely consistent with spherically symmetric, uniform outflow. By contrast, the HNC distributions are clumpy and asymmetrical, with peaks at cometocentric radii ∼500-1000 km, consistent with release of HNC in collimated outflow(s). Compared to HCN, the H{sub 2}CO distribution in comet Lemmon is very extended. The interferometric visibility amplitudes are consistent with coma production of H{sub 2}CO and HNC from unidentified precursor material(s) in both comets. Adopting a Haser model, the H{sub 2}CO parent scale length is found to be a few thousand kilometers in Lemmon and only a few hundred kilometers in ISON, consistent with the destruction of the precursor by photolysis or thermal degradation at a rate that scales in proportion to the solar radiation flux.« less
On a possible cometary origin of the object 2015TB145
NASA Astrophysics Data System (ADS)
Kokhirova, G. I.; Babadzhanov, P. B.; Khamroev, U. H.
2017-09-01
The Earth-crossing asteroid 2015TB145 was discovered on 10 October 2015 and on 31 October 2015 it already approached close to the Earth at the minimal distance. On the base of obtained radio images of the asteroid, the value of an albedo has estimated as p=0.06. Coming from the albedo value and the comet-like orbit, it was suggested, that the object is a dead comet. In order to verify the supposition, the orbital evolution of 2015TB145 was investigated under the perturbing action of major planets for the time interval of 50 kyrs. As a result, it was found that one cycle of variations of the argument of perihelion is equal to nearly 40 kyrs and during this period the object intersects the Earth's orbit eight times, i.e. it is the octuple crosser. Consequently, if the object has a cometary origin, then it can be associated with a meteoroid stream producing eight meteor showers which should be observable on the Earth. Features of the predicted meteor showers, theoretically associated with 2015TB145, were calculated and a search for observable showers identical to predicted ones was realized using all published catalogues. It turned out, that seven of eight predicted showers were identified with the active observable meteor showers. So, comet-like orbit, low value of an albedo and association with the meteoroid stream producing identified showers are strong evidences pointing that 2015TB145 is really inactive comet. A conclusion was made that the potentially hazardous object 2015TB145 is very likely extinct nucleus of a parent comet of the found meteoroid stream.
Modeling the neutral gas and dust coma of Comet 1P/Halley
NASA Astrophysics Data System (ADS)
Rubin, Martin; Tenishev, Valeriy M.; Combi, Michael R.; Hansen, Kenneth C.; Gombosi, Tamas I.; Altwegg, Kathrin; Balsiger, Hans
2010-05-01
The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer (NMS) and the Dust Impact Detection System (DIDSY) onboard the Giotto spacecraft which flew-by at comet 1P/Halley in 1986. We further show that our model is in good agreement to measurements obtained by the International Ultraviolet Explorer (IUE), sounding rocket experiments, and the International Halley Watch (IHW). The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique [Tenishev et al. (2008, Astrophys. J., 685, 659-677)] by tracking trajectories of gas molecules and dust grains under the influence of the comet's weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO). This work has been supported by JPL subcontract 1266313 under NASA grant NMO710889, NASA planetary atmospheres program grant NNX09AB59G, grant AST-0707283 from the NSF Planetary Astronomy program, and the Swiss National Science Foundation.
DISCOVERY OF MAIN-BELT COMET P/2006 VW{sub 139} BY Pan-STARRS1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Henry H.; Yang Bin; Haghighipour, Nader
2012-03-20
The main-belt asteroid (300163) 2006 VW{sub 139} (later designated P/2006 VW{sub 139}) was discovered to exhibit comet-like activity by the Pan-STARRS1 (PS1) survey telescope using automated point-spread-function analyses performed by PS1's Moving Object Processing System. Deep follow-up observations show both a short ({approx}10'') antisolar dust tail and a longer ({approx}60'') dust trail aligned with the object's orbit plane, similar to the morphology observed for another main-belt comet (MBC), P/2010 R2 (La Sagra), and other well-established comets, implying the action of a long-lived, sublimation-driven emission event. Photometry showing the brightness of the near-nucleus coma remaining constant over {approx}30 days provides furthermore » evidence for this object's cometary nature, suggesting it is in fact an MBC, and not a disrupted asteroid. A spectroscopic search for CN emission was unsuccessful, though we find an upper limit CN production rate of Q{sub CN} < 1.3 Multiplication-Sign 10{sup 24} mol s{sup -1}, from which we infer a water production rate of Q{sub H{sub 2O}}<10{sup 26} mol s{sup -1}. We also find an approximately linear optical spectral slope of 7.2%/1000 A, similar to other cometary dust comae. Numerical simulations indicate that P/2006 VW{sub 139} is dynamically stable for >100 Myr, while a search for a potential asteroid family around the object reveals a cluster of 24 asteroids within a cutoff distance of 68 m s{sup -1}. At 70 m s{sup -1}, this cluster merges with the Themis family, suggesting that it could be similar to the Beagle family to which another MBC, 133P/Elst-Pizarro, belongs.« less
NASA Astrophysics Data System (ADS)
Barucci, M. A.; Fornasier, S.; Filacchione, G.; Deshapriya, J. D. P.; Raponi, A.; Tosi, F.; Feller, C.; Ciarniello, M.; Fulchignoni, M.; Sierks, H.; Capaccioni, F.:
2017-04-01
During more than two years of observations on board of Rosetta spacecraft orbiting close to the comet 67P/Churyumov-Gerasimenko, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) camera acquired a huge quantity of resolved images of the comet, producing the most detailed maps at the highest spatial resolution ever made of a cometary nucleus surface. Comet 67P shows a body with a dark, dehydrated surface, rich in hetereogeneous geological structures [1]. The morphologically complex surface shows color and albedo variations with local time and perihelion distance. Numerous bright spots of different size with high visible albedo and flat visible slope have been identified by OSIRIS high resolution images [2, 3, 4, 5]. The detected bright spots are mostly situated on consolidated dust free areas distributed on the two lobes of 67P in locations which stay longer in shadow, mostly concentrated at equatorial latitudes Some of them have been observed also by VIRTIS (Visible InfraRed Thermal Imaging Spectrometer) which has detected the diagnostic absorption bands of ice in at 1.5 and 2.05 μm [6, 7]. Comparing the image data with near- infrared spectra and modeling the spectra as a mixture of H2O ice and the ubiquitious "Dark Material" associated to complex organic material present on the nucleus' surface [8, 9], we were able to study at the same time the morphological, thermal and compositional properties of these areas. With this complementary study we are able to confirm the presence of H2O ice on many brighter areas distributed on the two lobes of 67P. We analysed in detail the OSIRIS images in the areas where the spots have been identified. The majority of the detected H2O ice spots are located in the vicinity of previously detected cometary outbursts source areas. We investigated all the available observations of the selected areas to evaluate the lifetime of the ice spots. Some spots are stable for several months and others show temporal changes connected to diurnal and seasonal variations. The temporal variation of these spots will be presented and discussed as well as their stability in general, well corroborated by the temperature retrieved at the surface. References: [1] Sierks H. et al. (2015) Science, 347, 1044. [2] Pommerol A. et al. (2015) A&A, 583, A25. [3] Barucci M. A. et al. (2016) A&A., 595, A102. [4] Oklay N. et al. (2016) MNRAS, in press. [5] Fornasier S. et al. (2016) Science in press, DOI : 10.1126/science.aag2671. [6] Filacchione et al. (2016) Nature, 529, 368. [7] Filacchione et al. (2016) Icarus 274, 334- 349. [8] Capaccioni F. et al. (2015) Science, 347, 0628. [9] Quirico, E. et al. (2016) Icarus, 272, 32.
Formation environment of cometary nuclei in the primordial solar nebula
NASA Astrophysics Data System (ADS)
Yamamoto, T.
1985-01-01
The formation environment of comets in the primordial solar nebula is investigated from the point of view of the chemical composition of the ices of cometary nuclei. A sublimation sequence for various species of possible constituents of the nuclear ice, which would have condensed on the grain surface in the parent interstellar cloud was obtained by calculating the temperature of grains in the solar nebula. On this basis, an allowed range of the nebular temperature in the formation region of cometary nuclei is obtained from a condition for retention of the ices of the nuclear composition. Combining this result with models of the solar nebula, the region for the formation of cometary nuclei in the solar nebula is discussed. It is shown that cometary nuclei formed at least beyond the region between the formation regions of Saturn and Uranus. Finally, an upper limit is estimated for the grain temperature in the region of comet formation at an earlier stage of the solar nebula. The grain temperature is shown to be less than 60 K at this stage.
VizieR Online Data Catalog: 18-cm OH lines in comets (Crovisier+, 2002)
NASA Astrophysics Data System (ADS)
Crovisier, J.; Colom, P.; Gerard, E.; Bockelee-Morvan, D.; Bourgois, G.
2002-10-01
Since the apparition of comet Kohoutek 1973 XII, the 18-cm lines of the OH radical have been systematically observed in a number of comets with the Nancay radio telescope. Between 1973 and 1999, 52 comets have been successfully detected. This allowed an evaluation of the cometary water production rates and their evolution with time, as well as a study of several physical processes such as the excitation mechanisms of the OH radio lines, the expansion of cometary atmospheres, their anisotropy in relation to non-gravitational forces, and the Zeeman effect in relation to the cometary magnetic field. Part of these observations and their analysis have already been published. The bulk of the results are now organized in a data base. The present paper is a general presentation of the Nancay cometary data base and a more specific description of the observations of 53 cometary apparitions between 1982 and 1999. Comets observed before 1982 are only partly incorporated in the data base. Observations of comets since 2000 have benefited from a major upgrade of the telescope; they will be presented in forthcoming publications. (5 data files).
NASA Technical Reports Server (NTRS)
Yeomans, D. K. (Editor); West, R. M. (Editor); Harrington, R. S. (Editor); Marsden, B. G. (Editor)
1984-01-01
Modern techniques for making cometary astrometric observations, reducing these observations, using accurate reference star catalogs, and computing precise orbits and ephemerides are discussed in detail and recommendations and suggestions are given in each area.
Electron impact ionization in the vicinity of comets
NASA Astrophysics Data System (ADS)
Cravens, T. E.; Kozyra, J. U.; Nagy, A. F.; Gombosi, T. I.; Kurtz, M.
1987-07-01
The solar wind interacts very strongly with the extensive cometary coma, and the various interaction processes are initiated by the ionization of cometary neutrals. The main ionization mechanism far outside the cometary bow shock is photoionization by solar extreme ultraviolet radiation.Electron distributions measured in the vicinity of comets Halley and Giacobini-Zinner by instruments on the VEGA and ICE spacecraft, respectively, are used to calculate electron impact ionization frequencies. Ionization by electrons is of comparable importance to photoionization in the magnetosheaths of Comets Halley and Giacobini-Zinner. The ionization frequency in the inner part of the cometary plasma region of comet Halley is several times greater than the photoionization value. Tables of ionization frequencies as functions of electron temperature are presented for H2O, CO2, CO, O, N2, and H.
Exobiology opportunities from Discovery-class missions. [Abstract only
NASA Technical Reports Server (NTRS)
Meyer, Michael A.; Rummel, John D.
1994-01-01
Discovery-class missions that are now planned, and those in the concept stage, have the potential to expand our knowledge of the origins and evolution of biogenic compounds, and ultimately, of the origins of life in the solar system. This class of missions, recently developed within NASA's Solar System Exploration Program, is designed to meet important scientific objectives within stringent guidelines--$150 million cap on development cost and a 3-year cap on the development schedule. The Discovery Program will effectively enable "faster, cheaper" missions to explore the inner solar system. The first two missions are Mars Environmental Survey (MESUR) Pathfinder and Near Earth Asteroid Rendezvous (NEAR). MESUR Pathfinder will be the first Discovery mission, with launch planned for November/December 1996. It will be primarily a technical demonstration and validation of the MESUR Program--a network of automated landers to study the internal structure, meteorology, and surface properties of Mars. Besides providing engineering data, Pathfinder will carry atmospheric instrumentation and imaging capabilities, and may deploy a microrover equipped with an alpha proton X-ray spectrometer to determine elemental composition, particularly the lighter elements of exobiological interest. NEAR is expected to be launched in 1998 and to rendezvous with a near-Earth asteroid for up to 1 year. During this time, the spacecraft will assess the asteroid's mass, size, density, map its surface topography and composition, determine its internal properties, and study its interaction with the interplanetary environment. A gamma ray or X-ray spectrometer will be used to determine elemental composition. An imaging spectrograph, with 0.35 to 2.5 micron spectral range, will be used to determine the asteroid's compositional disbribution. Of the 11 Discovery mission concepts that have been designated as warranting further study, several are promising in terms of determining the composition and chemical evolution of organic matter on small planetary bodies. The following mission concepts are of particular interest to the Exobiology Program: Cometary coma chemical composition, comet nucleus tour, near earth asteroid returned sample, small missions to asteroids and comets, and solar wind sample return. The following three Discovery mission concepts that have been targeted for further consideration are relevant to the study of the evolution of biogenic compounds: Comet nucleus penetrator, mainbelt asteroid rendezvous explorer, and the Mars polar Pathfinder.
Comets: Gases, ices, grains and plasma
NASA Technical Reports Server (NTRS)
Wilkening, L. L.
1981-01-01
The program and abstracts of the 97 papers delivered at the colloquium are presented. Cometary nuclei, comet dust, the coma, ion tails, several comet missions, and cometary origin and evolution were discussed.
On liquid phases in cometary nuclei
NASA Astrophysics Data System (ADS)
Miles, Richard; Faillace, George A.
2012-06-01
In this paper we review the relevant literature and investigate conditions likely to lead to melting of H2O ice, methanol (CH3OH) ice, ethane (C2H6) ice and other volatile ices in cometary nuclei. On the basis of a heat balance model which takes account of volatiles loss, we predict the formation of occasional aqueous and hydrocarbon liquid phases in subsurface regions at heliocentric distances, rh of 1-3 AU, and 5-12 AU, respectively. Low triple-point temperatures and low vapour pressures of C2H6, C3H8, and some higher-order alkanes and alkenes, favour liquid phase formation in cometary bodies at high rh. Microporosity and the formation of a stabilization crust occluding the escape of volatiles facilitate liquid-phase formation. Characteristics of the near-surface which favour subsurface melting include; low effective surface emissivity (at low rh), high amorphous carbon content, average pore sizes of ˜10 μm or less, presence of solutes (e.g. CH3OH), mixtures of C2-C6 hydrocarbons (for melting at high rh), diurnal thermal cycling, and slow rotation rate. Applying the principles of soil mechanics, capillary forces are shown to initiate pre-melting phenomena and subsequent melting, which is expected to impart considerable strength of ˜104 Pa in partially saturated layers, reducing porosity and permeability, enhancing thermal conductivity and heat transfer. Diurnal thermal cycling is expected to have a marked effect on the composition and distribution of H2O ice in the near-surface leading to frost heave-type phenomena even where little if any true melting occurs. Where melting does take place, capillary suction in the wetted zone has the potential to enhance heat transfer via capillary wetting in a low-gravity environment, and to modify surface topography creating relatively smooth flat-bottomed features, which have a tendency to be located within small depressions. An important aspect of the "wetted layer" model is the prediction that diurnal melt-freeze cycles alter the mixing ratio vs. depth of solutes present, or of other miscible components, largely through a process of fractional crystallization, but also potentially involving frost heave. Wetted layers are potentially durable and can involve significant mass transport of volatile materials in the near-surface, increasing in extent over many rotations of the nucleus prior to and just after perihelion passage, and causing stratification and trapping of the lowest-melting mixtures at depths of several metres. A possible mechanism for cometary outbursts is proposed involving a heat pulse reaching the liquid phase in the deepest wetted zone, leading to supersaturation and triggering the sudden release under pressure of dissolved gases, in particular CO2, CO, CH4 or N2, contained beneath a consolidated near-surface layer. This study indicates that liquid water can persist for long periods of time in the near-surface of some intermediate-sized bodies (102-103 km radius) within protoplanetary discs.
Cometary and meteorite swarm impact on planetary surfaces
NASA Technical Reports Server (NTRS)
Okeefe, J. D.; Ahrens, T. J.
1982-01-01
The impact-induced deformation from hypothetical cometary objects having initial densities in the 0.01 to 1 g/cu cm range and heats of vaporization in the approximately 2 kJ/g (corresponding to water) to approximately 10 to the 7th J/g range is examined for impacts in the 5 to 45 km/s range. Even though the direct effect of an atmosphere is neglected, the atmosphere may in fact cause a cometary object to break up into a shower or equivalent very porous impactor. Besides examining the partitioning of impact energy into internal energy of the impacted planet and impacting cometary material, calculations are made of the relative efficiency of shock-induced melting and vaporization by comets on planetary surface materials and the mass loss from a given planet for various escape velocities.
Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Volwerk, M.; Richter, I.; Tsurutani, B.; Götz, C.; Altwegg, K.; Broiles, T.; Burch, J.; Carr, C.; Cupido, E.; Delva, M.; Dósa, M.; Edberg, N. J. T.; Eriksson, A.; Henri, P.; Koenders, C.; Lebreton, J.-P.; Mandt, K. E.; Nilsson, H.; Opitz, A.; Rubin, M.; Schwingenschuh, K.; Stenberg Wieser, G.; Szegö, K.; Vallat, C.; Vallieres, X.; Glassmeier, K.-H.
2016-01-01
The data from all Rosetta plasma consortium instruments and from the ROSINA COPS instrument are used to study the interaction of the solar wind with the outgassing cometary nucleus of 67P/Churyumov-Gerasimenko. During 6 and 7 June 2015, the interaction was first dominated by an increase in the solar wind dynamic pressure, caused by a higher solar wind ion density. This pressure compressed the draped magnetic field around the comet, and the increase in solar wind electrons enhanced the ionization of the outflow gas through collisional ionization. The new ions are picked up by the solar wind magnetic field, and create a ring/ring-beam distribution, which, in a high-β plasma, is unstable for mirror mode wave generation. Two different kinds of mirror modes are observed: one of small size generated by locally ionized water and one of large size generated by ionization and pick-up farther away from the comet.
Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Volwerk, Martin
2016-04-01
The data from all Rosetta Plasma Consortium instruments and from the ROSINA COPS instrument are used to study the interaction of the solar wind with the outgassing cometary nucleus of 67P/Churyumov-Gerasimenko. During 6 and 7 June 2015, the interaction was first dominated by an increase in the solar wind dynamic pressure, caused by a higher solar wind ion density. This pressure compressed the draped magnetic field around the comet, and the increase in solar wind electrons enhanced the ionization of the outflow gas through collisional ionization. The new ions are picked up by the solar wind magnetic field, and create a ring/ring-beam distribution, which, in a high-β plasma, is unstable for mirror mode wave generation. Two different kinds of mirror modes are observed: one of small size generated by locally ionized water and one of large size generated by ionization and pick-up farther away from the comet.
Forbidden mass ranges for shower meteoroids
NASA Astrophysics Data System (ADS)
Moorhead, Althea V.
2017-10-01
Burns et al. (1979) use the parameter β to describe the ratio of radiation pressure to gravity for a particle in the Solar System. The central potential that these particles experience is effectively reduced by a factor of (1 - β), which in turn lowers the escape velocity. Burns et al. (1979) derived a simple expression for the value of β at which particles ejected from a comet follow parabolic orbits and thus leave the Solar System; we expand on this to derive an expression for critical β values that takes ejection velocity into account, assuming geometric optics. We use our expression to compute the critical β value and corresponding mass for cometary ejecta leading, trailing, and following the parent comet’s nucleus for 10 major meteor showers. Finally, we numerically solve for critical β values in the case of non-geometric optics. These values determine the mass regimes within which meteoroids are ejected from the Solar System and therefore cannot contribute to meteor showers.
Forbidden Mass Ranges for Shower Meteoroids
NASA Technical Reports Server (NTRS)
Moorhead, Althea V.
2017-01-01
Burns et al. (1979) use the parameter beta to describe the ratio of radiation pressure to gravity for a particle in the Solar System. The central potential that these particles experience is effectively reduced by a factor of (1- beta ), which in turn lowers the escape velocity. Burns et al. (1979) derived a simple expression for the value of beta at which particles ejected from a comet follow parabolic orbits and thus leave the Solar System; we expand on this to derive an expression for critical beta values that takes ejection velocity into account, assuming geometric optics. We use our expression to compute the critical value and corresponding mass for cometary ejecta leading, trailing, and following the parent comet's nucleus for 10 major meteor showers. Finally, we numerically solve for critical beta values in the case of non-geometric optics. These values determine the mass regimes within which meteoroids are ejected from the Solar System and therefore cannot contribute to meteor showers.
MOSES: a modular sensor electronics system for space science and commercial applications
NASA Astrophysics Data System (ADS)
Michaelis, Harald; Behnke, Thomas; Tschentscher, Matthias; Mottola, Stefano; Neukum, Gerhard
1999-10-01
The camera group of the DLR--Institute of Space Sensor Technology and Planetary Exploration is developing imaging instruments for scientific and space applications. One example is the ROLIS imaging system of the ESA scientific space mission `Rosetta', which consists of a descent/downlooking and a close-up imager. Both are parts of the Rosetta-Lander payload and will operate in the extreme environment of a cometary nucleus. The Rosetta Lander Imaging System (ROLIS) will introduce a new concept for the sensor electronics, which is referred to as MOSES (Modula Sensor Electronics System). MOSES is a 3D miniaturized CCD- sensor-electronics which is based on single modules. Each of the modules has some flexibility and enables a simple adaptation to specific application requirements. MOSES is mainly designed for space applications where high performance and high reliability are required. This concept, however, can also be used in other science or commercial applications. This paper describes the concept of MOSES, its characteristics, performance and applications.
NASA Astrophysics Data System (ADS)
Huang, Zhenguang; Toth, Gabor; Gombosi, Tamas; Jia, Xianzhe; Rubin, Martin; Fougere, Nicolas; Tenishev, Valeriy; Combi, Michael; Bieler, Andre; Hansen, Kenneth; Shou, Yinsi; Altwegg, Kathrin
2016-04-01
The neutral and plasma environment is critical in understanding the interaction of the solar wind and comet 67P/Churyumov-Gerasimenko (CG), the target of the European Space Agency's Rosetta mission. In this study, we have developed a 3-D four-fluid model, which is based on BATS-R-US (Block-Adaptive Tree Solarwind Roe-type Upwind Scheme) within SWMF (Space Weather Modeling Framework) that solves the governing multi-fluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. We simulated the plasma and neutral gas environment of comet CG with SHAP5 model near perihelion and we showed that the plasma environment in the inner coma region have some new features: magnetic reconnection in the tail region, a magnetic pile-up region on the nightside, and nucleus directed plasma flow inside the nightside reconnection region.
Dust as the cause of spots on Jupiter
NASA Technical Reports Server (NTRS)
Field, G. B.; Tozzi, G. P.; Stanga, R. M.
1995-01-01
The long-lived spots caused by the impact of fragments of Comet S-L 9 on Jupiter can be understood if clouds of dust are produced by the impact. These clouds reside in the stratosphere, where they absorb visible light that would ordinarily reflect from the cloud deck below, and reflect radiation at infrared wavelengths that would ordinarily be absorbed by atmospheric methane. Here we show that, provided that the nucleus of a fragment is composed substantially of silicates and has a diameter greater than about 0.4 km, dust in the required amounts will condense from the hot gas composed of cometary and Jovian material ejected from the site where the fragment entered, and the dust will be suspended in the stratosphere for long periods. Particles about 1 micron in radius can explain both the optical properties and longevities of the spots. According to our model, a silicate band should be present in the 10 - micron spectra of the spots.
NASA Technical Reports Server (NTRS)
Espley, Jared R.; Dibraccio, Gina A.; Connerney, John E. P.; Brain, David; Gruesbeck, Jacob; Soobiah, Yasir; Halekas, Jasper S.; Combi, Michael; Luhmann, Janet; Ma, Yingjuan
2015-01-01
The nucleus of comet C/2013 A1 (Siding Spring) passed within 141,000?km of Mars on 19 October 2014. Thus, the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the Martian magnetosphere and upper atmosphere. We present observations from Mars Atmosphere and Volatile EvolutioN's (MAVEN's) particles and field's instruments that show the Martian magnetosphere was severely distorted during the comet's passage. We note four specific major effects: (1) a variable induced magnetospheric boundary, (2) a strong rotation of the magnetic field as the comet approached, (3) severely distorted and disordered ionospheric magnetic fields during the comet's closest approach, and (4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet produced effects comparable to that of a large solar storm (in terms of incident energy) and that our results are therefore important for future studies of atmospheric escape, MAVEN's primary science objective.
Formation of jets in Comet 19P/Borrelly by subsurface geysers
Yelle, R.V.; Soderblom, L.A.; Jokipii, J.R.
2004-01-01
Observations of the inner coma of Comet 19P/Borrelly with the camera on the Deep Space 1 spacecraft revealed several highly collimated dust jets emanating from the nucleus. The observed jets can be produced by acceleration of evolved gas from a subsurface cavity through a narrow orifice to the surface. As long as the cavity is larger than the orifice, the pressure in the cavity will be greater than the ambient pressure in the coma and the flow from the geyser will be supersonic. The gas flow becomes collimated as the sound speed is approached and dust entrainment in the gas flow creates the observed jets. Outside the cavity, the expanding gas loses its collimated character, but the density drops rapidly decoupling the dust and gas, allowing the dust to continue in a collimated beam. The hypothesis proposed here can explain the jets seen in the inner coma of Comet 1P/Halley as well, and may be a primary mechanism for cometary activity. ?? 2003 Published by Elsevier Inc.
Rapid evolution of the spin state of comet 41P/Tuttle-Giacobini-Kresak
NASA Astrophysics Data System (ADS)
Bodewits, Dennis; Farnham, Tony; Knight, Matthew M.; Kelley, Michael S.
2017-10-01
Comet nuclei are small, dynamic objects influenced strongly by their individual history, orbit, rotation and inhomogeneity. Mass loss due to sublimation can exert a profound influence on the physical nature of the cometary nucleus, changing the shape, size, and rotation (Jewitt, in Comets II, 2004). The Rosetta mission to comet 67P showed that these effects are all interrelated (Sierks et al., Science 347, 2015).Comet 41P/Tuttle-Giacobini-Kresak passed Earth as close as 0.142 au in April 2017, allowing observations of the inner coma and an assessment of the rotational state of the nucleus. We acquired observations of comet 41P between March and May 2017 using the 4.3-m Discovery Channel Telescope and the UltraViolet-Optical Telescope (UVOT) on board the Earth-orbiting Swift Gamma Ray Burst Mission.Using CN narrowband imaging and aperture photometry we found that the apparent rotation period of comet 41P more than doubled between March and May 2017, increasing from 20 hours to 50 hours. Measurements of the periodicity in late-March by Knight et al. (CBET 4377, 2017) are consistent with this rate of increase. Comet 41P is the ninth comet for which a rotation period change has been observed (c.f. Samarasinha et al., in Comets II, 2004), but both the fractional change and the rate of change of the period far exceed those observed in the other comets. It is presumably the combination of a long rotation period, high surface activity, and a small nucleus that makes 41P highly susceptible to changes in its rotational state.Extrapolating the comet’s rotation period using its current gas production rates and a simple activity model suggests that the nucleus will continue to spin down, possibly leading to an excited spin state in the next few apparitions. Finally, 41P is known for its large outbursts, and our extrapolation suggest that the comet’s rotation period may have been close to the critical period for splitting in 2001, when it exhibited two significant outbursts.
NASA Astrophysics Data System (ADS)
Ciarniello, M.; Filacchione, G.; Capaccioni, F.; Raponi, A.; De Sanctis, M. C.; Tosi, F.; Migliorini, A.; Piccioni, G.; Cerroni, P.; Capria, M. T.; Erard, S.; Bockelee-Morvan, D.; Leyrat, C.; Arnold, G.; Barucci, M. A.; Schmitt, B.; Quirico, E.; Fornasier, S.; Kappel, D.; Longobardo, A.; Rousseau, B.; Mottola, S.
2017-04-01
Introduction: The Visible and Infrared Thermal Imaging Spectrometer [1] on board the Rosetta spacecraft acquired disk-resolved images of the nucleus of comet 67P/Churyumov-Gerasimenko for more than two years from August 2014 to September 2016. The observation campaigns have been carried out using both the visible (VIS) and infrared (IR) channels of the instrument covering the 0.25-5.1 μm spectral range up to May 2015 and by means of the sole VIS channel (0.25-1 μm) for the remaining part of the mission. This allowed monitoring the spectral properties of the comet surface as a function of the heliocentric distance for the inbound part of the orbit from 3.6 AU to perihelion (1.3 AU) and the outbound part up to 3.3 AU. Throughout this period the surface evolution was further complicated by the combination of the relatively large orbital eccentricity, of the irregular shape of 67P/CG's nucleus and of the inclination of its rotational axis (52° [2]) which amplify the seasonal effects. Method: The long-term variability of 67P's nucleus is described by means of spectral indicators as defined in [3] which are represented by the spectral slopes in the VIS (0.55-0.8 μm) and IR (1.2-2.0 μm) spectral ranges, the single scattering albedo at 0.55 μm [4] and the band area and band center of the 3.2 μm absorption feature [5]. These quantities are computed from photometrically corrected spectra [4], in order to remove observation geometry effects [5]. The spectral indicators are projected onto latitude-longitude maps of the nucleus at different times, in order to monitor both spatial and temporal variations. In parallel, the evolution of selected areas on 67P/CG's surface as selected by [3] is followed to monitor local variability. Preliminary results: The analysis of the VIS slope from observations taken from August 2014 to June 2016, corresponding to the Rosetta mission Medium Term Planning (MTP) observation phases from MTP006 to MTP030, indicates a progressive reduction (bluening) while the comet was approaching perihelion (August 2015, MTP019) during the inbound orbit leg, followed by an increase (reddening) starting immediately after perihelion passage along the outbound leg. This is in agreement with the seasonal color variations reported by OSIRIS [6]. Comparison of the average VIS spectral slope between MTP006 (3.4 AU) and MTP030 (3.2 AU), when the comet was along the inbound and outbound orbit respectively, at comparable heliocentric distance, indicates that the average spectral slope has increased on average by about 16%. We interpret these observations in terms of transport of water ice and dust. After perihelion the decrease of the cometary activity implies that the cometary dust grains expelled from the southern hemisphere fall back on the surface, thus mantling the nucleus. These dust grains are drier, at least on their surfaces, and cause a spectral reddening. The fact that the surface was "bluer" in August 2014 when we first observed the nucleus, means that a mechanism of transport of water ice, probably form the interior of the dry grains redeposited after the previous perihelion, was acting replenishing the water content of the surface layers. This is a strong evidence of the presence of a seasonal cycle of water ice, similar to the CO2 ice cycle observed by VIRTIS in the Anhur region [7]. Acknowledgments: The authors thank ASI-Italy, CNES-France, DLR-Germany, and NASA-USA, which supported this work. References: [1] Coradini A. et al. (2007) SSR, 128, 529-559. [2] Preusker F. et al. (2015) A&A, 583, A33. [3] Filacchione G. et al. (2016) Icarus, 274, 334-349. [4] Ciarniello et al. (2015) A&A, 583, A31. [5] Ciarniello et al. (2016), MNRAS, in press. [6] Fornasier et al., (2016), Science, DOI: 10.1126/science.aag2671. [7] Filacchione G. et al. Science, (2016) DOI: 10.1126/science.aag3161
Comment on the Pioneer Venus Orbiter event of February 11, 1982 - Of cometary or solar origin?
NASA Technical Reports Server (NTRS)
Intriligator, D. S.
1986-01-01
The evidence presented by Russell et al. (1985) for the cometary origin of the Pioneer Venus Orbiter event of Febr. 11, 1982, is examined critically. It is argued that the field fluctuations and He enhancements seen at Venus and near earth, the sequence of the events, and a number of related observations all indicate that the event is of solar origin. These objections are discussed individually in a reply by Russell et al., and the claim of cometary origin is defended.
Infrared Observations of Cometary Dust and Nuclei
NASA Technical Reports Server (NTRS)
Lisse, Carey
2004-01-01
This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.
Cometary material and the origins of life on earth
NASA Technical Reports Server (NTRS)
Lazcano-Araujo, A.; Oro, J.
1981-01-01
The role of cometary material in determining the environmental conditions of the prebiotic earth is reviewed. The organic synthesis pathways that occur in dense interstellar clouds and in comets are examined, and complex organic molecules believed to exist (amino acids, carboxylic acids, purines, pyrimidines and hydrocarbons) based on spectral detections of degradation products are noted. Estimates of the amount of terrestrial volatiles of cometary origin that may have been acquired in collisions during the early history of the earth are considered, and shown to dominate any estimated contributions to terrestrial carbon from other extraterrestrial sources. Current evidence that the origin and early evolution of life began about four billion years ago is discussed in relation to the cometary bombardment processes occurring at the time and the resultant shock waves, reducing atmospheres and reactive chemical species. It is thus concluded that comets contributed significantly to the processes of chemical evolution necessary for the emergence of life on earth.
Cometary globules in the southeast quadrant of the Rosette nebula
NASA Technical Reports Server (NTRS)
Patel, Nimesh A.; Xie, Taoling; Goldsmith, Paul F.
1993-01-01
We present a study of newly identified cometary globules in the southeast quadrant of the Rosette nebula using the J = 1-0 transition of carbon monoxide. The globules are found to be blueshifted by about 6 km/s with respect to the adjacent Rosette molecular cloud. The masses of the globules vary from 50 to 300 solar masses, and their sizes are between 1 and 3 pc. Two of the globules have cometary morphology and show velocity gradients of about 1.5 km/s/pc along their symmetry axes. These globules are associated with the IRAS sources 06314+0421, X0632+043, 06322+0427, and 06327+0423 which coincide with local maxima in the (C-13)O emission. The derived physical parameters of the globules are found to be consistent with those predicted by recent theoretical models of photoevaporating cometary clouds. We suggest that star formation induced by radiation driven implosion has occurred.
Gas Dynamics and Kinetics in the Cometary Coma: Theory and Observations
NASA Technical Reports Server (NTRS)
Combi, Michael R.; Harris, Walter M.; Smyth, William H.
2005-01-01
Our ability to describe the physical state of the expanding coma affects fundamental areas of cometary study both directly and indirectly. In order to convert measured abundances of gas species in the coma to gas production rates, models for the distribution and kinematics of gas species in the coma are required. Conversely, many different types of observations, together with laboratory data and theory, are still required to determine coma model attributes and parameters. Accurate relative and absolute gas production rates and their variations with time and from comet to comet are crucial to our basic understanding of the composition and structure of cometary nuclei and their place in the solar system. We review the gas dynamics and kinetics of cometary comae from both theoretical and observational perspectives, which are important for understanding the wide variety of physical conditions that are encountered.
The volatile composition of comets
NASA Technical Reports Server (NTRS)
Weaver, H. A.
1988-01-01
Comets may be our best probes of the physical and chemical conditions in the outer regions of the solar nebula during that crucial period when the planets formed. The volatile composition of cometary nuclei can be used to decide whether comets are the product of a condensation sequence similar to that invoked to explain the compositions of the planets and asteroids, or if comets are simply agglomerations of interstellar grains which have been insignificantly modified by the events that shaped the other bodies in the solar system. Although cometary nuclei are not generally accessible to observation, observations of cometary comae can illuminate at least some of the mysteries of the nuclei provided one has a detailed knowledge of the excitation conditions in the coma and also has access to basic atomic and molecular data on the many species present in comets. Examined here is the status of our knowledge of the volatile composition of cometary nuclei and how these data are obtained.
First results from the Giotto magnetometer experiment at comet Halley
NASA Technical Reports Server (NTRS)
Neubauer, F. M.; Glassmeier, K. H.; Pohl, M.; Raeder, J.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.
1986-01-01
The Giotto magnetometer experiment at comet Halley has for the first time provided magnetic field measurements in all the important spatial regions characterizing the front-side interaction between the solar-wind magnetoplasma and a cometary atmosphere. Upstream waves of cometary origin have been observed at distances greater than two million km from the comet, both inbound and outbound. A cometary bow shock has been identified at 1.15 million inbound on the dawn side and a thick quasi-parallel cometary bow shock outbound. A turbulent magnetosheath has been observed further inside. A magnetic pile-up region has been identified inside 135,000 km, inbound, and 263,000 km, outbound, with fields up to 57 and 65 nT, respectively. A cavity region with essentially zero magnetic field has been discovered, with a width of 8500 km along the trajectory around closest approach.
Rosetta Lander - Philae: activities after hibernation and landing preparations
NASA Astrophysics Data System (ADS)
Ulamec, Stephan; Biele, Jens; Sierks, Holger; Blazquez, Alejandro; Cozzoni, Barbara; Fantinati, Cinzia; Gaudon, Philippe; Geurts, Koen; Jurado, Eric; Paetz, Brigitte.; Maibaum, Michael
Rosetta is a Cornerstone Mission of the ESA Horizon 2000 programme. It is going to rendezvous with comet 67P/Churyumov-Gerasimenko after a ten year cruise and will study both its nucleus and coma with an orbiting spacecraft as well as with a Lander, Philae. Aboard Philae, a payload consisting of ten scientific instruments will perform in-situ studies of the cometary material. Rosetta and Philae have been in hibernation until January 20, 2014. After the successful wakeup they will undergo a post hibernation commissioning. The orbiter instruments (like e.g. the OSIRIS cameras) are to characterize the target comet to allow landing site selection and the definition of a separation, descent and landing (SDL) strategy for the Lander. By August 2014 our currently very poor knowledge of the characteristics of the nucleus of the comet will have increased dramatically. The paper will report on the latest updates in Separation-Descent-Landing (SDL) planning. Landing is foreseen for November 2014 at a heliocentric distance of 3 AU. Philae will be separated from the mother spacecraft from a dedicated delivery trajectory. It then descends ballistically to the surface of the comet, stabilized with an internal flywheel. At touch-down anchoring harpoons will be fired and a damping mechanism within the landing gear will provide the lander from re-bouncing. The paper will give an overview of the Philae system, the operational activities after hibernation and the latest status on the preparations for landing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodewits, Dennis; Kelley, Michael S. P.; Farnham, Tony L.
We used the UltraViolet-Optical Telescope on board Swift to systematically follow the dynamically new comet C/2013 A1 (Siding Spring) on its approach to the Sun. The comet was observed from a heliocentric distance of 4.5 AU pre-perihelion to its perihelion at 1.4 AU. From our observations, we estimate that the water production rate during closest approach to Mars was 1.5 ± 0.3 × 10{sup 28} molecules s{sup −1}, that peak gas delivery rates where between 4.5 and 8.8 kg s{sup −1}, and that in total between 3.1 and 5.4 × 10{sup 4} kg cometary gas was delivered to the planet.more » Seasonal and evolutionary effects on the nucleus govern the pre-perihelion activity of comet Siding Spring. The sudden increase of its water production between 2.46 and 2.06 AU suggests the onset of the sublimation of icy grains in the coma, likely driven by CO{sub 2}. As the comet got closer to the Sun, the relative contribution of the nucleus’ water production increased, while CO{sub 2} production rates decreased. The changes in the comet’s activity can be explained by a depletion of CO{sub 2}, but the comet’s high mass loss rate suggests they may reflect primordial heterogeneities in the nucleus.« less
Deep Impact Autonomous Navigation : the trials of targeting the unknown
NASA Technical Reports Server (NTRS)
Kubitschek, Daniel G.; Mastrodemos, Nickolaos; Werner, Robert A.; Kennedy, Brian M.; Synnott, Stephen P.; Null, George W.; Bhaskaran, Shyam; Riedel, Joseph E.; Vaughan, Andrew T.
2006-01-01
On July 4, 2005 at 05:44:34.2 UTC the Impactor Spacecraft (s/c) impacted comet Tempel 1 with a relative speed of 10.3 km/s capturing high-resolution images of the surface of a cometary nucleus just seconds before impact. Meanwhile, the Flyby s/c captured the impact event using both the Medium Resolution Imager (MRI) and the High Resolution Imager (HRI) and tracked the nucleus for the entire 800 sec period between impact and shield attitude transition. The objective of the Impactor s/c was to impact in an illuminated area viewable from the Flyby s/c and capture high-resolution context images of the impact site. This was accomplished by using autonomous navigation (AutoNav) algorithms and precise attitude information from the attitude determination and control subsystem (ADCS). The Flyby s/c had two primary objectives: 1) capture the impact event with the highest temporal resolution possible in order to observe the ejecta plume expansion dynamics; and 2) track the impact site for at least 800 sec to observe the crater formation and capture the highest resolution images possible of the fully developed crater. These two objectives were met by estimating the Flyby s/c trajectory relative to Tempel 1 using the same AutoNav algorithms along with precise attitude information from ADCS and independently selecting the best impact site. This paper describes the AutoNav system, what happened during the encounter with Tempel 1 and what could have happened.
Refractory materials in comet samples
NASA Astrophysics Data System (ADS)
Joswiak, D. J.; Brownlee, D. E.; Nguyen, A. N.; Messenger, S.
2017-08-01
Transmission electron microscope examination of more than 250 fragments, >1 μm from comet Wild 2 and a giant cluster interplanetary dust particle (GCP) of probable cometary origin has revealed four new calcium-aluminum-rich inclusions (CAIs), an amoeboid olivine aggregate (AOA), and an additional AOA or Al-rich chondrule (ARC) object. All of the CAIs have concentric mineral structures and are composed of spinel + anorthite cores surrounded by Al,Ti clinopyroxenes and are similar to two previous CAIs discovered in Wild 2. All of the cometary refractory objects are of moderate refractory character. The mineral assemblages, textures, and bulk compositions of the comet CAIs are similar to nodules in fine-grained, spinel-rich inclusions (FGIs) found in primitive chondrites and like the nodules may be nebular condensates that were altered via solid-gas reactions in the solar nebula. Oxygen isotopes collected on one Wild 2 CAI also match FGIs. The lack of the most refractory inclusions in the comet samples may reflect the higher abundances of small moderately refractory CAI nodules that were produced in the nebula and the small sample sizes collected. In the comet samples, approximately 2-3% of all fragments larger than 1 μm, by number, are CAIs and nearly 50% of all bulbous Stardust tracks contain at least one CAI. We estimate that 0.5 volume % of Wild 2 material and 1 volume % of GCP is in the form of CAIs. ARCs and AOAs account for <1% of the Wild 2 and GCP grains by number.
What if chondritic porous interplanetary dust particles are not the real McCoy
NASA Astrophysics Data System (ADS)
Rietmeijer, Frans J. M.
To select a target comet for a Comet Nucleus Sample Return Mission (CNSRM) it is necessary to have an experimental data base to evaluate the extent of diversity and similarity of comets. For example, the physical properties (e.g., low density) of chondritic porous (CP) interplanetary dust particles (IDPs) are believed to resemble these properties of cometary dust although it is yet to be demonstrated that the porous structure of CP IDPs is inherent to presolar dust particles stored in comet nuclei. Porous structures of IDPs could conceivably form during sublimation at the surface of active comet nuclei. Porous structures are also obtained during annealing of amorphous Mg-SiO smokes which initially forms porous aggregates of olivine + platey tridymite and which, upon continued annealing, react to fluffy enstatite aggregates. It is therefore uncertain that CP IDPs are entirely composed of unmetamorphosed presolar dust. Conceivably, new minerals and textures may form in situ in nuclei of active comets as a function of their individual thermal history. Unmetamorphosed comet dust is probably structurally amorphous. Thermal annealing of this dust can produce ultra fine-grained minerals and this ultrafine grain size of CP IDPs should be considered in assessments of aqueous alterations that could affect presolar dust in comet nuclei between 200 and 400 K. Devitrification and hydration may occur in situ in ice-dust mixtures and the mantle of active comet nuclei. Devitrification, or uncontrolled crystallization, of amorphous precursor dust can produce a range of chemical compositions of ultrafine-grained minerals and (non-equilibrium) mineral assemblages and textures in dust contained in comet nuclei as a function of period and trajectory of orbit and number of perihelion passages (not considering internal heating). Thus, experimental data on relevant processes and reaction rates between 200 and 400 K are needed in order to evaluate comet selection, penetration depth for sampling device and curation of samples for CNSRM.
What if chondritic porous interplanetary dust particles are not the real McCoy
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.
1989-01-01
To select a target comet for a Comet Nucleus Sample Return Mission (CNSRM) it is necessary to have an experimental data base to evaluate the extent of diversity and similarity of comets. For example, the physical properties (e.g., low density) of chondritic porous (CP) interplanetary dust particles (IDPs) are believed to resemble these properties of cometary dust although it is yet to be demonstrated that the porous structure of CP IDPs is inherent to presolar dust particles stored in comet nuclei. Porous structures of IDPs could conceivably form during sublimation at the surface of active comet nuclei. Porous structures are also obtained during annealing of amorphous Mg-SiO smokes which initially forms porous aggregates of olivine + platey tridymite and which, upon continued annealing, react to fluffy enstatite aggregates. It is therefore uncertain that CP IDPs are entirely composed of unmetamorphosed presolar dust. Conceivably, new minerals and textures may form in situ in nuclei of active comets as a function of their individual thermal history. Unmetamorphosed comet dust is probably structurally amorphous. Thermal annealing of this dust can produce ultra fine-grained minerals and this ultrafine grain size of CP IDPs should be considered in assessments of aqueous alterations that could affect presolar dust in comet nuclei between 200 and 400 K. Devitrification and hydration may occur in situ in ice-dust mixtures and the mantle of active comet nuclei. Devitrification, or uncontrolled crystallization, of amorphous precursor dust can produce a range of chemical compositions of ultrafine-grained minerals and (non-equilibrium) mineral assemblages and textures in dust contained in comet nuclei as a function of period and trajectory of orbit and number of perihelion passages (not considering internal heating). Thus, experimental data on relevant processes and reaction rates between 200 and 400 K are needed in order to evaluate comet selection, penetration depth for sampling device and curation of samples for CNSRM.
NASA Astrophysics Data System (ADS)
Marty, B.; Altwegg, K.; Balsiger, H. R.; Calmonte, U.; Hässig, M.; Le Roy, L.; Rubin, M.; Bieler, A. M.; Fuselier, S. A.; De Keyser, J. M.; Mousis, O.
2015-12-01
The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument suite is part of the payload of the European Space Agency's Rosetta spacecraft. Part of this suite, the Double Focusing Mass Spectrometer (DFMS) has been analyzing major (e.g., H2O,) as well as minor (CO, CO2, N2, NHx, noble gases) species and elements and some of their isotopes thanks to its high mass resolution of 3,000 at 1% peak height and its high sensitivity. In parallel to the presentation by Rubin et al. (this meeting) who discuss temporal variation of the coma composition as a function of heliospheric distance, we present here the on-going measurements done on the above species and isotopes. Besides temporal variability, one of the goals of ROSINA is to document the composition of cometary volatiles in the context of the formation of planets and of the origin of atmospheres. The first detection of a noble gas, Ar, in a cometary coma (Balsiger et al, in press), together with the measured D/H isotope ratio and carbon species, constrains the origin of the inner planet atmospheres and the terrestrial oceans. Assuming that 67P is representative of the cometary reservoir, major volatiles (H, C, N) of the inner planets are unlikely to have originated from comets, but a cometary origin for atmospheric noble gases is a viable hypothesis. However, these cometary measurements were done during a short interval of time (in autumn 2014) when the comet was at 3.5 AU from the Sun, which raises the question of how well they represent the bulk cometary composition. Further measurements of the bulk composition are planned close to the perihelion. Also of interest is the isotope composition of nitrogen in N-bearing compounds. Spectroscopic measurements of cometary HCN and NH2+ done so far indicate a two-fold enrichment in 15N, that needs to be confirmed by in-situ mass spectrometry. Measurements of other noble gases, in particular Xe (a very difficult measurement), may set stringent constraints on the nature (clathrate vs. amorphous) of cometary ice. Results from these measurements before and after the perihelion will be presented.
Pre- and Post-Perihelion Observations of C/2009 P1 (Garradd): Evidence for an Oxygen-Rich Heritage?
NASA Astrophysics Data System (ADS)
DiSanti, Michael A.; Villanueva, G. L.; Paganini, L.; Bonev, B. P.; Keane, J. V.; Meech, K. J.; Mumma, M. J.
2013-10-01
We present pre- and post-perihelion observations of Comet C/2009 P1 (Garradd), on UT 2011 October 13 (heliocentric distance Rh = 1.83 AU) and 2012 January 8 (Rh = 1.57 AU), respectively, using the high-resolution infrared spectrometer (NIRSPEC) on the Keck II 10-m telescope on Mauna Kea, HI. On October 13, we obtained production rates for nine primary volatiles (native ices): H2O, CO, CH3OH, CH4, C2H6, HCN, C2H2, H2CO, and NH3. On January 8, we obtained production rates for three of these (H2O, CH4, and HCN) and sensitive upper limits for three others (C2H2, H2CO, and NH3). CO was enriched and C2H2 was depleted, yet C2H6 and CH3OH were close to their current mean values as measured in a dominant group of Oort cloud comets. We compare the composition of Garradd with other CO-rich comets C/1999 T1 (McNaught-Hartley), C/1996 B2 (Hyakutake), and C/1995 O1 (Hale-Bopp), and with other comets in our database. We discuss possible implications regarding the processing history of its pre-cometary ices. Our measurements of C/2009 P1 indicate consistent pre- and post-perihelion abundance ratios for trace species relative to H2O, suggesting we were measuring a homogeneous composition to the depths sampled in the nucleus. The overall gas production was lower post-perihelion despite its smaller heliocentric distance on January 8. This is qualitatively consistent with other studies of C/2009 P1. On October 13, the water profile showed a pronounced excess towards the Sun-facing hemisphere that was not seen in other molecules nor in the dust continuum. Inter-comparison of profiles from October 13 permitted us to estimate the fraction of all H2O released in the coma and contained within our slit. We attribute this excess H2O to release from relatively pure, water-rich icy grains. Similar evidence for extended release was not observed on January 8 and this, together with its overall lower gas production post-perihelion, suggests loss of one or more active regions on the nucleus, perhaps resulting from depletion of volatiles and/or a seasonal change in pole orientation affecting the degree of insolation received locally on the nucleus.
New Observations of Comet Hale-Bopp from La Silla
NASA Astrophysics Data System (ADS)
1998-10-01
Methanol and Hydrogen Cyanide Detected at Record Distance Observations of famous Comet Hale-Bopp continue with the 15-m Swedish-ESO Submillimetre Telescope (SEST) at the La Silla Observatory. They show amazingly strong activity of this unusual object, also at the present, very large distance from the Sun. The radio observations document in detail the release of various molecules from the comet's icy nucleus. Of particular interest is the observed emission from methanol ( CH 3 OH ) and hydrogen cyanide ( HCN ) molecules, never before detected in any comet this far away. Comet Hale-Bopp still going strong Just over 18 months after its perihelion passage on April 1, 1997, Comet Hale-Bopp (official designation C/1995 O1 ) is continuing its outward journey through the Solar System. It is now about 1,000 million kilometres (6.7 AU) from the Sun and the Earth, i.e. almost at the same distance as when it was first discovered in July 1995. After having traversed the northern sky in 1996 and 1997, the comet passed the celestial equator in late June 1997 and is now seen in the southern constellation Volans (The Flying Fish), i.e. just east of the Large Magellanic Cloud. It can only be observed from southern latitudes. The comet's brightness has decreased by a factor of more than 10,000 since it was at its brightest in March 1997, just before perihelion. However, the magnitude is still around 9 - 10, or only about 20-40 times fainter than what can be seen with the unaided eye. Hale-Bopp is therefore visible in binoculars to southern observers as a fuzzy object with a diameter of a few arcminutes. New observations from La Silla Several telescopes at La Silla are following the evolution of the activity of Comet Hale-Bopp as it recedes from the Sun. In particular, the comet is observed monthly with SEST , a 15-m diameter submillimetre telescope operated jointly by the Onsala Space Observatory (OSO, Chalmers University of Technology, Gothenburg, Sweden) and ESO; it is the only telescope of its type in the southern hemisphere. Alternating each month, a Swedish team (headed by Anders Winnberg , OSO) and a European team (headed by Dominique Bockelée-Morvan , Observatoire de Paris) observe emission lines in the radio region of the spectrum from some of the molecules in the comet's coma (the cloud of gas and dust around the cometary "dirty-snowball" nucleus). These data are of great importance for understanding the mechanisms that are responsible for the outgassing (sublimation) of ices inside the nucleus of Comet Hale-Bopp. The observations began at SEST in September 1997 and constitute a follow-up programme of a long-term monitoring project at radio wavelengths that was started in August 1995 at the telescopes of the Institut de RadioAstronomie Millimétrique (IRAM) , the James Clerk Maxwell Telescope (JCMT) , the Caltech Submillimeter Observatory (CSO) and the Nançay radio telescope by several teams of astronomers in Europe and US [1]. Radio emission from nine molecules in the coma were studied: H 2 O (water; by means of observations of the radical OH ), CO (carbon monoxide), CH 3 OH (methanol), H 2 CO (formaldehyde), HCN (hydrogen cyanide), HNC (isomeric hydrogen cyanide), CH 3 CN (methyl cyanide), H 2 S (hydrogen sulphide) and CS (carbon sulphide). Detection of methanol and hydrogen cyanide at record distance ESO PR Photo 40a/98 ESO PR Photo 40a/98 [Preview - JPEG: 800 x 911 pix - 264k] [High-Res - JPEG: 3000 x 3415 pix - 1.6Mb] PR Photo 40a/98 displays a part of the radio spectrum with emission from CH 3 OH molecules in the coma of Comet Hale-Bopp, as observed with the 15-m SEST telescope at La Silla from August 16 to 19, 1998. Three lines of this molecule were detected at 145.0938, 145.0974 and 145.1032 GHz, respectively. The total integration (exposure) time is 708 min. The intensity is indicated in units of antenna temperature. Observations at SEST were performed in July and August 1998 by Emmanuel Lellouch (Observatoire de Paris) and Marcus Gunnarsson (Uppsala Astronomiska Observatorium, Sweden), respectively. Three molecules were still detected : carbon monoxide ( CO ) at 230 GHz, hydrogen cyanide ( HCN ) at 89 GHz and methanol ( CH 3 OH ) at 145 GHz. On August 11, when Hale-Bopp was just over 900 million km (6 AU) from the Sun, no less than 2.4 · 10 28 CO molecules were released by the comet per second, corresponding to 1100 kg per second. The measured production rates of HCN and CH 3 OH were about 200 and 20 times smaller, respectively. The observations of these two organic species at SEST constitute the most distant detections ever made in any comet. The sublimation of water, the main constituent of cometary ices, is responsible for cometary activity within 3-4 AU from the Sun. However, at larger distances, this process ceases, due to the low temperature of the nucleus. At the present large distance from the Sun, the CO molecule is now the prime source of activity of Hale-Bopp. When Comet Hale-Bopp was approaching the Sun before perihelion passage in 1997, the long-term monitoring programmes - in the radio wavelength region as well as in other spectral domains - clearly showed the transition from a CO - to a water-dominated coma, at about the time the comet came within 3-4 AU from the Sun. The CO -production rate now measured at SEST at 6 AU on the outward leg is about 100 times less than that at perihelion, and close to the value measured at the same distance from the Sun before perihelion. While CO was first detected in Hale-Bopp in September 1995 at 6.8 AU from the Sun, only a few weeks after the discovery, HCN and CH 3 OH were not detected until a few months later, when the comet had approached to within 4.8-4.9 AU. It is likely that the convincing detection of these two molecules in August 1998 (cf., e.g., PR Photo 40a/98 ) benefitted from an outburst (a sudden release of material from the nucleus) on August 15-19. Some other species were observed at SEST out to a distance of 3-4 AU ( H 2 S, CS, H 2 CO ), but they are no longer easily detectable due to low production rates and the SEST sensitivity limit. New data may provide a "look into the nucleus" ESO PR Photo 40b/98 ESO PR Photo 40b/98 [Preview - JPEG: 800 x 1062 pix - 357k] [High-Res - JPEG: 3000 x 3981 pix - 2.1Mb] PR Photo 40b/98 displays Hale-Bopp gas production curves (quantity of released gas as a function of heliocentric distance) from radio observations at the IRAM, JCMT, CSO, SEST and Nançay telescopes. Pre-perihelion data are shown on the left, post-perihelion data on the right. Adapted from a figure prepared by Nicolas Biver [2]. Comet Hale-Bopp provided the first opportunity in modern times to follow the activity of a comet over a very large range of heliocentric distances, cf. PR Photo 40b/98 . The new data trace the gas release in some detail as the temperature and insolation change when the comet moves along its orbit. They show similarities and differences between individual molecules that in turn contain useful information about the physical state of cometary ices in the nucleus and its internal structure. Some of the current key questions in this research field are concerned with the degree of separation of different ices ("chemical differentiation") in the upper layers of the nucleus, the form under which these ices co-exist and, not least, the still not understood production mechanisms at large heliocentric distances. These new observations will provide very valuable support to the theoretical studies of the cometary nucleus, now being undertaken by several research groups around the world. The new observations of molecular lines in the radio spectral region also provide information about the temperature in the coma, if several lines of the same species are observed. Moreover, they serve to measure the expansion velocity of the gas and the outgassing pattern of the nucleus. For instance, the observations of CH 3 OH in August 1998 show that the coma is now very cold at about 16 K (-257 o C). At perihelion (0.9 AU from the Sun), the corresponding temperature was of the order of 110 K (-163 o C). The expansion velocity has also considerably decreased since perihelion, from 1.1 km/sec to 0.5 km/sec. There is also evidence of anisotropic outgassing : more gas is seen to be flowing out from the sunlit hemisphere of the nucleus. Observations continue The monitoring of Comet Hale-Bopp at the SEST telescope will continue, at least until March 1999. The comet will then be nearly 1,200 million km (7.9 AU) from the Sun. ESO PR Photo 40c/98 ESO PR Photo 40c/98 [Preview - JPEG: 800 x 933 pix - 432k] [High-Res - JPEG: 3000 x 3498 pix - 2.5Mb] PR Photo 40c/98 shows Comet Hale-Bopp, as imaged on October 19, 1998, in visible light and with the DFOSC instrument at the Danish 1.5-m telescope on La Silla. At this time, the comet was about 1,000 million kilometer (6.7 AU) from the Earth and the Sun. Although well beyond Jupiter's orbit, it is very obvious that strong nucleus activity is still present - the large coma extends well beyond the field of view (200 x 200 arcsec or about 1 million km at the distance of the comet). The image mostly depicts cometary dust that reflects the sunlight. The coma is very asymmetric with more material in the northern hemisphere (above). There are also some jets embedded in the coma which indicate that some of the dust is emitted from active regions on the surface of the nucleus. The background stars are slightly elongated since the telescope followed the motion of the comet in the sky during the exposure. Technical information : 5-min exposure through a broadband V-filtre. North is up, East is left. Observers: Kirsten Kraiberg Knudsen (Copenhagen University, Denmark) and Hermann Boehnhardt (ESO/Chile) Observations are also made from time to time with other telescopes at La Silla. As an example, Photo 40c/98 was obtained a few days ago with the Danish 1.5-m telescope. It shows that a very complex coma structure is still present. Due to the large size of the nucleus, probably 40 - 60 km in diameter, it will be possible to observe this comet with large optical telescopes for many years to come. Information about Hale-Bopp on the web Additional information about Comet Hale-Bopp is available on the web at many sites. Some of the most comprehensive websites may be accessed via the ESO Hale-Bopp site. Notes: [1] Other scientists involved in the long-term radio monitoring of Comet Hale-Bopp are Nicolas Biver (Institute for Astronomy, University of Hawaii, USA), Pierre Colom, Jacques Crovisier, Eric Gérard, Benoit Germain, Emmanuel Lellouch (Observatoire de Paris, France), Didier Despois (Observatoire de Bordeaux, France), Gabriel Paubert (IRAM, Granada, Spain), Raphael Moreno, Joern E. Wink (IRAM, Grenoble, France), John K. Davies (JAC, Hawaii, USA), William R.F. Dent (Royal Observatory, Edinburgh, UK), Hans Rickman, Marcus Gunnarsson (Uppsala Astronomiska Observatorium, Sweden), Per Bergman, Lars E.B. Johansson (OSO, Sweden), Fredrik Rantakyroe (SEST, La Silla), Darek C. Lis, David Mehringer, Dominic Benford, Martin Gardner, Tom G. Phillips (CSO, USA), Heike Rauer (DLR, Berlin, Germany). [2] The figure appears in N. Biver et al. : "Long-term Monitoring of the Outgassing of C/1995 O1 (Hale-Bopp) at Radio Wavelengths", a poster paper presented at the DPS meeting on October 11-16, 1998 (Madison, Wisconsin, USA) and to be published in Vol. 30 of the Bulletin of the American Astronomical Society . How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.
NASA Astrophysics Data System (ADS)
Festou, M. C.; Feldman, P. D.
Observations of comets obtained with the IUE satellite since its launch in 1978 are reviewed. The status of UV observation of comets prior to IUE is discussed, and particular attention is given to low-resolution UV spectroscopy of cometary comae, the detection of new species in the UV emission, high-dispersion spectroscopy, spatial mapping of the emissions, abundance determinations, and short-term variability. Diagrams, graphs, sample spectra, and tables of numerical data are provided.
The nature of cometary materials
NASA Technical Reports Server (NTRS)
Stephens, James
1989-01-01
Because cometary surfaces are likely to be far colder and of a different composition than planetary surfaces, there are some new considerations that must be examined in regards to placing instrumented packages or sample return devices on their surfaces. The qualitative analysis of the problem of attaching hardware to a comet and not being ejected back into space can be divided into two parts. The first problem is to pierce the mantle and obtain access to the icy core. Drilling through the mantle requires that the drilling forces be reacted. Reacting such forces probably requires attachment to the icy core below. Therefore, some kinetic impact piercing device is likely to be required as the first act of attachment. The second problem for a piercing device to overcome is the force produced by the impact kinetic energy that tries to eject the piercing device back into space. The mantle and icy core can absorb some of the impact kinetic energy in the form of fracture formation and friction energy. The energy that is not absorbed in these two ways is stored by the core as elastic deformation of the mantle and icy core. It is concluded that because the cometary materials are almost certainly brittle and the icy core is likely to be self lubricating, the elastic rebound and gas pressure expulsion forces must be counteracted by forces greater than those that may be provided by a piercing device or its capture devices (barbs).
NASA Technical Reports Server (NTRS)
Radeva, Yana L.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; DiSanti, Michael A.; A'Hearn, Michael F.; Dello Russo, Neil
2013-01-01
We present high-resolution infrared spectroscopic measurements of the ecliptic comet 2P/Encke, observed on 4-6 Nov. 2003 during its close approach to the Earth, using the Near Infrared Echelle Spectrograph on the Keck II telescope. We present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO. Comet 2P/Encke is a dynamical end-member among comets because of its short period of 3.3 years. Relative to "organics-normal" comets, we determined that 2PlEncke is depleted in HCN, H2CO, C2H2, C2H6, CH4 and CO, but it is enriched in CH3OH. We compared mixing ratios of these organic species measured on separate dates, and we see no evidence of macroscopic chemical heterogeneity in the nucleus of 2P/Encke, however, this conclusion is limited by sparse temporal sampling. The depleted abundances of most measured species suggest that 2P/Encke may have formed closer to the young Sun, before its insertion to the Kuiper belt, compared with "organics-normal" comets - as was previously suggested for other depleted comets (e.g. C/1999 S4 (LINEAR)). We measured very low rotational temperatures of 20 - 30 K for H2O, CH3OH and HCN in the near nucleus region of 2P/Encke, which correlate with one of the lowest cometary gas production rates (approx. 2.6 x 10(exp 27) molecules/s) measured thus far in the infrared. This suggests that we are seeing the effects of more efficient radiative cooling, insufficient collisional excitation, and/or inefficient heating by fast H-atoms (and icy grains) in the observed region of the coma. Its extremely short orbital period, very low gas production rate, and classification as an ecliptic comet, make 2PlEncke an important addition to our growing database, and contribute significantly to the establishment of a chemical taxonomy of comets.
Analyses of Cometary Silicate Crystals: DDA Spectral Modeling of Forsterite
NASA Technical Reports Server (NTRS)
Wooden, Diane
2012-01-01
Comets are the Solar System's deep freezers of gases, ices, and particulates that were present in the outer protoplanetary disk. Where comet nuclei accreted was so cold that CO ice (approximately 50K) and other supervolatile ices like ethane (C2H2) were preserved. However, comets also accreted high temperature minerals: silicate crystals that either condensed (greater than or equal to 1400 K) or that were annealed from amorphous (glassy) silicates (greater than 850-1000 K). By their rarity in the interstellar medium, cometary crystalline silicates are thought to be grains that formed in the inner disk and were then radially transported out to the cold and ice-rich regimes near Neptune. The questions that comets can potentially address are: How fast, how far, and over what duration were crystals that formed in the inner disk transported out to the comet-forming region(s)? In comets, the mass fractions of silicates that are crystalline, f_cryst, translate to benchmarks for protoplanetary disk radial transport models. The infamous comet Hale-Bopp has crystalline fractions of over 55%. The values for cometary crystalline mass fractions, however, are derived assuming that the mineralogy assessed for the submicron to micron-sized portion of the size distribution represents the compositional makeup of all larger grains in the coma. Models for fitting cometary SEDs make this assumption because models can only fit the observed features with submicron to micron-sized discrete crystals. On the other hand, larger (0.1-100 micrometer radii) porous grains composed of amorphous silicates and amorphous carbon can be easily computed with mixed medium theory wherein vacuum mixed into a spherical particle mimics a porous aggregate. If crystalline silicates are mixed in, the models completely fail to match the observations. Moreover, models for a size distribution of discrete crystalline forsterite grains commonly employs the CDE computational method for ellipsoidal platelets (c:a:b=8.14x8.14xl in shape with geometrical factors of x:y:z=1:1:10, Fabian et al. 2001; Harker et al. 2007). Alternatively, models for forsterite employ statistical methods like the Distribution of Hollow Spheres (Min et al. 2008; Oliveira et al. 2011) or Gaussian Random Spheres (GRS) or RGF (Gielen et al. 200S). Pancakes, hollow spheres, or GRS shapes similar to wheat sheaf crystal habit (e.g., Volten et al. 2001; Veihelmann et al. 2006), however, do not have the sharp edges, flat faces, and vertices seen in images of cometary crystals in interplanetary dust particles (IDPs) or in Stardust samples. Cometary forsterite crystals often have equant or tabular crystal habit (J. Bradley). To simulate cometary crystals, we have computed absorption efficiencies of forsterite using the Discrete Dipole Approximation (DDA) DDSCAT code on NAS supercomputers. We compute thermal models that employ a size distribution of discrete irregularly shaped forsterite crystals (nonspherical shapes with faces and vertices) to explore how crystal shape affects the shape and wavelength positions of the forsterite spectral features and to explore whether cometary crystal shapes support either condensation or annealing scenarios (Lindsay et al. 2012a, b). We find forsterite crystal shapes that best-fit comet Hale-Bopp are tetrahedron, bricks or brick platelets, essentially equant or tabular (Lindsay et al. 2012a,b), commensurate with high temperature condensation experiments (Kobatake et al. 2008). We also have computed porous aggregates with crystal monomers and find that the crystal resonances are amplified. i.e., the crystalline fraction is lower in the aggregate than is derived by fitting a linear mix of spectral features from discrete subcomponents, and the crystal resonances 'appear' to be from larger crystals (Wooden et al. 2012). These results may indicate that the crystalline mass fraction in comets with comae dominated by aggregates may be lower than deduced by popular methods that only emoy ensembles of discrete crystals.
Cometary science after Rosetta
Knight, Matthew M.; Fitzsimmons, Alan
2017-01-01
The European Space Agency’s Rosetta mission ended operations on 30 September 2016 having spent over 2 years in close proximity to its target comet, 67P/Churyumov–Gerasimenko. Shortly before this, in summer 2016, a discussion meeting was held to examine how the results of the mission could be framed in terms of cometary and solar system science in general. This paper provides a brief history of the Rosetta mission, and gives an overview of the meeting and the contents of this associated special issue. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554982
NASA Astrophysics Data System (ADS)
Walker, Theodore, Jr.
2012-06-01
In contrast to the Copernican revolution in astro-geometry, the Hoyle-Wickramasinghe contribution to the recent and continuing revolution in astrobiology - "cometary panspermia" - features astronomy and biology converging toward theology. They employed astro-biotic reasoning (often labeled "anthropic" reasoning) to demonstrate that life is made possible by the deliberate controlling influence of the living all-embracing "intelligent universe." This is consistent with panentheism [pan-en-theos-ism, not pantheism]. As advanced by Hoyle and Wickramasinghe, cometary panspermia is panentheistic. Also, neoclassical panentheism requires generic panspermia, and favors cometary panspermia.
Evaluating some computer exhancement algorithms that improve the visibility of cometary morphology
NASA Technical Reports Server (NTRS)
Larson, Stephen M.; Slaughter, Charles D.
1992-01-01
Digital enhancement of cometary images is a necessary tool in studying cometary morphology. Many image processing algorithms, some developed specifically for comets, have been used to enhance the subtle, low contrast coma and tail features. We compare some of the most commonly used algorithms on two different images to evaluate their strong and weak points, and conclude that there currently exists no single 'ideal' algorithm, although the radial gradient spatial filter gives the best overall result. This comparison should aid users in selecting the best algorithm to enhance particular features of interest.
The pick-up of cometary protons by the solar wind
NASA Technical Reports Server (NTRS)
Neugebauer, M.; Goldstein, B. E.; Goldstein, R.; Lazarus, A. J.; Altwegg, K.; Balsiger, H.
1987-01-01
The HERS detector of the Ion Mass Spectrometer on the Giotto spacecraft measured the 3-dimensional distribution of picked-up cometary protons over a distance of about 8 million km upstream of the bow shock of comet P/Hally. The protons were observed to be elastically scattered out of their original cycloidal trajectories such that they were nonuniformly distributed over a spherical shell in velocity space. The shell radius (relative to its expected radius) and thickness increased as the bow shock was approached. Down-stream of the shock, the cometary protons could not be distinguished from the heated solar wind protons.
NASA Technical Reports Server (NTRS)
Clemett, Simon J.; McKay, David S.
2005-01-01
The STARDUST sample return capsule is anticipated to provide 500-1000 cometary particles 15 m in size. These were collected during the 340 km flyby of Comet P/Wild-2 and impacted the aerogel collection medium at a relative velocity of approx. 6.1 /kms. Hypervelocity impact studies suggest that some fraction of the original organic inventory of collected particles ought to remain intact, although there is likely to be a significant amount of devolatilization and disassociation of the lower mass organic fraction.
Structure and Formation of Comets: Updates from Post-Rosetta Solid Fraction Analyses
NASA Astrophysics Data System (ADS)
Levasseur-Regourd, A. C.; Bentley, M. S.; Kofman, W. W.; Brouet, Y.; Ciarletti, V.; Hadamcik, E.; Herique, A.; Lasue, J.; Mannel, T.; Schmied, R.
2016-12-01
The combination of investigations of 67P/C-G by Rosetta, theoretical and experimental studies, and remote observations allowed unprecedented insight into the structure and formation of comets. Rosetta mission has provided ground-truth for the low-density and high porosity of the nucleus, without heterogeneities larger than a few meters in its small lobe [1,2]. Further studies related to CONSERT experiment now suggest that the porosity increases inside the nucleus [3,4]. Rosetta has also provided ground-truth for the aggregated structure of dust particles within a wide range of sizes in the inner coma [e.g. 5-7]. Such discoveries confirm previous interpretations of remote observations of solar light scattered by dust in cometary comae. Differences in structure between the two parts of the nucleus, strongly suspected from previous high-resolution images of the surface [8] and possibly suggested from some remote observations in fragmenting sub-nuclei [9], might be pointed out from data obtained shortly before Rosetta controlled descent in September 2016. Further analyses by MIDAS of dust particles morphology at submicron-sizes [7,10], as well as compilations of remote observations of solar light scattered by 67P/C-G [11], are presently taking place. We will discuss how such results could lead to a better understanding of dust growth processes during the formation, specifically of 67P/C-G, and more generally, thanks to the link now provided between structural properties of dust and remote polarimetric observations, of comet's nuclei in the early Solar System. References. 1 Kofman et al. Science 2015. 2 Pätzold et al. Nature 2016. 3 Ciarletti et al. A&A 2015. 4 Brouet et al. MNRAS 2016 (under revision). 5. Rotundi et al. Science 2015. 6 Langevin et al. Icarus 2016. 7 Bentley et al. Nature 2016. 8 Massironi et al. Nature 2016. 9 Hadamcik et al. A&A 2016. 10. Mannel et al. Leiden symposium 2016. 11 Hadamcik et al. Leiden symposium 2016.
NASA Astrophysics Data System (ADS)
Lethuillier, A.; Le Gall, A. A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.
2014-12-01
Within Philae, the lander of the Rosetta spacecraft, the Permittivity Probe (PP) experiment as part of the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME) package was designed to measure the low frequency (Hz-kHz) electrical properties of the close subsurface of the nucleus.At frequencies below 10 kHz, the electrical signature of the matter is especially sensitive to the presence of water ice and its temperature. PP-SESAME will thus allow to determine the water ice content in the near-surface and to monitor its diurnal and orbital variations thus providing essential insight on the activity and evolution of the cometary nucleus.The PP-SESAME instrument is derived from the quadrupole array technique. A sinusoidal electrical current is sent into the ground through a first dipole, and the induced electrical voltage is measured with a second dipole. The complex permittivity of the material is inferred from the mutual impedance derived from the measurements. In practice, the influence of both the electronic circuit of the instrument and the conducting elements in its close environment must be accounted for in order to best estimate the dielectric constant and electric conductivity of the ground. To do this we have developed a method called the "capacity-influence matrix method".A replica of the instrument was recently built in LATMOS (France) and was tested in the frame of a field campaign in the giant ice cave system of Dachstein, Austria. In the caves, the ground is covered with a thick layer of ice, which temperature is rather constant throughout the year. This measurement campaign allowed us to test the "capacity influence matrix method" in a natural icy environment.The first measurements of the PP-SESAME/Philae experiment should be available in mid-November. In this paper we will present the "capacity-influence matrix method", the measurements and results from the Austrian field campaign and the preliminary analysis of the PP-SESAME/Philae data.
NASA Astrophysics Data System (ADS)
Brouet, Y.; Levasseur-Regourd, A. C.; Encrenaz, P.; Gheudin, M.; Ciarletti, V.; Gulkis, S.; Jambon, A.; Ruffié, G.; Prigent, C.
2012-04-01
The European Rosetta spacecraft (s/c), launched in 2004, will be the first s/c to orbit a comet and place a lander module on its surface. In 2014, the s/c will rendezvous with the comet 67P/Churyumov-Gerasimenko and place the lander on its surface thereby allowing in situ and remote sensing of the comet nucleus. Two radio experiments, one passive (MIRO [1]) and one active (CONSERT [2]), are aboard the Rosetta s/c. MIRO, composed of two radiometers, with center band frequencies at 190 GHz and at 563 GHz to determine the brightness temperatures of the target surfaces and sub-surfaces, has already observed asteroids (2867) Steins [3] and (21) Lutetia [4]. CONSERT will investigate the deep interior of the nucleus using 90 MHz radio-waves transmitted from the orbiter through the nucleus and returned to the orbiter from the lander. To support interpretations of MIRO and CONSERT observations, a program of dielectric properties measurements is under development on a large range of frequencies encompassing those of the above-mentioned experiments. Several instruments for dielectric constant determination are available at IMS laboratory (Bordeaux, France): impedance analyzer, coaxial sensor, resonant cavities (measuring respectively at 100 MHz, 0.5-6 GHz, 1.2-13.4 GHz). Millimeter benches are available at both IMS and LERMA laboratories (measuring respectively at 30-110 GHz and 70-230 GHz). Taking into account the possible presence of regolith layers on the surface of asteroids or nuclei and the very low density of cometary nuclei [5], the dependence of the dielectric constant on the structure and porosity of given granular materials needs also to be investigated (while the thermal and hygrometric conditions are carefully monitored). We have already reported measurements obtained on various meteorites, possibly representative of some asteroid surfaces [6, 7]. We will also report systematic measurements obtained on a large sample of pyroclastic deposits from Etna, providing different sizes distributions (i.e. surface to volume ratios), and possibly porosities. Dielectric constant determination at 190 GHz typically suggests that the real part of dielectric constant slowly increases with grain size: 2.86 ± 0.06, 2.96 ± 0.02 and 3.13 ± 0.05 for sizes respectively lower than 50 µm, between 50 and 160 µm and between 160 and 355 µm. Additional series of measurements on compact and granular samples of meteoritic analogues, such as carbonaceous chondrites are also to take place. [1] Gulkis et al. , Space Sci. Rev., 128, 561-597, 2007. [2] Kofman et al. , Space Sci. Rev., 128, 413-432, 2007. [3] Gulkis et al. , Space. Sci. Rev., 58, 1077-1087, 2010. [4] Gulkis et al. , Space. Sci. Rev., doi: 10.1016/j.pss.2011.12.004, 2011. [5] Levasseur-Regourd et al. , Planet. Space Sci., 57, 221-228, 2009. [6] McFadden et al., 40th LPSC, 2887, 2009. [7] Brouet el al. , EPSC-DPS Joint Meeting, p. 1083, 2011.
NASA Astrophysics Data System (ADS)
Meinert, C.; Jones, N. C.; Hoffmann, S. V.; Nahon, L.; d'Hendecourt, L.; Meierhenrich, U. J.
2017-07-01
Simulated cometary ice experiments have indicated that circularly polarised light could be the initial source of life's handedness. We detected chiral sugars, amino acids and their molecular precursors within these interstellar achiral ice analogues.
Physical characteristics of cometary dust from dynamical studies - A review
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1980-01-01
Progress made in the determination of the physical characteristics of cometary dust particles from studies of dust tail dynamics is reviewed. Applications of the combined dynamical photometric approach of Finson and Probstein (1968) to studies of cometary tails exhibiting continuous light intensity variations are discussed, with attention given to determinations of the particle-size-related distribution function of the solar radiation pressure exerted on the particles, the contribution of comets to the interplanetary dust, calculations of dust ejection rates and a Monte Carlo approach to the analysis of dust tails. Investigations of dust streamers and striae, which are believed to be related to comet outbursts entailing brief but sharp enhancements of dust production, are then reviewed, with particular attention given to observations of Comet West 1976 VI. Finally, the question of cometary particle type is addressed, and it is pointed out that the presence of submicron absorbing particles in the striae of Comet West is not incompatible with the presence of micron-size dielectric particles in the inner coma.
The Giotto radio-science experiment
NASA Technical Reports Server (NTRS)
Edenhofer, P.; Bird, M. K.; Buschert, H.; Esposito, P. B.; Porsche, H.; Volland, H.
1986-01-01
The scientific objectives of the Giotto Radio Science Experiment (GRE) are to determine the columnar electron content of Comet Halley/s ionosphere and the cometary mass fluence from atmospheric drag by using the radio signals from Giotto during the Halley encounter. The radio science data (S and X-band Doppler and range measurements) will be collected at NASA/s deep-space 64 m tracking antenna at Tidbinbilla near Canberra, in Australia. In order to separate the effects of the terrestrial ionosphere and the interplanetary plasma, S-band Doppler measurements will also be taken at Tidbinbilla along the line-of-sight of Japan/s cometary probe Sakigake during the Giotto-Halley Encounter. The measurements of cometary electron content and mass fluence will be inverted to derive the spatial distribution of the electron and mass (dust and gas) density within Halley/s coma. The GRE is the only experiment on Giotto capable of measuring the low-energy (10 eV) electron bulk population of Halley/s ionosphere and the total cometary mass flow impacting upon the spacecraft.
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Lindstrom, David J.; Lindstrom, Richard M.; Lindstrom, M. M.
1989-01-01
Today the major elemental composition of interplanetary dust particles (IDPs) is routinely determined in many laboratories. These and mineralogical studies have revealed the presence of at least two major types of IDPs, chondritic and refractory. Preliminary results of a successful attempt to determine abundances of a large suite of trace elements from both chondritic and refractory IDPs are reported. The analytical procedure can be used in the grain-by-grain analysis of returned cometary samples. Chondritic and refractory IDPs are characterized by standard scanning electron microscopy and energy dispersive x ray spectroscopy (SEM-EDX) techniques. With this system, detection limits for many elements are well below picogram levels, and some approach femtogram levels. This technique is non-destructive, although some sample handling is required, so particles can be analyzed by other techniques after instrument neutron activation analysis (INAA) is completed. Data is presently being reduced from the analyses of 7 IDPs. These are U2015E10, U2015F1, W7029-A2, W7029-A3, W7013A8, LACl (all chondritic) and 705 (refractory). So far, 17 different major and trace elements were detected and measured in these particles, including rare earths and some very volatile elements (Br and Zn).
Clathrate hydrates in cometary nuclei and porosity
NASA Technical Reports Server (NTRS)
Smoluchowski, R.
1988-01-01
Possible mechanisms of formation and decomposition of CO2-clathrate hydrate in cometary nuclei are discussed. As far as it is known, this is the only clathrate hydrate which is unstable at low temperatures. Calculation shows that, in accord with other evidence, neither volume nor grain boundary diffusion in the clathrate lattice can be responsible for the rate of these reactions and that a surface mechanism with the attendant sensitivity to pressure must play a crucial role. Density changes accompanying CO2-clathrate decomposition and formation can lead to microporosity and enhanced brittleness or even to fracture of cometary nuclei at low temperatures. Other clathrate hydrates and mixed clathrates are also discussed.
Cometary atmospheres: Modeling the spatial distribution of observed neutral radicals
NASA Technical Reports Server (NTRS)
Combi, M. R.
1986-01-01
New data for the spatial distribution of cometary C2 are presented. A recompilation of the Haser scale lengths for C2 and CN resolves the previously held anomalous drop of the C2/CN ratio for heliocentric distances larger than 1 AU. Clues to the source of cometary C2 have been found through fitting the sunward-antisunward brightness profiles with the Monte Carlo particle-trajectory model. A source (parent) lifetime of 3.1 x 10,000 seconds is found, and an ejection speed for C2 radicals upon dissociation of the parent(s) of approx. 0.5 km 1/5 is calculated.
NASA Astrophysics Data System (ADS)
Jockers, K.; Szutowicz, S.; Villanueva, G.; Bonev, T.; Hartogh, P.
2011-09-01
Axisymmetric models of the outgassing of a cometary nucleus have been constructed. Such models can be used to describe a nucleus with a single active region. The models may include a solar zenith angle dependence of the outgassing. They retrieve the outgassing flux at distances from the nucleus where collisions between molecules are unimportant, as function of the angle with respect to the outgassing axis. The observed emissions must be optically thin. Furthermore the models assume that the outflow speed at large distance from the nucleus does not depend on direction. The value of the outflow speed is retrieved. The models are applied to CN images and HCN spectra of Comet 2P/Encke, obtained nearly simultaneously in November 2003 with the 2 m optical telescope on Mount Rozhen, Bulgaria, and with the 10 m Heinrich Hertz Submillimeter Telescope on Mount Graham, Arizona, USA. According to Sekanina (1988), Astron. J. 95, 911-924, at that time a single outgassing source was active. Input parameters to the models like the rotation period of the nucleus and a small correction to Sekanina's rotation axis are determined from a simpler jet position angle model. The rotation is prograde with a sideric period of 11.056 ± 0.024 h, in agreement with literature values. The best fit model has an outflow speed of 0.95 ± 0.04 km s -1. The same value has been derived from the corkscrew appearing in the CN images. The location of the outgassing axis is at colatitude δa = 7.4° ± 2.9° and longitude λa = 235° ± 17° (a definition of zero longitude is provided). Comet Encke's outgassing corresponds approximately to the longitudinally averaged solar input on a spherical nucleus (i.e. very likely comes from deeper layers) but with some deficiency of outgassing at mid-latitudes and non-zero outgassing from the dark polar cap. The presence of gas flow from the dark polar cap is explained as evidence of gas flow across the terminator. The models rely mostly on the CN images. The HCN spectra are more noisy. They provide information how to determine the best fit outflow velocity and the sense of rotation. The model HCN spectra are distinctly non-Gaussian. Within error limits they are consistent with the observations. Models based solely on the HCN spectra are also presented but, because of the lower quality of the data and the unfavorable observing geometry, yield inferior results. As a by-product we determine the CN parent life time from our CN observations. The solar EUV and Ly α radiation field at the time of our observations is taken into account.
Asteroids, Comets, Meteors 1991
NASA Technical Reports Server (NTRS)
Harris, Alan W. (Editor); Bowell, Edward (Editor)
1992-01-01
Papers from the conference are presented and cover the following topics with respect to asteroids, comets, and/or meteors: interplanetary dust, cometary atmospheres, atmospheric composition, comet tails, astronomical photometry, chemical composition, meteoroid showers, cometary nuclei, orbital resonance, orbital mechanics, emission spectra, radio astronomy, astronomical spectroscopy, photodissociation, micrometeoroids, cosmochemistry, and interstellar chemistry.
Early Activity of Cometary Species from ROSINA/DFMS at 67P/ Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Hässig, Myrtha; Fuselier, Stephen A.; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Bieler, André; Calmonte, Ursina; Dhooghe, Frederik; Fiethe, Björn; Gasc, Sébastien; Gombosi, Tamas I.; Jäckel, Annette; Korth, Axel; Le Roy, Léna; Rème, Henri; Rubin, Martin; Tzou, Chia-Yu; Wurz, Peter
2014-11-01
The European Space Agency’s Rosetta spacecraft arrived after a journey of more than 10 years at comet 67P/Churyumov-Gerasimenko. ROSINA is an instrument package on board Rosetta. It consists of two mass spectrometers and a COmetary Pressure Sensor (COPS). The two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron Time of Flight (RTOF) complement each other with high mass resolution (e.g to resolve 13C from CH), high dynamic range (to detect low abundant isotopes and species), high mass range (to detect organics), and high time resolution. ROSINA is designed to measure the neutral gas and plasma composition in the coma of 67P/Churyumov-Gerasimenko in addition to the physical properties of the neutral component of the coma. For the first time, a comet can be observed in situ from its early activity towards and after perihelion. Little is known about what drives initial cometary activity very far from the Sun. Remote sensing observations to date are highly constrained to a limited number of a few bright comets (e.g. Hale-Bopp) and a limited number of species. Rosetta provides the first measurements of the early activity of a comet in situ and detected the first cometary molecules early August. We will focus on early activity of cometary species from the high resolution mass spectrometer ROSINA/DFMS.
Obituary: Fred Lawrence Whipple, 1906-2004
NASA Astrophysics Data System (ADS)
Yeomans, Donald Keith
2004-12-01
Fred Whipple, one of the founding fathers of planetary science, died on August 30, 2004 just two months shy of his 98th birthday. The breadth of Fred's published research from 1927 through 2000 is quite extraordinary. Although his collected works were published in two massive volumes in 1972, shortly before his retirement, Fred's research contributions continued for another three decades - and another volume is planned. Fred Lawrence Whipple was born on November 5, 1906 on a farm in Red Oak Iowa. His parents were Harry Lawrence and Celestia (MacFarl) Whipple. At the age of fifteen, the Whipple family moved to California where Fred studied mathematics at Occidental College and the University of California at Los Angeles. As a graduate student at the University of California at Berkeley in 1930, he was one of the first to compute an orbit for the newly discovered planet Pluto. Upon receiving his PhD in 1931, he joined the staff of the Harvard College Observatory. He was Chairman of the Harvard Department of Astronomy (1949 - 1956), Director or the Smithsonian Astrophysical Observatory (1955 - 1973), Phillips Professor of Astronomy (1968 - 1977) and Emeritus Phillips Professor of astronomy (1977 - 2004). In 1928 he married Dorothy Woods and their son, Earle Raymond, survives him. The marriage ended in divorce in 1935. Eleven years later, he married Babette F. Samelson and she too survives him, as do their two daughters Laura and (Dorothy) Sandra. Shortly after arriving at Harvard in the early 1930's, Fred developed a photographic tracking network to determine meteor trajectories from simultaneous observations from two or more stations. The photographic trails, chopped by a rotating shutter, allowed their orbits in space to be determined accurately. With the strong involvement of Richard McCrosky and others, he concluded in the early 1960's that most of these meteors were on comet-like orbits and less than 1% of the naked eye, sporadic meteors could be traced to an origin outside the solar system. To fill the daytime gap when meteors could not be photographed, Fred organized a program for the radio detection of these objects. With the launch of Sputnik in October 1957, Whipple's visual network of amateur astronomers (Moon watch) was already in place to follow its progress and later on he developed an optical tracking system for meteors and artificial satellites using wide field, Baker-Nunn cameras. This latter system proved so successful that the precision tracking of these satellites could be used to model the Earth's shape and density variations from the observed gravitational effects upon these satellite orbits. He once noted that the highlight of his career was having his family and parents present at the White House while he received the President's Award for Distinguished Public Service from John F. Kennedy for this work. His seminal works in 1950-51 on the icy conglomerate model for the cometary nucleus prompted a complete paradigm switch. Until then, the current consensus model for a comet was a flying cloud of particles; it had been so since the second half of the nineteenth century when comets were identified with meteor showers. He envisaged the cometary nucleus as a conglomerate of ices (mostly water, ammonia, methane, carbon dioxide and carbon monoxide ices) embedded within, and covered over with, a nonvolatile matrix of meteoric material. Part of his rationale for developing this "dirty snowball" model for the cometary nucleus was to provide an explanation of the so-called nongravitational forces acting upon comets. The rocket-like thrusting of a comet when the ices vaporize near the sun introduced a small, but noticeable, thrust on the comet itself and when this effect was properly modeled, the motions of active comets could be predicted far more accurately. Subsequent spacecraft ultraviolet observations showing enormous cometary hydrogen atmospheres confirmed that the major cometary ice was likely to be water. The 1986 Giotto spacecraft images, revealing a solid cometary nucleus (albeit far blacker than most had predicted), were a dramatic confirmation of Whipple's model -- though in truth few really expected otherwise at the time. In 1942-1946, he led an effort to develop and implement strips of reflective aluminum (i.e., chaff) to confuse enemy radars in World War II. In 1948, he received a certificate of merit for this work from President Harry S. Truman. Eleven years before the launch of the first artificial satellite in 1957, he developed what is now generally termed the Whipple Shield; a thin outer metallic layer stands out from a spacecraft and protects it from high-speed interplanetary dust particles. While particles hitting this outside thin layer would penetrate, they would also vaporize, and in so doing, the resultant debris would disperse and lack the energy to penetrate the main spacecraft skin. This design was used to successfully protect the Stardust spacecraft from cometary dust particles when the spacecraft flew rapidly past comet Tempel 1 in January 2004. He also made significant contributions to fields as diverse as meteor astronomy, satellite tracking, variable stars, supernovae, stellar evolution, astronomical instrumentation and radio astronomy. Along with his colleagues Willy Ley, Wernher von Braun and others, Fred wrote and consulted for a series of very popular articles in Collier's magazine in the early 1950's and these articles, along with earlier lectures at New York's Hayden Planetarium, helped spark the U.S. involvement in space exploration. Of these early beginnings of space exploration, Fred wrote in 1972 "it was no easy task to convince people that man could really go into empty space beyond the Earth's atmosphere, and even beyond the Earth's tenacious gravitational grasp. On looking back over these years, I am still surprised that we succeeded in convincing them." Fred was responsible for initiating the Smithsonian Astrophysical Observatory's observatory on Mt. Hopkins near Tucson Arizona and he was active in the design of the multi-mirror telescope that was in operation until 1999, when a 6.5-meter single mirror telescope replaced it. In 1981, the observatory was renamed the Fred Lawrence Whipple Observatory. Fred was successful as both a manager of large science enterprises and as a researcher. He once told me that one of his secrets for doing both management and science simultaneously involved his spending some mornings in a room adjacent to his office doing research. His secretary was asked to (correctly) notify morning callers that Dr. Whipple was not in his office at the moment and could he return the call later on in the day. When asked the secret of his longevity at his 90th birthday party, he noted, "you've got to start early." Fortunately for Planetary Science, he did start early - and he stayed late. Until he reached 90 years of age, he rode his bicycle to the office most every day and those days when he drove to work, his car was easy to identify from the single word "comets" on his license plate. Fred Whipple was awarded seven honorary degrees and included among his many tributes are a certificate of Merit from President Truman (1948), the J. Lawrence Smith Medal of the National Academy of Sciences (1949), a Distinguished Federal Civilian Service Award (1963), the Frederick C. Leonard Memorial Medal of the Meteoritical Society (1970), the Gold Medal of the Royal Society (1983), the Bruce Medal of the Astronomical Society of the Pacific (1986), and the Henry Norris Russell Lectureship of the American Astronomical Society (1987). He also discovered six new comets and discovered and named an asteroid (1252 Celestia) after his mother. Asteroid 1940 was renamed (1940) Whipple to honor his professional achievements. Fred Whipple was a Harvard Professor, director of the Smithsonian Astrophysical Observatory, a Presidential medallist and his name is synonymous with comets. He was one of the few great innovative thinkers in twentieth century planetary science. Yet through it all, he remained just Fred to all who knew him. Whether you were a young student or a distinguished internationally recognized scientist, this gentleman treated everyone with the same kindness and respect. The entire planetary science community has benefited immeasurably from his wide-ranging insights; we've lost a creative scientist and a kind mentor - but he remains a superb role model for us all. This obituary is based on one by D.K. Yeomans and J. Veverka that appeared in "Nature" (4 Nov. 2004, vol. 432, p. 31). Photograph provided by J. Veverka.
The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (I) Prelanding mission phase
NASA Astrophysics Data System (ADS)
Filacchione, Gianrico; Capaccioni, Fabrizio; Ciarniello, Mauro; Raponi, Andrea; Tosi, Federico; De Sanctis, Maria Cristina; Erard, Stéphane; Morvan, Dominique Bockelée; Leyrat, Cedric; Arnold, Gabriele; Schmitt, Bernard; Quirico, Eric; Piccioni, Giuseppe; Migliorini, Alessandra; Capria, Maria Teresa; Palomba, Ernesto; Cerroni, Priscilla; Longobardo, Andrea; Barucci, Antonella; Fornasier, Sonia; Carlson, Robert W.; Jaumann, Ralf; Stephan, Katrin; Moroz, Lyuba V.; Kappel, David; Rousseau, Batiste; Fonti, Sergio; Mancarella, Francesca; Despan, Daniela; Faure, Mathilde
2016-08-01
From August to November 2014 the Rosetta orbiter has performed an extensive observation campaign aimed at the characterization of 67P/CG nucleus properties and to the selection of the Philae landing site. The campaign led to the production of a global map of the illuminated portion of 67P/CG nucleus. During this prelanding phase the comet's heliocentric distance decreased from 3.62 to 2.93 AU while Rosetta was orbiting around the nucleus at distances between 100 to 10 km. VIRTIS-M, the Visible and InfraRed Thermal Imaging Spectrometer - Mapping channel (Coradini et al., [2007] Space Sci. Rev., 128, 529-559) onboard the orbiter, has acquired 0.25-5.1 μm hyperspectral data of the entire illuminated surface, e.g. the north hemisphere and the equatorial regions, with spatial resolution between 2.5 and 25 m/pixel. I/F spectra have been corrected for thermal emission removal in the 3.5-5.1 μm range and for surface's photometric response. The resulting reflectance spectra have been used to compute several Cometary Spectral Indicators (CSI): single scattering albedo at 0.55 μm, 0.5-0.8 μm and 1.0-2.5 μm spectral slopes, 3.2 μm organic material and 2.0 μm water ice band parameters (center, depth) with the aim to map their spatial distribution on the surface and to study their temporal variability as the nucleus moved towards the Sun. Indeed, throughout the investigated period, the nucleus surface shows a significant increase of the single scattering albedo along with a decrease of the 0.5-0.8 and 1.0-2.5 μm spectral slopes, indicating a flattening of the reflectance. We attribute the origin of this effect to the partial removal of the dust layer caused by the increased contribution of water sublimation to the gaseous activity as comet crossed the frost-line. The regions more active at the time of these observations, like Hapi in the neck/north pole area, appear brighter, bluer and richer in organic material than the rest of the large and small lobe of the nucleus. The parallel coordinates method (Inselberg [1985] Vis. Comput., 1, 69-91) has been used to identify associations between average values of the spectral indicators and the properties of the geomorphological units as defined by (Thomas et al., [2015] Science, 347, 6220) and (El-Maarr et al., [2015] Astron. Astrophys., 583, A26). Three classes have been identified (smooth/active areas, dust covered areas and depressions), which can be clustered on the basis of the 3.2 μm organic material's band depth, while consolidated terrains show a high variability of the spectral properties resulting being distributed across all three classes. These results show how the spectral variability of the nucleus surface is more variegated than the morphological classes and that 67P/CG surface properties are dynamical, changing with the heliocentric distance and with activity processes.
The role of organic polymers in the structure of cometary dust
NASA Technical Reports Server (NTRS)
Vanysek, Vladimir; Boehnhardt, Hermann; Fechtig, H.
1992-01-01
Several phenomena observed in P/Halley and other comets indicate additional fragmentation of dust particles or dust aggregates in cometary atmospheres. The disintegration of dust aggregates may be explained by sublimation of polymerized formaldehyde - POM - which play a role as binding material between submicron individual particles.
NASA Astrophysics Data System (ADS)
Sagdeev, R. Z.; Shapiro, V. D.; Shevchenko, V. I.; Szego, K.
1987-02-01
The neutral gas emitted by comets is partly photoionized along its path. The interaction of the ions with the solar wind leads to observable particle and wave effects in the ambient plasma. These are described in the present paper.
Two-dimensional molecular line transfer for a cometary coma
NASA Astrophysics Data System (ADS)
Szutowicz, S.
2017-09-01
In the proposed axisymmetric model of the cometary coma the gas density profile is described by an angular density function. Three methods for treating two-dimensional radiative transfer are compared: the Large Velocity Gradient (LVG) (the Sobolev method), Accelerated Lambda Iteration (ALI) and accelerated Monte Carlo (MC).
NASA Astrophysics Data System (ADS)
Rousseau, B.; Érard, S.; Beck, P.; Quirico, É.; Schmitt, B.; Brissaud, O.; Montes-Hernandez, G.; Capaccioni, F.; Filacchione, G.; Bockelée-Morvan, D.; Leyrat, C.; Ciarniello, M.; Raponi, A.; Kappel, D.; Arnold, G.; Moroz, L. V.; Palomba, E.; Tosi, F.; Virtis Team
2018-05-01
Laboratory spectral measurements of relevant analogue materials were performed in the framework of the Rosetta mission in order to explain the surface spectral properties of comet 67P. Fine powders of coal, iron sulphides, silicates and their mixtures were prepared and their spectra measured in the Vis-IR range. These spectra are compared to a reference spectrum of 67P nucleus obtained with the VIRTIS/Rosetta instrument up to 2.7 μm, excluding the organics band centred at 3.2 μm. The species used are known to be chemical analogues for cometary materials which could be present at the surface of 67P. Grain sizes of the powders range from tens of nanometres to hundreds of micrometres. Some of the mixtures studied here actually reach the very low reflectance level observed by VIRTIS on 67P. The best match is provided by a mixture of sub-micron coal, pyrrhotite, and silicates. Grain sizes are in agreement with the sizes of the dust particles detected by the GIADA, MIDAS and COSIMA instruments on board Rosetta. The coal used in the experiment is responsible for the spectral slope in the visible and infrared ranges. Pyrrhotite, which is strongly absorbing, is responsible for the low albedo observed in the NIR. The darkest components dominate the spectra, especially within intimate mixtures. Depending on sample preparation, pyrrhotite can coat the coal and silicate aggregates. Such coating effects can affect the spectra as much as particle size. In contrast, silicates seem to play a minor role.
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.; Weaver, Susanna Widicus
2012-01-01
Over 150 molecular species have been confirmed in space, primarily by their rotational spectra at millimeter/submillimeter wavelengths, which yield an unambiguous identification. Many of the known interstellar organic molecules cannot be explained by gas-phase chemistry. It is now presumed that they are produced by surface reactions of the simple ices and/or grains observed and released into the gas phase by sublimation, sputtering, etc. Additionally, the chemical complexity found in meteorites and samples returned from comets far surpasses that of the remote detections for the interstellar medium (ISM), comets, and planetary atmospheres. Laboratory simulations of interstellar/cometary ices have found, from the analysis of the remnant residue of the warmed laboratory sample, that such molecules are readily formed; however, it has yet to be determined if they are formed during the warm phase or within the ice during processing. Most analysis of the ice during processing reveals molecular changes, though the exact quantities and species formed are highly uncertain with current techniques due to overwhelming features of simple ices. Remote sensing with high resolution spectroscopy is currently the only method to detect trace species in the ISM and the primary method for comets and icy bodies in the Solar System due to limitations of sample return. We have recently designed an experiment to simulate interstellar/cometary/planetary ices and detect trace species employing the same techniques used for remote observations. Preliminary results will be presented.
The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites
NASA Astrophysics Data System (ADS)
Engrand, Cécile; Duprat, Jean; Bardin, Noémie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Remusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin
2016-10-01
Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. Analyses of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko by the dust analyzers on Rosetta orbiter (COSIMA, GIADA, MIDAS) suggest a relationship to interplanetary dust/micrometeorites. A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system.
Extrasolar comets: The origin of dust in exozodiacal disks?
NASA Astrophysics Data System (ADS)
Marboeuf, U.; Bonsor, A.; Augereau, J.-C.
2016-11-01
Comets have been invoked in numerous studies as a potentially important source of dust and gas around stars, but none has studied the thermo-physical evolution, out-gassing rate, and dust ejection of these objects in such stellar systems. In this paper we investigate the thermo-physical evolution of comets in exo-planetary systems in order to provide valuable theoretical data required to interpret observations of gas and dust. We use a quasi-3D model of cometary nucleus to study the thermo-physical evolution of comets evolving around a single star from 0.1 to 50 AU, whose homogeneous luminosity varies from 0.1 to 70L⊙. This paper provides thermal evolution, physical alteration, mass ejection, lifetimes, and the rate of dust and water gas mass productions for comets as a function of the distance to the star and stellar luminosity. Results show significant physical changes to comets at high stellar luminosities. The mass loss per revolution and the lifetime of comets depend on their initial size, orbital parameters and follow a power law with stellar luminosity. The models are presented in such a manner that they can be readily applied to any planetary system. By considering the examples of the Solar System, Vega and HD 69830, we show that dust grains released from sublimating comets have the potential to create the observed (exo)zodiacal emission. We show that observations can be reproduced by 1 to 2 massive comets or by a large number of comets whose orbits approach close to the star. Our conclusions depend on the stellar luminosity and the uncertain lifetime of the dust grains. We find, as in previous studies, that exozodiacal dust disks can only survive if replenished by a population of typically sized comets renewed from a large and cold reservoir of cometary bodies beyond the water ice line. These comets could reach the inner regions of the planetary system following scattering by a (giant) planet.
Observations of CO2 in Comets C/2012 S1 ISON and C/2012 K1 PANSTARRS
NASA Astrophysics Data System (ADS)
McKay, Adam; Kelley, Michael; DiSanti, Michael; Cochran, Anita; Dello Russo, Neil; Lisse, Carey; Chanover, Nancy
2013-10-01
Comets have undergone very little thermal evolution in their lifetimes, resulting in a primitive composition. This primitive composition makes observations of comets very important tools for understanding the origin of the Solar System. The ices H2O, CO2, and CO are the primary ices present in cometary nuclei, and constraining their abundances has tremendous implications for the formation and evolutionary history of comets. Of these ices, H2O and CO can be observed from the ground, while CO2 cannot. A potentially effective tracer for CO2 in comets that is accessible from the ground is atomic oxygen. However, the relationship between these ices and atomic oxygen is only understood at a qualitative level. We propose to use Spitzer observations in IRAC's 4.5 micron band pass to observe the CO2 v3 band at 4.26 microns in comets C/2012 S1 ISON and C/2012 K1 PANSTARRS. These observations will be coordinated with observations of atomic oxygen obtained at Apache Point Observatory and McDonald Observatory and observations of H2O and CO at Keck and IRTF. These observations of H2O, CO2, and atomic oxygen in a cometary coma will increase our understanding of the link between these primary ices and atomic oxygen. With a complete understanding of the relationship between atomic oxygen and the primary ices on the nucleus, observations of atomic oxygen can serve as a powerful proxy for the production of CO2. In addition, ISON is the target of an extensive observing campaign led by NASA, and the proposed Spitzer observations fill a vital niche as the only observatory that can observe CO2 during both the near-perihelion time frame and significantly (months) after perihelion. Understanding the evolution of the CO2 abundance over the apparition is a key piece to understanding how the volatile compostion of the comet changes over the apparition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinnaka, Yoshiharu; Yasui, Chikako; Izumi, Natsuko
Although high-resolution spectra of the CN red-system band are considered useful in cometary sciences, e.g., in the study of isotopic ratios of carbon and nitrogen in cometary volatiles, there have been few reports to date due to the lack of high-resolution ( R ≡ λ /Δ λ > 20,000) spectrographs in the near-infrared region around ∼1 μ m. Here, we present the high-resolution emission spectrum of the CN red-system band in comet C/2013 R1 (Lovejoy), acquired by the near-infrared high-resolution spectrograph WINERED mounted on the 1.3 m Araki telescope at the Koyama Astronomical Observatory, Kyoto, Japan. We applied our fluorescence excitation models for CN, based onmore » modern spectroscopic studies, to the observed spectrum of comet C/2013 R1 (Lovejoy) to search for CN isotopologues ({sup 13}C{sup 14}N and {sup 12}C{sup 15}N). We used a CN fluorescence excitation model involving both a “pure” fluorescence excitation model for the outer coma and a “fully collisional” fluorescence excitation model for the inner coma region. Our emission model could reproduce the observed {sup 12}C{sup 14}N red-system band of comet C/2013 R1 (Lovejoy). The derived mixing ratio between the two excitation models was 0.94(+0.02/−0.03):0.06(+0.03/−0.02), corresponding to the radius of the collision-dominant region of ∼800–1600 km from the nucleus. No isotopologues were detected. The observed spectrum is consistent, within error, with previous estimates in comets of {sup 12}C/{sup 13}C (∼90) and {sup 14}N/{sup 15}N (∼150).« less
Discovery of Non-random Spatial Distribution of Impacts in the Stardust Cometary Collector
NASA Technical Reports Server (NTRS)
Horz, Friedrich; Westphal, Andrew J.; Gainsforth, Zack; Borg, Janet; Djouadi, Zahia; Bridges, John; Franchi, Ian; Brownlee, Donald E.; Cheng. Andrew F.; Clark, Benton C.;
2007-01-01
We report the discovery that impacts in the Stardust cometary collector are not distributed randomly in the collecting media, but appear to be clustered on scales smaller than 10 cm. We also report the discovery of at least two populations of oblique tracks. We evaluated several hypotheses that could explain the observations. No hypothesis was consistent with all the observations, but the preponderance of evidence points toward at least one impact on the central Whipple shield of the spacecraft as the origin of both clustering and low-angle oblique tracks. High-angle oblique tracks unambiguously originate from a non-cometary impact on the spacecraft bus just forward of the collector.
NASA Astrophysics Data System (ADS)
Michael, Manesh; Willington, Neethu T.; Jayakumar, Neethu; Sebastian, Sijo; Sreekala, G.; Venugopal, Chandu
2016-12-01
We investigate the existence of ion-acoustic shock waves in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdVB equation has been derived for the system, and its solution plotted for different kappa values, oxygen ion densities, as well as the temperature ratios for the ions. It is found that the amplitude of the shock wave decreases with increasing kappa values. The strength of the shock profile decreases with increasing temperatures of the positively charged oxygen ions and densities of negatively charged oxygen ions.
Episodic Aging and End States of Comets
NASA Technical Reports Server (NTRS)
Sekanina, Zdenek
2008-01-01
It is known that comets are aging very rapidly on cosmic scales, because they rapidly shed mass. The processes involved are (i) normal activity - sublimation of ices and expulsion of dust from discrete emission sources on and/or below the surface of a comet's nucleus, and (ii) nuclear fragmentation. Both modes are episodic in nature, the latter includes major steps in the comet's life cycle. The role and history of dynamical techniques used are described and results on mass losses due to sublimation and dust expulsion are reviewed. Studies of split comets, Holmes-like exploding comets, and cataclysmically fragmenting comets show that masses of 10 to 100 million tons are involved in the fragmentation process. This and other information is used to investigate the nature of comets' episodic aging. Based on recent advances in understanding the surface morphology of cometary nuclei by close-up imaging, a possible mechanism for large-scale fragmentation events is proposed and shown to be consistent with evidence available from observations. Strongly flattened pancake-like shapes appear to be required for comet fragments by conceptual constraints. Possible end states are briefly examined.
Dunham, David W; Farquhar, Robert W
2004-05-01
This paper describes astrodynamic techniques applied to develop special orbital designs for past and future space missions of the Applied Physics Laboratory (APL) of Johns Hopkins University, and background about those techniques. The paper does not describe the long history of low Earth-orbiting missions at APL, but rather concentrates on the astrodynamically more interesting high-altitude and interplanetary missions that APL has undertaken in recent years. The authors developed many of their techniques in preparation for, and during, the Third International Sun-Earth Explorer (ISEE-3) halo orbit mission while they worked for the Goddard Space Flight Center (GSFC) of NASA during the 1970s and 1980s. Later missions owed much to the ground breaking work of the trajectory designs for ISEE-3 (later known as the International Cometary Explorer, or ICE). This experience, and other new ideas, were applied to the APL near Earth asteroid rendezvous (NEAR) and comet nucleus tour (CONTOUR) discovery missions, as well as to APL's future MESSENGER, STEREO, and New Horizons missions. These will be described in the paper.
Photometry of the comet 2060 Chiron
NASA Technical Reports Server (NTRS)
Buratti, Bonnie J.; Marcialis, Robert L.; Dunbar, R. Scott
1991-01-01
The comet 2060 Chiron has proven to be an interesting and enigmatic object. Situated between the orbits of Saturn and Uranus, it was originally classified as the most distant asteroid. It began to show cometary behavior in 1987 by increasing a full magnitude in brightness and developing a coma; there is evidence also for similar earlier outbursts. A thorough study of Chiron is important for two reasons: (1) it is a transition object defining the relationship between comets, asteroids, and meteorites; and (2) a full description of its changes in brightness - particularly on time scale of hours - will provide an empirical foundation for understanding the physical mechanisms (including outgassing, sublimation of volatiles, and even significant mass ejections) driving the evolution of comets. Short term outbursts were observed in early 1989, and a rapid decrease in brightness of Chiron's coma was observed in 1990 in the V and R filters. Also, a rotational lightcurve was detected of the nucleus with an amplitude only 1/4 that observed in its quiescent state: this fact indicates the increased importance of the optically thin coma to the observed brightness.
Bi-lobed Shape of Comet 67P from a Collapsed Binary
NASA Astrophysics Data System (ADS)
Nesvorný, David; Parker, Joel; Vokrouhlický, David
2018-06-01
The Rosetta spacecraft observations revealed that the nucleus of comet 67P/Churyumov–Gerasimenko consists of two similarly sized lobes connected by a narrow neck. Here, we evaluate the possibility that 67P is a collapsed binary. We assume that the progenitor of 67P was a binary and consider various physical mechanisms that could have brought the binary components together, including small-scale impacts and gravitational encounters with planets. We find that 67P could be a primordial body (i.e., not a collisional fragment) if the outer planetesimal disk lasted ≲10 Myr before it was dispersed by migrating Neptune. The probability of binary collapse by impact is ≃30% for tightly bound binaries. Most km-class binaries become collisionally dissolved. Roughly 10% of the surviving binaries later evolve to become contact binaries during the disk dispersal, when bodies suffer gravitational encounters with Neptune. Overall, the processes described in this work do not seem to be efficient enough to explain the large fraction (∼67%) of bi-lobed cometary nuclei inferred from spacecraft imaging.
Searches for comet-induced solar flares
NASA Astrophysics Data System (ADS)
Ibadov, Subhon; Ibodov, Firuz
During the last decade we have carried out analytical consideration of the impacts of comets with the Sun: the study of passage of cometary nuclei through the solar chromosphere and photosphere was carried out taking into account aerodynamic crushing of the nucleus, transversal expansion of the crushed mass and aerodynamic deceleration of the flattening structure. The results indicate that the stopping of the hypervelocity, more than 600 km/s, comet matter near the photosphere has essentially "explosive" character and will be accompanied by generation of a strong "blast" shock wave as well as ejection of a hot plasma from a relatively very thin,"exploding", near-photosphere layer. Observational manifestations of these processes, comet-induced solar flares, CISF, will be anomalous line emission of metal atoms/ions like Fe, Si, etc. from chromosphere/corona regions and continuum emission of a high-temperature, around 10^6-10^7 K, plasma cloud near the solar surface. Space observations of the phenomena by solar telescopes, including future out-of-ecliptic ones, are of interest for the physics/prognosis of solar flares as well as physics of comets.
Messengers from the Early Solar System - Comets as Carriers of Cosmic Information
NASA Technical Reports Server (NTRS)
Mumma, Michael J.
2011-01-01
Viewed from a cosmic perspective, Earth is a dry planet yet its oceans are enriched in deuterium by a large factor relative to nebular hydrogen. Can comets have delivered Earth s water? The question of exogenous delivery of water and organics to Earth and other young planets is of critical importance for understanding the origin of Earth s water, and for assessing the possible existence of exo-planets similar to Earth. Strong gradients in temperature and chemistry in the proto-planetary disk, coupled with dynamical models, imply that comets from the Oort Cloud and Kuiper Disk reservoirs should have diverse composition. The primary volatiles in comets (ices native to the nucleus) provide the preferred metric, and taxonomies based on them are now beginning to emerge [1, 2, 3]. The measurement of cosmic parameters such as the nuclear spin temperatures for H2O, NH3, and CH4, and of enrichment factors for isotopologues (D/H in water and hydrogen cyanide, N-14/N-15 in CN and hydrogen cyanide) provide additional important tests for the origin of cometary material.
A comparison between VEGA 1, 2 and Giotto flybys of comet 1P/Halley: implications for Rosetta
NASA Astrophysics Data System (ADS)
Volwerk, M.; Glassmeier, K.-H.; Delva, M.; Schmid, D.; Koenders, C.; Richter, I.; Szegö, K.
2014-11-01
Three flybys of comet 1P/Halley, by VEGA 1, 2 and Giotto, are investigated with respect to the occurrence of mirror mode waves in the cometosheath and field line draping in the magnetic pile-up region around the nucleus. The time interval covered by these flybys is approximately 8 days, which is also the approximate length of an orbit or flyby of Rosetta around comet 67P/Churyumov-Gerasimenko. Thus any significant changes observed around Halley are changes that might occur for Rosetta during one pass of 67P/CG. It is found that the occurrence of mirror mode waves in the cometosheath is strongly influenced by the dynamical pressure of the solar wind and the outgassing rate of the comet. Field line draping happens in the magnetic pile-up region. Changes in nested draping regions (i.e. regions with different Bx directions) can occur within a few days, possibly influenced by changes in the outgassing rate of the comet and thereby the conductivity of the cometary ionosphere.
A comparison between VEGA 1, 2 and Giotto flybys of comet 1P/Halley: Implications for Rosetta
NASA Astrophysics Data System (ADS)
Volwerk, Martin; Glassmeier, Karl-Heinz; Delva, Magda; Schmid, Daniel; Koenders, Christoph; Richter, Ingo; Szegö, Karoly
2015-04-01
Three flybys of comet 1P/Halley, by VEGA 1, 2 and Giotto, are investigated with respect to the occurrence of mirror mode waves in the cometosheath and field line draping in the magnetic pile-up region around the nucleus. The time interval covered by these flybys is approximately 8 days, which is also the approximate length of an orbit or flyby of Rosetta around comet 67P/Churyumov-Gerasimenko. Thus any significant changes observed around Halley are changes that might occur for Rosetta during one pass of 67P/CG. It is found that the occurrence of mirror mode waves in the cometosheath is strongly influenced by the dynamical pressure of the solar wind and the outgassing rate of the comet. Field line draping happens in the magnetic pile-up region. Changes in nested draping regions (i.e. regions with different Bx-directions) can occur within a few days, possibly in fluenced by changes in the outgassing rate of the comet and thereby the conductivity of the cometary ionosphere.
The presence of clathrates in comet 67P/Churyumov-Gerasimenko
Luspay-Kuti, Adrienn; Mousis, Olivier; Hässig, Myrtha; Fuselier, Stephen A.; Lunine, Jonathan I.; Marty, Bernard; Mandt, Kathleen E.; Wurz, Peter; Rubin, Martin
2016-01-01
Cometary nuclei are considered to most closely reflect the composition of the building blocks of our solar system. As such, comets carry important information about the prevalent conditions in the solar nebula before and after planet formation. Recent measurements of the time variation of major and minor volatile species in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (67P) by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument onboard Rosetta provide insight into the possible origin of this comet. The observed outgassing pattern indicates that the nucleus of 67P contains crystalline ice, clathrates, and other ices. The observed outgassing is not consistent with gas release from an amorphous ice phase with trapped volatile gases. If the building blocks of 67P were formed from crystalline ices and clathrates, then 67P would have agglomerated from ices that were condensed and altered in the protosolar nebula closer to the Sun instead of more pristine ices originating from the interstellar medium or the outskirts of the disc, where amorphous ice may dominate. PMID:27152351
The presence of clathrates in comet 67P/Churyumov-Gerasimenko.
Luspay-Kuti, Adrienn; Mousis, Olivier; Hässig, Myrtha; Fuselier, Stephen A; Lunine, Jonathan I; Marty, Bernard; Mandt, Kathleen E; Wurz, Peter; Rubin, Martin
2016-04-01
Cometary nuclei are considered to most closely reflect the composition of the building blocks of our solar system. As such, comets carry important information about the prevalent conditions in the solar nebula before and after planet formation. Recent measurements of the time variation of major and minor volatile species in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (67P) by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument onboard Rosetta provide insight into the possible origin of this comet. The observed outgassing pattern indicates that the nucleus of 67P contains crystalline ice, clathrates, and other ices. The observed outgassing is not consistent with gas release from an amorphous ice phase with trapped volatile gases. If the building blocks of 67P were formed from crystalline ices and clathrates, then 67P would have agglomerated from ices that were condensed and altered in the protosolar nebula closer to the Sun instead of more pristine ices originating from the interstellar medium or the outskirts of the disc, where amorphous ice may dominate.
NASA Astrophysics Data System (ADS)
O'Mara, A.; Busemann, H.; Clay, P. L.; Crowther, S. A.; Gilmour, J. D.; Wieler, R.
2014-09-01
Xenon detection in comet Wild 2 stardust is hampered by the large adsorption of Xe on aerogel. In-vacuum etching presented here may enable the stepwise separation of terrestrial Xe, cometary Xe trapped in melted aerogel and Xe in cometary silicates.
Radar meteor orbital structure of Southern Hemisphere cometary dust streams
NASA Technical Reports Server (NTRS)
Baggaley, W. Jack; Taylor, Andrew D.
1992-01-01
The Christchurch, New Zealand meteor orbit radar (AMOR) with its high precision and sensitivity, permits studies of the orbital fine structure of cometary streams. PC generated graphics are presented of data on some Southern Hemisphere Streams. Such data can be related to the formation phase and subsequent dynamical processes of dust streams.
Physical characteristics of cometary dust from optical studies
NASA Technical Reports Server (NTRS)
Hanner, M. S.
1980-01-01
Observations of the sunlight scattered and thermal emission from cometary dust, which may be used to infer the physical properties of the dust grains, are reviewed. Consideration is given to the observed wavelength dependence of the scattered light from cometary coma and tails, the average scattering function of the dust grains, the average grain Bond albedo, the polarization of the scattered light, and grain temperatures deduced from thermal infrared emission. The thermal properties of dust grains are illustrated for models based on magnetite or olivine grain materials, with consideration given to the variation of thermal properties with particle radius and heliocentric distance. Comparison of the models with observations indicates that a disordered or amorphous olivine composition can give a reasonable fit to the data for appropriate grain sizes and temperatures. The observations acquired are noted to indicate an optically important particle size of 1 micron, with silicate particles not larger than a few microns usually present although pure silicate grains can not be responsible for the thermal emission, and the cometary dust grains are most likely not spherical. Further observations needed in the infrared are indicated.
A radio source occultation experiment with comet Austin 1982g, with unusual results
NASA Technical Reports Server (NTRS)
De Pater, I.; Ip, W.-H.
1984-01-01
A radio source occultation by comet Austin 1982g was observed on September 15-16, 1982. A change in the apparent position of 1242 + 41 by 1.3 arcsec occurred when the source was 220,000 km away from the cometary ion tail. If this change was due to refraction by the cometary plasma, it indicates an electron density of the plasma of about 10,000/cu cm. When the radio source was on the other side of the plasma tail, at a distance of 230,000 km, the position angle of the electric vector of the radio source changed gradually over about 140 deg within two hours. This observation cannot be explained in terms of ionospheric Faraday rotation, and results from either an intrinsic change in the radio source or Faraday rotation in the cometary plasma due to a change in the direction and/or strength of the magnetic field. In the latter case, the cometary coma must have an electron density and a magnetic field strength orders of magnitude larger than current theories predict.
Analysis of the Cometary Plasma Environment of 67P/Churyumov-Gerasimenko Near Perihelion
NASA Astrophysics Data System (ADS)
Ostaszewski, K.; Goetz, C.; Motschmann, U.; Glassmeier, K. H.
2017-09-01
Over the course of its two year escort phase the Rosetta spacecraft has provided various observations that furthered our understanding of the cometary plasma environment. The use of numerical simulations is essential for this understanding because they allow to place the in situ measurements in a global context, in turn, through observations the numerical models can be ex- tended and improved. We use the simulation code A.I.K.E.F (Müller [7]) to simulate the cometary plasma environment of 67P/Churyumov-Gerasimenko (67P/CG). Based on observations made by the Rosetta spacecraft we extend the numerical model by electron impact ionization and the anisotropic outgassing model by Hansen et al. (2016). Both extensions result in an increase in the cometary ion production rate on the dayside. Therefore, the size of the interaction region and the contained structures increases. This causes the position of the different boundaries, e.g. bow shock, to shift further away from the comet. Considering this we can explain why no bow shock crossings could be observed during the dayside excursion of Rosetta in September 2015.
Mass Spectum Imaging of Organics Injected into Stardust Aerogel by Cometary Impacts
NASA Technical Reports Server (NTRS)
Clemett, S. J.; Nakamura-Messenger, K.; Messenger, S.
2014-01-01
Comets have largely escaped the hydrothermal processing that has affected the chemistry and mineralogy of even the most primitive meteorites. Consequently, they are expected to better preserve nebular and interstellar organic materials. Organic matter constitutes roughly 20-30% by weight of vol-atile and refractory cometary materials [1,2]. Yet organic matter identified in Stardust aerogel samples is only a minor component [3-5]. The dearth of intact organic matter, fine-grained and pre-solar materials led to suggestions that comet 81P/Wild-2 is com-posed largely of altered materials, and is more similar to meteorites than the primitive view of comets [6]. However, fine-grained materials are particularly susceptible to alteration and destruction during the hypervelocity impact. While hypervelocity capture can cause thermal pyrolysis of organic phases, some of the impacting organic component appears to have been explosively dispersed into surrounding aerogel [7]. We used a two-step laser mass spectrometer to map the distribution of organic matter within and sur-rounding a bulbous Stardust track to constrain the dispersion of organic matter during the impact.
Asteroids and Comets Outreach Compilation
NASA Technical Reports Server (NTRS)
1999-01-01
Contents include various different animations in the area of Asteroids and Comets. Titles of the short animated clips are: STARDUST Mission; Asteroid Castallia Impact Simulation; Castallia, Toutatis and the Earth; Simulation Asteroid Encounter with Earth; Nanorover Technology Task; Near Earth Asteroid Tracking; Champollian Anchor Tests; Early Views of Comets; Exploration of Small Bodies; Ulysses Resource Material from ESA; Ulysses Cometary Plasma Tail Animation; and various discussions on the Hale-Bopp Comet. Animation of the following are seen: the Stardust aerogel collector grid collecting cometary dust particles, comet and interstellar dust analyzer, Wiper-shield and dust flux monitor, a navigation camera, and the return of the sample to Earth; a comparison of the rotation of the Earth to the Castallia and Tautatis Asteroids; an animated land on Tautatis and the view of the motion of the sky from its surface; an Asteroid collision with the Earth; the USAF Station in Hawaii; close-up views of asteroids; automatic drilling of the Moon; exploding Cosmic Particles; and the dropping off of the plasma tail of a comet as it travels near the sun.
HUT observations of carbon monoxide in the coma of Comet Levy (1990c)
NASA Technical Reports Server (NTRS)
Feldman, P. D.; Davidsen, A. F.; Blair, W. P.; Bowers, C. W.; Dixon, W. V.; Durrance, S. T.; Henry, R. C.; Kriss, G. A.; Kruk, J.; Moos, H. W.
1991-01-01
Observations of comet Levy (1990c) were made with the Hopkins Ultraviolet Telescope during the Astro-1 Space Shuttle mission on 10 Dec. 1990. The spectrum, covering the wavelength range 415 to 1850 A at a spectral emission of 3 A (in first order), shows the presence of carbon monoxide and atomic hydrogen, carbon, and sulfur in the coma. Aside from H I Lyman-beta, no cometary features are detected below 1200 A, although cometary O I and O II would be masked by the same emissions present in the day airglow spectrum. The 9.4 x 116 arcsec aperture corresponds to 12,000 x 148,000 km at the comet. The derived production rate of CO relative to water, 0.13 + or - 0.02, compared with the same ratio derived from IUE observations (made in Sep. 1990) which sample a much smaller region of the coma, 0.04 + or - 0.01, suggests the presence of an extended source of CO, as was found in comet Halley. Upper limits on Ne and Ar abundance are within an order of magnitude or solar abundances.
Observations of Comet Levy (1990c) with the Hopkins Ultraviolet Telescope
NASA Technical Reports Server (NTRS)
Feldman, P. D.; Davidsen, A. F.; Blair, W. P.; Bowers, C. W.; Dixon, W. V.; Durrance, S. T.; Henry, R. C.; Ferguson, H. C.; Kimble, R. A.; Gull, Theodore R.
1991-01-01
Observations of Comet Levy (1990c) were made with the Hopkins Ultraviolet Telescope during the Astro-1 Space Shuttle mission on December 10, 1990. The spectrum, covering the wavelength range 415-1850 A at a spectral resolution of 3 A, shows the presence of carbon monoxide and atomic hydrogen, carbon, and sulfur in the coma. Aside from H I Lyman-beta, no cometary features are detected below 1200 A, although cometary O I and O II would be masked by the same emissions present in the day airglow spectrum. The 9.4 x 116 arcsecond aperture corresponds to 12,000 x 148,000 km at the comet. The derived production rate of CO relative to water is 0.11 + or - 0.02, compared with 0.04 + or - 0.01 derived from IUE observations (made in September 1990) which sample a much smaller region of the coma. This suggests the presence of an extended source of CO, as was found in comet Halley. Upper limits on Ne and Ar abundance are within one order of magnitude of solar abundances.
NASA Technical Reports Server (NTRS)
Miller, R. H.; Gombosi, T. I.; Gary, S. P.; Winske, D.
1991-01-01
The direction of propagation of low frequency magnetic fluctuations generated by cometary ion pick-up is examined by means of 1D electromagnetic hybrid simulations. The newborn ions are injected at a constant rate, and the helicity and direction of propagation of magnetic fluctuations are explored for cometary ion injection angles of 0 and 90 deg relative to the solar wind magnetic field. The parameter eta represents the relative contribution of wave energy propagating in the direction away from the comet, parallel to the beam. For small (quasi-parallel) injection angles eta was found to be of order unity, while for larger (quasi-perpendicular) angles eta was found to be of order 0.5.
Opportunities for ballistic missions to Halley's comet
NASA Technical Reports Server (NTRS)
Farquhar, R. W.; Wooden, W. H., II
1977-01-01
Alternative strategies for ballistic missions to Halley's comet in 1985-86 are described. A large scientific return would be acquired from a ballistic Halley intercept in spite of the high flyby speeds that are associated with this mission mode. The possibility of retargeting the cometary spacecraft to additional comets after the Halley intercept also exists. Two cometary spacecraft of identical design would be used to carry out four separate cometary encounters over a 3 year period. One spacecraft would intercept Halley's comet before its perihelion passage in December 1985 and then go on to comet Borrelly with an encounter in January 1988. The other spacecraft would be targeted for a postperihelion Halley intercept in March 1986 before proceeding toward an encounter with comet Tempel 2 in September 1988.
STIP Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
The study of travelling interplanetary phenomena has continued over a period of years. The STIP (Study of Travelling Interplanetary Phenomena) Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals was held in Huntsville, Alabama, on May 12-15, 1987, the first of these meetings to be held in the United States. The Symposium's objective was to coordinate and disseminate new science gained from the recent solar-terrestrial and cometary intervals which can be used to better understand the linkage of physical events to the Sun's vagaries (flares, coronal holes, eruptive prominences) from their initial detection to their consequence. Fifty-one presentations were made during the four-day period. Abstracts of these reports are included as Appendix A.
Bibring, J-P; Langevin, Y; Carter, J; Eng, P; Gondet, B; Jorda, L; Le Mouélic, S; Mottola, S; Pilorget, C; Poulet, F; Vincendon, M
2015-07-31
The structure and composition of cometary constituents, down to their microscopic scale, are critical witnesses of the processes and ingredients that drove the formation and evolution of planetary bodies toward their present diversity. On board Rosetta's lander Philae, the Comet Infrared and Visible Analyser (CIVA) experiment took a series of images to characterize the surface materials surrounding the lander on comet 67P/Churyumov-Gerasimenko. Images were collected twice: just after touchdown, and after Philae finally came to rest, where it acquired a full panorama. These images reveal a fractured surface with complex structure and a variety of grain scales and albedos, possibly constituting pristine cometary material. Copyright © 2015, American Association for the Advancement of Science.
GIADA: extended calibration activities before the comet encounter
NASA Astrophysics Data System (ADS)
Accolla, Mario; Sordini, Roberto; Della Corte, Vincenzo; Ferrari, Marco; Rotundi, Alessandra
2014-05-01
The Grain Impact Analyzer and Dust Accumulator - GIADA - is one of the payloads on-board Rosetta Orbiter. Its three detection sub-systems are able to measure the speed, the momentum, the mass, the optical cross section of single cometary grains and the dust flux ejected by the periodic comet 67P Churyumov-Gerasimenko. During the Hibernation phase of the Rosetta mission, we have performed a dedicated extended calibration activity on the GIADA Proto Flight Model (accommodated in a clean room in our laboratory) involving two of three sub-systems constituting GIADA, i.e. the Grain Detection System (GDS) and the Impact Sensor (IS). Our aim is to carry out a new set of response curves for these two subsystems and to correlate them with the calibration curves obtained in 2002 for the GIADA payload onboard the Rosetta spacecraft, in order to improve the interpretation of the forthcoming scientific data. For the extended calibration we have dropped or shot into GIADA PFM a statistically relevant number of grains (i.e. about 1 hundred), acting as cometary dust analogues. We have studied the response of the GDS and IS as a function of grain composition, size and velocity. Different terrestrial materials were selected as cometary analogues according to the more recent knowledge gained through the analyses of Interplanetary Dust Particles and cometary samples returned from comet 81P/Wild 2 (Stardust mission). Therefore, for each material, we have produced grains with sizes ranging from 20-500 μm in diameter, that were characterized by FESEM and micro IR spectroscopy. Therefore, the grains were shot into GIADA PFM with speed ranging between 1 and 100 ms-1. Indeed, according to the estimation reported in Fink & Rubin (2012), this range is representative of the dust particle velocity expected at the comet scenario and lies within the GIADA velocity sensitivity (i.e. 1-100 ms-1 for GDSand 1-300 ms-1for GDS+IS 1-300 ms-1). The response curves obtained using the data collected during the GIADA PFM extended calibration will be linked to the on-ground calibration data collected during the instrument qualification campaign (performed both on Flight and Spare Models, in 2002). The final aim is to rescale the Extended Calibration data obtained with the GIADA PFM to GIADA presently onboard the Rosetta spacecraft. In this work we present the experimental procedures and the setup used for the calibration activities, particularly focusing on the new response curves of GDS and IS sub-systems obtained for the different cometary dust analogues. These curves will be critical for the future interpretation of scientific data. Fink, U. & Rubin, M. (2012), The calculation of Afρ and mass loss rate for comets, Icarus, Volume 221, issue 2, p. 721-734
Focused Ion Beam Recovery of Hypervelocity Impact Residue in Experimental Craters on Metallic Foils
NASA Technical Reports Server (NTRS)
Graham, G. A.; Teslich, N.; Dai, Z. R.; Bradley, J. P.; Kearsley, A. T.; Horz, F.
2006-01-01
The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 micrometers thick) that are wrapped around the sample tray assembly. Soda lime spheres (approximately 49 m in diameter) have been accelerated with a light-gas-gun into flight-grade Al foils at 6.35 km s(sup -1) to simulate the potential capture of cometary debris. The preserved crater penetrations have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact penetration. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover pure melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.
The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites
NASA Astrophysics Data System (ADS)
Engrand, Cecile; Duprat, Jean; Bardin, Noemie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Rémusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin; COSIMA Team
2015-08-01
Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. The Rosetta mission currently carries dust analyzers capable of measuring dust flux, sizes, physical properties and compositions of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko (COSIMA, GIADA, MIDAS), as well as gas analyzers (ROSINA, PTOLEMY, COSAC). A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system. We will present the implications of the analyses of samples in the laboratory and in space to a better understanding of the early protoplanetary disk.
Characterizing the population of Asteroids in Cometary Orbits (ACOs)
NASA Astrophysics Data System (ADS)
Tancredi, Gonzalo; Licandro, Javier; Alí-Lagoa, Victor; Martino, Silvia; Vieira Monteiro, Filipe; Silva, Jose Sergio; Lazzaro, Daniela
2015-08-01
The classification criterion between asteroids and comets has evolved in recent decades, but the main phenomenological distinction remains unchanged: comets are active objects as they present gas and dust ejection from the surface at some point of their orbits, while asteroids are inert objects as they do not show any kind of large scale gas and dust ejection.To identify the transitional objects several classification schemes based on the orbital elements have been used. They are usually based on the Tisserand’s parameter (TJ). Tancredi (2014) presents a much more restrictive criterion to identify ACOs that ensured that the objects have a dynamical evolution similar to the population of periodic comets. After applying the criteriaa to the sample of over half a million asteroids already discovered, we obtain 316 ACOs that are further classified in subclasses similar to the cometary classification: 203 objects belong to the Jupiter Family group; 72 objects are classified as Centaurs; and 56 objects have Halley Type Orbits (also known as Damocloids). These are the best-known extinct/dormant comets candidates from a dynamical point of view.We study the physical properties of this sample of ACOs. Two results will be presented:- We look for the ACOs detected by the NASA’s WISE and by fitting a thermal model to their observations, we derive: the effective diameter, beaming parameter and the visible geometric albedo, using the method described in Al-Lagoa et al (2013). We obtain these parameters for 37 of 203 ACOs in JFC orbits and 13 of 56 Damocloids. We also compute the Cumulative Size Distribution (CSDs) of these populations and compare them with the CSDs of JF Comets and Centaurs.- We have been monitoring the observable ACOs since 12/2014 up to 06/2015. Every other month we select all the ACOs with elongations >90deg and estimated magnitudes V<21. We try to observe them with the 1m IMPACTON telescope of the Observatório Astronômico do Sertão de Itaparica (OASI). By comparing the photometric profiles of the ACOs with background stars, we try to detect some hint of cometary activity. Over 20 ACOs have been observed in the six months.
Detection of CN emission from (2060) Chiron
NASA Technical Reports Server (NTRS)
Bowell, Edward
1991-01-01
Spectrophotometric observations of (2060) Chiron were obtained. Their primary goal was to look for the subtle differences in color between Chiron and its surrounding coma, and to search for possible absorption or emission features in Chiron's spectrum. The presence of the CN(0-0) emission band was identified. It proves Chiron's cometary nature and breaks the record heliocentric distance for cometary gaseous emission.
Formation of Prebiotic Molecules in Interstellar and Cometary Ices
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Dworkin, Jason; Gilette, J. Seb; Zare, Richard N.; DeVincenzi, D. (Technical Monitor)
2000-01-01
We report here on our lab studies of ice photochemistry of large organic molecules under cometary conditions. We focus on polycyclic aromatic hydrocarbons (PAHs), their photoproducts, and their similarities to molecules seen in living systems today. We note that these kinds of compounds are seen in meteorites and we propose an explanation for both their formation and their observed deuterium enrichments.
Cometary particles - Thin sectioning and electron beam analysis
NASA Technical Reports Server (NTRS)
Bradley, J. P.; Brownlee, D. E.
1986-01-01
Thin sections (500 to 1000 angstroms thick) of individual micrometeorites (5 to 15 micrometers) have been prepared with an ultramicrotome equipped with a diamond knife. Electron microscope examination of these sections has revealed the internal structures of chondritic micrometeorites, and a subset of highly porous, fragile particles has been identified. Delicate meteoritic materials such as these are characteristic of debris from cometary meteors.
Laboratory Measurements of Cometary Photochemical Phenomena.
1981-12-04
PROGFIAM ELEMENT.PROJECT TASK Laser .Chemistry Division AREA & WORK UNIT NUMaZRS Department of Chemistry - Howard University NR.051-733 Wash’ ngtQn, D. C...William M. Jackson Laser Chemistry Division Department of Chemistry Howard University .Washington, D. C. 20059 / Published by Jet Propulsion Laboratory...MEASUREMENTS OF COMETARY PHOTOCHEMICAL PHENOMENA William M. Jackson Howard University Washington, DC 20059 Abstract Laboratory experiments are described
From C/Mrkos to P/Halley: 30 years of cometary spectroscopy
NASA Technical Reports Server (NTRS)
Arpigny, C.; Dossin, F.; Woszczyk, A.; Donn, B.; Rahe, J.; Wyckoff, Susan
1991-01-01
An Atlas of Cometary Spectra was compiled, as a sequel to the well-known Atlas published by Swings and Haser in 1956. The new atlas comprises some 400 reproductions of cometary spectra secured in the world's largest observatories during the three decades or so from the passage of comet Mrkos 1957 V, for which the very first high-dispersion spectrum was obtained, to the return of Halley's comet. The illustrations refer to 40 different comet apparitions; they are grouped into a set of 186 loose 11 x 14 in. plates, while the texts, comments, and relevant data are given in a separate booklet. The main purpose of this atlas is to show in detail the tremendous progress which was achieved in cometary spectroscopy during the period covered, essentially thanks to the use of high-resolution coude spectrographs and large telescopes, the considerable extension of the observed wavelength range, and the advent of electronic detectors. It is divided into two parts. Part 1, which contains about two-thirds of the selected material, presents photographic spectra, while electronically recorded spectra covering the vacuum ultraviolet, through the optical, infrared, and radio regions appear in Part 2.
NASA Technical Reports Server (NTRS)
Fries, M.; Archer, D.; Christou, T.; Conrad, P.; Eigenbrode, J.; Kate, I. L. ten; Steele, A.
2018-01-01
In previous work we proposed a hypothesis wherein debris moving along cometary orbits interacting with Mars (e.g. meteor showers) may be responsible for transient local increases of methane observed in the martian atmosphere (henceforth 'the hypothesis' ). An examination of the literature of methane detections dating back to 1997 showed that each detection was made, at most, 16 days after an interaction between Mars and one of seven small bodies (six comets and the unusual object 5335 Damocles)[ibid]. Two observations of high-altitude, transient visible plumes on Mars also correlate with cometary interactions, one occurring on the same day as the plume observation and the second observation occurring three days afterwards, and with two of the same seven small bodies. The proposed mechanism for methane production is dissemination of carbon-rich cometary material on infall into Mars' atmosphere followed by methane production via UV photolysis, a process that has been observed in laboratory experiments. Given this set of observations it is necessary and indeed conducive to the scientific process to explore and robustly test the hypothesis.
Gas flow through through a porous mantle: implications of fluidisation
NASA Astrophysics Data System (ADS)
Bentley, Mark; Koemle, Norbert; Kargl, Guenter; Huetter, Mag. Erika Sonja
Understanding the interaction of dust and gas in the upper layers of a cometary mantle is critical for understanding cometary evolution. The state of knowledge of conditions in these layers is currently rather low, and a wide range of flow conditions and phenomena can be imagined. A model is presented here that examines the conditions under which so-called "fluidized beds" might be possible in a cometary mantle. This phenomenon, well studied in industry, occurs when the weight of a bed of particles is equal to the gas drag of a gas or fluid flowing upwards through it. Wherever fluidisation occurs in a cometary mantle, it could change the dominant heat transfer mechanism by removing intimate particle contacts (creating an expanded bed) or allowing particle convection in the now fluid-like mantle. There are also implications for the stability of the Rosetta lander, Philae, if such a state were to occur in the vicinity of the deployed anchor. A two-fluid model is used, with necessarily restricted geometries, to demonstrate the conditions (gravity, pressure, gas velocity, particle size etc.) under which fluidisation could occur, and the scientific results and implications for the Rosetta mission are explored.
Cometary atmospheres: Modeling the spatial distribution of observed neutral radicals
NASA Technical Reports Server (NTRS)
Combi, Michael R.
1986-01-01
Progress during the second year of a program of research on the modeling of the spatial distributions of cometary radicals is discussed herein in several major areas. New scale length laws for cometary C2 and CN were determined which explain that the previously-held apparent drop of the C2/CN ratio for large heliocentric distances does not exist and that there is no systematic variation. Monte Carlo particle trajectory model (MCPTM) analysis of sunward and anti-sunward brightness profiles of cometary C2 was completed. This analysis implies a lifetime of 31,000 seconds for the C2 parent and an ejection speed for C2 of approximately 0.5 km/sec upon dissociation from the parent. A systematic reanalysis of published C3 and OH data was begun. Preliminary results find a heliocentric distance dependence for C3 scale lengths with a much larger variation than for C2 and CN. Scale lengths for OH are generally somewhat larger than currently accepted values. The MCPTM was updated to include the coma temperature. Finally, the collaborative effort with the University of Arizona programs has yielded some preliminary CCD images of Comet P/Halley.
Modelling of 67P cometary grains dynamic in the vicinity of the Rosetta spacecraft
NASA Astrophysics Data System (ADS)
Cipriani, F.; Altobelli, N.; Taylor, M.; Fulle, M.; Della Corte, V.; Rotundi, A.
2017-09-01
The interpretation of a number of Rosetta datasets (e.g. GIADA, COSIMA, MIDAS...), relies on the description of cometary grains dynamic in the close vicinity of the spacecraft. In particular the charged grains behaviour in the 3D spacecraft sheath open to the instrument entrances is complex and has not been described at such scales. The existence of a warm electrons population (a few 10eVs energy) in the cometary plasma as revealed during the Rendez-vous phase has been driving the spacecraft potential to negative values typically in the range -1 to -20V as inferred from RPC measurements [1]. Observation of cometary grains in the 10μm to mm range by GIADA and COSIMA[2] allowed to distinguish so called 'compact' grains of processed materials from the solar nebula from 'fluffy' aggregates of more primitive origin. When detected such grains have been observed to reach the instruments at m/s or less velocities. On particular it was inferred that fluffy aggregates are disrupted by electrostatic forces in the vicinity of the spacecraft due to the effects of local plasma hence resulting in particle showers observed by the instruments.
In Situ Plasma Measurements of Fragmented Comet 73P Schwassmann-Wachmann 3
NASA Astrophysics Data System (ADS)
Gilbert, J. A.; Lepri, S. T.; Rubin, M.; Combi, M.; Zurbuchen, T. H.
2015-12-01
The interiors of comets contain some of the most pristine material in the solar system. Comet 73P/Schwassmann-Wachmann 3, discovered in 1930, is a Jupiter-family comet with a 5.34-year period. This comet split into 5 fragments in 1995 and disintegrated into nearly 70 major pieces in 2006. In 2006 May and June, recently ionized cometary particles originating from fragments including and surrounding some of these major objects were collected with the ACE/SWICS and Wind/STICS sensors. Due to a combination of the instrument characteristics and the close proximity of the fragments passing between those spacecraft and the Sun, unique measurements regarding the charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during that time. The cometary material released from some of these fragments can be identified by the concentrations of water-group pickup ions having a mass-per-charge ratio of 16-18 amu e-1, indicating that while these fragments are small, they are still actively sublimating. We present an analysis of cometary composition, spatial distribution, and heliospheric interactions, with a focus on helium, C+/O+, and water-group ions.
IN SITU PLASMA MEASUREMENTS OF FRAGMENTED COMET 73P SCHWASSMANN–WACHMANN 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, J. A.; Lepri, S. T.; Combi, M.
2015-12-10
The interiors of comets contain some of the most pristine material in the solar system. Comet 73P/Schwassmann–Wachmann 3, discovered in 1930, is a Jupiter-family comet with a 5.34-year period. This comet split into 5 fragments in 1995 and disintegrated into nearly 70 major pieces in 2006. In 2006 May and June, recently ionized cometary particles originating from fragments including and surrounding some of these major objects were collected with the ACE/SWICS and Wind/STICS sensors. Due to a combination of the instrument characteristics and the close proximity of the fragments passing between those spacecraft and the Sun, unique measurements regarding themore » charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during that time. The cometary material released from some of these fragments can be identified by the concentrations of water-group pickup ions having a mass-per-charge ratio of 16–18 amu e{sup −1}, indicating that while these fragments are small, they are still actively sublimating. We present an analysis of cometary composition, spatial distribution, and heliospheric interactions, with a focus on helium, C{sup +}/O{sup +}, and water-group ions.« less
The density of cometary protons upstream of Comet Halley's bow shock
NASA Astrophysics Data System (ADS)
Neugebauer, M.; Goldstein, B. E.; Balsiger, H.; Neubauer, F. M.; Schwenn, R.; Shelley, E. G.
1989-02-01
Cometary protons picked up by the solar wind were detected by the high energy range spectrometer of the Giotto ion mass spectrometer starting at a cometocentric distance of about 12 million km. On the average, the density of cometary protons varied approximately as the inverse square of the cometocentric distance, reaching a value of 0.11/cu cm just outside the bow shock. The data can be successfully fit to models that include substantial amounts of both slow (1 km/s) and fast (8 km/s or greater) H atoms beyond the bow shock. Large local variations in the density of picked-up protons can be explained on the basis of variations in the direction of the interplanetary magnetic field in upstream regions where pitch angle scattering was weak.
Martian Methane From a Cometary Source: A Hypothesis
NASA Technical Reports Server (NTRS)
Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.;
2016-01-01
In recent years, methane in the martian atmosphere has been detected by Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. An additional potential source exists: meteor showers from the emission of large comet dust particles could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, generating methane via UV photolysis.
NASA Technical Reports Server (NTRS)
Brinca, A. L.; Tsurutani, B. T.
1987-01-01
The characteristics of electromagnetic waves excited by cometary newborn ions with large perpendicular energies are examined using a model of solar wind permeated by dilute drifting ring distributions of electrons and oxygen ions with finite thermal spreads. The model has parameters compatible with the ICE observations at the Giacobini-Zinner comet. It is shown that cometary newborn ions with large perpendicular energies can excite a wave mode with rest frame frequencies in the order of the heavy ion cyclotron frequency, Omega(i), and unusual propagation characteristics at small obliquity angles. For parallel propagation, the mode is left-hand circularly polarized, might be unstable in a frequency range containing Omega(i), and moves in the direction of the newborn ion drift along the static magnetic field.
Dynamics of Long-period Comets
NASA Technical Reports Server (NTRS)
Weissman, P. R.
1985-01-01
Dynamical studies of the origin and evolution of long period comets in the Oort cloud during the past year have concentrated on four areas: (1) interpretation of IRAS observations of dust shells around Vega and some 40 other main sequence stars as evidence for cometary clouds around each of these stars; (2) the dynamical plausibility of an unseen solar companion star orbiting in the Oort cloud and causing periodic cometary showers which result in biological extinction events on the earth; (3) a review of the current hypotheses for cometary formation with particular attention to how each mechanism supplies the required mass of comets to the Oort cloud; and (4) development of new dynamics software to simulate the passage of individual stars directly through the Oort cloud. Each of these efforts is described in detail.
Characterization of biogenic elements in interplanetary dust particles
NASA Technical Reports Server (NTRS)
Bunch, T. E.
1986-01-01
Those particles that were designated cometary are aggregates of amorphous materials including carbon, iron-magnesium silicates, sulfides, metal and trace amounts of unusual phases. Most aggregates are carbon-rich with major and minor element abundances similar to a fine grained matrix of carbonaceous chondrites. Several particles were analyzed by a laser microprobe. The negative ionic species identified to date include carbon clusters, protonated carbon clusters, CN-, HCN-, CNO-, PO2-, PO3-, S-, S2- asnd OH-. These species are similar to those observed in cometary spectra and they support the assumption that organic materials are present. The occurance of phosphate ions suggests the presence of apatite or whitlockite. Cometary particle characteristics may indicate that the component grains represent primitive unaltered dust whose overall properties are extremely similar to altered primitive dust in carbonaceous chondrites.
Structures of twilight patrol in the "Churyumov's Unified network" to ensure continuous monitoring
NASA Astrophysics Data System (ADS)
Churyumov, K. I.; Steklov, A. F.; Vidmachenko, A. P.; Dashkiev, G. N.; Steklov, E. A.; Slipchenko, A. S.; Romaniuk, Ya. O.; Nevodovskyi, P. V.
2016-10-01
1. Three types of astronomical observations, and three classes of astronomical observatories. Over 70% of the observer's time in astronomical observatories accounted for the night of observation after the end of astronomical twilight. Prior to 15.02.2013, from the famous invasion of the Chelyabinsk large meteoroid in morning twilight, astronomers practically no carried out the twilight observations. But it is such morning and evening twilight observation, became the main "highlight" of the authors in the past four years [3, 5, 7]. Results were unexpected, and they allowed us to state that in our time the astronomical observatory (AO) should be divided into AO for nighttime astronomical observations (NAO), daily astronomical observations (DAO) and AO for twilight astronomical observations (SAO). 2. The real problem of AO DAO and SAO. We affirm, that in the interest of health and safety the inhabitants of our cities, astronomers are obliged significantly expand a circle and list of observations; need to include in it astrophysical observations and registration of facts and traces of all kinds of hazardous aerospace invasions into the sky over our cities. Society and the state allocate their money on the development of astronomical observatories, and therefore are entitled to demand recoil in the form of constant monitoring to ensure nocturnal, daytime and twilight control, for their safety the realities of modern complex time. And it is, in the conditions of aggravation of ecological problems, at climate evolution and of the increasing amount of harmful technogenic pollutants emissions in conditions of constant asteroid and comet hazard [10, 11], and especially within the present conditions of hybrid wars [8, 9]. That is why it is necessary give off sufficient observational time for the monitoring control on the facts and trail of all sorts of dangerous invasions. All astronomical observatories could create their own sectors, which would provide ground and space calibrating control of facts and traces of all kinds of dangerous invasions. 3. Twilight patrol of "Churyumov Unified Network" and the study of invasions of fragments of cometary nuclei in the Earth's atmosphere. The costs of the study of the comet Churyumov-Gerasimenko 67P and its nuclei, on all mission of Rosetta-Philae, amounted to about EUR 2 billion [6]. Its results have significantly improved our understanding of the physics of cometary phenomena have further exacerbated problems of asteroid and comet hazard. In 2016, astronomers a lot of effort and time allocated for study of the disintegration of cometary nucleus of Ikeya - Murakami (P / 2010 V1) at least 17 of fragments. The authors have created a twilight patrol of "United Network Churyumov" to implement of daytime and twilight observations
NASA Technical Reports Server (NTRS)
Chapman, C. R.; Hartmann, W. K.
1978-01-01
Observations and analyses of asteroids, Trojans and cometary nuclei are presented. Spectrophotometry was used to observe the cometary nuclei. The spectra are plotted as a function of semimajor axis and eccentricity. Trojans and other asteroids at great solar distances show a variety of spectra, many of them quite red despite the low measured albedoes for many of these asteroids. The asteroid spectra are grouped according to diameter and taxonomic class.
Terrestrial catastrophe caused by cometary impact at the end of Cretaceous
NASA Astrophysics Data System (ADS)
Hsü, Kenneth J.
1980-05-01
Evidence is presented indicating that the extinction, at the end of the Cretaceous, of large terrestrial animals was caused by atmospheric heating during a cometary impact and that the extinction of calcareous marine plankton was a consequence of poisoning by cyanide released by the fallen comet and of a catastrophic rise in calcite-compensation depth in the oceans after the detoxification of the cyanide.
Original and future cometary orbits. IV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsden, B.G.
1990-06-01
The values of the original and future reciprocal semimajor axes are calulcated for 36 recent osculating cometary orbits. The results are compared with the computations of Yabushita and Hasegawa (1989). Adjustments for deriving original and future orbits are given for nine other recent comets for which only parabolic orbit determinations are available. Specific attention is given to the physical comet pair 1987 XXX/1988 III. 15 refs.
The morphology of cometary dust: Subunit size distributions down to tens of nanometres
NASA Astrophysics Data System (ADS)
Mannel, Thurid; Bentley, Mark; Boakes, Peter; Jeszenszky, Harald; Levasseur-Regourd, Anny-Chantal; Schmied, Roland; Torkar, Klaus
2017-04-01
The Rosetta orbiter carried a dedicated analysis suite for cometary dust. One of the key instruments was MIDAS (Micro-Imaging Dust Analysis System), an atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre particles in 3D with resolutions down to nanometres. This provided the opportunity to study the morphology of the smallest cometary dust; initial investigation revealed that the particles are agglomerates of smaller subunits [1] with different structural properties [2]. To understand the (surface-) structure of the dust particles and the origin of their smallest building blocks, a number of particles were investigated in detail and the size distribution of their subunits determined [3]. Here we discuss the subunit size distributions ranging from tens of nanometres to a few micrometres. The differences between the subunit size distributions for particles collected pre-perihelion, close to perihelion, and during a huge outburst are examined, as well as the dependence of subunit size on particle size. A case where a particle was fragmented in consecutive scans allows a direct comparison of fragment and subunit size distributions. Finally, the small end of the subunit size distribution is investigated: the smallest determined sizes will be reviewed in the context of other cometary missions, interplanetary dust particles believed to originate from comets, and remote observations. It will be discussed if the smallest subunits can be interpreted as fundamental building blocks of our early Solar System and if their origin was in our protoplanetary disc or the interstellar material. References: [1] M.S. Bentley, R. Schmied, T. Mannel et al., Aggregate dust particles at comet 67P/Chruyumov-Gerasimenko, Nature, 537, 2016. doi:10.1038/nature19091 [2] T. Mannel, M.S. Bentley, R. Schmied et al., Fractal cometary dust - a window into the early Solar system, MNRAS, 462, 2016. doi:10.1093/mnras/stw2898 [3] R. Schmied, T. Mannel, H. Jeszenszky, M.S. Bentley, Properties of cometary dust down to the nanometre scale, poster at the conference 'Comets: A new vision after Rosetta/Philae' in Toulouse, 14-18 November 2016.
Dynamics and Distribution of Interplanetary Dust
NASA Astrophysics Data System (ADS)
Ipatov, S. I.; Mather, J. C.
2005-08-01
We integrated the orbital evolution of 12,000 asteroidal, cometary, and trans-Neptunian dust particles, under the gravitational influence of planets, Poynting-Robertson drag, radiation pressure, and solar wind drag (Annals of the New York Academy of Sciences, v. 1017, 66-80, 2004; Advances in Space Research, in press, 2005). The orbital evolution of 30,000 Jupiter-family comets (JFCs) was also integrated (Annals of the New York Academy of Sciences, v. 1017, 46-65, 2004). For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from <0.0004 to 0.4 (for silicates, such values correspond to particle diameters between >1000 and 1 microns). The considered cometary particles started from comets 2P, 10P, and 39P. The probability of a collision of an asteroidal or cometary dust particle with the Earth during a lifetime of the particle was maximum at diameter about 100 microns; this is in accordance with cratering records. Our different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Some JFCs can reach orbits entirely located inside Jupiter's orbit and remain in such orbits for millions of years. Such former comets could disintegrate during millions of years and produce a lot of mini-comets and dust. (2) The spatial density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can migrate outside Jupiter's orbit. Therefore cometary dust particles are needed to explain the observed constant spatial density of dust particles at 3-18 AU from the Sun. (3) Comparison of the velocities of zodiacal dust particles obtained in our runs with the observations of velocities of these particles made by Reynolds et al. (Ap.J., 2004, v. 612, 1206-1213) shows that only asteroidal dust particles cannot explain these observations, and particles produced by high-eccentricity comets (such as Comet Encke) are needed for such explanation. Several our recent papers are presented on astro-ph.
Gone in a Blaze of Glory: The Demise of Comet C/2015 D1 (SOHO)
NASA Astrophysics Data System (ADS)
Hui, Man-To; Ye, Quan-Zhi; Knight, Matthew; Battams, Karl; Clark, David
2015-11-01
We present studies of C/2015 D1 (SOHO), the first sunskirting comet ever seen from ground stations over the past half century. The Solar and Heliospheric Observatory (SOHO) witnessed its peculiar light curve with a huge dip followed by a flare-up around perihelion: the dip was likely caused by sublimation of olivines, directly evidenced by a coincident temporary disappearance of the tail. The flare-up likely reflects a disintegration event, which we suggest was triggered by intense thermal stress established within the nucleus interior. Photometric data reveal an increasingly dusty coma, indicative of volatile depletion. A catastrophic mass-loss rate of ˜105 kg s-1 around perihelion was seen. Ground-based Xingming Observatory spotted the post-perihelion debris cloud. Our morphological simulations of post-perihelion images find newly released dust grains of size a ≳ 10 μm in radius however, a temporal increase in amin was also witnessed, possibly owing to swift dispersions of smaller grains swept away by radiation forces without replenishment. Together with the fading profile of the light curve, a power-law dust size distribution with index γ = 3.2 ± 0.1 is derived. We detected no active remaining cometary nuclei over ˜0.1 km in radius in post-perihelion images acquired at Lowell Observatory. Applying a radial nongravitational parameter, {{A}}1=≤ft(1.209+/- 0.118\\right)× {10}-6 AU day-2, from an isothermal water-ice sublimation model to the SOHO astrometry significantly reduces residuals and sinusoidal trends in the orbit determination. The nucleus mass ˜108-109 kg and the radius ˜50-150 m (bulk density ρd = 0.4 g cm-3 assumed) before the disintegration are deduced from the photometric data; consistent results were determined from the nongravitational effects.
Gone in a Blaze of Glory: the Demise of Comet C/2015 D1 (SOHO)
NASA Astrophysics Data System (ADS)
Hui, Man-To; Ye, Quan-Zhi; Manning Knight, Matthew; Battams, Karl; Clark, David
2015-11-01
We present studies of C/2015 D1 (SOHO), the first sunskirting comet ever seen from ground stations over the past half century. The Solar and Heliospheric Observatory (SOHO) witnessed its peculiar light curve with a huge dip followed by a flareup around perihelion: the dip was likely caused by sublimation of olivines, directly evidenced by a coincident temporary disappearance of the tail. The flareup likely reflects a disintegration event, which we suggest was triggered by intense thermal stress established within the nucleus interior. Photometric data reveal an increasingly dusty coma, indicative of volatile depletion. A catastrophic mass loss rate of ~105 kg s-1 around perihelion was seen. Ground-based Xingming Observatory spotted the post-perihelion debris cloud. Our morphological simulations of post-perihelion images find newly released dust grains of size a >~ 15 μm in radius, however, a temporal increase in amin was also witnessed, possibly due to swift dispersions of smaller grains swept away by radiation forces without replenishment. Together with the fading profile of the light curve, a power law dust size distribution with index γ = 3.2 ± 0.1 is derived. We detected no active remaining cometary nuclei over ~0.1 km in radius in post-perihelion images acquired at Lowell Observatory. Applying radial non-gravitational parameter, A1 = (1.209 ± 0.118) × 10-6 AU day-2, from an isothermal water-ice sublimation model to the SOHO astrometry significantly reduces residuals and sinusoidal trends in the orbit determination. The nucleus mass ~108--109 kg, and the radius ~50--150 m (bulk density ρd = 0.4 g cm-3 assumed) before the disintegration are deduced from the photometric data; consistent results were determined from the non-gravitational effects.