Sample records for comets star tracks

  1. Exo-comet Detection in Debris Disks Around Young A-type Stars

    NASA Astrophysics Data System (ADS)

    Welsh, Barry; Montgomery, S. L.

    2013-01-01

    We present details of the successful search for comet-like bodies (i.e. exo-comets) in orbit around several nearby stars. These objects have been found in young stellar systems that are in the transitional stage of evolution between possession of a gaseous protoplanetary disk to that of a dust-rich debris disk. During this period it is thought that large planetesimals of ~ 1000 km diameter may cause dynamical perturbations in the population of smaller bodies (such as asteroids and comets), such that they are sent on highly eccentric orbits towards their parent star resulting in the liberation of large amounts of evaporating gas and dust. By observing the varying spectral absorption signature of the CaII K-line at 3933Å due to this liberated gas, we have been able to track the trajectory of these exo-comets over a time-frame of several nights as they approach (and sometimes pass around) the central star. The youngest debris disks (1 - 50 Myr) are thought to represent the last stage in the formation of planetary systems and they may resemble our solar system’s own debris disk at the time of the Late Heavy Bombardment when the terrestrial worlds were subject to frequent collisions with asteroids and comets. Collisions with water-rich comets from the outer regions of our solar system may have delivered water to thee Earth’s oceans.

  2. Swarm of Comets Artist Concept

    NASA Image and Video Library

    2015-11-24

    This illustration shows a star behind a shattered comet. Observations of the star KIC 8462852 by NASA's Kepler and Spitzer space telescopes suggest that its unusual light signals are likely from dusty comet fragments, which blocked the light of the star as they passed in front of it in 2011 and 2013. The comets are thought to be traveling around the star in a very long, eccentric orbit. http://photojournal.jpl.nasa.gov/catalog/PIA20053

  3. Comet 'Bites the Dust' Around Dead Star

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Infrared Spectrometer Graph

    This artist's concept illustrates a comet being torn to shreds around a dead star, or white dwarf, called G29-38. NASA's Spitzer Space Telescope observed a cloud of dust around this white dwarf that may have been generated from this type of comet disruption. The findings suggest that a host of other comet survivors may still orbit in this long-dead solar system.

    The white dwarf G29-38 began life as a star that was about three times as massive as our sun. Its death involved the same steps that the sun will ultimately undergo billions of years from now. According to theory, the G29-38 star became brighter and brighter as it aged, until it bloated up into a dying star called a red giant. This red giant was large enough to engulf and evaporate any terrestrial planets like Earth that happened to be in its way. Later, the red giant shed its outer atmosphere, leaving behind a shrunken skeleton of star, called a white dwarf. If the star did host a planetary system, outer planets akin to Jupiter and Neptune and a remote ring of icy comets would remain.

    The Spitzer observations provide observational evidence for this orbiting outpost of comet survivors. Astronomers speculate that one such comet was knocked into the inner regions of G29-38, possibly by an outer planet. As the comet approached very close to the white dwarf, it may have been torn apart by the star's tidal forces. Eventually, all that would be left of the comet is a disk of dust.

    This illustration shows a comet in the process of being pulverized: part of it still exists as a chain of small clumps, while the rest has already spread out into a dusty disk. Comet Shoemaker-Levy 9 broke apart in a similar fashion when it plunged into Jupiter in 1994. Evidence for Comets Found in Dead Star's Dust The graph of data, or spectrum, from NASA's Spitzer Space Telescope indicates that a dead star, or white dwarf, called G29-38, is shrouded by a cloud of dust. The data also demonstrate that this dust contains some of the same types of minerals found in comet Hale-Bopp.

    The findings tell a possible tale of solar system survival. Though the dust seen by Spitzer is likely from a comet that recently perished, its presence suggests that an icy distant ring of comets may still orbit the dead star.

    These data were collected by Spitzer's infrared spectrometer, an instrument that cracks light open like a geode, revealing its coveted components. In this spectrum, light from the white dwarf is on the left, at ultraviolet and visible wavelengths. The spectrum on the right, at infrared wavelengths longer than about 2 microns, shows much more light than can be explained by a white dwarf alone. The bump seen around a wavelength of 10 microns offers a clue to the source of this excess infrared light. It signifies the presence of silicate minerals, which are found in our own solar system on Earth, in sandy beaches, and in comets and asteroids. These silicate grains appear to be very small like those in comets, so astronomers favor the theory that a comet recently broke apart around the dead star.

  4. William Herschel and Comets

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff

    2018-01-01

    I examine the observational and theoretical researches of William Herschel on 21 comets that he observed over the period 1781 to 1812. Herschel's focus, unlike most contemporaries, was on their physical structure, not their orbits. He forged a strong connection between comets and his nebulae with a scheme of cometary "maturation" (1812) involved a comet traveling from star to star after its central "planetary body'; was born from gravitational collapse of a nebula. During close passages of a star, the comet brightened and lost mass from its atmosphere; at other times, when between stars, it encountered nebulae and was rejuvenated by picking up more mass. Laplace soon adopted these ideas to improve his nebula hypothesis for solar system formation.

  5. Can comet clouds around neutron stars explain gamma-ray bursts?

    NASA Technical Reports Server (NTRS)

    Tremaine, S.; Zytkow, A. N.

    1986-01-01

    The proposal of Harwit and Salpeter (1973) that gamma-ray bursts are due to impacts of comets onto neutron stars is examined further. It is assumed that most stars are formed with comet clouds similar to the Oort comet cloud which surrounds the sun, and it is suggested that there are at least four mechanisms by wich neutron stars may be formed while retaining their comet clouds: a spherically symmetric supernova explosion in an isolated star, accretion-induced collapse of a white dwarf in a cataclysmic variable with a very low mass secondary, accretion-induced collapse of a white dwarf in a wide binary with a low-mass giant companion, and coalescence of a close binary composed of two white dwarfs. Estimates are given of the cometary impact rates for such systems. It is suggested that if the wide binary scenario is correct, optical bursts may arise from the impact of comets onto the white dwarf remnant of the giant companion.

  6. Adaptive Optics Makes A Research Instrument Out Of A Commercial 30 cm Aperture Telescope

    NASA Astrophysics Data System (ADS)

    Durig, D. T.

    1999-12-01

    I recently upgraded my SBIG ST-8 CCD camera with the AO-7 Adaptive Optics unit. This has solved many of the problems with tracking errors and the stability of my telescope mount and allowed me to obtain useful astrometric information on asteroids, comets and supernovae. It is no longer easy to take automated remote images but as long as I am at the observatory, good quality data can be obtained. The AO-7 unit allows me to pick a guide star for the guiding CCD just slightly out of the field of view of the imaging CCD. I am able to guide at the rate of 5 corrections per second with a 13th magnitude guide star. The fastest I have been able to guide is 30 times per second, but there are not usually bright enough stars near the image field to use this rate. When I have to use a dimmer star to guide on, and my rate is as slow as once per two seconds, good results are possible as long as the winds are not too strong. With a focal length of 1775 mm (f/5.75) and 2x2 binning on the CDD I am able to reach at least 18th magnitude objects in a 30 second exposure, but the guiding has to be very good to use these images for astrometry. For objects dimmer than 17th magnitude I normally go to a 2 minute exposure. With this equipment I was the first to observe that a recently discovered object (Comet LINEAR S4) was a comet and not an asteroid as originally reported (see IAUC 7267). I have performed additional astrometric observations on Comets LINEAR S3, S4, T2 and Ferris U1. I have also performed measurements on over a dozen asteroids from the MPC Critical List.

  7. Comet Bites the Dust Around Dead Star Artist Concept

    NASA Image and Video Library

    2006-01-11

    This artist concept illustrates a comet being torn to shreds around a dead star, or white dwarf, called G29-38. NASA Spitzer Space Telescope observed a cloud of dust around this white dwarf that may have been generated from comet disruption.

  8. Realm of the comets

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    1987-01-01

    Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sending large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars.

  9. Realm of the comets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weissman, P.R.

    1987-03-01

    Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sendingmore » large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars.« less

  10. April 30 Hubble View of ISON

    NASA Image and Video Library

    2013-11-22

    On April 30, NASA's Hubble Space Telescope observed Comet ISON again. The comet is in the upper middle, showing the long tail. Various galaxies and stars appear behind it. In this image, Hubble trained its telescope on the stars instead of following the comet. The result is that the comet appears fuzzier, but the stars and galaxies are more detailed and precise. These dimmer features don't pop out if the camera is moving, following along with ISON. To see them, you really need to dwell in one place until they emerge from the noise. Credit: NASA/ESA/STScI/AURA -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. 'Where's the flux' star: Exocomets, or Giant Impact?

    NASA Astrophysics Data System (ADS)

    Meng, Huan; Boyajian, Tabetha; Kennedy, Grant; Lisse, Carey; Marengo, Massimo; Wright, Jason; Wyatt, Mark

    2015-12-01

    The discovery of an unusual stellar light curve in the Kepler data of KIC 8462852 has sparked a media frenzy about 'alien megastructures' orbiting that star. Behind the public's excitement about 'aliens,' there is however a true science story: KIC 8462852 offers us a unique window to observe, in real time, the rare cataclysmic events happening in a mature extrasolar planetary system. After analysis of the existing constraints of the system, two possible models stand out as the plausible explanations for the light curve anomaly: immediate aftermath of a large planetary or planetesimal impact, or apparitions of a family of comets or comet fragments. The two plausible models predict very different IR evolution over the years following the transit events, providing a good diagnostic to distinguish them. With shallow mapping of the Kepler field in January 2015, Spitzer/IRAC has found KIC 8462852 with a marginal excess at 4.5 micron. Here, we propose to monitor KIC 8462852 on a regular basis to identify and track its IR excess evolution with deeper images and more accurate photometry.

  12. Comet ISON Streaks Toward the Sun

    NASA Image and Video Library

    2013-11-22

    Date: 19 Nov 2013 Comet ISON shows off its tail in this three-minute exposure taken on 19 Nov. 2013 at 6:10 a.m. EST, using a 14-inch telescope located at the Marshall Space Flight Center. The comet is just nine days away from its close encounter with the sun; hopefully it will survive to put on a nice show during the first week of December. The star images are trailed because the telescope is tracking on the comet, which is now exhibiting obvious motion with respect to the background stars over a period of minutes. At the time of this image, Comet ISON was some 44 million miles from the sun -- and 80 million miles from Earth -- moving at a speed of 136,700 miles per hour. Credit: NASA/MSFC/Aaron Kingery -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on lSON_C2_1128_1248_1129_316_SDOAIA171_1128_165924_full

    NASA Image and Video Library

    2013-12-02

    This view captures the transformation of Comet ISON as it rounded the sun. It combines 60 SOHO C2 frames in which ISON appears (Nov. 28, 1248 UT, to Nov. 29, 0316 UT) with stars, noise and particle tracks removed, plus an SDO AIA 171 image of the sun taken just before the spacecraft attempted to image the comet near perihelion. Credit: NASA/ESA/SOHO, NASA/SDO, and Francis Reddy NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Dust clouds around red giant stars - Evidence of sublimating comet disks?

    NASA Technical Reports Server (NTRS)

    Matese, John J.; Whitmire, Daniel P.; Reynolds, Ray T.

    1989-01-01

    The dust production by disk comets around intermediate mass stars evolving into red giants is studied, focusing on AGB supergiants. The model of Iben and Renzini (1983) is used to study the observed dust mass loss for AGB stars. An expression is obtained for the comet disk net dust production rate and values of the radius and black body temperature corresponding to peak sublimation are calculated for a range of stellar masses. Also, the fractional amount of dust released from a cometesimal disk during a classical nova outburst is estimated.

  14. Massive stars: flare activity due to infalls of comet-like bodies

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon; Ibodov, Firuz S.

    2015-01-01

    Passages of comet-like bodies through the atmosphere/chromosphere of massive stars at velocities more than 600 km/s will be accompanied, due to aerodynamic effects as crushing and flattening, by impulse generation of hot plasma within a relatively very thin layer near the stellar surface/photosphere as well as ``blast'' shock wave, i.e., impact-generated photospheric stellar/solar flares. Observational manifestations of such high-temperature phenomena will be eruption of the explosive layer's hot plasma, on materials of the star and ``exploding'' comet nuclei, into the circumstellar environment and variable anomalies in chemical abundances of metal atoms/ions like Fe, Si etc. Interferometric and spectroscopic observations/monitoring of young massive stars with dense protoplanetary discs are of interest for massive stars physics/evolution, including identification of mechanisms for massive stars variability.

  15. New orbit recalculations of comet C/1890 F1 Brooks and its dynamical evolution

    NASA Astrophysics Data System (ADS)

    Królikowska, Małgorzata; Dybczyński, Piotr A.

    2016-08-01

    C/1890 F1 Brooks belongs to a group of 19 comets used by Jan Oort to support his famous hypothesis on the existence of a spherical cloud containing hundreds of billions of comets with orbits of semi-major axes between 50 000 and 150 000 au. Comet Brooks stands out from this group because of a long series of astrometric observations as well as a nearly 2-yr-long observational arc. Rich observational material makes this comet an ideal target for testing the rationality of an effort to recalculate astrometric positions on the basis of original (comet-star) measurements using modern star catalogues. This paper presents the results of such a new analysis based on two different methods: (I) automatic re-reduction based on cometary positions and the (comet-star) measurements and (II) partially automatic re-reduction based on the contemporary data for the reference stars originally used. We show that both methods offer a significant reduction in the uncertainty of orbital elements. Based on the most preferred orbital solution, the dynamical evolution of comet Brooks during three consecutive perihelion passages is discussed. We conclude that C/1890 F1 is a dynamically old comet that passed the Sun at a distance below 5 au during its previous perihelion passage. Furthermore, its next perihelion passage will be a little closer than during the 1890-1892 apparition. C/1890 F1 is interesting also because it suffered extremely small planetary perturbations when it travelled through the planetary zone. Therefore, in the next passage through perihelion, it will once again be a comet from the Oort spike.

  16. Extrasolar comets: The origin of dust in exozodiacal disks?

    NASA Astrophysics Data System (ADS)

    Marboeuf, U.; Bonsor, A.; Augereau, J.-C.

    2016-11-01

    Comets have been invoked in numerous studies as a potentially important source of dust and gas around stars, but none has studied the thermo-physical evolution, out-gassing rate, and dust ejection of these objects in such stellar systems. In this paper we investigate the thermo-physical evolution of comets in exo-planetary systems in order to provide valuable theoretical data required to interpret observations of gas and dust. We use a quasi-3D model of cometary nucleus to study the thermo-physical evolution of comets evolving around a single star from 0.1 to 50 AU, whose homogeneous luminosity varies from 0.1 to 70L⊙. This paper provides thermal evolution, physical alteration, mass ejection, lifetimes, and the rate of dust and water gas mass productions for comets as a function of the distance to the star and stellar luminosity. Results show significant physical changes to comets at high stellar luminosities. The mass loss per revolution and the lifetime of comets depend on their initial size, orbital parameters and follow a power law with stellar luminosity. The models are presented in such a manner that they can be readily applied to any planetary system. By considering the examples of the Solar System, Vega and HD 69830, we show that dust grains released from sublimating comets have the potential to create the observed (exo)zodiacal emission. We show that observations can be reproduced by 1 to 2 massive comets or by a large number of comets whose orbits approach close to the star. Our conclusions depend on the stellar luminosity and the uncertain lifetime of the dust grains. We find, as in previous studies, that exozodiacal dust disks can only survive if replenished by a population of typically sized comets renewed from a large and cold reservoir of cometary bodies beyond the water ice line. These comets could reach the inner regions of the planetary system following scattering by a (giant) planet.

  17. Star of Bethlehem

    NASA Astrophysics Data System (ADS)

    Hughes, D.; Murdin, P.

    2001-07-01

    The biblical Star of Bethlehem, which heralded the birth of Jesus Christ, is only mentioned in the Gospel of St Matthew 2. The astrologically significant 7 bc triple conjunction of Jupiter and Saturn in the constellation of Pisces is the most likely candidate, although a comet/nova in 5 bc and a comet in 4 bc cannot be ruled out. There is also the possibility that the star was simply fictitious....

  18. Photographic observations of six comets

    NASA Astrophysics Data System (ADS)

    de Sanctis, G.; Ferreri, W.; Zappala, V.

    Sixty-nine positions of six comets are given as obtained from photographic observations made at the Observatory of Torino from October 1980 to September 1982. Positions are given for Comets Encke, Stephan-Oterma, Meier, Bradfield, Panther, and Austin. Plates were measured with a Zeiss two-coordinate measuring machine. The AGK3 catalog was used to obtain the positions of reference stars and the coordinates of an additional cataloged star near the position of the comet on the plate. The mean values of the differences between the cataloged positions were found to be 0.72 arcsec and 0.52 arcsec in right ascension and declination, respectively.

  19. Capture of the Sun's Oort cloud from stars in its birth cluster.

    PubMed

    Levison, Harold F; Duncan, Martin J; Brasser, Ramon; Kaufmann, David E

    2010-07-09

    Oort cloud comets are currently believed to have formed in the Sun's protoplanetary disk and to have been ejected to large heliocentric orbits by the giant planets. Detailed models of this process fail to reproduce all of the available observational constraints, however. In particular, the Oort cloud appears to be substantially more populous than the models predict. Here we present numerical simulations that show that the Sun captured comets from other stars while it was in its birth cluster. Our results imply that a substantial fraction of the Oort cloud comets, perhaps exceeding 90%, are from the protoplanetary disks of other stars.

  1. Dynamics of Long-period Comets

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.

    1985-01-01

    Dynamical studies of the origin and evolution of long period comets in the Oort cloud during the past year have concentrated on four areas: (1) interpretation of IRAS observations of dust shells around Vega and some 40 other main sequence stars as evidence for cometary clouds around each of these stars; (2) the dynamical plausibility of an unseen solar companion star orbiting in the Oort cloud and causing periodic cometary showers which result in biological extinction events on the earth; (3) a review of the current hypotheses for cometary formation with particular attention to how each mechanism supplies the required mass of comets to the Oort cloud; and (4) development of new dynamics software to simulate the passage of individual stars directly through the Oort cloud. Each of these efforts is described in detail.

  2. Comets

    NASA Astrophysics Data System (ADS)

    Brownlee, D. E.

    2003-12-01

    Comets are surviving members of a formerly vast distribution of solid bodies that formed in the cold regions of the solar nebula. Cometary bodies escaped incorporation into planets and ejection from the solar system and they have been stored in two distant reservoirs, the Oort cloud and the Kuiper Belt, for most of the age of the solar system. Observed comets appear to have formed between 5 AU and 55 AU. From a cosmochemical viewpoint, comets are particularly interesting bodies because they are preserved samples of the solar nebula's cold ice-bearing regions that occupied 99% of the areal extent of the solar nebula disk. All comets formed beyond the "snow line" of the nebula, where the conditions were cold enough for water ice to condense, but they formed from environments that significantly differed in temperature. Some formed in the comparatively "warm" regions near Jupiter where the nebular temperature may have been greater than 120 K and others clearly formed beyond Neptune where temperatures may have been less than 30 K (Bell et al., 1997). Although comets are the best-preserved materials from the early solar system, they should be a mix of nebular and presolar materials that accreted over a vast range of distances from the Sun in environments that differed in temperature, pressure, and accretional conditions such as impact speed.Comets, by conventional definition, are unstable near the Sun; they contain highly volatile ices that vigorously sublime within 2-3 AU of the Sun. When heated, they release gas and solids due to "cometary activity," a series of processes usually detected from afar by the presence of a coma of gas and dust surrounding the cometary nucleus and or elongated tails composed of dust and gas. Active comets clearly have not been severely modified by the moderate to extreme heating that has affected all other solar system materials, including planets, moons, and even the asteroids that produced the most primitive meteorites. Comets have been widely described as the most primitive solar system materials, preserved at cryogenic temperature and low pressure since the formation of the Sun. This is likely to be true, in general, but there is a growing body of recent evidence suggesting that comets are both more physically complex and have had more complex histories than formerly believed. They formed over an order of magnitude range of distances from the Sun; some are fragments of relatively large bodies and collisional effects must have processed at least some comets, as they have processed asteroids (McSween and Weissman, 1989).Comet-like materials are presumed to be the building blocks of Uranus and Neptune (the ice giants); they may have played a role in the formation of Jupiter and Saturn (the gas giants) and they also played some role in transporting outer solar system volatile materials to inner planets (Delsemme, 2000). The inner solar system flux of comets may have been much higher in the past and comets may have played a role in producing the late heavy bombardment on terrestrial planets ( Levison et al., 2001). Comets also exist outside the solar system and there is good evidence that they orbit a major fraction of Sun-like stars. Circumstellar dust, which appears to have been generated by comets, is detected as thermal infrared emission and sometimes as scattered starlight ( Backman et al., 1997; Weissman, 1984; Jewitt and Luu, 1995). It is particularly interesting that the amount of dust around stars declines with stellar age and is highest around stars younger than a few hundred million years. The common presence of what appears to be comet-generated dust around other stars suggests that comet formation is a normal and common consequence of star formation ( Figure 1). (6K)Figure 1. The ratio of infrared excess/stellar luminosity is a measure of the fraction of starlight absorbed by circumstellar dust and re-radiated in the infrared. The plot from Spangler et al. (2001) shows the temporal decline of dust around "Vega-like" stars (points) and stars in clusters with measured ages (circles). At least for the longer ages, the dust is most probably generated by comets.

  3. Comet showers and Nemesis, the death star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hills, J.G.

    1984-01-01

    The recently proposed hypothesis that the periodic extinctions of terrestrial species are the result of comet showers catalyzed by a hypothetical distant solar companion, Nemesis, a tale of global death by comet bombardment of the earth, is discussed. (GHT)

  4. Investigation of Preservice Science Teachers' Comprehension of the Star, Sun, Comet and Constellation Concepts

    ERIC Educational Resources Information Center

    Cevik, Ebru Ezberci; Kurnaz, Mehmet Altan

    2017-01-01

    The purpose of this study is to reveal preservice science teachers' perceptions related to the sun, star, comet and constellation concepts. The research was carried out by 56 preservice science teachers (4th grade) at Kastamonu University taking astronomy course in 2014-2015 academic year. For data collection open-ended questions that required…

  5. Gamma-ray burst constraints on the galactic frequency of extrasolar Oort Clouds

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stern, S. Alan

    1995-01-01

    With the strong Compton Gamma-Ray Observatory/Burst and Transient Source Experiment (CGRO/BATSE) evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approx. equals 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NSs penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequence stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on time scales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating, events. Comparing these estimates to the 3-4 soft gamma-ray repeater sources detected by BATSE, one is forced to conclude that (1) comet impacts on NSs are inefficient at producing gamma rays; or (2) the gamma rays from such events are highly beamed; or (3) the fraction of stars in the galaxy with Oort Clouds like our own is not higher than a few percent.

  6. Gamma-ray burst constraints on the galactic frequency of extra-solar Oort clouds

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stern, S. Alan

    1994-01-01

    With the strong CGRO/BATSE evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approximately equals to 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NS's penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequences stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on timescales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating events. Comparing these estimates to the three to four soft gamma-ray repeater sources detected by BATSE, one is forced to conclude that (1) comet impacts on NS's are inefficient at producing gamma-rays; or (2) the gamma-rays from such events are highly beamed; or (3) the fraction of stars in the galaxy with Oort Cloud like our own is not higher than a few percent.

  7. Comets, carbonaceous chondrites, and interstellar clouds: Condensation of carbon

    NASA Technical Reports Server (NTRS)

    Field, G. B.

    1979-01-01

    Comets, carbonaceous chondrites, and interstellar clouds are discussed in relation to information on interstellar dust. The formation and presence of carbon in stars, comets, and meteorites is investigated. The existence of graphite in the interstellar medium, though it is predicted from thermodynamic calculations, is questioned and the form of carbon contained in comets is considered.

  8. Studies of extra-solar Oort Clouds and the Kuiper Disk

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1994-01-01

    The March 1994 Semi-Annual report for Studies of Extra-Solar Oort Clouds and the Kuiper Disk is presented. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. Our three-year effort consists of two major efforts: observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and modeling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including beta Pic.

  9. Primitive bodies - Molecular abundances in Comet Halley as probes of cometary formation environments

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1989-01-01

    The most recent results on abundances of molecules in Halley's comet are examined in the context of various models for the environment in which comets formed. These environments include molecular clouds associated with star-forming regions, the solar nebula, gaseous disks around proto-planets, and combinations of these. Of all constituents in a cometary nucleus, the highly volatile molecules such as methane, ammonia, molecular nitrogen, and carbon monoxide are most sensitive to the final episode of cometary grain formation and incorporation in the comet's nucleus; hence they likely reflect at least some chemical processing in the solar nebula. Proper interpretation requires modeling of a number of physical processes including gas phase chemistry, chemistry on grain surfaces, and fractionation effects resulting from preferential incorporation of certain gases in proto-cometary grains. The abundance of methane in Halley's comet could be a key indicator of where that comet formed, provided the methane abundance on grains in star-forming regions can be observationally constrained.

  10. Studies of extra-solar Oort clouds and the Kuiper disk

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1996-01-01

    We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. According to 'standard' theory, both the Kuiper Belt and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This project consists of two efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Belt (KB) and similar assemblages that may reside around other stars, including beta Pic.

  11. Education And Public Outreach For NASA's EPOXI Mission

    NASA Astrophysics Data System (ADS)

    McFadden, Lucy-Ann A.; Warner, E. M.; Crow, C. A.; Ristvey, J. D.; Counley, J.

    2008-09-01

    NASA's EPOXI mission has two scientific objectives in using the Deep Impact flyby spacecraft for further studies of comets and adding studies of extra-solar planets around other stars. During the Extrasolar Planetary Observations and Characterization (EPOCh) phase of the mission, observations of extrasolar planets transiting their parent stars are observed to further knowledge and understanding of planetary systems. Observations of Earth allow for comparison with Earth-like planets around other stars. A movie of Earth during a day when the Moon passed between Earth and the spacecraft is an educational highlight with scientific significance. The Deep Impact Extended Investigation (DIXI) continues the Deep Impact theme of investigating comets with a flyby of comet Hartley 2 in November 2010 to further explore the properties of comets and their formation. The EPOXI Education and Public Outreach (E/PO) program builds upon existing materials related to exploring comets and the Deep Impact mission, updating and modifying activities based on results from Deep Impact. An educational activity called Comparing Comets is under development that will guide students in conducting analyses similar to those that DIXI scientists will perform after observing comet Hartley 2. Existing educational materials related to planet finding from other NASA programs are linked from EPOXI's web page. Journey Through the Universe at the National Air and Space Museum encourages education in family and community groups and reaches out to underrepresented minorities. EPOXI's E/PO program additionally offers a newsletter to keep the public, teachers, and space enthusiasts apprised of mission activities. For more information visit: http://epoxi.umd.edu.

  12. Studies of extra-solar OORT clouds and the Kuiper disk

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1993-01-01

    This is the second report for NAGW-3023, Studies of Extra-Solar Oort Clouds and the Kuiper Disk. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for infering the presence of planetary systems. Our three-year effort consists of two major efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including Beta Pic. These efforts are referred to as Task 1 and 2, respectively.

  13. Studies of extra-solar Oort Clouds and the Kuiper Disk

    NASA Technical Reports Server (NTRS)

    Stern, Alan

    1995-01-01

    This is the September 1995 Semi-Annual report for Studies of Extra-Solar Oort Clouds and the Kuiper Disk. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This project consists of two major efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including beta Pic. These efforts are referred to as Task 1 and 2.

  14. Near-parabolic comets observed in 2006-2010 - II. Their past and future motion under the influence of the Galaxy field and known nearby stars

    NASA Astrophysics Data System (ADS)

    Dybczyński, Piotr A.; Królikowska, Małgorzata

    2015-03-01

    In the first part of this research we extensively investigated and carefully determined osculating, original (when entering Solar system) and future (when leaving it), orbits of 22 near-parabolic comets with small perihelion distance (qosc < 3.1 au), discovered in years 2006-2010. Here, we continue this research with a detailed study of their past and future motion during previous and next orbital periods under the perturbing action of our Galactic environment. At all stages of our dynamical study, we precisely propagate in time the observational uncertainties of cometary orbits. For the first time in our calculations, we fully take into account individual perturbations from all known stars or stellar systems that closely (less than 3.5 pc) approach the Sun during the cometary motion in the investigated time interval of several million years. This is done by means of a direct numerical integration of the N-body system comprising of a comet, the Sun and 90 potential stellar perturbers. We show a full review of various examples of individual stellar action on cometary motion. We conclude that perturbations from all known stars or stellar systems do not change the overall picture of the past orbit evolution of long-period comets. Their future motion might be seriously perturbed during the predicted close approach of Gliese 710 star but we do not observe significant energy changes. The importance of stellar perturbations is tested on the whole sample of 108 comets investigated by us so far and our previous results, obtained with only Galactic perturbations included, are fully confirmed. We present how our results can be used to discriminate between dynamically new and old near-parabolic comets and discuss the relevance of the so-called Jupiter-Saturn barrier phenomenon. Finally, we show how the Oort spike in the 1/a-distribution of near-parabolic comets is built from both dynamically new and old comets. We also point out that C/2007 W1 seems to be the first serious candidate for interstellar provenance.

  15. Cometary Dust in the Debris of HD 31648 and HD163296: Two "Baby" Beta pictoris Stars

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Grady, Carol A.; Lynch, David K.; Russell, Ray W.; Hanner, Martha S.

    1999-01-01

    The debris disks surrounding the pre-main-sequence stars HD 31648 and HD 163296 were observed spectroscopically between 3 and 14 microns. Both stars possess a silicate emission feature at 10 Am that resembles that of the star P Pictoris and those observed in solar system comets. The structure of the band is consistent with a mixture of olivine and pyroxene material, plus an underlying continuum of unspecified origin. The similarity in both size and structure of the silicate band suggests that the material in these systems had a processing history similar to that in our own solar system prior to the time that the grains were incorporated into comets.

  16. Cometary Dust in the Debris Disks of HD 31648 and HD 163296: Two "Baby" (BETA) Pictoris Stars

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Grady, Carol A.; Lynch, David K.; Russell, Ray W.; Hanner, Martha S.; Hanner, Martha S.

    1999-01-01

    The debris disks surrounding the pre-main-sequence stars HD 31648 and HD 163296 were observed spectroscopically between 3 and 14 microns. Both stars possess a silicate emission feature at 10 microns that resembles that of the star beta Pictoris and those observed in solar system comets. The structure of the band is consistent with a mixture of olivine and pyroxene material, plus an underlying continuum of unspecified origin. The similarity in both size and structure of the silicate band suggests that the material in these systems had a processing history similar to that in our own solar system prior to the time that the grains were incorporated into comets.

  17. Comets in Indian Scriptures

    NASA Astrophysics Data System (ADS)

    Das Gupta, P.

    2016-01-01

    The Indo-Aryans of ancient India observed stars and constellations for ascertaining auspicious times in order to conduct sacrificial rites ordained by the Vedas. Naturally, they would have sighted comets and referred to them in the Vedic texts. In Rigveda (circa 1700-1500 BC) and Atharvaveda (circa 1150 BC), there are references to dhumaketus and ketus, which stand for comets in Sanskrit. Rigveda speaks of a fig tree whose aerial roots spread out in the sky (Parpola 2010). Had this imagery been inspired by the resemblance of a comet's tail with long and linear roots of a banyan tree (ficus benghalensis)? Varahamihira (AD 550) and Ballal Sena (circa AD 1100-1200) described a large number of comets recorded by ancient seers, such as Parashara, Vriddha Garga, Narada, and Garga, to name a few. In this article, we propose that an episode in Mahabharata in which a radiant king, Nahusha, who rules the heavens and later turns into a serpent after he kicked the seer Agastya (also the star Canopus), is a mythological retelling of a cometary event.

  18. Oort spike comets with large perihelion distances

    NASA Astrophysics Data System (ADS)

    Królikowska, Małgorzata; Dybczyński, Piotr A.

    2017-12-01

    The complete sample of large-perihelion nearly-parabolic comets discovered during the period 1901-2010 is studied, starting with their orbit determination. Next, an orbital evolution that includes three perihelion passages (previous-observed-next) is investigated in which a full model of Galactic perturbations and perturbations from passing stars is incorporated. We show that the distribution of planetary perturbations suffered by actual large-perihelion comets during their passage through the Solar system has a deep, unexpected minimum around zero, which indicates a lack of 'almost unperturbed' comets. Using a series of simulations we show that this deep well is moderately resistant to some diffusion of the orbital elements of the analysed comets. It seems reasonable to assert that the observed stream of these large-perihelion comets experienced a series of specific planetary configurations when passing through the planetary zone. An analysis of the past dynamics of these comets clearly shows that dynamically new comets can appear only when their original semimajor axes are greater than 20 000 au. On the other hand, dynamically old comets are completely absent for semimajor axes longer than 40 000 au. We demonstrate that the observed 1/aori-distribution exhibits a local minimum separating dynamically new from dynamically old comets. Long-term dynamical studies reveal a wide variety of orbital behaviour. Several interesting examples of the action of passing stars are also described, in particular the impact of Gliese 710, which will pass close to the Sun in the future. However, none of the obtained stellar perturbations is sufficient to change the dynamical status of the analysed comets.

  19. Investigation of the phenomenon of the big comet of 1858

    NASA Technical Reports Server (NTRS)

    Pape, C. F.

    1977-01-01

    Various aspects of the large comet of 1858 including the luminosity of the core and the shape, intensity and position of the tail with respect to the sun and stars are described and then compared with the large comet of 1744 described by Heinsius and Halley's comet of 1835. The purpose of these observations is to try to gain a clearer understanding of the nature of the polar force from the sun acting on the comet. This force is said to differ from the usual force of gravity.

  20. Student-Teacher Astronomy Resource (STAR) Program

    NASA Astrophysics Data System (ADS)

    Gaboardi, M.; Humayun, M.; Dixon, P.

    2006-12-01

    Our NASA-funded E/PO program, the Student-Teacher Astronomy Resource (STAR) Program, designed around the Stardust and Genesis Missions, focuses on the reciprocal relationship between technological progress and advances in scientific understanding. We work directly with the public, teachers, classrooms, and individual school students. Both formal and informal evaluations suggest that our four-step approach to outreach has been effective. This annual program may serve as a model for the partnership between a national research institution, local scientists, and local teachers. The program has four components: 1."Space Stations" developed around the technology and science of the Genesis and Stardust Missions, are offered as child-friendly booths at the annual National High Magnetic Field Laboratory (NHMFL) Open House. The stations allow for direct interaction between the scientists and the public (over 3000 visitors). 2. STAR teachers (15) receive training and supplies to lead their classrooms through "Technology for Studying Comets". After attending a one-day in-service at the NHMFL, teachers can bring to their students an inquiry-based space science unit about which they are knowledgeable and excited. 3. We offer "Comet Tales," an informal education experience based on the NASA classroom activity "Comet Basics," to 15 local classrooms. We visit local classrooms and engage students with inquiry about comets, sampling of Wild 2, and what scientists hope to learn from the Stardust Mission. Visits occur during the two-week "Technology for Studying Comets" unit taught by each STAR teacher. 4. The "Stellar Students" component involves 15 high-achieving students in research activities. From each classroom visited during "Comet Tales," one student is selected to visit the NHMFL for a day. Parents and teachers of the students are invited for an awards ceremony and student presentations. Evaluation consisted of focus groups, informal observation, and questionnaires. Responses were overwhelmingly positive. This format allows us to continuously improve the design of our program and ensure that we meet the needs of our local school district.

  1. Life on Titan

    NASA Astrophysics Data System (ADS)

    Potashko, Oleksandr

    Volcanoes engender life on heavenly bodies; they are pacemakers of life. All planets during their period of formation pass through volcanism hence - all planets and their satellites pass through the life. Tracks of life If we want to find tracks of life - most promising places are places with volcanic activity, current or past. In the case of just-in-time volcanic activity we have 100% probability to find a life. Therefore the most perspective “search for life” are Enceladus, Io and comets, further would be Venus, Jupiter’s satellites, Saturn’s satellites and first of all - Titan. Titan has atmosphere. It might be result of high volcanic activity - from one side, from other side atmosphere is a necessary condition development life from procaryota to eucaryota. Existence of a planet means that all its elements after hydrogen formed just there inside a planet. The forming of the elements leads to the formation of mineral and organic substances and further to the organic life. Development of the life depends upon many factors, e.g. the distance from star/s. The intensity of the processes of the element formation is inversely to the distance from the star. Therefore we may suppose that the intensity of the life in Mercury was very high. Hence we may detect tracks of life in Mercury, particularly near volcanoes. The distance from the star is only one parameter and now Titan looks very active - mainly due to interior reason. Its atmosphere compounds are analogous to comet tail compounds. Their collation may lead to interesting result as progress occurs at one of them. Volcanic activity is as a source of life origin as well a reason for a death of life. It depends upon the thickness of planet crust. In the case of small thickness of a crust the probability is high that volcanoes may destroy a life on a planet - like Noachian deluge. Destroying of the life under volcano influences doesn’t lead to full dead. As result we would have periodic Noachian deluge or nuclear winter. These events are known as extinctions or ice ages. The crust of a planet of the Earth group is formed at the outer edge of the body. The planets after asteroid belt like Jupiter or Saturn probably form their “crusts” in the centre of the body. Due to we may see internal kitchen of element forming in detail. This processes lead to the organic life, which we may detect at the atmospheres of Jupiter, Saturn, Neptune, and Pluto. But their satellites look like earth planet group - with outer crust. Huygens considered that God's wisdom and providence is clearest in the creation of life, and Earth holds no privileged position in the heavens that life must be universal. “Huygens” helps find life on Titan

  2. The Concise Knowledge Astronomy

    NASA Astrophysics Data System (ADS)

    Clerke, Agnes Mary; Fowler, Alfred; Ellard Gore, John

    2011-01-01

    Preface; Section I. History Agnes M. Clerke: 1. From Hipparchus to Laplace; 2. A century of progress; Section II. Geometrical Astronomy and Astronomical Instruments A. Fowler: 1. The Earth and its rotation; 2. The Earth's revolution round the Sun; 3. How the positions of the heavenly bodies are defined; 4. The Earth's orbit; 5. Mean solar time; 6. The movements of the Moon; 7. Movements of planets, satellites, and comets; 8. Eclipses and occultations; 9. How to find our situation on the Earth; 10. The exact size and shape of the earth; 11. The distances and dimensions of the heavenly bodies; 12. The masses of celestial bodies; 13. Gravitational effects of Sun and moon upon the Earth; 14. Instrumental measurement of angles and time; 15. Telescopes; 16. Instruments of precision; 17. Astrophysical instruments; Section III. The Solar System Agnes M. Clerke: 1. The solar system as a whole; 2. The Sun; 3. The Sun's surroundings; 4. The interior planets; 5. The Earth and Moon; 6. The planet Mars; 7. The asteroids; 8. The planet Jupiter; 9. The Saturnian system; 10. Uranus and Neptune; 11. Famous comets; 12. Nature and origin of comets; 13. Meteorites and shooting stars; Section IV. The Sidereal Heavens J.E. Gore: 1. The stars and constellations; 2. Double, multiple, and coloured stars; 3. The distances and motions of the stars; 4. Binary stars; 5. Variable and temporary stars; 6. Clusters and nebulae; 7. The construction of the heavens; Index.

  3. On stellar encounters and their effect on cometary orbits in the Oort cloud

    NASA Astrophysics Data System (ADS)

    Serafin, R. A.; Grothues, H.-G.

    2002-03-01

    We systematically investigate the encounters between the Sun and neighbouring stars and their effects on cometary orbits in the Oort cloud, including the intrinsic one with the star Gl 710 (HIP 89 825), with some implications to stellar and cometary dynamics. Our approach is principally based on the combination of a Keplerian-rectilinear model of stellar passages and the Hipparcos Catalogue (ESA 1997). Beyond the parameters of encounter, we pay particular attention to the observational errors in parallaxes and stellar velocities, and their propagation in time. Moreover, as a special case of this problem, we consider the collision probability of a star passing very closely to the Sun, taking also into account the mutual gravitational attraction between the stars. In the part dealing with the influence of stellar encounters on the orbital elements of Oort cloud comets, we derive new simple formulae calculating the changes in the cometary orbital elements, expressed as functions of the Jeans impulse formula. These expressions are then applied to calculate numerical values of the element changes caused by close encounters of neighbouring stars with some model comets in the Oort cloud. Moreover, the general condition for an ejection of comets from the cloud effected by a single encounter is derived and discussed.

  4. Hubble Sees Material Ejected From Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    1995-01-01

    These NASA Hubble Space Telescope pictures of comet Hale-Bopp show a remarkable 'pinwheel' pattern and a blob of free-flying debris near the nucleus. The bright clump of light along the spiral (above the nucleus, which is near the center of the frame) may be a piece of the comet's icy crust that was ejected into space by a combination of ice evaporation and the comet's rotation, and which then disintegrated into a bright cloud of particles.

    Although the 'blob' is about 3.5 times fainter than the brightest portion at the nucleus, the lump appears brighter because it covers a larger area. The debris follows a spiral pattern outward because the solid nucleus is rotating like a lawn sprinkler, completing a single rotation about once per week.

    Ground-based observations conducted over the past two months have documented at least two separate episodes of jet and pinwheel formation and fading. By coincidence, the first Hubble images of Hale-Bopp, taken on September 26, 1995, immediately followed one of these outbursts and allow researchers to examine it at unprecedented detail. For the first time they see a clear separation between the nucleus and some of the debris being shed. By putting together information from the Hubble images and those taken during the recent outburst using the 82 cm telescope of the Teide Observatory (Tenerife, Canary Islands, Spain), astronomers find that the debris is moving away from the nucleus at a speed (projected on the sky) of about 68 miles per hour (109 kilometers per hour).

    The Hubble observations will be used to determine if Hale-Bopp is really a giant comet or rather a more moderate-sized object whose current activity is driven by outgassing from a very volatile ice which will 'burn out' over the next year. Comet Hale-Bopp was discovered on July 23, 1995 by amateur astronomers Alan Hale and Thomas Bopp. Though this comet is still well outside the orbit of Jupiter (almost 600 million miles, or one billion kilometers from Earth) it looks surprisingly bright, fueling predictions that it could become the brightest comet of the century in early 1997.

    The full-field picture on the left, taken with the Wide Field Planetary Camera 2 (in WF mode), shows the comet against a stellar backdrop in the constellation Sagittarius. The stars are streaked due to a combination of Hubble's orbital motion and its tracking of the nucleus, which is now falling toward the Sun at 33,800 miles per hour (54,000 km/hr). In the close-up picture on the right, the stars have been subtracted through image processing. Each picture element is nearly 300 miles (480 km) across at the comet's distance. In this false color scale the faintest regions are black, the brightest regions are white, and intermediate intensities are represented by different levels of red.

    Even more detailed Hubble images will be taken with the Planetary Camera in late October to follow the further evolution of the spiral, look for more outbursts, place limits on the size of the nucleus, and use spectroscopy to study the enigmatic comet's chemical composition.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  5. Silicate Crystal Formation in the Disk of an Erupting Star Artist Concept

    NASA Image and Video Library

    2009-05-13

    This artist's concept illustrates how silicate crystals like those found in comets can be created by an outburst from a growing star. The image shows a young sun-like star encircled by its planet-forming disk of gas and dust. The silicate that makes up most of the dust would have begun as non-crystallized, amorphous particles. Streams of material are seen spiraling from the disk onto the star increasing its mass and causing the star to brighten and heat up dramatically. The outburst causes temperatures to rise in the star's surrounding disk. The animation (figure 1) zooms into the disk to show close-ups of silicate particles. When the disk warms from the star's outburst, the amorphous particles of silicate melt. As they cool off, they transform into forsterite (figure 2), a type of silicate crystal often found in comets in our solar system. In April 2008, NASA's Spitzer Space Telescope detected evidence of this process taking place on the disk of a young sun-like star called EX Lupi. http://photojournal.jpl.nasa.gov/catalog/PIA12008

  6. Proof of Concept for a Simple Smartphone Sky Monitor

    NASA Astrophysics Data System (ADS)

    Kantamneni, Abhilash; Nemiroff, R. J.; Brisbois, C.

    2013-01-01

    We present a novel approach of obtaining a cloud and bright sky monitor by using a standard smartphone with a downloadable app. The addition of an inexpensive fisheye lens can extend the angular range to the entire sky visible above the device. A preliminary proof of concept image shows an optical limit of about visual magnitude 5 for a 70-second exposure. Support science objectives include cloud monitoring in a manner similar to the more expensive cloud monitors in use at most major astronomical observatories, making expensive observing time at these observatories more efficient. Primary science objectives include bright meteor tracking, bright comet tracking, and monitoring the variability of bright stars. Citizen science objectives include crowd sourcing of many networked sky monitoring smartphones typically in broader support of many of the primary science goals. The deployment of a citizen smartphone array in an active science mode could leverage the sky monitoring data infrastructure to track other non-visual science opportunities, including monitoring the Earth's magnetic field for the effects of solar flares and exhaustive surface coverage for strong seismic events.

  7. Constraints on nebular dynamics and chemistry based on observations of annealed magnesium silicate grains in comets and in disks surrounding Herbig Ae/Be stars

    PubMed Central

    Hill, Hugh G. M.; Grady, Carol A.; Nuth, Joseph A.; Hallenbeck, Susan L.; Sitko, Michael L.

    2001-01-01

    Understanding dynamic conditions in the Solar Nebula is the key to prediction of the material to be found in comets. We suggest that a dynamic, large-scale circulation pattern brings processed dust and gas from the inner nebula back out into the region of cometesimal formation—extending possibly hundreds of astronomical units (AU) from the sun—and that the composition of comets is determined by a chemical reaction network closely coupled to the dynamic transport of dust and gas in the system. This scenario is supported by laboratory studies of Mg silicates and the astronomical data for comets and for protoplanetary disks associated with young stars, which demonstrate that annealing of nebular silicates must occur in conjunction with a large-scale circulation. Mass recycling of dust should have a significant effect on the chemical kinetics of the outer nebula by introducing reduced, gas-phase species produced in the higher temperature and pressure environment of the inner nebula, along with freshly processed grains with “clean” catalytic surfaces to the region of cometesimal formation. Because comets probably form throughout the lifetime of the Solar Nebula and processed (crystalline) grains are not immediately available for incorporation into the first generation of comets, an increasing fraction of dust incorporated into a growing comet should be crystalline olivine and this fraction can serve as a crude chronometer of the relative ages of comets. The formation and evolution of key organic and biogenic molecules in comets are potentially of great consequence to astrobiology. PMID:11226213

  8. Part II: Cosmic Winter.

    ERIC Educational Resources Information Center

    Overbye, Dennis

    1984-01-01

    Discusses conflicting theories that explain how and why bombardment by comets spells periodic disaster for life on earth. Dislodgment of comets occurs from a vast cloud that envelops the solar system by gravitational forces of either a companion star of the sun or a dust cloud. (BC)

  9. Comets Kick up Dust in Helix Nebula

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This infrared image from NASA's Spitzer Space Telescope shows the Helix nebula, a cosmic starlet often photographed by amateur astronomers for its vivid colors and eerie resemblance to a giant eye.

    The nebula, located about 700 light-years away in the constellation Aquarius, belongs to a class of objects called planetary nebulae. Discovered in the 18th century, these colorful beauties were named for their resemblance to gas-giant planets like Jupiter.

    Planetary nebulae are the remains of stars that once looked a lot like our sun. When sun-like stars die, they puff out their outer gaseous layers. These layers are heated by the hot core of the dead star, called a white dwarf, and shine with infrared and visible colors. Our own sun will blossom into a planetary nebula when it dies in about five billion years.

    In Spitzer's infrared view of the Helix nebula, the eye looks more like that of a green monster's. Infrared light from the outer gaseous layers is represented in blues and greens. The white dwarf is visible as a tiny white dot in the center of the picture. The red color in the middle of the eye denotes the final layers of gas blown out when the star died.

    The brighter red circle in the very center is the glow of a dusty disk circling the white dwarf (the disk itself is too small to be resolved). This dust, discovered by Spitzer's infrared heat-seeking vision, was most likely kicked up by comets that survived the death of their star. Before the star died, its comets and possibly planets would have orbited the star in an orderly fashion. But when the star blew off its outer layers, the icy bodies and outer planets would have been tossed about and into each other, resulting in an ongoing cosmic dust storm. Any inner planets in the system would have burned up or been swallowed as their dying star expanded.

    So far, the Helix nebula is one of only a few dead-star systems in which evidence for comet survivors has been found.

    This image is made up of data from Spitzer's infrared array camera and multiband imaging photometer. Blue shows infrared light of 3.6 to 4.5 microns; green shows infrared light of 5.8 to 8 microns; and red shows infrared light of 24 microns.

  10. Systematic Examination of Stardust Bulbous Track Wall Materials

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Clemett, S. J.; Nguyen, A. N.; Berger, E. L.; Keller, L. P.; Messenger, S.

    2013-01-01

    Analyses of Comet Wild-2 samples returned by NASA's Stardust spacecraft have focused primarily on terminal particles (TPs) or well-preserved fine-grained materials along the track walls [1,2]. However much of the collected material was melted and mixed intimately with the aerogel by the hypervelocity impact [3,4]. We are performing systematic examinations of entire Stardust tracks to establish the mineralogy and origins of all comet Wild 2 components [7,8]. This report focuses on coordinated analyses of indigenous crystalline and amorphous/melt cometary materials along the aerogel track walls, their interaction with aerogel during collection and comparisons with their TPs.

  11. Likely transiting exocomets detected by Kepler

    NASA Astrophysics Data System (ADS)

    Rappaport, S.; Vanderburg, A.; Jacobs, T.; LaCourse, D.; Jenkins, J.; Kraus, A.; Rizzuto, A.; Latham, D. W.; Bieryla, A.; Lazarevic, M.; Schmitt, A.

    2018-02-01

    We present the first good evidence for exocomet transits of a host star in continuum light in data from the Kepler mission. The Kepler star in question, KIC 3542116, is of spectral type F2V and is quite bright at Kp = 10. The transits have a distinct asymmetric shape with a steeper ingress and slower egress that can be ascribed to objects with a trailing dust tail passing over the stellar disc. There are three deeper transits with depths of ≃ 0.1 per cent that last for about a day, and three that are several times more shallow and of shorter duration. The transits were found via an exhaustive visual search of the entire Kepler photometric data set, which we describe in some detail. We review the methods we use to validate the Kepler data showing the comet transits, and rule out instrumental artefacts as sources of the signals. We fit the transits with a simple dust-tail model, and find that a transverse comet speed of ˜35-50 km s-1 and a minimum amount of dust present in the tail of ˜1016 g are required to explain the larger transits. For a dust replenishment time of ˜10 d, and a comet lifetime of only ˜300 d, this implies a total cometary mass of ≳3 × 1017 g, or about the mass of Halley's comet. We also discuss the number of comets and orbital geometry that would be necessary to explain the six transits detected over the 4 yr of Kepler prime-field observations. Finally, we also report the discovery of a single comet-shaped transit in KIC 11084727 with very similar transit and host-star properties.

  12. A Stellar Appulse by Exploding Comet 17P/Holmes

    NASA Astrophysics Data System (ADS)

    Lacerda, Pedro; Jewitt, D.

    2012-10-01

    Comet 17P/Holmes suffered a massive outburst in October 2007. Its total brightness increased from about 17th to 2nd magnitude over a period of only two days as 17P released about 1-10% of its mass into space in the form of dust. Several theories have been proposed to explain the event but the exact cause for the outburst remains unknown. 17P had suffered a similar outburst more than one century ago, which led to its discovery. These unusual and violent explosions have rendered this otherwise unremarkable Jupiter family comet an interesting target of study, because it may provide clues to the activity in other comets. On 29 October 2007, the optocenter of outbursting 17P passed within 1" of a background star. We used observations taken at the Univ. of Hawaii 2.2m telescope located atop Mauna Kea to measure the brightness of the star as it crossed the coma of 17P in an attempt to estimate the optical depth of the dust. The time sampling was 10-15 min. In addition, we used two-band photometry to look for colour variation as the star crossed the dust cloud. These measurements place the most stringent constraints on the extinction optical depth of any cometary coma.

  13. Alien Sunset Artist Concept

    NASA Image and Video Library

    2007-03-29

    Observations from NASA Spitzer Space Telescope have revealed that mature planetary systems -- dusty disks of asteroids, comets and possibly planets -- are more frequent around close-knit twin, or binary, stars than single stars like our sun.

  14. Slice of Comet Dust

    NASA Image and Video Library

    2006-02-21

    This image illustrates one of several ways scientists have begun extracting comet particles from NASAa Stardust spacecraft collector. First, a particle and its track are cut out of the collector material, called aerogel.

  15. Disruption of giant comets in the solar system and around other stars

    NASA Technical Reports Server (NTRS)

    Whitmire, D. P.; Matese, J. J.

    1988-01-01

    In a standard cometary mass distribution (dN/dM) alpha M(-a), a = 1.5 to 2.0) most of the mass resides in the largest comets. The maximum mass M sub max for which this distribution holds uncertain but there are theoretical and observational indications that M sub max is at least approx. 10(23)g. Chiron, although formally classified as an asteroid, is most likely a giant comet in this mass range. Its present orbit is unstable and it is expected to evolve into a more typical short period comet orbit on a timescale of approx. 10(6) to 10(7)yr. The breakup of a chiron-like comet of mass approx. 10(23)g could in principle produce approx. 10(5) Halley-size comets, or a distribution with an even larger number. If a giant comet was in a typical short period comet orbit, such a breakup could result in a relatively brief comet shower (duration approx. less than 10(6)yr) with some associated terrestrial impacts. However, the most significant climatic effects may not in general be due to the impacts themselves but to the greatly enhanced zodiacal dust cloud in the inner Solar System. (Although this is probably not the case for the unique K-T impact). Researchers used a least Chi square program with error analysis to confirm that the 2 to 5 micrometer excess spectrum of Giclas 29 to 38 can be adequately fitted with either a disk of small inefficient (or efficient) grains or a single temperature black body. Further monitoring of this star may allow discrimination between these two models.

  16. Cometary ephemerides - needs and concerns

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1981-01-01

    With the use of narrow field-of-view instrumentation on faint comets, the accuracy requirements upon computed ephemerides are increasing. It is not uncommon for instruments with a one arc minute field-of-view to be tracking a faint comet that is not visible without a substantial integration time. As with all ephemerides of solar syste objects, the computed motion and reduction of these observations, the computed motion of a comet is further depenent upon effects related to the comet's activity. Thus, the ephemeris of an active comet is corrupted by both observational errors and errors due to the comet's activity.

  17. Separation dynamics of the COMET FreeFlyer and an upper stage STAR-48V motor

    NASA Technical Reports Server (NTRS)

    Fuller, Kevin M.; Myers, Carter H.

    1993-01-01

    In this report, the orbital separation between a STAR-48V upperstage motor and the COMET FreeFlyer is investigated. The time from nominal STAR-48 engine burnout is to be determined such that the STAR-48 will not collide with the FreeFlyer once the separation process has been initiated. To analyze this separation, the forces acting upon both the FreeFlyer and the STAR-48 are described in a body fixed coordinate system. These coordinates are then transformed into an Euler coordinate system and then further transformed into a relative inertial coordinate system. From this analysis and some basic assumptions about the Star-48/FreeFlyer vehicle, it can be concluded that the STAR-48 will not collide with the Free Flyer if the separation occurs at 120 seconds after nominal burnout of the STAR-48. In fact, the separation delay could be a shorter period of time, but it is recommended that this separation delay be as long as possible for risk mitigation. This delay is currently designed to be 120 seconds and the analysis presented in this report shows that this time is acceptable.

  18. Exocomet Signatures Around the A-shell Star Phi Leonis

    NASA Technical Reports Server (NTRS)

    Eiroa, C.; Rebollido, I.; Montesinos, B.; Villaver, E.; Absil, O.; Henning, Th.; Bayo, A.; Canovas, H.; Carmona, A.; Chen, Ch.; hide

    2016-01-01

    We present an intensive monitoring of high-resolution spectra of the Ca II K line in the A7IV shell star Phi Leonis at very short (minutes, hours), short (night to night), and medium (weeks, months) timescales. The spectra show remarkable variable absorptions on timescales of hours, days, and months. The characteristics of these sporadic events are very similar to most that are observed toward the debris disk host star Beta Pictoris, which are commonly interpreted as signs of the evaporation of solid, comet-like bodies grazing or falling onto the star. Therefore, our results suggest the presence of solid bodies around Phi Leonis. To our knowledge, with the exception of Beta Pictoris, our monitoring has the best time resolution at the mentioned timescales for a star with events attributed to exocomets. Assuming the cometary scenario and considering the timescales of our monitoring, our results indicate that Phi Leonis presents the richest environment with comet-like events known to date, second only to Beta Pictoris.

  19. A Star Close Encounter

    NASA Image and Video Library

    2006-10-03

    The potential planet-forming disk (or "protoplanetary disk") of a sun-like star is being violently ripped away by the powerful winds of a nearby hot O-type star in this image from NASA's Spitzer Space Telescope. At up to 100 times the mass of sun-like stars, O stars are the most massive and energetic stars in the universe. The O star can be seen to the right of the image, as the large orange spot with the white center. To the left, the comet-like structure is actually a neighboring solar system that is being destroyed by the O star's powerful winds and intense ultraviolet light. In a process called "photoevaporation," immense output from the O star heats up the nearby protoplanetary disk so much that gas and dust boil off, and the disk can no longer hold together. Photon (or light) blasts from the O star then strip the potential planet-forming disk off its neighbor star by blowing away evaporated material. This effect is illustrated in the smaller system's comet-like structure. The system is located about 2,450 light-years away in the star-forming cloud IC 1396. The image was taken with Spitzer's multiband imaging photometer instrument at 24 microns. The picture is a pseudo-color stretch representing intensity. Yellow and white represent hot areas, whereas purple and blue represent relatively cooler, fainter regions.

  20. Molecular Astrophysics from Space: the Physical and Chemical Effects of Star Formation and the Destruction of Planetary Systems around Evolved Stars

    NASA Technical Reports Server (NTRS)

    Neufeld, David

    2005-01-01

    The research conducted during the reporting period is grouped into three sections: 1) Warm molecular gas in the interstellar medium (ISM); 2) Absorption line studies of "cold" molecular clouds; 3) Vaporization of comets around the AGB star IRC+10216.

  1. Simulation of Comet Impact and Survivability of Organic Compounds

    NASA Astrophysics Data System (ADS)

    Liu, Benjamin; Lomov, Ilya; Blank, Jennifer; Antoun, Tarabay

    2007-06-01

    Comets have been proposed as a mechanism for the transport of complex organic compounds to Earth. For this to occur, a significant fraction of organic compounds must survive the shock loading, in particular the high temperatures, due to impact. 2D and 3D numerical simulations were performed to study the thermodynamic states due to a comet impact. The comet was modeled as a 1-km diameter icy sphere traveling at the Earth's escape velocity (11 km/s) impacting a half-space of basalt. Simulations were performed with GEODYN, a parallel, multi-material, Godunov-based Eulerian code employing adaptive mesh refinement. A constitutive model calibrated for hard rock was used for basalt. Tabular equations of state were used to account for the extreme conditions present upon shock loading. A major focus of the study was tracking the thermodynamic state of the comet material. Both the maximum temperature experienced and the phase were tracked for each point in the comet Temperature histories in the comet were also recorded. These quantities were used to estimate viability of organic compounds upon impact. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  2. HUBBLE DETECTION OF COMET NUCLEUS AT FRINGE OF SOLAR SYSTEM

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is sample data from NASA's Hubble Space Telescope that illustrates the detection of comets in the Kuiper Belt, a region of space beyond the orbit of the planet Neptune. This pair of images, taken with the Wide Field Planetary Camera 2 (WFPC2), shows one of the candidate Kuiper Belt objects found with Hubble. Believed to be an icy comet nucleus several miles across, the object is so distant and faint that Hubble's search is the equivalent of finding the proverbial needle-in-haystack. Each photo is a 5-hour exposure of a piece of sky carefully selected such that it is nearly devoid of background stars and galaxies that could mask the elusive comet. The left image, taken on August 22, 1994, shows the candidate comet object (inside circle) embedded in the background. The right picture, take of the same region one hour forty-five minutes later shows the object has apparently moved in the predicted direction and rate of motion for a kuiper belt member. The dotted line on the images is a possible orbit that this Kuiper belt comet is following. A star (lower right corner) and a galaxy (upper right corner) provide a static background reference. In addition, other objects in the picture have not moved during this time, indicating they are outside our solar system. Through this search technique astronomers have identified 29 candidate comet nuclei belonging to an estimated population of 200 million particles orbiting the edge of our solar system. The Kupier Belt was theorized 40 years ago, and its larger members detected several years ago. However, Hubble has found the underlying population of normal comet-sized bodies. Credit: A. Cochran (University of Texas) and NASA

  3. The influence of Oort clouds on the mass and chemical balance of the interstellar medium

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan; Shull, J. Michael

    1990-01-01

    The contribution of stellar encounters and interstellar erosion to comet cloud mass injection to the ISM is calculated. It is shown that evaporative mass loss from passing stars and SNe results in an average Galactic mass injection rate of up to 10 to the -5th solar mass/yr if such clouds are frequent around solar-type stars. Cometary erosion by interstellar grains produces an injection rate of 10 to the -5th to 10 to the -4th solar mass/yr. An injection rate of 2 x 10 to the -5th solar mass/yr is calculated. Each of these rates could be increased by a factor of about 15 if the comet clouds contain a significant amount of smaller debris. It is concluded that the total mass injection rate of material to the ISM by comet clouds is small compared to other ISM mass injection sources. Comet cloud mass loss to the ISM could be responsible for a sizeable fraction of the metal and dust abundances of the ISM if Oort clouds are common.

  4. Studies of Disks Around the Sun and Other Stars

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan (Principal Investigator)

    1996-01-01

    We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This two-element program consists modeling collisions in the Kuiper Disk and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper disk collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model will be used to study the evolution of surface mass density and the object-size spectrum in the disk. The observational effort focuses on obtaining submm/mm-wave flux density measurements of 25-30 IR excess stars in order to better constrain the masses, spatial extents and structure of their dust ensembles.

  5. The Population of Small Comets: Optimum Techniques for Detection

    NASA Technical Reports Server (NTRS)

    Brandt, John C.

    1997-01-01

    The goals of this project were: (1) to present evidence to the scientific community for the importance of the small comet population and (2) to develop techniques for optimum detection in order to characterize the population. Our work on techniques has been to develop algorithms for searching images for SCs based on the distinctive properties of comets; (1) motion with respect to background stars; (2) extended source with most light coming from the coma rather than the nucleus; and characteristic spectral signature.

  6. On the trail of Comet G-Z

    NASA Technical Reports Server (NTRS)

    Maran, S. P.

    1985-01-01

    The International Cometary Explorer (ICE) is to investigate the magnetic and electric fields, plasmas, and particles in the Comet Giacobini-Zinner (G-Z) and to study its interaction with solar wind. The ICE can pass through the comet only once and it will take 90 minutes to cross from one side of the tail to the other. Since the Comet G-Z often changes its orbit due to nongravitational forces changing its direction and velocity, ICE's position needs to be adjusted. The probe is aimed 10,000 km from the nucleus in order to be provided the best passage through the Comet G-Z. The 64-meter dishes of JPL's Deep-Space Network (DSN) will receive data transmitted on two adjacent S-band frequencies at the rate of 1024 bits per second. Also NASA has arranged for the radio telescope at Arecibo to record the transmission. The Japanese 64-meter tracking antenna at Usada, equipped with an ultrasensitive receiver for one ICE frequency, will provide pre-encounter and post-encounter tracking. The ICE data may provide information about the dust tail in the Comet G-Z which could be compared to previous research.

  7. Meteor Beliefs Project: Shakespeare revisited and the Elizabethan stage's `blazing star'

    NASA Astrophysics Data System (ADS)

    Gheorghe, Andrei Dorian; McBeath, Alastair

    2007-06-01

    Some fresh Shakespearean citations of meteors, further to those given previously in the Project, are presented, along with a discussion of the Elizabethan stage's use of the `blazing star', with especial reference to the great comet of 1577.

  8. Solar nebula condensates and the composition of comets

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.

    1989-01-01

    Interpretation of the volatile abundances in Halley's comet in terms of models for chemical and physical processes in the solar nebula are discussed. Key ratios of the oxidized and reduced species of nitrogen and carbon are identified which tell something of the chemical history of the environment in which cometary grains accreted to form the nucleus. Isotopic abundances are also applied to this problem. It will be shown that the abundances of methane and carbon monoxide are consistent both with models of solar nebula chemistry and chemical processing on grains in star-forming regions. Ultimately, limitations of the current data set on molecular abundances in comets and star-forming regions prevent a definitive choice between the two. Processes important to the composition of outer solar system bodies are: (1) gas phase chemistry in the solar nebula; (2) imperfect mixing in the solar nebula; (3) condensation; (4) clathration; (5) adsorption; and (6) processing of interstellar material.

  9. Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid

    2017-05-01

    Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size. This article is part of the themed issue 'Cometary science after Rosetta'.

  10. VizieR Online Data Catalog: Stellar encounters with long-period comets (Feng+, 2015)

    NASA Astrophysics Data System (ADS)

    Feng, F.; Bailer-Jones, C. A. L.

    2016-07-01

    We have conducted simulations of the perturbation of the Oort cloud in order to estimate the significance of known encounters in generating long-period comets. We collected the data of stellar encounters from three sources: (Bailer-Jones, 2015, Cat. J/A+A/575/A35, hereafter BJ15), Dybczynski & Berski (2015MNRAS.449.2459D), and Mamajek et al. (2015ApJ...800L..17M). Following BJ15, we use the term 'object' to refer to each encountering star in our catalogue. A specific star may appear more than once but with different data, thus leading to a different object. (1 data file).

  11. Comet P/Halley 1910, 1986: An objective-prism study

    NASA Technical Reports Server (NTRS)

    Carsenty, U.; Bus, E. S.; Wyckoff, S.; Lutz, B.

    1986-01-01

    V. M. Slipher of the Lowell Obs. collected a large amount of spectroscopic data during the 1910 apparition of Halley's comet. Three of his post perihelion objective-prism plates were selected, digitized, and subjected to modern digital data reduction procedures. Some of the important steps in the analysis where: (1) Density to intensity conversion for which was used 1910 slit spectra of Fe-arc lamp on similar plates (Sigma) and derived an average characteristic curve; (2) Flux calibration using the fact that during the period June 2 to 7 1910 P/Halley was very close (angular distance) to the bright star Alpha Sex (A0III, V-4.49), and the spectra of both star and comet were recorded on the same plates. The flux distribution of Alpha Sex was assumed to be similar to that of the standard star 58 Aql and derived a sensitivity curve for the system; (3) Atmospheric extinction using the standard curve for the Lowell Obs.; (4) Solar continuum subtraction using the standard solar spectrum binned to the spectral resolution. An example of a flux-calibrated spectrum of the coma (integrated over 87,000km) before the subtraction of solar continuum is presented.

  12. Arrhenius reconsidered: astrophysical jets and the spread of spores

    NASA Astrophysics Data System (ADS)

    Sheldon, Malkah I.; Sheldon, Robert B.

    2015-09-01

    In 1871, Lord Kelvin suggested that the fossil record could be an account of bacterial arrivals on comets. In 1903, Svante Arrhenius suggested that spores could be transported on stellar winds without comets. In 1984, Sir Fred Hoyle claimed to see the infrared signature of vast clouds of dried bacteria and diatoms. In 2012, the Polonnaruwa carbonaceous chondrite revealed fossilized diatoms apparently living on a comet. However, Arrhenius' spores were thought to perish in the long transit between stars. Those calculations, however, assume that maximum velocities are limited by solar winds to ~5 km/s. Herbig-Haro objects and T-Tauri stars, however, are young stars with jets of several 100 km/s that might provide the necessary propulsion. The central engine of bipolar astrophysical jets is not presently understood, but we argue it is a kinetic plasma instability of a charged central magnetic body. We show how to make a bipolar jet in a belljar. The instability is non-linear, and thus very robust to scaling laws that map from microquasars to active galactic nuclei. We scale up to stellar sizes and recalculate the viability/transit-time for spores carried by supersonic jets, to show the viability of the Arrhenius mechanism.

  13. Science Fiction Stories with Reasonable Astronomy.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1990-01-01

    This resource list contains stories on the following topics: antimatter, asteroids, astronomers, black holes, comets, cosmology, jupiter, life elsewhere, mars, mercury, meteors, the moon, particle physics, pluto, quantum mechanics, quasars and active galaxies, relativity, saturn, stars, the sun, supernovae and neutron stars, time travel, uranus,…

  14. Galaxy and the solar system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smoluchowski, R.; Bahcall, J.M.; Matthews, M.S.

    1986-01-01

    The solar-Galactic neighborhood, massive interstellar clouds and other Galactic features, the Oort cloud, perturbations of the solar system, and the existence and stability of a solar companion star are examined in chapters based on contributions to a conference held in Tucson, AZ during January 1985. The individual topics addressed include: the Galactic environment of the solar system; stars within 25 pc of the sun; the path of the sun in 100 million years; the local velocity field in the last billion years; interstellar clouds near the sun; and evidence for a local recent supernova. Also considered are: dynamic influence ofmore » Galactic tides and molecular clouds on the Oort cloud; cometary evidence for a solar companion; dynamical interactions between the Oort cloud and the Galaxy; geological periodicities and the Galaxy; giant comets and the Galaxy; dynamical evidence for Planet X; evolution of the solar system in the presence of a solar companion star; mass extinctions, crater ages, and comet showers; evidence for Nemesis, a solar companion star.« less

  15. Multiwavelength Observations of Recent Comets

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Charnley, Steven B.; Gicquel, Adeline; Cordiner, Martin; Kuan, Yi-Jehng; Chuang, Yo-Ling; Villanueva, Geronimo; DiSanti, Michael A.; Bonev, Boncho P.; Remijan, Anthony J.; hide

    2013-01-01

    Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth. Comets are comprised of molecular ices, that may be pristine inter-stellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition.

  16. New National Telescope at La Silla - TRAPPIST to Scout the Sky and Uncover Exoplanets and Comets

    NASA Astrophysics Data System (ADS)

    2010-06-01

    A new robotic telescope has had first light at ESO's La Silla Observatory, in Chile. TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) is devoted to the study of planetary systems through two approaches: the detection and characterisation of planets located outside the Solar System (exoplanets) and the study of comets orbiting around the Sun. The 60-cm telescope is operated from a control room in Liège, Belgium, 12 000 km away. "The two themes of the TRAPPIST project are important parts of an emerging interdisciplinary field of research - astrobiology - that aims at studying the origin and distribution of life in the Universe," explains Michaël Gillon, who is in charge of the exoplanet studies. "Terrestrial planets similar to our Earth are obvious targets for the search for life outside the Solar System, while comets are suspected to have played an important role in the appearance and development of life on our planet," adds his colleague Emmanuël Jehin, who leads the cometary part of the project. TRAPPIST will detect and characterise exoplanets by making high precision measurements of "brightness dips" that might possibly be caused by exoplanet transits. During such a transit, the observed brightness of the star decreases slightly because the planet blocks a part of the starlight. The larger the planet, the more of the light is blocked and the more the brightness of the star will decrease [1]. "ESO's La Silla Observatory on the outskirts of the Atacama Desert is certainly one of the best astronomical sites in the world," says Gillon. "And because it is already home to two superb exoplanet hunters, we couldn't have found a better place to install our robotic telescope." The astronomers behind the TRAPPIST initiative will work very closely with the teams using HARPS on the 3.6-metre telescope and CORALIE attached to the Swiss 1.2-metre Leonhard Euler Telescope, both at La Silla. TRAPPIST is a collaboration between the University of Liège and the Geneva Observatory, Switzerland. The telescope is installed in the building that housed the old Swiss T70 telescope. Thanks to this collaboration, the whole project is on a fast track: it took only two years between taking the decision to build and first light. TRAPPIST will also be used for the study of southern comets. To this aim, the telescope is equipped with special large, high quality cometary filters, allowing astronomers to study regularly and in detail the ejection of several types of molecules by comets during their journey around the Sun. "With dozens of comets observed each year, this will provide us with a unique dataset, bringing important information about their nature," says Jehin. TRAPPIST is a lightweight 0.6-metre robotic telescope, fully automated and moving precisely across the sky at a high speed. The observing programme is prepared in advance and the telescope can perform a full night of observations unattended. A meteorological station monitors the weather continuously and decides to close the dome if necessary. Notes [1] A planetary transit occurs when a celestial body passes in front of its host star and blocks some of the star's light. This type of eclipse causes changes in the apparent brightness of the star and enables the planet's diameter to be measured. Combined with radial velocity measurements, it is also possible to deduce the mass and, hence, the density of the planet. More information TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) is a project led by the Department of Astrophysics, Geophysics and Oceanography (AGO) of the University of Liège (Belgium), in close collaboration with the Observatory of Geneva (Switzerland). TRAPPIST is mostly funded by the Belgian Fund for Scientific Research (FNRS) with the participation of the Swiss National Science Foundation (SNF). The team is composed of Emmanuël Jehin, Michaël Gillon, Pierre Magain, Virginie Chantry, Jean Manfroid, and Damien Hutsemékers (University of Liège, Belgium) and Didier Queloz and Stéphane Udry (Observatory of Geneva, Switzerland). The name TRAPPIST was given to the telescope to underline the Belgian origin of the project. Trappist beers are famous all around the world and most of them are Belgian. Moreover, the team members really appreciate them!

  17. The unusual gamma-ray burst GRB 101225A explained as a minor body falling onto a neutron star.

    PubMed

    Campana, S; Lodato, G; D'Avanzo, P; Panagia, N; Rossi, E M; Della Valle, M; Tagliaferri, G; Antonelli, L A; Covino, S; Ghirlanda, G; Ghisellini, G; Melandri, A; Pian, E; Salvaterra, R; Cusumano, G; D'Elia, V; Fugazza, D; Palazzi, E; Sbarufatti, B; Vergani, S D

    2011-11-30

    The tidal disruption of a solar-mass star around a supermassive black hole has been extensively studied analytically and numerically. In these events, the star develops into an elongated banana-shaped structure. After completing an eccentric orbit, the bound debris falls into the black hole, forming an accretion disk and emitting radiation. The same process may occur on planetary scales if a minor body passes too close to its star. In the Solar System, comets fall directly into our Sun or onto planets. If the star is a compact object, the minor body can become tidally disrupted. Indeed, one of the first mechanisms invoked to produce strong gamma-ray emission involved accretion of comets onto neutron stars in our Galaxy. Here we report that the peculiarities of the 'Christmas' gamma-ray burst (GRB 101225A) can be explained by a tidal disruption event of a minor body around an isolated Galactic neutron star. This would indicate either that minor bodies can be captured by compact stellar remnants more frequently than occurs in the Solar System or that minor-body formation is relatively easy around millisecond radio pulsars. A peculiar supernova associated with a gamma-ray burst provides an alternative explanation.

  18. Comets and the origin of the solar system - Reading the Rosetta Stone

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Weissman, Paul R.; Stern, S. A.

    1993-01-01

    It is argued that, from the measured volatile abundances, comets formed at temperatures near or below about 60 K and possibly as low as about 25 K. Grains in Comet Halley were found to be of two types: silicates and organics. Isotopic evidence shows that Comet Halley formed from material with the same compositional mix as the rest of the solar system, and is consistent with comets having been a major contributor to the volatile reservoirs on the terrestrial planets. A variety of processes have been shown to modify and reprocess the outer layers of comets both during their long residence time in the Oort cloud and following their entry back into the planetary system. The most likely formation site for comets is in the Uranus-Neptune zone or just beyond, with dynamical ejection by the growing protoplanets to distant orbits to form the Oort cloud. A substantial flux of interstellar comets was likely created by the same process, and may be detectable if cometary formation is common in planetary systems around other stars.

  19. The Oort cloud and the Galaxy - Dynamical interactions

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    1986-01-01

    The results of recent dynamical studies of the Oort cloud and its interaction with the Galaxy are discussed. Various studies which used Monte Carlo simulations to investigate the evolution of comets in the Oort cloud and the manner in which they are injected into the planetary region are reviewed. Work done on perturbation of cometary orbits by stars, interstellar clouds, and the Galaxy is examined. The growing consensus that there is a massive inner Oort cloud with a population up to 100 times that of the dynamically active outer cloud is addressed. Variations on the Oort hypothesis are discussed. It is argued that speculations about the existence of a small unseen solar companion star or a tenth planet causing periodic comet showers from the inner Oort cloud are not supported by dynamical studies or analyses of the terrestrial and lunar cratering record. Evidence for Oort clouds around other stars is summarized.

  20. Super-Comet or Big Asteroid Belt?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Spectrograph of HD 69830

    This graph of data from NASA's Spitzer Space Telescope demonstrates that the dust around a nearby star called HD 69830 (upper line) has a very similar composition to that of Comet Hale-Bopp. Spitzer spotted large amounts of this dust in the inner portion of the HD 69830 system.

    The bumps and dips seen in these data, or spectra, represent the 'fingerprints' of various minerals. Spectra are created when an instrument called a spectrograph spreads light out into its basic parts, like a prism turning sunlight into a rainbow. These particular spectra reveal the presence of the silicate mineral called olivine, and more specifically, a type of olivine called forsterite, which is pictured in the inset box. Forsterite is a bright-green gem found on Earth, on the 'Green Sand Beach' of Hawaii among other places; and in space, in comets and asteroids.

    Because the dust around HD 69830 has a very similar make-up to that of Comet Hale-Bopp, astronomers speculate that it might be coming from a giant comet nearly the size of Pluto. Such a comet may have been knocked into the inner solar system of HD 69830, where it is now leaving in its wake a trail of evaporated dust.

    Nonetheless, astronomers say the odds that Spitzer has caught a 'super-comet' spiraling in toward its star - an unusual and relatively short-lived event - are slim. Instead, they favor the theory that the observed dust is actually the result of asteroids banging together in a massive asteroid belt.

    The data of HD 69830's dust were taken by Spitzer's infrared spectrograph. The data of Comet Hale-Bopp were taken by the European Space Agency's Infrared Observatory Satellite. The picture of forsterite comes courtesy of Dr. George Rossman, California Institute of Technology, Pasadena.

  1. Autonomous space target recognition and tracking approach using star sensors based on a Kalman filter.

    PubMed

    Ye, Tao; Zhou, Fuqiang

    2015-04-10

    When imaged by detectors, space targets (including satellites and debris) and background stars have similar point-spread functions, and both objects appear to change as detectors track targets. Therefore, traditional tracking methods cannot separate targets from stars and cannot directly recognize targets in 2D images. Consequently, we propose an autonomous space target recognition and tracking approach using a star sensor technique and a Kalman filter (KF). A two-step method for subpixel-scale detection of star objects (including stars and targets) is developed, and the combination of the star sensor technique and a KF is used to track targets. The experimental results show that the proposed method is adequate for autonomously recognizing and tracking space targets.

  2. False star detection and isolation during star tracking based on improved chi-square tests.

    PubMed

    Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Yang, Yanqiang; Su, Guohua

    2017-08-01

    The star sensor is a precise attitude measurement device for a spacecraft. Star tracking is the main and key working mode for a star sensor. However, during star tracking, false stars become an inevitable interference for star sensor applications, which may result in declined measurement accuracy. A false star detection and isolation algorithm in star tracking based on improved chi-square tests is proposed in this paper. Two estimations are established based on a Kalman filter and a priori information, respectively. The false star detection is operated through adopting the global state chi-square test in a Kalman filter. The false star isolation is achieved using a local state chi-square test. Semi-physical experiments under different trajectories with various false stars are designed for verification. Experiment results show that various false stars can be detected and isolated from navigation stars during star tracking, and the attitude measurement accuracy is hardly influenced by false stars. The proposed algorithm is proved to have an excellent performance in terms of speed, stability, and robustness.

  3. Pons, Jean-Louis (1761-1831)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Born in Peyre, France, joined the Observatory at Marseilles as concierge, becoming an astronomer there. Like Australian supernova-finder Robert Evans, he remembered the star fields that he observed and recognized changes; this enabled him to discover comets at the rate of about one per year from 1801 until 1827. He suggested to J F ENCKE that a comet found by him was one already discovered by Enc...

  4. Laboratory Analysis of Silicate Stardust Grains of Diverse Stellar Origins

    NASA Technical Reports Server (NTRS)

    Nguyen, Ann N.; Keller, Lindsay P.; Nakamura-Messenger, Keiko

    2016-01-01

    Silicate dust is ubiquitous in a multitude of environments across the cosmos, including evolved oxygen-rich stars, interstellar space, protoplanetary disks, comets, and asteroids. The identification of bona fide silicate stardust grains in meteorites, interplanetary dust particles, micrometeorites, and dust returned from comet Wild 2 by the Stardust spacecraft has revolutionized the study of stars, interstellar space, and the history of dust in the Galaxy. These stardust grains have exotic isotopic compositions that are records of nucleosynthetic processes that occurred in the depths of their now extinct parent stars. Moreover, the chemical compositions and mineralogies of silicate stardust are consequences of the physical and chemical nature of the stellar condensation environment, as well as secondary alteration processes that can occur in interstellar space, the solar nebula, and on the asteroid or comet parent body in which they were incorporated. In this talk I will discuss our use of advanced nano-scale instrumentation in the laboratory to conduct coordinated isotopic, chemical, and mineralogical analyses of silicate stardust grains from AGB stars, supernovae, and novae. By analyzing the isotopic compositions of multiple elements in individual grains, we have been able to constrain their stellar sources, explore stellar nucleosynthetic and mixing processes, and Galactic chemical evolution. Through our mineralogical studies, we have found these presolar silicate grains to have wide-ranging chemical and mineral characteristics. This diversity is the result of primary condensation characteristics and in some cases secondary features imparted by alteration in space and in our Solar System. The laboratory analysis of actual samples of stars directly complements astronomical observations and astrophysical models and offers an unprecedented level of detail into the lifecycles of dust in the Galaxy.

  5. VizieR Online Data Catalog: Astron low resolution UV spectra (Boyarchuk+, 1994)

    NASA Astrophysics Data System (ADS)

    Boyarchuk, A. A.

    2017-05-01

    Astron was a Soviet spacecraft launched on 23 March 1983, and it was operational for eight years as the largest ultraviolet space telescope during its lifetime. Astron's payload consisted of an 80 cm ultraviolet telescope Spica and an X-ray spectroscope. We present 159 low resolution spectra of stars obtained during the Astron space mission (Tables 4, 5; hereafter table numbers in Boyarchuk et al. 1994 are given). Table 4 (observational log, logs.dat) contains data on 142 sessions for 90 stars (sorted in ascending order of RA), where SED was obtained by scanning method, and then data on 17 sessions for 15 stars (also sorted in ascending order of RA), where multicolor photometry was done. Kilpio et al. (2016, Baltic Astronomy 25, 23) presented results of the comparison of Astron data to the modern UV stellar data, discussed Astron precision and accuracy, and made some conclusions on potential application areas of these data. Also 34 sessions of observations of 27 stellar systems (galaxies and globular clusters) are presented. Observational log was published in Table 10 and data were published in Table 11, respectively. Also 16 sessions of observations of 12 nebulae (Table 12 for observational log and Table 13 for data themselves) are presented. Background radiation intensity data (Table 14) are presented in Table 15. At last, data on comets are presented in different forms. We draw your attention that observational data for stars, stellar systems, nebulae and comets are expressed in log [erg/s/cm^2/A], while for comets data 10E-13 erg/s/cm^2/A units are used, hydroxyl band photometric data for comets are expressed in log [erg/s/cm^2], and for the background data it is radiation intensity expressed in log [erg/s/cm^2/A/sr]. Scanned (PDF version of) Boyarchuk et al. (1994) book is available at http://www.inasan.ru/~astron/astron.pdf (12 data files).

  6. Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs.

    PubMed

    Mann, Ingrid

    2017-07-13

    Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  7. A Brief Glossary of Commonly Used Astronomical Terms.

    ERIC Educational Resources Information Center

    Harrington, Sherwood

    A glossary of 50 astronimical terms is presented. Among terms included are: Asteroid; Big Bang; Binary Star; Black Hole; Comet; Constellation; Eclipse; Equinox; Galaxy; Globular Cluster; Local Group; Magellanic Clouds; Nebula; Neutron Star; Nova; Parsec; Quasar; Radio Astronomy; Red Giant; Red Shift; S.E.T.I.; Solstice; Supernova; and White Dwarf.…

  8. Autonomous Navigation Performance During The Hartley 2 Comet Flyby

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matthew J; Kennedy, Brian A.; Bhaskaran, Shyam

    2012-01-01

    On November 4, 2010, the EPOXI spacecraft performed a 700-km flyby of the comet Hartley 2 as follow-on to the successful 2005 Deep Impact prime mission. EPOXI, an extended mission for the Deep Impact Flyby spacecraft, returned a wealth of visual and infrared data from Hartley 2, marking the fifth time that high-resolution images of a cometary nucleus have been captured by a spacecraft. The highest resolution science return, captured at closest approach to the comet nucleus, was enabled by use of an onboard autonomous navigation system called AutoNav. AutoNav estimates the comet-relative spacecraft trajectory using optical measurements from the Medium Resolution Imager (MRI) and provides this relative position information to the Attitude Determination and Control System (ADCS) for maintaining instrument pointing on the comet. For the EPOXI mission, AutoNav was tasked to enable continuous tracking of a smaller, more active Hartley 2, as compared to Tempel 1, through the full encounter while traveling at a higher velocity. To meet the mission goal of capturing the comet in all MRI science images, position knowledge accuracies of +/- 3.5 km (3-?) cross track and +/- 0.3 seconds (3-?) time of flight were required. A flight-code-in-the-loop Monte Carlo simulation assessed AutoNav's statistical performance under the Hartley 2 flyby dynamics and determined optimal configuration. The AutoNav performance at Hartley 2 was successful, capturing the comet in all of the MRI images. The maximum residual between observed and predicted comet locations was 20 MRI pixels, primarily influenced by the center of brightness offset from the center of mass in the observations and attitude knowledge errors. This paper discusses the Monte Carlo-based analysis that led to the final AutoNav configuration and a comparison of the predicted performance with the flyby performance.

  9. Images From Comet’s Mars Flyby On This Week @NASA - October 24, 2014

    NASA Image and Video Library

    2014-10-24

    Several Mars-based NASA spacecraft had prime viewing positions for comet Siding Spring’s October 19 close flyby of the Red Planet. Early images included a composite photo from NASA’s Hubble Space Telescope that combined shots of Mars, the comet, and a star background to illustrate Siding Spring’s distance from Mars at closest approach. Also, images from the Mars Reconnaissance Orbiter’s HiRISE camera, which represent the highest-resolution views ever acquired of a comet that came from the Oort Cloud, at the outer fringe of the solar system. The comet flyby – only about 87,000 miles from Mars – was much closer than any other known comet flyby of a planet. Also, Partial solar eclipse, Space station spacewalk, Preparing to release Dragon, Cygnus launch update, Welding begins on SLS, Astronaut class visits Glenn and more!

  10. NEOWISE View of Comet Christensen

    NASA Image and Video Library

    2015-11-23

    An infrared view from NASA's NEOWISE mission of the Oort cloud comet C/2006 W3 (Christensen). The spacecraft observed this comet on April 20th, 2010 as it traveled through the constellation Sagittarius. Comet Christensen was nearly 370 million miles (600 million kilometers) from Earth at the time. The image is half of a degree of the sky on each side. Infrared light with wavelengths of 3.4, 12 and 22 micron channels are mapped to blue, green, and red, respectively. The signal at these wavelengths is dominated primarily by the comet's dust thermal emission, giving it a golden hue. The WISE spacecraft was put into hibernation in 2011 upon completing its goal of surveying the entire sky in infrared light. WISE cataloged three quarters of a billion objects, including asteroids, stars and galaxies. In August 2013, NASA decided to reinstate the spacecraft on a mission to find and characterize more asteroids. http://photojournal.jpl.nasa.gov/catalog/PIA20118

  11. The definition of ESA's scientific programme for the 1980's.

    NASA Astrophysics Data System (ADS)

    Russo, A.

    1997-09-01

    The following topics were dealt with: discussing a long-term strategy for ESA's scientific activities; the SAC's (Science Advisory Committee) vision of European space science in the 1980s; the role of Spacelab (and Ariane); more money for science?; studying future scientific projects (the comets and the Moon); the selection of ESA's next scientific mission (the comet and the stars, the SPC decision, Giotto and Hipparcos adopted).

  12. Suicide Comet HD Video

    NASA Image and Video Library

    2010-03-16

    Captured March 12, 2010 The SOHO spacecraft captured a very bright, sungrazing comet as it rocketed towards the Sun (Mar. 12, 2010) and was vaporized. This comet is arguably the brightest comet that SOHO has observed since Comet McNaught in early 2007. The comet is believed to belong to the Kreutz family of comets that broke up from a much larger comet many hundreds of years ago. They are known to orbit close to the Sun. A coronal mass ejection (CME) burst away from the Sun during the bright comet’s approach. Interestingly, a much smaller comet that preceded this one can be seen about half a day earlier on just about the identical route. And another pair of small comets followed the same track into the Sun after the bright one. Such a string of comets has never been witnessed before by SOHO. SOHO's C3 coronagraph instrument blocks out the Sun with an occulting disk; the white circle represents the size of the Sun. The planet Mercury can also be seen moving from left to right just beneath the Sun. To learn more and to download the video and still images go here: sohowww.nascom.nasa.gov/pickoftheweek/old/15mar2010/ Credit: NASA/GSFC/SOHO

  13. Hubble Witnesses Massive Comet-Like Object Pollute Atmosphere of a White Dwarf

    NASA Image and Video Library

    2017-12-08

    For the first time, scientists using NASA’s Hubble Space Telescope have witnessed a massive object with the makeup of a comet being ripped apart and scattered in the atmosphere of a white dwarf, the burned-out remains of a compact star. The object has a chemical composition similar to Halley’s Comet, but it is 100,000 times more massive and has a much higher amount of water. It is also rich in the elements essential for life, including nitrogen, carbon, oxygen, and sulfur. These findings are evidence for a belt of comet-like bodies orbiting the white dwarf, similar to our solar system’s Kuiper Belt. These icy bodies apparently survived the star’s evolution as it became a bloated red giant and then collapsed to a small, dense white dwarf. Caption: This artist's concept shows a massive, comet-like object falling toward a white dwarf. New Hubble Space Telescope findings are evidence for a belt of comet-like bodies orbiting the white dwarf, similar to our solar system's Kuiper Belt. The findings also suggest the presence of one or more unseen surviving planets around the white dwarf, which may have perturbed the belt to hurl icy objects into the burned-out star. Credits: NASA, ESA, and Z. Levay (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. A-Track: Detecting Moving Objects in FITS images

    NASA Astrophysics Data System (ADS)

    Atay, T.; Kaplan, M.; Kilic, Y.; Karapinar, N.

    2017-04-01

    A-Track is a fast, open-source, cross-platform pipeline for detecting moving objects (asteroids and comets) in sequential telescope images in FITS format. The moving objects are detected using a modified line detection algorithm.

  15. The spacecraft encounters of Comet Halley

    NASA Technical Reports Server (NTRS)

    Asoka Mendis, D.; Tsurutani, Bruce T.

    1986-01-01

    The characteristics of the Comet Halley spacecraft 'fleet' (VEGA 1 and VEGA 2, Giotto, Suisei, and Sakigake) are presented. The major aims of these missions were (1) to discover and characterize the nucleus, (2) to characterize the atmosphere and ionosphere, (3) to characterize the dust, and (4) to characterize the nature of the large-scale comet-solar wind interaction. While the VEGA and Giotto missions were designed to study all four areas, Suisei addressed the second and fourth. Sakigake was designed to study the solar wind conditions upstream of the comet. It is noted that NASA's Deep Space Network played an important role in spacecraft tracking.

  16. A Handbook of Descriptive and Practical Astronomy

    NASA Astrophysics Data System (ADS)

    Chambers, George Frederick

    2010-06-01

    Book I. A Sketch of the Solar System: 1. The sun; 2. The planets; 3. Vulcan; 4. Mercury; 5. Venus; 6. The earth; 7. The moon; 8. Mars; 9. The minor planets; 10. Jupiter; 11. Saturn; 12. Uranus; 13. Neptune; Book II. Eclipses and their Associated Phenomena: 1. General outlines; 2. Eclipses of the sun; 3. The total eclipse of the sun of July 28, 1851; 4. The annular eclipse of the sun of March 14-15, 1858; 5. The total eclipse of the sun of July 18, 1860; 6. Historical notices; 7. Eclipses of the moon; 8. Suggestions for observing annular eclipses of the sun; 9. Transits of the inferior planets; 10. Occultations; Book III. The Tides: 1. Introduction; 2. Local disturbing influences; Book IV. Miscellaneous Astronomical Phenomena: 1. Variation in the obliquity of the ecliptic; 2. Aberration; 3. Refraction; Book V. Comets: 1. General remarks; 2. Periodic comets; 3. Remarkable comets; 4. Cometary statistics; 5. Historical notices; Book VI. Chronological Astronomy: 1. What time is; 2. Hours; 3. Means of measuring time; 4. The Dominical or Sunday letter; 5. Tables for the conversion of time; Book VII. The Starry Heavens: 1. The Pole-Star; 2. Double stars; 3. Variable stars; 4. Clusters and nebulae; 5. The Milky Way; 6. The constellations; Book VIII. Astronomical Instruments: 1. Telescopes; 2. Telescope stands; 3. The equatorial; 4. The transit instrument; 5. Other astronomical instruments; 6. History of the telescope; Book IX. A Sketch of the History of Astronomy; Book X. Meteoric Astronomy: 1. Classification of the subject; 2. The origin of aërolites; 3. Shooting stars; Appendices; Index.

  17. New catalogue of single-apparition comets discovered in the years 1901-1950. Part I

    NASA Astrophysics Data System (ADS)

    Królikowska, M.; Sitarski, G.; Pittich, E.; Szutowicz, S.; Ziołkowski, K.; Rickman, H.; Gabryszewski, R.; Rickman, B.

    2014-07-01

    A new catalogue of cometary orbits derived using a completely homogeneous method of data treatment, accurate methods of numerical integration, and modern model of the Solar System is presented. We constructed a sample of near-parabolic comets from the first half of the twentieth century with original reciprocals of semimajor axes less than 0.000130 au^{-1} in the Marsden and Williams Catalogue of Cometary Orbits (2008, hereafter MW08), i.e., comets of original semimajor axes larger than 7700 au. We found 38 such comets in MW08, where 32 have first-quality orbits (class 1A or 1B) and the remaining 6 have second-quality orbits (2A or 2B). We presented satisfactory non-gravitational (hereafter NG) models for thirteen of the investigated comets. The four main features, distinguishing this catalogue of orbits of single- apparition comets discovered in the early twentieth century from other catalogues of orbits of similarly old objects, are the following. 1. Old cometary positional observations require a very careful analysis. For the purpose of this new catalogue, great emphasis has been placed in collecting sets of observations as complete as possible for the investigated comets. Moreover, for many observations, comet-minus-star-type measurements were also available. This type of data was particularly valuable as the most original measurements of comet positions and has allowed us to recalculate new positions of comets using the PPM star catalogue. 2. Old cometary observations were prepared by observers usually as apparent positions in Right Ascension and Declination or as reduced positions for the epoch of the beginning of the year of a given observation. This was a huge advantage of these data, because this allows us to uniformly take into account all necessary corrections associated with the data reduction to the standard epoch. 3. The osculating orbits of single-apparition comets discovered more than sixty years ago have been formerly determined with very different numerical methods and assumptions on the model of the Solar System, including the number of planets taken into account. This new catalogue changes this situation. We offer a new catalogue of cometary orbits derived using completely homogeneous methods of data treatment, accurate methods of numerical integration, and a modern model of the Solar System. 4. The osculating, original, and future sets of orbits are presented for each catalogue comet. In the case of a comet with detectable NG effects, we give both types of orbit: purely gravitational and non- gravitational. We concluded, however, that all thirteen NG orbital solutions given in the catalogue better represent the actual motions of the investigated comets. Surprisingly, the NG effects were detectable in data for five comets of second-quality-class orbits. Among these five are three comets with hyperbolic original, barycentric GR orbits. This publication will be accompanied by an online catalogue available at ssdp.cbk.waw.pl/LPCs, providing entries to orbital elements of considered comets as well as to full swarms of original and future virtual comets that formed the basis for the further analysis of dynamical evolution.

  18. Organic matter in meteorites and comets - Possible origins

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1991-01-01

    At least six extraterrestrial environments may have contributed organic compounds to meteorites and comets: solar nebula, giant-planet subnebulae, asteroid interiors containing liquid water, carbon star atmospheres, and diffuse or dark interstellar clouds. The record in meteorites is partly obscured by pervasive reheating that transformed much of the organic matter to kerogen; nonetheless, it seems that all six formation sites contributed. For comets, the large abundance of HCHO, HCN, and unsaturated hydrocarbons suggests an interstellar component of 50 percent or more, but the contributions of various interstellar processes, and of a solar-nebula component, are hard to quantify. A research program is outlined that may help reduce these uncertainties.

  19. Stardust in meteorites.

    PubMed

    Davis, Andrew M

    2011-11-29

    Primitive meteorites, interplanetary dust particles, and comets contain dust grains that formed around stars that lived their lives before the solar system formed. These remarkable objects have been intensively studied since their discovery a little over twenty years ago and they provide samples of other stars that can be studied in the laboratory in exquisite detail with modern analytical tools. The properties of stardust grains are used to constrain models of nucleosynthesis in red giant stars and supernovae, the dominant sources of dust grains that are recycled into the interstellar medium by stars.

  20. Stardust in meteorites

    PubMed Central

    Davis, Andrew M.

    2011-01-01

    Primitive meteorites, interplanetary dust particles, and comets contain dust grains that formed around stars that lived their lives before the solar system formed. These remarkable objects have been intensively studied since their discovery a little over twenty years ago and they provide samples of other stars that can be studied in the laboratory in exquisite detail with modern analytical tools. The properties of stardust grains are used to constrain models of nucleosynthesis in red giant stars and supernovae, the dominant sources of dust grains that are recycled into the interstellar medium by stars. PMID:22106261

  1. Cooked GEMS - Insights into the Hot Origins of Crystalline Silicates in Circumstellar Disks and the Cold Origins of GEMS

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Joswiak, D. J.; Bradley, J. P.; Matrajt, G.; Wooden, D. H.

    2005-01-01

    The comparison of interstellar, circumstellar and primitive solar nebula silicates has led to a significant conundrum in the understanding of the nature of solid materials that begin the planet forming processes. Crystalline silicates are found in circumstellar regions around young stars and also evolved stars ejecting particles into the interstellar medium (ISM) but they are not seen in the interstellar medium itself, the source material for star and planet formation. Crystalline silicates are minor to major components of all known early solar system materials that have been examined as meteorites or interplanetary dust samples. The strong presence of Mg-rich crystalline silicates in Oort cloud comets and their minor presence in some Kuiper belt comets is also indicated by 11.2 m peak in approx. 10 microns "silicate" infrared feature. This evidence strongly indicates that Mg-rich crystalline silicates were abundant components of the solar nebula disk out to at least 10 AU, and present out to 30 AU.

  2. ARC-1985-AC85-0199-5

    NASA Image and Video Library

    1985-03-02

    Artist: Gebing Artist's conception of a newborne star, still hidden in visible light by the dust clouds within which it formed, shows matter in orbit around the rotating star. Such leftover debris may eventually form comets, planets, satellites, and asteroids. Material squeezed out by the formation process is thought to be ejected along the star's rotation axis in relatively narrow, high-velocity streams of matter. (ref: SIRTF borchure 'A Window on Cosmic Birth 1987) -- Milky Way with Black hole

  3. An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors

    PubMed Central

    Li, Jian; Wei, Xinguo; Zhang, Guangjun

    2017-01-01

    Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method. PMID:28825684

  4. An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors.

    PubMed

    Li, Jian; Wei, Xinguo; Zhang, Guangjun

    2017-08-21

    Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method.

  5. The Near-Earth Space Surveillance (NESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a Microsatellite

    NASA Technical Reports Server (NTRS)

    Hildebrand, A. R.; Carroll, K. A.; Balam, D. D.; Cardinal, R. D.; Matthews, J. M.; Kuschnig, R.; Walker, G. A. H.; Brown, P. G.; Tedesco, E. F.; Worden, S. P.

    2001-01-01

    The Near-Earth Space Surveillance (NESS) Mission, a microsatellite dedicated to observing near-Earth (NEO) and interior-to-the-Earth (IEO)asteroids and comets plus artificial satellites, is currently being studied under contract to the Canadian Space Agency. Additional information is contained in the original extended abstract.

  6. The search for other planets: clues from the solar system.

    PubMed

    Owen, T

    1994-01-01

    Studies of element abundances and values of D/H in the atmospheres of the outer planets and Titan support a two-step model for the formation of these bodies. This model suggests that the dimensions of Uranus provide a good index for the sensitivity required to detect planets around other stars. The high proportion of N2 on the surfaces of Pluto and Triton indicates that this gas was the dominant reservoir of nitrogen in the early solar nebula. It should also be abundant on pristine comets. There is evidence that some of these comets may well have brought a large store of volatiles to the inner planets, while others were falling into the sun. In other systems, icy planetesimals falling into stars should reveal themselves through high values of D/H.

  7. Star tracking method based on multiexposure imaging for intensified star trackers.

    PubMed

    Yu, Wenbo; Jiang, Jie; Zhang, Guangjun

    2017-07-20

    The requirements for the dynamic performance of star trackers are rapidly increasing with the development of space exploration technologies. However, insufficient knowledge of the angular acceleration has largely decreased the performance of the existing star tracking methods, and star trackers may even fail to track under highly dynamic conditions. This study proposes a star tracking method based on multiexposure imaging for intensified star trackers. The accurate estimation model of the complete motion parameters, including the angular velocity and angular acceleration, is established according to the working characteristic of multiexposure imaging. The estimation of the complete motion parameters is utilized to generate the predictive star image accurately. Therefore, the correct matching and tracking between stars in the real and predictive star images can be reliably accomplished under highly dynamic conditions. Simulations with specific dynamic conditions are conducted to verify the feasibility and effectiveness of the proposed method. Experiments with real starry night sky observation are also conducted for further verification. Simulations and experiments demonstrate that the proposed method is effective and shows excellent performance under highly dynamic conditions.

  8. Sublimating comets as the source of nucleation seeds for grain condensation in the gas outflow from AGB stars

    NASA Technical Reports Server (NTRS)

    Whitmire, D. P.; Matese, John J.; Reynolds, R. T.

    1989-01-01

    A growing amount of observational and theoretical evidence suggests that most main sequence stars are surrounded by disks of cometary material. The dust production by comets in such disks is investigated when the central stars evolve up the red giant and asymptotic giant branch (AGB). Once released, the dust is ablated and accelerated by the gas outflow and the fragments become the seeds necessary for condensation of the gas. The origin of the requisite seeds has presented a well known problem for classical nucleation theory. This model is consistent with the dust production observed in M giants and supergiants (which have increasing luminosities) and the fact that earlier supergiants and most WR stars (whose luminosities are unchanging) do not have significant dust clouds even though they have significant stellar winds. Another consequence of the model is that the spatial distribution of the dust does not, in general, coincide with that of the gas outflow, in contrast to the conventional condensation model. A further prediction is that the condensation radius is greater that that predicted by conventional theory which is in agreement with IR interferometry measurements of alpha-Ori.

  9. Does a continuous solid nucleus exist in comets.

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1972-01-01

    The implication of actual cometary observations for the physical nature of comets is briefly reviewed, bringing out the complete conflict with observation of the ice-dust solid nucleus model put forward in recent years as representing the fundamental structure of comets. That under increasing solar heat the nucleus develops an expanding atmosphere is inconsistent with the well-established phenomenon that the coma contracts with decreasing distance from the sun. Several comets remaining always beyond Mars have nevertheless been strongly active and produced fine tails. That some comets show at times a star-like point of light is readily explicable on the dust-cloud structure and by no means establishes that a solid nucleus exists. With the nucleus-area corresponding not to a small solid mass but to an optical phenomenon, there would be no reason to expect that it would describe a precise dynamical orbit. On the hypothesis of a nucleus, it is necessary to postulate further some internal jet-propulsion mechanism to account for the orbital deviations.

  10. Meteor Search by Spirit, Sol 668

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated Meteor Search by Spirit, Sol 668

    The panoramic cameras on NASA's Mars Exploration Rovers are about as sensitive as the human eye at night. The cameras can see the same bright stars that we can see from Earth, and the same patterns of constellations dot the night sky. Scientists on the rover team have been taking images of some of these bright stars as part of several different projects. One project is designed to try to capture 'shooting stars,' or meteors, in the martian night sky. 'Meteoroids' are small pieces of comets and asteroids that travel through space and eventually run into a planet. On Earth, we can sometimes see meteoroids become brilliant, long 'meteors' streaking across the night sky as they burn up from the friction in our atmosphere. Some of these meteors survive their fiery flight and land on the surface (or in the ocean) where, if found, they are called 'meteorites.' The same thing happens in the martian atmosphere, and Spirit even accidentally discovered a meteor while attempting to obtain images of Earth in the pre-dawn sky back in March, 2004 (see http://marsrovers.jpl.nasa.gov/gallery/press/spirit/20040311a.html, and Selsis et al. (2005) Nature, vol 435, p. 581). On Earth, some meteors come in 'storms' or 'showers' at predictable times of the year, like the famous Perseid meteor shower in August or the Leonid meteor shower in November. These 'storms' happen when Earth passes through the same parts of space where comets sometimes pass. The meteors we see at these times are from leftover debris that was shed off of these comets.

    The same kind of thing is predicted for Mars, as well. Inspired by calculations about Martian meteor storms by meteor scientists from the University of Western Ontario in Canada and the Centre de Recherche en Astrophysique de Lyon in France, and also aided by other meteor research colleagues from NASA's Marshall Space Flight Center, scientists on the rover team planned some observations to try to detect predicted meteor storms in October and November, 2005. The views shown here are a composite of nine 60-second exposures taken with the panoramic camera on Spirit during night hours of sol 668 (Nov. 18, 2005), during a week when Mars was predicted to pass through a meteor stream associated with Halley's comet. The south celestial pole is at the center of the frame. Many stars can be seen in the images, appearing as short, curved streaks forming arcs around the center point. The star trails are curved because Mars is rotating while the camera takes the images. The brightest stars in this view would be easily visible to the naked eye, but the faintest ones are slightly dimmer than the human eye can detect.

    In addition to the star trails, there are several smaller linear streaks, dots and splotches that are the trails left by cosmic rays hitting the camera detectors. Cosmic rays are high-energy particles that are created in the Sun and in other stars throughout our galaxy and travel through space in all directions. Some of them strike Earth or other planets, and ones that strike a digital camera detector can leave little tracks or splotches like those seen in these images. Because they come from all directions, some strike the detector face-on, and others strike at glancing angles. Some even skip across the detector like flat rocks skipped across a pond. These are very common phenomena to astronomers used to working with sensitive digital cameras like those in the Mars rovers, the Hubble Space Telescope, or other space probes, and while they can be a nuisance when taking pictures, they generally do not cause any lasting damage to the cameras. Three of the streaks in the image, including one spanning most of the distance from the left edge of the frame to the center, might be meteor trails or could be the marks of other cosmic rays.

    While hunting for meteors on Mars is fun, ultimately the team wants to use the images and results for scientific purposes. These include helping to validate the models and predictions for interplanetary meteor storms, providing information on the rate of impacts of small meteoroids with Mars for comparison with rates for the Earth and Moon, assessing the rate and intensity of cosmic ray impact events in the Martian environment, and looking at whether some bright stars are being dimmed occasionally by water ice or dust clouds occurring at night during different Martian seasons.

  11. Navigation and guidance of Japanese deepspace probes encountering Halley's comet

    NASA Astrophysics Data System (ADS)

    Nishimura, T.; Matsuo, H.; Takano, T.; Kawaguchi, J.

    The techniques used by ISAS in the guidance of the Sakigake and Suisei probes, which encountered Comet Halley in March 1986, are reviewed. Consideration is given to the guidance of the last rocket stage in the direct ascent phase, midcourse maneuvers, tracking systems and communication links, the tracking strategy, trajectory-generation and orbit-determination software, and orbit-determination accuracy. Diagrams, drawings, graphs, photographs, and tables of numerical data are provided, and the ISAS positions of both probes during the first 10 days after launch are shown to be within 100 km in distance and 1 m/sec in velocity of NASA coordinate estimates.

  12. The discovery rate of new comets in the age of large surveys. Trends, statistics, and an updated evaluation of the comet flux

    NASA Astrophysics Data System (ADS)

    Fernández, Julio A.

    We analyze a sample of 58 Oort cloud comets (OCCs) (original orbital energies x in the range 0 < x < 100, in units of 10-6 AU-1), plus 45 long-period comets with negative orbital energies or poorly determined or undetermined x, discovered during the period 1999-2007. To analyze the degree of completeness of the sample, we use Everhart's (1967 Astr. J 72, 716) concept of “excess magnitude” (in magnitudes × days), defined as the integrated magnitude excess that a given comet presents over the time above a threshold magnitude for detection. This quantity is a measure of the likelihood that the comet will be finally detected. We define two sub-samples of OCCs: 1) new comets (orbital energies 0 < x < 30) as those whose perihelia can shift from outside to the inner planetary region in a single revolution; and 2) inner cloud comets (orbital energies 30 ≤ x < 100), that come from the inner region of the Oort cloud, and for which external perturbers (essentially galactic tidal forces and passing stars) are not strong enough to allow them to overshoot the Jupiter-Saturn barrier. From the observed comet flux and making allowance for missed discoveries, we find a flux of OCCs brighter than absolute total magnitude 9 of ≃0.65 ± 0.18 per year within Earth's orbit. From this flux, about two-thirds corresponds to new comets and the rest to inner cloud comets. We find striking differences in the q-distribution of these two samples: while new comets appear to follow an uniform q-distribution, inner cloud comets show an increase in the rate of perihelion passages with q.

  13. Comet 67P Seen by Kepler

    NASA Image and Video Library

    2016-10-07

    The European Space Agency's Rosetta mission concluded its study of comet 67P/Churyumov-Gerasimenko on Sept. 30, 2016. NASA's planet-hunting Kepler spacecraft observed the comet during the final month of the Rosetta mission, while the comet was not visible from Earth. This animation is composed of images from Kepler of the comet. From Sept. 7 through Sept. 20, the Kepler spacecraft, operating in its K2 mission, fixed its gaze on comet 67P. From the distant vantage point of Kepler, the comet's nucleus and tail could be observed. The long-range view from Kepler complements the closeup view of the Rosetta spacecraft, providing context for the high-resolution investigation Rosetta performed as it descended closer and closer to the comet. During the two-week period of study, Kepler took a picture of the comet every 30 minutes. The animation shows a period of 29.5 hours of observation from Sept. 17 thru Sept. 18. The comet is seen passing through Kepler's field of view from top right to bottom left, as outlined by the diagonal strip. The white dots represent stars and other regions in space studied during K2's tenth observing campaign. As a comet travels through space it sheds a tail of gas and dust. The more material that is shed, the more surface area there is to reflect sunlight. A comet's activity level can be obtained by measuring the reflected sunlight. Analyzing the Kepler data, scientists will be able to determine the amount of mass lost each day as comet 67P travels through the solar system. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21072

  14. May 8 Hubble View of ISON

    NASA Image and Video Library

    2013-11-22

    Superficially resembling a skyrocket, Comet ISON is hurtling toward the Sun at a whopping 48,000 miles per hour. Its swift motion is captured in this image taken May 8, 2013, by NASA's Hubble Space Telescope. At the time the image was taken, the comet was 403 million miles from Earth, between the orbits of Mars and Jupiter. Unlike a firework, the comet is not combusting, but in fact is pretty cold. Its skyrocket-looking tail is really a streamer of gas and dust bleeding off the icy nucleus, which is surrounded by a bright, star-like-looking coma. The pressure of the solar wind sweeps the material into a tail, like a breeze blowing a windsock. As the comet warms as it moves closer to the Sun, its rate of sublimation will increase. The comet will get brighter and the tail grows longer. The comet is predicted to reach naked-eye visibility in November. The comet is named after the organization that discovered it, the Russia-based International Scientific Optical Network. This false-color, visible-light image was taken with Hubble's Wide Field Camera 3. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scienti

  15. Results from Radio Tracking the Rosetta Spacecraft: Gravity, Internal Structure and Nucleus Composition of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Andert, T.; Asmar, S.; Bird, M. K.; Häusler, B.; Peter, K.; Tellmann, S.; Weissman, P. R.; Barriot, J. P.; Sierks, H.

    2017-12-01

    When Rosetta arrived at its target comet 67P/Churyumov-Gerasimenko it first performed a series of distant flybys (100 - 30 km). During this mission phase the mass of the comets nucleus could be determined by analyzing the RSI radio tracking data. In combination with the volume from images of the OSIRIS camera this resulted in a precise bulk density determination. That already gave first insights into the comets interior structure. The nucleus appears to be a low-density, highly porous dusty body. From bound orbits with distances below 30 km the low degree and order gravity field coefficients could be derived. The gravity field coefficients strongly depend on the nucleus irregular shape and on the interior mass distribution. The shape is very well reconstructed from of the OSIRIS camera images. Various models of the interior nucleus structure and density distributions are used to compute simulated values of the gravity field coefficients. A comparison with the observed coefficients yields the feasibility of the theoretical interior structure. Thus, the gravity field helps constraining models of the internal structure, the composition and also of the origin and formation of the comets nucleus.

  16. Patrick Moore's Data Book of Astronomy

    NASA Astrophysics Data System (ADS)

    Moore, Patrick; Rees, Robin

    2014-01-01

    1. The Solar System; 2. The Sun; 3. The Moon; 4. Mercury; 5. Venus; 6. Earth; 7. Mars; 8. The asteroid belt; 9. Jupiter; 10. Saturn; 11. Uranus; 12. Neptune; 13. Beyond Neptune: the Kuiper Belt; 14. Comets; 15. Meteors; 16. Meteorites; 17. Glows and atmospheric effects; 18. The stars; 19. Stellar spectra and evolution; 20. Extrasolar planets; 21. Double stars; 22. Variable stars; 23. Stellar clusters; 24. Nebulae; 25. The Galaxy; 26. The evolution of the Universe; 27. The constellations; 28. The star catalogue; 29. Telescopes and observatories; 30. Non-optical astronomy; 31. The history of astronomy; 32. Astronomers; 33. Glossary; Index.

  17. Mass extinctions and missing matter

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.

    1984-01-01

    The possible influence of 'invisible matter' on the solar system's comet halo, and therefore on quasi-periodic cometary bombardment of the earth and consequent mass extinctions, is briefly addressed. Invisible matter consisting of small or cold interstellar molecular clouds could significantly modulate the comet background flux, while invisible matter consisting of a large population of old, dead stars with a relatively small galactic concentration probably could not. It is also shown that the downward force exerted by the Galaxy will perturb the halo, but will not produce any periodicity.

  18. Gould, Benjamin Apthorp (1824-96)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Astronomer, born in Boston, MA, his early work in Germany was on the observation and motion of comets and asteroids. His greatest work was his mapping of the stars of the southern skies. He helped found the National Observatory in Cordoba, Argentina, and was its director as it compiled a catalog of stars using recently developed photometric methods. On returning to the USA, he spent his final yea...

  19. Capture of exocomets and the erosion of the Oort cloud due to stellar encounters in the Galaxy

    NASA Astrophysics Data System (ADS)

    Hanse, J.; Jílková, L.; Portegies Zwart, S. F.; Pelupessy, F. I.

    2018-02-01

    The Oort cloud (OC) probably formed more than 4 Gyr ago and has been moving with the Sun in the Galaxy since, exposed to external influences, most prominently to the Galactic tide and passing field stars. Theories suggest that other stars might possess exocomets distributed similarly to our OC. We study the erosion of the OC and the possibility for capturing exocomets during the encounters with such field stars. We carry out simulations of flybys, where both stars are surrounded by a cloud of comets. We measure how many exocomets are transferred to the OC, how many OC's comets are lost, and how this depends on the other star's mass, velocity and impact parameter. Exocomets are transferred to the OC only during relatively slow (≲0.5 km s-1) and close (≲105 au) flybys and these are expected to be extremely rare. Assuming that all passing stars are surrounded by a cloud of exocomets, we derive that the fraction of exocomets in the OC has been about 10-5-10-4. Finally, we simulate the OC for the whole lifetime of the Sun, taking into account the encounters and the tidal effects. The OC has lost 25-65 per cent of its mass, mainly due to stellar encounters, and at most 10 per cent (and usually much less) of its mass can be captured. However, exocomets are often lost shortly after the encounter that delivers them, due to the Galactic tide and consecutive encounters.

  20. Reduction of astrometric plates

    NASA Technical Reports Server (NTRS)

    Stock, J.

    1984-01-01

    A rapid and accurate method for the reduction of comet or asteroid plates is described. Projection equations, scale length correction, rotation of coordinates, linearization, the search for additional reference stars, and the final solution are examined.

  1. Lyman-alpha imagery of Comet Kohoutek

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.; Page, T. L.; Meier, R. R.; Prinz, D. K.

    1974-01-01

    Electrographic imagery of Comet Kohoutek in the 1100-1500 A wavelength range was obtained from a sounding rocket on Jan. 8, 1974, and from the Skylab space station on 13 occasions between Nov. 26, 1973 and Feb. 2, 1974. These images are predominantly due to Lyman-alpha (1216 A) emission from the hydrogen coma of the comet. The rocket pictures have been calibrated for absolute sensitivity and a hydrogen production rate has been determined. However, the Skylab camera suffered degradation of its sensitivity during the mission, and its absolute sensitivity for each observation can only be estimated by comparison of the comet images with those taken by the rocket camera, with imagery of the geocoronal Lyman-alpha glow, of the moon in reflected Lyman-alpha, and of ultraviolet-bright stars. The rocket and geocoronal comparisons are used to derive a preliminary, qualitative history of the development of the cometary hydrogen coma and the associated hydrogen production rate.

  2. Terrestrial analysis of the organic component of comet dust.

    PubMed

    Sandford, Scott A

    2008-01-01

    The nature of cometary organics is of great interest, both because these materials are thought to represent a reservoir of the original carbon-containing materials from which everything else in our solar system was made and because these materials may have played key roles in the origin of life on Earth. Because these organic materials are the products of a series of universal chemical processes expected to operate in the interstellar media and star-formation regions of all galaxies, the nature of cometary organics also provides information on the composition of organics in other planetary systems and, by extension, provides insights into the possible abundance of life elsewhere in the universe. Our current understanding of cometary organics represents a synthesis of information from telescopic and spacecraft observations of individual comets, the study of meteoritic materials, laboratory simulations, and, now, the study of samples collected directly from a comet, Comet P81/Wild 2.

  3. The Volatile Fraction of Comets as Quantified at Infrared Wavelengths - An Emerging Taxonomy and Implications for Natal Heritage

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; DiSanti, M. A.; Bonev, B. P.; Villanueva, G. L.; Magee-Sauer, K.; Gibb, E. L.; Paganini, L.; Radeva, Y. L.; Charnley, S. B.

    2012-01-01

    It is relatively easy to identify the reservoir from which a given comet was ejected. But dynamical models demonstrate that the main cometary reservoirs (Kuiper Belt, Oort Cloud) each contain icy bodies that formed in a range of environments in the protoplanetary disk, and the Oort Cloud may even contain bodies that formed in disks of sibling stars in the Sun s birth cluster. The cometary nucleus contains clues to the formative region(s) of its individual components. The composition of ices and rocky grains reflect a range of processes experienced by material while on the journey from the natal interstellar cloud core to the cometary nucleus. For that reason, emphasis is placed on classifying comets according to their native ices and dust (rather than orbital dynamics). Mumma & Charnley [1] reviewed the current status of taxonomies for comets and relation to their natal heritage.

  4. Education and Public Outreach for NASA's EPOXI Mission.

    NASA Astrophysics Data System (ADS)

    McFadden, Lucy-Ann A.; Crow, C. A.; Behne, J.; Brown, R. N.; Counley, J.; Livengood, T. A.; Ristvey, J. D.; Warner, E. M.

    2009-09-01

    NASA's EPOXI mission is reusing the Deep Impact (DI) flyby spacecraft to study comets and extra-solar planets around other stars. During the Extrasolar Planetary Observations and Characterization (EPOCh) phase of the mission extrasolar planets transiting their parent stars were observed to gain further knowledge and understanding of planetary systems. Observations of Earth also allowed for characterization of Earth as an extrasolar planet. A movie of a lunar transit of the Earth created from EPOCh images and links to existing planet finding activities from other NASA missions are available on the EPOXI website. The Deep Impact Extended Investigation (DIXI) continues the Deep Impact theme of investigating comet properties and formation by observing comet Hartley 2 in November 2010. The EPOXI Education and Public Outreach (E/PO) program is both creating new materials and updating and modifying existing Deep Impact materials based on DI mission results. Comparing Comets is a new educational activity under development that will guide students in conducting analyses of comet surface features similar to those the DIXI scientists will perform after observing comet Hartley 2. A new story designed to stimulate student creativity was developed in alignment with national educational standards. EPOXI E/PO also funded Family Science Night (FSN), a program bringing together students, families, and educators for an evening at the National Air and Space Museum in Washington, DC. FSN events include time for families to explore the museum, a presentation by a space scientist, and an astronomy themed IMAX film. Nine events were held during the 2008-2009 school year with a total attendance of 3,145 (attendance since inception reached 44,732). Half of attendance is reserved for schools with high percentages of underrepresented minorities. EPOXI additionally offers a bi-monthly newsletter to keep the public, teachers, and space enthusiasts updated on current mission activities. For more information visit: http://epoxi.umd.edu/index.shtml.

  5. New Image of Comet Halley in the Cold

    NASA Astrophysics Data System (ADS)

    2003-09-01

    VLT Observes Famous Traveller at Record Distance Summary Seventeen years after the last passage of Comet Halley , the ESO Very Large Telescope at Paranal (Chile) has captured a unique image of this famous object as it cruises through the outer solar system. It is completely inactive in this cold environment. No other comet has ever been observed this far - 4200 million km from the Sun - or that faint - nearly 1000 million times fainter than what can be perceived with the unaided eye. This observation is a byproduct of a dedicated search [1] for small Trans-Neptunian Objects, a population of icy bodies of which more than 600 have been found during the past decade. PR Photo 27a/03 : VLT image (cleaned) of Comet Halley PR Photo 27b/03 : Sky field in which Comet Halley was observed PR Photo 27c/03 : Combined VLT image with star trails and Comet Halley The Halley image ESO PR Photo 27a/03 ESO PR Photo 27a/03 [Preview - JPEG: 546 x 400 pix - 207k] [Normal - JPEG: 1092 x 800 pix - 614k] [FullRes - JPEG: 1502 x 1100 pix - 1.1M] Caption : PR Photo 27a/03 shows the faint, star-like image of Comet Halley (centre), observed with the ESO Very Large Telescope (VLT) at the Paranal Observatory on March 6-8, 2003. 81 individual exposures from three of the four 8.2-m VLT telescopes with a total exposure time of about 9 hours were combined to show the magnitude 28.2 object. At this time, Comet Halley was about 4200 million km from the Sun (28.06 AU) and 4080 million km (27.26 AU) from the Earth. All images of stars and galaxies in the field were removed during the extensive image processing needed to produce this unique image. Due to the remaining, unavoidable "background noise", it is best to view the comet image from some distance. The field measures 60 x 40 arcsec 2 ; North is up and East is left. Remember Comet Halley - the famous "haired star" that has been observed with great regularity - about once every 76 years - during more than two millennia? Which was visited by an international spacecraft armada when it last passed through the inner solar system in 1986? And which put on a fine display in the sky at that time? Now, 17 years after that passage, this cosmic traveller has again been observed at the European Southern Observatory. Moving outward along its elongated orbit into the deep-freeze outer regions of the solar system, it is now almost as far away as Neptune, the most distant giant planet in our system. At 4,200 million km from the Sun, Comet Halley has now completed four-fifths of its travel towards the most distant point of this orbit. As the motion is getting ever slower, it will reach that turning point in December 2023, after which it begins its long return towards the next passage through the inner solar system in 2062. The new image of Halley was taken with the Very Large Telescope (VLT) at Paranal (Chile); a "cleaned" version is shown in PR Photo 27a/03 . It was obtained as a byproduct of an observing program aimed at studying the population of icy bodies at the rim of the solar system. The image shows the raven-black, 10-km cometary nucleus of ice and dust as an unresolved faint point of light, without any signs of activity. A cold and inactive "dirty snowball" The brightness of the comet was measured as visual magnitude V = 28.2, or nearly 1000 million times fainter than the faintest objects that can be perceived in a dark sky with the unaided eye. The pitch black nucleus of Halley reflects about 4% of the sunlight; it is a very "dirty" snowball indeed. We know from the images obtained by the ESA Giotto spacecraft in 1986 that it is avocado-shaped and on the average measures about 10 km diameter across. The VLT observation is therefore equivalent to seeing a 5-cm piece of coal at a distance of 20,500 km (about the distance between the Earth's poles) and to do so in the evening twilight. This is because at the large distance of Comet Halley, the infalling sunlight is 800 times fainter than here on Earth. The measured brightness of the cometary image perfectly matches that expected for the nucleus alone, taking into account the distance, the solar illumination and the reflectivity of the surface. This shows that all cometary activity has now ceased. The nucleus is now an inert ball of ice and dust, and is likely to remain so until it again returns to the solar neighbourhood, more than half a century from now. A record observation At 28.06 AU heliocentric distance (1 AU = 149,600,000 km - the mean distance between the Earth and the Sun), this is by far the most distant observation ever made of a comet [2]. It is also the faintest comet ever detected (by a factor of about 5); the previous record, magnitude 26.5, was co-held by comet Halley at 18.8 AU (with the ESO New Technology Telescope in 1994) and Comet Sanguin at 8.5 AU (with the Keck II telescope in 1997). Interestingly, when Comet Halley reaches its largest distance from the Sun in December 2023, about 35 AU, it will only be 2.5 times fainter than it is now. The comet would still have been detected within the present exposure time. This means that with the VLT, for the first time in the long history of this comet, the astronomers now possess the means to observe it at any point in its 76-year orbit! A census of faint Transneptunian Objects The image of Halley was obtained by combining a series of exposures obtained simultaneously with three of the 8.2-m telescopes (ANTU, MELIPAL and YEPUN) during 3 consecutive nights with the main goal to count the number of small icy bodies orbiting the Sun beyond Neptune, known as Transneptunian Objects (TNOs). Since the discovery of the first TNO in 1992, more than 600 have been found, most of these measuring several hundred km across. The VLT observations aim at a census of smaller TNOs - the incorporation of the sky field with Comet Halley allows verification of the associated, extensive data processing. Similar TNO-surveys have been performed before, but this is the first time that several very large telescopes are used simultaneously in order to observe extremely faint, hitherto inaccessible objects. The VLT observations will provide very useful information about the frequency of (smaller) TNOs of different sizes and thereby, indirectly, about the rate of collisions they have suffered since their formation. This study will also cast more light on the mystery of the apparent "emptiness" of the very distant solar system. Why are so few objects found beyond 45 AU? It is not known whether this is because there are no objects out there or if they are simply too small or too dark, or both, to have been detected so far. How to extract a very faint comet image ESO PR Photo 27b/03 ESO PR Photo 27b/03 [Preview - JPEG: 546 x 400 pix - 211k] [Normal - JPEG: 1092 x 800 pix - 649k] [FullRes - JPEG: 1502 x 1100 pix - 1.1M] ESO PR Photo 27c/03 ESO PR Photo 27c/03 [Preview - JPEG: 530 x 400 pix - 184k] [Normal - JPEG: 1059 x 800 pix - 573k] [FullRes - JPEG: 1515 x 1145 pix - 983k] Caption : PR Photo 27b/03 shows the sky field in which Comet Halley was observed with the ESO Very Large Telescope (VLT) at the Paranal Observatory on March 6-8, 2003. 81 individual exposures with a total exposure time of 32284 sec (almost 9 hours) from three of the four 8.2-m telescopes were cleaned and combined to produce this composite photo, displaying numerous faint stars and galaxies in the field. The predicted motion of Comet Halley during the three nights is indicated by short red lines. The long straight lines at the top and to the right were caused by artificial satellites in orbit around the Earth that passed through the field during the exposure. The field measures 300 x 180 arcsec 2. PR Photo 27c/03 was produced by adding the same frames, however, while shifting their positions according to the motion of the comet. The faint, star-like image of Comet Halley is now visible (in circle, at centre); all other objects (stars, galaxies) in the field are "trailed". A satellite trail is visible at the very top. The field measures 60 x 40 arcsec 2 ; North is up and East is left in both photos. The combination of the images from three 8.2-m telescopes obtained during three consecutive nights is not straightforward. The individual characteristics of the imaging instruments (FORS1 on ANTU, VIMOS on MELIPAL and FORS2 on YEPUN) must be taken into account and corrected. Moreover, the motion of the very faint moving objects has to be compensated for, even though they are too faint to be seen on individual exposures; they only reveal themselves when several (many!) frames are combined during the final steps of the process. It is for this reason that the presence of a known, faint object like Comet Halley in the field-of-view provides a powerful control of the data processing. If Halley is visible at the end, it has been done properly. The extensive data processing is now under way and the intensive search for new Transneptunian objects has started. The field with Comet Halley was observed with the giant telescopes during each of three consecutive nights, yielding 81 individual exposures with a total exposure time of almost 9 hours. The faint comet is completely invisible on the individual images. On PR Photo 27b/03 , these frames have been added directly, showing very faint stars and galaxies. Also this photo does not show the moving comet, but by shifting the frames before they are added in such a way that the comet remains fixed, a faint image does emerge among the stellar trails, cf. PR Photo 27c/03 . A better, but much more cumbersome method is to "subtract" the images of all stars and galaxies from the individual exposures, before they are added. PR Photo 27a/03 has been produced in this way and shows the image of Comet Halley more clearly. In total, about 20,000 photons were detected from the comet, i.e. about one photon per 8.2-m telescope every 1.6 second. However, during the same time, the telescopes collected about one thousand times more photons from molecular emission in the Earth's atmosphere within the sky area covered by the comet's image. The presence of this considerable "noise" calls for very careful image processing in order to detect the faint comet signal. The identity of the comet is beyond doubt: the image is faintly visible on composite photos obtained during a single night, demonstrating that the direction and rate of motion of the detected object perfectly matches that predicted for Comet Halley from its well-known orbit. Moreover, the image is located within 1 arcsec from the predicted position in the sky. Outlook After its passage in 1910, Comet Halley was again seen in 1982, when David Jewitt first observed its faint image with the 5-m Palomar telescope at a time when it was 11 AU from the Sun, a little further than planet Saturn. It was observed from La Silla two months later. As the comet approached, the ice in the nucleus began to evaporate (sublimate), and the comet soon became surrounded by a cloud of dust and gas (the "coma"). It developed the tail that is typical of comets and was extensively observed, also from several spacecraft passing close to its nucleus in early 1986. Observations have since been made of Comet Halley as it moves away from the Sun, documenting a steady decrease of activity. When it reached the distance of Saturn, the tail and coma had disappeared completely, leaving only the 5 x 5 x 15 km avocado-shaped "dirty snowball" nucleus. However, Halley was still good for a major surprise: in 1991, a gigantic explosion happened, providing it with an expanding, extensive cloud of dust for several months. It is not known whether this event was caused by a collision with an unknown piece of rock or by internal processes (a last "sigh" on the way out). Until now, the most recent observation of Comet Halley was done in 1994 with the New Technology Telescope (NTT) at La Silla, at that time the most powerful ESO telescope. It showed the comet to be completely inactive. Nine years later, so does the present VLT observation. It is unlikely that any activity will be seen until this famous object again approaches the Sun, more than 50 years from now.

  6. Hubble Sees a “Behemoth” Bleeding Atmosphere Around a Warm Exoplanet

    NASA Image and Video Library

    2015-06-24

    Astronomers using NASA’s Hubble Space Telescope have discovered an immense cloud of hydrogen dubbed “The Behemoth” bleeding from a planet orbiting a nearby star. The enormous, comet-like feature is about 50 times the size of the parent star. The hydrogen is evaporating from a warm, Neptune-sized planet, due to extreme radiation from the star. This phenomenon has never been seen around an exoplanet so small. It may offer clues to how other planets with hydrogen-enveloped atmospheres could have their outer layers evaporated by their parent star, leaving behind solid, rocky cores. Hot, rocky planets such as these that roughly the size of Earth are known as Hot-Super Earths. “This cloud is very spectacular, though the evaporation rate does not threaten the planet right now,” explains the study’s leader, David Ehrenreich of the Observatory of the University of Geneva in Switzerland. “But we know that in the past, the star, which is a faint red dwarf, was more active. This means that the planet evaporated faster during its first billion years of existence because of the strong radiation from the young star. Overall, we estimate that it may have lost up to 10 percent of its atmosphere over the past several billion years.” Caption: This artist's concept shows "The Behemoth," an enormous comet-like cloud of hydrogen bleeding off of a warm, Neptune-sized planet just 30 light-years from Earth. Also depicted is the parent star, which is a faint red dwarf named GJ 436. The hydrogen is evaporating from the planet due to extreme radiation from the star. A phenomenon this large has never before been seen around any exoplanet. Credits: NASA, ESA, and G. Bacon (STScI)

  7. Urania in the Marketplace: The Blue Comet (A Railroad’s Astronomical Heritage)

    NASA Astrophysics Data System (ADS)

    Rumstay, Kenneth S.

    2017-01-01

    Between 1929 February 21 and 1941 September 27 the Central New Jersey Railroad operated a luxury passenger train between Jersey City and Atlantic City. Named The Blue Comet, the locomotive, tender, and coaches sported a unique royal blue paint scheme designed to evoke images of celestial bodies speeding through space. Inside each car were etched window panes and lampshades featuring stars and comets. Each coach sported the name of a famous comet on its side; these comets were of course named for their discoverers. Some of the astronomers honored in this unique fashion remain famous to this day, or at least their comets do. The names D’Arrest, Barnard, Encke, Faye, Giacobini, Halley, Olbers, Temple, Tuttle, and Westphal are familiar ones. But Biela, Brorsen, deVico, Spitaler, and Winnecke have now largely faded into obscurity; their stories are recounted here.Although more than seventy years have elapsed since its last run, The Blue Comet, perhaps the most famous passenger train in American history, lives on in the memories of millions of passengers and railfans. This famous train returned to the attention of millions of television viewers on the evening of 2007 June 3, in an episode of the HBO series The Sopranos.This work was supported by a faculty development grant from Valdosta State University.

  8. The Blue Comet: A Railroad's Astronomical Heritage

    NASA Astrophysics Data System (ADS)

    Rumstay, Kenneth S.

    2009-01-01

    Between 1929 February 21 and 1941 September 27, the Central New Jersey Railroad operated a luxury passenger train between Jersey City and Atlantic City. Named The Blue Comet, the locomotive, tender, and coaches sported a unique royal blue paint scheme designed to evoke images of celestial bodies speeding through space. Inside each car were etched window panes and lampshades featuring stars and comets. And each coach sported the name of a famous comet on its side; these comets were of course named for their discoverers. Some of the astronomers honored in this unique fashion remain famous to this day, or at least their comets do. The names D'Arrest, Barnard, Encke, Faye, Giacobini, Halley, Olbers, Temple, Tuttle, and Westphal are familiar ones. But Biela, Brorsen, deVico, Spitaler, and Winnecke have now largely faded into obscurity; their stories are recounted here. Although more than sixty years have elapsed since its last run, The Blue Comet, perhaps the most famous passenger train in American history, lives on in the memories of millions of passengers and railfans. This famous train returned to the attention of millions of television viewers on the evening of 2007 June 3, in an episode of the HBO series The Sopranos. This work was supported by a faculty development grant from Valdosta State University.

  9. Two families of exocomets in the β Pictoris system.

    PubMed

    Kiefer, F; des Etangs, A Lecavelier; Boissier, J; Vidal-Madjar, A; Beust, H; Lagrange, A-M; Hébrard, G; Ferlet, R

    2014-10-23

    The young planetary system surrounding the star β Pictoris harbours active minor bodies. These asteroids and comets produce a large amount of dust and gas through collisions and evaporation, as happened early in the history of our Solar System. Spectroscopic observations of β Pictoris reveal a high rate of transits of small evaporating bodies, that is, exocomets. Here we report an analysis of more than 1,000 archival spectra gathered between 2003 and 2011, which provides a sample of about 6,000 variable absorption signatures arising from exocomets transiting the disk of the parent star. Statistical analysis of the observed properties of these exocomets allows us to identify two populations with different physical properties. One family consists of exocomets producing shallow absorption lines, which can be attributed to old exhausted (that is, strongly depleted in volatiles) comets trapped in a mean motion resonance with a massive planet. Another family consists of exocomets producing deep absorption lines, which may be related to the recent fragmentation of one or a few parent bodies. Our results show that the evaporating bodies observed for decades in the β Pictoris system are analogous to the comets in our own Solar System.

  10. Complex Protostellar Chemistry

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    Two decades ago, our understanding of the chemistry in protostars was simple-matter either fell into the central star or was trapped in planetary-scale objects. Some minor chemical changes might occur as the dust and gas fell inward, but such effects were overwhelmed by the much larger scale processes that occurred even in bodies as small as asteroids. The chemistry that did occur in the nebula was relatively easy to model because the fall from the cold molecular cloud into the growing star was a one-way trip down a well-known temperature-pressure gradient; the only free variable was time. However, just over 10 years ago it was suggested that some material could be processed in the inner nebula, flow outward, and become incorporated into comets (1, 2). This outward flow was confirmed when the Stardust mission returned crystalline mineral fragments (3) from Comet Wild 2 that must have been processed close to the Sun before they were incorporated into the comet. In this week's Science Express, Ciesla and Sandford (4) demonstrate that even the outermost regions of the solar nebula can be a chemically active environment. Their finding could have consequences for the rest of the nebula.

  11. Infrared Spectroscopy of the Dust in Comets and Relationships to Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.

    2003-01-01

    Infrared spectroscopy of the dust in comets reveals a complex mix of silicate materials, including both crystalline and non-crystalline components of both olivine (forsterite) and pyroxene composition. These various components do not necessarily share a common origin. Since comets formed in cold regions of the solar nebula, pre-solar grains in the nebula could have been accreted into comets with little alteration. Some of the cometary silicates may be of circumstellar (formed in circumstellar outflows of evolved stars) or interstellar (formed in dense region of the interstellar medium) origin. Spectral similarities to both circumstellar and interstellar silicates are seen in comet spectra. the short-period Kuiper Belt comets) show weak or no spectral features. The lack of features is generally explained as a particle size effect: the small silicate grains are embedded in larger, optically thick particles. However, compositional differences cannot be ruled out. For example, no unambiguous signature of forsterite has yet been seen in the spectrum of a short-period comet. Thus, the Stardust sample from short-period comet P/Wild 2 will be extremely valuable. Not only grain by grain composition and isotopic ratios but also grain morphology, irradiation history, and evidence of organic refractory mantles are important for understanding their origin. The relative abundance and distinguishing characteristics of the various crystalline and non-crystalline silicate components needs to be established. While some comets, such as Hale-Bopp, display a rich infrared spectrum, others (particularly

  12. Photometrically-derived properties of massive-star clusters obtained with different massive-star evolution tracks and deterministic models

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Charlot, Stéphane; Eldridge, John

    2015-08-01

    We compute libraries of stellar + nebular spectra of populations of coeval stars with ages of <100 Myr and metallicities of Z=0.001 to 0.040, using different sets of massive-star evolution tracks, i.e., new Padova tracks for single non-rotating stars, the Geneva tracks for single non-rotating and rotating stars, and the Auckland tracks for single non-rotating and binary stars. For the stellar component, we use population synthesis codes galaxev, starburst99, and BPASS, depending on the set of tracks. For the nebular component we use photoionization code cloudy. From these spectra, we obtain magnitudes in filters F275W, F336W, F438W, F547M, F555W, F657N, and F814W of the Hubble Space Telescope (HST) Wide Field Camera Three. We use i) our computed magnitudes, ii) new multi-band photometry of massive-star clusters in nearby (<11 Mpc) galaxies spanning the metallicity range 12+log(O/H)=7.2-9.2, observed as part of HST programs 13364 (PI Calzetti) and 13773 (PI Chandar), and iii) Bayesian inference to a) establish how well the different models are able to constrain the metallicities, extinctions, ages, and masses of the star clusters, b) quantify differences in the cluster properties obtained with the different models, and c) assess how properties of lower-mass clusters are affected by the stochastic sampling of the IMF. In our models, the stellar evolution tracks, stellar atmospheres, and nebulae have similar chemical compositions. Different metallicities are available with different sets of tracks and we compare results from models of similar metallicities. Our results have implications for studies of the formation and evolution of star clusters, the cluster age and mass functions, and the star formation histories of galaxies.

  13. Possible Disintegrating Planet Artist Concept

    NASA Image and Video Library

    2012-05-21

    This artist concept depicts a comet-like tail of a possible disintegrating super Mercury-size planet candidate as it transits, or crosses, its parent star, named KIC 12557548. The results are based on data from NASA Kepler mission.

  14. Helium discovered in the tail of an exoplanet

    NASA Astrophysics Data System (ADS)

    Deming, Drake

    2018-05-01

    As the exoplanet WASP-107b orbits its host star, its atmosphere escapes to form a comet-like tail. Helium atoms detected in the escaping gases give astronomers a powerful tool for investigating exoplanetary atmospheres.

  15. On the present shape of the Oort cloud and the flux of ;new; comets

    NASA Astrophysics Data System (ADS)

    Fouchard, M.; Rickman, H.; Froeschlé, Ch.; Valsecchi, G. B.

    2017-08-01

    Long term evolution of an initial set of 107 Oort cloud comets is performed for the age of the solar system taking into account the action of passing stars using 10 different sequences of stellar encounters, Galactic tides and the gravity of the giant planets. The initial conditions refer to a disk-shaped Oort cloud precursor, concentrated toward the ecliptic with perihelia in the region of Uranus and Neptune. Our results show that the shape of the Oort cloud quickly reach a kind of steady state beyond a semi-major axis greater than about 2000 AU (this threshold depending on the evolution time-span), with a Boltzmann distribution of the orbital energy. The stars act in an opposite way to what was found in previous papers, that is they emptied an initial Tidal Active Zone that is overfilled with respect to the isotropic case. Consequently, the inclusion of stellar perturbations strongly affect the shape of the Oort spike. On the contrary, the Oort spike shape appears to be poorly dependent on the stellar sequences used, whereas the total flux of observable comets and the proportion of retrograde comets for the inner part of the spike are significantly dependent of it. Then it has been highlighted that the total flux, the shape of the Oort spike and the shape of the final Oort cloud are almost independent of the initial distribution of orbital energy considered.

  16. High-precision polarimetry at the Mont-Mégantic Observatory with the new polarimeter POMM

    NASA Astrophysics Data System (ADS)

    Bastien, Pierre; Hernandez, Olivier; Albert, Loïc.; Artigau, Étienne; Doyon, René; Drissen, Laurent; Lafrenière, David; Moffat, Antony F. J.; St-Louis, Nicole

    2014-07-01

    A new polarimeter has been built for the "Observatoire du Mont-Mégantic" (POMM) and is now in commissioning phase. It will allow polarization measurements with a precision of 10-6, an improvement by a factor of 100 over the previous observatory polarimeter. The characteristics of the instrument that allow this goal are briefly discussed and the planned science observations are presented. They include exoplanets near their host star (hot Jupiters), transiting exoplanets, stars with debris disks, young stars with proto-planetary disks, brown dwarfs, massive Wolf-Rayet stars and comets. The details of the optical and mechanical designs are presented in two other papers.

  17. Hartley 2 on the Move

    NASA Image and Video Library

    2010-10-26

    This image from NASA EPOXI mission shows Hartley 2 moving across the background field of stars. The coma, or cloud of gas and dust around the comet, expands and brightens over this time period. Animation available at the Photojournal.

  18. Skylab's Astronomy and Space Sciences

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A. (Editor)

    1979-01-01

    The capabilities of Skylab for multidisciplinary investigations are reviewed. Experiments and results are discussed for observations of stars and galaxies, energetic particles, interplanetary dust, Comet Kohoutek, the earth's atmosphere, and the nature and effects of space environments on man.

  19. A Tale of Two Comets: ISON

    NASA Image and Video Library

    2013-11-25

    An optical color image of galaxies is seen here overlaid with X-ray data magenta from NASA Nuclear Spectroscopic Telescope Array NuSTAR. Both magenta blobs show X-rays from massive black holes buried at the hearts of galaxies.

  20. Effective star tracking method based on optical flow analysis for star trackers.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; Li, Jin; Wei, Minsong; You, Zheng

    2016-12-20

    Benefiting from rapid development of imaging sensor technology, modern optical technology, and a high-speed computing chip, the star tracker's accuracy, dynamic performance, and update rate have been greatly improved with low power consumption and miniature size. The star tracker is currently one of the most competitive attitude measurement sensors. However, due to restrictions of the optical imaging system, difficulties still exist in moving star spot detection and star tracking when in special motion conditions. An effective star tracking method based on optical flow analysis for star trackers is proposed in this paper. Spot-based optical flow, based on a gray gradient between two adjacent star images, is analyzed to distinguish the star spot region and obtain an accurate star spot position so that the star tracking can keep continuous under high dynamic conditions. The obtained star vectors and extended Kalman filter (EKF) are then combined to conduct an angular velocity estimation to ensure region prediction of the star spot; this can be combined with the optical flow analysis result. Experiment results show that the method proposed in this paper has advantages in conditions of large angular velocity and large angular acceleration, despite the presence of noise. Higher functional density and better performance can be achieved; thus, the star tracker can be more widely applied in small satellites, remote sensing, and other complex space missions.

  1. Automated determination of dust particles trajectories in the coma of comet 67P

    NASA Astrophysics Data System (ADS)

    Marín-Yaseli de la Parra, J.; Küppers, M.; Perez Lopez, F.; Besse, S.; Moissl, R.

    2017-09-01

    During more than two years Rosetta spent at comet 67P, it took thousands of images that contain individual dust particles. To arrive at a statistics of the dust properties, automatic image analysis is required. We present a new methodology for fast-dust identification using a star mask reference system for matching a set of images automatically. The main goal is to derive particle size distributions and to determine if traces of the size distribution of primordial pebbles are still present in today's cometary dust [1].

  2. On the Absence of EUV Emission from Comet C/2012 S1 (ISON)

    NASA Technical Reports Server (NTRS)

    Bryans, Paul; Pesnell, W. Dean

    2016-01-01

    When the sungrazing comet C2012 S1 (ISON) made its perihelion passage within two solar radii of the Sun's surface, it was expected to be a bright emitter at extreme ultraviolet (EUV) wavelengths. However, despite solar EUV telescopes repointing to track the orbit of the comet, no emission was detected. This null result is interesting in its own right, offering the possibility of placing limits on the size and composition of the nucleus. We explain the lack of detection by considering the properties of the comet and the solar atmosphere that determine the intensity of EUV emission from sungrazing comets. By comparing these properties with those of sungrazing comet C2011 W3 (Lovejoy), which did emit in the EUV, we conclude that the primary factor resulting in non-detectable EUV emission from C2012 S1 (ISON) was an insufficiently large nucleus. We conclude that the radius of C2012 S1 (ISON) was at least a factor of four less than that of C2011 W3 (Lovejoy). This is consistent with white-light observations in the days before perihelion that suggested the comet was dramatically reducing in size on approach.

  3. ON THE ABSENCE OF EUV EMISSION FROM COMET C/2012 S1 (ISON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryans, Paul; Pesnell, W. Dean

    2016-05-10

    When the sungrazing comet C/2012 S1 (ISON) made its perihelion passage within two solar radii of the Sun’s surface, it was expected to be a bright emitter at extreme ultraviolet (EUV) wavelengths. However, despite solar EUV telescopes repointing to track the orbit of the comet, no emission was detected. This “null result” is interesting in its own right, offering the possibility of placing limits on the size and composition of the nucleus. We explain the lack of detection by considering the properties of the comet and the solar atmosphere that determine the intensity of EUV emission from sungrazing comets. Bymore » comparing these properties with those of sungrazing comet C/2011 W3 (Lovejoy), which did emit in the EUV, we conclude that the primary factor resulting in non-detectable EUV emission from C/2012 S1 (ISON) was an insufficiently large nucleus. We conclude that the radius of C/2012 S1 (ISON) was at least a factor of four less than that of C/2011 W3 (Lovejoy). This is consistent with white-light observations in the days before perihelion that suggested the comet was dramatically reducing in size on approach.« less

  4. Monitoring of comets activity and composition with the TRAPPIST-North telescope

    NASA Astrophysics Data System (ADS)

    Moulane, Y.; Benkhaldoun, Z.; Jehin, E.; Opitom, C.; Gillon, M.; Daassou, A.

    2017-06-01

    TRAPPIST-North (TRAnsiting Planets and PlanetesImals Small Telescope) is a 60-cm robotic telescope that was installed in May 2016 at the Oukaimeden Observatory [1]. The project is led by the University of Liège (Belgium) and the Caddi Ayad University of Marrakech (Morocco). This telescope is a twin of the TRAPPIST-South telescope, which was installed at the ESO La Silla Observatory in 2010 [2]. The TRAPPIST telescopes are dedicated to the detection and characterization of planets orbiting stars other than our Sun (exoplanets) and the study of comets and other small bodies in our solar system. For the comets research, these telescopes have very sensitive CCD cameras with complete sets of narrow band filters to measure the production rates of several gases (OH, NH, CN, C3 and C2) and the dust [3]. With TRAPPIST-North we can also observe comets that would not be visible in the southern hemisphere. Therfore, with these two telescopes, we can now observe continuously the comets around their orbit. We project to study individually the evolution of the activity, chemical composition, dust properties, and coma morphology of several comets per year and of different origins (New comets and Jupiter Family comets) over a wide range of heliocentric distances, and on both sides of perihelion. We measure the production rates of each daughter molecules using a Haser model [4], in addition to the Afρ parameter to estimate the dust production in the coma. In this work, we present the first measurements of the production rates of comet C/2013 X1 (PANSTARRS) observed with TN in June 2016, and the measurements of comet C/2013 V5 (Oukaimeden) observed in 2014 with TRAPPIST-South.

  5. A hybrid method for accurate star tracking using star sensor and gyros.

    PubMed

    Lu, Jiazhen; Yang, Lie; Zhang, Hao

    2017-10-01

    Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.

  6. Asteroids and Comets Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Contents include various different animations in the area of Asteroids and Comets. Titles of the short animated clips are: STARDUST Mission; Asteroid Castallia Impact Simulation; Castallia, Toutatis and the Earth; Simulation Asteroid Encounter with Earth; Nanorover Technology Task; Near Earth Asteroid Tracking; Champollian Anchor Tests; Early Views of Comets; Exploration of Small Bodies; Ulysses Resource Material from ESA; Ulysses Cometary Plasma Tail Animation; and various discussions on the Hale-Bopp Comet. Animation of the following are seen: the Stardust aerogel collector grid collecting cometary dust particles, comet and interstellar dust analyzer, Wiper-shield and dust flux monitor, a navigation camera, and the return of the sample to Earth; a comparison of the rotation of the Earth to the Castallia and Tautatis Asteroids; an animated land on Tautatis and the view of the motion of the sky from its surface; an Asteroid collision with the Earth; the USAF Station in Hawaii; close-up views of asteroids; automatic drilling of the Moon; exploding Cosmic Particles; and the dropping off of the plasma tail of a comet as it travels near the sun.

  7. Post-main-sequence planetary system evolution.

    PubMed

    Veras, Dimitri

    2016-02-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries.

  8. Space-based IR tracking bias removal using background star observations

    NASA Astrophysics Data System (ADS)

    Clemons, T. M., III; Chang, K. C.

    2009-05-01

    This paper provides the results of a proposed methodology for removing sensor bias from a space-based infrared (IR) tracking system through the use of stars detected in the background field of the tracking sensor. The tracking system consists of two satellites flying in a lead-follower formation tracking a ballistic target. Each satellite is equipped with a narrow-view IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant, non-varying or slowly varying bias error present in each sensor's line of sight measurements. As known stars are detected during the target tracking process, the instantaneous sensor pointing error can be calculated as the difference between star detection reading and the known position of the star. The system then utilizes a separate bias filter to estimate the bias value based on these detections and correct the target line of sight measurements to improve the target state vector. The target state vector is estimated through a Linearized Kalman Filter (LKF) for the highly non-linear problem of tracking a ballistic missile. Scenarios are created using Satellite Toolkit(C) for trajectories with associated sensor observations. Mean Square Error results are given for tracking during the period when the target is in view of the satellite IR sensors. The results of this research provide a potential solution to bias correction while simultaneously tracking a target.

  9. Heavenly Bodies and Phenomena in Petroglyphs

    NASA Astrophysics Data System (ADS)

    Tokhatyan, Karen

    2016-12-01

    In Armenian culture are amply reflected realities connected with Universe. Their figurative expressions are also petroglyphs in which there are representations of solar signs, swastika, Moon crescend, planets, stars, star groups, constellations, Milky Way, Earth. Among heavenly and atmospheric phenomena are: eclipce, meteor, comet, ligthning, cloud, rain and rainbow. There are many products of scientific thinking: stellar maps, calendars, compasses, astronomical records, Zodiac signs and ideograms. Thousands of the Armenian petroglyphs that were created millennia ago by an indigenous ethnos - Armenians, point to the significant place of celestial bodies and luminaries, especially the Sun, stars, and stellar constellations in our ancestors' cosmological perceptions.

  10. Life beyond the solar system.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1972-01-01

    Review of some of the highlights and more recent developments in the search for extraterrestrial intelligence. The first major problem is one of the generality of the formation of planetary systems. Observations of the nearest stars which are not members of binary or multiple stars indicates that fully half have companions of planetary mass. The presence of organic compounds in meteorites, probably in Jovian planets, in comets, in the interstellar medium, and in cool stars implies that the production of organic compounds essential for the origin of life should be pervasive throughout the universe. Possibilities of interstellar communication are discussed.

  11. Deposition of steeply infalling debris - pebbles, boulders, snowballs, asteroids, comets - around stars

    NASA Astrophysics Data System (ADS)

    Brown, J. C.; Veras, D.; Gänsicke, B. T.

    2017-09-01

    When Comet Lovejoy plunged into the Sun, and survived, questions arose about the physics of infall of small bodies. [1,2] has already described this infall in detail. However, a more general analysis for any type of star has been missing. [3] generalized previous studies, with specific applications to white dwarfs. High-metallicity pollution is common in white dwarf stars hosting remnant planetary systems. However, they rarely have detectable debris accretion discs, possibly because much of the influx is fast steeply infalling debris in star-grazing orbits, producing a more tenuous signature than a slowly accreting disc. Processes governing such deposition between the Roche radius and photosphere have so far received little attention and we model them here analytically by extending recent work on sun-grazing comets to white dwarf systems. We find that the evolution of cm-to-km size infallers most strongly depends on two combinations of parameters, which effectively measure sublimation rate and binding strength. We then provide an algorithm to determine the fate of infallers for any white dwarf, and apply the algorithm to four limiting combinations of hot versus cool (young/old) white dwarfs with snowy (weak, volatile) versus rocky (strong, refractory) infallers. We find: (i) Total sublimation above the photosphere befalls all small infallers across the entire white dwarf temperature range, the threshold size rising with it and 100× larger for rock than snow. (ii) All very large objects fragment tidally regardless of temperature: for rock, a0 ≽ 105 cm; for snow, a0 ≽ 103 - 3 × 104 cm across all white dwarf cooling ages. (iii) A considerable range of infaller sizes avoids fragmentation and total sublimation, yielding impacts or grazes with cold white dwarfs. This range rapidly narrows with increasing temperature, especially for snowy bodies. Finally, we briefly discuss how the various forms of deposited debris may finally reach the photosphere surface itself.

  12. Post-main-sequence planetary system evolution

    PubMed Central

    Veras, Dimitri

    2016-01-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries. PMID:26998326

  13. UV Spectroscopy of Star-Grazing Comets Within the 49 Ceti Debris Disk

    NASA Technical Reports Server (NTRS)

    Miles, Brittany E.; Roberge, Aki; Welsh, Barry

    2016-01-01

    We present the analysis of time-variable Doppler-shifted absorption features in far-UV spectra of the unusual 49 Ceti debris disk. This nearly edge-on disk is one of the brightest known and is one of the very few containing detectable amounts of circumstellar (CS) gas as well as dust. In our two visits of Hubble Space Telescope STIS spectra, variable absorption features are seen on the wings of lines arising from CII and CIV but not for any of the other CS absorption lines. Similar variable features have long been seen in spectra of the well-studied Beta Pictoris debris disk and attributed to the transits of star-grazing comets. We calculated the velocity ranges and apparent column densities of the 49 Cet variable gas, which appears to have been moving at velocities of tens to hundreds of kms(-1) relative to the central star. The velocities in the redshifted variable event seen in the second visit show that the maximum distances of the in falling gas at the time of transit were about 0.050.2 au from the central star. A preliminary attempt at a composition analysis of the redshifted event suggests that the C/O ratio in the in falling gas is super-solar, as it is in the bulk of the stable disk gas.

  14. Mysterious eclipses in the light curve of KIC8462852: a possible explanation

    NASA Astrophysics Data System (ADS)

    Neslušan, L.; Budaj, J.

    2017-04-01

    Context. Apart from thousands of "regular" exoplanet candidates, Kepler satellite has discovered a small number of stars exhibiting peculiar eclipse-like events. They are most probably caused by disintegrating bodies transiting in front of the star. However, the nature of the bodies and obscuration events, such as those observed in KIC 8462852, remain mysterious. A swarm of comets or artificial alien mega-structures have been proposed as an explanation for the latter object. Aims: We explore the possibility that such eclipses are caused by the dust clouds associated with massive parent bodies orbiting the host star. Methods: We assumed a massive object and a simple model of the dust cloud surrounding the object. Then, we used the numerical integration to simulate the evolution of the cloud, its parent body, and resulting light-curves as they orbit and transit the star. Results: We found that it is possible to reproduce the basic features in the light-curve of KIC 8462852 with only four objects enshrouded in dust clouds. The fact that they are all on similar orbits and that such models require only a handful of free parameters provides additional support for this hypothesis. Conclusions: This model provides an alternative to the comet scenario. With such physical models at hand, at present, there is no need to invoke alien mega-structures for an explanation of these light-curves.

  15. Accuracy of Calories Indicated on 7 Commercially Available Exercise Machines

    DTIC Science & Technology

    2013-12-02

    the results of the testing of 7 devices: Precor EFX Elliptical, Precor UBK800 Bike, Octane 4700 Elliptical, Star Track E-UB Bike, Star Track E- TBT ...Star Track E- TBT Low Medium High Cadence 65-75 65-75 60-70 Work Level ♂ 5-8 10-13 15-18 ♀ 4-6 8-11 13-15 Results: Two of the devices...588 (.370, .806) .910 1.164 Star Trac E- TBT 2.750 (-.200, 5.700) .659 (.416, .902) .899 .970 Note: CI = confidence interval Figure 2.0 shows the

  16. Ground-Based Centimeter, Millimeter, and Submillimeter Observations of Recent Comets

    NASA Technical Reports Server (NTRS)

    Milam, S. N.; Chuang, Y.-L.; Charnley, S. B.; Kuan, Y. -J.; Villanueva, G. L.; Coulson, I. M.; Remijan. A. R.

    2012-01-01

    Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth [I]. Comets are comprised of molecular ices, that may be pristine interstellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula [2]. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection [3]. In the classical picture, the long-period comets probably formed in the nebular disk across the giant planet formation region (5-40 AU) with the majority of them originating from the Uranus-Neptune region. They were subsequently scattered out to the Oort Cloud (OC) by Jupiter. The short-period comets (also known as ecliptic or Jupiter Family Comets - JFC) reside mainly in the Edgeworth-Kuiper belt where they were formed. Given the gradient in physical conditions expected across this region of the nebula, chemical diversity in this comet population is to be expected [4,5]. We have conducted observations of comets I 03P/Hartley 2 (JFC) and C/2009 PI (Garradd) (OC), at primarily millimeter and submillimeter wavelengths, to determine important cosmogonic quantities, such as the ortho:para ratio and isotope ratios, as well as probe the origin of cometary organics and if they vary between the two dynamic reservoirs.

  17. Comet Christensen Has Carbon Gas

    NASA Image and Video Library

    2015-11-23

    An expanded view of comet C/2006 W3 (Christensen) is shown here. The WISE spacecraft observed this comet on April 20th, 2010 as it traveled through the constellation Sagittarius. Comet Christensen was nearly 370 million miles (600 million kilometers) from Earth at the time. The extent of the dust, about a tenth of a degree across in this image, is about 2/3rds the diameter of the sun. The red contours show the signal from the gas emission observed by the WISE spacecraft in the 4.6 micron wavelength channel, which contains carbon monoxide (CO) and carbon dioxide (CO2) emission lines. The strength of the 4.6 micron signal indicates over half a metric ton per second of CO or CO2 was emitted from this comet at the time of the observations. The WISE spacecraft was put into hibernation in 2011 upon completing its goal of surveying the entire sky in infrared light. WISE cataloged three quarters of a billion objects, including asteroids, stars and galaxies. In August 2013, NASA decided to reinstate the spacecraft on a mission to find and characterize more asteroids. http://photojournal.jpl.nasa.gov/catalog/PIA20119

  18. Where is the Oort Cloud Located?

    NASA Astrophysics Data System (ADS)

    Fernandez, Julio

    2013-05-01

    Abstract (2,250 Maximum Characters): The Oort cloud is the outermost population of the solar system. Our knowledge of its size and space structure relies on the single natural probe we have so far available, namely the new comets that are steadily injected by the tidal force of the galactic disk and passing stars. To learn about the places where new comets come from, it is essential to compute good original orbits and to understand how these may be affected by nongravitational (ng) forces. Distant comets (perihelion distance q > ~3 au) are found to be little affected by ng forces, unless they are very small (radii < ~ a few tenths km) and/or hyperactive (due to a highly volatile substance like CO or CO2). We discuss these problems in this presentation, and try to assemble a consistent picture of the Oort cloud, consisting of the inner Oort cloud (IOC) and the outer Oort cloud (OOC). The distribution of original energies of distant new comets (perihelion distances q> ~3 au presumably little affected by nongravitational forces) show that the boundary between the IOC and the OOC lies around an energy 30 × 10-6 au-1 or a semimajor axis ~ 3.3 × 104 au. New comets from the OOC show an uniform distribution of perihelion distances q, as expected for a thermalized Oort cloud comet population, while comets from the IOC show an increase of the rate of perihelion passages with q, as expected for comets whose perihelion distances evolve slowly under the action of external pertubers, and have to overcome the Jupiter-Saturn barrier to reach the inner planetary region.

  19. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Kyung-Won, E-mail: kwsuh@chungbuk.ac.kr

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionarymore » tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.« less

  20. Cosmochemical evidence for astrophysical processes during the formation of our solar system.

    PubMed

    MacPherson, Glenn J; Boss, Alan

    2011-11-29

    Through the laboratory study of ancient solar system materials such as meteorites and comet dust, we can recognize evidence for the same star-formation processes in our own solar system as those that we can observe now through telescopes in nearby star-forming regions. High temperature grains formed in the innermost region of the solar system ended up much farther out in the solar system, not only the asteroid belt but even in the comet accretion region, suggesting a huge and efficient process of mass transport. Bi-polar outflows, turbulent diffusion, and marginal gravitational instability are the likely mechanisms for this transport. The presence of short-lived radionuclides in the early solar system, especially (60)Fe, (26)Al, and (41)Ca, requires a nearby supernova shortly before our solar system was formed, suggesting that the Sun was formed in a massive star-forming region similar to Orion or Carina. Solar system formation may have been "triggered" by ionizing radiation originating from massive O and B stars at the center of an expanding HII bubble, one of which may have later provided the supernova source for the short-lived radionuclides. Alternatively, a supernova shock wave may have simultaneously triggered the collapse and injected the short-lived radionuclides. Because the Sun formed in a region where many other stars were forming more or less contemporaneously, the bi-polar outflows from all such stars enriched the local region in interstellar silicate and oxide dust. This may explain several observed anomalies in the meteorite record: a near absence of detectable (no extreme isotopic properties) presolar silicate grains and a dichotomy in the isotope record between (26)Al and nucleosynthetic (nonradiogenic) anomalies.

  1. Cosmochemical evidence for astrophysical processes during the formation of our solar system

    PubMed Central

    MacPherson, Glenn J.; Boss, Alan

    2011-01-01

    Through the laboratory study of ancient solar system materials such as meteorites and comet dust, we can recognize evidence for the same star-formation processes in our own solar system as those that we can observe now through telescopes in nearby star-forming regions. High temperature grains formed in the innermost region of the solar system ended up much farther out in the solar system, not only the asteroid belt but even in the comet accretion region, suggesting a huge and efficient process of mass transport. Bi-polar outflows, turbulent diffusion, and marginal gravitational instability are the likely mechanisms for this transport. The presence of short-lived radionuclides in the early solar system, especially 60Fe, 26Al, and 41Ca, requires a nearby supernova shortly before our solar system was formed, suggesting that the Sun was formed in a massive star-forming region similar to Orion or Carina. Solar system formation may have been “triggered” by ionizing radiation originating from massive O and B stars at the center of an expanding HII bubble, one of which may have later provided the supernova source for the short-lived radionuclides. Alternatively, a supernova shock wave may have simultaneously triggered the collapse and injected the short-lived radionuclides. Because the Sun formed in a region where many other stars were forming more or less contemporaneously, the bi-polar outflows from all such stars enriched the local region in interstellar silicate and oxide dust. This may explain several observed anomalies in the meteorite record: a near absence of detectable (no extreme isotopic properties) presolar silicate grains and a dichotomy in the isotope record between 26Al and nucleosynthetic (nonradiogenic) anomalies. PMID:22106251

  2. iWander: Dynamics of interstellar wanderers

    NASA Astrophysics Data System (ADS)

    Zuluaga, Jorge I.; Sanchez-Hernandez, Oscar; Sucerquia, Mario; Ferrin, Ignacio

    2018-01-01

    iWander assesses the origin of interstellar small bodies such as asteroids and comets. It includes a series of databases and tools that can be used in general for studying the dynamics of an interstellar vagabond object (small‑body, interstellar spaceship and even stars).

  3. Mid-Infrared Observational and Theoretical Studies of Star Formation and Early Solar Systems

    NASA Technical Reports Server (NTRS)

    Jones, Barbara

    1997-01-01

    The first 2 years of this program were used to make mid-IR observations of regions of star formation in the Orion nebula with the UCSD mid-IR camera at the UCSD/University of Minnesota telescope at Mt. Lemmon. These observations attempted to make the first systematic study of an extended region, known to have newly forming stars, and expected to have complex mid-IR emission. We discovered, to our surprise, that most of the thermal emission originated from extended sources rather than from point sources. This interesting observation made the analysis of the data much more complex, since the chop/nod procedures used at these wavelengths produce a differential measurement of the emission in one region compared to that in the adjacent region. Disentangling complex extended emission in such a situation is very difficult. In parallel with this work we were also observing comets in the thermal infrared, the other component of the original proposal. Some spectacular data on the comet Swift-Tuttle was acquired and published. A changing jet structure observed over a 2 week period is described. The rotation period of the comet can be measured at 66 hours. The size of the nucleus can also be estimated (at 30 km) from the observed excess flux from the nucleus. These data have lead to the development of models describing the action of dust particles of differing sizes and composition leaving the nucleus. The spatial distribution of the predicted IR emission has been compared to the observed jet structures, leading to estimates of both particles sizes, relative amounts of silicate vs organic grains, and the amounts of dust emitted in the jets vs isotopic emission.

  4. Pointing control for the International Comet Mission

    NASA Technical Reports Server (NTRS)

    Leblanc, D. R.; Schumacher, L. L.

    1980-01-01

    The design of the pointing control system for the proposed International Comet Mission, intended to fly by Comet Halley and rendezvous with Comet Tempel-2 is presented. Following a review of mission objectives and the spacecraft configuration, design constraints on the pointing control system controlling the two-axis gimballed scan platform supporting the science instruments are discussed in relation to the scientific requirements of the mission. The primary design options considered for the pointing control system design for the baseline spacecraft are summarized, and the design selected, which employs a target-referenced, inertially stabilized control system, is described in detail. The four basic modes of operation of the pointing control subsystem (target acquisition, inertial hold, target track and slew) are discussed as they relate to operations at Halley and Tempel-2. It is pointed that the pointing control system design represents a significant advance in the state of the art of pointing controls for planetary missions.

  5. Kepler and the Star of Bethlehem

    NASA Astrophysics Data System (ADS)

    Hansen, Rahlf

    Johannes Kepler (1571-1630) was a famous astronomer. But like other astronomers he had a problem to find work that would guarantee a regular income. So he was lucky to get work as "Styrian landscape mathematician" in Graz. One of his tasks was to write an annual calendar of weather forecasts and policital developments on the basis of astrological facts. He correctly predicted a conflict with the Osmanic Empire, although it is not clear whether the stars or the newspapers were the cause for that. Both his horoscope for Wallenstein and his book "Warnung an die Gegner der Astrologie" are well known. Kepler believed in some aspects of astrology, the influence of the planets for example. He deduced this front his ideas about physics. He neglected other aspects of astrology. e.g. the significance of the zodiac. In 1604 Kepler observed a new star and believed in a connection to a special and very rare planetary conjunction. After a Jupiter-Saturn-conjunction Jupiter met Mars. Kepler speculated that the star of Bethlehem might be a new star which was generated after a similar conjunction and recalculated it for 6/7 BC. Nowadays examples of both astronomical (and astrological) interpretations of the star of Bethlehem exist. The best known is the three time conjunction of 6/7 BC. But the interpretation of Martin (1980) for 213 BC seems equally excellent. Vardaman (1989) takes the Halley comet of 12 BC to be the star of Bethlehem. Other speculations arise from two Novae in the years 5 and 4 BC, tabulated in sources from the Far East. But historians tell us that there is no need fo a real star. The text in Matthew, book 2 is a legend. What is important in regard to the understanding of the star of Bethlehem is the "sidus Julium" the comet which could be seen in the sky during Caesar's funeral and the match of the King of Armenia Tiridates to Nero in Rome during. There was no real star over Bethlehem. All we have are interesting speculations, like those by Kepler.

  6. 15N Fractionation in Star-Forming Regions and Solar System Objects

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin

    2015-01-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.

  7. The deep space 1 extended mission

    NASA Astrophysics Data System (ADS)

    Rayman, Marc D.; Varghese, Philip

    2001-03-01

    The primary mission of Deep Space 1 (DS1), the first flight of the New Millennium program, completed successfully in September 1999, having exceeded its objectives of testing new, high-risk technologies important for future space and Earth science missions. DS1 is now in its extended mission, with plans to take advantage of the advanced technologies, including solar electric propulsion, to conduct an encounter with comet 19P/Borrelly in September 2001. During the extended mission, the spacecraft's commercial star tracker failed; this critical loss prevented the spacecraft from achieving three-axis attitude control or knowledge. A two-phase approach to recovering the mission was undertaken. The first involved devising a new method of pointing the high-gain antenna to Earth using the radio signal received at the Deep Space Network as an indicator of spacecraft attitude. The second was the development of new flight software that allowed the spacecraft to return to three-axis operation without substantial ground assistance. The principal new feature of this software is the use of the science camera as an attitude sensor. The differences between the science camera and the star tracker have important implications not only for the design of the new software but also for the methods of operating the spacecraft and conducting the mission. The ambitious rescue was fully successful, and the extended mission is back on track.

  8. Astrophotography Basics: Meteors, Comets, Eclipses, Aurorae, Star Trails. Revised.

    ERIC Educational Resources Information Center

    Eastman Kodak Co., Rochester, NY.

    This pamphlet gives an introduction to the principles of astronomical picture-taking. Chapters included are: (1) "Getting Started" (describing stationary cameras, sky charts and mapping, guided cameras, telescopes, brightness of astronomical subjects, estimating exposure, film selection, camera filters, film processing, and exposure for…

  9. Halley's comet exploration and the Japanese Usuda large antenna

    NASA Technical Reports Server (NTRS)

    Nomura, T.

    1986-01-01

    An overview of the Japanese PLANET-A project to investigate Halley's Comet is given. The objectives and scientific challenges involved in the project are given, and the nature of the contribution made by the large antenna array located at Usuda-Cho, Nagano Prefecture, Japan is discussed. The structural design of the MS-T5 and PLANET-A probes are given, as well as the tracking and control network for the probes. The construction, design, operating system and site selection for the Usuda antenna station are discussed.

  10. Asteroid and comet flux in the neighborhood of the earth

    NASA Technical Reports Server (NTRS)

    Shoemaker, Eugene M.; Shoemaker, Carolyn S.; Wolfe, Ruth F.

    1988-01-01

    Significant advances in the knowledge and understanding of the flux of large solid objects in the neighborhood of Earth have occurred. The best estimates of the collision rates with Earth of asteroids and comets and the corresponding production of impact craters are presented. Approximately 80 Earth-crossing asteroids were discovered through May 1988. Among 42 new Earth-crossing asteroids found in the last decade, two-thirds were discovered from observations at Palomar Observatory and 15 were discovered or independently detected in dedicated surveys with the Palomar Observatory and 15 were discovered or independently detected in dedicated surveys with the Palomar 46 cm Schmidt. Probabilities of collision with Earth have been calculated for about two-thirds of the known Earth-crossing asteroids. When multiplied by the estimated population of Earth-crossers, this yields an estimated present rate of collision about 65 pct higher than that previously reported. Spectrophotometric data obtained chiefly in the last decade show that the large majority of obvserved Earth-crossers are similar to asteroids found in the inner part of the main belt. The number of discovered Earth-crossing comets is more than 4 times greater than the number of known Earth-crossing asteroids, but reliable data on the sizes of comet nuclei are sparse. The flux of comets almost certainly was highly variable over late geologic time, owing to the random perturbation of the Oort comet cloud by stars in the solar neighborhood.

  11. Comet Halley passes the halfway mark. Very distant image obtained with the ESO NTT.

    NASA Astrophysics Data System (ADS)

    1994-02-01

    Eight years after the passage of Comet Halley in early 1986, astronomers at the European Southern Observatory have succeeded in obtaining an image [1] of this famous object at a distance of no less than 2,820 million km from the Sun. The comet is now about as far away as giant planet Uranus. It recently passed the halfway mark towards the most distant point of its very elongated 76-year orbit. The image shows the 6 x 15 km avocado-shaped nucleus as an extremely faint point of light without any surrounding dust cloud. It appears that the surface is now completely frozen and the comet has ceased to emit dust and gas. This observation was made with the ESO 3.58 metre New Technology Telescope (NTT). It is by far the faintest and most distant image ever recorded of this comet. A DIFFICULT OBSERVATION The new Halley image was obtained in the course of an observational programme by a small group of astronomers [2], aimed at the investigation of distant solar system objects. The observation was difficult to perform and is close to the limit of what is possible, even with the NTT, one of the technologically most advanced astronomical telescopes. In fact, this observation may be compared to viewing a black golfball, used during a late evening game, from a distance of 12,000 km. At Halley's present, very large distance from the Sun, the intensity of the solar light is over 350 times fainter than here on Earth. The surface of the cometary nucleus is very dark; it reflects only 4 % of the infalling sunlight. The amount of light received from Halley is therefore extremely small: the recorded star-like image of the nucleus is about 160 million times fainter than the faintest star that can be seen with the unaided eye. A long exposure was needed to catch enough light to show the object; even with the very sensitive SuSI CCD camera at the NTT, the shutter had to be kept open for a total of 3 hours 45 minutes. During this time, of the order of 9000 photons from Comet Halley were registered. The extreme faintness of its image is illustrated by the fact that almost 1 million, or 100 times as many photons were simultaneously received in this direction from the luminous atmosphere of the Earth. They must be carefully "subtracted", before the comet can be seen. There is another complication. Due to the motions of the comet and the Earth, the direction to the comet (as seen against the stars in the background) continuously changes during the observation. The movement of the telescope must therefore be accurately offset to "follow" the motion of the comet in order to keep the sparse photons falling on the same spot of the detector during the long exposure. IS HALLEY NOW FROZEN? The measured brightness of the Halley image (visual magnitude 26.5 +- 0.2) closely corresponds to what would be expected, if it results from sunlight being reflected from the nucleus alone. This indicates that there is little, if any, dust left around the nucleus and it must be assumed that its surface layers are now completely frozen. The observation therefore shows that nothing is left of the great mass of dusty material, estimated at 1 million tonnes, that was thrown out during the completely unexpected outburst observed at ESO in February 1991. Nevertheless, the astronomers intend to continue to monitor the behaviour of Halley during the next years - it cannot be excluded that this comet may be good for another surprise! FUTURE OBSERVATIONS WITH THE VLT Comet Halley will continue to move outwards through the solar system at decreasing speed. Thirty years from now it reaches the turning point (the "aphelion") of its elongated orbit, almost 5,300 million kilometres from the Sun. Although the light reflected from its nucleus will then be 15 times fainter than at the present time, it should still be possible to register its image with one of the 8.2 metre unit telescopes of the ESO Very Large Telescope (VLT) during exposures of only a few hours' duration. Comet Halley's next return to our neighbourhood will take place in the year 2061. 1 A B/W photo accompanies this Press Release. 2 The members are Olivier Hainaut and Richard West (ESO), Brian Marsden (Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, U.S.A.) and Karen Meech (Institute for Astronomy, Honolulu, Hawaii, U.S.A.). The Halley observation is also described on a Circular of the International Astronomical Union, published today. 3 See ESO Press Release 03/91 of 22 February 1991. FIGURE CAPTION ESO PR PHOTO 04/94-1: COMET HALLEY AT 2,820 MILLION KM This negative photo shows the faint image of periodic comet Halley (in the circle) at the record heliocentric distance 18.82 AU (= 2,820 million km, about the distance of Uranus). It was obtained with the SuSI CCD camera at the ESO 3.58 m New Technology Telescope (NTT) during the night of January 10--11, 1994. Nine individual exposures, each lasting 25 minutes, were used to produce this picture. They were cleaned to remove various sky and instrumental noise, shifted according to the predicted motion of the comet and then co-added. This ensures that all recorded light from the comet is concentrated in one place. At the same time, the images of the other objects that do not share the motion of the comet, are not superposed and will therefore be seen as long trails. The non-uniformities of these trails arise because of varying sky conditions and also due to the time intervals between the individual exposures. In addition to the comet, the picture contains the images of three very different types of objects: stars with relatively sharp trails (e.g. the comparatively bright one, just below the comet image), several extended (diffuse) galaxies, and an artificial Earth satellite which happened to cross the field during one of the exposures (its trail extends from the middle of the left edge to the lower edge). The measured magnitude of P/Halley is V = 26.5 +-0.2. The position in the sky is less than 1 arcsec from that predicted on the basis of the comet's very well-determined orbit. Technical information: The CCD frames were cleaned of cosmics and flat-fielded, but they were neither filtered, nor smoothed. Total exposure time: 13,500 seconds. The seeing varied from 0.6 - 0.9 arcsec. One pixel = 0.13 arcsec. Field size: 310 x 430 pixels or 40 x 56 arcsec. North is up and East is to the left. This photo (ESO PR PHOTO 04/94-1) accompanies ESO Press Release 04/94 and may be reproduced, if credit is given to the European Southern Observatory.

  12. An optical search for small comets

    NASA Astrophysics Data System (ADS)

    Mutel, R. L.; Fix, J. D.

    2000-11-01

    We have conducted an extensive optical search for small comets with the characteristics proposed by Frank et al. [1986] and Frank and Sigwarth [1993, 1997]. The observations were made using the 0.5-m reflector of the Iowa Robotic Observatory between September 1998 and June 1999. The search technique consisted of tracking a fixed point in the ecliptic plane at +/-9° geocentric solar phase angle. The telescope scan rate was chosen to track objects moving prograde at 10 km s-1 relative to the Earth at a distance of 55,000 km. The camera was multiply shuttered to discriminate against trails caused by cosmic rays and sensor imperfections. Of 6143 total images, we selected 2713 which were suitable for detection of objects with a magnitude 16.5 or brighter with 120 pixel trails. The sensitivity and reliability of the visual detection scheme were determined by extensive double-blind tests using synthetic trails added to over 500 search images. After careful visual inspection of all images, we found no trials consistent with small comets. This result strongly disagrees with previous optical searches of Yeates [1989] and Frank et al. [1990], whose detection rates and magnitudes, when converted to the present search, predict 65+/-22 detections. We conclude that at 99% confidence, the number density of any prograde objects in the ecliptic plane brighter than magnitude 16.5 with speeds near 10 km s-1 have a number density less than 5% of the small-comet density derived by Frank et al. [1990]. Any object fainter than this magnitude limit with a mass corresponding to the small-comet hypothesis (M>20,000kg) must have either an implausibly low geometric albedo (p<0.01) or a density larger than that of water.

  13. Modeling the neutral gas and dust coma of Comet 1P/Halley

    NASA Astrophysics Data System (ADS)

    Rubin, Martin; Tenishev, Valeriy M.; Combi, Michael R.; Hansen, Kenneth C.; Gombosi, Tamas I.; Altwegg, Kathrin; Balsiger, Hans

    2010-05-01

    The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer (NMS) and the Dust Impact Detection System (DIDSY) onboard the Giotto spacecraft which flew-by at comet 1P/Halley in 1986. We further show that our model is in good agreement to measurements obtained by the International Ultraviolet Explorer (IUE), sounding rocket experiments, and the International Halley Watch (IHW). The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique [Tenishev et al. (2008, Astrophys. J., 685, 659-677)] by tracking trajectories of gas molecules and dust grains under the influence of the comet's weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO). This work has been supported by JPL subcontract 1266313 under NASA grant NMO710889, NASA planetary atmospheres program grant NNX09AB59G, grant AST-0707283 from the NSF Planetary Astronomy program, and the Swiss National Science Foundation.

  14. Impact cratering through geologic time

    USGS Publications Warehouse

    Shoemaker, E.M.; Shoemaker, C.S.

    1998-01-01

    New data on lunar craters and recent discoveries about craters on Earth permit a reassessment of the bombardment history of Earth over the last 3.2 billion years. The combined lunar and terrestrial crater records suggest that the long-term average rate of production of craters larger than 20 km in diameter has increased, perhaps by as much as 60%, in the last 100 to 200 million years. Production of craters larger than 70 km in diameter may have increased, in the same time interval, by a factor of five or more over the average for the preceding three billion years. A large increase in the flux of long-period comets appears to be the most likely explanation for such a long-term increase in the cratering rate. Two large craters, in particular, appear to be associated with a comet shower that occurred about 35.5 million years ago. The infall of cosmic dust, as traced by 3He in deep sea sediments, and the ages of large craters, impact glass horizons, and other stratigraphic markers of large impacts seem to be approximately correlated with the estimated times of passage of the Sun through the galactic plane, at least for the last 65 million years. Those are predicted times for an increased near-Earth flux of comets from the Oort Cloud induced by the combined effects of galactic tidal perturbations and encounters of the Sun with passing stars. Long-term changes in the average comet flux may be related to changes in the amplitude of the z-motion of the Sun perpendicular to the galactic plane or to stripping of the outer Oort cloud by encounters with large passing stars, followed by restoration from the inner Oort cloud reservoir.

  15. The Cosmos

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Filippenko, Alex

    2013-10-01

    Preface; About the authors; 1. A grand tour of the heavens; 2. Light, matter and energy: powering the Universe; 3. Light and telescopes: extending our senses; 4. Observing the stars and planets: clockwork of the Universe; 5. Gravitation and motion: the early history of astronomy; 6. The terrestrial planets: Earth, Moon, and their relatives; 7. The Jovian planets: windswept giants; 8. Pluto, comets, and space debris; 9. Our Solar System and others; 10. Our star: the Sun; 11. Stars: distant suns; 12. How the stars shine: cosmic furnaces; 13. The death of stars: recycling; 14. Black holes: the end of space and time; 15. The Milky Way: our home in the Universe; 16. A Universe of galaxies; 17. Quasars and active galaxies; 18. Cosmology: the birth and life of the cosmos; 19. In the beginning; 20. Life in the Universe; Epilogue; Appendices; Selected readings; Glossary; Index.

  16. Silicate Emission in the TW Hydrae Association

    NASA Astrophysics Data System (ADS)

    Sitko, Michael L.; Lynch, David K.; Russell, Ray W.

    2000-11-01

    The TW Hydrae association is the nearest young stellar association. Among its members are HD 98800, HR 4796A, and TW Hydrae itself, the nearest known classical T Tauri star. We have observed these three stars spectroscopically between 3 and 13 μm. In TW Hya, the spectrum shows a silicate emission feature that is similar to many other young stars' with protostellar disks. The 11.2 μm feature indicative of significant amounts of crystalline olivine is not as strong as in some young stars and solar system comets. In HR 4796A, the thermal emission in the silicate feature is very weak, suggesting little in the way of (small silicate) grains near the star. The silicate band of HD 98800 (observed by us, but also reported by Sylvester & Skinner) is intermediate in strength between TW Hya and HR 4796A.

  17. A Survey of CH3CN and HC3N in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bergner, Jennifer B.; Guzmán, Viviana G.; Öberg, Karin I.; Loomis, Ryan A.; Pegues, Jamila

    2018-04-01

    The organic content of protoplanetary disks sets the initial compositions of planets and comets, thereby influencing subsequent chemistry that is possible in nascent planetary systems. We present observations of the complex nitrile-bearing species CH3CN and HC3N toward the disks around the T Tauri stars AS 209, IM Lup, LkCa 15, and V4046 Sgr as well as the Herbig Ae stars MWC 480 and HD 163296. HC3N is detected toward all disks except IM Lup, and CH3CN is detected toward V4046 Sgr, MWC 480, and HD 163296. Rotational temperatures derived for disks with multiple detected lines range from 29 to 73 K, indicating emission from the temperate molecular layer of the disk. V4046 Sgr and MWC 480 radial abundance profiles are constrained using a parametric model; the gas-phase CH3CN and HC3N abundances with respect to HCN are a few to tens of percent in the inner 100 au of the disk, signifying a rich nitrile chemistry at planet- and comet-forming disk radii. We find consistent relative abundances of CH3CN, HC3N, and HCN between our disk sample, protostellar envelopes, and solar system comets; this is suggestive of a robust nitrile chemistry with similar outcomes under a wide range of physical conditions.

  18. Rosetta/ROSINA observations of the volatiles in the coma of comet 67P/Churyumov-Gerasimenko during the nominal mission

    NASA Astrophysics Data System (ADS)

    Rubin, M.; Altwegg, K.; Balsiger, H. R.; Berthelier, J. J.; Calmonte, U.; De Keyser, J.; Fiethe, B.; Fuselier, S. A.; Gasc, S.; Gombosi, T. I.; Hässig, M.; Jäckel, A.; Le Roy, L.; Mall, U. A.; Rème, H.; Sémon, T.; Tzou, C. Y.; Wurz, P.

    2015-12-01

    The European Space Agency's Rosetta spacecraft is in close proximity of comet 67P/Churyumov-Gerasimenko for well over a year now. During this time Rosetta followed the comet from almost 3.5 AU through perihelion at 1.25 AU and away from the Sun again. Part of the scientific payload scrutinizing the comet is the ROSINA experiment, the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. The suite of instruments consists of the Double Focusing Mass Spectrometer DFMS, the Reflectron Time-Of-Flight mass spectrometer RTOF, and the COmet Pressure Sensor COPS. From the combined measurements by ROSINA, the composition and dynamics of the volatiles in the coma of the comet are derived. On 13 August 2015, comet 67P/Churyumov-Gerasimenko reached perihelion, the point along its orbits that is closest to the Sun. Furthermore equinox occurred in May 2015 leading to a change in season - the previous summer hemisphere is now in winter and vice versa. One of the goals of ROSINA is to track the activity of the comet during its apparition and to investigate potential changes in the chemical composition as the spacecraft orbits around the nucleus. In this presentation we will summarize some key findings obtained during the first year and a half of the nominal mission and present first results comparing the pre- and post perihelion neutral gas coma. The goal of these observations is to gather information about the formation and the composition of the comet and ultimately our early Solar System.

  19. WILL COMET ISON (C/2012 S1) SURVIVE PERIHELION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Matthew M.; Walsh, Kevin J., E-mail: knight@lowell.edu

    2013-10-10

    On 2013 November 28 Comet ISON (C/2012 S1) will pass by the Sun with a perihelion distance of 2.7 solar radii. Understanding the possible outcomes for the comet's response to such a close passage by the Sun is important for planning observational campaigns and for inferring ISON's physical properties. We present new numerical simulations and interpret them in context with the historical track record of comet disruptions and of sungrazing comet behavior. Historical data suggest that sizes below ∼200 m are susceptible to destruction by sublimation driven mass loss, while we find that for ISON's perihelion distance, densities lower thanmore » 0.1 g cm{sup –3} are required to tidally disrupt a retrograde or non-spinning body. Such low densities are substantially below the range of the best-determined comet nucleus densities, though dynamically new comets such as ISON have few measurements of physical properties. Disruption may occur for prograde rotation at densities up to 0.7 g cm{sup –3}, with the chances of disruption increasing for lower density, faster prograde rotation, and increasing elongation of the nucleus. Given current constraints on ISON's nucleus properties and the typically determined values for these properties among all comets, we find tidal disruption to be unlikely unless other factors (e.g., spin-up via torquing) affect ISON substantially. Whether or not disruption occurs, the largest remnant must be big enough to survive subsequent mass loss due to sublimation in order for ISON to remain a viable comet well after perihelion.« less

  20. Computers in Astronomy: Astronomy on an Apple Macintosh.

    ERIC Educational Resources Information Center

    Mosley, John E.

    1987-01-01

    Presents a review of computer programs written for the Apple Macintosh computer that teach astronomy. Reviews general programs, along with some which deal more specifically with sky travel, star charting, the solar system, Halley's Comet, and stargazing. Includes the name and address of each producer. (TW)

  1. Comet ISON Approaching the Sun [still

    NASA Image and Video Library

    2013-11-27

    This movie from NASA’s STEREO spacecraft's Heliospheric Imager shows Comet ISON, Mercury, Comet Encke and Earth over a five-day period from Nov. 20 to Nov. 25, 2013. The sun sits right of the field of view of this camera. Comet ISON, which will round the sun on Nov. 28, is what's known as a sungrazing comet, due to its close approach. Foreshortening or the angle at which these images were obtained make Earth appear as if it is closer to the sun than Mercury. If you look closely you will also see a dimmer and smaller comet Encke near comet ISON. A comet’s journey through the solar system is perilous and violent. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. Even if the comet does not survive, tracking its journey will help scientists understand what the comet is made of, how it reacts to its environment, and what this explains about the origins of the solar system. Closer to the sun, watching how the comet and its tail interact with the vast solar atmosphere can teach scientists more about the sun itself. Image Credit: NASA/STEREO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Dynamical and Physical Models of Ecliptic Comets

    NASA Astrophysics Data System (ADS)

    Dones, L.; Boyce, D. C.; Levison, H. F.; Duncan, M. J.

    2005-08-01

    In most simulations of the dynamical evolution of the cometary reservoirs, a comet is removed from the computer only if it is thrown from the Solar System or strikes the Sun or a planet. However, ejection or collision is probably not the fate of most active comets. Some, like 3D/Biela, disintegrate for no apparent reason, and others, such as the Sun-grazers, 16P/Brooks 2, and D/1993 F2 Shoemaker-Levy 9, are pulled apart by the Sun or a planet. Still others, like 107P/Wilson Harrington and D/1819 W1 Blanpain, are lost and then rediscovered as asteroids. Historically, amateurs discovered most comets. However, robotic surveys now dominate the discovery of comets (http://www.comethunter.de/). These surveys include large numbers of comets observed in a standard way, so the process of discovery is amenable to modeling. Understanding the selection effects for discovery of comets is a key problem in constructing models of cometary origin. To address this issue, we are starting new orbital integrations that will provide the best model to date of the population of ecliptic comets as a function of location in the Solar System and the size of the cometary nucleus, which we expect will vary with location. The integrations include the gravitational effects of the terrestrial and giant planets and, in some cases, nongravitational jetting forces. We will incorporate simple parameterizations for mantling and mass loss based upon detailed physical models. This approach will enable us to estimate the fraction of comets in different states (active, extinct, dormant, or disintegrated) and to track how the cometary size distribution changes as a function of distance from the Sun. We will compare the results of these simulations with bias-corrected models of the orbital and absolute magnitude distributions of Jupiter-family comets and Centaurs.

  3. Microcrystals and Amorphous Material in Comets and Primitive Meteorites: Keys to Understanding Processes in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Brearley, A. J.; Scott, E. R. D.

    2004-01-01

    Comets, fine-grained matrices of chondrites, and chondritic interplanetary dust particles (IDPs) are each composed of both crystalline and amorphous silicates. The primitive solar nebula, in which comets and asteroids accreted, was formed from the collapsed core of a Giant Molecular Cloud, that, in turn, condensed from materials present in the interstellar medium (ISM). Despite observations that reveal the presence of crystalline magnesium silicate minerals in the shells of very high mass-loss-rate stars [1,2], typical silicate grains in the ISM are most likely to be amorphous, given their relatively long residence time in such a high radiation environment. An upper limit of 3% crystalline grains can be derived from their non-detection in spectra of ISM solids [3]. If the vast majority of grains that enter the primitive solar nebula are amorphous, then the observation of crystalline dust in comets and primitive chondrite matrices indicates the action of specific processes required to transform the amorphous starting materials into the crystals that are observed.

  4. The Composition of the Protosolar Disk and the Formation Conditions for Comets

    NASA Astrophysics Data System (ADS)

    Willacy, K.; Alexander, C.; Ali-Dib, M.; Ceccarelli, C.; Charnley, S. B.; Doronin, M.; Ellinger, Y.; Gast, P.; Gibb, E.; Milam, S. N.; Mousis, O.; Pauzat, F.; Tornow, C.; Wirström, E. S.; Zicler, E.

    2015-12-01

    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today.

  5. The 8-13 micron spectra of comets and the composition of silicate grains

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.; Lynch, David K.; Russell, Ray W.

    1994-01-01

    We have analyzed the existing spectra of seven comets which show an emission feature at 7.8-13 micrometers. Most have been converted to a common calibration, taking into account the SiO feature in late-type standard stars. The spectra are compared with spectra of the Trapezium, interplanetary dust particles (IDPs), laboratory mineral samples, and small particle emission models. The emission spectra show a variety of shapes; there is no unique 'cometary silicate'. A peak at 11.20-11.25 micrometers, indicative of small crystalline olivine particles, is seen in only three comets of this sample, P/Halley, Bradfield 1987 XXIX, and Levy 1990 XX. The widths of the emission features range from 2.6 to 4.1 micrometers (FWHM). To explain the differing widths and the broad 9.8 micrometers maximum, glassy silicate particles, including both pyroxene and olivine compositions, are the most plausible candidates. Calculations of emission models confirm that small grains of glassy silicate well mixed with carbonaceous material are plausible cometary constituents. No single class of chondritic aggregate IDPs exhibits spectra closely matching the comet spectra. A mixture of IDP spectra, particularly the glass-rich aggregates, approximately matches the spectra of comets P/Halley, Levy, and Bradfield 1987 XXIX. Yet, if comets are simply a mix of IDP types, it is puzzling that the classes of IDPs are so distinct. None of the comet spectra match the spectrum of the Trapezium. Thus, the mineralogy of the cometary silicates is not the same as that of the interstellar medium. The presence of a component of crystalline silicates in comets may be evidence of mixing between high- and low-temperature regions in the solar nebula.

  6. A Christmas comet falling onto a neutron star

    NASA Astrophysics Data System (ADS)

    Campana, S.

    The Sun and the planets are the main, but not the only, bodies of the Solar System. There are thousands of asteroids and several tens of comets, many of which are still unknown. They are the remnants of the planetesimals that formed at the origin of our Solar System, and they are rocky objects of different dimensions and irregular shape. Sometimes these minor bodies fall onto the Sun or onto planets, like Jupiter. Less dramatic events occur when the infalling bodies do not directly impact onto the target but are tidally disrupted. The tidal disruption of solar mass stars around supermassive black holes has been extensively studied analytically and numerically. In these events the star, as it approaches the black hole, develops into an elongated banana-shaped structure, the most tightly bound debris being at the closer end to the compact object. After completing an (few) eccentric orbit(s), these bound debris fall onto the black hole, emitting energy. Orbital precession may lead to the crossing of the debris orbits producing an accretion disk. Observationally, these events will give rise to luminous events with different temporal decays in different energy bands. Tidal break-up events occur also in planetary systems around normal stars but these events are too faint to be detected. Things change when the star is a compact object. Indeed planets have been discovered around radio pulsars, making likely the existence also of orbiting minor bodies. The direct impact of minor bodies onto neutron stars has been studied in the past and it has been envisaged as a possible (local) explanation for Gamma-Ray Bursts (GRBs), producing short-duration (˜ seconds) events. To explain the peculiarities of GRB 101225A (Christmas burst) we propose that it resulted from the tidal disruption event of a minor body around a neutron star in our Galaxy.

  7. Lessons Learned in the Decommissioning of the Stardust Spacecraft

    NASA Technical Reports Server (NTRS)

    Larson, Timothy W.

    2012-01-01

    The Stardust spacecraft completed its prime mission in 2006, returning samples from the coma of comet Wild 2 to earth in the sample return capsule. Still healthy, and in a heliocentric orbit, the Stardust spacecraft was repurposed for a new mission - Stardust NExT. This new mission would take the veteran spacecraft to a 2011 encounter with comet Tempel 1, providing a new look at the comet visited in 2005 by the Deep Impact mission. This extended mission for Stardust would push it to the limits of its fuel reserves, prompting several studies aimed at determining the actual remaining fuel on board. The results were used to plan mission events within the constraints of this dwindling resource. The team tracked fuel consumption and adjusted the mission plans to stay within the fuel budget. This effort intensified toward the end of the mission, when a final assessment showed even less remaining fuel than previously predicted, triggering a delay in the start of comet imaging during the approach phase. The flyby of comet Tempel 1 produced spectacular up close views of this comet, imaging previously seen areas as well as new territory, and providing clear views of the location of the 2005 impact. The spacecraft was decommissioned about a month after the flyby, revealing that the fuel tank was now empty after having flown successfully for 12 years, returned comet dust samples to earth, and flown by an asteroid and two comets.

  8. Radiation-Hard Breadboard Star Tracker. Attachment 1.

    DTIC Science & Technology

    1985-09-01

    fdL RETURN DONE !! * . *• , . -+., -• -: . . E+ . . .. j , ’ - - V.r.*r - , It - ’Cjf0 Q -****r.. ... " * *. " . -. tu ’ * Checkadapt 3- 2"Jj...TRACK POSITION, it will use the 3 70! CURRENT STAR #, X POSITION, Y POSITION for 5180 ! information sent to the tracker interface. 7_390 5t0 0 Track _it...CRITERIA which is currently defines as the number of times 57 20 ! the tracker will try and track the star before it is dropped, 5730 it will also

  9. Following the Interstellar History of Carbon: From the Interiors of Stars to the Surfaces of Planets.

    PubMed

    Ziurys, L M; Halfen, D T; Geppert, W; Aikawa, Y

    2016-12-01

    The chemical history of carbon is traced from its origin in stellar nucleosynthesis to its delivery to planet surfaces. The molecular carriers of this element are examined at each stage in the cycling of interstellar organic material and their eventual incorporation into solar system bodies. The connection between the various interstellar carbon reservoirs is also examined. Carbon has two stellar sources: supernova explosions and mass loss from evolved stars. In the latter case, the carbon is dredged up from the interior and then ejected into a circumstellar envelope, where a rich and unusual C-based chemistry occurs. This molecular material is eventually released into the general interstellar medium through planetary nebulae. It is first incorporated into diffuse clouds, where carbon is found in polyatomic molecules such as H 2 CO, HCN, HNC, c-C 3 H 2 , and even C 60 + . These objects then collapse into dense clouds, the sites of star and planet formation. Such clouds foster an active organic chemistry, producing compounds with a wide range of functional groups with both gas-phase and surface mechanisms. As stars and planets form, the chemical composition is altered by increasing stellar radiation, as well as possibly by reactions in the presolar nebula. Some molecular, carbon-rich material remains pristine, however, encapsulated in comets, meteorites, and interplanetary dust particles, and is delivered to planet surfaces. Key Words: Carbon isotopes-Prebiotic evolution-Interstellar molecules-Comets-Meteorites. Astrobiology 16, 997-1012.

  10. STAR: an integrated solution to management and visualization of sequencing data.

    PubMed

    Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W; Ecker, Joseph R; Millar, A Harvey; Ren, Bing; Wang, Wei

    2013-12-15

    Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser.

  11. Comet coma sample return instrument

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.

    1994-01-01

    The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.

  12. Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA

    NASA Astrophysics Data System (ADS)

    Le Roy, Léna; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Bieler, Andre; Briois, Christelle; Calmonte, Ursina; Combi, Michael R.; De Keyser, Johan; Dhooghe, Frederik; Fiethe, Björn; Fuselier, Stephen A.; Gasc, Sébastien; Gombosi, Tamas I.; Hässig, Myrtha; Jäckel, Annette; Rubin, Martin; Tzou, Chia-Yu

    2015-11-01

    Context. The ESA Rosetta spacecraft (S/C) is tracking comet 67P/Churyumov-Gerasimenko in close vicinity. This prolonged encounter enables studying the evolution of the volatile coma composition. Aims: Our work aims at comparing the diversity of the coma of 67P/Churyumov-Gerasimenko at large heliocentric distance to study the evolution of the comet during its passage around the Sun and at trying to classify it relative to other comets. Methods: We used the Double Focussing Mass Spectrometer (DFMS) of the ROSINA experiment on ESA's Rosetta mission to determine relative abundances of major and minor volatile species. This study is restricted to species that have previously been detected elsewhere. Results: We detect almost all species currently known to be present in cometary coma with ROSINA DFMS. As DFMS measured the composition locally, we cannot derive a global abundance, but we compare measurements from the summer and the winter hemisphere with known abundances from other comets. Differences between relative abundances between summer and winter hemispheres are large, which points to a possible evolution of the cometary surface. This comet appears to be very rich in CO2 and ethane. Heavy oxygenated compounds such as ethylene glycol are underabundant at 3 AU, probably due to their high sublimation temperatures, but nevertheless, their presence proves that Kuiper belt comets also contain complex organic molecules.

  13. Ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Johnson, Roy R.; Redemann, Jens; Holben, Brent N.; Schmidt, Beat; Flynn, Connor Joseph; Fahey, Lauren; LeBlanc, Samuel; Liss, Jordan; Kacenelenbogen, Meloe S.; hide

    2017-01-01

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to airpollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituentsand determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution.Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds.These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates amodular sun-tracking sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers,permitting miniaturization of the external optical tracking head, and future detector evolution.4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides thebasis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, andexpanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodioderadiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument.

  14. "Star Light, Star Bright..."

    ERIC Educational Resources Information Center

    Moore, Gil; Doop, Skip; Millson, David

    1998-01-01

    Describes Student-Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), which enables students to explore optical astronomy, orbital dynamics, space and atmospheric physics, mathematics and international cooperation by tracking a satellite. (Author)

  15. Comet C/2013 US10 (CATALINA) - Dust in the Infrared with SOFIA

    NASA Astrophysics Data System (ADS)

    Woodward, Charles E.; Kelley, Michael S. P.; Harker, David E.; Russell, Ray W.; Kim, Daryl L.; Sitko, Michael L.; Wooden, Diane H.

    2018-01-01

    One of the major goals of modern astronomy is the "search for origins'' from the big bang to the development of intelligence. A key process in developing our understanding of these origins is how planetary systems are created from dusty disks around stars and evolve into planets with water and other molecules. Traces of primordial materials, and their least-processed products, are found in the outermost regions of the solar system -- the realm of comets -- in the form of ices of volatile materials (H2O, NH3, CO, CH4, and other more rare species), and more refractory dust grains. There is considerable evidence that in the cold regions where cometary material formed, existing comet bodies were mixed with refractory material processed at much higher temperatures. Remote sensing observation of comets provides a means to study the properties of this dust material to characterize the nature of refactory comet grains. These include observations of both the re-radiated thermal (spectrophotometric) and scattered light (spectrophotometric and polarimetric). The former technique provides our most direct link to the composition (mineral content) of the grains.Here we report our post-perihelion (TP = 2015 Nov 15.721 UT) infrared 2 to 31 micron spectrophotometric observations and dust thermal model analyses of comet C/2013 US10 (Catalina), a dynamically new Oort Cloud comet -- 1/aorg [reciprocal original semimajor axis ] = 0.00005339 -- conducted at two contemporaneous observational epochs near close Earth approach (Δ ≈ 0.93 AU) with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) complemented by observations from the NASA Infrared Telescope Facility (IRTF).

  16. The effect of the solar motion on the flux of long-period comets

    NASA Astrophysics Data System (ADS)

    Gardner, E.; Nurmi, P.; Flynn, C.; Mikkola, S.

    2011-02-01

    The long-term dynamics of Oort cloud comets are studied under the influence of both the radial and the vertical components of the Galactic tidal field. Sporadic dynamical perturbation processes, such as passing stars, are ignored since we aim to study the influence of just the axisymmetric Galactic tidal field on the cometary motion and how it changes in time. We use a model of the Galaxy with a disc, bulge and dark halo, and a local disc density and disc scalelength constrained to fit the best available observational constraints. By integrating a few million of cometary orbits over 1 Gyr, we calculate the time variable flux of Oort cloud comets that enter the inner Solar system for the cases of a constant Galactic tidal field and a realistically varying tidal field, which is a function of the Sun's orbit. The applied method calculates the evolution of the comets by using first-order averaged mean elements. We find that the periodicity in the cometary flux is complicated and quasi-periodic. The amplitude of the variations in the flux is of the order of 30 per cent. The radial motion of the Sun is the chief cause of this behaviour, and should be taken into account when the Galactic influence on the Oort cloud comets is studied.

  17. Photographing the Night Sky (Without a Telescope).

    ERIC Educational Resources Information Center

    Scott, Roger L.

    1983-01-01

    Describes the use of a 35-millimeter camera with color slide film to produce photographs of constellations, star trails, bright comets, aurorae, and meteor showers. Discusses film speed, lenses, f-stop settings, exposure times, and other items related to astrophotographic technique; provides ideas for use of slides in the classroom. (JM)

  18. Laplacean Ideology for Preliminary Orbit Determination and Moving Celestial Body Identification in Virtual Epoch

    NASA Astrophysics Data System (ADS)

    Bykov, O. P.

    Any CCD frames with stars or galaxies or clusters and other images must be studied for a searching of moving celestial objects, namely asteroids, comets, artificial Earth satellites inside them. At Pulkovo Astronomical Observatory, new methods and software were elaborated to solve this problem.

  19. Astronomy Books of 1985.

    ERIC Educational Resources Information Center

    Mercury, 1986

    1986-01-01

    Provides annotated listing of books in 16 areas: (1) amateur astromony; (2) children's books; (3) comets; (4) cosmology; (5) education in astronomy; (6) general astronomy; (7) history of astronomy; (8) life in the universe; (9) miscellaneous; (10) physics and astronomy; (11) pseudo-science; (12) space exploration; (13) stars and stellar evolution;…

  20. The Beginning of Variable star astronomy in Hungary

    NASA Astrophysics Data System (ADS)

    Zsoldos, Endre

    Variable star astronomy began in Hungary as elsewhere: new objects have been recognized in the sky. Comets appeared in 16th - 17th century chronicles. The first mention of the new star of 1572 seems to be the "Prognosticon" of Wilhelm Misocacus, printed in 1578. New stars were discussed in the 17th century by Jesuits as well as Protestants. The work of Jacob Schnitzler is especially interesting from this point. The Cartesians dealt with new stars with less enthusiasm, they hardly mentioned them. The beginning of the 19th century saw the development of science in Hungarian, variable stars, however, were left out. The birth of variable star astronomy might be linked to the Ógyalla Observatory, originally a private observatory of Miklós Konkoly Thege. The 1885 supernova in the Andromeda Nebula were observed there, as well as the spectra of a few interesting variable stars. Theoretical astrophysics also has its beginnings in Ógyalla through the work of Radó Kövesligethy. Professional variable star astronomy started here in the early 20th century through the work of Antal Tass

  1. Fine-Gained CAIs in Comet Samples: Moderate Refractory Character and Comparison to Small Refractory Inclusions in Chondrites

    NASA Technical Reports Server (NTRS)

    Joswiak, D. J.; Brownlee, D. E.; Nguyen, A. N.; Messenger, S

    2017-01-01

    Examination of >200 comet Wild 2 particles collected by the Stardust (SD) mission shows that the CAI abundance of comet Wild 2's rocky material is near 1% and that nearly 50% of all bulbous tracks will contain at least one recognizable CAI fragment. A similar abundance to Wild 2 is found in a giant cluster IDP thought to be of cometary origin. The properties of these CAIs and their comparison with meteoritic CAIs provide important clues on the role of CAIs in the early Solar System (SS) and how they were transported to the edge of the solar nebula where Kuiper Belt comets formed. Previously, only two CAIs in comet Wild 2 had been identified and studied in detail. Here we present 2 new Wild 2 CAIs and 2 from a giant cluster cometary IDP, describe their mineralogical characteristics and show that they are most analogous to nodules in spinel-rich, fine-grained inclusions (FGIs) observed in CV3 and other chondrites. Additionally, we present new O isotope measurements from one CAI from comet Wild 2 and show that its oxygen isotopic composition is similar to some FGIs. This is only the second CAI from Wild 2 in which O isotopes have been measured.

  2. Sowing the Seeds of Planets? (Artist's Concept)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Planet Clumps and Crystals around Brown Dwarfs

    This artist's concept shows microscopic crystals in the dusty disk surrounding a brown dwarf, or 'failed star.' The crystals, made up of a green mineral found on Earth called olivine, are thought to help seed the formation of planets.

    NASA's Spitzer Space Telescope detected the tiny crystals circling around five brown dwarfs, the cooler and smaller cousins of stars. Though crystallized minerals have been seen in space before -- in comets and around other stars -- the discovery represents the first time the little gem-like particles have been spotted around confirmed brown dwarfs.

    Astronomers believe planets form out of disks of dust that circle young brown dwarfs and stars. Over time, the various minerals making up the disks crystallize and begin to clump together. Eventually, the clumps collide and stick, building up mass like snowmen until planets are born.

    About the Graph: Planet Clumps and Crystals around Brown Dwarfs The graph of data from NASA's Spitzer Space Telescope shows the spectra (middle four lines) of dusty disks around four brown dwarfs, or 'failed stars,' located 520 light-years away in the Chamaeleon constellation. The data suggest that the dust in these disks is crystallizing and clumping together in what may be the birth of planets.

    Spectra are created by breaking light apart into its basic components, like a prism turning sunlight into a rainbow. Their bumps represent the 'fingerprints' or signatures of different minerals.

    Here, the light green vertical bands highlight the spectral fingerprints of crystals made up primarily of a green silicate mineral found on Earth called olivine. As the graph illustrates, three of the four brown dwarfs possess these microscopic gem-like particles. For comparison, the spectra of dust between stars (top) and the comet Hale-Bopp (bottom) are shown. The comet has the tiny crystals, whereas the interstellar dust does not.

    The broadening of these spectral features or bumps -- seen here as you move down the graph - indicates silicate grains of increasing size.

    Another analysis of this same data shows that some of the brown dwarfs' dusty disks flare in their outer regions, while others are flattened. This flattening is correlated with increasing grain size, and probably occurs because the heavier dust grains are settling downward.

    Together, these observations - of crystals, growing dust grains and flattened disks - provide strong evidence that the dust around these brown dwarfs is evolving into what might become planets. Prior to the findings, these first steps of planet formation were seen only in disks around stars, the brighter and bigger cousins to brown dwarfs.

  3. Tabby's Star (Illustration)

    NASA Image and Video Library

    2017-10-04

    This illustration depicts a hypothetical uneven ring of dust orbiting KIC 8462852, also known as Boyajian's Star or Tabby's Star. Astronomers have found the dimming of the star over long periods appears to be weaker at longer infrared wavelengths of light and stronger at shorter ultraviolet wavelengths. Such reddening is characteristic of dust particles and inconsistent with more fanciful "alien megastructure" concepts, which would evenly dim all wavelengths of light. By studying observations from NASA's Spitzer and Swift telescopes, as well as the Belgian AstroLAB IRIS observatory, the researchers have been able to better constrain the size of the dust particles. This places them within the range found in dust disks orbiting stars, and larger than the particles typically found in interstellar dust. The system is portrayed with a couple of comets, consistent with previous studies that have found evidence for cometary activity within the system. https://photojournal.jpl.nasa.gov/catalog/PIA22081

  4. Stratospheric balloon observations of comets C/2013 A1 (Siding Spring), C/2014 E2 (Jacques), and Ceres

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew F.; Hibbitts, C. A.; Espiritu, R.; McMichael, R.; Fletcher, Z.; Bernasconi, P.; Adams, J. D.; Lisse, C. M.; Sitko, M. L.; Fernandes, R.; Young, E. F.; Kremic, T.

    2017-01-01

    The Balloon Observation Platform for Planetary Science (BOPPS) was launched from Fort Sumner, New Mexico on September 26, 2014 and observed Oort Cloud comets from a stratospheric balloon observatory, using a 0.8 meter aperture telescope, a pointing system that achieved < 1 arc second pointing stability, and an imaging instrument suite covering the near-ultraviolet to mid-infrared. BOPPS observed two Oort Cloud comets, C/2013 A1 (Siding Spring) and C/2014 E2 (Jacques), at the 2.7 μm wavelength of water emission. BOPPS also observed Ceres at 2.7 μm wavelength to characterize the nature of hydrated materials on Ceres. Absolute flux calibrations were made using observations of A0V stars at nearly the same elevations as each target. The Comet Siding Spring brightness in R-band was magnitude R = 10.8 in a photometric aperture of 17.4″. The inferred H2O production rate from Comet Siding Spring was 6 × 1027 s-1, assuming optically thin emissions, which may be a lower limit if optical depth effects are important. A superheat dust population was discovered at Comet Jacques, producing a bright infrared continuum without evidence for line emission. Observations of Ceres from BOPPS and from IRTF, obtained the same night, did not find evidence for a strong water vapor emission near 2.7 μm and led to an approximate upper limit < 7 × 1027 s-1 for water emission from Ceres.

  5. Preliminary scientific results from the first six months of the Infrared Astronomical Satellite (IRAS)

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Neugebauer, G.; Beichman, C. A.; Houck, J. R.; Rowan-Robinson, M.

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) was successfully launched on January 25, 1983. This paper presents results based on analysis of early scientific data returned from IRAS. Among the early results of IRAS are the discovery of comet IRAS-Araki-Alcock, evidence for a shell of large particles around the nearby bright star Vega, detection of stars in the process of formation, and detection of many infrared bright galaxies. These early results demonstrate that the IRAS data will be a treasure chest for astronomers for years to come.

  6. Preliminary scientific results from the first six months of the Infrared Astronomical Satellite (IRAS)

    NASA Astrophysics Data System (ADS)

    Soifer, B. T.; Beichman, C. A.; Houck, J. R.; Neugebauer, G.; Rowan-Robinson, M.

    1984-04-01

    The Infrared Astronomical Satellite (IRAS) was successfully launched on January 25, 1983. This paper presents results based on analysis of early scientific data returned from IRAS. Among the early results of IRAS are the discovery of comet IRAS-Araki-Alcock, evidence for a shell of large particles around the nearby bright star Vega, detection of stars in the process of formation, and detection of many infrared bright galaxies. These early results demonstrate that the IRAS data will be a treasure chest for astronomers for years to come.

  7. Orbital evolution of 95/P Chiron, 39P/Oterma, 29P/Shwassmann-Wachmann 1, and of 33 Centaurs

    NASA Astrophysics Data System (ADS)

    Kovalenko, N. S.; Churyumov, K. I.; Babenko, Yu. G.

    2011-12-01

    The paper is devoted to numerical modeling of orbital evolution of 34 Centaurs, and 2 distant Jupiter-family comets - 39P/Oterma and 29P/Shwassmann-Wachmann 1. As a result the evolutionary tracks of orbital elements of 33 Centaurs and 3 comets (95/P Chiron (2060), 39P/Oterma and 29P/Shwassmann-Wachmann 1) are obtained. The integrations were produced for 1 Myr back and forth in time starting at epoch and using the implicit single sequence Everhart methods. The statistical analysis of numerical integrations results was done, trends in changes of Centaurs' orbital elements in the past and in the future are revealed. The part of Centaurs that are potential comets is defined by the values of perihelia distributions for modeled orbits. It is shown that Centaurs may transits into orbits typical for Jupiter-family comets, and vice versa. Centaurs represent one of possible sources for replenishment of JFCs population, but other sources are also necessary.

  8. ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)

    NASA Astrophysics Data System (ADS)

    Dunagan, S. E.; Johnson, R. R.; Redemann, J.; Holben, B. N.; Schmid, B.; Flynn, C. J.; Fahey, L.; LeBlanc, S. E.; Liss, J.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Shinozuka, Y.; Dahlgren, R. P.; Pistone, K.; Karol, Y.

    2017-12-01

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds. These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical tracking head, and future detector evolution. 4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides the basis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, and expanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodiode radiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument. Keywords: atmosphere; climate; pollution; radiometry; technology; hyperspectral; fiber optic, polarimetry

  9. Comet Siding Spring Seen Next to Mars

    NASA Image and Video Library

    2017-12-08

    This composite NASA Hubble Space Telescope Image captures the positions of comet Siding Spring and Mars in a never-before-seen close passage of a comet by the Red Planet, which happened at 2:28 p.m. EDT October 19, 2014. The comet passed by Mars at approximately 87,000 miles (about one-third of the distance between Earth and the Moon). At that time, the comet and Mars were approximately 149 million miles from Earth. The comet image shown here is a composite of Hubble exposures taken between Oct. 18, 8:06 a.m. EDT to Oct. 19, 11:17 p.m. EDT. Hubble took a separate photograph of Mars at 10:37 p.m. EDT on Oct. 18. The Mars and comet images have been added together to create a single picture to illustrate the angular separation, or distance, between the comet and Mars at closest approach. The separation is approximately 1.5 arc minutes, or one-twentieth of the angular diameter of the full Moon. The background starfield in this composite image is synthesized from ground-based telescope data provided by the Palomar Digital Sky Survey, which has been reprocessed to approximate Hubble’s resolution. The solid icy comet nucleus is too small to be resolved in the Hubble picture. The comet’s bright coma, a diffuse cloud of dust enshrouding the nucleus, and a dusty tail, are clearly visible. This is a composite image because a single exposure of the stellar background, comet Siding Spring, and Mars would be problematic. Mars is actually 10,000 times brighter than the comet, and so could not be properly exposed to show detail in the Red Planet. The comet and Mars were also moving with respect to each other and so could not be imaged simultaneously in one exposure without one of the objects being motion blurred. Hubble had to be programmed to track on the comet and Mars separately in two different observations. The images were taken with Hubble’s Wide Field Camera 3. Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA

  10. Hubble Sees a “Behemoth” Bleeding Atmosphere Around a Warm Exoplanet

    NASA Image and Video Library

    2015-06-24

    Astronomers using NASA’s Hubble Space Telescope have discovered an immense cloud of hydrogen dubbed “The Behemoth” bleeding from a planet orbiting a nearby star. The enormous, comet-like feature is about 50 times the size of the parent star. The hydrogen is evaporating from a warm, Neptune-sized planet, due to extreme radiation from the star. This phenomenon has never been seen around an exoplanet so small. It may offer clues to how other planets with hydrogen-enveloped atmospheres could have their outer layers evaporated by their parent star, leaving behind solid, rocky cores. Hot, rocky planets such as these that roughly the size of Earth are known as Hot-Super Earths. “This cloud is very spectacular, though the evaporation rate does not threaten the planet right now,” explains the study’s leader, David Ehrenreich of the Observatory of the University of Geneva in Switzerland. “But we know that in the past, the star, which is a faint red dwarf, was more active. This means that the planet evaporated faster during its first billion years of existence because of the strong radiation from the young star. Overall, we estimate that it may have lost up to 10 percent of its atmosphere over the past several billion years.” Read more: www.nasa.gov/feature/goddard/hubble-sees-a-behemoth-bleed... Caption: This artist's concept shows "The Behemoth," an enormous comet-like cloud of hydrogen bleeding off of a warm, Neptune-sized planet just 30 light-years from Earth. Also depicted is the parent star, which is a faint red dwarf named GJ 436. The hydrogen is evaporating from the planet due to extreme radiation from the star. A phenomenon this large has never before been seen around any exoplanet. Credits: NASA, ESA, and G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. STAR: an integrated solution to management and visualization of sequencing data

    PubMed Central

    Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W.; Ecker, Joseph R.; Millar, A. Harvey; Ren, Bing; Wang, Wei

    2013-01-01

    Motivation: Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. Results: STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. Availability and implementation: STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser. Contact: wei-wang@ucsd.edu PMID:24078702

  12. Adaptive Neural Star Tracker Calibration for Precision Spacecraft Pointing and Tracking

    NASA Technical Reports Server (NTRS)

    Bayard, David S.

    1996-01-01

    The Star Tracker is an essential sensor for precision pointing and tracking in most 3-axis stabilized spacecraft. In the interest (of) improving pointing performance by taking advantage of dramatic increases in flight computer power and memory anticipated over the next decade, this paper investigates the use of a neural net for adaptive in-flight calibration of the Star Tracker.

  13. Role of stereoscopic imaging in the astronomical study of nearby stars and planetary systems

    NASA Astrophysics Data System (ADS)

    Mark, David S.; Waste, Corby

    1997-05-01

    The development of stereoscopic imaging as a 3D spatial mapping tool for planetary science is now beginning to find greater usefulness in the study of stellar atmospheres and planetary systems in general. For the first time, telescopes and accompanying spectrometers have demonstrated the capacity to depict the gyrating motion of nearby stars so precisely as to derive the existence of closely orbiting Jovian-type planets, which are gravitationally influencing the motion of the parent star. Also for the first time, remote space borne telescopes, unhindered by atmospheric effects, are recording and tracking the rotational characteristics of our nearby star, the sun, so accurately as to reveal and identify in great detail the heightened turbulence of the sun's corona. In order to perform new forms of stereo imaging and 3D reconstruction with such large scale objects as stars and planets, within solar systems, a set of geometrical parameters must be observed, and are illustrated here. The behavior of nearby stars can be studied over time using an astrometric approach, making use of the earth's orbital path as a semi- yearly stereo base for the viewing telescope. As is often the case in this method, the resulting stereo angle becomes too narrow to afford a beneficial stereo view, given the star's distance and the general level of detected noise in the signal. With the advent, though, of new earth based and space borne interferometers, operating within various wavelengths including IR, the capability of detecting and assembling the full 3-dimensional axes of motion of nearby gyrating stars can be achieved. In addition, the coupling of large interferometers with combined data sets can provide large stereo bases and low signal noise to produce converging 3- dimensional stereo views of nearby planetary systems. Several groups of new astronomical stereo imaging data sets are presented, including 3D views of the sun taken by the Solar and Heliospheric Observatory, coincident stereo views of the planet Jupiter during impact of comet Shoemaker-Levy 9, taken by the Galileo spacecraft and the Hubble Space Telescope, as well as views of nearby stars. Spatial ambiguities arising in singular 2-dimensional viewpoints are shown to be resolvable in twin perspective, 3-dimensional stereo views. Stereo imaging of this nature, therefore, occupies a complementary role in astronomical observing, provided the proper fields of view correspond with the path of the orbital geometry of the observing telescope.

  14. The influence of radiative core growth on coronal X-ray emission from pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Gregory, Scott G.; Adams, Fred C.; Davies, Claire L.

    2016-04-01

    Pre-main-sequence (PMS) stars of mass ≳0.35 M⊙ transition from hosting fully convective interiors to configurations with a radiative core and outer convective envelope during their gravitational contraction. This stellar structure change influences the external magnetic field topology and, as we demonstrate herein, affects the coronal X-ray emission as a stellar analogue of the solar tachocline develops. We have combined archival X-ray, spectroscopic, and photometric data for ˜1000 PMS stars from five of the best studied star-forming regions: the Orion Nebula Cluster, NGC 2264, IC 348, NGC 2362, and NGC 6530. Using a modern, PMS calibrated, spectral type-to-effective temperature and intrinsic colour scale, we de-redden the photometry using colours appropriate for each spectral type, and determine the stellar mass, age, and internal structure consistently for the entire sample. We find that PMS stars on Henyey tracks have, on average, lower fractional X-ray luminosities (LX/L*) than those on Hayashi tracks, where this effect is driven by changes in LX. X-ray emission decays faster with age for higher mass PMS stars. There is a strong correlation between L* and LX for Hayashi track stars but no correlation for Henyey track stars. There is no correlation between LX and radiative core mass or radius. However, the longer stars have spent with radiative cores, the less X-ray luminous they become. The decay of coronal X-ray emission from young early K to late G-type PMS stars, the progenitors of main-sequence A-type stars, is consistent with the dearth of X-ray detections of the latter.

  15. A Basic Astronomy Library.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    This bibliography lists the most useful and scientifically accurate astronomy books published in the 1980s for beginners and students. The books are categorized under the topics of: (1) astronomy in general; (2) solar system as a whole; (3) planets; (4) asteroids, comets, and meteorites; (5) the sun; (6) stars and their evolution; (7) mikly way…

  16. Life and the Universe: From Astrochemistry to Astrobiology

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.

    2013-01-01

    Great strides have been made in our understanding of interstellar material thanks to advances in infrared astronomy and laboratory astrophysics. Ionized polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier astrochemical standards, are widespread and very abundant throughout much of the cosmos. In cold molecular clouds, the birthplace of planets and stars, interstellar atoms and molecules freeze onto extremely cold dust and ice particles forming mixed molecular ices dominated by simple species such as water, methanol, ammonia, and carbon monoxide. Within these clouds, and especially in the vicinity of star and planet forming regions, these ices and PAHs are processed by ultraviolet light and cosmic rays forming hundreds of far more complex species, some of biogenic interest. Eventually, these are delivered to primordial planets by comets and meteorites. As these materials are the building blocks of comets and related to carbonaceous micrometeorites, they are likely to be important sources of complex organic materials delivered to habitable planets (including the primordial Earth) and their composition may be related to the origin of life. This talk will focus on the chemical evolution of these cosmic materials and their relevance to astrobiology.

  17. Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy)

    NASA Astrophysics Data System (ADS)

    Biver, Nicolas; Bockelée-Morvan, Dominique; Moreno, Raphaël; Crovisier, Jacques; Colom, Pierre; Lis, Dariusz C.; Sandqvist, Aage; Boissier, Jérémie; Despois, Didier; Milam, Stefanie N.

    2015-10-01

    The presence of numerous complex organic molecules (COMs; defined as those containing six or more atoms) around protostars shows that star formation is accompanied by an increase of molecular complexity. These COMs may be part of the material from which planetesimals and, ultimately, planets formed. Comets represent some of the oldest and most primitive material in the solar system, including ices, and are thus our best window into the volatile composition of the solar protoplanetary disk. Molecules identified to be present in cometary ices include water, simple hydrocarbons, oxygen, sulfur, and nitrogen-bearing species, as well as a few COMs, such as ethylene glycol and glycine. We report the detection of 21 molecules in comet C/2014 Q2 (Lovejoy), including the first identification of ethyl alcohol (ethanol, C2H5OH) and the simplest monosaccharide sugar glycolaldehyde (CH2OHCHO) in a comet. The abundances of ethanol and glycolaldehyde, respectively 5 and 0.8% relative to methanol (0.12 and 0.02% relative to water), are somewhat higher than the values measured in solar- type protostars. Overall, the high abundance of COMs in cometary ices supports the formation through grain-surface reactions in the solar system protoplanetary disk.

  18. Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy)

    PubMed Central

    Biver, Nicolas; Bockelée-Morvan, Dominique; Moreno, Raphaël; Crovisier, Jacques; Colom, Pierre; Lis, Dariusz C.; Sandqvist, Aage; Boissier, Jérémie; Despois, Didier; Milam, Stefanie N.

    2015-01-01

    The presence of numerous complex organic molecules (COMs; defined as those containing six or more atoms) around protostars shows that star formation is accompanied by an increase of molecular complexity. These COMs may be part of the material from which planetesimals and, ultimately, planets formed. Comets represent some of the oldest and most primitive material in the solar system, including ices, and are thus our best window into the volatile composition of the solar protoplanetary disk. Molecules identified to be present in cometary ices include water, simple hydrocarbons, oxygen, sulfur, and nitrogen-bearing species, as well as a few COMs, such as ethylene glycol and glycine. We report the detection of 21 molecules in comet C/2014 Q2 (Lovejoy), including the first identification of ethyl alcohol (ethanol, C2H5OH) and the simplest monosaccharide sugar glycolaldehyde (CH2OHCHO) in a comet. The abundances of ethanol and glycolaldehyde, respectively 5 and 0.8% relative to methanol (0.12 and 0.02% relative to water), are somewhat higher than the values measured in solar-type protostars. Overall, the high abundance of COMs in cometary ices supports the formation through grain-surface reactions in the solar system protoplanetary disk. PMID:26601319

  19. X-Ray Flare Oscillations Track Plasma Sloshing along Star-disk Magnetic Tubes in the Orion Star-forming Region

    NASA Astrophysics Data System (ADS)

    Reale, Fabio; Lopez-Santiago, Javier; Flaccomio, Ettore; Petralia, Antonino; Sciortino, Salvatore

    2018-03-01

    Pulsing X-ray emission tracks the plasma “echo” traveling in an extremely long magnetic tube that flares in an Orion pre-main sequence (PMS) star. On the Sun, flares last from minutes to a few hours and the longest-lasting ones typically involve arcades of closed magnetic tubes. Long-lasting X-ray flares are observed in PMS stars. Large-amplitude (∼20%), long-period (∼3 hr) pulsations are detected in the light curve of day-long flares observed by the Advanced CCD Imaging Spectrometer on-board Chandra from PMS stars in the Orion cluster. Detailed hydrodynamic modeling of two flares observed on V772 Ori and OW Ori shows that these pulsations may track the sloshing of plasma along a single long magnetic tube, triggered by a sufficiently short (∼1 hr) heat pulse. These magnetic tubes are ≥20 solar radii long, enough to connect the star with the surrounding disk.

  20. Space Shuttle Star Tracker Challenges

    NASA Technical Reports Server (NTRS)

    Herrera, Linda M.

    2010-01-01

    The space shuttle fleet of avionics was originally designed in the 1970's. Many of the subsystems have been upgraded and replaced, however some original hardware continues to fly. Not only fly, but has proven to be the best design available to perform its designated task. The shuttle star tracker system is currently flying as a mixture of old and new designs, each with a unique purpose to fill for the mission. Orbiter missions have tackled many varied missions in space over the years. As the orbiters began flying to the International Space Station (ISS), new challenges were discovered and overcome as new trusses and modules were added. For the star tracker subsystem, the growing ISS posed an unusual problem, bright light. With two star trackers on board, the 1970's vintage image dissector tube (IDT) star trackers track the ISS, while the new solid state design is used for dim star tracking. This presentation focuses on the challenges and solutions used to ensure star trackers can complete the shuttle missions successfully. Topics include KSC team and industry partner methods used to correct pressurized case failures and track system performance.

  1. An analytical method to compute comet cloud formation efficiency and its application

    NASA Astrophysics Data System (ADS)

    Brasser, Ramon; Duncan, Martin J.

    2008-01-01

    A quick analytical method is presented for calculating comet cloud formation efficiency in the case of a single planet or multiple-planet system for planets that are not too eccentric ( e p ≲ 0.3). A method to calculate the fraction of comets that stay under the control of each planet is also presented, as well as a way to determine the efficiency in different star cluster environments. The location of the planet(s) in mass-semi-major axis space to form a comet cloud is constrained based on the conditions developed by Tremaine (1993) together with estimates of the likelyhood of passing comets between planets; and, in the case of a single, eccentric planet, the additional constraint that it is, by itself, able to accelerate material to relative encounter velocity U ~ 0.4 within the age of the stellar system without sweeping up the majority of the material beforehand. For a single planet, it turns out the efficiency is mainly a function of planetary mass and semi-major axis of the planet and density of the stellar environment. The theory has been applied to some extrasolar systems and compared to numerical simulations for both these systems and the Solar System, as well as a diffusion scheme based on the energy kick distribution of Everhart (Astron J 73:1039 1052, 1968). The analytic results are in good agreement with the simulations.

  2. Near-parabolic comets observed in 2006-2010. The individualized approach to 1/a-determination and the new distribution of original and future orbits

    NASA Astrophysics Data System (ADS)

    Królikowska, Małgorzata; Dybczyński, Piotr A.

    2013-10-01

    Dynamics of a complete sample of small perihelion distance near-parabolic comets discovered in the years 2006-2010 are studied (i.e. of 22 comets of qosc < 3.1 au). First, osculating orbits are obtained after a very careful positional data inspection and processing, including where appropriate, the method of data partitioning for determination of pre- and post-perihelion orbit for tracking then its dynamical evolution. The non-gravitational acceleration in the motion is detected for 50 per cent of investigated comets, in a few cases for the first time. Different sets of non-gravitational parameters are determined from pre- and post-perihelion data for some of them. The influence of the positional data structure on the possibility of the detection of non-gravitational effects and the overall precision of orbit determination is widely discussed. Secondly, both original and future orbits were derived by means of numerical integration of swarms of virtual comets obtained using a Monte Carlo cloning method. This method allows us to follow the uncertainties of orbital elements at each step of dynamical evolution. The complete statistics of original and future orbits that includes significantly different uncertainties of 1/a-values is presented, also in the light of our results obtained earlier. Basing on 108 comets examined by us so far, we conclude that only one of them, C/2007 W1 Boattini, seems to be a serious candidate for an interstellar comet. We also found that 53 per cent of 108 near-parabolic comets escaping in the future from the Solar system, and the number of comets leaving the Solar system as so called Oort spike comets (i.e. comets suffering very small planetary perturbations) is 14 per cent. A new method for cometary orbit quality assessment is also proposed by means of modifying the original method, introduced by Marsden, Sekanina & Everhart. This new method leads to a better diversification of orbit quality classes for contemporary comets.

  3. Multipurpose active pixel sensor (APS)-based microtracker

    NASA Astrophysics Data System (ADS)

    Eisenman, Allan R.; Liebe, Carl C.; Zhu, David Q.

    1998-12-01

    A new, photon-sensitive, imaging array, the active pixel sensor (APS) has emerged as a competitor to the CCD imager for use in star and target trackers. The Jet Propulsion Laboratory (JPL) has undertaken a program to develop a new generation, highly integrated, APS-based, multipurpose tracker: the Programmable Intelligent Microtracker (PIM). The supporting hardware used in the PIM has been carefully selected to enhance the inherent advantages of the APS. Adequate computation power is included to perform star identification, star tracking, attitude determination, space docking, feature tracking, descent imaging for landing control, and target tracking capabilities. Its first version uses a JPL developed 256 X 256-pixel APS and an advanced 32-bit RISC microcontroller. By taking advantage of the unique features of the APS/microcontroller combination, the microtracker will achieve about an order-of-magnitude reduction in mass and power consumption compared to present state-of-the-art star trackers. It will also add the advantage of programmability to enable it to perform a variety of star, other celestial body, and target tracking tasks. The PIM is already proving the usefulness of its design concept for space applications. It is demonstrating the effectiveness of taking such an integrated approach in building a new generation of high performance, general purpose, tracking instruments to be applied to a large variety of future space missions.

  4. Comet ISON Approaching the Sun [hd video

    NASA Image and Video Library

    2013-11-27

    This movie from NASA’s STEREO spacecraft's Heliospheric Imager shows Comet ISON, Mercury, Comet Encke and Earth over a five-day period from Nov. 20 to Nov. 25, 2013. The sun sits right of the field of view of this camera. Comet ISON, which will round the sun on Nov. 28, is what's known as a sungrazing comet, due to its close approach. Foreshortening or the angle at which these images were obtained make Earth appear as if it is closer to the sun than Mercury. If you look closely you will also see a dimmer and smaller comet Encke near comet ISON. A comet’s journey through the solar system is perilous and violent. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. Even if the comet does not survive, tracking its journey will help scientists understand what the comet is made of, how it reacts to its environment, and what this explains about the origins of the solar system. Closer to the sun, watching how the comet and its tail interact with the vast solar atmosphere can teach scientists more about the sun itself. Image Credit: NASA/STEREO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. ISO's analysis of Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    1997-03-01

    The European Space Agency's Infrared Space Observatory ISO inspected Comet Hall-Bopp during the spring and autumn of 1996. The need to keep ISO's telescope extremely cold restricts the spacecraft's pointing in relation to the Sun and the Earth and it ruled out observations at other times. The analyses of the 1996 observations are not yet complete, but already they give new insight into the nature of comets. Comet Hale-Bopp is believed to be a large comet with a nucleus up to 40 kilometres wide. It was discovered in July 1995 by two American astronomers working independently, Alan Hale and Thomas Bopp. At that time, the comet was a billion kilometres away from the Sun, but 200 times brighter than Halley's Comet was, when at a comparable distance. Comet Hale-Bopp will make its closest approach to the Earth on 22 March, and its closest approach to the Sun (perihelion) on 1 April 1997. Some scientific results from ISO The discovery of Comet Hale-Bopp occurred before ISO's launch in November 1995. When first observed by ISO in March and April 1996, the comet was still 700 million kilometres from the Sun, and almost as far from the Earth and ISO. With its privileged view of infrared wavebands inaccessible from the Earth's surface, ISO's photometer ISOPHOT discovered that carbon dioxide was an important constituent of the comet's emissions of vapour.ISOPHOT measured the temperature of the dust cloud around Comet Hale-Bopp. In March 1996, when the comet was still more than 700 million kilometres from the Sun, the dust cloud was at minus 120 degrees C. When ISOPHOT made similar observations in October 1996, the comet was 420 million kilometres from the Sun, and the dust cloud had warmed to about minus 50 degrees C. Intensive observations of Comet Hale-Bopp were also made by ISO's Short-Wave Spectrometer SWS, the Long-Wave Spectrometer LWS, and the ISOPHOT spectrometer PHOT-S. Results are due for publication at the end of March. They will give details about the composition of the comet's dust and vapour, and also rates of escape of vapour, which will help in assessing the loss of material from Comet Hale-Bopp during this visit to the Sun's vicinity. "Watch out for some fascinating news," says Thijs de Graauw of Groningen University, who is in charge of the SWS instrument used in this study. "What excites me is the opportunity we shall have to compare dusty Comet Hale-Bopp, seen in the Solar System, with dusty objects far away among the stars which seem to be made of similar materials. Infrared astronomy has a special ability to unify cosmic chemistry at all scales from little dust grains in the Earth's vicinity to vast and distant galaxies." The dust itself interests the infrared astronomers, not least because their view of the Universe at large is spoiled to some extent by dust left behind by comets. Together with fine debris from asteroids, the comet dust makes a bright infrared band around the sky, which corresponds with the zodiacal light sometimes seen by eye, slanting above the horizon at twilight. ISO's predecessor, the US-Dutch-UK infrared astronomical satellite IRAS, found trails of comet dust much longer and more persistent than the familiar comet tails. ISO has seen a trail from Comet Kopff. By detecting dust grains that are typically much larger than those seen by visible light, ISO scientists hope to learn more about the dust's long-term behaviour in the Solar System. A series of images of Comet Hale-Bopp, obtained by the camera ISOCAM in October 1996, is the subject of continuing analysis. Leading this work in progress is Philippe Lamy of Marseille, France. "We hope to unveil the nucleus of the comet," Professor Lamy explains. "In principle, the Hubble Space Telescope can see finer details by visible light, but the contrast of the nucleus against the bright surrounding coma is superior at infrared wavelengths. This is because the thermal emission from the nucleus is very large and can be detected thanks to the high spatial resolution of ISO. We have a long time coverage of the comet, so we hope to determine the light-curve of the nucleus -- which, in turn, will reveal its gross shape and an estimate of its rotation period." A commanding role in comet research As comets are relics from the construction of the Solar System, and played a major role in the formation of the planets, they are a link between the Earth and the wider Universe of stars. The carbon compounds contained in comets probably contributed raw materials for the origin of life on the Earth, and according to one theory the Earth's oceans were made from comet ice. Growing knowledge of the composition and behaviour of comets is therefore crucial for a fuller understanding of our cosmic origins. ESA has a commanding role in space research on comets. Its Giotto spacecraft was the most daring of the international fleet of spacecraft that visited Halley's Comet in March 1986. Giotto obtained exceptional pictures and other data as it passed within 600 kilometres of the nucleus. Dust from the comet badly damaged the spacecraft, but in a navigational tour de force Giotto made an even closer approach to Comet Grigg-Skjellerup in July 1992. Now ESA is planning the Rosetta mission that will rendezvous with Comet Wirtanen and fly in company with it, making observations far more detailed than the fast flybys of Halley's Comet and Comet Grigg-Skjellerup could achieve. As for space astronomy, the International Ultraviolet Explorer, in which ESA was a partner, made unrivalled observations of Halley's Comet by ultraviolet light. ESA is also a partner in the Hubble Space Telescope, which saw the historic impacts of Comet Shoemaker-Levy 9 on Jupiter in July 1994, and has recently observed Comet Hyakutake as well as Hale-Bopp. The SOHO spacecraft, built by ESA for a joint ESA-NASA project to examine the Sun, has a distinctive view of comets. It has observed the hydrogen coronas of comets with its SWAN instrument. SOHO's coronagraph LASCO observed Comet Hyakutake rounding the Sun (when it was invisible to ground-based observers) and has discovered seven new comets very close to the Sun. Only ISO provides astronomers with information from comets across a very wide range of infrared wavelengths unobservable from the ground. Besides Comet Hale-Bopp, ISO has examined Comets Schwassmann-Wachmann 1, Chiron, Kopff, IRAS 1 and Wirtanen. The last of these, Comet Wirtanen, is the target of the Rosetta mission and is now making one of its six-yearly visits to the Sun's vicinity. Dietrich Lemke of Heidelberg, Germany, who is in charge of the ISOPHOT instrument in ISO, summarizes ISO's unique contribution. "By measuring the extremely weak heat rays from these frosty objects at different distances," Professor Lemke says, "we have a thermometer to gauge a comet's growing fever when it nears the Sun. As the temperature rises, first one kind of ice evaporates, and then another, producing various chemical signatures in the infrared spectrum. We can also characterize the mineral dust coming out of the comet. So ISO offers a vivid impression of comets in action which no other instrument can match." Photos are available on the ESA home page on Internet : http://www.estec.esa.nl/spdwww/iso/html/hale-bopp.htm

  6. Studies of Disks Around the Sun and Other Stars

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1997-01-01

    This is a NASA Origins of Solar Systems research program, and this NASA Headquarters grant has now been transferred to a new grant at NASA GSFC (NAG5-4082). Thus the need for this 'Final Report' on a project that is not, in fact, complete. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to "standard" theory, both the Kuiper Belt and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Our program consists of modeling collisions in the Kuiper Belt and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper Belt collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model is to be used to study the evolution of surface mass density and the object-size spectrum in the disk.

  7. International Ultraviolet Explorer (IUE) ultraviolet spectral atlas of selected astronomical objects

    NASA Technical Reports Server (NTRS)

    Wu, Chi-Chao; Reichert, Gail A.; Ake, Thomas B.; Boggess, Albert; Holm, Albert V.; Imhoff, Catherine L.; Kondo, Yoji; Mead, Jaylee M.; Shore, Steven N.

    1992-01-01

    The IUE Ultraviolet Spectral Atlas of Selected Astronomical Objects (or 'the Atlas'), is based on the data that were available in the IUE archive in 1986, and is intended to be a quick reference for the ultraviolet spectra of many categories of astronomical objects. It shows reflected sunlight from the Moon, planets, and asteroids, and also shows emission from comets. Comprehensive compilations of UV spectra for main sequence, subgiant, giant, bright giant, and supergiant stars are published elsewhere. This Atlas contains the spectra for objects occupying other areas of the Hertzsprung-Russell diagram: pre-main sequence stars, chemically peculiar stars, pulsating variables, subluminous stars, and Wolf-Rayet stars. This Atlas also presents phenomena such as the chromospheric and transition region emissions from late-type stars; composite spectra of stars, gas streams, accretion disks and gas envelopes of binary systems; the behavior of gas ejecta shortly after the outburst of novac and supernovac; and the H II regions, planetary nebulae, and supernova remnants. Population 2 stars, globular clusters, and luminous stars in the Magellanic Clouds, M31, and M33, are also included in this publication. Finally, the Atlas gives the ultraviolet spectra of galaxies of different Hubble types and of active galaxies.

  8. Sources of Water for Oceans on Planets

    NASA Astrophysics Data System (ADS)

    Owen, T. C.

    2001-12-01

    Studies of D/H in the H2O carried by three Oort cloud comets have shown that such comets could not have contributed all of the water in the Earth's oceans. The extent of the cometary contribution depends on the value of D/H in water brought directly to the planet as hydrous minerals or adsorbed solar nebula H2O. That some cometary water was in fact delivered to the inner planets is strongly suggested by the value of D/H in Shergottite minerals when viewed in the context of other isotope geochemistry on Mars (Owen and Bar-Nun, FARADAY DISCUSSIONS 109, 453-462 (1998)). This scenario is also consistent with noble gas and siderophile element abundances on Earth. The identification of comet-produced water vapor around the aging carbon star IRC +10216 (Melnick et al., NATURE 412, 160-163 (2001)) provides concrete support for the widely held assumption that a cometary reservoir for the irrigation of inner planets should be a common feature of planetary systems throughout the galaxy.

  9. Ultraviolet Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Wdowiak, T. J.

    1993-01-01

    Wide-field imaging systems equipped with objective prisms or gratings have had a long history of utility in groundbased observations of meteors and comets. Deployment of similar instruments from low Earth orbit would allow the first UV observations of meteors. This instrument can be used for comets and Lyman alpha coronae of Earth-orbit-crossing asteroids. A CaF2 prism imaging spectrograph designed for stellar observations was used aboard Skylab to observe Comet Kohoutek (1973f), but its 1300-A cut-off precluded Lyman alpha images and it was not used for observation of meteors. Because the observation of the UV spectrum of a meteor has never been attempted, researchers are denied the opportunity to obtain composition information from spectra at those wavelengths. We propose construction of a flight instrument functioning in the 1100-3200 A spectral range that is suitable for a dedicated satellite ('Quick Star') or as a space-station-attached payload. It can also be an autonomous package in the space shuttle cargo bay.

  10. Parallel Tracks as Quasi-steady States for the Magnetic Boundary Layers in Neutron-star Low-mass X-Ray Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erkut, M. Hakan; Çatmabacak, Onur, E-mail: mherkut@gmail.com

    The neutron stars in low-mass X-ray binaries (LMXBs) are usually thought to be weakly magnetized objects accreting matter from their low-mass companions in the form of a disk. Albeit weak compared to those in young neutron-star systems, the neutron-star magnetospheres in LMXBs can play an important role in determining the correlations between spectral and temporal properties. Parallel tracks appearing in the kilohertz (kHz) quasi-periodic oscillation (QPO) frequency versus X-ray flux plane can be used as a tool to study the magnetosphere–disk interaction in neutron-star LMXBs. For dynamically important weak fields, the formation of a non-Keplerian magnetic boundary layer at themore » innermost disk truncated near the surface of the neutron star is highly likely. Such a boundary region may harbor oscillatory modes of frequencies in the kHz range. We generate parallel tracks using the boundary region model of kHz QPOs. We also present the direct application of our model to the reproduction of the observed parallel tracks of individual sources such as 4U 1608–52, 4U 1636–53, and Aql X-1. We reveal how the radial width of the boundary layer must vary in the long-term flux evolution of each source to regenerate the parallel tracks. The run of the radial width looks similar for different sources and can be fitted by a generic model function describing the average steady behavior of the boundary region over the long term. The parallel tracks then correspond to the possible quasi-steady states the source can occupy around the average trend.« less

  11. Parallel Tracks as Quasi-steady States for the Magnetic Boundary Layers in Neutron-star Low-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Erkut, M. Hakan; Çatmabacak, Onur

    2017-11-01

    The neutron stars in low-mass X-ray binaries (LMXBs) are usually thought to be weakly magnetized objects accreting matter from their low-mass companions in the form of a disk. Albeit weak compared to those in young neutron-star systems, the neutron-star magnetospheres in LMXBs can play an important role in determining the correlations between spectral and temporal properties. Parallel tracks appearing in the kilohertz (kHz) quasi-periodic oscillation (QPO) frequency versus X-ray flux plane can be used as a tool to study the magnetosphere-disk interaction in neutron-star LMXBs. For dynamically important weak fields, the formation of a non-Keplerian magnetic boundary layer at the innermost disk truncated near the surface of the neutron star is highly likely. Such a boundary region may harbor oscillatory modes of frequencies in the kHz range. We generate parallel tracks using the boundary region model of kHz QPOs. We also present the direct application of our model to the reproduction of the observed parallel tracks of individual sources such as 4U 1608-52, 4U 1636-53, and Aql X-1. We reveal how the radial width of the boundary layer must vary in the long-term flux evolution of each source to regenerate the parallel tracks. The run of the radial width looks similar for different sources and can be fitted by a generic model function describing the average steady behavior of the boundary region over the long term. The parallel tracks then correspond to the possible quasi-steady states the source can occupy around the average trend.

  12. ESO's VLT Helps ESA's Rosetta Spacecraft Prepare to Ride on a Cosmic Bullet

    NASA Astrophysics Data System (ADS)

    2002-02-01

    New Images of Comet Wirtanen's Nucleus [1] Summary New images of Comet Wirtanen's 1-km 'dirty snowball' nucleus have been obtained with the ESO Very Large Telescope at Paranal (Chile). They show this object at a distance of approx. 435 million km from the Sun, about the same as when the Rosetta spacecraft of the European Space Agency (ESA) arrives in 2011. The new observations indicate that the comet has a very low degree of activity at this point in its orbit - almost no material is seen around the nucleus. This means that there will not be so much dust near the nucleus as to make the planned landing dramatically difficult. PR Photo 06a/02 : The Nucleus of Comet Wirtanen (composite photo). PR Photo 06b/02 : Comet Wirtanen's motion in the sky (animated). A distant target ESO PR Photo 06a/02 ESO PR Photo 06a/02 [Preview - JPEG: 400 x 445 pix - 120k] [Normal - JPEG: 800 x 890 pix - 1.1M] ESO PR Photo 06b/02 ESO PR Photo 06b/02 [Animated GIF: 400 x 420 pix - 312k] Caption : PR Photo 06a/02 shows a (false-colour) composite image of the nucleus of Comet Wirtanen (the point of light at the centre), recorded on December 9, 2001, with the FORS2 multi-mode instrument at the 8.2-m VLT YEPUN Unit Telescope. It is based on four exposures and since the telescope was set to track the motion of the comet in the sky, the images of stars in the field are seen as four consecutive trails. The measured brightness and the fact that the image of the comet's 'dirty snowball' nucleus is almost star-like indicates that it is surrounded by a very small amount of gas or dust. The diameter of the nucleus is about 1 km and the distance to the comet from the Earth was approx. 534 million km. In PR Photo 06b/02 , the four exposures have been combined to show the motion of the comet during the four exposures. Technical information about the photos is available below. Chase a fast-moving comet, land on it and 'ride' it while it speeds up towards the Sun: not the script of a science-fiction movie, but the very real task of ESA's Rosetta spacecraft. New observations with the ESO Very Large Telescope (VLT) provide vital information about Comet Wirtanen - Rosetta's target - to help ESA reduce uncertainties in the mission, one of the most difficult ever to be performed. Every 5.5 years Comet Wirtanen completes an orbit around the Sun. Wirtanen has been seen during several apparitions since its discovery in 1948, but only recently have astronomers obtained detailed observations that have allowed them to estimate the comet's size and behaviour, cf. ESO PR Photos 27a-b/99. The most recent of these observations was performed in December 2001 with the ESO VLT at the Paranal Observatory in Northern Chile, cf. PR Photos 06a-b/02 , reproduced here. As a result of these observations ESA will be able to refine plans for its Rosetta mission. Good news for Rosetta Rosetta will be launched next year and it will reach Comet Wirtanen in 2011. By that time the comet will be nearly as far from the Sun as Jupiter, charging headlong towards the inner Solar System at speeds of up to 135,000 km/h. To get there and to be able to match the comet's orbit, Rosetta will need to be accelerated by several planetary swing-bys, after which the spacecraft - following a series of difficult manoeuvres - will get close to the comet, enter into orbit around it and release a lander from a height of about 1 km. The VLT observations were planned specifically to investigate the 'activity' of Wirtanen at about the same solar distance as at the time of the landing manoeuvres . Because of this timing requirement, they had to be carried out at a certain moment - unfortunately, when the comet was low in the twilight evening sky and descending rapidly towards the western horizon. However, even though the exposures therefore had to be quite short, the VLT with its superb light-gathering capability and opto-mechanical perfection was still able to produce excellent images of this rather faint, moving object (about 6 million times fainter than what can be perceived with the unaided eye). These observations have now confirmed that - at the same distance from the Sun at which the landing will take place (about 450 million km from the Sun) - the activity on Wirtanen is very low, cf. PR Photo 06a/02 . This is very good news for the mission, because it means that there will not be so much dust near the nucleus as to make the landing dramatically difficult . Landing on a 1-km snowball Cometary nuclei are small frozen bodies made of ice and dust ('dirty snowballs'). When they get close to the Sun the heat causes ices on the surface to 'evaporate'. Gas and dust grains are ejected into the surrounding space forming the comet's atmosphere (coma) and the tail. In addition to dropping a lander on Wirtanen's nucleus for detailed in-situ observations, Rosetta's task is to investigate the evolution of the comet on its way to the Sun: in fact, Rosetta will keep orbiting around Wirtanen up to the end of the mission in July 2013, at which time the comet is at its closest approach to the Sun, at about 160 million km from it. These and earlier VLT observations have also provided Rosetta mission planners with an accurate measurement of their target's size: Wirtanen's nucleus is only 1.2 km in diameter, a true cosmic bullet . "Rosetta is certainly a very challenging space mission. No one has ever tried to land on a comet before," says Gerhard Schwehm , Rosetta's Project Scientist. "We need to learn as much as possible about our target. The new VLT data will allow us to improve our models and make decisions once we get there." "It is a pleasure to help our colleagues at ESA", says ESO astronomer and comet specialist Hermann Boehnhardt . "We will continue to keep an eye on this comet, in particular when Rosetta is approaching its target. We can then provide the spacecraft controllers and the astronomers with very useful, regular updates, e.g., about the 'cometary weather' at the time of arrival." More about Rosetta Rosetta's prime scientific goal is to unravel the origin of the Solar System. The chemical composition of comets is known to reflect that of the primordial nebula that gave birth to the Solar System - in the planets, that primeval material has gone through complex processing, but not in the comets. Therefore, Rosetta will allow scientists to look back 4.6 billion years, to an epoch when the Solar System formed. Previous studies by ESA's Giotto spacecraft and by ground-based observatories have shown that comets contain complex organic molecules - compounds that are rich in carbon, hydrogen, oxygen and nitrogen. Intriguingly, these are the elements which make up nucleic acids and amino acids, essential ingredients for life as we know it. Did life on Earth begin with the help of comet seeding? Rosetta may help us to find the answer to this fundamental question. Rosetta carries 21 experiments in total. These are provided by scientific consortia from institutes across Europe and the United States. The Wirtanen observations by the VLT fall into a tradition of fruitful collaboration between the European Space Agency (ESA) and the European Southern Observatory (ESO). The two organizations, both members of the EIROFORUM collaboration ( ESO PR 12/01 ), are already combining their efforts in several strategic areas, in order to facilitate the synergy between space and ground facilities, where mutual sharing of technology and procedures can result in substantial gains and savings.

  13. Tycho Brahe

    NASA Astrophysics Data System (ADS)

    Dreyer, John Louis Emil

    2014-02-01

    Preface; 1. The revival of astronomy in Europe; 2. Tycho Brahe's youth; 3. The new star of 1572; 4. Tycho's oration on astrology and his travels in 1575; 5. The island of Hveen and Tycho Brahe's observatories and other buildings; 6. Tycho's life at Hveen until the death of King Frederick II; 7. Tycho's book on the comet of 1577, and his system of the world; 8. Further work on the star of 1572; 9. The last years at Hveen, 1588-97; 10. Tycho's life from his leaving Hveen until his arrival at Prague; 11. Tycho Brahe in Bohemia - his death; 12. Tycho Brahe's scientific achievements; Appendix; Notes; Index.

  14. Rocks, Robots, and Ices

    ERIC Educational Resources Information Center

    Riddle, Bob

    2010-01-01

    Solar system exploration in November includes flybys of Saturn's moons, a comet, and the next-to-last launch of a space shuttle before the shuttle program ends. In addition, on November 1 and 29 before sunrise, the waning crescent Moon will be close to asteroid 3 Juno. In fact, by observing the Moon and using some of the stars in the background…

  15. Alien Sunset (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Our solitary sunsets here on Earth might not be all that common in the grand scheme of things. New observations from NASA's Spitzer Space Telescope have revealed that mature planetary systems -- dusty disks of asteroids, comets and possibly planets -- are more frequent around close-knit twin, or binary, stars than single stars like our sun. That means sunsets like the one portrayed in this artist's photo concept, and more famously in the movie 'Star Wars,' might be quite commonplace in the universe.

    Binary and multiple-star systems are about twice as abundant as single-star systems in our galaxy, and, in theory, other galaxies. In a typical binary system, two stars of roughly similar masses twirl around each other like pair-figure skaters. In some systems, the two stars are very far apart and barely interact with each other. In other cases, the stellar twins are intricately linked, whipping around each other quickly due to the force of gravity.

    Astronomers have discovered dozens of planets that orbit around a single member of a very wide stellar duo. Sunsets from these worlds would look like our own, and the second sun would just look like a bright star in the night sky.

    But do planets exist in the tighter systems, where two suns would dip below a planet's horizon one by one? Unveiling planets in these systems is tricky, so astronomers used Spitzer to look for disks of swirling planetary debris instead. These disks are made of asteroids, comets and possibly planets. The rocky material in them bangs together and kicks up dust that Spitzer's infrared eyes can see. Our own solar system is swaddled in a similar type of disk.

    Surprisingly, Spitzer found more debris disks around the tightest binaries it studied (about 20 stars) than in a comparable sample of single stars. About 60 percent of the tight binaries had disks, while the single stars only had about 20 percent. These snug binary systems are as close or closer than just three times the distance between Earth and the sun. And the disks in these systems were found to circumnavigate both members of the star pair, rather than just one.

    Though follow-up studies are needed, the results could mean that planet formation is more common around extra-tight binary stars than single stars. Since these types of systems would experience double sunsets, the artistic view portrayed here might not be fiction.

    The original sunset photo used in this artist's concept was taken by Robert Hurt of the Spitzer Science Center at the California Institute of Technology, Pasadena, Calif.

  16. A Journey with MOM

    NASA Technical Reports Server (NTRS)

    Helfrich, Cliff; Berry, David S.; Bhat, Ramachandra; Border, James; Graat, Eric; Halsell, Allen; Kruizinga, Gerhard; Lau, Eunice; Mottinger, Neil; Rush, Brian; hide

    2015-01-01

    In late 2013, the Indian Space Research Organization (ISRO) launched its "Mars Orbiter Mission" (MOM). ISRO engaged NASA's Jet Propulsion Laboratory (JPL) for navigation services to support ISRO's objectives of MOM achieving and maintaining Mars orbit. The navigation support included planning, documentation, testing, orbit determination, maneuver design /analysis, and tracking data analysis. Several of MOM's attributes had an impact on navigation processes, e.g., S -band telecommunications, Earth Orbit Phase maneuvers, and frequent angular momentum desaturation s (AMDs). The primary source of tracking data was NASA/ JPL's Deep Space Network (DSN); JPL also conducted a performance assessment of Indian Deep Space Network (IDSN) tracking data. Planning for the Mars Orbit Insertion (MOI) was complicated by a pressure regulator failure that created uncertainty regarding MOM's main engine and raised potential planetary protection issues. A successful main engine test late on approach resolved these issues; it was quickly followed by a successful MOI on 24-September - 2014 at 02:00 UTC. Less than a month later, Comet Siding Spring's Mars flyby necessitated plans to minimize potential spacecraft damage. At the time of this writing, MOM's orbital operations continue, and plans to extend JPL 's support are in progress. This paper covers the JPL 's support of MOM through the Comet Siding Spring event.

  17. 100 and counting : SOHO's score as the world's top comet finder

    NASA Astrophysics Data System (ADS)

    2000-02-01

    Like nearly all of SOHO's discoveries, the 100th comet showed up in images from the LASCO instrument. This is a set of coronagraphs that view the space around the Sun out to 20 million kilometres, while blotting out the bright solar disk with masks. Developed for SOHO by a multinational team led by the US Naval Research Laboratory, LASCO watches for mass ejections from the Sun that threaten to disturb the Earth's space environment. The comet discoveries are a big bonus. SOHO's experts spot many of the comets as soon as the images come in. But still pictures and movies from LASCO are freely available on the Internet to astronomers around the world, who can discover less obvious comets without leaving their desks. This was the case when Kazimieras Cernis of the Institute of Theoretical Physics and Astronomy in Vilnius, Lithuania, found SOHO-100. "On 4 February I saw the comet as a small speck of light in the previous day's LASCO images," Cernis explained. "It had no visible tail, but it was too fuzzy to be an asteroid. By the time I had seen the object moving steadily across the sky in six successive images, I was convinced it was a comet and I sent the details to the SOHO scientists for verification." The competition to find SOHO's 100th comet was keen. An amateur astronomer, Maik Meyer of Frauenstein, Germany, discovered SOHO-98 and 99. On 5 February, less than 24 hours after Cernis reported the candidate SOHO-100, Meyer found the candidate SOHO-101. On the same day and in the same LASCO images Douglas Biesecker, a member of the SOHO science team, spotted the candidate SOHO-102 travelling ahead of 101. Computations have now validated the orbits for all three candidates, and shown them to be bona fide comet discoveries. Other amateur astronomers have used the LASCO images to find comets. In the summer of 1999 Terry Lovejoy in Australia found five, and since September 1999 an amateur in England, Jonathan Shanklin, has spotted three more. "SOHO is a special chance for comet hunters," said Shanklin, who is director of the British Astronomical Association's comet section. "It allows amateurs to discover some of the smallest comets ever seen. Yet they link us to sightings of great comets going back more than 2000 years." Nine of the comets found with LASCO, including SOHO-100, 101 and 102, passed the Sun at a safe distance. SOHO-49, which showed up in LASCO images in May 1998 and was designated as Comet 1998 J1, became visible to the naked eye in the southern hemisphere. But the great majority of SOHO's comets failed to survive very close encounters with the Sun. Snowballs in hell Of the first 100 SOHO comets, 92 vaporized in the solar atmosphere. Isaac Newton suggested 300 years ago that infalling comets might supply the Sun with fuel, but no one has ever tracked a comet that definitely hit the bright surface. Near misses are well known, and 100 years ago Heinrich Kreutz in Kiel, Germany, realized that several comets seen buzzing the Sun seemed to have a common origin, because they came from the same direction among the stars. These comets are now called the Kreutz sungrazers, and the 92 vanishing SOHO comets belong to that class. They were not unexpected. Between 1979 and 1989 the P78-1 and SMM solar satellites spotted 16 comets closing with the Sun. Life is perilous for a sungrazer. The mixture of ice and dust that makes up a comet's nucleus is heated like the proverbial snowball in hell, and can survive its visit to the Sun only if it is quite large. What's more, the very strong tidal effect of the Sun's gravity can tear the loosely glued nucleus apart. The disruption that created the many SOHO sungrazers was similar to the fate of Comet Shoemaker-Levy 9, which went too close to Jupiter and broke up into many pieces that eventually fell into the massive planet in 1994. "SOHO is seeing fragments from the gradual break-up of a great comet, perhaps the one that the Greek astronomer Ephorus saw in 372 BC," commented Brian Marsden of the Center for Astrophysics in Cambridge, Massachusetts. "Ephorus reported that the comet split in two. This fits with my calculation that two comets on similar orbits revisited the Sun around AD 1100. They split again and again, producing the sungrazer family, all still coming from the same direction." The sungrazing comets slant in from the south, at 35 degrees to the plane where the Earth and the other planets orbit. As SOHO moves around the Sun, in step with the Earth, it sees the comets approaching the Sun from the east (left) in February and from the west (right) in August. In June and November the sungrazers seem to head straight up towards the Sun. "The rate at which we've discovered comets with LASCO is beyond anything we ever expected," said Douglas Biesecker, the SOHO scientist personally responsible for the greatest number of discoveries, 45. "We've increased the number of known sungrazing comets by a factor of four. This implies that there could be as many as 20,000 fragments." Their ancestor must have been enormous by cometary standards. Although SOHO's sungrazers are all too small to survive, other members of the family are still large enough to reappear, depleted but intact, after their close encounters with the Sun. Among them were the Great September Comet (1882) and Comet Ikeya-Seki (1965). The history of splitting gives clues to the strength of comets, which will be of practical importance if ever a comet seems likely to hit the Earth. And the fragments seen as SOHO comets reveal the internal composition of comets, freshly exposed, in contrast to the much-altered surfaces of objects like Halley's Comet that have visited the Sun many times. LASCO reveals how much visible dust each comet releases. Gas produced by evaporating ice is detected by another instrument on SOHO, the Ultraviolet Coronagraph Spectrometer or UVCS, and enables scientists to measure the speed of the solar wind as it emerges from the Sun. A comet spotted by its gas cloud The count of SOHO's comet discoveries would be one fewer without a recent bonus from SWAN. This instrument's name unpacks into Solar Wind Anisotropies, and it was provided by the French Service d'Aéronomie and the Finnish Meteorological Institute. SWAN looks away from the Sun to survey atomic hydrogen in the Solar System, which glows with ultraviolet light and is altered by the solar wind. The instrument also sees large clouds of hydrogen surrounding comets, produced by the break-up of water molecules evaporating from the comets' ice. In December 1999 the International Astronomical Union retrospectively credited SWAN and SOHO with finding Comet 1997 K2 in SWAN full-sky images from May to July 1997. It made number 93 on the SOHO scorecard. This comet remained outside the orbit of the Earth even at its closest approach to the Sun. Although it was presumably a small, faint comet, the gas cloud grew to a width of more than 4 million kilometres. "The discovery was a surprise," said Teemu Mäkinen, a Finnish member of the SWAN group. "Our normal procedure is to observe hydrogen clouds of comets detected by other people. In that respect, SWAN on SOHO is the most important instrument now available for routinely measuring the release of water vapour from comets." When Comet Wirtanen, the target for ESA's Rosetta mission (2003), made its most recent periodic visit to the Sun, it pumped out water vapour at a rate of 20,000 tons a day, according to the SWAN data. For the great Comet Hale-Bopp the rate reached 20 million tons a day and SWAN watched its hydrogen cloud grow to 70 million kilometres -- by far the largest object ever seen in the Solar System.

  18. On the apparent positions of T Tauri stars in the H-R diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenyon, S.J.; Hartmann, L.W.

    1990-01-01

    The spread in apparent luminosities of T Tauri stars caused by occultation and emission from protostellar disks is investigated. A random distribution of disk inclination angles, coupled with a plausible range of accretion rates, introduces a significant scatter in apparent luminosities for intrinsically identical stars. The observed dispersion of luminosities for K7-M1 Hayashi track stars thought to have disks in Taurus-Auriga is similar to predictions of the simple accretion disk model, which suggets that age determinations form many pre-main-sequence stars are uncertain. The results also suggest that Stahler's birthline for convective track pre-main-sequence stars may be located at slightly lowermore » luminosities than previously thought. 38 refs.« less

  19. Age Spreads and the Temperature Dependence of Age Estimates in Upper Sco

    NASA Astrophysics Data System (ADS)

    Fang, Qiliang; Herczeg, Gregory J.; Rizzuto, Aaron

    2017-06-01

    Past estimates for the age of the Upper Sco Association are typically 11–13 Myr for intermediate-mass stars and 4–5 Myr for low-mass stars. In this study, we simulate populations of young stars to investigate whether this apparent dependence of estimated age on spectral type may be explained by the star formation history of the association. Solar and intermediate mass stars begin their pre-main sequence evolution on the Hayashi track, with fully convective interiors and cool photospheres. Intermediate-mass stars quickly heat up and transition onto the radiative Henyey track. As a consequence, for clusters in which star formation occurs on a timescale similar to that of the transition from a convective to a radiative interior, discrepancies in ages will arise when ages are calculated as a function of temperature instead of mass. Simple simulations of a cluster with constant star formation over several Myr may explain about half of the difference in inferred ages versus photospheric temperature; speculative constructions that consist of a constant star formation followed by a large supernova-driven burst could fully explain the differences, including those between F and G stars where evolutionary tracks may be more accurate. The age spreads of low-mass stars predicted from these prescriptions for star formation are consistent with the observed luminosity spread of Upper Sco. The conclusion that a lengthy star formation history will yield a temperature dependence in ages is expected from the basic physics of pre-main sequence evolution, and is qualitatively robust to the large uncertainties in pre-main sequence evolutionary models.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Qiliang; Herczeg, Gregory J.; Rizzuto, Aaron

    Past estimates for the age of the Upper Sco Association are typically 11–13 Myr for intermediate-mass stars and 4–5 Myr for low-mass stars. In this study, we simulate populations of young stars to investigate whether this apparent dependence of estimated age on spectral type may be explained by the star formation history of the association. Solar and intermediate mass stars begin their pre-main sequence evolution on the Hayashi track, with fully convective interiors and cool photospheres. Intermediate-mass stars quickly heat up and transition onto the radiative Henyey track. As a consequence, for clusters in which star formation occurs on amore » timescale similar to that of the transition from a convective to a radiative interior, discrepancies in ages will arise when ages are calculated as a function of temperature instead of mass. Simple simulations of a cluster with constant star formation over several Myr may explain about half of the difference in inferred ages versus photospheric temperature; speculative constructions that consist of a constant star formation followed by a large supernova-driven burst could fully explain the differences, including those between F and G stars where evolutionary tracks may be more accurate. The age spreads of low-mass stars predicted from these prescriptions for star formation are consistent with the observed luminosity spread of Upper Sco. The conclusion that a lengthy star formation history will yield a temperature dependence in ages is expected from the basic physics of pre-main sequence evolution, and is qualitatively robust to the large uncertainties in pre-main sequence evolutionary models.« less

  1. The inspiration of astronomical phenomena (INSAP). Proceedings. Conference, Rocca di Papa (Italy), 27 Jun - 2 Jul 1994.

    NASA Astrophysics Data System (ADS)

    The papers concern the inspiration provided by astronomy to the fields of art, philosophy, religion and various human cultures. Individual papers cover the following topics: the Qur'anic conception of astronomical phenomena on Islamic civilization, the Milky Way and society, the mythology and ritual of India, the Varanasi Sun temples, celestial bodies meanings in pre-Hispanic Mexico, the celestial basis of civilization, Mexican eclipse imagery, Chinese dynastic ideology - astrological origins, NW Europe stone rows, stars and seasons in southern Africa, the Pleiades and Hesperides, stars and philosophy, the search for extraterrestrial life, the significance of the pre-Copernican revolution, Judaeo-Christian revelation, Maria Magdalena - the Morning Star, Chaucer's Canterbury Tales, stellar poetry, John Bauer's star-spangled fairy-tale world, Polish romantic poetry, the expansion of astronomical horizons, recent comet research and ancient sky implications, civilization Spenglerian model and punctuational crises, Anaxagoras and the scientist/laity interaction.

  2. Data Realities : Citation Equals Funding

    NASA Astrophysics Data System (ADS)

    Hourclé, Joseph

    2015-04-01

    Solar physics has a problem with tracking the impact of solar data's use in scientific literature. Data collected by solar-observing missions is used in many other fields, but we do not have good information about who is using our data. Solar data is useful not only in solar physics, but also general astronomy, planetery, space weather, space physics and earth science.The sun is the only star that we can see in high detail; solar data is used to erase moonlight from night-time images; coronagraphs have found more comets than night-observing telescopes; space weather affects life on earth, communications, air traffic, and manned space-flight.As our missions' continued funding is justified through use of our data, missing too many of these uses could decrease our future funding or lead to cancellation. As our current methods of finding data use is through human review of the literature, we are much more likely to miss usage in fields outside of solar physics.To better deal with tracking cross-discipline data usage, a number of groups have come up with guidelines and principles for data citation.[1,2,3] We provide an update on the efforts of multiple groups working on standards to implement both data and software citation.[1] National Research Council, 2012. http://www.nap.edu/catalog.php?record_id=13564[2] CODATA, 2013. http://dx.doi.org/10.2481/dsj.OSOM13-043[3] 2014. http://www.force11.org/datacitation

  3. A post-Rosetta understanding of polarimetric observations of comets

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A. Chantal; Ciarletti, Valérie; Hadamcik, Edith; Lasue, Jérémie; Mannel, Thurid

    2017-04-01

    Numerous polarimetric observations of solar light scattered by dust in cometary comae have been obtained by various teams, providing phase angle and wavelength dependences for many comets and revealing different classes of comets [e.g., 1]. Besides, numerical and experimental simulations have suggested interpretations for such observations. The Rosetta long duration rendezvous with comet 67P/Churyumov-Gerasimenko (thereafter 67P/C-G) now allows us to compare our understanding of the polarimetric properties of cometary dust with the ground-truth provided by the Rosetta mission, at least for two typical results. First, some comets present a highly-polarized positive branch, the most conspicuous case being that of new comet C/1995 O1 Hale-Bopp [2], while other comets suffering a partial fragmentation or a total disruption, such as C/1995 S4 LINEAR [3], present a significant increase in polarization. We will discuss these observations in the context of evidence for changes between the porosity (and possibly the dust/ice ratio) of the subsurface and of the interior of 67P/C-G, a periodic Jupiter Family Comet, as derived from analyses [4] of the CONSERT bi-static radar measurements on board Rosetta and Philae. Secondly, numerical simulations of the phase and wavelength dependence of polarimetric observations of some comets (extensively observed on a wide range of wavelengths and phase angles) have suggested the presence of fractal, likely-porous aggregates and of compact particles within their comae [e.g., 5]. We will review such results in the context of evidence for porous and compact aggregates of submicron-sized grains in the inner coma of 67P/C-G [6], as given by 3D images (with a resolution down to tens of nanometers) of the MIDAS atomic force microscope on board Rosetta. References: [1] Kiselev et al., 2015, In Polarization of stars and planetary systems, CUP 379-404. [2] Levasseur-Regourd & Hadamcik, 2003, JQSRT 79-80, 903-910. [3] Hadamcik & Levasseur-Regourd, 2003, Icarus 166, 188-194. [4] Ciarletti et al., 2015, Astron. Astrophys. 583, A40. [5] Lasue et al., 2009, Icarus 199, 129-144. [6] Mannel et al., 2016, MNRAS 462, S 304-S311.

  4. A-Track: A new approach for detection of moving objects in FITS images

    NASA Astrophysics Data System (ADS)

    Atay, T.; Kaplan, M.; Kilic, Y.; Karapinar, N.

    2016-10-01

    We have developed a fast, open-source, cross-platform pipeline, called A-Track, for detecting the moving objects (asteroids and comets) in sequential telescope images in FITS format. The pipeline is coded in Python 3. The moving objects are detected using a modified line detection algorithm, called MILD. We tested the pipeline on astronomical data acquired by an SI-1100 CCD with a 1-meter telescope. We found that A-Track performs very well in terms of detection efficiency, stability, and processing time. The code is hosted on GitHub under the GNU GPL v3 license.

  5. The boundary of the solar system

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.; Torbett, M.

    1984-01-01

    The shape of the boundary of the solar system, defined as the surface within which the gravitational attraction of the sun rather than that of the rest of the Galaxy controls the orbital motion of planets and comets, has been determined. Outside of this surface, the dominant factors are the radial tides due to the galactic center and the vertical tides caused by the galactic disk. Orbits which are direct with respect to the galactic plane have a boundary which differs from that for retrograde orbits, both being 10-20 percent oblate and both larger than the present Oort cloud. The surface may have been the boundary of the early cloud of comets which was later reduced by the passages of stars and molecular clouds.

  6. Conference summary

    NASA Astrophysics Data System (ADS)

    Harwit, Martin

    To do justice to so many interesting contributions, both in the form of papers presented as talks and posters represented only by titles in these proceedings, will be difficult. Rather than attempting to list contributions from the individual areas in a representative fashion, I will attempt to see how a few of the striking contributions fit into, or alter, our views on major questions we have been trying to answer during the past few decades — questions dealing with the structure and evolution of the universe, the formation of galaxies and stars, and the origins of the solar system, in short everything from Comets to Cosmology — though I will reverse the order, starting here with cosmological questions and ending up with comets, or rather with zodiacal dust.

  7. Astrometry of comets using hypersensitized type 2415 film

    NASA Technical Reports Server (NTRS)

    Everhart, E.

    1984-01-01

    Kodak Technical Pan Film 2415 should be known to those doing cometary astrometry. It has exceedingly fine resolution (320 lines/mm) and, when properly hypersensitized, it is almost as fast as treated IIIa-J plates and reaches fainter stars. Reciprocity failure with the treated film is practically zero, and the shelf life of treated film sheets is about a month at 2 C stored in a nitrogen atmosphere. This film is readily available in 4 by 5-inch sheets and is inexpensive. The film base is Estar, a plastic chosen for its stability. Over 120 astrometric measures of negatives on this film have shown a median residual error in comet positions of 1.1 seconds, a value that compares favorably with those of most observatories reporting positions.

  8. Inner mean-motion resonances with eccentric planets: a possible origin for exozodiacal dust clouds

    NASA Astrophysics Data System (ADS)

    Faramaz, V.; Ertel, S.; Booth, M.; Cuadra, J.; Simmonds, C.

    2017-02-01

    High levels of dust have been detected in the immediate vicinity of many stars, both young and old. A promising scenario to explain the presence of this short-lived dust is that these analogues to the zodiacal cloud (or exozodis) are refilled in situ through cometary activity and sublimation. As the reservoir of comets is not expected to be replenished, the presence of these exozodis in old systems has yet to be adequately explained. It was recently suggested that mean-motion resonances with exterior planets on moderately eccentric (ep ≳ 0.1) orbits could scatter planetesimals on to cometary orbits with delays of the order of several 100 Myr. Theoretically, this mechanism is also expected to sustain continuous production of active comets once it has started, potentially over Gyr time-scales. We aim here to investigate the ability of this mechanism to generate scattering on to cometary orbits compatible with the production of an exozodi on long time-scales. We combine analytical predictions and complementary numerical N-body simulations to study its characteristics. We show, using order of magnitude estimates, that via this mechanism, low-mass discs comparable to the Kuiper belt could sustain comet scattering at rates compatible with the presence of the exozodis which are detected around Solar-type stars, and on Gyr time-scales. We also find that the levels of dust detected around Vega could be sustained via our proposed mechanism if an eccentric Jupiter-like planet were present exterior to the system's cold debris disc.

  9. The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    NASA Astrophysics Data System (ADS)

    Jones, Geraint H.; Knight, Matthew M.; Battams, Karl; Boice, Daniel C.; Brown, John; Giordano, Silvio; Raymond, John; Snodgrass, Colin; Steckloff, Jordan K.; Weissman, Paul; Fitzsimmons, Alan; Lisse, Carey; Opitom, Cyrielle; Birkett, Kimberley S.; Bzowski, Maciej; Decock, Alice; Mann, Ingrid; Ramanjooloo, Yudish; McCauley, Patrick

    2018-02-01

    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun's centre, equal to half of Mercury's perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics.

  10. Why stars become red giants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Applegate, J.H.

    1988-06-01

    It is shown that a radiative envelope in which the Kramers opacity law holds cannot transport a luminosity larger than a critical value, and it is argued that the transition to red giant structure is triggered by the star's luminosity exceeding the critical value. If the Kramers law is used for all temperatures and densities, the radius of the star diverges as the critical luminosity is approached. In real stars the radiative envelope expands as the luminosity increases until the star intersects the Hayashi track. Once on the Hayashi track, luminosities in excess of the critical luminosity can be accommodatedmore » by forcing most of the mass of the envelope into the convection zone. 17 references.« less

  11. Mass-loss rates of cool stars

    NASA Astrophysics Data System (ADS)

    Katrien Els Decin, Leen

    2015-08-01

    Over much of the initial mass function, stars lose a significant fraction of their mass through a stellar wind during the late stages of their evolution when being a (super)giant star. As of today, we can not yet predict the mass-loss rate during the (super)giant phase for a given star with specific stellar parameters from first principles. This uncertainty directly impacts the accuracy of current stellar evolution and population synthesis models that predict the enrichment of the interstellar medium by these stellar winds. Efforts to establish the link between the initial physical and chemical conditions at stellar birth and the mass-loss rate during the (super)giant phase have proceeded on two separate tracks: (1) more detailed studies of the chemical and morpho-kinematical structure of the stellar winds of (super)giant stars in our own Milky Way by virtue of the proximity, and (2) large scale and statistical studies of a (large) sample of stars in other galaxies (such as the LMC and SMC) and globular clusters eliminating the uncertainty on the distance estimate and providing insight into the dependence of the mass-loss rate on the metallicity. In this review, I will present recent results of both tracks, will show how recent measurements confirm (some) theoretical predictions, but also how results from the first track admonish of common misconceptions inherent in the often more simplified analysis used to analyse the large samples from track 2.

  12. Orbit Determination Accuracy for Comets on Earth-Impacting Trajectories

    NASA Technical Reports Server (NTRS)

    Kay-Bunnell, Linda

    2004-01-01

    The results presented show the level of orbit determination accuracy obtainable for long-period comets discovered approximately one year before collision with Earth. Preliminary orbits are determined from simulated observations using Gauss' method. Additional measurements are incorporated to improve the solution through the use of a Kalman filter, and include non-gravitational perturbations due to outgassing. Comparisons between observatories in several different circular heliocentric orbits show that observatories in orbits with radii less than 1 AU result in increased orbit determination accuracy for short tracking durations due to increased parallax per unit time. However, an observatory at 1 AU will perform similarly if the tracking duration is increased, and accuracy is significantly improved if additional observatories are positioned at the Sun-Earth Lagrange points L3, L4, or L5. A single observatory at 1 AU capable of both optical and range measurements yields the highest orbit determination accuracy in the shortest amount of time when compared to other systems of observatories.

  13. Sustainability and integration of radioecology-position paper.

    PubMed

    Muikku, M; Beresford, N A; Garnier-Laplace, J; Real, A; Sirkka, L; Thorne, M; Vandenhove, H; Willrodt, C

    2018-03-01

    This position paper gives an overview of how the COMET project (COordination and iMplementation of a pan-European instrumenT for radioecology, a combined Collaborative Project and Coordination and Support Action under the EC/Euratom 7th Framework Programme) contributed to the integration and sustainability of radioecology in Europe via its support to and interaction with the European Radioecology ALLIANCE. COMET built upon the foundations laid by the FP7 project STAR (Strategic Network for Integrating Radioecology) Network of Excellence in radioecology. In close association with the ALLIANCE, and based on the Strategic Research Agenda (SRA), COMET developed innovative mechanisms for joint programming and implementation of radioecological research. To facilitate and foster future integration under a common federating structure, research activities developed within COMET were targeted at radioecological research needs identified in the SRA. Furthermore, COMET maintained and developed strong mechanisms for knowledge exchange, dissemination and training to enhance and maintain European capacity, competence and skills in radioecology. In the short term the work to promote radioecology will continue under the H2020 project EJP-CONCERT (European Joint Programme for the Integration of Radiation Protection Research). The EJP-CONCERT project (2015-2020) aims to develop a sustainable structure for promoting and administering joint programming and open research calls in the field of radiation protection research for Europe. In the longer term, radioecological research will be facilitated by the ALLIANCE. External funding is, however, required in order to be able to answer emerging research needs.

  14. Can Oort clouds pollute their parent stars after they become white dwarfs?

    NASA Astrophysics Data System (ADS)

    Veras, D.; Shannon, A.; Gänsicke, B. T.

    2017-09-01

    Comets impact the Sun frequently. In fact, coronographs like those which are part of Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph Experiment (LASCO) reveal that a comet grazes the Sun every few days, with a total of about 2400 grazers from 1996 to 2008. This frequency underscores an outstanding question in the quest to understand planetary systems: what types of small bodies - pebbles, asteroids, comets or moons - are the primary polluter of white dwarfs? We determine how often remnant exo-Oort clouds, freshly excited from post-main-sequence stellar mass loss, dynamically inject comets inside the white dwarf's Roche radius. We improve upon previous studies by considering a representative range of single white dwarf masses (0.52-1.00 M⊙) and incorporating different cloud architectures, giant branch stellar mass loss, stellar flybys, Galactic tides and a realistic escape ellipsoid in self-consistent numerical simulations that integrate beyond 8 Gyr ages of white dwarf cooling. We find that ˜10^(-5) of the material in an exo-Oort cloud is typically amassed onto the white dwarf, and that hydrogen deposits accumulate even as the cloud dissipates. This accumulation may account for the relatively large amount of trace hydrogen, 10^(22) -10^(25) g, that is determined frequently among white dwarfs with cooling ages ≥1 Gyr. Our results also reaffirm the notion that exo-Oort cloud comets are not the primary agents of the metal budgets observed in polluted white dwarf atmospheres.

  15. Electron Tomography and Simulation of Baculovirus Actin Comet Tails Support a Tethered Filament Model of Pathogen Propulsion

    PubMed Central

    Mueller, Jan; Pfanzelter, Julia; Winkler, Christoph; Narita, Akihiro; Le Clainche, Christophe; Nemethova, Maria; Carlier, Marie-France; Maeda, Yuichiro; Welch, Matthew D.; Ohkawa, Taro; Schmeiser, Christian; Resch, Guenter P.; Small, J. Victor

    2014-01-01

    Several pathogens induce propulsive actin comet tails in cells they invade to disseminate their infection. They achieve this by recruiting factors for actin nucleation, the Arp2/3 complex, and polymerization regulators from the host cytoplasm. Owing to limited information on the structural organization of actin comets and in particular the spatial arrangement of filaments engaged in propulsion, the underlying mechanism of pathogen movement is currently speculative and controversial. Using electron tomography we have resolved the three-dimensional architecture of actin comet tails propelling baculovirus, the smallest pathogen yet known to hijack the actin motile machinery. Comet tail geometry was also mimicked in mixtures of virus capsids with purified actin and a minimal inventory of actin regulators. We demonstrate that propulsion is based on the assembly of a fishbone-like array of actin filaments organized in subsets linked by branch junctions, with an average of four filaments pushing the virus at any one time. Using an energy-minimizing function we have simulated the structure of actin comet tails as well as the tracks adopted by baculovirus in infected cells in vivo. The results from the simulations rule out gel squeezing models of propulsion and support those in which actin filaments are continuously tethered during branch nucleation and polymerization. Since Listeria monocytogenes, Shigella flexneri, and Vaccinia virus among other pathogens use the same common toolbox of components as baculovirus to move, we suggest they share the same principles of actin organization and mode of propulsion. PMID:24453943

  16. Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion.

    PubMed

    Mueller, Jan; Pfanzelter, Julia; Winkler, Christoph; Narita, Akihiro; Le Clainche, Christophe; Nemethova, Maria; Carlier, Marie-France; Maeda, Yuichiro; Welch, Matthew D; Ohkawa, Taro; Schmeiser, Christian; Resch, Guenter P; Small, J Victor

    2014-01-01

    Several pathogens induce propulsive actin comet tails in cells they invade to disseminate their infection. They achieve this by recruiting factors for actin nucleation, the Arp2/3 complex, and polymerization regulators from the host cytoplasm. Owing to limited information on the structural organization of actin comets and in particular the spatial arrangement of filaments engaged in propulsion, the underlying mechanism of pathogen movement is currently speculative and controversial. Using electron tomography we have resolved the three-dimensional architecture of actin comet tails propelling baculovirus, the smallest pathogen yet known to hijack the actin motile machinery. Comet tail geometry was also mimicked in mixtures of virus capsids with purified actin and a minimal inventory of actin regulators. We demonstrate that propulsion is based on the assembly of a fishbone-like array of actin filaments organized in subsets linked by branch junctions, with an average of four filaments pushing the virus at any one time. Using an energy-minimizing function we have simulated the structure of actin comet tails as well as the tracks adopted by baculovirus in infected cells in vivo. The results from the simulations rule out gel squeezing models of propulsion and support those in which actin filaments are continuously tethered during branch nucleation and polymerization. Since Listeria monocytogenes, Shigella flexneri, and Vaccinia virus among other pathogens use the same common toolbox of components as baculovirus to move, we suggest they share the same principles of actin organization and mode of propulsion.

  17. Stardust: The Cosmic Seeds of Life

    NASA Astrophysics Data System (ADS)

    Kwok, Sun

    How did life originate on Earth? For over 50 years, scientists believed that life was the result of chemistry involving simple molecules such as methane and ammonia cooking in a primordial soup. Recent space observations have revealed that old stars are capable of making very complex organic compounds. The stars then ejected the organics and spread them all over the Milky Way Galaxy. There is evidence that these organic dust particles actually reached the early Solar System. Through bombardments by comets and asteroids, the early Earth inherited significant amounts of star dust. Was the development of life assisted by the arrival of these extraterrestrial materials? In this book, we describe stunning discoveries in astronomy and solar system science over the last 10 years that resulted in a new perspective on the origin of life.

  18. Evaporation and accretion of extrasolar comets following white dwarf kicks

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas; Metzger, Brian D.; Loeb, Abraham

    2015-03-01

    Several lines of observational evidence suggest that white dwarfs receive small birth kicks due to anisotropic mass-loss. If other stars possess extrasolar analogues to the Solar Oort cloud, the orbits of comets in such clouds will be scrambled by white dwarf natal kicks. Although most comets will be unbound, some will be placed on low angular momentum orbits vulnerable to sublimation or tidal disruption. The dusty debris from these comets will manifest itself as an IR excess temporarily visible around newborn white dwarfs; examples of such discs may already have been seen in the Helix Nebula, and around several other young white dwarfs. Future observations with the James Webb Space Telescope may distinguish this hypothesis from alternatives such as a dynamically excited Kuiper Belt analogue. Although competing hypotheses exist, the observation that ≳15 per cent of young white dwarfs possess such discs, if interpreted as indeed being cometary in origin, provides indirect evidence that low-mass gas giants (thought necessary to produce an Oort cloud) are common in the outer regions of extrasolar planetary systems. Hydrogen abundances in the atmospheres of older white dwarfs can, if sufficiently low, also be used to place constraints on the joint parameter space of natal kicks and exo-Oort cloud models.

  19. The comet-like composition of a protoplanetary disk as revealed by complex cyanides.

    PubMed

    Öberg, Karin I; Guzmán, Viviana V; Furuya, Kenji; Qi, Chunhua; Aikawa, Yuri; Andrews, Sean M; Loomis, Ryan; Wilner, David J

    2015-04-09

    Observations of comets and asteroids show that the solar nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface. Unlike asteroids, comets preserve a nearly pristine record of the solar nebula composition. The presence of cyanides in comets, including 0.01 per cent of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can readily be explained by a combination of gas-phase chemistry (to form, for example, HCN) and an active ice-phase chemistry on grain surfaces that advances complexity. Simple volatiles, including water and HCN, have been detected previously in solar nebula analogues, indicating that they survive disk formation or are re-formed in situ. It has hitherto been unclear whether the same holds for more complex organic molecules outside the solar nebula, given that recent observations show a marked change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks. Here we report the detection of the complex cyanides CH3CN and HC3N (and HCN) in the protoplanetary disk around the young star MWC 480. We find that the abundance ratios of these nitrogen-bearing organics in the gas phase are similar to those in comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of our solar nebula was not unique.

  20. The comet-like composition of a protoplanetary disk as revealed by complex cyanides

    NASA Astrophysics Data System (ADS)

    Öberg, Karin I.; Guzmán, Viviana V.; Furuya, Kenji; Qi, Chunhua; Aikawa, Yuri; Andrews, Sean M.; Loomis, Ryan; Wilner, David J.

    2015-04-01

    Observations of comets and asteroids show that the solar nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface. Unlike asteroids, comets preserve a nearly pristine record of the solar nebula composition. The presence of cyanides in comets, including 0.01 per cent of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can readily be explained by a combination of gas-phase chemistry (to form, for example, HCN) and an active ice-phase chemistry on grain surfaces that advances complexity. Simple volatiles, including water and HCN, have been detected previously in solar nebula analogues, indicating that they survive disk formation or are re-formed in situ. It has hitherto been unclear whether the same holds for more complex organic molecules outside the solar nebula, given that recent observations show a marked change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks. Here we report the detection of the complex cyanides CH3CN and HC3N (and HCN) in the protoplanetary disk around the young star MWC 480. We find that the abundance ratios of these nitrogen-bearing organics in the gas phase are similar to those in comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of our solar nebula was not unique.

  1. Galalctic Tides & the Sinusoidal Potential

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.

    2011-05-01

    The sinusoidal potential is a nonNewtonian alternative to dark matter. Instead of φ = -GM/r we write φ = -(GM/r) cos kor, where ko= 2π/ λo and λo = Ro/20= 400 pc. Evidence for this choice for the "wavelength” λo has been given in one article and many previous meetings of the AAS & DDA. The solar system and nearby stars are trapped in a local groove of width Δr < 400 pc. The rapid alternation of attraction and repulsion within the groove gives very strong Galactic radial tides. The epicyclic period is only 7 Myr . The Keplerian period for comets in the middle of the Oort cloud is also 7 Myr. The 1:1 resonance between material in the groove and the cloud provides a new mechanism for filling the Oort cloud. The Oort cloud is emptied by the same strong radial tides. Evidence is found in the 499 comets with calculated 1/aoriginal in the latest Catalogue of Cometary Orbits (Marsden & Williams 2008). . I separate the comets into 12 classes on the basis of Quality (4 types) and semi-major axis aoriginal . For 10 of the 12 classes radial tides dominate Z-tides. The classic Oort cloud comets (1851-1996) have a particularly strong modulation with galactic longitude. This modulation is exactly in those directions where a radial tide would be important. The equally numerous recent Oort comets (1996-2008) show a different evidence for strong radial tides. The recent comets generally have much larger perihelion distances q than the classic ones. Here the evidence is that a radial tide is removing angular momentum from the orbit and thus bringing the perihelion closer to the earth and to observers.

  2. Developing SNMS for Full-Spectrum High-Sensitivity In-Situ Isotopic Analysis of Individual Comet Grains Collected by Stardust?

    NASA Technical Reports Server (NTRS)

    Chen, Chun-Yen; Shen, Jason Jiun-San; Lee, Typhoon; Calaway, Wallis; Veryovkin, Igor; Moore, Jerry; Pellin, Michael

    2005-01-01

    In anticipation of the return of comet (and ISM?) dust grains by the Stardust mission [1] in mid-January next year, Academia Sinica (AS) and Argonne National Laboratory (ANL) have entered into a collaboration to develop instrument and method for the isotopic analysis of these samples. We need to achieve the highest possible sensitivity so that we can analyze individual grains one at a time to the smallest possible size. Only by doing so can we hope to reach one of the main science goals of the mission, namely the recognition of those isotopically distinct grains each carrying the characteristic signature of a particular nucleosynthetic stage of its parent star. In order to facilitate the interpretation of these grains the second requirement of our method is that the measurements must be made over the widest possible mass range before samples exhaustion. For instance, the thermonuclear fusion reactions that produced the isotopes of various major elements of a wide mass range required drastically different temperatures. Therefore their abundances could constrain the conditions at greatly varying depth inside the source star hence its structure and evolution.

  3. Light-curve analysis of KOI 2700b: the second extrasolar planet with a comet-like tail

    NASA Astrophysics Data System (ADS)

    Garai, Z.

    2018-03-01

    Context. The Kepler object KOI 2700b (KIC 8639908b) was discovered recently as the second exoplanet with a comet-like tail. It exhibits a distinctly asymmetric transit profile, likely indicative of the emission of dusty effluents and reminiscent of KIC 12557548b, the first exoplanet with a comet-like tail. Aim. The scientific goal of this work is to verify the disintegrating-planet scenario of KOI 2700b by modeling its light curve and to put constraints on various tail and planet properties, as was done in the case of KIC 12557548b. Methods: We obtained the phase-folded and binned transit light curve of KOI 2700b, which we subsequently iteratively modeled using the radiative-transfer code SHELLSPEC. We modeled the comet-like tail as part of a ring around the parent star and we also included the solid body of the planet in the model. During the modeling we applied selected species and dust particle sizes. Results: We confirmed the disintegrating-planet scenario of KOI 2700b. Furthermore, via modeling, we derived some interesting features of KOI 2700b and its comet-like tail. It turns out that the orbital plane of the planet and its tail are not edge-on, but the orbital inclination angle is from the interval [85.1, 88.6] deg. In comparison with KIC 12557548b, KOI 2700b exhibits a relatively low dust density decreasing in its tail. We also derived the dust density at the beginning of the ring and the highest optical depth through the tail in front of the star, based on a tail-model with a cross-section of 0.05 × 0.05 R⊙ at the beginning and 0.09 × 0.09 R⊙ at its end. Our results show that the dimension of the planet is Rp/Rs ≤ 0.014 (Rp ≤ 0.871 R⊕, or ≤5551 km). We also estimated the mass-loss rate from KOI 2700b, and we obtained Ṁ values from the interval [5.05 × 107, 4.41 × 1015] g s-1. On the other hand, we could not draw any satisfactory conclusions about the typical grain size in the dust tail.

  4. Combined infrared and analytical electron microscope studies of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.; Humecki, H. J.; Germani, M. S.

    1992-01-01

    Ultramicrotomed thin sections (less than 100 nm thick) of eight chondritic interplanetary dust particles (IDPs) were studied by analytical electron microscopy and IR microspectroscopy with the objective of identifying IDPs or their specific components with IR spectral transmission characteristics at 10 microns similar to those of comets. Two IDPs are identified whose silicate emission characteristics between 8 and 12 microns are similar to those of comets Halley and Bradfield. Implanted solar flare tracks and sputtered rims resulting from solar wind damage suggest that the minerology and petrography of these IDPs have not been significantly perturbed since ejection from their parent bodies.

  5. NM-Scale Anatomy of an Entire Stardust Carrot Track

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Messenger, S.

    2009-01-01

    Comet Wild-2 samples collected by NASA s Stardust mission are extremely complex, heterogeneous, and have experienced wide ranges of alteration during the capture process. There are two major types of track morphologies: "carrot" and "bulbous," that reflect different structural/compositional properties of the impactors. Carrot type tracks are typically produced by compact or single mineral grains which survive essentially intact as a single large terminal particle. Bulbous tracks are likely produced by fine-grained or organic-rich impactors [1]. Owing to their challenging nature and especially high value of Stardust samples, we have invested considerable effort in developing both sample preparation and analytical techniques tailored for Stardust sample analyses. Our report focuses on our systematic disassembly and coordinated analysis of Stardust carrot track #112 from the mm to nm-scale.

  6. WISE Detections of Dust in the Habitable Zones of Planet-Bearing Stars

    NASA Technical Reports Server (NTRS)

    Morales, Farisa Y.; Padgett, Deborah L.; Bryden, Geoffrey; Werner, M. W.; Furlan, E.

    2012-01-01

    We use data from the Wide-field Infrared Survey Explorer (WISE) all-sky release to explore the incidence of warm dust in the habitable zones around exoplanet-host stars. Dust emission at 12 and/or 22 microns (T(sub dust) approx.300 and/or approx.150 K) traces events in the terrestrial planet zones; its existence implies replenishment by evaporation of comets or collisions of asteroids, possibly stirred by larger planets. Of the 591 planetary systems (728 extrasolar planets) in the Exoplanet Encyclopedia as of 2012 January 31, 350 are robustly detected by WISE at > or = 5(sigma) level. We perform detailed photosphere subtraction using tools developed for Spitzer data and visually inspect all the WISE images to confirm bona fide point sources. We find nine planet-bearing stars show dust excess emission at 12 and/or 22 microns at > or = 3(sigma) level around young, main-sequence, or evolved giant stars. Overall, our results yield an excess incidence of approx.2.6% for stars of all evolutionary stages, but approx.1% for planetary debris disks around main-sequence stars. Besides recovering previously known warm systems, we identify one new excess candidate around the young star UScoCTIO 108.

  7. Combining DSMC Simulations and ROSINA/COPS Data of Comet 67P/Churyumov-Gerasimenko to Develop a Realistic Empirical Coma Model and to Determine Accurate Production Rates

    NASA Astrophysics Data System (ADS)

    Hansen, K. C.; Fougere, N.; Bieler, A. M.; Altwegg, K.; Combi, M. R.; Gombosi, T. I.; Huang, Z.; Rubin, M.; Tenishev, V.; Toth, G.; Tzou, C. Y.

    2015-12-01

    We have previously published results from the AMPS DSMC (Adaptive Mesh Particle Simulator Direct Simulation Monte Carlo) model and its characterization of the neutral coma of comet 67P/Churyumov-Gerasimenko through detailed comparison with data collected by the ROSINA/COPS (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/COmet Pressure Sensor) instrument aboard the Rosetta spacecraft [Bieler, 2015]. Results from these DSMC models have been used to create an empirical model of the near comet coma (<200 km) of comet 67P. The empirical model characterizes the neutral coma in a comet centered, sun fixed reference frame as a function of heliocentric distance, radial distance from the comet, local time and declination. The model is a significant improvement over more simple empirical models, such as the Haser model. While the DSMC results are a more accurate representation of the coma at any given time, the advantage of a mean state, empirical model is the ease and speed of use. One use of such an empirical model is in the calculation of a total cometary coma production rate from the ROSINA/COPS data. The COPS data are in situ measurements of gas density and velocity along the ROSETTA spacecraft track. Converting the measured neutral density into a production rate requires knowledge of the neutral gas distribution in the coma. Our empirical model provides this information and therefore allows us to correct for the spacecraft location to calculate a production rate as a function of heliocentric distance. We will present the full empirical model as well as the calculated neutral production rate for the period of August 2014 - August 2015 (perihelion).

  8. The Gravity field of Comet 67 P/Churyumov-Gerasimenko Expressed in Bispherical Harmonics

    NASA Astrophysics Data System (ADS)

    Andert, T.; Barriot, J. P.; Paetzold, M.; Sichoix, L.; Tellmann, S.; Häusler, B.

    2015-12-01

    On 6 August 2014, after a ten years cruise, the ESA-Rosetta spacecraft arrived at comet 67P/Churyumov-Gerasimenko. At that time the spacecraft was commanded to drift along with the comet at distances between 100 km and 50 km, the distance was then successfully lowered to 30 km in September 2014 and to 10 km in November 2014 and bound orbits could be achieved. Based on Doppler tracking data the Rosetta radio science experiment (RSI) was able to determine the mass of the nucleus and its gravity field in spherical harmonics series in order to constrain density and the internal structure of the nucleus. The shape of the comet is complex, a representation of the gravity field as belonging to one single body in either spherical or ellipsoidal harmonics series will give the shape of the body more preference than its internal structure. The observed shape of the nucleus, however, offers the opportunity to interpret it as consisting of two different bodies, namely the "head" and the "feet" sections of 67P/Churyumov-Gerasimenko, both having a nearly ellipsoidal shape. In this new approach, the bispherical harmonics expansion, the comet nucleus has been approximated by two independent lobes, each lobe represented by its own spherical harmonics expansion. As a result of the bispherical harmonics representation, it is anticipated that the gravity field will gain higher accuracy and will be less dominated by the complex shape of the comet. We have derived the analytical expressions of the gravity potential and its derivatives of a body in bispherical coordinates and applied this concept to the comet Churyumov-Gerasimenko. The paper will present the bispherical harmonics representation of the gravity field and first results derived from this new concept.

  9. Indications of stellar prominence oscillations on fast rotating stars: the cases of HK Aqr and PZ Tel

    NASA Astrophysics Data System (ADS)

    Leitzinger, M.; Odert, P.; Zaqarashvili, T. V.; Greimel, R.; Hanslmeier, A.; Lammer, H.

    2016-11-01

    We present the analysis of six nights of spectroscopic monitoring of two young and fast rotating late-type stars, namely the dMe star HK Aqr and the dG/dK star PZ Tel. On both stars, we detect absorption features reminiscent of signatures of corotating cool clouds or prominences visible in Hα. Several prominences on HK Aqr show periodic variability in the prominence tracks which follow a sinusoidal motion (indication of prominence oscillations). On PZ Tel, we could not find any periodic variability in the prominence tracks. By fitting sinusoidal functions to the prominence tracks, we derive amplitudes and periods which are similar to those of large-amplitude oscillations seen in solar prominences. In one specific event, we also derive a periodic variation of the prominence track in the Hβ spectral line which shows an anti-phase variation with the one derived for the Hα spectral line. Using these parameters and estimated mass density of a prominence on HK Aqr, we derive a minimum magnetic field strength of ˜2 G. The relatively low strength of the magnetic field is explained by the large height of this stellar prominence (≥ 0.67 stellar radii above the surface).

  10. The Art of Astrophotography

    NASA Astrophysics Data System (ADS)

    Morison, Ian

    2017-02-01

    1. Imaging star trails; 2. Imaging a constellation with a DSLR and tripod; 3. Imaging the Milky Way with a DSLR and tracking mount; 4. Imaging the Moon with a compact camera or smartphone; 5. Imaging the Moon with a DSLR; 6. Imaging the Pleiades Cluster with a DSLR and small refractor; 7. Imaging the Orion Nebula, M42, with a modified Canon DSLR; 8. Telescopes and their accessories for use in astroimaging; 9. Towards stellar excellence; 10. Cooling a DSLR camera to reduce sensor noise; 11. Imaging the North American and Pelican Nebulae; 12. Combating light pollution - the bane of astrophotographers; 13. Imaging planets with an astronomical video camera or Canon DSLR; 14. Video imaging the Moon with a webcam or DSLR; 15. Imaging the Sun in white light; 16. Imaging the Sun in the light of its H-alpha emission; 17. Imaging meteors; 18. Imaging comets; 19. Using a cooled 'one shot colour' camera; 20. Using a cooled monochrome CCD camera; 21. LRGB colour imaging; 22. Narrow band colour imaging; Appendix A. Telescopes for imaging; Appendix B. Telescope mounts; Appendix C. The effects of the atmosphere; Appendix D. Auto guiding; Appendix E. Image calibration; Appendix F. Practical aspects of astroimaging.

  11. Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Upgrade to Full Sun-Sky-Cloud-Trace Gas Spectrometry Capability for Airborne Science

    NASA Astrophysics Data System (ADS)

    Dunagan, S. E.; Flynn, C. J.; Johnson, R. R.; Kacenelenbogen, M. S.; Knobelspiesse, K. D.; LeBlanc, S. E.; Livingston, J. M.; Redemann, J.; Russell, P. B.; Schmid, B.; Segal-Rosenhaimer, M.; Shinozuka, Y.

    2014-12-01

    The Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument has been developed at NASA Ames in collaboration with Pacific Northwest National Laboratory (PNNL) and NASA Goddard, supported substantially since 2009 by NASA's Radiation Science Program and Earth Science Technology Office. It combines grating spectrometers with fiber optic links to a tracking, scanning head to enable sun tracking, sky scanning, and zenith viewing. 4STAR builds on the long and productive heritage of the NASA Ames Airborne Tracking Sunphotometers (AATS-6 and -14), which have yielded more than 100 peer-reviewed publications and extensive archived data sets in many NASA Airborne Science campaigns from 1986 to the present. The baseline 4STAR instrument has provided extensive data supporting the TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013), SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys, 2013), and ARISE (Arctic Radiation - IceBridge Sea and Ice Experiment, 2014), field campaigns.This poster presents plans and progress for an upgrade to the 4STAR instrument to achieve full science capability, including (1) direct-beam sun tracking measurements to derive aerosol optical depth spectra, (2) sky radiance measurements to retrieve aerosol absorption and type (via complex refractive index and mode-resolved size distribution), (3) cloud properties via zenith radiance, and (4) trace gas spectrometry. Technical progress in context with the governing physics is reported on several upgrades directed at improved light collection and usage, particularly as related to spectrally and radiometrically stable propagation through the collection light path. In addition, improvements to field calibration and verification, and flight operability and reliability are addressed.

  12. Algorithms for Stellar Perturbation Computations on Oort Cloud Comets

    NASA Astrophysics Data System (ADS)

    Rickman, Hans; Fouchard, Marc; Valsecchi, Giovanni B.; Froeschlé, Christiane

    2005-12-01

    We investigate different approximate methods of computing the perturbations on the orbits of Oort cloud comets caused by passing stars, by checking them against an accurate numerical integration using Everhart’s RA15 code. The scenario under study is the one relevant for long-term simulations of the cloud’s response to a predefined set of stellar passages. Our sample of stellar encounters simulates those experienced by the Solar System currently, but extrapolated over a time of 1010 years. We measure the errors of perihelion distance perturbations for high-eccentricity orbits introduced by several estimators including the classical impulse approximation and Dybczyński’s (1994, Celest. Mech. Dynam. Astron. 58, 1330 1338) method and we study how they depend on the encounter parameters (approach distance and relative velocity). We introduce a sequential variant of Dybczyński’s approach, cutting the encounter into several steps whereby the heliocentric motion of the comet is taken into account. For the scenario at hand this is found to offer an efficient means to obtain accurate results for practically any domain of the parameter space.

  13. On the Origin of Solar and Stellar Flares

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon

    2015-08-01

    Physical processes connected with falls of comets and evaporating bodies, FEBs, onto stars with cosmic velocities, around 600 km/s, are considered. The processes include aerodynamic crushing of comet nucleus and transversal expansion of crushed mass within the solar chromosphere as well as sharp deceleration of the flattening structure in a relatively very thin layer near the solar/stellar photosphere. Fast thermalization of the body's kinetic energy will be accompanied by impulse generation of a high temperature plasma in the thin layer, i.e., "explosion" and strong "blast" shock wave as well as eruption of the layer ionized material into space above the chromosphere. Impact mechanism is capable to lead to generation of solar/stellar super-flares. Some similarities of this phenomenon with flare activity by magnetic reconnection are also revealed.

  14. EPOXI and Stardust NExT: The Management Challenges of Two Comet Flybys in Three Months

    NASA Technical Reports Server (NTRS)

    Larson, Timothy W.

    2012-01-01

    The EPOXI and Stardust NExT missions were missions of opportunity utilizing the Deep Impact and Stardust spacecraft, respectively. These new missions took advantage of the cost savings of utilizing spacecraft that were already flying for new science investigations. Both were retargeted to fly by an additional comet. EPOXI visited Hartley 2, significantly smaller than the other Jupiter family comets visited previously. Stardust NExT flew by Tempel 1, providing a second look at the comet previously studied by Deep Impact in 2005. Both projects were part of NASA's Discovery Program. In order to further save costs, the projects were combined into a single project office at JPL. This provided some efficiencies due to the similarity of the missions, but having the flybys space only three months apart posed challenges for the project management team to ensure each project was ready for its critical event and ensuring each received the proper support from the management team. The project office relied on an integrated calendar for tracking and scheduling meetings, reviews, and other key events. The project management team also coordinated their availability for both projects to maintain involvement with each team to ensure effective risk identification and management.

  15. Devastated Stellar Neighborhood

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from NASA's Spitzer Space Telescope shows the nasty effects of living near a group of massive stars: radiation and winds from the massive stars (white spot in center) are blasting planet-making material away from stars like our sun. The planetary material can be seen as comet-like tails behind three stars near the center of the picture. The tails are pointing away from the massive stellar furnaces that are blowing them outward.

    The picture is the best example yet of multiple sun-like stars being stripped of their planet-making dust by massive stars.

    The sun-like stars are about two to three million years old, an age when planets are thought to be growing out of surrounding disks of dust and gas. Astronomers say the dust being blown from the stars is from their outer disks. This means that any Earth-like planets forming around the sun-like stars would be safe, while outer planets like Uranus might be nothing more than dust in the wind.

    This image shows a portion of the W5 star-forming region, located 6,500 light-years away in the constellation Cassiopeia. It is a composite of infrared data from Spitzer's infrared array camera and multiband imaging photometer. Light with a wavelength of 3.5 microns is blue, while light from the dust of 24 microns is orange-red.

  16. The astrophysics of crowded places.

    PubMed

    Davies, Melvyn

    2002-12-15

    Today the Sun is in a relatively uncrowded place. The distance between it and the nearest other star is relatively large (about 200,000 times the Earth-Sun distance!). This is beneficial to life on Earth; a close encounter with another star is extremely unlikely. Such encounters would either remove the Earth from its orbit around the Sun or leave it on an eccentric orbit similar to a comet's. But the Sun was not formed in isolation. It was born within a more-crowded cluster of perhaps a few hundred stars. As the surrounding gas evaporated away, the cluster itself evaporated too, dispersing its stars into the Galaxy. Virtually all stars in the Galaxy share this history, and here I will describe the role of 'clusterness' in a star's life. Stars are often formed in larger stellar clusters (known as open and globular clusters), some of which are still around today. I will focus on stars in globular clusters and describe how the interactions between stars in these clusters may explain the zoo of stellar exotica which have recently been observed with instruments such as the Hubble Space Telescope and the X-ray telescopes XMM-Newton and Chandra. In recent years, myriad planets orbiting stars other than the Sun--the so-called 'extrasolar' planets--have been discovered. I will describe how a crowded environment will affect such planetary systems and may in fact explain some of their mysterious properties.

  17. Abetti, Antonio (1846-1928) and Abetti, Giorgio (1882-1982)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Antonio was born in San Pietro di Gorizia, Italy. A civil engineer, he turned to astronomy and became director of the observatory in Arcetri and professor of astronomy at the University of Florence. His main interest was positional astronomy, observation of minor planets, comets and star occultations. In 1874 he observed the transit of Venus across the Sun's disk through a spectroscope. His son, ...

  18. Stargazing

    NASA Astrophysics Data System (ADS)

    Moore, Patrick

    2000-10-01

    On a clear night, the vastness and beauty of the star-filled sky is awe inspiring. In Stargazing: Astronomy without a Telescope Patrick Moore, Britain's best known astronomer, tells you all you need to know about the universe visible to the naked eye. With the aid of charts and illustrations, he explains how to "read" the stars, to know which constellations lie overhead, their trajectory throughout the seasons, and the legends ascribed to them. In a month-by-month guide he describes using detailed star maps of the night skies of both the northern and southern hemispheres. He also takes a look at the planets, the Sun and the Moon and their eclipses, comets, meteors, as well as aurorae and other celestial phenomena--all in accessible scientific detail. This captivating book shows how, even with just the naked eye, astronomy can be a fascinating and rewarding hobby--for life.

  19. High Resolution 3D Radar Imaging of Comet Interiors

    NASA Astrophysics Data System (ADS)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D images of interior structure to ~20 m, and to map dielectric properties (related to internal composition) to better than 200 m throughout. This is comparable in detail to modern 3D medical ultrasound, although we emphasize that the techniques are somewhat different. An interior mass distribution is obtained through spacecraft tracking, using data acquired during the close, quiet radar orbits. This is aligned with the radar-based images of the interior, and the shape model, to contribute to the multi-dimensional 3D global view. High-resolution visible imaging provides boundary conditions and geologic context to these interior views. An infrared spectroscopy and imaging campaign upon arrival reveals the time-evolving activity of the nucleus and the structure and composition of the inner coma, and the definition of surface units. CORE is designed to obtain a total view of a comet, from the coma to the active and evolving surface to the deep interior. Its primary science goal is to obtain clear images of internal structure and dielectric composition. These will reveal how the comet was formed, what it is made of, and how it 'works'. By making global yet detailed connections from interior to exterior, this knowledge will be an important complement to the Rosetta mission, and will lay the foundation for comet nucleus sample return by revealing the areas of shallow depth to 'bedrock', and relating accessible deposits to their originating provenances within the nucleus.

  20. ESA scientist discovers a way to shortlist stars that might have planets

    NASA Astrophysics Data System (ADS)

    2002-02-01

    Traces of the disc surrounding our Solar System Credits: Michael Hauser (Space Telescope Science Institute), the COBE/DIRBE Science Team, and NASA Traces of the disc surrounding our Solar System Traces of the disc surrounding our Solar System. The blue band curving across this image is created by the dust disc surrounding our Solar System. Viewed from afar this would show up as a bright ring surrounding the Sun. The bright band running across the centre of the image is from dust in our Galaxy. This image, taken by the COBE satellite, is a composite of three far-infrared wavelengths (60, 100, and 240 microns). (Photo: Michael Hauser (Space Telescope Science Institute), the COBE/DIRBE Science Team, and NASA) Disc surrounding the Sun Credits: Brad Smith (University of Hawaii), Glenn Schneider (University of Arizona), and NASA Viewed from afar our Solar System would have a bright disc surrounding the Sun Viewed from afar our Solar System would have a bright dust disc surrounding the Sun similar to the disc surrounding this star. This image, taken with Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS), shows a dust ring around a star called HR 4796A. The image was taken on March 15, 1998. (Photo: Brad Smith (University of Hawaii), Glenn Schneider (University of Arizona), and NASA) Ulysses in flight configuration hi-res Size hi-res: 117 Kb Credits: ESA/Dave Hardy Ulysses at Jupiter encounter Ulysses in flight configuration passing by Jupiter. Remarkably, their discovery gives astronomers a way to determine which other stars in the Galaxy are most likely to harbour planets and allows mission planners to draw up a 'short-list' of stars to be observed by ESA's future planet-search missions, Eddington and Darwin. The discovery of the Solar System's dust ring strengthens the idea that such features around mature stars are signposts to planetary systems. The reason for this is that planetary systems are thought to condense from a cloud of gas and dust. Planets form near the central star, where the material is densest. However, at great distances from the star, the gas and dust is sparse and can coalesce only into a vast band of small, icy bodies. In our Solar System, they form the so-called Edgeworth-Kuiper belt that extends out beyond the orbit of Neptune. Any remaining dust is lost to deep space. Ordinarily, dust is either incorporated into larger celestial bodies or ejected from the Solar System. For it still to be present today, means that something is replenishing it. "In order to sustain such a ring, 50 tonnes of dust have to be generated every second," says Landgraf. He and his colleagues believe that collisions between the icy remnants of the Edgeworth-Kuiper belt create the Solar System's dust ring. If the same is going on in other planetary systems, then those stars will also have dusty rings around them. "If you have a dust disc around a star that's not particularly young, then it's extremely interesting because the dust has to come from somewhere. The only explanation is that the star has planets, comets, asteroids or other bodies that collide and generate the dust," says Malcolm Fridlund, ESA's study scientist for Darwin, the mission under development to search for life-supporting planets around other stars. To trace the collisions in the Edgeworth-Kuiper Belt, Landgraf and colleagues had to do some celestial detective work. They began by sifting through data from the 1970s and early 1980s, when NASA space probes Pioneer 10 and 11 first found dust particles of unknown origin beyond Saturn's orbit. The hypothesis of dust coming from comets was discarded: in fact near the Earth, comets give off dust; beyond Saturn, however, they freeze and shed little material. So, no one knew whether the Pioneer dust grains were coming from inside the Solar System - from a source other than comets - or beyond it from the interstellar space. Now, using data from ESA's Ulysses spacecraft, which has been orbiting the poles of the Sun for more than 10 years, Landgraf and colleagues have been able to rule out an origin beyond the Solar System. The Ulysses data shows that dust grains of interstellar origin are considerably smaller than interplanetary dust grains, which originate in the Solar System. The interstellar grains detected by Ulysses are typically ten to a hundred times smaller than the smallest grain that could be detected by Pioneer. Thus, the Pioneer grains have to be made somewhere within our Solar System. So, by a process of elimination and computer simulations, the scientists came to the conclusion that the only possible source of the dust is the collisions between the small, icy objects in the Edgeworth-Kuiper belt. Since these are the remnants of planet formation, the team believe that planetary systems around other stars will also produce constantly replenishing dust rings. From the number of dust particles detected by the Pioneers, Landgraf and colleagues were able to calculate the density of dust in the ring. "There's only one dust particle every 50 cubic kilometres but it's enough for a bright dust ring like those we see around other stars," says Landgraf. Indeed, a number of such features have been observed shining brightly at infrared wavelengths around stars such as Vega and Epsilon Eridani. Future missions, such as ESA's Herschel mission will search for many more and take detailed pictures of them. As these images become available, astronomers will be able to predict the sizes and orbits of giant planets within the alien solar system. "If we see a similar dust ring around a main sequence star (a mature star, like the Sun), we'll know it must have asteroids or comets. If we see gaps in the dust ring, it will probably have planets which are sweeping away the dust as they orbit," says Landgraf. The result slots into place another piece of the puzzle for those scientists working on ESA's missions that will search for extrasolar planets, as it will allow them to draw up a well motivated list of target stars based upon whether they are surrounded by dust rings. "This finding has exciting implications for both missions," confirms Fridlund. The full details of Landgraf's results will be published in a future issue of The Astrophysical Journal.

  1. A Comet's Missing Light

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    On 28 November 2013, comet C/2012 S1 better known as comet ISON should have passed within two solar radii of the Suns surface as it reached perihelion in its orbit. But instead of shining in extreme ultraviolet (EUV) wavelengths as it grazed the solar surface, the comet was never detected by EUV instruments. What happened to comet ISON?Missing EmissionWhen a sungrazing comet passes through the solar corona, it leaves behind a trail of molecules evaporated from its surface. Some of these molecules emit EUV light, which can be detected by instruments on telescopes like the space-based Solar Dynamics Observatory (SDO).Comet ISON, a comet that arrived from deep space and was predicted to graze the Suns corona in November 2013, was expected to cause EUV emission during its close passage. But analysis of the data from multiple telescopes that tracked ISON in EUV including SDO reveals no sign of it at perihelion.In a recent study, Paul Bryans and DeanPesnell, scientists from NCARs High Altitude Observatory and NASA Goddard Space Flight Center, try to determine why ISON didnt display this expected emission.Comparing ISON and LovejoyIn December 2011, another comet dipped into the Suns corona: comet Lovejoy. This image, showingthe orbit Lovejoy took around the Sun, is a composite of SDO images of the pre- and post-perihelion phases of the orbit. Click for a closer look! The dashed part of the curve represents where Lovejoy passed out of view behind the Sun. [Bryans Pesnell 2016]This is not the first time weve watched a sungrazing comet with EUV-detecting telescopes: Comet Lovejoy passed similarly close to the Sun in December 2011. But when Lovejoy grazed the solar corona, it emitted brightly in EUV. So why didnt ISON? Bryans and Pesnell argue that there are two possibilities:the coronal conditions experienced by the two comets were not similar, orthe two comets themselves were not similar.To establish which factor is the most relevant, the authors first demonstrate that both comets experienced very similar radiation fields as they passed perihelion. They also show that the properties of the Suns corona experienced by each comet like its density and magnetic field topology were roughly the same.Bryans and Pesnell argue that, as both comets appear to have encountered similar solar conditions, the most likely explanation for ISONs lack of detectable EUV emission is that it didnt deposit as much material in its orbit as Lovejoy did. They show that this would happen if ISONs nucleus were four times smaller in radius than Lovejoys, spanning a mere 5070 meters in comparison to Lovejoys 200300 meters.This conclusion is consistent with white-light observations of ISON that suggest that, though it might have started out significantly larger than Lovejoy, ISON underwent dramatic mass loss as it approached the Sun. By the time it arrived at perihelion, it was likely no longer large enough to create a strong EUV signal resulting in the non-detection of this elusive comet with SDO and other telescopes.CitationPaul Bryans and W. Dean Pesnell 2016 ApJ 822 77. doi:10.3847/0004-637X/822/2/77

  2. Ejection of rocky and icy material from binary star systems: implications for the origin and composition of 1I/`Oumuamua

    NASA Astrophysics Data System (ADS)

    Jackson, Alan P.; Tamayo, Daniel; Hammond, Noah; Ali-Dib, Mohamad; Rein, Hanno

    2018-06-01

    In single-star systems like our own Solar system, comets dominate the mass budget of bodies ejected into interstellar space, since they form further away and are less tightly bound. However, 1I/`Oumuamua, the first interstellar object detected, appears asteroidal in its spectra and lack of detectable activity. We argue that the galactic budget of interstellar objects like 1I/`Oumuamua should be dominated by planetesimal material ejected during planet formation in circumbinary systems, rather than in single-star systems or widely separated binaries. We further show that in circumbinary systems, rocky bodies should be ejected in comparable numbers to icy ones. This suggests that a substantial fraction of interstellar objects discovered in future should display an active coma. We find that the rocky population, of which 1I/`Oumuamua seems to be a member, should be predominantly sourced from A-type and late B-star binaries.

  3. Design and DSP implementation of star image acquisition and star point fast acquiring and tracking

    NASA Astrophysics Data System (ADS)

    Zhou, Guohui; Wang, Xiaodong; Hao, Zhihang

    2006-02-01

    Star sensor is a special high accuracy photoelectric sensor. Attitude acquisition time is an important function index of star sensor. In this paper, the design target is to acquire 10 samples per second dynamic performance. On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architecture for improving star image processing are presented in this paper. In the design, the operation moving the data in expanded windows including the star to the on-chip memory of DSP is arranged in the invalid period of CCD frame signal. During the CCD saving the star image to memory, DSP processes the data in the on-chip memory. This parallelism greatly improves the efficiency of processing. The scheme proposed here results in enormous savings of memory normally required. In the scheme, DSP HOLD mode and CPLD technology are used to make a shared memory between CCD and DSP. The efficiency of processing is discussed in numerical tests. Only in 3.5ms is acquired the five lightest stars in the star acquisition stage. In 43us, the data in five expanded windows including stars are moved into the internal memory of DSP, and in 1.6ms, five star coordinates are achieved in the star tracking stage.

  4. Warm water vapour in the sooty outflow from a luminous carbon star.

    PubMed

    Decin, L; Agúndez, M; Barlow, M J; Daniel, F; Cernicharo, J; Lombaert, R; De Beck, E; Royer, P; Vandenbussche, B; Wesson, R; Polehampton, E T; Blommaert, J A D L; De Meester, W; Exter, K; Feuchtgruber, H; Gear, W K; Gomez, H L; Groenewegen, M A T; Guélin, M; Hargrave, P C; Huygen, R; Imhof, P; Ivison, R J; Jean, C; Kahane, C; Kerschbaum, F; Leeks, S J; Lim, T; Matsuura, M; Olofsson, G; Posch, T; Regibo, S; Savini, G; Sibthorpe, B; Swinyard, B M; Yates, J A; Waelkens, C

    2010-09-02

    The detection of circumstellar water vapour around the ageing carbon star IRC +10216 challenged the current understanding of chemistry in old stars, because water was predicted to be almost absent in carbon-rich stars. Several explanations for the water were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star, grain surface reactions, and photochemistry in the outer circumstellar envelope. With a single water line detected so far from this one carbon-rich evolved star, it is difficult to discriminate between the different mechanisms proposed. Here we report the detection of dozens of water vapour lines in the far-infrared and sub-millimetre spectrum of IRC +10216 using the Herschel satellite. This includes some high-excitation lines with energies corresponding to approximately 1,000 K, which can be explained only if water is present in the warm inner sooty region of the envelope. A plausible explanation for the warm water appears to be the penetration of ultraviolet photons deep into a clumpy circumstellar envelope. This mechanism also triggers the formation of other molecules, such as ammonia, whose observed abundances are much higher than hitherto predicted.

  5. Light from Red-Hot Planet

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This figure charts 30 hours of observations taken by NASA's Spitzer Space Telescope of a strongly irradiated exoplanet (an planet orbiting a star beyond our own). Spitzer measured changes in the planet's heat, or infrared light.

    The lower graph shows precise measurements of infrared light with a wavelength of 8 microns coming from the HD 80606 stellar system. The system consists of a sun-like star and a planetary companion on an extremely eccentric, comet-like orbit. The geometry of the planet-star encounter is shown in the upper part of the figure.

    As the planet swung through its closest approach to the star, the Spitzer observations indicated that it experienced very rapid heating (as shown by the red curve). Just before close approach, the planet was eclipsed by the star as seen from Earth, allowing astronomers to determine the amount of energy coming from the planet in comparison to the amount coming from the star.

    The observations were made in Nov. of 2007, using Spitzer's infrared array camera. They represent a significant first for astronomers, opening the door to studying changes in atmospheric conditions of planets far beyond our own solar system.

  6. Odin observations of H2O and O2 in comets and interstellar clouds

    NASA Astrophysics Data System (ADS)

    Hjalmarson, Åke; Odin Team

    2002-11-01

    We here report on results from single-position observations, and in some cases also mapping, of the 557 GHz ortho-H2O line in several comets and in many interstellar molecular clouds by the Odin sub-millimetre wave spectroscopy satellite. The H2O production rates have been accurately determined in four comets, C/2001 A2 (LINEAR), 19P/Borrelly, C/2000 WM1 (LINEAR), and 153P/2002 C1 (Ikeya-Zhang). In comet Ikeya-Zhang our detection at a low level of the corresponding H218O emission line verifies the H2O production rate (which depends upon the assumed radiative and collisional excitation and also upon radiative transfer modelling) and is consistent with a nearly terrestrial 16O/18O-isotope ratio. In an astrobiological context, the cometary H2O production rates are especially important as reference levels for comparison with abundances of other molecules simultaneously observed with ground-based telescopes. In interstellar clouds the observed gas-phase H2O abundances (vs H2) range from 5×10-4 in the Orion KL outflow/shock region (where essentially all oxygen is locked up in H2O) to circa 10-8 in quiescent cloud regions (where H2O) is just one of many trace molecules). From an astrobiological point of view, the molecular abundances in star forming clouds are important in terms of initial conditions for the chemistry in proto-planetary disks ("proto-solar nebulae"), the formation sites of new planetary systems. In simultaneous observations, Odin has also detected the 572 GHz ortho-NH3 line in cold and warm clouds as well as in the Orion outflow and Bar/PDR regions (an area of increased ionisation caused by the intense UV flux from newly born massive stars). In other simultaneous observations, we have performed sensitive searches for O2 at 119 GHz. Although no detection can be reported as yet, the resulting very low abundance limits (<10-7) are very intriguing when they are compared with current "standard" model expectations, which fall in the range 10-5-10-4.

  7. Cometary water-group ions in the region surrounding Comet Giacobini-Zinner - Distribution functions and bulk parameter estimates

    NASA Astrophysics Data System (ADS)

    Staines, K.; Balogh, A.; Cowley, S. W. H.; Hynds, R. J.; Yates, T. S.; Richardson, I. G.; Sanderson, T. R.; Wenzel, K. P.; McComas, D. J.; Tsurutani, B. T.

    1991-03-01

    The bulk parameters (number density and thermal energy density) of cometary water-group ions in the region surrounding Comet Giacobini-Zinner have been derived using data from the EPAS instrument on the ICE spacecraft. The derivation is based on the assumption that the pick-up ion distribution function is isotropic in the frame of the bulk flow, an approximation which has previously been shown to be reasonable within about 400,000 km of the comet nucleus along the spacecraft trajectory. The transition between the pick-up and mass-loaded regions occurs at the cometary shock, which was traversed at a cometocentric distance of about 100,000 km along the spacecraft track. Examination of the ion distribution functions in this region, transformed to the bulk flow frame, indicates the occurrence of a flattened distribution in the vicinity of the local pick-up speed, and a steeply falling tail at speeds above, which may be approximated as an exponential in ion speed.

  8. Autonomous Navigation for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam

    2012-01-01

    Navigation (determining where the spacecraft is at any given time, controlling its path to achieve desired targets), performed using ground-in- the-loop techniques: (1) Data includes 2-way radiometric (Doppler, range), interferometric (Delta- Differential One-way Range), and optical (images of natural bodies taken by onboard camera) (2) Data received on the ground, processed to determine orbit, commands sent to execute maneuvers to control orbit. A self-contained, onboard, autonomous navigation system can: (1) Eliminate delays due to round-trip light time (2) Eliminate the human factors in ground-based processing (3) Reduce turnaround time from navigation update to minutes, down to seconds (4) React to late-breaking data. At JPL, we have developed the framework and computational elements of an autonomous navigation system, called AutoNav. It was originally developed as one of the technologies for the Deep Space 1 mission, launched in 1998; subsequently used on three other spacecraft, for four different missions. The primary use has been on comet missions to track comets during flybys, and impact one comet.

  9. Deep Space 1 Using its Ion Engine (Artist's Concept)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's New Millennium Deep Space 1 spacecraft approaching the comet 19P/Borrelly. With its primary mission to serve as a technology demonstrator--testing ion propulsion and 11 other advanced technologies--successfully completed in September 1999, Deep Space 1 is now headed for a risky, exciting rendezvous with Comet Borrelly. NASA extended the mission, taking advantage of the ion propulsion and other systems to target the daring encounter with the comet in September 2001. Once a sci-fi dream, the ion propulsion engine has powered the spacecraft for over 12,000 hours. Another onboard experiment includes software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The first flight in NASA's New Millennium Program, Deep Space 1 was launched October 24, 1998 aboard a Boeing Delta 7326 rocket from Cape Canaveral Air Station, FL. Deep Space 1 successfully completed and exceeded its mission objectives in July 1999 and flew by a near-Earth asteroid, Braille (1992 KD), in September 1999.

  10. IUE's treasure-chest of the ultraviolet Universe

    NASA Astrophysics Data System (ADS)

    1997-11-01

    IUE was the most long-lived and (by a wide margin) the most productive satellite so far, in the history of space astronomy. After going into orbit on 26 January 1978, as a NASA-ESA-UK project, IUE was meant to operate for three years. More than eighteen years later, IUE still worked 24 hours a day, harvesting new knowledge for astronomers. The last observations were made from ESA's ground station at Villafranca, Spain, on 26 September 1996, and IUE was switched off four days later. Since then, team members at Villafranca and at NASAs Goddard Space Flight Center have used modern data-processing and information technology to recycle 100,000 ultraviolet spectra of comets, planets, stars, galaxies and quasars, acquired by IUE during its 18.5 years of operations. As a result, the IUE Final Archive is already available on-line via the Internet to hundreds of users who have registered to work with the data. The last few items (about 2 per cent of the total) will be added before the end of November. Also to be presented at the Sevilla conference is ESA's system called INES ("IUE Newly Extracted Spectra") which offers access, selection and distribution of data products, in a thoroughly user-friendly fashion. The IUE Final Archive is the third massive compendium made available to the worlds astronomers by ESA in 1997. The Hipparcos and Tycho Catalogues, released earlier in the year, give the positions of stars with unprecedented accuracy, thanks to ESA's Hipparcos satellite. "Space astronomy has set the example in providing a high standard of data quality and making the data accessible to the scientific community through archives", says Roger Bonnet, ESA's Scientific Director. "Now, ground-based observatories are following suit. The data legacy of IUE will be distributed to he community so that research on IUE data can continue long after the end of IUE's lifetime in space". Wonders of ultraviolet spectroscopy IUE analysed ultraviolet light, in a wavelength range from 1150 to 3200 angstrom units, which is blotted out by the Earths atmosphere. Operating far above the atmosphere, IUE generated spectra showing intensities at different wavelengths, coming from the selected objects in the sky. To an astrophysicist, such spectra are much more informative than images, about the mechanisms that produce and dissipate the objects energy. Temperatures, motions, magnetism and chemical composition are all discernable in the ultraviolet spectra. As a result, astronomers have a far better picture of the hot atmospheres of stars than they did before IUE's launch. Even the Sun, a quiet star of moderate size, possesses a very hot atmosphere emitting ultraviolet light, which is now being monitored non-stop by the ESA-NASA solar spacecraft SOHO. Some other stars, ranging from small white dwarfs to large, massive stars, give off ultraviolet emissions from their very hot surfaces. Hot and fierce winds of gas emitted from stars have a profound effect on the lives and environments of the stars, and on any companions caught up in the winds. IUE unmasked the ultraviolet behaviour of a large menagerie of different star types, and astronomers at the Sevilla meeting will discuss profound revisions in astrophysical ideas resulting from the observations. Other participants will review IUE's contribution to new knowledge about galaxies. These vast assemblies of stars also reveal violent behaviour in ultraviolet light. In a special campaign, a multinational team used IUE to observe the stormy galaxy NGC 5548 some 60 times in eight months. As a result, they discovered effects of central outbursts spreading from hot regions at the very core of the galaxy to adjacent cooler regions, in a timescale of weeks. In galaxy NGC 7469, observed simultaneously by IUE and by the X-ray satellite Rossi XTE, the timescale shrank to days. Quasars are erupting galaxies observable at great distances, and their examination by ultraviolet light, by IUE and more recently by the Hubble Space Telescope, give special clues to the nature of the gas in the almost empty spaces between galaxies, and to the manufacture of the chemical elements within the galaxies. The quasar studies to be reviewed at Sevilla already occupy an important place in the efforts to understand the character and evolution of the Universe at large. The ultraviolet data on element-making suggest that massive stars, far bigger than the Sun, were more numerous when the galaxies were young. Advantages of a long life The sheer durability of IUE enabled astronomers to revisit many objects over nearly two decades and to see changes occurring with them. The prolonged study of the black hole in 3C390.3 was a case in point. Another conspicuous example of the advantages of a long life concerns Supernova 1987A. This star was seen exploding in a nearby galaxy, the Large Magellanic Cloud, half-way through IUEs operational life. IUE was the first space telescope to be turned towards Supernova 1987A. It revealed precisely which star had blown up, identified chemical elements in the debris, and discovered a pre-existing ring of gas and dust surrounding the star. IUE continued observing Supernova 1987A at intervals over nine years, so providing a unique chronicle of the early evolution of a supernova remnant. Lesser stellar outbursts called novae have also provided frequent "targets of opportunity" for IUE. The return of Halleys Comet in 1985-86 was a long anticipated event, and the ultraviolet observations by IUE measured the rate at which the famous object spewed water vapour into space. But many comets appear unexpectedly, and IUE was able to examine them too, from Comet Seargent in 1978 to Comet Hale-Bopp in 1986. Astronomers have built up a comprehensive picture of comets seen by ultraviolet light at different stages of their evolution, and at different distances from the Sun. As a result, they have a much better understanding of how comets react and change during their rare visits to the vicinity of the Sun and the Earth. IUEs long life also enabled it to observe rare and serendipitous events. The satellite was already more than sixteen years old when Comet Shoemaker-Levy 9 hit Jupiter in July 1994. The event was well anticipated, so IUE was able first to study Jupiter in a normal state, and then to see the changes in the ultraviolet spectra during and after the impacts of the comet fragments. The astronomers favourite satellite Operational and scientific statistics about IUE are remarkable. The satellites observations have resulted in more than 3600 scientific papers published by 3000 astronomers from 25 countries. In addition, about 500 doctoral theses using IUE data show the educational value of IUE in universities all over the world. Amateur astronomers have also shown a remarkable degree of interest in IUE results, which provide them with a valuable and important link between their activities and those of professional astronomers. "Although IUE never had the popular appeal of the Hubble Space Telescope, it was always the professional astronomers favourite satellite," remarks Willem Wamsteker, the Dutch astronomer who is ESA's project manager for IUE. "They could visit Villafranca or Goddard and supervise the operations, just as if they were at an observatory on the ground. Towards the end, they could make their observations remotely, without leaving their institutes. Historians of astronomy may well credit IUE with the big change in professional habits which made space observatories a tool, not just for a few hardware-minded specialists, but for all astronomers." The meeting in Sevilla will end on 14 November with a review of the prospects for new space missions for ultraviolet astronomy. The Hubble Space Telescope and some Space Shuttle missions offer limited opportunities for ultraviolet spectroscopy. So will ESA's XMM X-ray mission. The only confirmed mission fully dedicated to the ultraviolet region is NASA's FUSE spacecraft, due to be launched in the year 2000, with rather limited scope and duration. Astronomers in developing countries have been persuaded by experience with IUE that they too can participate in spaceborne observations without emigrating. ESA has helped to foster this ambition. A UN-ESA workshop in Sri Lanka in 1996 recommended the creation of a World Space Observatory, and this will be cited at the Sevilla meeting in the context of possible future facilities for ultraviolet astronomy. Meanwhile IUE will not be easy to replace. No authorized mission yet in sight will combine a wide spectral range with great flexibility of operation. Current astronomical campaigns, ranging from studies of auroras in planets to the efforts to understand the spectacular yet mysterious gamma-ray bursts far away in the cosmos, already miss the input from IUE. The astronomers sense of loss should be seen positively, as a tribute to IUEs achievements when it dominated ultraviolet space astronomy for nearly two decades.

  11. 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    NASA Technical Reports Server (NTRS)

    Flynn, Connor; Dahlgren, R. P.; Dunagan, S.; Johnson, R.; Kacenelenbogen, M.; LeBlanc, S.; Livingston, J.; Redemann, J.; Schmid, B.; Segal Rozenhaimer, M.; hide

    2015-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyper spectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT).From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy TCAP I II campaigns, and NASAs SEAC4RS and ARISE campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2, and from in situ measurements.

  12. Precision laser automatic tracking system.

    PubMed

    Lucy, R F; Peters, C J; McGann, E J; Lang, K T

    1966-04-01

    A precision laser tracker has been constructed and tested that is capable of tracking a low-acceleration target to an accuracy of about 25 microrad root mean square. In tracking high-acceleration targets, the error is directly proportional to the angular acceleration. For an angular acceleration of 0.6 rad/sec(2), the measured tracking error was about 0.1 mrad. The basic components in this tracker, similar in configuration to a heliostat, are a laser and an image dissector, which are mounted on a stationary frame, and a servocontrolled tracking mirror. The daytime sensitivity of this system is approximately 3 x 10(-10) W/m(2); the ultimate nighttime sensitivity is approximately 3 x 10(-14) W/m(2). Experimental tests were performed to evaluate both dynamic characteristics of this system and the system sensitivity. Dynamic performance of the system was obtained, using a small rocket covered with retroreflective material launched at an acceleration of about 13 g at a point 204 m from the tracker. The daytime sensitivity of the system was checked, using an efficient retroreflector mounted on a light aircraft. This aircraft was tracked out to a maximum range of 15 km, which checked the daytime sensitivity of the system measured by other means. The system also has been used to track passively stars and the Echo I satellite. Also, the system tracked passively a +7.5 magnitude star, and the signal-to-noise ratio in this experiment indicates that it should be possible to track a + 12.5 magnitude star.

  13. The evolution of massive stars

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The hypotheses underlying theoretical studies of the evolution of massive model stars with and without mass loss are summarized. The evolutionary tracks followed by the models across theoretical Hertzsprung-Russell (HR) diagrams are compared with the observed distribution of B stars in an HR diagram. The pulsational properties of models of massive star are also described.

  14. The Oort cloud

    NASA Technical Reports Server (NTRS)

    Marochnik, Leonid S.; Mukhin, Lev M.; Sagdeev, Roald Z.

    1991-01-01

    Views of the large-scale structure of the solar system, consisting of the Sun, the nine planets and their satellites, changed when Oort demonstrated that a gigantic cloud of comets (the Oort cloud) is located on the periphery of the solar system. The following subject areas are covered: (1) the Oort cloud's mass; (2) Hill's cloud mass; (3) angular momentum distribution in the solar system; and (4) the cometary cloud around other stars.

  15. Optical polarimetry of KIC 8462852 in 2017 May-August

    NASA Astrophysics Data System (ADS)

    Steele, I. A.; Copperwheat, C. M.; Jermak, H. E.; Kennedy, G. M.; Lamb, G. P.

    2018-01-01

    We present optical polarimetry in the period of 2017 May-August of the enigmatic `dipping' star KIC 8462852. During that period, three ˜1 per cent photometric dips were reported by other observers. We measured the average absolute polarization of the source, and find no excess or unusual polarization compared to a nearby comparison star. We place tight upper limits on any change in the degree of polarization of the source between epochs in-dip and out-of-dip of <0.1 per cent (8500 Å) and <0.2 per cent (7050 Å and 5300 Å). How our limits are interpreted depends on the specific model being considered. If the whole stellar disc were covered by material with an optical depth of ˜0.01, then the fractional polarization introduced by this material must be less than 10-20 per cent. While our non-detection does not constrain the comet scenario, it predicts that even modest amounts of dust that have properties similar to Solar system comets may be detectable. We note that the sensitivity of our method scales with the depth of the dip. Should a future ˜20 per cent photometric dip be observed (as was previously detected by Kepler), our method would constrain any induced polarization associated with any occulting material to 0.5-1.0 per cent.

  16. Water and complex organic molecules in the warm inner regions of solar-type protostars

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Jørgensen, J. K.; Persson, M. V.; Lykke, J. M.; Taquet, V.; van Dishoeck, E. F.; Vastel, C.; Wampfler, S. F.

    2015-12-01

    Water and complex organic molecules play an important role in the emergence of Life. They have been detected in different types of astrophysical environments (protostars, prestellar cores, outflows, protoplanetary disks, comets, etc). In particular, they show high abundances towards the warm inner regions of protostars, where the icy grain mantles thermally desorb. Can a part of the molecular content observed in these regions be preserved during the star formation process and incorporated into asteroids and comets, that can deliver it to planetary embryos through impacts? By comparison with cometary studies, interferometric observations of solar-type protostars can help to address this important question. We present recent results obtained with the Plateau de Bure interferometer about water deuteration, glycolaldehyde and ethylene glycol towards the low-mass protostar NGC 1333 IRAS2A.

  17. A refractory inclusion returned by Stardust from comet 81P/Wild 2

    NASA Astrophysics Data System (ADS)

    Simon, S. B.; Joswiak, D. J.; Ishii, H. A.; Bradley, J. P.; Chi, M.; Grossman, L.; AlÉOn, J.; Brownlee, D. E.; Fallon, S.; Hutcheon, I. D.; Matrajt, G.; McKeegan, K. D.

    2008-11-01

    Among the samples returned from comet 81P/Wild 2 by the Stardust spacecraft is a suite of particles from one impact track (Track 25) that are Ca-, Al-rich and FeO-free. We studied three particles from this track that range in size from 5.3 × 3.2 μ to 15 × 10 μ. Scanning and transmission electron microscopy show that they consist of very fine-grained (typically from ˜0.5 to ˜2 μ) Al-rich, Ti-bearing and Ti-free clinopyroxene, Mg-Al spinel and anorthite, with trace amounts of fine perovskite, FeNi metal and osbornite (TiN) grains. In addition to these phases, the terminal particle, named "Inti", also contains melilite. All of these phases, with the exception of osbornite, are common in refractory inclusions and are predicted to condense at high temperature from a gas of solar composition. Osbornite, though very rare, has also been found in meteoritic refractory inclusions, and could have formed in a region of the nebula where carbon became enriched relative to oxygen compared to solar composition. Compositions of Ti-pyroxene in Inti are similar, but not identical, to those of fassaite from Allende inclusions. Electron energy loss spectroscopy shows that Ti-rich pyroxene in Inti has Ti3+/Ti4+within the range of typical meteoritic fassaite, consistent with formation under reducing conditions comparable to those of a system of solar composition. Inti is 16O-rich, with δ18O?δ17O?-40%0, like unaltered phases in refractory inclusions and refractory IDPs. With grain sizes, mineralogy, mineral chemistry, and an oxygen isotopic composition like those of refractory inclusions, we conclude that Inti is a refractory inclusion that formed in the inner solar nebula. Identification of a particle that formed in the inner solar system among the comet samples demonstrates that there was transport of materials from the inner to the outer nebula, probably either in a bipolar outflow or by turbulence.

  18. A linguist's angle on the Star of Bethlehem

    NASA Astrophysics Data System (ADS)

    Coates, Richard

    2008-10-01

    There is no shortage of suggestions for the astronomical events that may have given rise to the Bible's descriptions of the Star of Bethlehem. In this account, I consider the question from a linguist's point of view, focusing on the language used to describe phenomena in the sky around 2000 years ago. What would an astrologer have meant by ``we have seen his star in the East''? And what events might have been both visible in the conditions described, and considered of significance? Scholars working in this area cluster in groups: the comet group, the planetary group, the supernova group, and so on. None has yet succeeded in delivering a fatal blow to the others' accounts. I may be in a group of one for the time being: the astrological group. I present here a type of argument that may reconcile astronomical events, astrological learning of 2000 years ago and biblical accounts.

  19. Refractory materials in comet samples

    NASA Astrophysics Data System (ADS)

    Joswiak, D. J.; Brownlee, D. E.; Nguyen, A. N.; Messenger, S.

    2017-08-01

    Transmission electron microscope examination of more than 250 fragments, >1 μm from comet Wild 2 and a giant cluster interplanetary dust particle (GCP) of probable cometary origin has revealed four new calcium-aluminum-rich inclusions (CAIs), an amoeboid olivine aggregate (AOA), and an additional AOA or Al-rich chondrule (ARC) object. All of the CAIs have concentric mineral structures and are composed of spinel + anorthite cores surrounded by Al,Ti clinopyroxenes and are similar to two previous CAIs discovered in Wild 2. All of the cometary refractory objects are of moderate refractory character. The mineral assemblages, textures, and bulk compositions of the comet CAIs are similar to nodules in fine-grained, spinel-rich inclusions (FGIs) found in primitive chondrites and like the nodules may be nebular condensates that were altered via solid-gas reactions in the solar nebula. Oxygen isotopes collected on one Wild 2 CAI also match FGIs. The lack of the most refractory inclusions in the comet samples may reflect the higher abundances of small moderately refractory CAI nodules that were produced in the nebula and the small sample sizes collected. In the comet samples, approximately 2-3% of all fragments larger than 1 μm, by number, are CAIs and nearly 50% of all bulbous Stardust tracks contain at least one CAI. We estimate that 0.5 volume % of Wild 2 material and 1 volume % of GCP is in the form of CAIs. ARCs and AOAs account for <1% of the Wild 2 and GCP grains by number.

  20. Another Possibility for Boyajian's Star

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    The unusual light curve of the star KIC 8462852, also known as Tabbys star or Boyajians star, has puzzled us since its discovery last year. A new study now explores whether the stars missing flux is due to internal blockage rather than something outside of the star.Mysterious DipsMost explanations for the flux dips of Boyajians star rely on external factors, like this illustrated swarm of comets. [NASA/JPL-Caltech]Boyajians star shows unusual episodes of dimming in its light curve by as much as 20%, each lasting a few to tens of days and separated by periods of typically hundreds of days. In addition, archival observations show that it has gradually faded by roughly 15% over the span of the last hundred years. What could be causing both the sporadic flux dips and the long-term fading of this odd star?Explanations thus far have varied from mundane to extreme. Alien megastructures, pieces of smashed planets or comets orbiting the star, and intervening interstellar medium have all been proposed as possible explanations but these require some object external to the star. A new study by researcher Peter Foukal proposes an alternative: what if the source of the flux obstruction is the star itself?Analogy to the SunDecades ago, researchers discovered that our own stars total flux isnt as constant as we thought. When magnetic dark spots on the Suns surface block the heat transport, the Suns luminosity dips slightly. The diverted heat is redistributed in the Suns interior, becoming stored as a very small global heating and expansion of the convective envelope. When the blocking starspot is removed, the Sun appears slightly brighter than it did originally. Its luminosity then gradually relaxes, decaying back to its original value.Model of a stars flux after a 1,000-km starspot is inserted at time t = 0 and removed at time t = ts at a depth of 10,000 km in the convective zone. The stars luminosity dips, then becomes brighter than originally, and then gradually decays. [Foukal 2017]Foukal recognized that this phenomenon may also provide an explanation for Boyajians star. He modeled how this might occur for Boyajians star, demonstrating that if its flux is somehow blocked from reaching the surface and stored in a shallow convective zone, this can account for the 20% dips seen in the stars light curve.In addition, these sporadic flux-blocking events would cause Boyajians star to constantly be relaxing from the post-blockage enhanced luminosity. This decay which occurs at rates of 0.11% brightness per year for convective-zone depths of tens of thousands of kilometers would nicely account for the long-term, gradual dimming observed.Whats blocking the flux? Foukal postulates a few options, including magnetic activity (as with the Sun), differential rotation, sporadic changes in photospheric abundances, and simply random variation in convective efficiency.Strangely UniqueBoyajians stars flux in May and June shows some brand new dips. Note that the team now names them! [Tabetha Boyajian and team]So why have we only found one star with light curves like Boyajians? If these are inherently natural processes in the star, we would expect to have seen more than one such object. This may be selection effect Boyajians star lies at the hot end of the range of stars that Kepler observes or it may be that the star is reaching the end of its convective lifetime.Until we discover more cases, the best we can hope for is more data from Boyajians star itself. Conveniently, it has continued to keep us on our toes, with new dips in May and June. Perhaps our continued observations will finally reveal the answer to this mystery.CitationPeter Foukal 2017 ApJL 842 L3. doi:10.3847/2041-8213/aa740f

  1. PAIRS AND GROUPS OF GENETICALLY RELATED LONG-PERIOD COMETS AND PROPOSED IDENTITY OF THE MYSTERIOUS LICK OBJECT OF 1921

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekanina, Zdenek; Kracht, Rainer, E-mail: Zdenek.Sekanina@jpl.nasa.gov, E-mail: R.Kracht@t-online.de

    We present the history of investigation of the dynamical properties of pairs and groups of genetically related long-period comets (other than the Kreutz sungrazing system). Members of a comet pair or group move in nearly identical orbits, and their origin as fragments of a common parent comet is unquestionable. The only variable is the time of perihelion passage, which differs considerably from member to member owing primarily to an orbital-momentum increment acquired during breakup. Meter-per-second separation velocities account for gaps of years or tens of years, thanks to the orbital periods of many millennia. The physical properties of individual membersmore » may not at all be alike, as illustrated by the trio of C/1988 A1, C/1996 Q1, and C/2015 F3. We exploit orbital similarity to examine whether the enigmatic and as-yet-unidentified object discovered from the Lick Observatory near the Sun at sunset on 1921 August 7 happened to be a member of such a pair and to track down the long-period comet to which it might be genetically related. Our search shows that the Lick object, which could not be a Kreutz sungrazer, was likely a companion to comet C/1847 C1 (Hind), whose perihelion distance was ∼9 R {sub ⊙} and true orbital period was approximately 8300 yr. The gap of 74.4 yr between their perihelion times is consistent with a separation velocity of ∼1 m s{sup −1} which sets the fragments apart following the parent's breakup in a general proximity of perihelion during the previous return to the Sun in the seventh millennium BCE.« less

  2. Upgrade of the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) to its Full Science Capability of Sun-Sky-Cloud-Trace Gas Spectrometry in Airborne Science Deployments

    NASA Technical Reports Server (NTRS)

    Johnson, Roy R.; Russell, P.; Dunagan, S.; Redemann, J.; Shinozuka, Y.; Segal-Rosenheimer, M.; LeBlanc, S.; Flynn, C.; Schmid, B.; Livingston, J.

    2014-01-01

    The objectives of this task in the AITT (Airborne Instrument Technology Transition) Program are to (1) upgrade the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument to its full science capability of measuring (a) direct-beam sun transmission to derive aerosol optical depth spectra, (b) sky radiance vs scattering angle to retrieve aerosol absorption and type (via complex refractive index spectra, shape, and mode-resolved size distribution), (c) zenith radiance for cloud properties, and (d) hyperspectral signals for trace gas retrievals, and (2) demonstrate its suitability for deployment in challenging NASA airborne multiinstrument campaigns. 4STAR combines airborne sun tracking, sky scanning, and zenith pointing with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution, radiant energy budgets (hence climate), and remote measurements of Earth's surfaces. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements are intended to tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. 4STAR test flights, as well as science flights in the 2012-13 TCAP (Two-Column Aerosol Project) and 2013 SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) have demonstrated that the following are essential for 4STAR to achieve its full science potential: (1) Calibration stability for both direct-beam irradiance and sky radiance, (2) Improved light collection and usage, and (3) Improved flight operability and reliability. A particular challenge for the AITT-4STAR project has been conducting it simultaneously with preparations for, and execution of, ARISE (Arctic Radiation - IceBridge Sea&Ice Experiment), a NASA airborne science deployment (unplanned when AITT-4STAR was selected for funding) in which 4STAR will deploy to Thule, Greenland, and Fairbanks, Alaska, on the NASA C- 130. This presentation describes progress to date in accomplishing AITT-4STAR goals, and plans for project completion.

  3. Hottest Hot Jupiter Animation (Artist's Concept)

    NASA Image and Video Library

    2017-06-05

    This artist's concept shows planet KELT-9b orbiting its host star, KELT-9. It is the hottest gas giant planet discovered so far. With a dayside temperature of more than 7,800 degrees Fahrenheit (4,600 Kelvin), KELT-9b is a planet that is hotter than most stars. But its star, called KELT-9, is even hotter -- a blue A-type star that is likely unraveling the planet through evaporation. KELT-9b is a gas giant 2.8 times more massive than Jupiter, but only half as dense. Scientists would expect the planet to have a smaller radius, but the extreme radiation from its host star has caused the planet's atmosphere to puff up like a balloon. The planet is also unusual in that it orbits perpendicular to the spin axis of the star. That would be analogous to the planet orbiting perpendicular to the plane of our solar system. One "year" on this planet is less than two days long. The KELT-9 star is only 300 million years old, which is young in star time. It is more than twice as large, and nearly twice as hot, as our sun. Given that the planet's atmosphere is constantly blasted with high levels of ultraviolet radiation, the planet may even be shedding a tail of evaporated planetary material like a comet. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21472

  4. Cosmic water traced by Europe's space telescope ISO

    NASA Astrophysics Data System (ADS)

    1996-05-01

    In retracing this history, ISO also observes water in the form of ice in cooler regions around the stars, and in the dust surrounding young stars, from which planets could evolve. Comets represent an intermediate stage in planet-building, and they contain much water ice. According to one hypothesis the newly formed Earth received some of its water directly from impacting comets. Water vapour in the Earth's atmosphere has prevented telescopes on the ground from detecting the water vapour among the stars, except in very unusual circumstances. ISO orbiting in space escapes the impediment of the atmosphere. Excellent onboard instruments register the characteristic infrared signatures of water vapour, water ice and many other materials. When ISO scrutinizes selected objects, it detects emissions or absorptions of infrared rays at particular wavelengths, or "lines" in a spectrum, which reveal the presence of identifiable atoms, molecules and solids. The Short Wavelength Specrometer and the Long Wavelength Spectrometer provide detailed chemical diagnoses, and the photometer ISOPHOT and camera ISOCAM also have important spectroscopic capabilities. Examples of water detection were among many topics reviewed at the First ISO Science Workshop held at ESA's Research and Technology Centre (ESTEC) in Noordwijk, the Netherlands (29-31 May) when 300 astronomers from Europe, the USA and Japan gathered to assess results from ISO since its launch on 17 November 1995. The Long Wavelength Spectrometer has made remarkable observations of water-vapour lines in the vicinity of dying stars and in star-forming regions. So has the Short Wavelength Spectrometer, which also detects water ice. The photometer lSOPHOT has registered water ice in a large number of objects. Although fascinated by the natural history of water in the cosmos, astronomers have more technical reasons for welcoming ISO's observations. They can use thc details in a spectrum to reduce the abundance of water and its physical circumstances. In the case of the newly forming star GL 2591 for example, frozen water has vaporized in the warmth of the star and risen to a temperature of about 30 degrces Celsius. The amount of water vapour, roughly 10 parts per million compared with hydrogen, is very high by cosmic standards. "Its remarkable abundance tells us that water plays an important part in the birth of stars," says Ewine van Dishoeck of Leiden Observatory, whose team of astronomers from the Netherlands and Sweden has used ISO's Short Wavelength Spectrometer in this work. "Stars form by the collapse of a cloud of gas and dust, but a build-up of heat inside the cloud makes the work of gravity harder, when it tries to compress the cloud. By radiating strongly in the infrared, water enables the cloud to shed heat very efficiently. This cooling function of water facilitates star formation. So here ISO gives us a new clue in astrophysics." An inventory of interstellar ice The spaces between the stars are very cold, so vapours like water condense and freeze on the surface of available grains, in the manner of frost in winter. They form part of the interstellar dust that darkens the visible sky and which ISO is thoroughly analysing for the first time. The Short Wavelength Spectrometer sees water ice in many settings, for example in NGC 7538, a cloud surrounding a newly forming star. Before ISO, ground-based telescopes had found frozen carbon monoxide and methanol (methyl alcohol) in interstellar space, as well as water ice. ISO observes all these ices much more clearly. It has also seen carbon dioxide ice and methane ice, which are undetectable from the ground. French astronomers have even distinguished ice containing heavy carbon-13, in the ISO data. The amounts of carbon dioxide and methane detected by ISO are surprising, and ices now account for a larger proportion of the carbon compounds drifting in space. Carbon dioxide ice ranks second to water ice in the vicinity of NGC 7538. Astronomers can start making a complete inventory of the frozen volatile materials in interstellar space and compare them with those found in the Solar System. "ISO gives us spectra of the kind we dust people used to dream of," says Doug Whittet of the Rensselaer Polytechnic Institute in Troy, New York, who leads a US-Dutch team using the Short Wavelength Spectrometer in this study."Our detection of carbon dioxide and methane in interstellar ices has implications for understanding the behaviour of comets, as well as the origin and evolution of life on Earth." Sand and soot among the stars Other components of the dust identified by ISO are mineral grains and large molecules built mainly of carbon and hydrogen, often called hydrocarbons for simplicity's sake. Here too there is a direct connection with the history of the Solar System and the Earth, because similar minerals and hydrocarbons turn up in meteorites and in comets, as analysed for example by ESA's Giotto mission to Halley's Comet in 1986. Silicate minerals, familiar as sand on the seashore. are the principal constituents of the solid Earth. Ground-based infrared telescopes have glimpsed the characteristic signatures of silicate grains in various interslellar settings, but again ISO has a better view. It has observed silicates and other minerals both in the vicinity of dead stars like the planetary nebula NGC 6302, and in disks of dust around young stars where new planets may be forming. In such protoplanetary disks, astronomers using ISO's Short Wavelength Spectrometer have confirmed the existence of a special form of silicon oxide. It was previously found in comets, and seen in interstellar space only with difficulty and uncertainty by ground-based telescopes. Other silicon oxides are widespread in the Galaxy in non-crystalline (amorphous) form. The special silicon oxide, which may be crystals, is possibly a symptom of planet-making in progress. Thanks especially to carbon compounds, the Universe is capable of supporting life. A widespread infrared emission at around 12 microns, first noted in 1983 by the IRAS sate11ite in the Milky Way and in other galaxies, turns out to be due to hydrocarbons gathered in wispy clouds. In interstellar space, complex hydrocarbons make tarry grains similar to the soot from car exhausts or coal fires. ISO's instruments, identifying these hydrocarbons by their characteristic infrared wavelengths, find them almost everywhere they look, except close to stars which tend to decompose the hydrocarbons. Teams are using the ISOPHOT and ISOCAM instruments to survey the hydrocarbons in dozens of locations in the Galaxy. The hydrocarbons appear most conspicuous at the outer surfaces of dense clouds of gas and dust, and should give clues to physical conditions prevailing there. Shortly before ISO's launch, amateur astronomers reported that the star called R Coronae Borealis was fading from view. This elderly star is normally quite easy to see with binoculars, but intermittently it puffs off clouds of dust that almost hide it from view. Professional astronomers do not have the time to monitor irregularly variable stars, and rely on amateurs to alert them to such events like that in R Coronae Borealis. A few months later when the star could be seen only with powerful telescopes, ISO obtained an infrared spectrum of the star in just one minute, using the high-speed spectroscopic facility of the photometer ISOPHOT. "We caught this star smoking," says Helen Walker of the Rutherford Appleton Laboratory in England, who was in charge of the observation. "The amateurs saw the star fade from view in visible light in October, but it remained bright in the infrared. The telltale wavelengths revealed sooty carbon compounds newly formed in the star's vicinity. Without ISO we could not hope to analyse such a striking event." Complexity and inspiration ISO's camera ISOCAM has obtained impressive images of interstellar dust in many parts of the Galaxy. ISOCAM often uses its spectral capabilities to decompose tbe dusty emissions by wavelength, and so determine their origins. One of the places where ISOCAM has detected extensive regions of hydrocarbons is at the outer edge of the Rho Ophiuchi dark cloud. At 500 light-years, this is also the nearest scene of recent star formation. Spectacular images from ISOCAM show many young stars unseen by visible light, and remarkable filamentary structures in their envelope of dust. ISO is providing astronomers with more details about the interstellar medium than they can fully understand so far. Not only do chemical mysteries lurk in spectra still being analysed, but some of the spatial features of the Galaxy imaged by ISO leave astronomers scratching their heads. Co-existing cold and hot regions make complicated patterns, which were preeviously thought of only as lukewarm averages. "The Universe is a very complex place," warns Martin Harwit, a pioneer of infrared astronomy. "But ISO is defining its overall contents, assessing the energy budgets of our Galaxy and others, and teaching us a lot about the demography of old and young stars. For me, the results of ISO so far are inspirational."

  5. Cometary Jet Collimation Without Physical Confinement

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Melosh, H.

    2012-10-01

    Recent high-resolution images of comet nuclei reveal that gases and dust expelled by the comet are organized into narrow jets. Contemporary models postulate that these jets collimate when the expanding gases and dust pass through a physical aperture or nozzle [1]. However, recent high-resolution spacecraft observations fail to detect such apertures on cometary surfaces [2]. Additionally, observations of comet nuclei by visiting spacecraft have observed that jet activity is tied to the diurnal rotation of the comet. This suggests that jet emissions are driven by the sun, and therefore must emanate from close to the surface of the comet (order of 10 cm.) Here we describe a simplified computer model of jets emanating from Comet Tempel 1. We approximate the active areas (vents) of the comet as a region of smooth, level terrain on the order of 10 m in width. We assume that each element of the active area is emitting gas molecules with the same spatial distribution, and integrate over the active area in order to calculate the gas drag force. We consider two angular emission profiles (isotropic and lambertian), and assume plane-strain geometry. Uniformly sized particles are placed randomly on the surface of the vent, and their positions in time are tracked. For our simulation, spherical particles with radii of 1 µm to 1 cm were considered. We observe that the overwhelming majority of the particles remain close to the central axis of the active area, forming a well-collimated jet, with particles reaching escape velocity. This mechanism may explain cometary jets, given the physical and observational constraints. References: [1] Yelle R.V. (2004) Icarus 167, 30-36. [2] A’Hearn M.F. et al. (2011) Science 332, 1396-1400. [3] Belton M.J.S. and Melosh H.J. (2009) Icarus 200, 280-291. Acknowledgements: This research is supported by NASA grant PGG NNX10AU88G.

  6. Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Instrument Improvements

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Redemann, Jens; Chang, Cecilia; Dahlgren, Robert; Fahey, Lauren; Flynn, Connor; Johnson, Roy; Kacenelenbogen, Meloe; Leblanc, Samuel; Liss, Jordan; hide

    2017-01-01

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with grating spectroscopy to improve knowledge of atmospheric constituents and their links to air-pollution and climate. Hyper-spectral measurements of direct-beam solar irradiance provide retrievals of gas constituents, aerosol optical depth, and aerosol and thin cloud optical properties. Sky radiance measurements in the principal and almucantar planes enhance retrievals of aerosol absorption, aerosol type, and size mode distribution. Zenith radiance measurements are used to retrieve cloud properties and phase, which in turn are used to quantify the radiative transfer below cloud layers. These airborne measurements tighten the closure between satellite and ground-based measurements. In contrast to the Ames Airborne Tracking Sunphotometer (AATS-14) predecessor instrument, new technologies for each subsystem have been incorporated into 4STAR. In particular, 4STAR utilizes a modular sun-trackingsky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and spectrometerdetector configurations that may be tailored for specific scientific objectives. This paper discusses technical challenges relating to compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage at high resolution. Test results benchmarking the performance of the instrument against the AATS-14 standard and emerging science requirements are presented.

  7. Modulating terrestrial impacts from Oort cloud comets by the adiabatically changing galactic tides

    NASA Astrophysics Data System (ADS)

    Matese, J. J.; Whitman, P. G.; Innanen, K. A.; Valtonen, M. J.

    Time modulation of the flux of new Jupiter-dominated Oort cloud comets is the subject of interest here. The major perturbation of these comets during the present epoch is due to the tidal field of the relatively smooth distribution of matter in the galactic disk. A secondary source of the near-parabolic comet flux are stars penetrating the inner Oort cloud and providing impulses that create brief comet showers. Substantial stellar-induced showers occur approximately every 100 m.y. Less frequent (but stronger) impulses due to giant molecular clouds can also perturb comets from the inner cloud. These occur on timescales of approximately equal to 500 m.y. In contrast to these infrequent stochastic shower phenomena is the continuously varying tidal-induced flux due to the galaxy. As the Sun orbits the galactic center it undergoes quasiharmonic motion about the galactic midplane, which is superimposed on the small eccentricity, near-Keplerian motion in the plane having epicycle period approximately equal to 150 m.y. In the process the galactic tidal field on the Sun/cloud system will vary causing a modulation of the observable Oort cloud flux. We have created a model of the galactic matter distribution as it affects the solar motion over a time interval ranging from 300 m.y. in the past to 100 m.y. into the future. As constraints on the disk's compact dark matter component we require consistency with the following: (1) the observed galactic rotation curve, (2) today's flux distribution of new comets, (3) the studies of K-giant distributions, and (4) the periodicity found in the terrestrial cratering record. The adiabatically varying galactic tidal torque is then determined and used to predict the time dependence of the flux. We find that a model in which approximately half the disk matter is compact is consistent with these constraints. Under such circumstances the peak-to-trough flux variation will be approx. equal to 5:1 with a full width of 9 m.y. This variability will manifest in the terrestrial cratering record and is consistent with the observed cratering periodicity, if over half of the impacts on Earth are caused by comets or asteroids that originate in the outer Oort cloud.

  8. Amateur astronomers in support of observing campaigns

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P.

    2014-07-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON. The success of the paradigm shift in scientific research is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access, and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: - the establishment of a network of astronomers and related professionals that can be galvanized into action on short notice to support observing campaigns; - assist in various science investigations pertinent to the campaign; - provide an alert-sounding mechanism should the need arise; - immediate outreach and dissemination of results via our media/blogger members; - provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been identified: (1) C/2013 A1 (C/Siding Spring) and (2) 67P/Churyumov-Gerasimenko (CG). The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA (Pro-Am Collaborative Astronomy) portal that currently is focused on comets: from supporting observing campaigns for current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers. The recent observation of comet 67P, at a magnitude of 21.2, from Siding Spring, Australia, via robotic telescope network, also detected several asteroids in a crowded star field (SSI, Press Release, May 2014). These may be useful in support of the ESA/Gaia mission, which will characterize asteroids and comets to a magnitude of 20. While its network of amateur astronomers has already been established (Thuillot, 2005, ESASP, 576), such observations by robotic telescope networks can provide both astrometry and subsequent science analysis of the data acquired. An additional benefit of amateur network will be to unequivocally recognize asteroids and comets via complementary imaging that is not possible for the mission itself.

  9. Star-Mapping Tools Enable Tracking of Endangered Animals

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Software programmer Jason Holmberg of Portland, Oregon, partnered with a Goddard Space Flight Center astrophysicist to develop a method for tracking the elusive whale shark using the unique spot patterns on the fish s skin. Employing a star-mapping algorithm originally designed for the Hubble Space Telescope, Holmberg created the Shepherd Project, a photograph database and pattern-matching system that can identify whale sharks by their spots and match images contributed to the database by photographers from around the world. The system has been adapted for tracking other rare and endangered animals, including polar bears and ocean sunfish.

  10. Artificial Immune System for Recognizing Patterns

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2005-01-01

    A method of recognizing or classifying patterns is based on an artificial immune system (AIS), which includes an algorithm and a computational model of nonlinear dynamics inspired by the behavior of a biological immune system. The method has been proposed as the theoretical basis of the computational portion of a star-tracking system aboard a spacecraft. In that system, a newly acquired star image would be treated as an antigen that would be matched by an appropriate antibody (an entry in a star catalog). The method would enable rapid convergence, would afford robustness in the face of noise in the star sensors, would enable recognition of star images acquired in any sensor or spacecraft orientation, and would not make an excessive demand on the computational resources of a typical spacecraft. Going beyond the star-tracking application, the AIS-based pattern-recognition method is potentially applicable to pattern- recognition and -classification processes for diverse purposes -- for example, reconnaissance, detecting intruders, and mining data.

  11. BEYOND THE MAIN SEQUENCE: TESTING THE ACCURACY OF STELLAR MASSES PREDICTED BY THE PARSEC EVOLUTIONARY TRACKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghezzi, Luan; Johnson, John Asher, E-mail: lghezzi@cfa.harvard.edu

    2015-10-20

    Characterizing the physical properties of exoplanets and understanding their formation and orbital evolution requires precise and accurate knowledge of their host stars. Accurately measuring stellar masses is particularly important because they likely influence planet occurrence and the architectures of planetary systems. Single main-sequence stars typically have masses estimated from evolutionary tracks, which generally provide accurate results due to their extensive empirical calibration. However, the validity of this method for subgiants and giants has been called into question by recent studies, with suggestions that the masses of these evolved stars could have been overestimated. We investigate these concerns using a samplemore » of 59 benchmark evolved stars with model-independent masses (from binary systems or asteroseismology) obtained from the literature. We find very good agreement between these benchmark masses and the ones estimated using evolutionary tracks. The average fractional difference in the mass interval ∼0.7–4.5 M{sub ⊙} is consistent with zero (−1.30 ± 2.42%), with no significant trends in the residuals relative to the input parameters. A good agreement between model-dependent and -independent radii (−4.81 ± 1.32%) and surface gravities (0.71 ± 0.51%) is also found. The consistency between independently determined ages for members of binary systems adds further support for the accuracy of the method employed to derive the stellar masses. Taken together, our results indicate that determination of masses of evolved stars using grids of evolutionary tracks is not significantly affected by systematic errors, and is thus valid for estimating the masses of isolated stars beyond the main sequence.« less

  12. Highlights from 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    2016-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET (Aerosol Robotic Network)-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyperspectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT). From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy's TCAP (Two-Column Aerosol Project) I & II campaigns, and NASA's SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) and ARISE (Arctic Radiation - IceBridge Sea & Ice Experiment) campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2 (High Spectral Resolution Lidar), and from in situ measurements.

  13. Secular light curves of comets, II: 133P/Elst Pizarro, an asteroidal belt comet

    NASA Astrophysics Data System (ADS)

    Ferrín, Ignacio

    2006-12-01

    We present the secular light curve (SLC) of 133P/Elst-Pizarro, and show ample and sufficient evidence to conclude that it is evolving into a dormant phase. The SLC provides a great deal of information to characterize the object, the most important being that it exhibits outburst-like activity without a corresponding detectable coma. 133P will return to perihelion in July of 2007 when some of our findings may be corroborated. The most significant findings of this investigation are: (1) We have compiled from 127 literature references, extensive databases of visual colors (37 comets), rotational periods and peak-to-valley amplitudes (64 comets). 2-Dimensional plots are created from these databases, which show that comets do not lie on a linear trend but in well defined areas of these phase spaces. When 133P is plotted in the above diagrams, its location is entirely compatible with those of comets. (2) A positive correlation is found between cometary rotational periods and diameters. One possible interpretation suggest the existence of rotational evolution predicted by several theoretical models. (3) A plot of the historical evolution of cometary nuclei density estimates shows no trend with time, suggesting that perhaps a consensus is being reached. We also find a mean bulk density for comets of <ρ>=0.52±0.06 g/cm. This value includes the recently determined spacecraft density of Comet 9P/Tempel 1, derived by the Deep Impact team. (4) We have derived values for over 18 physical parameters, listed in the SLC plots, Figs. 6-9. (5) The secular light curve of 133P/Elst-Pizarro exhibits a single outburst starting at +42±4 d (after perihelion), peaking at LAG=+155±10 d, duration 191±11 d, and amplitude 2.3±0.2 mag. These properties are compatible with those of other low activity comets. (6) To explain the large time delay in maximum brightness, LAG, two hypothesis are advanced: (a) the existence of a deep ice layer that the thermal wave has to reach before sublimation is possible, or (b) the existence of a sharp polar active region pointing to the Sun at time = LAG, that may take the form of a polar ice cap, a polar fissure or even a polar crater. The diameter of this zone is calculated at ˜1.8 km. (7) A new time-age is defined and it its found that T-AGE = 80 cy for 133P, a moderately old comet. (8) We propose that the object has its origin in the main belt of asteroids, thus being an asteroid-comet hybrid transition object, an asteroidal belt comet (ABC), proven by its large density. (9) Concerning the final evolutionary state of this object, to be a truly extinct comet the radius must be less than the thermal wave depth, which at 1 AU is ˜250 m (at the perihelion distance of 133P the thermal wave penetrates only ˜130 m). Comets with radius larger than this value cannot become extinct but dormant. Thus we conclude that 133P cannot evolve into a truly extinct comet because it has too large a diameter. Instead it is shown to be entering a dormant phase. (10) We predict the existence of truly extinct comets in the main belt of asteroids (MBA) beginning at absolute magnitude ˜21.5 (diameter smaller than ˜190 m). (11) The object demonstrates that a comet may have an outburst of ˜2.3 mag, and not show any detectable coma. (12) Departure from a photometric R law is a more sensitive method (by a factor of 10) to detect activity than star profile fitting or spectroscopy. (13) Sufficient evidence is presented to conclude that 133P is the first member of a new class of objects, an old asteroidal belt comet, ABC, entering a dormant phase.

  14. Bright Comet ISON

    NASA Image and Video Library

    2013-11-22

    Comet ISON shines brightly in this image taken on the morning of 19 Nov. 2013. This is a 10-second exposure taken with the Marshall Space Flight Center 20" telescope in New Mexico. The camera there is black and white, but the smaller field of view allows for a better "zoom in" on the comet's coma, which is essentially the head of the comet. Credit: NASA/MSFC/MEO/Cameron McCarty -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Abundant Cool Magnesium-Rich Pyroxene Crystals in Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.

    1999-01-01

    Modeling of the observed dust emission from Comet Hale-Bopp over a large range of heliocentric distances (2.8 AU - 0.93 AU -1.7 AU) led to the discovery of Mg-rich pyroxene crystals in the coma These pyroxene crystals are apparent in the 10 micron spectrum only when the comet is close to perihelion (r(sub h) = 1.2 AU) because they are cooler than the other silicate minerals. The pyroxene crystals are cooler than the other species because of their high Mg-content. They do not absorb as efficiently as the other silicate minerals. Given the same high Mg content of Mg/(Mg + Fe) = 0.9, radiative equilibrium computations show that pyroxene crystals are expected to be 150 K cooler than olivine crystals. The pyroxene crystals are also about 10x more abundant than the other silicate mineral species. Their high Mg content and relatively large abundance are in agreement with the preponderance of pyroxene interplanetary dust particles (IDPs) and the recent reanalysis of the PUMA-I flyby of Comet Halley. Before Hale-Bopp, only olivine crystals were detected spectroscopically in comets, probably because the pyroxene crystals are less optically active, hence significantly cooler and harder to detect in contrast to the warmer silicate species. Determining the relative abundances of silicate minerals depends on their Mg contents. If the pyroxene crystals in Comet Hale-Bopp are solar nebula condensates, then they probably had to form during the early FU Orionis epoch when the inner disk was hot enough and be transported out to the region of formation of icy planetesimals without being reheated. Reheating events appear to reincorporate Fe back into the crystals or form Fe-rich rims, which are not consistent with the high-Mg-content crystals. The condensation of Mg-rich pyroxene crystals is expected from solar nebula thermal equilibrium computations. However, their subsequent transport to the outer solar nebula unaltered has yet to be theoretically demonstrated. The discovery of Mg-rich crystals in Comet Hale-Bopp and in AGB stars opens the possibility that these crystals are relic interstellar grains. One-third of IDPs have been shown to have significant deuterium enrichments, thus indicating that they contain presolar material. By spectroscopic analogy to IDPs the Mg-rich pyroxene crystals in Comet Hale-Bopp may be presolar grains. If so, then the comet contains largely ISM silicates. ISM grains may have been the dominant source of dust in the outer early solar nebula.

  15. Near-Earth Asteroid Tracking (NEAT): First Year Results

    NASA Astrophysics Data System (ADS)

    Helin, E. F.; Rabinowitz, D. L.; Pravdo, S. H.; Lawrence, K. J.

    1997-07-01

    The successful detection of Near-Earth Asteroids (NEAs) has been demonstrated by the Near-Earth Asteroid Tracking (NEAT) program at the Jet Propulsion Laboratory during its first year of operation. The NEAT CCD camera system is installed on the U. S. Air Force 1-m GEODSS telescope in Maui. Using state-of-the-art software and hardware, the system initiates nightly transmitted observing script from JPL, moves the telescopes for successive exposures of the selected fields, detects moving objects as faint as V=20.5 in 40 s exposures, determines their astrometric positions, and downloads the data for review at JPL in the morning. The NEAT system is detecting NEAs larger than 200m, comets, and other unique objects at a rate competitive with current operating systems, and bright enough for important physical studies on moderate-sized telescopes. NEAT has detected over 10,000 asteroids over a wide range of magnitudes, demonstrating the excellent capability of the NEAT system. Fifty-five percent of the detections are new objects and over 900 of them have been followed on a second night to receive designation from the Minor Planet Center. 14 NEAs (9 Amors, 4 Apollos, and 1 Aten) have been discovered since March 1996. Also, 2 long period comets and 1996 PW, an asteroidal object with an orbit of a long-period comet, with an eccentricity of 0.992 and orbital period of 5900 years. Program discoveries will be reviewed along with analysis of results pertaining to the discovery efficiency, distribution on the sky, range of orbits and magnitudes. Related abstract: Lawrence, K., et al., 1997 DPS

  16. Science Benefits of Onboard Spacecraft Navigation

    NASA Technical Reports Server (NTRS)

    Cangahuala, Al; Bhaskaran, Shyam; Owen, Bill

    2012-01-01

    Primitive bodies (asteroids and comets), which have remained relatively unaltered since their formation, are important targets for scientific missions that seek to understand the evolution of the solar system. Often the first step is to fly by these bodies with robotic spacecraft. The key to maximizing data returns from these flybys is to determine the spacecraft trajectory relative to the target body-in short, navigate the spacecraft- with sufficient accuracy so that the target is guaranteed to be in the instruments' field of view. The most powerful navigation data in these scenarios are images taken by the spacecraft of the target against a known star field (onboard astrometry). Traditionally, the relative trajectory of the spacecraft must be estimated hours to days in advance using images collected by the spacecraft. This is because of (1)!the long round-trip light times between the spacecraft and the Earth and (2)!the time needed to downlink and process navigation data on the ground, make decisions based on the result, and build and uplink instrument pointing sequences from the results. The light time and processing time compromise navigation accuracy considerably, because there is not enough time to use more accurate data collected closer to the target-such data are more accurate because the angular capability of the onboard astrometry is essentially constant as the distance to the target decreases, resulting in better "plane-of- sky" knowledge of the target. Excellent examples of these timing limitations are high-speed comet encounters. Comets are difficult to observe up close; their orbits often limit scientists to brief, rapid flybys, and their coma further restricts viewers from seeing the nucleus in any detail, unless they can view the nucleus at close range. Comet nuclei details are typically discernable for much shorter durations than the roundtrip light time to Earth, so robotic spacecraft must be able to perform onboard navigation. This onboard navigation can be accomplished through a self- contained system that by eliminating light time restrictions dramatically improves the relative trajectory knowledge and control and subsequently increases the amount of quality data collected. Flybys are one-time events, so the system's underlying algorithms and software must be extremely robust. The autonomous software must also be able to cope with the unknown size, shape, and orientation of the previously unseen comet nucleus. Furthermore, algorithms must be reliable in the presence of imperfections and/or damage to onboard cameras accrued after many years of deep-space operations. The AutoNav operational flight software packages, developed by scientists at the Jet Propulsion Laboratory (JPL) under contract with NASA, meet all these requirements. They have been directly responsible for the successful encounters on all of NASA's close-up comet-imaging missions (see Figure !1). AutoNav is the only system to date that has autonomously tracked comet nuclei during encounters and performed autonomous interplanetary navigation. AutoNav has enabled five cometary flyby missions (Table!1) residing on four NASA spacecraft provided by three different spacecraft builders. Using this software, missions were able to process a combined total of nearly 1000 images previously unseen by humans. By eliminating the need to navigate spacecraft from Earth, the accuracy gained by AutoNav during flybys compared to ground-based navigation is about 1!order of magnitude in targeting and 2!orders of magnitude in time of flight. These benefits ensure that pointing errors do not compromise data gathered during flybys. In addition, these benefits can be applied to flybys of other solar system objects, flybys at much slower relative velocities, mosaic imaging campaigns, and other proximity activities (e.g., orbiting, hovering, and descent/ascent).

  17. The Role of Coherent Detection

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    2004-01-01

    Many interesting astronomical objects, such as galaxies, molecular clouds, PDRs, star - forming regions, protostars, evolved stars, planets, and comets, have rich submillimeter spectra. In order to avoid line blending, and to be able to resolve the line shape, it is often necessary to measure these spectra at high resolution. This paper discusses the relative advantages and limitations of coherent and direct detection for high resolution spectroscopy in the submillimeter and far - infrared. In principle, direct detection has a fundamental sensitivity advantage. In practice, it is di.cult to realize this advantage given the sensitivities of existing detectors and reasonable constraints on the instrument volume. Thus, coherent detection can be expected to play an important role in submillimeter and far - infrared astrophysics well into the future.

  18. News and Views: Gemini hits 1000 papers; Comet Elenin? Forget it! Sellers launches course; Merry Christmas from 18th-century Lapland; ET: where are they all hiding? SETI in the city; Complex organic molecules may not mean life

    NASA Astrophysics Data System (ADS)

    2011-12-01

    No-one has yet found artefacts from an alien civilization, but have we looked hard enough? Astronomers seeking signs of extraterrestrial intelligence have suggested a novel approach: look for alien cities. The search for signs of life in the universe has included the detection of complex organic molecules, seen as a step on the way to living things. But now analysis of spectral signatures known as Unidentified Infrared Emission features found in stars, interstellar space and galaxies suggest that complex organic molecules can be made in stars in a matter of weeks without the presence of life.

  19. Molecular Gas Clumps from the Destruction of Icy Bodies in the beta Pictoris Debris Disk

    NASA Technical Reports Server (NTRS)

    Dent, W. R. F.; Wyatt, M. C.; Roberge, A.; Augereau, J. -C.; Casassus, S.; Corder, S.; Greaves, J. S.; DeGregorio-Monsalvo, I.; Hales, A.; Jackson, A. P.; hide

    2014-01-01

    Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets and dwarf planets. But is gas also released in such events? Observations at sub-mm wavelengths of the archetypal debris disk around ß Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85 AU from the star, in a plane closely aligned with the orbit of the inner planet, beta Pic b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet, or from the remnants of a collision of Mars-mass planets.

  1. 10 micron Spectroscopy with OSCIR: Silicate Minerology and The Origins of Disks & Protoplanetesimals

    NASA Astrophysics Data System (ADS)

    Woodward, Chick; Wooden, Diane; Harker, David; Rodgers, Bernadette; Butner, Harold

    1999-02-01

    The analysis of the silicate mineralogy of pre-main sequence Herbig Ae/Be (HeAeBe) stars to main sequence (beta)-Pic systems, probes the chemical and physical conditions in these potentially planet-forming environments, the condensation of dust from the gas-disk, and the aggregation and accretion of these solids into planetesimals and comets. We propose to obtain 10 micron OSCIR spectra of a selected list of HeAeBe and (beta)-Pic like systems. Use of our ground-based data, combined with the ISO SWS database, and our extensive analytical modeling efforts will permit us to develop a fundamental understanding of connections between silicate mineralogy and the origins and evolution of disks and protoplanetesimals. This program will provide a framework to extend our understanding of planetary formation processes and the mineralogy of dust in differing circumstellar environs and comets to be studied with the NASA STARDUST and SIRTF missions.

  2. STARS: A Year in Review

    ERIC Educational Resources Information Center

    Association for the Advancement of Sustainability in Higher Education, 2011

    2011-01-01

    The Sustainability Tracking, Assessment & Rating System[TM] (STARS) is a program of AASHE, the Association for the Advancement of Sustainability in Higher Education. AASHE is a member-driven organization with a mission to empower higher education to lead the sustainability transformation. STARS was developed by AASHE with input and insight from…

  3. The Monthly Sky Guide: Sixth Edition

    NASA Astrophysics Data System (ADS)

    Ridpath, Ian; Tirion, Wil

    2003-06-01

    The latest edition of Ian Ridpath and Wil Tirion's popular guide to the night sky is updated for planet positions and forthcoming eclipses up to the end of the year 2007. With one chapter for each month of the year, this is an easy-to-use handbook for anyone wanting to identify constellations, star clusters, nebulae, to plot the movement of planets, or witness solar and lunar eclipses. Most of the features discussed are visible to the naked eye and all can be seen with a small telescope or binoculars. Ian Ridpath has been a full-time writer, broadcaster and lecturer on astronomy and space for more than twenty-five years. He has written and edited more than 40 books, including A Comet Called Haley (Cambridge, 1985). Wil Tirion made his first star map in 1977. It showed stars to the magnitude of 6.5 and was issued as a set of maps by the British Astronomical Association in 1981. He has illustrated numerous books and magazines, including The Cambridge Star Atlas (Cambridge, 2001). Previous Edition Pb (1999): 0-521-66771-2

  4. Comet ISON Passes Through Virgo

    NASA Image and Video Library

    2013-11-22

    Date: 8 Nov 2013 - Comet ISON shines in this five-minute exposure taken at NASA's Marshall Space Flight Center on Nov. 8, 2013.. The image was captured using a color CCD camera attached to a 14" telescope located at Marshall. At the time of this picture, comet ISON was 97 million miles from Earth, moving ever closer toward the sun. Credit: NASA/MSFC/Aaron Kingery -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Comet ISON Enhanced

    NASA Image and Video Library

    2013-11-22

    Taken on 19 Nov. 2013, this image shows a composite "stacked" image of comet ISON. These five stacked images of 10 seconds each were taken with the 20" Marshall Space Flight Center telescope in New Mexico. This technique allows the comet's sweeping tail to emerge with more detail. Credit: NASA/MSFC/MEO/Cameron McCarty -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Mass Spectum Imaging of Organics Injected into Stardust Aerogel by Cometary Impacts

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Nakamura-Messenger, K.; Messenger, S.

    2014-01-01

    Comets have largely escaped the hydrothermal processing that has affected the chemistry and mineralogy of even the most primitive meteorites. Consequently, they are expected to better preserve nebular and interstellar organic materials. Organic matter constitutes roughly 20-30% by weight of vol-atile and refractory cometary materials [1,2]. Yet organic matter identified in Stardust aerogel samples is only a minor component [3-5]. The dearth of intact organic matter, fine-grained and pre-solar materials led to suggestions that comet 81P/Wild-2 is com-posed largely of altered materials, and is more similar to meteorites than the primitive view of comets [6]. However, fine-grained materials are particularly susceptible to alteration and destruction during the hypervelocity impact. While hypervelocity capture can cause thermal pyrolysis of organic phases, some of the impacting organic component appears to have been explosively dispersed into surrounding aerogel [7]. We used a two-step laser mass spectrometer to map the distribution of organic matter within and sur-rounding a bulbous Stardust track to constrain the dispersion of organic matter during the impact.

  6. Deep Space 1 Using its Ion Engine Artist Concept

    NASA Image and Video Library

    2003-07-02

    NASA's New Millennium Deep Space 1 spacecraft approaching the comet 19P/Borrelly. With its primary mission to serve as a technology demonstrator--testing ion propulsion and 11 other advanced technologies--successfully completed in September 1999, Deep Space 1 is now headed for a risky, exciting rendezvous with Comet Borrelly. NASA extended the mission, taking advantage of the ion propulsion and other systems to target the daring encounter with the comet in September 2001. Once a sci-fi dream, the ion propulsion engine has powered the spacecraft for over 12,000 hours. Another onboard experiment includes software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The first flight in NASA's New Millennium Program, Deep Space 1 was launched October 24, 1998 aboard a Boeing Delta 7326 rocket from Cape Canaveral Air Station, FL. Deep Space 1 successfully completed and exceeded its mission objectives in July 1999 and flew by a near-Earth asteroid, Braille (1992 KD), in September 1999. http://photojournal.jpl.nasa.gov/catalog/PIA04604

  7. Fallen star legends and traditional religion of Japan: an aspect of star lore

    NASA Astrophysics Data System (ADS)

    Goto, Akira

    2015-08-01

    Japanese star lore is a complex mixture of animism, Buddhism, Shinto-ism, Confucianism and folk beliefs. Although some studies have been done on rituals concerning constellation developed in esoteric Buddhism (e.g. Journal Culture and Cosmos, Vol. 10 no 1 and 2), studies on other aspects of Japanese star lore are limited, in particular, to the English audience.In historic literatures, there often mentioned abnormal astronomical phenomena, such as, eclipse, meteors and comets. In this paper, I will discuss the possibility of reference to these astronomical phenomena in order to talk about some historical facts.In western part of Japan, there are Shinto shrines and Buddhistic temples that are said to be built as monuments of fallen stars. Usually fallen stars were divided into three, and a trio of shrines/temples are said to be the remnants of this phenomenon. Similar legends are found in Kudamatsu (that means "fallen pine=pine where stars fallen") of Yamaguchi Prefecture, Bisei-cho (that means "beautiful star") of Okayama Prefecture, Hoshida (that means "rice field or village of star") shrine of Osaka, and also Hoshida shrine of Nagoya.The purpose of this presentation is not to argue whether fallen star legend was truly astronomical phenomenon, such as, meteor or not. Instead, I will discuss why similar legends have been talked concerning the origin of particular shrines or temples. Citing Eliade who related gorge and alchemy producing spark to astronomical phenomena, I will disclose the possibility to relate these astronomical legends to the coming of the naturalized Japanese from Korean Peninsula who introducd forge to Japan abound 5 to 6 centuries.

  8. Comet nuclear magnitudes and a new size distribution using archived NEAT data.

    NASA Astrophysics Data System (ADS)

    Bambery, R. J.; Hicks, M. D.; Pravdo, S. H.; Helin, E. F.; Lawrence, K. J.

    2002-09-01

    A reliable estimate of the size distribution of cometary nuclei provides important constraints on the formation and dynamical/physical evolution of these bodies as well as their relative proportions in the near-Earth population. The basic data of nuclear sizes has been difficult to obtain, due to the shroud of dust that envelopes the nucleus across a wide range of heliocentric distances. Only two comets, P/Halley and P/Borrelly, have had direct imaging of their nuclei from spacecraft encounters, though high spatial-resolution imaging by the Hubble Space Telescope has also yielded very reliable diameters [1]. Other observers have recently used ground-based photometry to obtain cumulative size-frequency distributions which are not in agreement [2,3]. One possible source of error is the need to include data from a wide range of telescopes and reduction techniques. We shall obtain a new estimate of the size-frequency distribution using a self-consistent data-set. The Near-Earth Asteroid Tracking (NEAT) Program at the Jet Propulsion laboratory remotely operates two 1.2-meter telescopes at widely geographically separated locations on a near-nightly basis. All NEAT data is archived and publically available through the SKYMORPH website (http:/skyview.gsfc.nasa.gov/skymorph/skymorph.html) Though optimized to discover near-Earth asteroids, we have obtained over 300 CCD images of approximately 40 short and long-period comets over the last 15 months. Though we model coma contamination for all images, we shall concentrate on the fraction of comets at heliocentric distances greater than 3 AU. Our data will be used to derive an independent comet size-frequency distribution .

  9. YoungStar: We're Turning Five! Five Year Analysis as of July 2015. YoungStar Progress Report 6

    ERIC Educational Resources Information Center

    Wisconsin Council on Children and Families, 2015

    2015-01-01

    This report is the sixth in a series of Wisconsin Council on Children & Families (WCCF) reports tracking the progress of Wisconsin's YoungStar program, a quality rating and improvement system (QRIS) launched in 2010 to improve the quality of Wisconsin child care programs. YoungStar focuses on children of low-income working families receiving…

  10. Comets - Mementos of creation

    NASA Astrophysics Data System (ADS)

    Sagan, C.; Druyan, A.

    1989-04-01

    Consideration is given to the Kant-Laplace hypothesis that the sun once had a ring system from which the planets condensed. It is suggested that the theory is supported by the IRAS observation of an accretion disk around Vega, which implies that ordinary stars are surrounded by a disk during and immediately after formation. A model for planetary formation from a disk is presented. The possibility that cometary bodies may have been ejected into the Oort Cloud during planetary formation is examined.

  11. Earth Observations taken by Expedition 30 crewmember

    NASA Image and Video Library

    2011-12-26

    ISS030-E-020039 (26 Dec. 2011) --- This busy night time panorama was photographed by one of the Expedition 30 crew members from the International Space Station on Dec. 26, 2011. Comet Lovejoy streaks through the star-filled sky just to the right of center. The land mass is the coast of Chile, looking southeast, with several coastal cities in the capital city region near Santiago. A 28-mm focal length was used to record the image.

  12. Aedes Hartwellianae

    NASA Astrophysics Data System (ADS)

    Smyth, William Henry

    2014-02-01

    1. Details respecting the parish and manor of Hartwell: locality, geology, produce, and general statistics; 2. The successive lords of the manor of Hartwell, from the Conquest to the present time: Peverel, De Hertewell, Luton, Hampden, and Lee; 3. Particulars respecting Hartwell House: its appartments, paintings, library, museum, numismata, and Egyptian antiquities; 4. Origin of the Hartwell Observatory. The transit-room. The equatorial tower. Mr Epps's meridional observations. The double-stars measured by Captain Smyth. Encke's comet. The meteorological department; Appendix; Index.

  13. Worldwide Report, Arms Control.

    DTIC Science & Technology

    1985-11-22

    dinosaurs (and a large number of other species which disappeared "simultaneously") might have become extinct because a large comet hit the earth’s...clear yet aeain the reasons why Washington is in such haste in the arms race for "star wars" and why it refuses to assume a commitment not to be...Kolesnichenko says: [Begin Kolesnichenko recording in Russian with English translation] In an effort to calm the American public and provide a logical reason

  14. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Malayeri, M. L.; Pahlevan, K. M. A.; Jacobson, W. C.

    2004-05-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses, classes for undergraduate majors, and High Schools. Here we briefly describe a few of the more popular tools. The Life of the Sun (New!): The history of the Sun is animated as a movie, showing students how the size and color of our star has evolved and will evolve in time. Animated Orbits of Planets and Moons: The orbital motions of planets, moons, asteroids, and comets are animated at their correct relative speeds in accurate to-scale drawings. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country of impact (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Astronomical Distances: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. Funding for the Astronomy Workshop is provided by NSF.

  15. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.

    2005-05-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses, classes for undergraduate majors, and High Schools. Here we briefly describe a few of the more popular tools. The Life of the Sun (New!): The history of the Sun is animated as a movie, showing students how the size and color of our star has evolved and will evolve in time. Animated Orbits of Planets and Moons: The orbital motions of planets, moons, asteroids, and comets are animated at their correct relative speeds in accurate to-scale drawings. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country of impact (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Astronomical Distances: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. Funding for the Astronomy Workshop is provided by a NASA EPO grant.

  16. Enthusiasm for Europe's space telescope ISO

    NASA Astrophysics Data System (ADS)

    1996-11-01

    "Are the most luminous galaxies powered by extreme rates of star formation, or do they harbour black-hole-powered active nuclei as well?" Scientists lead by Reinhard Genzel at Max Planck Institut fur extra terrestrische Physik in Garching, Germany, have used ISO's Short Wavelength Spectrometer to give an answer. Writing in the London journal Nature, an independent commentator, Gerry Gilmore of the Institute of Astronomy in Cambridge, considers that their papers in Astronomy and Astrophysics give a clear answer to this question. The "remarkable result" according to Gilmore is that none of three ultra-luminous infrared galaxies studied by ISO requires an active nucleus to account for the emissions, which arise from rapid star formation. About another ISO target Gilmore writes: "In one lovely example, of two intersecting disk galaxies known as the Antennae, it is even possible to resolve the spot where the two disks currently cross, and to see the progression of star formation across the disk as the two galaxies orbit through each other." (Nature, 21 November 1996, p. 211) One year after its launch, ISO is exceptionally popular among astronomers, not only in Europe but worldwide. A panel of American astronomers, reporting to NASA on the scientific merits of eight astrophysical space missions, gives ISO the highest ranking and calls it "the major infrared mission of the decade". At a time when NASA is reducing its budgets for some astrophysical missions, its funding of ISO-related research is increasing. The demand for a share in ISO's unique view of the infrared universe is insatiable. ESA has been overwhelmed by new proposals for observations, coming from 511 groups of astronomers in ESA's own Member States and in the USA and Japan. Although ISO is extremely efficient, performing an average of 45 observations a day, it could not cope with 16,000 observations requested as additions to ISO's already busy programme for 1997. The time allocation committee has had to turn down 75 per cent of the proposed observations. Nevertheless the allocations announced this month will meet the wishes of most groups of applicants at least in part. ISO is now about half way through its operating life. An Ariane 44P launcher put it into orbit on 17 November 1995. ISO's superfluid helium which keeps the telescope and instruments cold, will last about six months longer than required in the specification. Operations are expected to continue until December 1997, with the benefit that the chemically rich and starmaking clouds of the important Orion region of the sky will be observable by ISO. Tracing the origin of planets Observations of the Antennae galaxies, and some of the other ISO results now described in full technical detail in Astronomy and Astrophysics, were outlined in earlier ESA Information Notes, 02-96 and 14-96. These include examinations of star formation in many galaxies and within dust clouds in our own Galaxy, the Milky Way. ISO has also given a big boost to astrochemistry by identifying infrared signatures of many materials, which play a physical as well as a chemical role in the evolution of galaxies and stars. The materials seen by ISO include ionized carbon atoms, sooty carbon compounds, hydrogen molecules, water molecules, and frozen carbon dioxide and methane. The latest results tell of mineral crystals, which may shed light on the origin of the Earth itself. Disks of dust around some stars, of the kind from which planets might evolve, were a major discovery in infrared astronomy by ISO's predecessor, the Dutch US UK satellite IRAS (1983). The prototype was the bright northern star Vega. It showed excess emissions of long-wavelength infrared rays, which could not come from the star itself. Subsequent studies confirmed the dust disks of Vega and a few other stars, and the search for more such disks is a major programme for ISO, relying particularly on measurements by the photometer ISOPHOT across a wide range of infrared wavelengths. Several new candidate Vega-like dust disks are reported in Astronomy and Astrophysics by Harm Habing of Leiden in the Netherlands, and his colleagues. Their preliminary conclusion is that the dust disks are a common feature of ordinary stars as massive as the Sun or heavier, but they are by no means ubiquitous. Further measurements on Vega itself show relatively low emissions at the longest wavelengths, which implies that the dust grains are small. In a related programme, a Belgian-led team has used ISO's Short-Wavelength Spectrometer to probe the composition of dust near very young stars. It reports the discovery of crystals of olivine, a silicate mineral and a major constituent of the Earth's own rocky mantle. The firm detection of olivine crystals builds a bridge from the stars to the minerals of the solar system. Most mineral grains in interstellar space lack the crystalline forms of common minerals, even if they have the same chemical composition. Hints of infrared emissions from olivine crystals, detected by ground-based telescopes at around 11 microns wavelength, are confused by emissions coming also from carbon compounds. ISO, with its unhampered view at longer wavelengths, sees signatures of magnesium-rich olivine crystals at 20, 24 and 34 microns. The minerals crystallize when gravity concentrates them near a young star, and intense radiation from the star modifies the grains. ISO also sees similar materials in the dust shells of old stars, in a project headed by the Dutch astronomer Rens Waters, who is also closely involved in the work on young stars. Apparently the mineral crystals do not survive in interstellar space, but have to be refashioned near young stars. The most clear-cut evidence for olivine crystals comes from the vicinity of HD 100546, a young blue star about 500 light-years away near the Southern Cross. It is thought to be only a few million years old and it is a strong infrared emitter. The star also shows peculiar ultraviolet absorptions, recorded by the NASA ESA UK International Ultraviolet Explorer, which apparently result from comets or asteroids splashing into HD 100546. "A tremendous cloud of comets seems to surround this young star," says Christoffel Waelkens of Leuven, Belgium, who leads the project that discovered the olivine crystals. "We believe that it was from just such a comet cloud, around the young Sun, that the Earth and the other planets were born. Now we compare notes with colleagues who study minerals in our local comets and meteorites. ISO has seen olivine in Comet Hale-Bopp. So not the least of ISO's successes is a reunification of stellar astrophysics and solar-system science." Newborn stars and stellar jets Astronomers in Stockholm, Sweden, are the lead authors of papers concerning the search for newborn stars and related phenomena in the southern constellation Chamaeleon. At about 800 light-years a feature called the Chamaeleon Dark Clouds, sprawling across more than one degree of the sky, is one of the closest regions of present-day star formation. The camera ISOCAM has obtained more than 23,000 images of the region, in two wavelength bands around 7 and 15 microns. Out of hundreds of objects detected, the team identified 65 young stars, of which more than 40 per cent were not previously known. Another lead author from Stockholm reports on the use of ISO's Long-Wavelength Spectrometer to examine a strange luminous patch in the Chamaeleon Dark Clouds called HH 54. It is a Herbig-Haro object, named after an American and a Mexican astronomer, in which a jet of gas from a very young star creates luminosity by shock waves, at a great distance from the star. ISO has for the first time detected emissions from water vapour in an HH object. This result not only confirms ISO's pioneering role as a cosmic water diviner, but gives new insight into the mechanisms creating the HH object. Practically all of the energy of a 10 kilometre-per-second shock is dissipated by infrared emissions from water vapour, hydroxyl and carbon monoxide molecules. A related paper, with a lead author from Frascati, Italy, compares HH 54 with other nearby objects HH 52 and HH 53, again using the Long-Wavelength Spectrometer. A conclusion is that HH 54 is energized by a young star different from the one that may be responsible for the other two objects. "The 91 papers published this month, covering observations from planets to galaxies, are still only a foretaste of many hundreds to be expected as the observing programmes and the data-processing mature," says Martin Kessler, ISO's project scientist based at Villafranca, Spain. "For example, ISOCAM is engaged on a systematic survey of a section of the Milky Way. In Astronomy and Astrophysics only one per cent of the survey is reported yet already there are thousands of infrared sources and plenty of surprises. Although ISO has only one more year of operation, its impact on astronomy will continue for many years." For further information about ISO contact: ESA PR (Paris): Simon Vermeer +33 1 5369 7106 ESA Project Scientist: Dr Martin Kessler +34 1 813 1253 Principal Investigator, Camera (ISOCAM): Prof. Catherine Cesarsky +33 1 6908 7515 Principal Investigator, Photometer (ISOPHOT): Prof. Dietrich Lemke +49 6221 528259 Principal Investigator, Short-Wavelength Spectrometer (SWS): Dr Thijs de Graauw +31 50 363 4074 Principal Investigator, Long-Wavelength Spectrometer (LWS): Prof. Peter Clegg +44 171 975 5038 For further information on the science discussed in this press release contact : The Nature article summarising the Astronomy and Astrophysics papers Dr Gerry Gilmore, +44 1 223 337 548 What powers ultraluminous galaxies ? Prof. Reinhard Genzel +49 89 329 93280 The Antenna interacting galaxies Dr Laurent Vigroux + 33 1 69 08 65 77 Vega-like dust disks around stars Prof. Harm Habing + 31 71 527 5803 Dust shells around old stars Dr Rens Waters + 31 20 525 7468 Clouds of Comets around the star HD 100546 Prof. Christoffel Waelkens +32 16 32 70 36

  17. Gravitational wave content and stability of uniformly, rotating, triaxial neutron stars in general relativity.

    PubMed

    Tsokaros, Antonios; Ruiz, Milton; Paschalidis, Vasileios; Shapiro, Stuart L; Baiotti, Luca; Uryū, Kōji

    2017-06-15

    Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work, we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogs in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth the average value of a merging binary system. We track their secular evolution and find that all our stars evolve toward axisymmetry, maintaining their uniform rotation, rotational kinetic energy, and angular momentum profiles while losing their triaxiality.

  18. Complex Protostellar Chemistry

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    Two decades ago, our understanding chemistry in protostars was simple -- matter either fell into the central star or was trapped in planetary-scale objects. Some minor chemical changes might occur as the dust and gas fell inward, but such effects were overwhelmed by the much larger-scale processes that occurred even in bodies as small as asteroids. The chemistry that did occur in the nebula was relatively easy to model because the fall from the cold molecular cloud into the growing star was a one-way trip down a well-known temperature pressure gradient; the only free variable was time. However, just over 10 years ago it was suggested that some material could be processed in the inner nebula, flow outward, and become incorporated into comets. This outward flow was confirmed when the Stardust mission returned crystalline mineral fragments from Comet Wild 2 that must have been processed close to the Sun before they were incorporated into the comet. In this week's Science Express, Ciesla and Sandford demonstrate that even the outermost regions of the solar nebula can be a chemically active environment. Their finding could have consequences for the rest of the nebula. Our understanding of the chemistry in protostellar systems has made enormous progress over the last few decades, fueled by an increased awareness of the complex dynamics of these evolving energetic nebulae. We can no longer consider just the simple local environment to explain the composition of a planet, asteroid, or comet as was done in the past, but must now consider chemical processes that might take place within the nebula as a whole as well as the probability of transport and mixing the products of such reactions throughout the system. just as we now find it impossible to explain the complex chemistry of the terrestrial atmosphere without reference to detailed transport models that interconnect highly dissimilar chemical environments, so chemical models of protostars and of the solar nebula must eventually treat these environments as tightly coupled, interactive systems. The demonstration that the chemistry on the surfaces of outward-flowing, dynamically mixing icy grain surfaces both mimics the chemistry in cold cloud cores and strikes at the central assumption of the photochemical self-shielding model for oxygen isotopes in solar system solids only adds emphasis to this conclusion.

  19. STARS: A Campus-Wide Integrated Continuous Planning Opportunity

    ERIC Educational Resources Information Center

    Martin, Richard J.

    2011-01-01

    In this article, the author talks about Sustainability Tracking, Assessment and Rating System or "STARS," a tool currently available that aims to help a campus answer the "how" and "how hard" questions. Created by AASHE (the Association for the Advancement of Sustainability in Higher Education), STARS presents guidelines and suggestions (based on…

  1. Mitigation of Angle Tracking Errors Due to Color Dependent Centroid Shifts in SIM-Lite

    NASA Technical Reports Server (NTRS)

    Nemati, Bijan; An, Xin; Goullioud, Renaud; Shao, Michael; Shen, Tsae-Pyng; Wehmeier, Udo J.; Weilert, Mark A.; Wang, Xu; Werne, Thomas A.; Wu, Janet P.; hide

    2010-01-01

    The SIM-Lite astrometric interferometer will search for Earth-size planets in the habitable zones of nearby stars. In this search the interferometer will monitor the astrometric position of candidate stars relative to nearby reference stars over the course of a 5 year mission. The elemental measurement is the angle between a target star and a reference star. This is a two-step process, in which the interferometer will each time need to use its controllable optics to align the starlight in the two arms with each other and with the metrology beams. The sensor for this alignment is an angle tracking CCD camera. Various constraints in the design of the camera subject it to systematic alignment errors when observing a star of one spectrum compared with a start of a different spectrum. This effect is called a Color Dependent Centroid Shift (CDCS) and has been studied extensively with SIM-Lite's SCDU testbed. Here we describe results from the simulation and testing of this error in the SCDU testbed, as well as effective ways that it can be reduced to acceptable levels.

  2. Design concepts and performance of NASA X-band transponder (DST) for deep space spacecraft applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Perret, Jonathan D.; Kermode, Arthur W.

    1991-01-01

    The design concepts and measured performance characteristics of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DST) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the X band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB.

  3. An X-band spacecraft transponder for deep space applications - Design concepts and breadboard performance

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Perret, Jonathan D.; Kermode, Arthur W.

    1992-01-01

    The design concepts and measured performance characteristics are summarized of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DSP) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control, static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB.

  4. Advanced Earth Observation System Instrumentation Study (aeosis)

    NASA Technical Reports Server (NTRS)

    White, R.; Grant, F.; Malchow, H.; Walker, B.

    1975-01-01

    Various types of measurements were studied for estimating the orbit and/or attitude of an Earth Observation Satellite. An investigation was made into the use of known ground targets in the earth sensor imagery, in combination with onboard star sightings and/or range and range rate measurements by ground tracking stations or tracking satellites (TDRSS), to estimate satellite attitude, orbital ephemeris, and gyro bias drift. Generalized measurement equations were derived for star measurements with a particular type of star tracker, and for landmark measurements with a multispectral scanner being proposed for an advanced Earth Observation Satellite. The use of infra-red horizon measurements to estimate the attitude and gyro bias drift of a geosynchronous satellite was explored.

  5. In search of Nemesis

    NASA Technical Reports Server (NTRS)

    Carlson, S.; Culler, T.; Muller, R. A.; Tetreault, M.; Perlmutter, S.

    1994-01-01

    The parallax of all stars of visual magnitude greater than about 6.5 has already been measured. If Nemesis is a main-sequence star 1 parsec away, this requires Nemesis's mass to be less than about 0.4 solar masses. If it were less than about 0.05 solar masses its gravity would be too weak to trigger a comet storm. If Nemesis is on the main sequence, this mass range requires it to be a red dwarf. A red dwarf companion would probably have been missed by standard astronomical surveys. Nearby stars are usually found because they are bright or have high proper motion. However, Nemesis's proper motion would now be 0.01 arcsec/yr, and if it is a red dwarf its magnitude is about 10 - too dim to attract attention. Unfortunately, standard four-color photometry does not distinguish between red dwarfs and giants. So although surveys such as the Dearborn Red Star Catalog list stars by magnitude and spectral type, they do not identify the dwarfs. Every star of the correct spectral type and magnitude must be scrutinized. Our candidate list is a hybrid; candidate red stars are identified in the astrometrically poor Dearborn Red Star Catalog and their positions are corrected using the Hubble Guide Star Catalog. When errors in the Dearborn catalog make it impossible to identify the corresponding Hubble star, the fields are split so that we have one centering on each possible candidate. We are currently scrutinizing 3098 fields, which we believe contain all possible red dwarf candidates in the northern hemisphere. Since our last report the analysis and database software has been completely rebuilt to take advantage of updated hardware, to make the data more accessible, and to implement improved methods of data analysis. The software is now completed and we are eliminating stars every clear night.

  6. Oct. 9 Hubble View of ISON

    NASA Image and Video Library

    2013-11-22

    On Oct. 9, 2013, Hubble observed comet ISON once again, when it was inside the orbit of Mars, about 177 million miles from Earth. This image shows that the comet was still intact despite some predictions that the fragile icy nucleus might disintegrate closer to the sun. The comet will pass closest to the sun on Nov. 28, 2013. If the nucleus had broke apart then Hubble would have likely seen evidence of multiple fragments. Moreover, the coma, or head, surrounding the comet's nucleus is symmetric and smooth. This would probably not be the case if clusters of smaller fragments were flying along. This color composite image was assembled using two filters. The comet's coma appears cyan, a greenish-blue color due to gas, while the tail is reddish due to dust streaming off the nucleus. The tail forms as dust particles are pushed away from the nucleus by the pressure of sunlight. Credit: NASA -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: performance evaluation of the new REGA version 3 and seven other tools.

    PubMed

    Pineda-Peña, Andrea-Clemencia; Faria, Nuno Rodrigues; Imbrechts, Stijn; Libin, Pieter; Abecasis, Ana Barroso; Deforche, Koen; Gómez-López, Arley; Camacho, Ricardo J; de Oliveira, Tulio; Vandamme, Anne-Mieke

    2013-10-01

    To investigate differences in pathogenesis, diagnosis and resistance pathways between HIV-1 subtypes, an accurate subtyping tool for large datasets is needed. We aimed to evaluate the performance of automated subtyping tools to classify the different subtypes and circulating recombinant forms using pol, the most sequenced region in clinical practice. We also present the upgraded version 3 of the Rega HIV subtyping tool (REGAv3). HIV-1 pol sequences (PR+RT) for 4674 patients retrieved from the Portuguese HIV Drug Resistance Database, and 1872 pol sequences trimmed from full-length genomes retrieved from the Los Alamos database were classified with statistical-based tools such as COMET, jpHMM and STAR; similarity-based tools such as NCBI and Stanford; and phylogenetic-based tools such as REGA version 2 (REGAv2), REGAv3, and SCUEAL. The performance of these tools, for pol, and for PR and RT separately, was compared in terms of reproducibility, sensitivity and specificity with respect to the gold standard which was manual phylogenetic analysis of the pol region. The sensitivity and specificity for subtypes B and C was more than 96% for seven tools, but was variable for other subtypes such as A, D, F and G. With regard to the most common circulating recombinant forms (CRFs), the sensitivity and specificity for CRF01_AE was ~99% with statistical-based tools, with phylogenetic-based tools and with Stanford, one of the similarity based tools. CRF02_AG was correctly identified for more than 96% by COMET, REGAv3, Stanford and STAR. All the tools reached a specificity of more than 97% for most of the subtypes and the two main CRFs (CRF01_AE and CRF02_AG). Other CRFs were identified only by COMET, REGAv2, REGAv3, and SCUEAL and with variable sensitivity. When analyzing sequences for PR and RT separately, the performance for PR was generally lower and variable between the tools. Similarity and statistical-based tools were 100% reproducible, but this was lower for phylogenetic-based tools such as REGA (~99%) and SCUEAL (~96%). REGAv3 had an improved performance for subtype B and CRF02_AG compared to REGAv2 and is now able to also identify all epidemiologically relevant CRFs. In general the best performing tools, in alphabetical order, were COMET, jpHMM, REGAv3, and SCUEAL when analyzing pure subtypes in the pol region, and COMET and REGAv3 when analyzing most of the CRFs. Based on this study, we recommend to confirm subtyping with 2 well performing tools, and be cautious with the interpretation of short sequences. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Space-based infrared scanning sensor LOS determination and calibration using star observation

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Xu, Zhan; An, Wei; Deng, Xin-Pu; Yang, Jun-Gang

    2015-10-01

    This paper provides a novel methodology for removing sensor bias from a space based infrared (IR) system (SBIRS) through the use of stars detected in the background field of the sensor. Space based IR system uses the LOS (line of sight) of target for target location. LOS determination and calibration is the key precondition of accurate location and tracking of targets in Space based IR system and the LOS calibration of scanning sensor is one of the difficulties. The subsequent changes of sensor bias are not been taking into account in the conventional LOS determination and calibration process. Based on the analysis of the imaging process of scanning sensor, a theoretical model based on the estimation of bias angles using star observation is proposed. By establishing the process model of the bias angles and the observation model of stars, using an extended Kalman filter (EKF) to estimate the bias angles, and then calibrating the sensor LOS. Time domain simulations results indicate that the proposed method has a high precision and smooth performance for sensor LOS determination and calibration. The timeliness and precision of target tracking process in the space based infrared (IR) tracking system could be met with the proposed algorithm.

  8. Chirality and the origin of life

    NASA Astrophysics Data System (ADS)

    Bailey, Jeremy

    2000-06-01

    The homochirality of biological molecules (the use of only left handed amino acids and only right handed sugars) has long been known to be an important characteristic of life. Current ideas on the origin of life do not explain the origin of homochirality, yet the widely accepted 'RNA world' model cannot work without it. The recent discoveries of chiral asymmetry in the Murchison meteorite, and of strong circular polarization in star formation regions lead to a plausible model for an extraterrestrial origin of homochirality. UV light circularly polarized by scattering can introduce chiral asymmetry into interstellar molecules. These molecules can then be delivered to the surface of the Earth by comets and meteorites during the heavy bombardment phase in the first few hundred million years of the solar system. This model suggests that the probability of finding life on planets of other stars may depend on the polarization environment in the star formation region from which they came. Our solar system may well have been particularly favoured in having the right conditions for the emergence of life.

  9. Cometary compact H II regions are stellar-wind bow shocks

    NASA Technical Reports Server (NTRS)

    Van Buren, Dave; Mac Low, Mordecai-Mark; Wood, Douglas O. S.; Churchwell, ED

    1990-01-01

    Comet-shaped H II regions, like G34.3 + 0.2, are easily explained as bow shocks created by wind-blowing massive stars moving supersonically through molecular clouds. The required velocities of the stars through dense clumps are less than about 10 km/s, comparable to the velocity dispersion of stars in OB associations. An analytic model of bow shocks matches the gross characteristics seen in the radio continuum and the velocity structure inferred from hydrogen recombination and molecular line observations. The champagne flow model cannot account for these structures. VLBI observations of masers associated with the shells of cometary compact H II regions should reveal tailward proper motions predominantly parallel to the shell, rather than perpendicular. It is predicted that over a decade baseline, high signal-to-noise VLA observations of this class of objects will show headward pattern motion in the direction of the symmetry axis, but not expansion. Finally, shock-generated and coronal infrared lines are also predicted.

  10. Low-temperature crystallization of silicate dust in circumstellar disks.

    PubMed

    Molster, F J; Yamamura, I; Waters, L B; Tielens, A G; de Graauw, T; de Jong, T; de Koter, A; Malfait, K; van den Ancker, M E; van Winckel, H; Voors, R H; Waelkens, C

    1999-10-07

    Silicate dust in the interstellar medium is observed to be amorphous, yet silicate dust in comets and interplanetary dust particles is sometimes partially crystalline. The dust in disks that are thought to be forming planets around some young stars also appears to be partially crystalline. These observations suggest that as the dust goes from the precursor clouds to a planetary system, it must undergo some processing, but the nature and extent of this processing remain unknown. Here we report observations of highly crystalline silicate dust in the disks surrounding binary red-giant stars. The dust was created in amorphous form in the outer atmospheres of the red giants, and therefore must be processed in the disks to become crystalline. The temperatures in these disks are too low for the grains to anneal; therefore, some low-temperature process must be responsible. As the physical properties of the disks around young stars and red giants are similar, our results suggest that low-temperature crystallization of silicate grains also can occur in protoplanetary systems.

  11. Popular Astronomy

    NASA Astrophysics Data System (ADS)

    Newcomb, Simon

    2011-10-01

    Preface; Part I. The System of the World Historically Developed: Introduction; 1. The ancient astronomy, or the apparent motions of the heavenly bodies; 2. The Copernican system, or the true motions of the heavenly bodies; 3. Universal gravitation; Part II. Practical Astronomy: Introductory remarks; 1. The telescope; 2. Application of the telescope to celestial measurements; 3. Measuring distances in the heavens; 4. The motion of light; 5. The spectroscope; Part III. The Solar System: 1. General structure of the solar system; 2. The sun; 3. The inner group of planets; 4. The outer group of planets; 5. Comets and meteors; Part IV. The Stellar Universe: 1. The stars as they are seen; 2. The structure of the universe; 3. The cosmogony; Addendum to Part III chapter 2; Appendix; Index; Addendum II, the satellites of Mars; Explanation of the star maps.

  12. Dynamics of the Oort Cloud In the Gaia Era I: Close Encounters

    NASA Astrophysics Data System (ADS)

    Torres, S.; Portegies Zwart, S.; Brown, A. G. A.

    2018-04-01

    Comets in the Oort cloud evolve under the influence of internal and external perturbations from giant planets to stellar passages, the Galactic tides, and the interstellar medium.Using the positions, parallaxes and proper motions from TGAS in Gaia DR1 and combining them with the radial velocities from the RAVE-DR5, Geneva-Copenhagen and Pulkovo catalogues, we calculated the closest encounters the Sun has had with other stars in the recent past and will have in the near future. We find that the stars with high proper motions near to the present time are missing in the Gaia-TGAS, and those to tend to be the closest ones. The quality of the data allows putting better constraints on the encounter parameters, compared to previous surveys.

  13. Exploring the Night Sky with Binoculars

    NASA Astrophysics Data System (ADS)

    Moore, Patrick

    On a clear, starry night, the jewelled beauty and unimaginable immensity of our Universe is awe-inspiring. Star-gazing with binoculars is rewarding and may begin a lifelong hobby! Patrick Moore has painstakingly researched Exploring the Night Sky with Binoculars to describe how to use binoculars for astronomical observation. He explains basic astronomy and the selection of binoculars, then discusses the stars, clusters, nebulae and galaxies that await the observer. The sky seen from northern and southern hemispheres is charted season by season, with detailed maps of all the constellations. The reader can also observe the Sun, Moon, planets, comets and meteors. With many beautiful illustrations, this handbook will be helpful and encouraging to casual observers and those cultivating a more serious interest. The enjoyment of amateur astronomy is now available to everybody.

  14. Modeling the Thermodynamic Properties of the Inner Comae of Comets

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.

    2017-10-01

    Introduction: Modeling is central to understand the important properties of the cometary environment. We have developed a comet model, SUISEI, that self-consistently includes the relevant physicochemical processes within a global modeling framework, from the porous subsurface layers of the nucleus to the interaction with the solar wind. Our goal is to gain valuable insights into the intrinsic properties of cometary nuclei so we can better understand observations and in situ measurements. SUISEI includes a multifluid, reactive gas dynamics simulation of the dusty coma (ComChem) and a suite of other coupled numerical simulations. This model has been successfully applied to a variety of comets in previous studies over the past three decades. We present results from a quantitative study of the thermodynamic properties and chemistry of cometary comae as a function of cometocentric and heliocentric distance to aid in interpretation of observations and in situ measurements of comets.Results and Discussion: ComChem solves the fluid dynamic equations for the mass, momentum, and energy of three neutral fluids (H, H2, and the heavier bulk fluid), ions, and electrons. In the inner coma, the gas expands, cools, accelerates, and undergoes many photolytic and gas-phase chemical reactions tracking hundreds of sibling species. The code handles the transition to free molecular flow and describes the spatial distribution of species in the coma of a comet. Variations of neutral gas temperature and velocity with cometocentric distance and heliocentric distance for a comet approaching the Sun from 2.5 to 0.3 AU are presented. Large increases in the gas temperatures (>400 K) due to photolytic heating in the coma within ~0.5 AU are noted, with dramatic effects on the chemistry, optical depth, and other coma properties. Results are compared to observations when available.Conclusions: SUISEI has proven to be a unique and valuable model to understand the relevant physical processes and properties of small Solar System bodies, including near-Sun comets and asteroids.Acknowledgments: This work was supported by FAPESP under Grant No. 2015/03176-8 and the National Science Foundation Planetary Astronomy Program Grant No. 0908529.

  15. Chaotic motion of comets in near-parabolic orbit: Mapping aproaches

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Sun, Yi-Sui

    1994-09-01

    There exist many comets with near-parabolic orbits in the solar system. Among various theories proposed to explain their origin, the Oort cloud hypothesis seems to be the most reasonable. The theory assumes that there is a cometary cloud at a distance 103 to 107 from the sun and that perturbing forces from planets or stars make orbits of some of these comets become the near-parabolic type. Concerning the evolution of these orbits under planetary perturbations, we can raise the question: Will they stay in the solar system forever or will they escape from it? This is an attractive dynamical problem. If we go ahead by directly solving the dynamical differential equations, we may encounter the difficulty of long-time computation. For the orbits of these comets are near-parabolic and their periods are too long to study on their long-term evolution. With mapping approaches the difficulty will be overcome. In another aspect, the study of this model has special meaning for chaotic dynamics. We know that in the neighborhood of any separatrix i.e. the trajectory with zero frequency of the uperturbed motion of a Hamiltonian system, some chaotic motions have to be expected. Actually, the simplest example of separatrix is the parabolic trajectory of the two-body problem which separates the bounded and unbounded motion. From this point of view, the dynamical study of near-parabolic motion is very important. Petrosky's elegant but more abstract deduction gives a Kepler mapping which describes the dynamics of the cometary motion. In this paper we derive a similar mapping directly and discuss its dynamical characters.

  16. Animation Sequence of Comet Wild2 Once More Demonstrates Shape Peculiarities of Small Celestial Bodies

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    The outstanding success of the Stardust mission having acquired in January 2004 images of Comet Wild2 allows us to compare them with images of some other small objects: satellites, asteroids, comets and confirm the earlier conclusion about prevailing shaping forces [1, 2]. The excellent images of the Comet Wild2 core (the best up to date among comets, Internet) show that it is not ``a ball of dirty ice and rock'' but rather a convexo-concave object resembling other small bodies. They all, independently of their nature, sizes, compositions, demonstrate oblong ``banana''-type style. This is a result of pressing in one side and bulging out another antipodean one (the fundamental wave action). Comet Wild2 (5.4 km long core) in this sense can be perfectly compared with asteroid Mathilde (60 km) and satellite Thebe (˜ 116 km). All three have deeply concave hemisphere opposed by clearly convex one. Bulging out friable material often induces deep fracturing of convex hemispheres. This is well visible in comet Borrelli (8 km long core) and especially pronounced in asteroids Eros (33 km) and Annefrank (`˜ 6 km). Deep ``saddle'' at the convex side of both makes their images rather similar. Another characteristic of small oblong bodies is a principal shape difference of two elongated ends: one is blunt, another sharp. Principally, it is the same process which makes the ``banana''-shape (wave1) but of a smaller scale (wave2). The blunt end is made by pressing in, the sharp end by bulging out. Obviously, an impact sculpturing cannot give similar complex forms in so different bodies. The main principal shaping is done by standing inertia-gravity waves arising in celestial bodies in response to their movement in elliptical orbits with periodically changing accelerations. The fundamental wave1 makes convexo-concave shape, the first overtone wave2 sharp-blunt ends. Larger celestial bodies: satellites, planets, stars react to these waves by universal tectonic dichotomy and sectoring [3]. The arctic-antarctic symptom (after Earth) is typical manifestation of sectoring with two antepodean sectors: one pressed in, another bulged out. References: [1] Kochemasov G.G. (1999) On convexo-concave shape of small celestial bodies // ``Asteroids, Comets, Meteors'' conference, Cornell Univ., U.S.A., July 1999, Abstract # 24. 22; [2] Kochemasov G.G. (2002) ``Dirty snowball'' -- now is too primitive for a scientific description of comets // 34th COSPAR Scientific Assembly at the World Space Congress 2002, 10-19 Oct. 2002, Houston, Texas, USA, (CD-ROM); [3] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., Vol. 1, # 3, 700.

  17. Hubble Probes Comet 103P/Hartley 2 in Preparation for DIXI flyby

    NASA Image and Video Library

    2017-12-08

    NASA image release October 5, 2010 Hubble Space Telescope observations of comet 103P/Hartley 2, taken on September 25, are helping in the planning for a November 4 flyby of the comet by NASA's Deep Impact eXtended Investigation (DIXI) spacecraft. Analysis of the new Hubble data shows that the nucleus has a diameter of approximately 0.93 miles (1.5 km), which is consistent with previous estimates. The comet is in a highly active state, as it approaches the Sun. The Hubble data show that the coma is remarkably uniform, with no evidence for the types of outgassing jets seen from most "Jupiter Family" comets, of which Hartley 2 is a member. Jets can be produced when the dust emanates from a few specific icy regions, while most of the surface is covered with relatively inert, meteoritic-like material. In stark contrast, the activity from Hartley 2's nucleus appears to be more uniformly distributed over its entire surface, perhaps indicating a relatively "young" surface that hasn't yet been crusted over. Hubble's spectrographs - the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS) -- are expected to provide unique information about the comet's chemical composition that might not be obtainable any other way, including measurements by DIXI. The Hubble team is specifically searching for emissions from carbon monoxide (CO) and diatomic sulfur (S2). These molecules have been seen in other comets but have not yet been detected in 103P/Hartley 2. 103P/Hartley has an orbital period of 6.46 years. It was discovered by Malcolm Hartley in 1986 at the Schmidt Telescope Unit in Siding Spring, Australia. The comet will pass within 11 million miles of Earth (about 45 times the distance to the Moon) on October 20. During that time the comet may be visible to the naked eye as a 5th magnitude "fuzzy star" in the constellation Auriga. Credit: NASA, ESA, and H. Weaver (The Johns Hopkins University/Applied Physics Lab) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  18. Modeled Image of ISON

    NASA Image and Video Library

    2013-11-22

    In this modeled image of ISON, the coma has been subtracted, leaving behind the nucleus. Credit: NASA, ESA, the Hubble Heritage Team (AURA/STScI) and Jian-Yang Li (Planetary Science Institute) -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Fun with Mission Control: Learning Science and Technology by Sitting in the Driver's Seat

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, A. J.; Fisher, D. K.; Leon, N.; Novati, A.; Chmielewski, A. B.; Karlson, D. K.

    2012-12-01

    We will demonstrate and discuss iOS games we have developed that simulate real space mission scenarios in simplified form. These games are designed to appeal to multiple generations, while educating and informing the player about the mission science and technology. Such interactive games for mobile devices can reach an audience that might otherwise be inaccessible. However, developing in this medium comes with its own set of challenges. Touch screen input demands a different type of interface and defines new rules for user interaction. Communicating informative messages to an audience on the go also poses unique challenges. The organization and delivery of the content needs to consider that the users are often distracted by their environments or have only short blocks of time in which to become involved with the activity. The first game, "Comet Quest," simulates the Rosetta mission. Rosetta, sponsored by the European Space Agency, with important contributions from NASA, is on its way to Comet 67P/Churyumov-Gerasimenko. It will orbit the comet and drop a lander on the nucleus. It will continue to orbit for two years as the comet approaches the Sun. Both orbiter and lander will make measurements and observations and transmit the data to Earth, in the first close study of a comet's evolution as it journeys to the inner solar system. In "Comet Quest," the player controls the release of the lander and records and transmits all the science data. The game is fun and challenging, no matter the player's skill level. Comet Quest includes a "Learn more" feature, with questions and simple, concise answers about comets and the Rosetta mission. "Rescue 406!" is another simulation game, this one enacting the process of rescuing individuals in distress using the Search And Rescue Satellite-Aided Tracking system, SARSAT. Development of this game was sponsored by NOAA's Geostationary Operational Environmental Satellite, R-series, program (GOES-R). This game incorporates the major components of the SARSAT technology. A "learn more" feature describes how the SARSAT process works. Both of these game concepts begin with the science and technology of real missions. They both involve realistic, albeit simplified, process scenarios. We were challenged to create compelling game play action that simultaneously fulfilled the overall objective to educate, engage, and inform a wide audience about important science and technology achievements.

  1. Public Engagement for the U.S. Rosetta Project using Interactive Multimedia

    NASA Astrophysics Data System (ADS)

    Smith, H.; Graham, S.; Alexander, C. J.

    2009-12-01

    The U.S. Rosetta Project is NASA contribution to the International Rosetta Mission. The mission is a long-duration mission to explore a comet and escort the nucleus from deep space around the Sun and for a portion of its outbound trajectory. The Rosetta stone, the symbol of the mission, is the inspiration for the mission’s name. As stated on by the European Space Agency, Rosetta is expected to provide the keys to the primordial solar system the way the original Rosetta Stone provided a key to ancient language. Four interactives serve as key components of the website portion of the project's public engagement efforts. This first is a presentation of the mission timeline using an interactive that resembles an iTunes front page. The second is a presentation of the space between Earth (Jupiter) and the next star (Proxima Centauri), in which the comet home of the Kuiper Belt with several of the planet-sized object embedded there, the Heliosphere, the comet home of the Oort Cloud, and other interstellar clouds are presented. The third is a presentation of ancient languages (still under development) - space terminology translated into Native American languages as part of the project's outreach to the Native American community. In the fourth interactive we have taken the relatively sophisticated scientific comet environment model, one that was produced on a super computer, and worked the output into 'representations' of how a comet changes as it moves around the Sun, with definitions of the scientific regions that evolve. Still under development, this interactive is expected to be a key component of explaining to the public what the instruments expect to measure and encounter as the target changes in time. A fifth animated component is addressed to informal education with younger audience members in the form of cartoon characters and their adventures on a comet. In this talk we will showcase these pieces and discuss how these interactives are intended for teaching and learning in (mostly informal) education. Work at the Jet Propulsion Laboratory, California Institute of Technology, was supported by NASA. The Rosetta mission is a cooperative project of NASA and the European Space Agency.

  2. Comets, meteors, and eclipses: Art and science in early Renaissance Italy

    NASA Astrophysics Data System (ADS)

    Olson, R. J. M.; Pasachoff, J. M.

    2002-11-01

    We discuss eight trecento (fourteenth century) paintings containing depictions of astronomical events to reveal the revolutionary advances made in both astronomy and naturalistic painting in early Renaissance Italy, noting that an artistic interest in naturalism predisposed these pioneering painters to make their scientific observations. In turn, the convincing representations of their observations of astronomical phenomena in works of art rendered their paintings more believable, convincing. Padua was already a renowned center for mathematics and nascent astronomy (which was separating from astrology) when Enrico Scrovegni commissioned the famous Florentine artist Giotto di Bondone to decorate his lavish family chapel (circa 1301-1303). Giotto painted a flaming comet in lieu of the traditional Star of Bethlehem in the Adoration of the Magi scene. Moreover, he painted a historical apparition that he recently had observed with a great accuracy even by modern standards. Halley's Comet of 1301 (Olson, 1979). While we do not know the identity of the artist's theological advisor, we discuss the possibility that Pietro d'Abano, the Paduan medical doctor and "astronomer" who wrote on comets, might have been influential. We also compare Giotto's blazing comet with two others painted by the artist's shop in San Francesco at Assisi (before 1316) and account for the differences. In addition, we discuss Giotto's pupil, Taddeo Gaddi, reputed to have been partially blinded by a solar eclipse, whose calamity may find expression in his frescoes in Santa Croce, Florence (1328-30; 1338?). Giotto also influenced the Sienese painter Pietro Lorenzetti, two of whose Passion cycle frescoes at Assisi (1316-20) contain dazzling meteor showers that reveal the artist's observed astronomical phenomena, such as the "radiant" effect of meteor showers, first recorded by Alexander von Humboldt in 1799 and only accepted in the nineteenth century. Lorenzetti also painted sporadic, independent meteors, which do not emanate from the radiant. It is also significant that these artists observed differences between comets and meteors, facts that were not absolutely established until the eighteenth century. In addition we demonstrate that artistic and scientific visual acuity were part of the burgeoning empiricism of the fourteenth century, which eventually yielded modern observational astronomy.

  3. Post-periastron behavior of PSR J2032+4127/MT91 213: Outburst, jet, and winds

    NASA Astrophysics Data System (ADS)

    Ho, Wynn

    2017-09-01

    We propose 6x30 ks observations of the radio/gamma-ray pulsar PSR J2032+4127 and its companion Be-star MT91 213. This nearby pulsar is in a 49 yr orbit and will reach periastron 2017 November 13, when it will undergo an outburst if it accretes from a disk that surrounds the Be star. Our proposed observations allow us to (1) track the X-ray lightcurve and measure cooling of the neutron star crust, thus probing fundamental physics in extreme regimes. Irrespective of the outburst, our observations allow us to track (2) jet formation and (3) emission from the colliding winds of the two stars, thus serving as an important comparison to the only other gamma-ray pulsar in a Be-binary PSR B1259-63/LS 2883. These objectives require the long-term, high spatial resolution capabilities of Chandra.

  4. Photometric and Spectroscopic Analysis for the Determination of Physical Parameters of an Eclipsing Binary Star System

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2013-01-01

    A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.

  5. A Refractory Inclusion Returned by Stardust from Comet 81P/Wild 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, S B; Joswiak, D J; Ishii, H A

    2008-05-20

    Among the samples returned from comet 81P/Wild 2 by the Stardust spacecraft is a suite of particles from one impact track (Track 25) that are Ca-, Al-rich and FeO-free. We studied three particles from this track that range in size from 5.3 x 3.2 {micro}m to 15 x 10 {micro}m. Scanning and transmission electron microscopy show that they consist of very fine-grained (from {approx}0.5 to {approx}2 {micro}m) Al-rich, Ti-bearing and Ti-free clinopyroxene, Mg-Al spinel, anorthite, perovskite, and osbornite (TiN). In addition to these phases, the terminal particle, named 'Inti', also contains melilite. All of these phases, with the exception ofmore » osbornite, are common in refractory inclusions and are predicted to condense at high temperature from a gas of solar composition. Osbornite, though very rare, has also been found in meteoritic refractory inclusions, and could have formed in a region of the nebula where carbon became enriched relative to oxygen compared to solar composition. Compositions of Ti-pyroxene in Inti are similar, but not identical, to those of fassaite from Allende inclusions. Electron energy loss spectroscopy shows that Ti-rich pyroxene in Inti has Ti{sup 3+}/Ti{sup 4+} within the range of typical meteoritic fassaite, consistent with formation under reducing conditions comparable to those of a system of solar composition. Inti is {sup 16}O-rich, with {delta}{sup 18}O {approx} {delta}{sup 17}O {approx} 40{per_thousand}, like unaltered phases in refractory inclusions and refractory IDPs. With grain sizes, mineralogy, mineral chemistry, and an oxygen isotopic composition like those of refractory inclusions, we conclude that Inti is a refractory inclusion that formed in the inner solar nebula. Identification of a particle that formed in the inner Solar System among the comet samples demonstrates that there was transport of materials from the inner to the outer nebula, probably either in a bipolar outflow or by turbulence.« less

  6. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  7. Life from the stars?. [extraterrestrial sources contributing to chemical evolution on Earth

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.; Cruikshank, Dale P.

    1994-01-01

    Scientists are now seriously considering the possibility that organic matter from interstellar space could have influenced, or even spurred, the origin of life on Earth. Various aspects of chemical evolution are discussed along with possible extraterrestrial sources responsible for contributing to Earth's life-producing, chemical composition. Specific topics covered include the following: interstellar matter, molecular clouds, asteroid dust, organic molecules in our solar system, interplanetary dust and comets, meteoritic composition, and organic-rich solar-system bodies.

  8. Possible Analog for Early Solar System Disk Found

    NASA Astrophysics Data System (ADS)

    1998-10-01

    SOCORRO, NM -- The smallest protoplanetary disk ever seen rotating around a young star has been detected by an international team of astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope. If confirmed, this result could provide an "ideal laboratory" for studying potential planet-forming disks of a size similar to the one that formed our Solar System. The researchers used the VLA to image the core of an object known as NGC 2071, some 1300 light years from Earth. The team of astronomers was able to measure the rotation of a disk seen around a young star by tracking water masers - clusters of super-heated molecules that amplify radio emission -- within it. This is the first direct evidence of such motion in a protoplanetary disk. "This result is exciting because only through understanding protoplanetary disks can scientists answer the question of how easy - or hard - it is to create planets," said Jose M. Torrelles of the Institute for Astrophysics of Andalucia in Granada, Spain, leader of the research team. "Other protoplanetary disks have been found, but the system in NGC 2071 is the first that may be comparable to the disk that created our own Solar System. Its size is similar to the orbit of the planet Neptune around our Sun." "Because there is very little matter in one of these protoplanetary disks -- typically less than one hundredth the mass of our Sun -- they are extremely difficult to detect and study" said Paul Ho of the Harvard-Smithsonian Center for Astrophysics and another team member. "We needed the highest possible resolution of the VLA to do this work." The VLA is an array of twenty-seven radio dishes, each 25 meters in diameter, located outside of Socorro. The individual antennas can be moved along tracks to change the array's alignment. The work on NGC 2071 was done when the array was stretched out to over 36 kilometers, thus providing the extremely high resolution necessary to image the system. This disk, although tiny when compared to some suspected planet-forming systems recently discovered by other astronomical techniques, contains several compact clusters of water molecules that amplify microwave radio emissions in a manner similar to the way a laser amplifies light. By tracking the motions of these powerful, naturally occurring amplifiers, or "masers," the researchers could determine that a mass about the size of our Sun lies at the center of this disk. The researchers also detected a powerful radio jet, centered on the disk of water masers but perpendicular to it, shooting out of NGC 2071. Theorists have speculated that such jets are produced by accretion disks around very young stars, where flowing winds are driven outward by material that fails to fall onto the star. This may represent the smallest -- and perhaps earliest -- example of this disk-jet phenomenon seen to date. "We're pretty sure that systems like this, with disks of gas and dust surrounding a young star, turn into solar systems containing planets, moons and comets, but we don't know exactly how they do it," said Dr. Luis Rodriguez of the National Autonomous University of Mexico. "This particular object, because we can see all these phenomena and measure the rotation speeds and masses, is going to provide us an ideal laboratory for studying the mysterious process of planet formation." In addition to Torrelles and Ho, the other authors of the report published in the 1 October 1998 issue of the Astrophysical Journal were Drs. Jose F. Gomez of the Laboratory for Space and Astrophysics, Guillem Anglada of the Institute of Astrophysics of Andalucia, Spain, and Rodriguez and Dr. Salvador Curiel of the National Autonomous University of Mexico. The VLA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by the Associated Universities, Inc.

  9. The Water Content of Exo-earths in the Habitable Zone around Low-mass Stars

    NASA Astrophysics Data System (ADS)

    Mulders, Gijs Dirk; Ciesla, Fred; Pascucci, Ilaria; apai, Daniel

    2015-08-01

    Terrestrial planets in the habitable zones of low-mass M dwarf stars have become the focus of many astronomical studies: they are more easily accessible to detection and characterization than their counterparts around sunlike stars. The habitability of these planets, however, faces a number of challenges, including inefficient or negligible water delivery during accretion. To understand the water content of planets in and around the habitable zone, simulations of the final stages of planet formation are necessary.We present detailed accretion simulations of wet and dry planetary embryos around a range of stellar masses. We focus on different pathways of delivering water from beyond the snow line to terrestrial planets in the habitable zone. We explore the impact of using either asteroid-like or comet-like bodies, and the effects of a dispersion in snow line locations. We derive the probability distribution of water abundances for terrestrial sized planets in the habitable zone.While these models predict that the bulk of terrestrial planets in the habitable zones of M stars will be dry, a small fraction receives earth-like amounts of water. Given their larger numbers and higher planet occurrence rates, this population of water-enriched worlds in the habitable zone of M stars may equal that around sun-like stars in numbers.References:Ciesla, Mulders et al. 2015Mulders et al. ApJ subm.

  10. The Nature of the Star-Grazing Bodies in a System at the Age of the Late Heavy Bombardment

    NASA Astrophysics Data System (ADS)

    Grady, Carol

    2017-08-01

    Studies of bodies exhibiting redshifted gaseous absorption features associated with star-grazing planetesimals offer unique data on the composition of the bodies, as well as the presence of planetesimal belt analogs and giant planets in systems throughout the stellar lifecycle. Studies of young systems, such as the A stars in the beta Pictoris moving group, suggest that the star grazing bodies contain abundant carbon and water dissociation products, indicating a cometary origin. A recent analysis of another system, phi Leo (A7 IV, age=400-900 Myr) shows similar infall features in Ca II and Ti II, with what may be a 15-year cycle. This system is similar in age to the Late Heavy Bombardment in our system, a time when terrestrial planets in our system are thought to have been veneered in organics and water. The available data indicate frequent infall events interpreted as transiting exo-comets, but sample only lithophile to super-refractory elements. Archival IUE data lack the FUV S/N to establish high carbon abundance or the presence of water dissociation products. We therefore seek COS and STIS spectra to sample the volatile gas dat, and constrain the origin of the star-grazing bodies. The FUV data will be augmented with NUV data sampling siderophiles and lithophiles.

  11. Spitzer June 13 View of ISON

    NASA Image and Video Library

    2013-11-22

    These images from NASA's Spitzer Space Telescope of Comet ISON were taken on June 13, 2013, when ISON was about 310 million miles from the sun. The image on the left shows light in the near infrared wavelengths of 3.6 microns. It shows a tail of fine, rocky dust issuing from the comet and blown back by the pressure of sunlight as the comet speeds towards the sun. The image on the right side shows light with a wavelength of 4.5 microns. It reveals a very different round structure -- the first detection of a neutral gas atmosphere surrounding ISON. In this case, it is most likely created by carbon dioxide that is "fizzing" from the surface of the comet at a rate of about 2.2 million pounds a day. Credit: NASA/JPL-Caltech/JHUAPL/UCF -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. April 10 View of ISON

    NASA Image and Video Library

    2013-11-22

    This NASA Hubble Space Telescope image of Comet (C/2012 S1) ISON was photographed on April 10, 2013, when the comet was slightly closer than Jupiter's orbit at a distance of 394 million miles from Earth. Even at that great distance the comet is already active as sunlight warms the surface and causes frozen volatiles to boil off. Astronomers used such early images to try to measure the size of the nucleus, in order to predict whether the comet would stay intact when it slingshots around the sun -- at 700,000 miles above the sun's surface -- on Nov. 28, 2013. The comet's dusty coma, or head of the comet, is approximately 3,100 miles across, or 1.2 times the width of Australia. A dust tail extends more than 57,000 miles, far beyond Hubble's field of view. This image was taken in visible light. The blue false color was added to bring out details in the comet structure. Credit: NASA/ ESA/STScI/AURA -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on April 10 Hubble View of ISON

    NASA Image and Video Library

    2013-11-22

    This NASA Hubble Space Telescope image of Comet (C/2012 S1) ISON was photographed on April 10, 2013, when the comet was slightly closer than Jupiter's orbit at a distance of 394 million miles from Earth. Even at that great distance the comet is already active as sunlight warms the surface and causes frozen volatiles to boil off. Astronomers used such early images to try to measure the size of the nucleus, in order to predict whether the comet would stay intact when it slingshots around the sun -- at 700,000 miles above the sun's surface -- on Nov. 28, 2013. The comet's dusty coma, or head of the comet, is approximately 3,100 miles across, or 1.2 times the width of Australia. A dust tail extends more than 57,000 miles, far beyond Hubble's field of view. This image was taken in visible light. The blue false color was added to bring out details in the comet structure. Credit: NASA/ ESA/STScI/AURA -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is managed by the Keldysh Institute of Applied Mathematics, part of the Russian Academy of Sciences. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on How well do you know The Earth, Asteroids, Comets?

    NASA Astrophysics Data System (ADS)

    Alexander, C. J.; Lopez, J.; Barkus, R. C.; Angrum, A.

    2011-12-01

    The U.S. Rosetta Project is the NASA contribution to the International Rosetta Mission, an ESA cornerstone mission. The mission will arrive at its target, comet 67 P/Churyumov-Gerasimenko, in 2014, and escort the comet around the Sun for the ensuing 17 months. Along the way, the mission has encountered two asteroids: 21/Lutetia, and 2867/Steins, and enjoyed gravity assists at Mars and several at the Earth. The challenge for outreach coordinators is to convey the excitement of the mission, the manner in which its experiments gather and interpret data, provide context for those interpretations, all in an engaging fashion, without heavy use of camera images -- the camera not being among the NASA contributed instruments. In other words, because the US Rosetta Project expects to present the data and results from: an ultraviolet spectrometer, a plasma instrument, and a microwave spectrometer, outreach is presented with the special challenges of engaging the public in data which at least visually is less accessible than that of camera images. The project has turned to online games, interactive simulations, animated cartoons, and virtual labs to provide a visually stimulating way to explain: how scientists determine the age of asteroids; the context of a timeline of Earth geologic history with which to understand the relative position of the ages of any given asteroid to some event on Earth; a model of the solar system that goes from our Sun to the next Star to understand the spatial distances covered by comets in their journey around the Sun; and a model of early solar system evolution in which to understand the possible scenarios of solar system evolution that comets can help us sort out. In this paper we will present these simulations, even if some of them remain in the beta-development phase at the time of the meeting itself. Work at the Jet Propulsion Laboratory, California Institute of Technology, was supported by NASA. Rosetta is a joint collaboration between NASA and the European Space Agency.

  13. Internationally supported data acquisition for solar system exploration in the 1990's

    NASA Technical Reports Server (NTRS)

    Reid, M. S.; Lyman, P. T.; Layland, J. W.; Renzetti, N. A.

    1983-01-01

    Procedures that could be followed for cooperative agreements between countries with large ground station antennas to help provide mission telemetry support for increasing solar system exploration are outlined. It is noted that mission cost reductions, and thereby greater chances that missions will be approved, are offered by the opportunity to make planetary probes multinational efforts. The Canberra station is a suitable site for the Japanese Planet A Halley's comet intercept probe. The French have requested U.S. cooperation in developing VLBI stations in the L-band to receive signals from the Venus balloons and landers being sent as part of a joint French-Soviet mission to Venus and Halley's comet. The construction of the stations would extend the capabilities already present with NASA's deep space network, particularly for tracking the Voyager visits to Uranus and Neptune.

  14. Study of nuclear multifragmentation induced by ultrarelativistic μ-mesons in nuclear track emulsion

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Firu, E.; Kornegrutsa, N. K.; Haiduc, M.; Mamatkulov, K. Z.; Kattabekov, R. R.; Neagu, A.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    2016-02-01

    Exposures of test samples of nuclear track emulsion were analyzed. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three α-particles are indicative of the nuclear-diffraction interaction mechanism.

  15. Is life the rule or the exception? The answer may be in the interstellar clouds

    NASA Astrophysics Data System (ADS)

    2002-05-01

    Credits: ESA 2002. Illustration by Medialab Did the main ingredients for life come from outer space? In addition to forming in comets and asteroids, amino acids, the 'building blocks' of life, may form in dust grains in the space between the stars Rosetta artist view hi-res Size hi-res: 397 kb Credits: ESA Rosetta’s mission to a comet An artist's impression of the Rosetta spacecraft, its target Comet 67P/Churyumov-Gerasimenko, and the Philae lander being delivered onto its surface. Rosetta’s 11-year expedition began in March 2004, with an Ariane 5 launch from Kourou in French Guiana, and the spacecraft was then sent towards the outer Solar System. The long journey includes three gravity assists at Earth (2004, 2007, 2009), one at Mars (2007), and two asteroid encounters: (2867) Steins (2008) and (21) Lutetia (2010). Rosetta will reach Comet 67/P Churyumov-Gerasimenko in 2014, and will be the first mission ever to orbit a comet’s nucleus and to deliver a lander, called Philae, on its surface. Artist's Impression of the Herschel Spacecraft hi-res Size hi-res: 138 Kb Artist's Impression of the Herschel Spacecraft Herschel is the only space facility dedicated to the submillimetre and far infrared part of the spectrum. Its vantage point in space provides several decisive advantages, including a low and stable background and full access to this part of the spectrum. Herschel has the potential of discovering the earliest epoch proto-galaxies, revealing the cosmologically evolving AGN-starburst symbiosis, and unraveling the mechanisms involved in the formation of stars and planetary system bodies. The key science objectives emphasise specifically the formation of stars and galaxies, and the interrelation between the two, but also includes the physics of the interstellar medium, astrochemistry, and solar system studies. Herschel will carry a 3.5 metre diameter passively cooled telescope. The science payload complement - two cameras/medium resolution spectrometers (PACS and SPIRE) and a very high resolution heterodyne spectrometer (HIFI) - will be housed in a superfluid helium cryostat. Herschel will be placed in a transfer trajectory towards its operational orbit around the Earth-Sun L2 point by an Ariane 5 (shared with Planck) in early 2007. Once operational FIRST will offer a minimum of 3 years of routine observations; roughly 2/3 of the available observing time is open to the general astronomical community through a standard competitive proposal procedure. This result is consistent with (although of course does not prove) the theory that the main ingredients for life came from outer space, and therefore that chemical processes leading to life are likely to have occurred elsewhere. This reinforces the interest in an already 'hot' research field, astrochemistry. ESA's forthcoming missions Rosetta and Herschel will provide a wealth of new information for this topic. Amino acids are the 'bricks' of the proteins, and proteins are a type of compound present in all living organisms. Amino acids have been found in meteorites that have landed on Earth, but never in space. In meteorites amino acids are generally thought to have been produced soon after the formation of the Solar System, by the action of aqueous fluids on comets and asteroids - objects whose fragments became today's meteorites. However, new results published recently in Nature by two independent groups show evidence that amino acids can also form in space. Between stars there are huge clouds of gas and dust, the dust consisting of tiny grains typically smaller than a millionth of a millimetre. The teams reporting the new results, led by a United States group and a European group, reproduced the physical steps leading to the formation of these grains in the interstellar clouds in their laboratories, and found that amino acids formed spontaneously in the resulting artificial grains. The researchers started with water and a variety of simple molecules that are known to exist in the 'real' clouds, such as carbon monoxide, carbon dioxide, ammonia and hydrogen cyanide. Although these initial ingredients were not exactly the same in each experiment, both groups 'cooked' them in a similar way. In specific chambers in the laboratory they reproduced the common conditions of temperature and pressure known to exist in interstellar clouds, which is, by the way, quite different from our 'normal' conditions. Interstellar clouds have a temperature of 260 °C below zero, and the pressure is also very low (almost zero). Great care was taken to exclude contamination. As a result, grains analogous to those in the clouds were formed. The researchers illuminated the artificial grains with ultraviolet radiation, a process that typically triggers chemical reactions between molecules and that also happens naturally in the real clouds. When they analysed the chemical composition of the grains, they found that amino acids had formed. The United States team detected glycine, alanine and serine, while the European team listed up to 16 amino acids. The differences are not considered relevant since they can be attributed to differences in the initial ingredients. According to the authors, what is relevant is the demonstration that amino acids can indeed form in space, as a by-product of chemical processes that take place naturally in the interstellar clouds of gas and dust. Max P. Bernstein from the United States team points out that the gas and dust in the interstellar clouds serve as 'raw material' to build stars and planetary systems such as our own. These clouds "are thousands of light years across; they are vast, ubiquitous, chemical reactors. As the materials from which all stellar systems are made pass through such clouds, amino acids should have been incorporated into all other planetary systems, and thus been available for the origin of life." The view of life as a common event would therefore be favoured by these results. However, many doubts remain. For example, can these results really be a clue to what happened about four billion years ago on the early Earth? Can researchers be truly confident that the conditions they recreate are those in the interstellar space? Guillermo M. Muñoz Caro from the European team writes "several parameters still need to be better constrained (...) before a reliable estimation on the extraterrestrial delivery of amino acids to the early Earth can be made. To this end, in situ analysis of cometary material will be performed in the near future by space probes such as Rosetta ..." The intention for ESA's spacecraft Rosetta is to provide key data for this question. Rosetta, to be launched next year, will be the first mission ever to orbit and land on a comet, namely Comet 46P/Wirtanen. Starting in 2011, Rosetta will have two years to examine in deep detail the chemical composition of the comet. As Rosetta's project scientist Gerhard Schwehm has stated, "Rosetta will carry sophisticated payloads that will study the composition of the dust and gas released from the comet's nucleus and help to answer the question: did comets bring water and organics to Earth?" If amino acids can also form in the space amid the stars, as the new evidence suggests, research should also focus on the chemistry in the interstellar space. This is exactly one of the main goals of the astronomers preparing for ESA's space telescope Herschel. Herschel, with its impressive mirror of 3.5 metres in diameter (the largest of any imaging space telescope) is due to be launched in 2007. One of its strengths is that it will 'see' a kind of radiation that has never been detected before. This radiation is far-infrared and submillimetre light, precisely what you need to detect if you are searching for complex chemical compounds such as the organic molecules.

  16. Submillimeter studies of main-sequence stars

    NASA Technical Reports Server (NTRS)

    Zuckerman, B.; Becklin, E. E.

    1993-01-01

    JCMT maps of the 800-micron emission from Vega, Fomalhaut, and Beta Pictoris are interpreted to indicate that they are not ringed by large reservoirs of distant orbiting dust particles that are too cold to have been detected by IRAS. A search for 800-micron emission from stars in the Pleiades and Ursa Majoris open clusters is reported. In comparison with the mass of dust particles near T Tauri and Herbig Ae stars, the JCMT data indicate a decline in dust mass during the initial 3 x 10 exp 8 yr that a star spends on the main sequence that is at least as rapid as (time) exp -2. It is estimated that in the Kuiper belt the ratio of total mass carried by small particles to that carried by comets is orders of magnitude smaller than this ratio is 1 AU from the sun. If 800-micron opacities calculated by Pollack et al. (1993) are correct, then the particles with radii less than 100 microns that dominate the FIR fluxes measured by IRAS cannot entirely account for the measured 800-micron fluxes at Vega, Beta Pic, and Fomalhaut; larger particles must be present as well.

  17. Observation of the Central Part of the Beta-Pictoris Disk with an Anti-Blooming CCD

    NASA Astrophysics Data System (ADS)

    Lecavelier Des Etangs, A.; Perrin, G.; Ferlet, R.; Vidal Madjar, A.; Colas, F.; Buil, C.; Sevre, F.; Arlot, J. E.; Beust, H.; Lagrange Henri, A. M.; Lecacheux, J.; Deleuil, M.; Gry, C.

    1993-07-01

    β Pictoris (A5V) possesses a circumstellar disk of gas and dust which is oriented edge-on to Earth. Possibly a planet may be indirectly responsible for spectroscopic events, presently interpreted as the signature of the vaporisation of comet-like bodies when grazing the star, and may have cleared up dust particles in the inner zone. Previous coronographic studies coupled with IRAS and ground based IR observations also seem to indicate that the inner regions of the disk may be possibly dust free. We have extended the coronographic studies closer to the star in order to directly observe this zone, through a different observational technique based on the use of an anti- blooming CCD. These new observations, recorded at La Silla (Chile), revealed the structure of the disk down to two arcsec from the star (30 AU from the star). A different nature of dust particles seems to be present in the inner regions of the disk, in possible relation with a planetary formation process. Also an inverted asymmetry is observed in the inner region of the disk when compared to the outer one, a structure possibly related to a non homogeneous distribution of the dust within the disk.

  18. Precision star-tracking telescope

    NASA Technical Reports Server (NTRS)

    Fairbank, W. M.; Everitt, C. W. F.

    1972-01-01

    The design, construction, and preliminary testing of a new high accuracy star tracking telescope for the laboratory model of the Stanford gyro relativity experiment are described. The function of the telescope in the final flight experiment is to define (by reference to a suitable star) a direction in space for comparison with the relativistic precession of a group of gyroscopes. The design of the telescope has been strongly affected by designs for other portions of the overall experiments, for example the gyroscopes, the attitude control system of the satellite, and the instrumentation system used in processing relativity data. Main goals for the star tracker are: (1) independent readout of angular position in two planes; (2) absolute null stability over a one year period of mechanical parts; (3) readout linear to 0.001 arc-seconds over + or - 0.05 arc-second; (4) noise performance leading to a resolution of 0.05 arc-second in 0.1 second observation time of the chosen reference star; and (5) provision for automatic gain control capable of matching the gains of the gyroscopes and telescope readouts to 1% or better.

  1. Is There Anybody Home?

    NASA Image and Video Library

    2004-12-09

    NASA's Spitzer Space Telescope recently captured these infrared images of six older stars with known planets. The yellow, fuzzy blobs are stars circled by disks of dust, or "debris disks," like the one that surrounds our own Sun. Though astronomers had predicted that stars with planets would harbor debris disks, they could not detect such disks until now. Spitzer was able to sense these dusty disks via their warm infrared glows. Specifically, the presence of the disks was inferred from an excess amount of infrared emission relative to what is emitted from the parent star alone. The stars themselves are similar in age and temperature to our Sun. In astronomical terms, they are stellar main sequence stars, with spectral types of F, G, or K. These planet-bearing stars have a median age of four billion years. For reference, our Sun is classified as a G star, with an age of approximately five billion years. The disks surrounding these planetary systems are comprised of cool material, with temperatures less than 100 Kelvin (-173 degrees Celsius). They are10 times farther away from their parent stars than Earth is from the Sun, and are thought to be analogues of the comet-filled Kuiper Belt in our solar system. The contrast scale is the same for each image. The images are approximately 2 arcminutes on each side. North is oriented upward and east is to the left. The pictures were taken with the 70-micron filter of Spitzer's multiband imaging photometer. The telescope resolution at 70 microns is 17 arcseconds and there is no evidence for any emission extended beyond the telescope resolution. http://photojournal.jpl.nasa.gov/catalog/PIA07098

  2. Is There Anybody Home?

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    NASA's Spitzer Space Telescope recently captured these infrared images of six older stars with known planets. The yellow, fuzzy blobs are stars circled by disks of dust, or 'debris disks,' like the one that surrounds our own Sun. Though astronomers had predicted that stars with planets would harbor debris disks, they could not detect such disks until now.

    Spitzer was able to sense these dusty disks via their warm infrared glows. Specifically, the presence of the disks was inferred from an excess amount of infrared emission relative to what is emitted from the parent star alone.

    The stars themselves are similar in age and temperature to our Sun. In astronomical terms, they are stellar main sequence stars, with spectral types of F, G, or K. These planet-bearing stars have a median age of four billion years. For reference, our Sun is classified as a G star, with an age of approximately five billion years.

    The disks surrounding these planetary systems are comprised of cool material, with temperatures less than 100 Kelvin (-173 degrees Celsius). They are10 times farther away from their parent stars than Earth is from the Sun, and are thought to be analogues of the comet-filled Kuiper Belt in our solar system.

    The contrast scale is the same for each image. The images are approximately 2 arcminutes on each side. North is oriented upward and east is to the left. The pictures were taken with the 70-micron filter of Spitzer's multiband imaging photometer. The telescope resolution at 70 microns is 17 arcseconds and there is no evidence for any emission extended beyond the telescope resolution.

  3. Simulation of Comet Impact and Survivability of Organic Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, B T; Lomov, I N; Blank, J G

    Comets have long been proposed as a potential means for the transport of complex organic compounds to early Earth. For this to be a viable mechanism, a significant fraction of organic compounds must survive the high temperatures due to impact. We have undertaken three-dimensional numerical simulations to track the thermodynamic state of a comet during oblique impacts. The comet was modeled as a 1-km water-ice sphere impacting a basalt plane at 11.2 km/s; impact angles of 15{sup o} (from horizontal), 30{sup o}, 45{sup o}, 65{sup o}, and 90{sup o} (normal impact) were examined. The survival of organic cometary material, modeledmore » as water ice for simplicity, was calculated using three criteria: (1) peak temperatures, (2) the thermodynamic phase of H{sub 2}O, and (3) final temperature upon isentropic unloading. For impact angles greater than or equal to 30{sup o}, no organic material is expected to survive the impact. For the 15{sup o} impact, most of the material survives the initial impact and significant fractions (55%, 25%, and 44%, respectively) satisfy each survival criterion at 1 second. Heating due to deceleration, in addition to shock heating, plays a role in the heating of the cometary material for nonnormal impacts. This effect is more noticeable for more oblique impacts, resulting in significant deviations from estimates using scaling of normal impacts. The deceleration heating of the material at late times requires further modeling of breakup and mixing.« less

  4. Antimatter Economy

    NASA Astrophysics Data System (ADS)

    Hansen, Norm

    2004-05-01

    The Antimatter Economy will bring every country into the 21st century without destroying our environment and turn the Star Trek dream into reality by using antimatter from comets. At the April 2002 joint meeting of the American Physical Society and American Astronomical Society, I announced that comets were composed of antimatter, there were 109 antimatter elements, and the Periodic Table of Elements had been updated to include the antimatter elements. When matter and antimatter come together, energy is produce according to Einstein's equation of mass times the speed of light squared or E = mc2. Antimatter energy creates incredible opportunities for humanity. People in spacecraft will travel to the moon in hours, planets in days, and stars in weeks. Antimatter power will replace fossil plants and produce hydrogen from off-peak electrical power. Hydrogen will supplant gas in cars, trucks, and other vehicles. The billions of ton of coal, billions of barrels of oil, and trillions of cubic feet of natural gas will be used to make trillions of dollars of products to bring countries into the 21st century. Within this millennium, the Worlds Gross National Product will increase from 30 trillion to 3,000 trillion plus 1,500 trillion from space commercialization bringing the Total Gross National Product to 4,500 trillion. Millions of businesses and billions of jobs will be created. However, the real benefits will come from taking billions of people out of poverty and empowering them to pursue their dreams of life, liberty and pursuit of happiness. Please visit www.AntimatterEnergy.com.

  5. Exocomet Orbit Fitting: Accelerating Coma Absorption During Transits of β Pictoris

    NASA Astrophysics Data System (ADS)

    Kennedy, Grant M.

    2018-06-01

    Comets are a remarkable feature in our night sky, visible on their passage through the inner Solar system as the Sun's energy sublimates ices and liberates surface material, generating beautiful comae, dust, and ion tails. Comets are also thought to orbit other stars, and are the most promising interpretation of sporadic absorption features (i.e. transits) seen in spectra of stars such as β Pictoris and 49 Ceti. These "exocomets" are thought to form and evolve in the same way as in the Solar system, and as in the Solar system we may gain insight into their origins by deriving their orbits. In the case of β Pictoris, orbits have been estimated indirectly, using the radial velocity of the absorption features coupled with a physical evaporation model to estimate the stellocentric distance at transit dtr. Here, we note that the inferred dtr imply that some absorption signatures should accelerate over several hours, and show that this acceleration is indeed seen in HARPS spectra. This new constraint means that orbital characteristics can be obtained directly, and the pericentre distance and longitude constrained when parabolic orbits are assumed. The results from fitting orbits to 12 accelerating features, and a handful of non-accelerating ones, are in broad agreement with previous estimates based on an evaporation model, thereby providing some validation of the exocomet hypothesis. A prediction of the evaporation model, that coma absorption is deeper for more distant transits, is also seen here.

  6. Origin and Evolution of Organic Matter Preserved in Stardust Cometary Aerogel Tracks

    NASA Technical Reports Server (NTRS)

    McKay, D.S.; Clemett, S.J.; Nakamura-Messenger, K.

    2009-01-01

    The STARDUST spacecraft captured dust samples from Comet 81P/Wild 2 at a relative velocity of 6.1 km/s in a low density silica aerogel and returned them to the Earth. One of the main of the scientific goals established for the mission was to determine whether comets contained complex organic materials and, contingently, the nature and abundance of this material. [1] Although contamination concerns due to carbonaceous impurities intrinsic to the flight aerogel remain, it is generally accepted that at least a fraction of the captured dust particles contain an indigenous organic component. [2] However, understanding the nature and abundance of this material is complicated by nature of the collection process. The rapid dissipation of particle s kinetic energy during its impact and deceleration cause both the particle and surrounding aerogel to experience an intense thermal pulse of upwards of 2000K for a period up to several hundred nanoseconds [3]. During this period thermal alteration and or destruction of organic species present in the impacting particle are likely to occur. We have used the technique of ultrafast two-step laser mass spectrometry (ultra L2MS) [4] to investigate how the nature and distribution of aromatic and conjugated organic species varies between and within aerogel cometary tracks and their associated terminal particles.

  7. Magnetite in Comet Wild 2: Evidence for parent body aqueous alteration

    NASA Astrophysics Data System (ADS)

    Hicks, L. J.; MacArthur, J. L.; Bridges, J. C.; Price, M. C.; Wickham-Eade, J. E.; Burchell, M. J.; Hansford, G. M.; Butterworth, A. L.; Gurman, S. J.; Baker, S. H.

    2017-10-01

    The mineralogy of comet 81P/Wild 2 particles, collected in aerogel by the Stardust mission, has been determined using synchrotron Fe-K X-ray absorption spectroscopy with in situ transmission XRD and X-ray fluorescence, plus complementary microRaman analyses. Our investigation focuses on the terminal grains of eight Stardust tracks: C2112,4,170,0,0; C2045,2,176,0,0; C2045,3,177,0,0; C2045,4,178,0,0; C2065,4,187,0,0; C2098,4,188,0,0; C2119,4,189,0,0; and C2119,5,190,0,0. Three terminal grains have been identified as near pure magnetite Fe3O4. The presence of magnetite shows affinities between the Wild 2 mineral assemblage and carbonaceous chondrites, and probably resulted from hydrothermal alteration of the coexisting FeNi and ferromagnesian silicates in the cometary parent body. In order to further explore this hypothesis, powdered material from a CR2 meteorite (NWA 10256) was shot into the aerogel at 6.1 km s-1, using a light-gas gun, and keystones were then prepared in the same way as the Stardust keystones. Using similar analysis techniques to the eight Stardust tracks, a CR2 magnetite terminal grain establishes the likelihood of preserving magnetite during capture in silica aerogel.

  8. The Sun as you never saw it before

    NASA Astrophysics Data System (ADS)

    1997-02-01

    The remarkable images come from SOHO's visible-light coronagraph LASCO. It masks the intense rays from the Sun's surface in order to reveal the much fainter glow of the solar atmosphere, or corona. Operated with its widest field of view, in its C3 instrument, LASCO's unprecedented sensitivity enables it to see the thin ionized gas of the solar wind out to the edges of the picture, 22 million kilometres from the Sun's surface. Many stars are brighter than the gas, and they create the background scene. The results alter human perceptions of the Sun. Nearly 30 years ago, Apollo photographs of the Earth persuaded everyone of what until then they knew only in theory, that we live on a small planet. Similarly the new imagery shows our motion in orbit around the Sun, and depicts it as one star among - yet close enough to fill the sky emanations that engulf us. For many centuries even astrologers knew that the Sun was in Sagittarius in December and drifting towards the next zodiacal constellation, Capricornus. This was a matter of calculation only, because the Sun's own brightness prevented a direct view of the starfield. The SOHO-LASCO movie makes this elementary point of astronomy a matter of direct observation for the first time. The images are achievable only from a vantage point in space, because the blue glow of the Earth's atmosphere hides the stars during the day. A spacial allocation of observing time, and of data tranmission from the SOHO spacecraft, enabled the LASCO team to obtain large numbers of images over the period 22-28 December 1996. Since then, a sustained effort in image processing, frame by frame, has achieved a result of high technical and aesthetic quality. Only now is the leader of the LASCO team, Guenter Brueckner of the US Naval Research Laboratory, satisfied with the product and ready to authorize its release. "I spend my life examining the Sun," Brueckner says, "but this movie is a special thrill. For a moment I forget the years of effort that went into creating LASCO and SOHO, and leave aside the many points of scientific importance in the images, I am happy to marvel at a new impression of the busy star that gives us life, and which affects our environment in many ways that we are only now beginning to understand." Transatlantic cooperation The Solar and Heliospheric Observatory SOHO is a project of international cooperation between ESA and NASA. ESA and the European aerospace industry built the spacecraft, and NASA launched it on 2 December 1995. Operating 1,500,000 kilometres out on the sunward side of the Earth, near the position called Lagrangian point L1, SOHO has an uninterrupted view of the Sun from an undisturbed vantage point, and a precision of pointing which makes delicate observations possible. SOHO carries 12 sets of instruments provided by scientific teams, each led by a European or an American principal investigator. They study the solar interior by helioseismology, the solar atmosphere seen by ultraviolet and visible light, and the solar wind and energetic particles. There is much transatlantic collaboration within the various teams. Besides the Naval Research Laboratory in Washington, LASCO involves the Max-Planck-Institüt für Aeronomie at Lindau (Germany), the Unversity of Birmingham (England) and Laboratoire d'Astronomie Spatiale at Marseille (France). Sharing LASCO's electronic systems, and many operations and analyses, is SOHO's extreme ultraviolet imager EIT. This is the responsibility of a team led from Orsay (France) and it observes activity in the Sun's hot atmosphere related to the wider events seen by LASCO. Roger Bonnet, who presides over the multinational effort as ESA's Director of Science, shares the enthusiasm for the Christmas movie. "For the first time we see the Sun clearly among the stars, thanks to SOHO and LASCO," Bonnet comments. "Now when we say that the Sun is a typical star, and a key to understanding the whole Universe, that is no longer a theoretical statement but something everyone can see. The quality of the images confirms that SOHO is the finest and most stable spacecraft ever devoted to the study of the Sun." Features of the motion picture North is at the top of the scene, which corresponds with the orientation of the Sun as seen at midday in the northern hemisphere of the Earth. SOHO's progress in orbit around the Sun remains in step with the Earth's motion. It travels towards the right (west) in relation to the stars, during the period of observation. As a result, the Sun's position appears to shift to the left (eastwards) in front of the stars. LASCO C3 observes an area of the sky 32 times wider than the visible Sun itself. If you spread the fingers of one hand and hold them at arm's length towards the sky, they will span the 17-degree width of LASCO's field of view. For comparison, the Sun is less than half the width of your little finger. At the time of the observations, SOHO is looking towards the heart of the Milky Way Galaxy, which lies in the constellation of Sagittarius. The Milky Way, made by the light of billions of distant stars, forms a luminous band slanting down and to the right. Dark lanes seen in the Milky Way are real features familiar to astronomers. They are created by dust clouds in the disk of the Galaxy which obscure the distant stars. A doomed comet, previously unknown, enters on the left of the image on 22 December. Its path curves towards the Sun and on 23 December. Its path curves towards the Sun and on 23 December it disappears behind the occulting mask of the coronagraph. It fails to reappear on the far side of the Sun. Whether or not its trajectory took it directly towards the visible surface, the comet must have evaporated in Sun's atmosphere. It was one of a family of comets known as sungrazers, believed to be remnants of a large comet that that broke up perhaps 900 years ago. Other fragments were responsible for spectacular comet apparitions in 1843, 1882 and 1965. The object in the movie is called Comet SOHO 6. It is one of seven sungrazers discovered so far by LASCO, with its unparalleled view of the solar vicinity. Analyses of the comets'orbits, now in progress, are a prerequisite for their inclusion in the official record of comet discoveries. LASCO also provided unique pictures of Comet Hyakutake passing behind the Sun at the beginning of May 1996. Debris strewn from the tails of many comets makes a disk of dust around the Sun, in the ecliptic plane where the planets orbit. It scatters sunlight and is sometimes visible at twilight on the Earth, as the Zodiacal Light. In the raw images obtained by LASCO, the Zodiacal Light is brighter than the solar corona. Image processing has to subtract its effects precisely, to bring the solar wind and the Milky Way into plain view. Random flashes of light in the images are due to cosmic rays striking the detector. These should be regarded, not as blemishes, but as part of the scenery. Cosmic rays are energetic particles coming from exploded stars in the Milky Way, and variations in the solar wind influence their intensity in the vicinity of SOHO and the Earth. Operating beyond the Earth's magnetic field, which repels many particles, SOHO is more exposed to the cosmic rays. In the largest outburst from the Sun seen in the Christmas movie, a mass ejection causes billions of tonnes of gas to race out into space on the right-hand (western) side of the Sun. The origin of this event much lower in the Sun's atmosphere was evident in an expanding bubble seen in processed images from the extreme ultraviolet imager EIT. Coronagraph views obtained during the same Christmas period in the narrower fields of LASCO's C1 and C2 instruments also helped to reveal the Sun's complex behaviour. Coronal mass ejections are the hurricanes of space weather. SOHO is ideally placed and instrumented to report and even anticipate their origins in the Sun's atmosphere. Although the Sun is supposedly very quiet at present, being close to the minimum count of sunspots, LASCO observes so many outbursts large and small - roughly one a day - that scientists are having to think again about how to define a coronal mass ejection. SOHO's continuing success Later LASCO images, on 6 January 1997, revealed a large mass ejection directed towards the Earth. As it swelled it appeared as a halo around the Sun. The mass ejection reached SOHO itself less than four days later, and the solar-wind analyser CELIAS detected an acceleration in the solar wind, from 350 to more than 500 kilometres per second. Soon afterwards, American, Russian and Japanese satellites operating closer to the Earth registered the event, which caused a magnetic storm and bright auroras. The failure of an American TV satellite on 11 January may have been directly related to this event. Mass ejections and other upheavals on the Sun will become even commoner during the coming years, as the count of sunspots increases towards the expected maximum of solar activity in 2000-01. Meanwhile, SOHO is seeking the fundamental reason for the cycle of sunspot activity, which is essentially a magnetic phenomenon. One of the helioseismic instruments probing the solar interior, SOI/MDI, has detected a likely source for the Sun's puzzling magnetism. There may be a natural dynamo operating at the base of the turbulent outer region of the Sun, called the convective zone. This rotates about 7 per cent faster than the underlying and more cohesive region of dense gas, the radiative zone. With the spacecraft in excellent condition and their instruments performing beyond expectations, SOHO's scientists are urging ESA and NASA to allow them to continue their work beyond April 1998, when the initial year of their scientific operations will have been completed.

  9. Exploring Game Performance in the National Basketball Association Using Player Tracking Data

    PubMed Central

    Calleja-González, Julio; Jiménez Sáiz, Sergio; Schelling i del Alcázar, Xavi; Balciunas, Mindaugas

    2015-01-01

    Recent player tracking technology provides new information about basketball game performance. The aim of this study was to (i) compare the game performances of all-star and non all-star basketball players from the National Basketball Association (NBA), and (ii) describe the different basketball game performance profiles based on the different game roles. Archival data were obtained from all 2013-2014 regular season games (n = 1230). The variables analyzed included the points per game, minutes played and the game actions recorded by the player tracking system. To accomplish the first aim, the performance per minute of play was analyzed using a descriptive discriminant analysis to identify which variables best predict the all-star and non all-star playing categories. The all-star players showed slower velocities in defense and performed better in elbow touches, defensive rebounds, close touches, close points and pull-up points, possibly due to optimized attention processes that are key for perceiving the required appropriate environmental information. The second aim was addressed using a k-means cluster analysis, with the aim of creating maximal different performance profile groupings. Afterwards, a descriptive discriminant analysis identified which variables best predict the different playing clusters. The results identified different playing profile of performers, particularly related to the game roles of scoring, passing, defensive and all-round game behavior. Coaching staffs may apply this information to different players, while accounting for individual differences and functional variability, to optimize practice planning and, consequently, the game performances of individuals and teams. PMID:26171606

  10. Exploring Game Performance in the National Basketball Association Using Player Tracking Data.

    PubMed

    Sampaio, Jaime; McGarry, Tim; Calleja-González, Julio; Jiménez Sáiz, Sergio; Schelling I Del Alcázar, Xavi; Balciunas, Mindaugas

    2015-01-01

    Recent player tracking technology provides new information about basketball game performance. The aim of this study was to (i) compare the game performances of all-star and non all-star basketball players from the National Basketball Association (NBA), and (ii) describe the different basketball game performance profiles based on the different game roles. Archival data were obtained from all 2013-2014 regular season games (n = 1230). The variables analyzed included the points per game, minutes played and the game actions recorded by the player tracking system. To accomplish the first aim, the performance per minute of play was analyzed using a descriptive discriminant analysis to identify which variables best predict the all-star and non all-star playing categories. The all-star players showed slower velocities in defense and performed better in elbow touches, defensive rebounds, close touches, close points and pull-up points, possibly due to optimized attention processes that are key for perceiving the required appropriate environmental information. The second aim was addressed using a k-means cluster analysis, with the aim of creating maximal different performance profile groupings. Afterwards, a descriptive discriminant analysis identified which variables best predict the different playing clusters. The results identified different playing profile of performers, particularly related to the game roles of scoring, passing, defensive and all-round game behavior. Coaching staffs may apply this information to different players, while accounting for individual differences and functional variability, to optimize practice planning and, consequently, the game performances of individuals and teams.

  11. XEphem: Interactive Astronomical Ephemeris

    NASA Astrophysics Data System (ADS)

    Downey, Elwood Charles

    2011-12-01

    XEphem is a scientific-grade interactive astronomical ephemeris package for UNIX-like systems. Written in C, X11 and Motif, it is easily ported to systems. Among other things, XEphem: computes heliocentric, geocentric and topocentric information for all objects; has built-in support for all planets; the moons of Mars, Jupiter, Saturn, Uranus and Earth; central meridian longitude of Mars and Jupiter; Saturn's rings; and Jupiter's Great Red Spot; allows user-defined objects including stars, deepsky objects, asteroids, comets and Earth satellites; provides special efficient handling of large catalogs including Tycho, Hipparcos, GSC; displays data in configurable tabular formats in conjunction with several interactive graphical views; displays a night-at-a-glance 24 hour graphic showing when any selected objects are up; displays 3-D stereo Solar System views that are particularly well suited for visualizing comet trajectories; quickly finds all close pairs of objects in the sky; and sorts and prints all catalogs with very flexible criteria for creating custom observing lists. Its capabilities are listed more fully in the user manual introduction.

  12. Astronomy in "Serbskij Narodnij List" / "Serbian National Weekly" / (first half of the 19th century)

    NASA Astrophysics Data System (ADS)

    Jovanović, B. D.

    2003-10-01

    The Editor in Chief of the cited weekly was our famous writer and journalist Teodor Pavlovic (1804-1854), founder of the Gallery of Matica Srpska, and the Editor in chief of the oldest monthly in Europe - "Letopis Matice Srpske" / "Annals of Matica Srpska"/. Reviewed, in this paper, are 21+2 articles dealing with Astronomy. The majority of them had no author undersigned, so that one may suspect them having been written by Pavlovic himself. Starting by explaining the appearance of comets and their characteristics, on the occasion of Halley's comet return, the eclipses of the Sun and the Moon, they included also the discussion of the origins of the Universe and the formation of stars and nebulae. It is interesting that the Serbs, of those times, had the opportunity to read such articles. Certainly the editor was asked to answer questions addressed by the subcribers. It is a great pity and a loss that his correspondence has not been saved.

  13. Curation and Analysis of Samples from Comet Wild-2 Returned by NASA's Stardust Mission

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, Keiko; Walker, Robert M.

    2015-01-01

    The NASA Stardust mission returned the first direct samples of a cometary coma from comet 81P/Wild-2 in 2006. Intact capture of samples encountered at 6 km/s was enabled by the use of aerogel, an ultralow dense silica polymer. Approximately 1000 particles were captured, with micron and submicron materials distributed along mm scale length tracks. This sample collection method and the fine scale of the samples posed new challenges to the curation and cosmochemistry communities. Sample curation involved extensive, detailed photo-documentation and delicate micro-surgery to remove particles without loss from the aerogel tracks. This work had to be performed in highly clean facility to minimize the potential of contamination. JSC Curation provided samples ranging from entire tracks to micrometer-sized particles to external investigators. From the analysis perspective, distinguishing cometary materials from aerogel and identifying the potential alteration from the capture process were essential. Here, transmission electron microscopy (TEM) proved to be the key technique that would make this possible. Based on TEM work by ourselves and others, a variety of surprising findings were reported, such as the observation of high temperature phases resembling those found in meteorites, rarely intact presolar grains and scarce organic grains and submicrometer silicates. An important lesson from this experience is that curation and analysis teams must work closely together to understand the requirements and challenges of each task. The Stardust Mission also has laid important foundation to future sample returns including OSIRIS-REx and Hayabusa II and future cometary nucleus sample return missions.

  14. The star identification, pointing and tracking system of UVSTAR, an attached payload instrument system for the Shuttle Hitchhiker-M platform

    NASA Technical Reports Server (NTRS)

    Decarlo, Francesco; Stalio, Roberto; Trampus, Paolo; Broadfoot, A. Lyle; Sandel, Bill R.; Sicuranza, Giovanni

    1993-01-01

    We describe an algorithm for star identification and pointing/tracking of a spaceborne electro-optical system and simulation analyses to test the algorithm. The algorithm will be implemented in the guiding system of UVSTAR, a spectrographic telescope for observations of astronomical and planetary sources operating in the 500-1250 A waveband at approximately 1 A resolution. The experiment is an attached payload and will fly as a Hitchhiker-M payload on the Shuttle. UVSTAR includes capabilities for independent target acquisition and tracking. The spectrograph package has internal gimbals that allow angular movement of plus or minus 3 deg from the central position. Rotation about the azimuth axis (parallel to the Shuttle z axis) and elevation axis (parallel to the Shuttle x axis) will actively position the field of view to center the target of interest in the fields of the spectrographs. The algorithm is based on an on-board catalog of stars. To identify star fields, the algorithm compares the positions of stars recorded by the guiding imager to positions computed from the on-board catalog. When the field has been identified, its position within the guiding imager field of view can be used to compute the pointing corrections necessary to point to a target of interest. In tracking mode, the software uses the past history to predict the quasi-periodic attitude control motions of the shuttle and sends pointing commands to cancel the motion and stabilize UVSTAR on the target. The guiding imager (guider) will have an 80-mm focal length and f/1.4 optics giving a field of view of 6 deg x 4.5 deg using a 385 x 288 pixel intensified CCD. It will be capable of providing high accuracy (better than 2 arc-sec) attitude determination from coarse (6 deg x 4.5 deg) initial knowledge of the pointing direction; and of pointing toward the target. It will also be capable of tracking at the same high accuracy with a processing time of less than a few hundredths of a second.

  15. A possible explanation of the parallel tracks in kilohertz quasi-periodic oscillations from low-mass-X-ray binaries

    NASA Astrophysics Data System (ADS)

    Shi, Chang-Sheng; Zhang, Shuang-Nan; Li, Xiang-Dong

    2018-05-01

    We recalculate the modes of the magnetohydrodynamics (MHD) waves in the MHD model (Shi, Zhang & Li 2014) of the kilohertz quasi-periodic oscillations (kHz QPOs) in neutron star low mass X-ray binaries (NS-LMXBs), in which the compressed magnetosphere is considered. A method on point-by-point scanning for every parameter of a normal LMXBs is proposed to determine the wave number in a NS-LMXB. Then dependence of the twin kHz QPO frequencies on accretion rates (\\dot{M}) is obtained with the wave number and magnetic field (B*) determined by our method. Based on the MHD model, a new explanation of the parallel tracks, i.e. the slowly varying effective magnetic field leads to the shift of parallel tracks in a source, is presented. In this study, we obtain a simple power-law relation between the kHz QPO frequencies and \\dot{M}/B_{\\ast }^2 in those sources. Finally, we study the dependence of kHz quasi-periodic oscillation frequencies on the spin, mass and radius of a neutron star. We find that the effective magnetic field, the spin, mass and radius of a neutron star lead to the parallel tracks in different sources.

  16. Long-term tracking of budding yeast cells in brightfield microscopy: CellStar and the Evaluation Platform.

    PubMed

    Versari, Cristian; Stoma, Szymon; Batmanov, Kirill; Llamosi, Artémis; Mroz, Filip; Kaczmarek, Adam; Deyell, Matt; Lhoussaine, Cédric; Hersen, Pascal; Batt, Gregory

    2017-02-01

    With the continuous expansion of single cell biology, the observation of the behaviour of individual cells over extended durations and with high accuracy has become a problem of central importance. Surprisingly, even for yeast cells that have relatively regular shapes, no solution has been proposed that reaches the high quality required for long-term experiments for segmentation and tracking (S&T) based on brightfield images. Here, we present CellStar , a tool chain designed to achieve good performance in long-term experiments. The key features are the use of a new variant of parametrized active rays for segmentation, a neighbourhood-preserving criterion for tracking, and the use of an iterative approach that incrementally improves S&T quality. A graphical user interface enables manual corrections of S&T errors and their use for the automated correction of other, related errors and for parameter learning. We created a benchmark dataset with manually analysed images and compared CellStar with six other tools, showing its high performance, notably in long-term tracking. As a community effort, we set up a website, the Yeast Image Toolkit, with the benchmark and the Evaluation Platform to gather this and additional information provided by others. © 2017 The Authors.

  17. Long-term tracking of budding yeast cells in brightfield microscopy: CellStar and the Evaluation Platform

    PubMed Central

    Versari, Cristian; Stoma, Szymon; Batmanov, Kirill; Llamosi, Artémis; Mroz, Filip; Kaczmarek, Adam; Deyell, Matt

    2017-01-01

    With the continuous expansion of single cell biology, the observation of the behaviour of individual cells over extended durations and with high accuracy has become a problem of central importance. Surprisingly, even for yeast cells that have relatively regular shapes, no solution has been proposed that reaches the high quality required for long-term experiments for segmentation and tracking (S&T) based on brightfield images. Here, we present CellStar, a tool chain designed to achieve good performance in long-term experiments. The key features are the use of a new variant of parametrized active rays for segmentation, a neighbourhood-preserving criterion for tracking, and the use of an iterative approach that incrementally improves S&T quality. A graphical user interface enables manual corrections of S&T errors and their use for the automated correction of other, related errors and for parameter learning. We created a benchmark dataset with manually analysed images and compared CellStar with six other tools, showing its high performance, notably in long-term tracking. As a community effort, we set up a website, the Yeast Image Toolkit, with the benchmark and the Evaluation Platform to gather this and additional information provided by others. PMID:28179544

  18. Kinematics and age of 15 stars-photometric solar analogs

    NASA Astrophysics Data System (ADS)

    Galeev, A. I.; Shimansky, V. V.

    2008-03-01

    The radial and space velocities are inferred for 15 stars that are photometric analogs of the Sun. The space velocity components (U, V, W) of most of these stars lie within the 10-60 km/s interval. The star HD 225239, which in our previous papers we classified as a subgiant, has a space velocity exceeding 100 km/s, and belongs to the thick disk. The inferred fundamental parameters of the atmospheres of solar analogs are combined with published evolutionary tracks to estimate the masses and ages of the stars studied. The kinematics of photometric analogs is compared to the data for a large group of solar-type stars.

  19. Following the Cosmic Evolution of Pristine Gas. I. Implications for Milky Way Halo Stars

    NASA Astrophysics Data System (ADS)

    Sarmento, Richard; Scannapieco, Evan; Pan, Liubin

    2017-01-01

    We make use of a new subgrid model of turbulent mixing to accurately follow the cosmological evolution of the first stars, the mixing of their supernova (SN) ejecta, and the impact on the chemical composition of the Galactic Halo. Using the cosmological adaptive mesh refinement code ramses, we implement a model for the pollution of pristine gas as described in Pan et al. Tracking the metallicity of Pop III stars with metallicities below a critical value allows us to account for the fraction of Z< {Z}{crit} stars formed even in regions in which the gas’s average metallicity is well above {Z}{crit}. We demonstrate that such partially mixed regions account for 0.5 to 0.7 of all Pop III stars formed up to z = 5. Additionally, we track the creation and transport of “primordial metals” (PM) generated by Pop III SNe. These neutron-capture deficient metals are taken up by second-generation stars and likely lead to unique abundance signatures characteristic of carbon-enhanced, metal-poor (CEMP-no) stars. As an illustrative example, we associate primordial metals with abundance ratios used by Keller et al. to explain the source of metals in the star SMSS J031300.36-670839.3, finding good agreement with the observed [Fe/H], [C/H], [O/H], and [Mg/Ca] ratios in CEMP-no Milky Way halo stars. Similar future simulations will aid in further constraining the properties of Pop III stars using CEMP observations, as well as improve predictions of the spatial distribution of Pop III stars, as will be explored by the next generation of ground- and space-based telescopes.

  20. Astrometry with A-Track Using Gaia DR1 Catalogue

    NASA Astrophysics Data System (ADS)

    Kılıç, Yücel; Erece, Orhan; Kaplan, Murat

    2018-04-01

    In this work, we built all sky index files from Gaia DR1 catalogue for the high-precision astrometric field solution and the precise WCS coordinates of the moving objects. For this, we used build-astrometry-index program as a part of astrometry.net code suit. Additionally, we added astrometry.net's WCS solution tool to our previously developed software which is a fast and robust pipeline for detecting moving objects such as asteroids and comets in sequential FITS images, called A-Track. Moreover, MPC module was added to A-Track. This module is linked to an asteroid database to name the found objects and prepare the MPC file to report the results. After these innovations, we tested a new version of the A-Track code on photometrical data taken by the SI-1100 CCD with 1-meter telescope at TÜBİTAK National Observatory, Antalya. The pipeline can be used to analyse large data archives or daily sequential data. The code is hosted on GitHub under the GNU GPL v3 license.

  1. Design concepts and performance of NASA X-band (7162 MHz/8415 MHz) transponder for deep-space spacecraft applications

    NASA Technical Reports Server (NTRS)

    Mysoor, N. R.; Perret, J. D.; Kermode, A. W.

    1991-01-01

    The design concepts and measured performance characteristics are summarized of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DSP) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the X band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control, static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB.

  2. Origins of GEMS Grains

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Walker, R. M.

    2012-01-01

    Interplanetary dust particles (IDPs) collected in the Earth s stratosphere contain high abundances of submicrometer amorphous silicates known as GEMS grains. From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation. We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the chemical compositions of GEMS grains are extremely heterogeneous and seem to rule out this possibility. Based on their solar isotopic compositions and their non-solar elemental compositions we propose that most GEMS grains formed in the nebula as late-stage non-equilibrium condensates.

  3. Comet deflection by directed energy: a finite element analysis

    NASA Astrophysics Data System (ADS)

    Madajian, Jonathan; Griswold, Janelle; Gandra, Anush; Hughes, Gary B.; Zhang, Qicheng; Rupert, Nic; Lubin, Philip

    2016-09-01

    Comets and Asteroids are viable threats to our planet; if these space rocks are smaller than 25 meters, they burn up in the atmosphere, but if they are wider than 25 meters they can cause damage to the impact area. Anything more than one to two kilometers can have worldwide effects, furthermore a mile-wide asteroid travelling at 30,000 miles per hour has the energy equal to a megaton bomb and is very likely to wipe out most of the life on Earth. Residents near Chelyabinsk, Russia experienced the detrimental effects of a collision with a Near-Earth Asteroid (NEA) on 15 February 2013 as a 20 m object penetrated the atmosphere above that city. The effective yield from this object was approximately 1/2 Megaton TNT equivalent (Mt), or that of a large strategic warhead. The 1908 Tunguska event, also over Russia, is estimated to have had a yield of approximately 15 Mt and had the potential to kill millions of people had it come down over a large city1. In the face of such danger a planetary defense system is necessary and this paper proposes a design for such a system. DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) is a phased array laser system that can be used to oblate, deflect and de-spin asteroids and comets.

  4. Stellar Occultations in the Coma of Comet 67/P Chuyumov-Gerasimenko Observed by the OSIRIS Camera System

    NASA Astrophysics Data System (ADS)

    Moissl, Richard; Kueppers, Michael

    2016-10-01

    In this paper we present the results of an analysis on a large part of the existing Image data from the OSIRIS camera system onboard the Rosetta Spacecraft, in which stars of sufficient brightness (down to a limiting magnitude of 6) have been observed through the coma of Comet 67/P Churyumov-Gerasimenko ("C-G"). Over the course of the Rosetta main mission the Coma of the comet underwent large changes in density and structure, owed to the changing insolation along the orbit of C-G. We report on the changes of the stellar signals in the wavelength ranges, covered by the filters of the OSIRIS Narrow-Angle (NAC) and Wide-Angle (WAC) cameras.Acknowledgements: OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politéchnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany.

  5. Si Isotopes of Brownleeite

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, Scott R.; Ito, M.; Keller, L. P.; Clemett, S. J.; Jones, J. H.; Tatsuoka, H.; Zolensky, M. E.; Tatsuoka, H.

    2010-01-01

    Brownleeite is a manganese silicide, ideally stoichiometric MnSi, not previously observed in nature until its discovery within an interplanetary dust particle (IDP) that likely originated from a comet [1]. Three discrete brownleeite grains in the IDP L2055 I3 (4 microns in size, hereafter IDP I3) were identified with maximum dimensions of 100, 250 and 600 nm and fully analyzed using scanning-transmission electron microscopy (STEM) [1]. One of the grains (100 nm in size) was poikilitically enclosed by low-Fe, Mn-enriched (LIME) olivine. LIME olivine is epitaxial to the brownleeite with the brownleeite (200) parallel to the olivine c* [1]. LIME olivine is an enigmatic phase first reported from chondritic porous IDPs and some unequilibrated ordinary chondrites [ 2], that is commonly observed in chondritic-porous IDPs. Recently, LIME olivine has been also found in comet Wild-2 (Stardust) samples [3], indicating that LIME olivine is a common mineral component of comets. LIME olivine has been proposed to form as a high temperature condensate in the protosolar nebula [2]. Brownleeite grains also likely formed as high-temperature condensates either in the early Solar System or in the outflow of an evolved star or supernova explosion [1]. The isotopic composition of the brownleeite grains may strongly constrain their ultimate source. To test this hypothesis, we performed isotopic analyses of the brownleeite and the associated LIME olivine, using the NASA/JSC NanoSIMS 50L ion microprobe.

  6. The LBTI Hunt for Observable Signatures of Terrestrial Systems (HOSTS) Survey: a Key NASA Science Program on the Road to Exoplanet Imaging Missions (SPIE Proceedings 2)

    NASA Technical Reports Server (NTRS)

    Danchi, William C.; Bailey, V.; Defrere, D.; Haniff, C.; Hinz, P.; Kennedy, G.; Mennesson, B.; Millan-Gabet, R.; Rieke, G.; Roberge, Aki; hide

    2014-01-01

    Telescope Interferometer (LBTI) will survey nearby stars for faint exozodiacal dust (exozodi). This warm circumstellar dust, analogous to the interplanetary dust found in the vicinity of the Earth in our own system, is produced in comet breakups and asteroid collisions. Emission and or scattered light from the exozodi will be the major source of astrophysical noise for a future space telescope aimed at direct imaging and spectroscopy of terrestrial planets (exo- Earths) around nearby stars. About 20 of nearby field stars have cold dust coming from planetesimals at large distances from the stars (Eiroa et al. 2013, AA, 555, A11; Siercho et al. 2014, ApJ, 785, 33). Much less is known about exozodi; current detection limits for individual stars are at best 500 times our solar system's level (aka. 500 zodi). LBTI-HOSTS will be the first survey capable of measuring exozodi at the 10 zodi level (3). Detections of warm dust will also reveal new information about planetary system architectures and evolution. We will describe the motivation for the survey and progress on target selection, not only the actual stars likely to be observed by such a mission but also those whose observation will enable sensible extrapolations for stars that will not be observed with LBTI. We briefly describe the detection of the debris disk around Crv, which is the first scientific result from the LBTI coming from the commissioning of the instrument in December 2013, shortly after the first time the fringes were stabilized.

  7. Contingency Operations during Failure of Inertial Attitude Acquisition Due to Star Tracker Blinding for Three-Axes-Stabilized Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Keil, Joachim; Herfort, Ulrich

    2007-01-01

    The three interplanetary ESA missions Mars-Express, Rosetta and Venus-Express (launched 2003, 2004 and 2005 resp.) are three-axes stabilized spacecraft (s/c) that estimate their inertial attitude (i.e. the attitude of the s/c w.r.t. the inertial frame) using measurements from a redundant set of star trackers (STR). Each s/c is equipped with four reaction wheels, a reaction control system based on thrusters and a redundant set of ring laser gyroscopes (gyros). The STR h/w layout of the three s/c is identical whereas there is a difference in the star pattern recognition algorithm of Rosetta which uses five neighbouring stars around a central star instead of star triads. The Rosetta algorithm has been implemented to cope with the presence of false stars which are expected to be seen during operations around the comet. The attitude acquisition capability from lost in space is different also in terms of AOCMS: The survival mode of Rosetta which is entered upon STR failure is presented. The AOCMS of Mars- and Venus-Express manages temporary STR outages during sky occultation by the planet not even by using redundancy. Though, a blinding of both STR during cruise lasting for the order of days confronts the ground operators with the limits of the AOCMS design. The operations and analyses that have been planned and partially been performed to compensate for the outage of the STR are demonstrated for Mars-Express. The caution measures taken before Venus orbit insertion of Venus-Express are detailed.

  8. Coordinated Analyses of Diverse Components in Whole Stardust Cometary Tracks

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, Keiko; Keller, Lindsay P.; Messenger, Scott R.; Clemett, Simon J.; Nguyen, Lan-Anh N.; Frank, David

    2011-01-01

    Analyses of samples returned from Comet 81P/Wild-2 by the Stardust spacecraft have resulted in a number of surprising findings that show the origins of comets are more complex than previously suspected. However, these samples pose new experimental challenges because they are diverse and suffered fragmentation, thermal alteration, and fine scale mixing with aerogel. Questions remain about the nature of Wild-2 materials, such as the abundances of organic matter, crystalline materials, and presolar grains. To overcome these challenges, we have developed new sample preparation and analytical techniques tailored for entire aerogel tracks. We have successfully ultramicrotomed entire "carrot" and "bulbous" type tracks along their axis while preserving their original shapes. This innovation allowed us to examine the distribution of fragments along the track from the entrance hole all the way to the terminal particle (TP). We will present results of our coordinated analysis of the "carrot" type aerogel tracks #112 and #148, and the "bulbous" type aerogel tracks #113, #147 and #168 from the nanometer to the millimeter scale. Scanning TEM (STEM) was used for elemental and detailed mineralogy characterization, NanoSIMS was used for isotopic analyses, and ultrafast two-step laser mass spectrometry (ultra L2MS) was used to investigate the nature and distribution of organic phases. The isotopic measurements were performed following detailed TEM characterization for coordinated mineralogy. This approach also enabled spatially resolving the target sample from fine-scale mixtures of compressed aerogel and melt. Eight of the TPs of track #113 are dominated by coarse-grained enstatite (En90) that is largely orthoenstatite with minor, isolated clinoenstatite lamellae. One TP contains minor forsterite (Fo88) and small inclusions of diopside with % levels of Al, Cr and Fe. Two of the TPs contain angular regions of fine-grained nepheline surrounded by enstatite. Their O isotopic compositions are in the range of meteoritic materials, implying that they originated in the inner Solar System. Complex aromatic hydrocarbons are distributed along aerogel tracks and in TPs. These organics are likely cometary but were affected by shock heating. Three TPs of track #147 and two of track 168 have completely different mineralogy. TP2 of track #147 entirely consists of Fe-Ni alloy (5 at% Ni) and TP3 contains Fa28 with partial olivine-pyroxene intergrowth and minor albite. TP4 contains pentlandite, Fe-olivine, albite and high Ca pyroxene with Na and Cr (kosmochlor component). TP1 of #168 contains Fe-olivine, albite and pentlandite, and the concentric TP2 has a core of olivine grains with co-existing indigenous amorphous SiO2 surrounded by a carbon mantle, which in turn is surrounded by a layer of compressed aerogel. The TP of the carrot track #112 is a (16)O-rich forsteritic olivine grain that likely formed in the inner Solar System. The track also contains submicron-sized diamond grains of likely Solar System origin.

  9. Coordinated Analyses of Diverse Components in Whole Stardust Cometary Tracks

    NASA Astrophysics Data System (ADS)

    Nakamura-Messenger, K.; Keller, L. P.; Messenger, S. R.; Clemett, S. J.; Nguyen, L. N.; Frank, D.

    2011-12-01

    Analyses of samples returned from Comet 81P/Wild-2 by the Stardust spacecraft have resulted in a number of surprising findings that show the origins of comets are more complex than previously suspected. However, these samples pose new experimental challenges because they are diverse and suffered fragmentation, thermal alteration, and fine scale mixing with aerogel. Questions remain about the nature of Wild-2 materials, such as the abundances of organic matter, crystalline materials, and presolar grains. To overcome these challenges, we have developed new sample preparation and analytical techniques tailored for entire aerogel tracks [Nakamura-Messenger et al. 2011]. We have successfully ultramicrotomed entire "carrot" and "bulbous" type tracks along their axis while preserving their original shapes. This innovation allowed us to examine the distribution of fragments along the track from the entrance hole all the way to the terminal particle (TP). We will present results of our coordinated analysis of the "carrot" type aerogel tracks #112 and #148, and the "bulbous" type aerogel tracks #113, #147 and #168 from the nanometer to the millimeter scale. Scanning TEM (STEM) was used for elemental and detailed mineralogy characterization, NanoSIMS was used for isotopic analyses, and ultrafast two-step laser mass spectrometry (ultra L2MS) was used to investigate the nature and distribution of organic phases. The isotopic measurements were performed following detailed TEM characterization for coordinated mineralogy. This approach also enabled spatially resolving the target sample from fine-scale mixtures of compressed aerogel and melt. Eight of the TPs of track #113 are dominated by coarse-grained enstatite (En90) that is largely orthoenstatite with minor, isolated clinoenstatite lamellae. One TP contains minor forsterite (Fo88) and small inclusions of diopside with % levels of Al, Cr and Fe. Two of the TPs contain angular regions of fine-grained nepheline surrounded by enstatite. Their O isotopic compositions are in the range of meteoritic materials, implying that they originated in the inner Solar System. Complex aromatic hydrocarbons are distributed along aerogel tracks and in TPs. These organics are likely cometary but were affected by shock heating. Three TPs of track #147 and two of track 168 have completely different mineralogy. TP2 of track #147 entirely consists of Fe-Ni alloy (5 at% Ni) and TP3 contains Fa28 with partial olivine-pyroxene intergrowth and minor albite. TP4 contains pentlandite, Fe-olivine, albite and high Ca pyroxene with Na and Cr (kosmochlor component). TP1 of #168 contains Fe-olivine, albite and pentlandite, and the concentric TP2 has a core of olivine grains with co-existing indigenous amorphous SiO2 surrounded by a carbon mantle, which in turn is surrounded by a layer of compressed aerogel. The TP of the carrot track #112 is a 16O-rich forsteritic olivine grain that likely formed in the inner Solar System. The track also contains submicron-sized diamond grains of likely Solar System origin.

  10. The mechanics and origin of cometaria

    NASA Astrophysics Data System (ADS)

    Beech, Martin

    2002-12-01

    The cometarium, literally a mechanical device for describing the orbit of a comet, had its genesis as a machine for illustrating the observable consequences of Kepler's second law of planetary motion. The device that became known as the cometarium was originally constructed by J.T. Desaguliers in 1732 to demonstrate, in a sensible fashion, the perihelion to aphelion change in velocity of the planet Mercury. It was only with the imminent, first predicted, return of Halley's comet in 1758 that the name cometarium was coined, and subsequent devices so named. Most early cometaria used a pair of elliptical formers joined via a figure-of-eight cord to translate uniform drive motion into the non-uniform motion of an object moving along an elliptic track. It is shown in a series of calculations, however, that two elliptical former cometaria do not actually provide a correct demonstration of Keplerian velocity variations and nor do they actually demonstrate Kepler's second law of planetary motion.

  11. Stellar Interlopers Caught Speeding Through Space

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1 Figure 2 Figure 3 Figure 4 Click on individual image for larger view

    Resembling comets streaking across the sky, these four speedy stars are plowing through regions of dense interstellar gas and creating brilliant arrowhead structures and trailing tails of glowing gas.

    These bright arrowheads, or bow shocks, can be seen in these four images taken with NASA's Hubble Space Telescope. The bow shocks form when the stars' powerful stellar winds, streams of matter flowing from the stars, slam into surrounding dense gas. The phenomenon is similar to that seen when a speeding boat pushes through water on a lake.

    The stars in these images are among 13 runaway stars spotted by Hubble's Advanced Camera for Surveys. The stars appear to be young, just millions of years old. Their ages are based on their colors and the presence of strong stellar winds, a signature of youthful stars.

    Depending on their distance from Earth, the bullet-nosed bow shocks could be 100 billion to a trillion miles wide (the equivalent of 17 to 170 solar system diameters, measured out to Neptune's orbit). The bow shocks indicate that the stars are moving fast, more than 180,000 kilometers an hour (more than 112,000 miles an hour) with respect to the dense gas they are plowing through. They are traveling roughly five times faster than typical young stars, relative to their surroundings.

    The high-speed stars have traveled far from their birth places. Assuming their youthful phase lasts only a million years and they are moving at roughly 180,000 kilometers an hour, the stars have journeyed 160 light-years.

    The Hubble observations were taken between October 2005 and July 2006.

  12. New Asteroseismic Scaling Relations Based on the Hayashi Track Relation Applied to Red Giant Branch Stars in NGC 6791 and NGC 6819

    NASA Astrophysics Data System (ADS)

    Wu, T.; Li, Y.; Hekker, S.

    2014-01-01

    Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on a relation for stars on the Hayashi track (\\sqrt{T_eff} \\sim g^pR^q) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and νmax (frequency of maximum oscillation power). The Δν and νmax values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and νmax, with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - νmax relation for red giant branch stars.

  13. Adventure into space.

    PubMed

    Burbidge, E M

    1983-07-29

    The exploration of the universe has captured mankind's interest since the earliest attempts to understand the sun, moon, planets, comets, and stars. The last few decades have seen explosive advances of knowledge, sparked by technological advances and by our entry into the space age. Achievements in solar system exploration, discoveries both in the Milky Way and in the farther universe, and challenges for the future are discussed. Of major concern worldwide is the need for people of goodwill in all nations to concentrate on the peaceful uses of outer space and on international collaboration.

  14. Are periodic bombardments real?

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    1990-01-01

    Consideration is given to the hypothesis that showers of comets or asteroids strike the earth every 26 m yrs, causing climatic castastrophes and mass extinctions (Raup and Sepkoski, 1984). Possible explanations for the alleged periodicity are discussed, including the possibility that the sun has a small faint companion star and perturbations of the Oort cloud as the solar system passes through the Galactic plane. Also, the possible causes of the extinction at the K-T boundary are examined. The implications of these theories are noted and evidence suggesting that impacts do not have periodicity is presented.

  15. Observation of Celestial Phenomena in Ancient China

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  16. European Workshop on Planetary Sciences, Rome, Italy, April 23-27, 1979, Proceedings. Part 1

    NASA Astrophysics Data System (ADS)

    1980-02-01

    Papers are presented on the dynamics and evolution of the solar system and its components. Specific topics include the dynamic stability of the solar system, the tidal friction theory of the earth moon system, the stability and irregularity of extrasolar planetary systems, angular momentum and magnetic braking during star formation, the collisional growth of planetesimals, the dynamics, interrelations and evolution of the asteroids and comets, the formation and stability of Saturn's rings, and the importance of nearly tangent orbits in planetary close encounters.

  17. An Independent Confirmation of the Future Flyby of Gliese 710 to the Solar System Using Gaia DR2

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos

    2018-05-01

    Gliese 710 is a K7V star located 19 pc from the Sun in the constellation of Serpens Cauda, which is headed straight for the solar system. Berski & Dybczynski (2016) used data from Gaia DR1 to show that this star will be 13366 AU from the Sun in 1.35 Myr from now. Here, we present an independent confirmation of this remarkable result using Gaia DR2. Our approach is first validated using as test case that of the closest known stellar flyby, by the binary WISE J072003.20-084651.2 or Scholz's star. Our results confirm, within errors, those in Berski & Dybczynski (2016), but suggest a somewhat closer, both in terms of distance and time, flyby of Gliese 710 to the solar system. Such an interaction might not significantly affect the region inside 40 au as the gravitational coupling among the known planets against external perturbation can absorb efficiently such a perturbation, but it may trigger a major comet shower that will affect the inner solar system.

  18. The morphology of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Jorda, L.

    The sudden appearance of a bright comet stretching over a large part of the night sky must have been one of the most awesome phenomena for early humans watching the sky. The nature of comets remained obscure well into the Middle Ages. Only with the introduction of astronomical techniques and analyses in Europe was the parallax of a comet determined by Tycho Brahe for the first time. He proved that comets are not phenomena of the Earth's atmosphere but are farther away than the Moon; in other words they are interplanetary objects. Later Kepler first predicted that comets follow straight lines, then Hevelius suggested parabolic orbits roughly a hundred years later. It was Halley who suggested that the comets of the years 1531, 1607 and 1682 were apparitions of one and the same comet that would return again in 1758. The success of this prediction made it clear that comets are members of our Solar System. While it was now established that periodic comets are objects of the planetary system, their origin and nature continued to be debated. Were they formed together with the planets from the solar nebula (Kant) or were they of extrasolar origin as suggested by Laplace? This debate lasted for 200 years until well into the second half of the last century. Öpik (1932) suggested that a cloud of comets surrounded our Solar System. This hypothesis was quantified and compared to the observed distribution of orbital parameters (essentially the semi-major axes) of new comets by Oort (1950) (Section 2.1). Comets are scattered into the inner Solar System by perturbations caused by galactic tides, passing stars and large molecular clouds. The Oort cloud would have a radius of 2 105AU, a dimension comparable to the distances of stars in our neighbourhood. The lifetime (limited by decay due to activity and by perturbations caused by encounters with planets) even of the new comets on almost parabolic orbits and typical periods of the order of 106 years is short compared to the age of the planetary system (4.5 Gy). Therefore, observed comets could only recently have arrived on their orbits dipping inside the inner Solar System. This reservoir of comets must have been established during the formation process of the planetary system itself. Cometesimals were agglomerated from interstellar/interplanetary gas and dust and scattered out of the inner Solar System by the giant outer planets (Section 2.3). This scheme implies that a central part of a comet, its nucleus, is stable enough to survive these perturbations. It must also be stable enough to pass the vicinity of the sun for many times in the case of a short-period comet. Comets are bright and large when they are close to the sun and fade quickly when they recede beyond about 2AU. Only with the advent of photography and large astronomical telescopes could a comet be followed until it becomes a starlike point source. What makes comets active near the Sun, blowing their appearances up to the order of 105 km? Bright comets often develop tails two orders of magnitude longer. In an attempt to explain the cometary appearance, Bredichin (1903) introduced a mechanical model where repulsive forces drive the particles away from a central condensation. Spectroscopy revealed that dust grains reflect the solar irradiation. In addition, simple molecules, radicals and ions were found as constituents of the cometary coma and tail. The nature of the central condensation remained mysterious for a long time because of the observational dilemma. When the comet is close to the Earth and therefore to the Sun the dense coma obscures the view into its centre. When activity recedes the comet is too far away and too dim for detailed observations of its central condensation. During the middle of the nineteenth century the connection between comets and meteor streams was established. Schiaparelli (1866) calculated the dispersion of cometary dust within the orbital plane. From this time on the perception that the central condensations of comets were agglomerations of dust particles prevailed for about a century. The gas coma was explained by desorption of molecules from dust particles with large surfaces (Levin 1943). The storage of highly reactive radicals (most observed species (CN, CH, NH2, etc.) were of this category) posed a major difficulty to be explained. The inference that these radicals should be dissociation products of stable parent molecules (such as (CN)2, CH4, NH3, etc.) by Wurm (1934, 1935, 1943) led to our present understanding that these molecules are stored as ices within the central nucleus of a comet. Whipple (1950a,b) combined the astrometrical observations of changes of the orbital periods of comets with the existence of an icy cometary nucleus. The sublimation of ices cause reactive (rocket) non-gravitational forces that increase or decrease the orbital period of an active comet according to the sense of rotation of its nucleus. Evidence in support of the icy conglomerate nucleus became more and more compelling by the derived high gas production rates that could not be stored by adsorption on dust grains (Biermann and Trefftz 1964, Huebner 1965, Keller 1976a,b) and by the same account by the large quantities of dust moving into the cometary tail (Finson and Probstein 1968b). The `sand bank' model (Lyttleton 1953) was clearly dismissed in favour of a solid icy nucleus. Its formation and origin could now be explored. While there was some knowledge about the chemical composition of the nucleus, its physical properties, even the basic ones like size, shape and mass, remained largely unknown because the nucleus could not be observed. Early attempts to derive the nucleus size from the `nuclear' magnitudes of comets at large heliocentric distances while they are inactive (Roemer 1966a,b) led to a systematic overestimation of the size because their residual activity could not be eliminated. The advent of modern detectors and large ground-based telescopes revealed that most comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of the Rosetta comet rendezvous mission) to about 50 km (comet Hale- Bopp, comet P/Schwassman-Wachmann 1). Their albedos are very low, about 0.04. Their shapes are irregular, axes ratios of 2:1 are often derived. Even though comets are characterized by their activity, in most cases only a small fraction of the nuclear surface (in some cases less than 1%) is active. An exception seems to be comet P/Wirtanen where all its surface is required to be active in order to explain its production rates (Rickman and Jorda 1998). The detection of trans-Neptunian objects (TNOs) in the Kuiper belt (Jewitt and Luu 1993) reveals a new population of cometary bodies with dimensions an order of magnitude bigger (100 km and larger) than the typical comet observed in the inner planetary system. Little is known about the extent, density, size distribution and physical characteristics of these objects. This region is supposedly the reservoir for short-period comets, manly those controlled by Jupiter (Jupiter family comets). Our present concept of a cometary nucleus has been strongly influenced by the first pictures of the nucleus of comet Halley achieved during the Giotto flyby in 1986. While this revelation seems to be confirmed as typical by modern observations it carries the danger of prototyping new observational results and inferences. Missions and spacecraft are already on their way (Deep Space, Contour, Stardust, Deep Impact) or in preparation (Rosetta) to diversify our knowledge. The morphology of cometary nuclei is determined by their formation process in the early solar nebula, their dynamics and evolution. The physics of the processes leading to their apparent activity while approaching the Sun are still obscure in many details but determine the small- and intermediate-scale morphology. The large-scale morphology, the shape, of a cometary nucleus is determined by its fragility and inner structure and by its generally complex rotational state. These topics will be reviewed in the following sections. Chemical and compositional aspects will be only discussed where they are important in the framework of the physical evolution of cometary nuclei. More details are given in Chapter 53. A brief survey of the current modelling efforts is given. The fate of cometary nuclei and their decay products follows. A summary and outlook ends this chapter on the morphology of cometary nuclei.

  19. Hubble's Last Look at Comet ISON Before Perihelion

    NASA Image and Video Library

    2013-11-22

    As of mid-November, ISON is officially upon us. Using Hubble, we've taken our closest look yet at the innermost region of the comet, where geysers of sublimating ice are fueling a spectacular tail. Made from observations on November 2nd, the image combines pictures of ISON taken through blue and red filters. As we expect, the round coma around ISON's nucleus is blue and the tail has a redder hue. Ice and gas in the coma reflect blue light from the Sun, while dust grains in the tail reflect more red light than blue light. This is the most color separation we've seen so far in ISON -- that's because the comet, nearer than ever to the Sun, is brighter and more structured than ever before. We've certainly come a long way since Hubble started observing Comet ISON, way back in April. Of course, our eight-month retrospective pales in comparison with ISON's own journey, which started some 10,000 years ago in the Oort cloud. ISON will come closest to the Sun on November 28, a point in its orbit known as perihelion. What's remarkable here is that the entire ISON, this awesome, shimmery space tadpole, is being produced from a dusty ball of ice estimated to be a few kilometers in diameter. Compared to ISON's full extent, Hubble's latest image is tiny. It only shows the very base of the tail. Yet even in this closest closeup we've ever had, a single pixel spans 24 km across the comet. Now that Comet ISON is close, amateur astromers rule the day. But Hubble observations, including this latest image, are still providing key insights into the science and spectacle of a comet we hope will continue to impress. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. This collection of images show ISON throughout that journey, as scientists watched to see whether the comet would break up or remain intact. The comet reaches its closest approach to the sun on Thanksgiving Day -- Nov. 28, 2013 -- skimming just 730,000 miles above the sun’s surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. ISON stands for International Scientific Optical Network, a group of observatories in ten countries who have organized to detect, monitor, and track objects in space. ISON is

  20. The Nature of Punctuational Crises and the Spenglerian Model of Civilization

    NASA Astrophysics Data System (ADS)

    Clube, S. V. M.

    Mankind's essentially untroubled state of mind in the presence of comets during the last two centuries has been fortified by the overall relative brevity of cometary apparitions and the calculated infrequency of cometary encounters with planets. During the course of the Space Age, however, the fact of cometary splitting has also become increasingly secure and there is growing appreciation of the fact that mankind's state of mind can never be altogether relaxed. Indeed a watershed in the modern perception of cometary facts has evidently been reached with the most recent and devastating example of cometary splitting, that of the fragmentation of Comet P/Shoemaker-Levy 9 and its subsequent bombardment of planet Jupiter. Thus there is a recognized tendency now amongst comets, especially those in short-period orbits, due to the occasionally excessive effects of solar irradiation, planetary tides and small body impacts, which gives rise to individual swarms of cometary debris, and it is the resulting repeated penetration of such dispersed swarms by our planet which apparently increases the danger to mankind from time to time. The danger comprises global coolings, atmospheric pollution and super-Tunguska events, the cometary debris being responsible for both high-level dust insertions and low-level multimegaton explosions in the Earth's atmosphere along with a generally enhanced fireball flux. Historically, the presence of such danger was drawn to mankind's attention by the observed bombardments over several decades due to "blazing stars threatening the world with famine, plague and war; to princes death; to kingdoms many curses; to all estates many losses; to herdsmen rot; to ploughmen hapless seasons; to sailors storms; to cities civil treasons." The sense of cosmic destiny aroused by these bombardments evidently involved degrees of fatalism and public anxiety which were deplored by both ecclesiastical authorities and secular administrations with the result that acknowledged dispensers of prognosis and mitigation who endorsed the adverse implications of 'blazing stars' (astrologers, soothsayers etc.) were commonly impugned and censured. Nowadays, of course, we are able to recognise that the Earth's environment is not only one of essentially uniformitarian calm, as formerly assumed, but one that is also interrupted by 'punctuational crises', each crisis being the sequence of events which arises due to the fragmentation of an individual comet whose orbit intersects the Earth's. That even modest crises can arouse apprehension is known through the circumstances of the nineteenth century break-up of Comet Biela. Indeed it seems that these crises are rather frequently characterized by relatively violent (paradigm shifting) transmutations of human society such as were originally proposed by Spengler and Toynbee more than sixty years ago on the basis of historical analysis alone. It would appear, then, that the historical fear of comets which has been with us since the foundation of civilization, far from being the reflection of an astrological perception of the cosmos which was deranged and therefore abandoned, has a perfectly rational basis in occasional cometary fragmentation events. Such events recur and evidently have quite serious implications for society and government today. Thus when cosmic danger returns and there is growing awareness of the fact, we find that society is capable of becoming uncontrollably convulsed as 'enlightenment' spreads. A revival of millenarian expectations under these circumstances, for example, is not so much an underlying consequence but a deviant manifestation of the violent turmoil into which society falls, often to revolutionary effect.

  1. Neon and Helium in the Surface of Stardust Cell C2028

    NASA Technical Reports Server (NTRS)

    Palma, R. L.; Pepin, R. O.; Schlutter, D. J.; Frank, D. R.; Bastien, R.; Rodriguez, M.

    2015-01-01

    Previous studies of light noble gases in Stardust aerogel samples detected a variety of isotopically non-terrestrial He and Ne compositions. However, with one exception, in none of these samples was there visible evidence for the presence of particles that could have hosted the gases. The exception is materials keystoned from track 41, cell C2044, which contained observable fragments of the impacting Wild 2 comet coma grain. Here we report noble gas data from a second aerogel sample in which grains are observed, cut from the surface of a cell (C2028) riddled with tiny tracks and particles that are thought to be secondary in origin, ejected toward the cell when a parent grain collided with the spacecraft structure and fragmented. Interestingly, measured 20Ne/22Ne ratios in the track 41 and C2028 samples are similar, and within error of the meteoritic "Q-phase" Ne composition.

  2. The effect of starspots on the radii of low-mass pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Jackson, R. J.; Jeffries, R. D.

    2014-07-01

    A polytropic model is used to investigate the effects of dark photospheric spots on the evolution and radii of magnetically active, low-mass (M < 0.5 M⊙), pre-main-sequence (PMS) stars. Spots slow the contraction along Hayashi tracks and inflate the radii of PMS stars by a factor of (1 - β)-N compared to unspotted stars of the same luminosity, where β is the equivalent covering fraction of dark starspots and N ≃ 0.45 ± 0.05. This is a much stronger inflation than predicted by Spruit & Weiss for main-sequence stars with the same β, where N ˜ 0.2-0.3. These models have been compared to radii determined for very magnetically active K- and M-dwarfs in the young Pleiades and NGC 2516 clusters, and the radii of tidally locked, low-mass eclipsing binary components. The binary components and zero-age main-sequence K-dwarfs have radii inflated by ˜10 per cent compared to an empirical radius-luminosity relation that is defined by magnetically inactive field dwarfs with interferometrically measured radii; low-mass M-type PMS stars, that are still on their Hayashi tracks, are inflated by up to ˜40 per cent. If this were attributable to starspots alone, we estimate that an effective spot coverage of 0.35 < β < 0.51 is required. Alternatively, global inhibition of convective flux transport by dynamo-generated fields may play a role. However, we find greater consistency with the starspot models when comparing the loci of active young stars and inactive field stars in colour-magnitude diagrams, particularly for the highly inflated PMS stars, where the large, uniform temperature reduction required in globally inhibited convection models would cause the stars to be much redder than observed.

  3. Properties of LEGUS Clusters Obtained with Different Massive-Star Evolutionary Tracks

    NASA Astrophysics Data System (ADS)

    Wofford, A.; Charlot, S.; Eldridge, J. J.

    We compute spectral libraries for populations of coeval stars using state-of-the-art massive-star evolutionary tracks that account for different astrophysics including rotation and close-binarity. Our synthetic spectra account for stellar and nebular contributions. We use our models to obtain E(B - V ), age, and mass for six clusters in spiral galaxy NGC 1566, which have ages of < 50 Myr and masses of > 5 x 104M⊙ according to standard models. NGC 1566 was observed from the NUV to the I-band as part of the imaging Treasury HST program LEGUS: Legacy Extragalactic UV Survey. We aim to establish i) if the models provide reasonable fits to the data, ii) how well the models and photometry are able to constrain the cluster properties, and iii) how different the properties obtained with different models are.

  4. MIP- MULTIMISSION INTERACTIVE PICTURE PLANNING PROGRAM

    NASA Technical Reports Server (NTRS)

    Callahan, J. D.

    1994-01-01

    The Multimission Interactive Picture Planner, MIP, is a scientifically accurate and fast, 3D animation program for deep space. MIP is also versatile, reasonably comprehensive, portable, and will run on microcomputers. New techniques were developed to rapidly perform the calculations and transformations necessary to animate scientifically accurate 3D space. At the same time, portability is maintained, as the transformations and clipping have been written in FORTRAN 77 code. MIP was primarily designed to handle Voyager, Galileo, and the Space Telescope. It can, however, be adapted to handle other missions. The space simulation consists of a rotating body (usually a planet), any natural satellites, a spacecraft, the sun, stars, descriptive labelling, and field of view boxes. The central body and natural satellites are tri-axial wireframe representations with terminators, limbs, and landmarks. Hidden lines are removed for the central body and natural satellites, but not for the scene as a whole so that bodies may be seen behind one another. The program has considerable flexibility in its step time, observer position, viewed object, field of view, etc. Most parameters may be changed from the keyboard while the simulation is running. When MIP is executed it will ask the user for a control file, which should be prepared before execution. The control file identifies which mission MIP should simulate, the star catalog files, the ephemerides files to be used, the central body, planets, asteroids, and comets, and solar system landmarks and constants such as planets, asteroids, and comets. The control file also describes the fields of view. Control files are included to simulate the Voyager 1 encounter at Jupiter and the Giotto spacecraft's flyby of Halley's comet. Data is included for Voyager 1 and 2 (all 6 planetary encounters) and Giotto. MIP was written for an IBM PC or compatibles. It requires 512K of RAM, a CGA or compatible graphics adapter, and DOS 2.0 or higher. Users must supply their own graphics primitives to clear the screen, change the color, and connect 2D points with straight lines. Also, the users must tie in the graphics primitives along with their ephemeris readers. (MIP does everything else including clipping.) MIP was developed in 1988.

  5. Scientists Track Collision of Powerful Stellar Winds

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have tracked the motion of a violent region where the powerful winds of two giant stars slam into each other. The collision region moves as the stars, part of a binary pair, orbit each other, and the precise measurement of its motion was the key to unlocking vital new information about the stars and their winds. WR 140 Image Sequence Motion of Wind Collision Region Graphic superimposes VLBA images of wind collision region on diagram of orbit of Wolf-Rayet (WR) star and its giant (O) companion. Click on image for larger version (412K) CREDIT: Dougherty et al., NRAO/AUI/NSF In Motion: Shockwave File Animated Gif File AVI file Both stars are much more massive than the Sun -- one about 20 times the mass of the Sun and the other about 50 times the Sun's mass. The 20-solar-mass star is a type called a Wolf-Rayet star, characterized by a very strong wind of particles propelled outward from its surface. The more massive star also has a strong outward wind, but one less intense than that of the Wolf-Rayet star. The two stars, part of a system named WR 140, circle each other in an elliptical orbit roughly the size of our Solar System. "The spectacular feature of this system is the region where the stars' winds collide, producing bright radio emission. We have been able to track this collision region as it moves with the orbits of the stars," said Sean Dougherty, an astronomer at the Herzberg Institute for Astrophysics in Canada. Dougherty and his colleagues presented their findings in the April 10 edition of the Astrophysical Journal. The supersharp radio "vision" of the continent-wide VLBA allowed the scientists to measure the motion of the wind collision region and then to determine the details of the stars' orbits and an accurate distance to the system. "Our new calculations of the orbital details and the distance are vitally important to understanding the nature of these Wolf-Rayet stars and of the wind-collision region," Dougherty said. The stars in WR 140 complete an orbital cycle in 7.9 years. The astronomers tracked the system for a year and a half, noting dramatic changes in the wind collision region. "People have worked out theoretical models for these collision regions, but the models don't seem to fit what our observations have shown," said Mark Claussen, of the National Radio Astronomy Observatory in Socorro, New Mexico. "The new data on this system should provide the theorists with much better information for refining their models of how Wolf-Rayet stars evolve and how wind-collision regions work," Claussen added. The scientists watched the changes in the stellar system as the star's orbits carried them in paths that bring them nearly as close to each other as Mars is to the Sun and as far as Neptune is from the Sun. Their detailed analysis gave them new information on the Wolf-Rayet star's strong wind. At some points in the orbit, the wind collision region strongly emitted radio waves, and at other points, the scientists could not detect the collison region. Wolf-Rayet stars are giant stars nearing the time when they will explode as supernovae. "No other telescope in the world can see the details revealed by the VLBA," Claussen said. "This unmatched ability allowed us to determine the masses and other properties of the stars, and will help us answer some basic questions about the nature of Wolf-Rayet stars and how they develop." he added. The astronomers plan to continue observing WR 140 to follow the system's changes as the two massive stars continue to circle each other. Dougherty and Claussen worked with Anthony Beasley of the Atacama Large Millimeter Array office, Ashley Zauderer of the University of Maryland and Nick Bolingbroke of the University of Victoria, British Columbia. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  6. Disk Accretion and the Stellar Birthline

    NASA Astrophysics Data System (ADS)

    Hartmann, Lee; Cassen, Patrick; Kenyon, Scott J.

    1997-02-01

    We present a simplified analysis of some effects of disk accretion on the early evolution of fully convective, low-mass pre-main-sequence stars. Our analysis builds on the previous seminal work of Stahler, but it differs in that the accretion of material occurs over a small area of the stellar surface, such as through a disk or magnetospheric accretion column, so that most of the stellar photosphere is free to radiate to space. This boundary condition is similar to the limiting case considered by Palla & Stahler for intermediate-mass stars. We argue that for a wide variety of disk mass accretion rates, material will be added to the star with relatively small amounts of thermal energy. Protostellar evolution calculated assuming this ``low-temperature'' limit of accretion generally follows the results of Stahler because of the thermostatic nature of deuterium fusion, which prevents protostars from contracting below a ``birthline'' in the H-R diagram. Our calculated protostellar radii tend to fall below Stahler's at higher masses; the additional energy loss from the stellar photosphere in the case of disk accretion tends to make the protostar contract. The low-temperature disk accretion evolutionary tracks never fall below the deuterium-fusion birthline until the internal deuterium is depleted, but protostellar tracks can lie above the birthline in the H-R diagram if the initial radius of the protostellar core is large enough or if rapid disk accretion (such as might occur during FU Ori outbursts) adds significant amounts of thermal energy to the star. These possibilities cannot be ruled out by either theoretical arguments or observational constraints at present, so that individual protostars might evolve along a multiplicity of birthlines with a modest range of luminosity at a given mass. Our results indicate that there are large uncertainties in assigning ages for the youngest stars from H-R diagram positions, given the uncertainty in birthline positions. Our calculations also suggest that the relatively low disk accretion rates characteristic of T Tauri stars below the birthline cause low-mass stars to contract only slightly faster than normal Hayashi track evolution, so that ages for older pre-main-sequence stars estimated from H-R diagram positions are relatively secure.

  7. The Diversity of Chemical Composition and the Effects on Stellar Evolution and Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Truitt, Amanda R.

    2017-08-01

    I present a catalog of 1,794 stellar evolution models for solar-type and low-mass stars, which is intended to help characterize real host-stars of interest during the ongoing search for potentially habitable exoplanets. The main grid is composed of 904 tracks, for 0.5-1.2 M solar masses at scaled metallicity values of 0.1-1.5 Z solar masses and specific elemental abundance ratio values of 0.44-2.28 O/Fe solar masses, 0.58-1.72 C/Fe solar masses, 0.54-1.84 Mg/Fe solar masses, and 0.5-2.0 Ne/Fe solar masses. The catalog includes a small grid of late stage evolutionary tracks (25 models), as well as a grid of M-dwarf stars for 0.1-0.45 M solar masses (856 models). The time-dependent habitable zone evolution is calculated for each track, and is strongly dependent on stellar mass, effective temperature, and luminosity parameterizations. I have also developed a subroutine for the stellar evolution code TYCHO that implements a minimalist coupled model for estimating changes in the stellar X-ray luminosity, mass loss, rotational velocity, and magnetic activity over time; to test the utility of the updated code, I created a small grid (9 models) for solar-mass stars, with variations in rotational velocity and scaled metallicity. Including this kind of information in the catalog will ultimately allow for a more robust consideration of the long-term conditions that orbiting planets may experience. In order to gauge the true habitability potential of a given planetary system, it is extremely important to characterize the host-star's mass, specific chemical composition, and thus the timescale over which the star will evolve. It is also necessary to assess the likelihood that a planet found in the "instantaneous" habitable zone has actually had sufficient time to become "detectably" habitable. This catalog provides accurate stellar evolution predictions for a large collection of theoretical host-stars; the models are of particular utility in that they represent the real variation in stellar parameters that have been observed in nearby stars.

  8. Obituary: Fred Lawrence Whipple, 1906-2004

    NASA Astrophysics Data System (ADS)

    Yeomans, Donald Keith

    2004-12-01

    Fred Whipple, one of the founding fathers of planetary science, died on August 30, 2004 just two months shy of his 98th birthday. The breadth of Fred's published research from 1927 through 2000 is quite extraordinary. Although his collected works were published in two massive volumes in 1972, shortly before his retirement, Fred's research contributions continued for another three decades - and another volume is planned. Fred Lawrence Whipple was born on November 5, 1906 on a farm in Red Oak Iowa. His parents were Harry Lawrence and Celestia (MacFarl) Whipple. At the age of fifteen, the Whipple family moved to California where Fred studied mathematics at Occidental College and the University of California at Los Angeles. As a graduate student at the University of California at Berkeley in 1930, he was one of the first to compute an orbit for the newly discovered planet Pluto. Upon receiving his PhD in 1931, he joined the staff of the Harvard College Observatory. He was Chairman of the Harvard Department of Astronomy (1949 - 1956), Director or the Smithsonian Astrophysical Observatory (1955 - 1973), Phillips Professor of Astronomy (1968 - 1977) and Emeritus Phillips Professor of astronomy (1977 - 2004). In 1928 he married Dorothy Woods and their son, Earle Raymond, survives him. The marriage ended in divorce in 1935. Eleven years later, he married Babette F. Samelson and she too survives him, as do their two daughters Laura and (Dorothy) Sandra. Shortly after arriving at Harvard in the early 1930's, Fred developed a photographic tracking network to determine meteor trajectories from simultaneous observations from two or more stations. The photographic trails, chopped by a rotating shutter, allowed their orbits in space to be determined accurately. With the strong involvement of Richard McCrosky and others, he concluded in the early 1960's that most of these meteors were on comet-like orbits and less than 1% of the naked eye, sporadic meteors could be traced to an origin outside the solar system. To fill the daytime gap when meteors could not be photographed, Fred organized a program for the radio detection of these objects. With the launch of Sputnik in October 1957, Whipple's visual network of amateur astronomers (Moon watch) was already in place to follow its progress and later on he developed an optical tracking system for meteors and artificial satellites using wide field, Baker-Nunn cameras. This latter system proved so successful that the precision tracking of these satellites could be used to model the Earth's shape and density variations from the observed gravitational effects upon these satellite orbits. He once noted that the highlight of his career was having his family and parents present at the White House while he received the President's Award for Distinguished Public Service from John F. Kennedy for this work. His seminal works in 1950-51 on the icy conglomerate model for the cometary nucleus prompted a complete paradigm switch. Until then, the current consensus model for a comet was a flying cloud of particles; it had been so since the second half of the nineteenth century when comets were identified with meteor showers. He envisaged the cometary nucleus as a conglomerate of ices (mostly water, ammonia, methane, carbon dioxide and carbon monoxide ices) embedded within, and covered over with, a nonvolatile matrix of meteoric material. Part of his rationale for developing this "dirty snowball" model for the cometary nucleus was to provide an explanation of the so-called nongravitational forces acting upon comets. The rocket-like thrusting of a comet when the ices vaporize near the sun introduced a small, but noticeable, thrust on the comet itself and when this effect was properly modeled, the motions of active comets could be predicted far more accurately. Subsequent spacecraft ultraviolet observations showing enormous cometary hydrogen atmospheres confirmed that the major cometary ice was likely to be water. The 1986 Giotto spacecraft images, revealing a solid cometary nucleus (albeit far blacker than most had predicted), were a dramatic confirmation of Whipple's model -- though in truth few really expected otherwise at the time. In 1942-1946, he led an effort to develop and implement strips of reflective aluminum (i.e., chaff) to confuse enemy radars in World War II. In 1948, he received a certificate of merit for this work from President Harry S. Truman. Eleven years before the launch of the first artificial satellite in 1957, he developed what is now generally termed the Whipple Shield; a thin outer metallic layer stands out from a spacecraft and protects it from high-speed interplanetary dust particles. While particles hitting this outside thin layer would penetrate, they would also vaporize, and in so doing, the resultant debris would disperse and lack the energy to penetrate the main spacecraft skin. This design was used to successfully protect the Stardust spacecraft from cometary dust particles when the spacecraft flew rapidly past comet Tempel 1 in January 2004. He also made significant contributions to fields as diverse as meteor astronomy, satellite tracking, variable stars, supernovae, stellar evolution, astronomical instrumentation and radio astronomy. Along with his colleagues Willy Ley, Wernher von Braun and others, Fred wrote and consulted for a series of very popular articles in Collier's magazine in the early 1950's and these articles, along with earlier lectures at New York's Hayden Planetarium, helped spark the U.S. involvement in space exploration. Of these early beginnings of space exploration, Fred wrote in 1972 "it was no easy task to convince people that man could really go into empty space beyond the Earth's atmosphere, and even beyond the Earth's tenacious gravitational grasp. On looking back over these years, I am still surprised that we succeeded in convincing them." Fred was responsible for initiating the Smithsonian Astrophysical Observatory's observatory on Mt. Hopkins near Tucson Arizona and he was active in the design of the multi-mirror telescope that was in operation until 1999, when a 6.5-meter single mirror telescope replaced it. In 1981, the observatory was renamed the Fred Lawrence Whipple Observatory. Fred was successful as both a manager of large science enterprises and as a researcher. He once told me that one of his secrets for doing both management and science simultaneously involved his spending some mornings in a room adjacent to his office doing research. His secretary was asked to (correctly) notify morning callers that Dr. Whipple was not in his office at the moment and could he return the call later on in the day. When asked the secret of his longevity at his 90th birthday party, he noted, "you've got to start early." Fortunately for Planetary Science, he did start early - and he stayed late. Until he reached 90 years of age, he rode his bicycle to the office most every day and those days when he drove to work, his car was easy to identify from the single word "comets" on his license plate. Fred Whipple was awarded seven honorary degrees and included among his many tributes are a certificate of Merit from President Truman (1948), the J. Lawrence Smith Medal of the National Academy of Sciences (1949), a Distinguished Federal Civilian Service Award (1963), the Frederick C. Leonard Memorial Medal of the Meteoritical Society (1970), the Gold Medal of the Royal Society (1983), the Bruce Medal of the Astronomical Society of the Pacific (1986), and the Henry Norris Russell Lectureship of the American Astronomical Society (1987). He also discovered six new comets and discovered and named an asteroid (1252 Celestia) after his mother. Asteroid 1940 was renamed (1940) Whipple to honor his professional achievements. Fred Whipple was a Harvard Professor, director of the Smithsonian Astrophysical Observatory, a Presidential medallist and his name is synonymous with comets. He was one of the few great innovative thinkers in twentieth century planetary science. Yet through it all, he remained just Fred to all who knew him. Whether you were a young student or a distinguished internationally recognized scientist, this gentleman treated everyone with the same kindness and respect. The entire planetary science community has benefited immeasurably from his wide-ranging insights; we've lost a creative scientist and a kind mentor - but he remains a superb role model for us all. This obituary is based on one by D.K. Yeomans and J. Veverka that appeared in "Nature" (4 Nov. 2004, vol. 432, p. 31). Photograph provided by J. Veverka.

  9. The STROBE-X Science Case: An Overview

    NASA Astrophysics Data System (ADS)

    Maccarone, Thomas J.; STROBE-X consortium

    2018-01-01

    STROBE-X is a proposed NASA Probe class mission aimed at the extremes of high throughput X-ray astronomy, making use of an 8 m^2 total collecting area, CCD-quality spectral resolution, and a state-of-the art wide field monitor with both very large instantaneous sky coverage (ideal for follow-up of LIGO events) and good intrinsic spectral and time resolution. The core goals are time domain astrophysics and high count spectroscopy. Its capabilities span a broad range of topics, including those traditional to X-ray timing missions, like understanding the equation of states of neutron stars, and the spin distributions and masses of neutron stars and stellar mass and supermassive black holes, and the rates, and detailed properties, of a variety of classes of X-ray transients; and also topics not traditionally studied by such missions such as the spectra of supernova remnants, comets and of clusters and groups of galaxies.

  10. Argus: A W-band 16-pixel focal plane array for the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Devaraj, Kiruthika; Church, Sarah; Cleary, Kieran; Frayer, David; Gawande, Rohit; Goldsmith, Paul; Gundersen, Joshua; Harris, Andrew; Kangaslahti, Pekka; Readhead, Tony; Reeves, Rodrigo; Samoska, Lorene; Sieth, Matt; Voll, Patricia

    2015-05-01

    We are building Argus, a 16-pixel square-packed focal plane array that will cover the 75-115.3 GHz frequency range on the Robert C. Byrd Green Bank Telescope (GBT). The primary research area for Argus is the study of star formation within our Galaxy and nearby galaxies. Argus will map key molecules that trace star formation, including carbon monoxide (CO) and hydrogen cyanide (HCN). An additional key science area is astrochemistry, which will be addressed by observing complex molecules in the interstellar medium, and the study of formation of solar systems, which will be addressed by identifying dense pre-stellar cores and by observing comets in our solar system. Argus has a highly scalable architecture and will be a technology path finder for larger arrays. The array is modular in construction, which will allow easy replacement of malfunctioning and poorly performing components.

  11. Slooh Takes Observing into the Classroom

    NASA Astrophysics Data System (ADS)

    Godfrey, Paige

    2018-01-01

    For many students, studying space is limited to simulations and a vivid imagination. Slooh is providing a new education tool that gives students an authentic experience, mimicking the practices of professional astronomers by bringing real-time astronomical observing to the classroom. Teachers and students have robotic control of Slooh’s global network of ground-based telescopes located at the Institute of Astrophysics in the Canary Islands and at the Catholic University based in Santiago, Chile. Slooh Classroom and Slooh Astrolab are products designed to offer K-12 and higher education an accessible, affordable way to interact with space. The lab manuals provide fully-designed classroom activities that explore celestial objects representing a robust sample of star clusters, nebulae, galaxies, stars, planets, comets and asteroids. Slooh’s education tools provide a unique online platform for the sharing of space content and access to live-hosted shows that discuss current astronomy events, creating a full STEAM experience.

  12. Evidence for Strange Stellar Family (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist concept depicts a quadruple-star system called HD 98800. The system is approximately 10 million years old, and is located 150 light-years away in the constellation TW Hydrae.

    HD 98800 contains four stars, which are paired off into doublets, or binaries. The stars in the binary pairs orbit around each other, and the two pairs also circle each other like choreographed ballerinas. One of the stellar pairs, called HD 98800B, has a disk of dust around it, while the other pair does not.

    Although the four stars are gravitationally bound, the distance separating the two binary pairs is about 50 astronomical units (AU) -- slightly more than the average distance between our sun and Pluto.

    Using NASA's Spitzer Space Telescope, scientists finally have a detailed view of HD 98800B's potential planet-forming disk. Astronomers used the telescope's infrared spectrometer to detect the presence of two belts in the disk made of large dust grains. One belt sits approximately 5.9 AU away from the central binary, or about the distance from the sun to Jupiter, and is likely made up of asteroids and comets. The other belt sits at 1.5 to 2 AU, comparable to the area where Mars and the asteroid belt sit, and is made up of sand-sized dust grains.

  13. Recent highlights from STAR

    NASA Astrophysics Data System (ADS)

    Zha, Wangmei

    2018-02-01

    The Solenoidal Tracker at RHIC (STAR) experiment takes advantage of its excellent tracking and particle identification capabilities at mid-rapidity to explore the properties of strongly interacting QCD matter created in heavy-ion collisions at RHIC. The STAR collaboration presented 7 parallel and 2 plenary talks at Strangeness in Quark Matter 2017 and covered various topics including heavy flavor measurements, bulk observables, electro-magnetic probes and the upgrade program. This paper highlights some of the selected results.

  14. Atlas of Great Comets

    NASA Astrophysics Data System (ADS)

    Stoyan, Ronald; Dunlop, Storm

    2015-01-01

    Foreword; Using this book; Part I. Introduction: Cometary beliefs and fears; Comets in art; Comets in literature and poetry; Comets in science; Cometary science today; Great comets in antiquity; Great comets of the Middle Ages; Part II. The 30 Greatest Comets of Modern Times: The Great Comet of 1471; Comet Halley 1531; The Great Comet of 1556; The Great Comet of 1577; Comet Halley, 1607; The Great Comet of 1618; The Great Comet of 1664; Comet Kirch, 1680; Comet Halley, 1682; The Great Comet of 1744; Comet Halley, 1759; Comet Messier, 1769; Comet Flaugergues, 1811; Comet Halley, 1835; The Great March Comet of 1843; Comet Donati, 1858; Comet Tebbutt, 1861; The Great September Comet of 1882; The Great January Comet of 1910; Comet Halley, 1910; Comet Arend-Roland, 1956; Comet Ikeya-Seki, 1965; Comet Bennett, 1970; Comet Kohoutek, 1973-4; Comet West, 1976; Comet Halley, 1986; Comet Shoemaker-Levy 9, 1994; Comet Hyakutake, 1996; Comet Hale-Bopp, 1997; Comet McNaught, 2007; Part III. Appendices; Table of comet data; Glossary; References; Photo credits; Index.

  15. Near-Earth Asteroid Tracking with the Maui Space Surveillance System (NEAT/MSSS)

    NASA Technical Reports Server (NTRS)

    Helin, Eleanor F.; Pravdo, Steven H.; Lawrence, Kenneth J.; Hicks, Michael D.

    2001-01-01

    Over the last year the Jet Propulsion Laboratory's (JPL) Near-Earth Asteroid Tracking (NEAT) program has made significant progress and now consists of two simultaneously-operating, autonomous search systems on the 1.2-m (48") telescopes: on the Maui Space Surveillance System (NEAT/MSSS) and NEAT/Palomar on the Palomar Observatory's Oschin telescope. This paper will focus exclusively on the NEAT/MSSS system. NEAT/MSSS is operated as a partnership between NASA/JPL and the United States Air Force Research Laboratory (AFRL), utilizing the AFRL 1.2-m telescope on the 3000-m summit of Haleakala, Maui, The USAF Space Command (SPCMD) contributed financial support to build and install the 'NEAT focal reducer' on the MSSS 1.2-m telescope giving it a large field of view (2.5 square degrees), suitable for the near-earth object (NEO),both asteroids and comets, survey. This work was completed in February 2000. AFRL has made a commitment to NEAT/MSSS that allows NEAT to operate full time with the understanding that AFRL participate as partners in NEAT/MSSS and have use of the NEAT camera system for high priority satellite observations during bright time (parts of 12 nights each month). Currently, NEAT has discovered 42 NEAs including 12 larger than 1-km, 5 Potentially Hazardous Asteroids (PHAs), 6 comets, and nearly 25,000 asteroid detections since March 2000.

  16. New asteroseismic scaling relations based on the Hayashi track relation applied to red giant branch stars in NGC 6791 and NGC 6819

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, T.; Li, Y.; Hekker, S., E-mail: wutao@ynao.ac.cn, E-mail: ly@ynao.ac.cn, E-mail: hekker@mps.mpg.de

    2014-01-20

    Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on amore » relation for stars on the Hayashi track (√(T{sub eff})∼g{sup p}R{sup q}) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and ν{sub max} (frequency of maximum oscillation power). The Δν and ν{sub max} values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and ν{sub max}, with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - ν{sub max} relation for red giant branch stars.« less

  17. Characterizing the population of Asteroids in Cometary Orbits (ACOs)

    NASA Astrophysics Data System (ADS)

    Tancredi, Gonzalo; Licandro, Javier; Alí-Lagoa, Victor; Martino, Silvia; Vieira Monteiro, Filipe; Silva, Jose Sergio; Lazzaro, Daniela

    2015-08-01

    The classification criterion between asteroids and comets has evolved in recent decades, but the main phenomenological distinction remains unchanged: comets are active objects as they present gas and dust ejection from the surface at some point of their orbits, while asteroids are inert objects as they do not show any kind of large scale gas and dust ejection.To identify the transitional objects several classification schemes based on the orbital elements have been used. They are usually based on the Tisserand’s parameter (TJ). Tancredi (2014) presents a much more restrictive criterion to identify ACOs that ensured that the objects have a dynamical evolution similar to the population of periodic comets. After applying the criteriaa to the sample of over half a million asteroids already discovered, we obtain 316 ACOs that are further classified in subclasses similar to the cometary classification: 203 objects belong to the Jupiter Family group; 72 objects are classified as Centaurs; and 56 objects have Halley Type Orbits (also known as Damocloids). These are the best-known extinct/dormant comets candidates from a dynamical point of view.We study the physical properties of this sample of ACOs. Two results will be presented:- We look for the ACOs detected by the NASA’s WISE and by fitting a thermal model to their observations, we derive: the effective diameter, beaming parameter and the visible geometric albedo, using the method described in Al-Lagoa et al (2013). We obtain these parameters for 37 of 203 ACOs in JFC orbits and 13 of 56 Damocloids. We also compute the Cumulative Size Distribution (CSDs) of these populations and compare them with the CSDs of JF Comets and Centaurs.- We have been monitoring the observable ACOs since 12/2014 up to 06/2015. Every other month we select all the ACOs with elongations >90deg and estimated magnitudes V<21. We try to observe them with the 1m IMPACTON telescope of the Observatório Astronômico do Sertão de Itaparica (OASI). By comparing the photometric profiles of the ACOs with background stars, we try to detect some hint of cometary activity. Over 20 ACOs have been observed in the six months.

  18. Assessing the Main-Belt Comet Population with Comet Hunters

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.; Hsieh, Henry H.; Zhang, Zhi-Wei; Chen, Ying-Tung; Lintott, Chris; Wang, Shiang-Yu; Mishra, Ishan

    2017-01-01

    Cometary activity in the asteroid belt is a recent discovery. Evidence suggests recent collisions play a role excavating subsurface water ice in these Main Belt Comets (MBCs). MBCs may be an alternative source of Earth’s water. The properties and origins of the MBCs remain elusive. To date ~15 MBCs are known, but only with many tens to 100s of MBCs can we fully explore this new reservoir and its implications for the early Earth.Automated routines identify cometary objects by comparing the point spread functions (PSFs) of moving objects to background stars. This approach may miss cometary activity with low-level dust comae or trails that are too weak or extended to affect an object's near-nucleus PSF profile. Direct visual inspection of moving objects by survey team members can often catch such unusual objects, but such an approach is impractical for the largest surveys to date, and will only become more intractable with the next generation wide-field surveys.With the Internet, tens of thousands of people can be engaged in the scientific process. With this citizen science approach, the combined assessment of many non-experts often equals or rivals that of a trained expert and in many cases outperforms automated algorithms. The Comet Hunters (http://www.comethunters.org) project enlists the public to search for MBCs in data from the Hyper Suprime-Cam (HSC) wide survey. HSC is to date the largest field-of-view camera (covering a 1.5 degree diameter circle on sky) on a 8-10-m class telescope. The HSC wide survey provides the sensitivity to detect cometary activity at lower levels than have been possible for previous surveys.We will give an overview of the Comet Hunters project. We will present the results from the first ~10,000 HSC asteroids searched and provide an estimate on the frequency of cometary activity in the Main Asteroid beltAcknowledgements: This work uses data generated via the Zooniverse.org platform, development of which was supported by a Global Impact Award from Google, and by the Alfred P. Sloan Foundation. The HSC collaboration includes the astronomical communities of Japan and Taiwan, and Princeton University.

  19. Explaining the luminosity spread in young clusters: proto and pre-main sequence stellar evolution in a molecular cloud environment

    NASA Astrophysics Data System (ADS)

    Jensen, Sigurd S.; Haugbølle, Troels

    2018-02-01

    Hertzsprung-Russell diagrams of star-forming regions show a large luminosity spread. This is incompatible with well-defined isochrones based on classic non-accreting protostellar evolution models. Protostars do not evolve in isolation of their environment, but grow through accretion of gas. In addition, while an age can be defined for a star-forming region, the ages of individual stars in the region will vary. We show how the combined effect of a protostellar age spread, a consequence of sustained star formation in the molecular cloud, and time-varying protostellar accretion for individual protostars can explain the observed luminosity spread. We use a global magnetohydrodynamic simulation including a sub-scale sink particle model of a star-forming region to follow the accretion process of each star. The accretion profiles are used to compute stellar evolution models for each star, incorporating a model of how the accretion energy is distributed to the disc, radiated away at the accretion shock, or incorporated into the outer layers of the protostar. Using a modelled cluster age of 5 Myr, we naturally reproduce the luminosity spread and find good agreement with observations of the Collinder 69 cluster, and the Orion Nebular Cluster. It is shown how stars in binary and multiple systems can be externally forced creating recurrent episodic accretion events. We find that in a realistic global molecular cloud model massive stars build up mass over relatively long time-scales. This leads to an important conceptual change compared to the classic picture of non-accreting stellar evolution segmented into low-mass Hayashi tracks and high-mass Henyey tracks.

  20. MWPC prototyping and testing for STAR inner TPC upgrade

    NASA Astrophysics Data System (ADS)

    Shen, F.; Wang, S.; Yang, C.; Xu, Q.

    2017-06-01

    STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is upgrading the inner sectors of the Time Projection Chamber (iTPC). The iTPC upgrade project will increase the segmentation on the inner pad plane from 13 to 40 pad rows and renew the inner sector wire chambers. The upgrade will expand the TPC's acceptance from |η|<=1.0 to |η|<=1.5. Furthermore, the detector will have better acceptance for tracks with low momentum, as well as better resolution in both momentum and dE/dx for tracks of all momenta. The enhanced measurement capabilities of STAR-iTPC upgrade are crucial to the physics program of the Phase II of Beam Energy Scan (BES-II) at RHIC during 2019-2020, in particular the QCD phase transition study. In this proceedings, I will discuss the iTPC MWPC module fabrication and testing results from the first full size iTPC MWPC pre-prototype made at Shandong University.

  1. The Explosive Counterparts of Gravitational Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Astronomy collaborations like the Dark Energy Survey, which Fermilab leads, can track down the visible sources of gravitational waves caused by binary neutron stars. This animation takes you through the collision of two neutron stars, and shows you the explosion of light and energy seen by the Dark Energy Camera on August 17, 2017.

  2. Language Arts/Reading: From Oz to the Death Star: Exploring Universal Ideas.

    ERIC Educational Resources Information Center

    Lacy, Lyn

    1980-01-01

    Tracking down the similarities between two beloved stories (the Wizard of Oz and Star Wars) led to a critical analysis of other tales. Through this process, students discovered why some books are classics, became more discriminating readers, and applied what they learned to their own creative writing. (Author/KC)

  3. Tracking Planets around the Sun

    ERIC Educational Resources Information Center

    Riddle, Bob

    2008-01-01

    In earlier columns, the celestial coordinate system of hour circles of right ascension and degrees of declination was introduced along with the use of an equatorial star chart (see SFA Star Charts in Resources). This system shows the planets' motion relative to the ecliptic, the apparent path the Sun follows during the year. An alternate system,…

  4. The Astronomy Encyclopedia

    NASA Astrophysics Data System (ADS)

    Moore, Patrick

    2002-11-01

    With more than 3,000 alphabetically arranged entries and 500 stunning color and black-and-white photographs, star maps, and diagrams, The Astronomy Encyclopedia covers everything that the general enthusiast--and the more serious researcher--would want to know about planets, stars, galaxies, and our universe. Here is concise, reliable information on the whole field of astronomy, ranging from adaptive optics and cold dark matter, to Islamic astronomy and the lens defect known as vignetting. It includes a host of major articles on the cornerstones of astronomical investigation, such as the Milky Way, the sun and the planets, optical and radio telescopes, stars, black holes, astrophysics, observatories, astronomical photography, space programs, the constellations, and famous astronomers. And there are concise entries on planetary features and satellites, asteroids, observational techniques, comets, satellite launchers, meteors, and subjects as diverse as life in the Universe and the structure of meteorites. Scores of tables list the brightest stars in the major constellations, annual meteor showers, major variable stars, dwarf stars, energy production processes in the Sun, and other relevant data. More than 100 astronomers from leading universities and observatories around the world, each an expert in their own particular field, wrote and reviewed the entries to ensure their authority. Readers can thus be assured that the Encyclopedia provides the most up-to-date and reliable information available. Under the general editorship of Patrick Moore, one of the world's best-known and most trusted voices on astronomy, The Astronomy Encyclopedia is an authoritative and strikingly attractive roadmap for exploring the last great frontier of the world in which we live.

  5. UKIRT fast guide system improvements

    NASA Astrophysics Data System (ADS)

    Balius, Al; Rees, Nicholas P.

    1997-09-01

    The United Kingdom Infra-Red Telescope (UKIRT) has recently undergone the first major upgrade program since its construction. One part of the upgrade program was an adaptive tip-tilt secondary mirror closed with a CCD system collectively called the fast guide system. The installation of the new secondary and associated systems was carried out in the first half of 1996. Initial testing of the fast guide system has shown great improvement in guide accuracy. The initial installation included a fixed integration time CCD. In the first part of 1997 an integration time controller based on computed guide star luminosity was implemented in the fast guide system. Also, a Kalman type estimator was installed in the image tracking loop based on a dynamic model and knowledge of the statistical properties of the guide star position error measurement as a function of computed guide star magnitude and CCD integration time. The new configuration was tested in terms of improved guide performance nd graceful degradation when tracking faint guide stars. This paper describes the modified fast guide system configuration and reports the results of performance tests.

  6. Breadboard stellar tracker system test report, volume 1

    NASA Technical Reports Server (NTRS)

    Kollodge, J. C.; Hubbard, M. W.; Jain, S.; Schons, C. A.

    1981-01-01

    The performance of a star tracker equipped with a focal plane detector was evaluated. The CID board is an array of 256 x 256 pixels which are 20 x 20 micrometers in dimension. The tracker used for test was a breadboard tracker system developed by BASD. Unique acquisition and tracking algorithms are employed to enhance performance. A pattern recognition process is used to test for proper image spread function and to avoid false acquisition on noise. A very linear, high gain, interpixel transfer function is derived for interpolating star position. The lens used in the tracker has an EFL of 100 mm. The tracker has an FOV of 2.93 degrees resulting in a pixel angular subtense of 41.253 arc sec in each axis. The test procedure used for the program presented a star to the tracker in a circular pattern of positions; the pattern was formed by projecting a simulated star through a rotatable deviation wedge. Further tests determined readout noise, Noise Equivalent Displacement during track, and spatial noise during acquisition by taking related data and reducing it.

  7. Stellar Gyroscope for Determining Attitude of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Hancock, Bruce; Liebe, Carl; Mellstrom, Jeffrey

    2005-01-01

    A paper introduces the concept of a stellar gyroscope, currently at an early stage of development, for determining the attitude or spin axis, and spin rate of a spacecraft. Like star trackers, which are commercially available, a stellar gyroscope would capture and process images of stars to determine the orientation of a spacecraft in celestial coordinates. Star trackers utilize chargecoupled devices as image detectors and are capable of tracking attitudes at spin rates of no more than a few degrees per second and update rates typically <5 Hz. In contrast, a stellar gyroscope would utilize an activepixel sensor as an image detector and would be capable of tracking attitude at a slew rate as high as 50 deg/s, with an update rate as high as 200 Hz. Moreover, a stellar gyroscope would be capable of measuring a slew rate up to 420 deg/s. Whereas a Sun sensor and a three-axis mechanical gyroscope are typically needed to complement a star tracker, a stellar gyroscope would function without them; consequently, the mass, power consumption, and mechanical complexity of an attitude-determination system could be reduced considerably.

  8. Star Catalogs on Punched Cards and Magnetic Tape

    NASA Technical Reports Server (NTRS)

    Berbert, J. H.

    1961-01-01

    In connection with the calibration of the Minitrack satellite tracking stations, the Goddard Space Flight Center has had the contents of a number of star catalogs put on punched cards and magnetic tape. This report discusses the plate data reduction procedures, briefly describes the information on the punched cards and magnetic tape, and calls attention to other applications of the card and tape star catalogs. The Goddard Space Flight Center has offered to prepare duplicate catalogs for qualified organizations.

  9. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    NASA Astrophysics Data System (ADS)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian

    2016-06-01

    Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.

  10. Tracking Detectors in the STAR Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Wieman, Howard

    2015-04-01

    The STAR experiment at RHIC is designed to measure and identify the thousands of particles produced in 200 Gev/nucleon Au on Au collisions. This talk will focus on the design and construction of two of the main tracking detectors in the experiment, the TPC and the Heavy Flavor Tracker (HFT) pixel detector. The TPC is a solenoidal gas filled detector 4 meters in diameter and 4.2 meters long. It provides precise, continuous tracking and rate of energy loss in the gas (dE/dx) for particles at + - 1 units of pseudo rapidity. The tracking in a half Tesla magnetic field measures momentum and dE/dX provides particle ID. To detect short lived particles tracking close to the point of interaction is required. The HFT pixel detector is a two-layered, high resolution vertex detector located at a few centimeters radius from the collision point. It determines origins of the tracks to a few tens of microns for the purpose of extracting displaced vertices, allowing the identification of D mesons and other short-lived particles. The HFT pixel detector uses detector chips developed by the IPHC group at Strasbourg that are based on standard IC Complementary Metal-Oxide-Semiconductor (CMOS) technology. This is the first time that CMOS pixel chips have been incorporated in a collider application.

  11. Interstellar and Solar Nebula Materials in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nakamura-Messenger, Keiko; Keller, Lindsay; Nguyen, Ann; Clemett, Simon

    2017-01-01

    Laboratory studies of cometary dust collected in the stratosphere and returned from comet 81P/Wild 2 by the Stardust spacecraft have revealed ancient interstellar grains and molecular cloud organic matter that record a range of astrophysical processes and the first steps of planetary formation. Presolar materials are rarer meteorites owing to high temperature processing in the solar nebula and hydrothermal alteration on their asteroidal parent bodies. The greater preservation of presolar materials in comets is attributed to their low accretion temperatures and limited planetary processing. Yet, comets also contain a large complement of high temperature materials from the inner Solar System. Owing to the limited and biased sampling of comets to date, the proportions of interstellar and Solar System materials within them remains highly uncertain. Interstellar materials are identified by coordinated isotopic, mineralogical, and chemical measurements at the scale of individual grains. Chondritic porous interplanetary dust particles (CP IDPs) that likely derive from comets are made up of 0.1 - 10 micron-sized silicates, Fe-Ni-sulfides, oxides, and other phases bound by organic material. As much as 1% of the silicates are interstellar grains that have exotic isotopic compositions imparted by nucleosynthetic processes in their parent stars. Crystalline silicates in CP IDPs dominantly have normal isotopic compositions and probably formed in the Solar System. 81P samples include isotopically normal refractory minerals that resemble Ca-Al rich inclusions and chondrules common in meteorites. The origins of sub-micron amorphous silicates in IDPs are not certain, but at least a few % of them are interstellar grains. The remainder have isotopic compositions consistent with Solar System origins and elemental compositions that are inconsistent with interstellar grain properties, thus favoring formation in the solar nebula [4]. The organic component in comets and primitive meteorites has large enrichments in D/H and N-15/N-14 relative to terrestrial materials. These isotopic signatures are probably due to low temperature chemical processes in cold molecular clouds or the outermost reaches of the protoplanetary disk. The greatest isotopic anomalies are found in sub-micron organic nanoglobules that show chemical signatures of interstellar chemistry. The observation that cometary dust is mostly composed of isotopically normal minerals within isotopically anomalous organic matter is difficult to reconcile with the formation models of each component. The mineral component likely formed in high temperature processes in the inner Solar System, while the organic fraction shows isotopic and chemical signatures of formation near 10 K. Studying more primitive remnants of the Solar System starting materials would help in resolving this paradox. Comets formed across a vast expanse of the outer disk under differing thermal and collisional regimes, and some are likely to be better preserved than others. Finding truly pristine aggregates of presolar materials may require return of a pristine sample of comet nucleus material.

  12. Star Formation in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Palla, Francesco; Stahler, Steven W.

    1999-11-01

    We study the record of star formation activity within the dense cluster associated with the Orion Nebula. The bolometric luminosity function of 900 visible members is well matched by a simplified theoretical model for cluster formation. This model assumes that stars are produced at a constant rate and distributed according to the field-star initial mass function. Our best-fit age for the system, within this framework, is 2×106 yr. To undertake a more detailed analysis, we present a new set of theoretical pre-main-sequence tracks. These cover all masses from 0.1 to 6.0 Msolar, and start from a realistic stellar birthline. The tracks end along a zero-age main-sequence that is in excellent agreement with the empirical one. As a further aid to cluster studies, we offer an heuristic procedure for the correction of pre-main-sequence luminosities and ages to account for the effects of unresolved binary companions. The Orion Nebula stars fall neatly between our birthline and zero-age main-sequence in the H-R diagram. All those more massive than about 8 Msolar lie close to the main sequence, as also predicted by theory. After accounting for the finite sensitivity of the underlying observations, we confirm that the population between 0.4 and 6.0 Msolar roughly follows a standard initial mass function. We see no evidence for a turnover at lower masses. We next use our tracks to compile stellar ages, also between 0.4 and 6.0 Msolar. Our age histogram reveals that star formation began at a low level some 107 yr ago and has gradually accelerated to the present epoch. The period of most active formation is indeed confined to a few×106 yr, and has recently ended with gas dispersal from the Trapezium. We argue that the acceleration in stellar births, which extends over a wide range in mass, reflects the gravitational contraction of the parent cloud spawning this cluster.

  13. The Chemical Composition of an Extrasolar Kuiper-Belt-Object

    NASA Astrophysics Data System (ADS)

    Xu, S.; Zuckerman, B.; Dufour, P.; Young, E. D.; Klein, B.; Jura, M.

    2017-02-01

    The Kuiper Belt of our solar system is a source of short-period comets that may have delivered water and other volatiles to Earth and the other terrestrial planets. However, the distribution of water and other volatiles in extrasolar planetary systems is largely unknown. We report the discovery of an accretion of a Kuiper-Belt-Object analog onto the atmosphere of the white dwarf WD 1425+540. The heavy elements C, N, O, Mg, Si, S, Ca, Fe, and Ni are detected, with nitrogen observed for the first time in extrasolar planetary debris. The nitrogen mass fraction is ∼2%, comparable to that in comet Halley and higher than in any other known solar system object. The lower limit to the accreted mass is ∼1022 g, which is about one hundred thousand times the typical mass of a short-period comet. In addition, WD 1425+540 has a wide binary companion, which could facilitate perturbing a Kuiper-Belt-Object analog into the white dwarf’s tidal radius. This finding shows that analogs to objects in our Kuiper Belt exist around other stars and could be responsible for the delivery of volatiles to terrestrial planets beyond the solar system. Part of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among Caltech, the University of California and NASA. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  14. Physical Processing of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1997-01-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  15. The dynamics of post-main sequence planetary systems

    NASA Astrophysics Data System (ADS)

    Mustill, Alexander James

    2017-06-01

    The study of planetary systems after their host stars have left the main sequence is of fundamental importance for exoplanet science, as the most direct determination of the compositions of extra-Solar planets, asteroids and comets is in fact made by an analysis of the elemental abundances of the remnants of these bodies accreted into the atmospheres of white dwarfs.To understand how the accreted bodies relate to the source populations in the planetary system, and to model their dynamical delivery to the white dwarf, it is necessary to understand the effects of stellar evolution on bodies' orbits. On the red giant branch (RGB) and asymptotic giant branch (AGB) prior to becoming a white dwarf, stars expand to a large size (>1 au) and are easily deformed by orbiting planets, leading to tidal energy dissipation and orbital decay. They also lose half or more of their mass, causing the expansion of bodies' orbits. This mass loss increases the planet:star mass ratio, so planetary systems orbiting white dwarfs can be much less stable than those orbiting their main-sequence progenitors. Finally, small bodies in the system experience strong non-gravitational forces during the RGB and AGB: aerodynamic drag from the mass shed by the star, and strong radiation forces as the stellar luminosity reaches several thousand Solar luminosities.I will review these effects, focusing on planet--star tidal interactions and planet--asteroid interactions, and I will discuss some of the numerical challenges in modelling systems over their entire lifetimes of multiple Gyr.

  16. Astrochemical evolution along star formation: Overview of the IRAM Large Program ASAI

    NASA Astrophysics Data System (ADS)

    Lefloch, Bertrand; Bachiller, R.; Ceccarelli, C.; Cernicharo, J.; Codella, C.; Fuente, A.; Kahane, C.; López-Sepulcre, A.; Tafalla, M.; Vastel, C.; Caux, E.; González-García, M.; Bianchi, E.; Gómez-Ruiz, A.; Holdship, J.; Mendoza, E.; Ospina-Zamudio, J.; Podio, L.; Quénard, D.; Roueff, E.; Sakai, N.; Viti, S.; Yamamoto, S.; Yoshida, K.; Favre, C.; Monfredini, T.; Quitián-Lara, H. M.; Marcelino, N.; Roberty, H. Boechat; Cabrit, S.

    2018-04-01

    Evidence is mounting that the small bodies of our Solar System, such as comets and asteroids, have at least partially inherited their chemical composition from the first phases of the Solar System formation. It then appears that the molecular complexity of these small bodies is most likely related to the earliest stages of star formation. It is therefore important to characterize and to understand how the chemical evolution changes with solar-type protostellar evolution. We present here the Large Program "Astrochemical Surveys At IRAM" (ASAI). Its goal is to carry out unbiased millimeter line surveys between 80 and 272 GHz of a sample of ten template sources, which fully cover the first stages of the formation process of solar-type stars, from prestellar cores to the late protostellar phase. In this article, we present an overview of the surveys and results obtained from the analysis of the 3 mm band observations. The number of detected main isotopic species barely varies with the evolutionary stage and is found to be very similar to that of massive star-forming regions. The molecular content in O- and C- bearing species allows us to define two chemical classes of envelopes, whose composition is dominated by either a) a rich content in O-rich complex organic molecules, associated with hot corino sources, or b) a rich content in hydrocarbons, typical of Warm Carbon Chain Chemistry sources. Overall, a high chemical richness is found to be present already in the initial phases of solar-type star formation.

  17. Infrared Submillimeter and Radio Astronomy Research and Analysis Program

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    2000-01-01

    This program entitled "Infrared Submillimeter and Radio Astronomy Research and Analysis Program" with NASA-Ames Research Center (ARC) was proposed by the Smithsonian Astrophysical Observatory (SAO) to cover three years. Due to funding constraints only the first year installment of $18,436 was funded, but this funding was spread out over two years to try to maximize the benefit to the program. During the tenure of this contact, the investigators at the SAO, Drs. Wesley A. Traub and Nathaniel P. Carleton, worked with the investigators at ARC, Drs. Jesse Bregman and Fred Wittebom, on the following three main areas: 1. Rapid scanning SAO and ARC collaborated on purchasing and constructing a Rapid Scan Platform for the delay arm of the Infrared-Optical Telescope Array (IOTA) interferometer on Mt. Hopkins, Arizona. The Rapid Scan Platform was tested and improved by the addition of stiffening plates which eliminated a very small but noticeable bending of the metal platform at the micro-meter level. 2. Star tracking Bregman and Wittebom conducted a study of the IOTA CCD-based star tracker system, by constructing a device to simulate star motion having a specified frequency and amplitude of motion, and by examining the response of the tracker to this simulated star input. 3. Fringe tracking. ARC, and in particular Dr. Robert Mah, developed a fringe-packet tracking algorithm, based on data that Bregman and Witteborn obtained on IOTA. The algorithm was tested in the laboratory at ARC, and found to work well for both strong and weak fringes.

  18. High-resolution abundance analysis of the metallic-line star HR 7250

    NASA Astrophysics Data System (ADS)

    Elmaslı, Aslı; Ünal, Kübraözge; Çalışkan, Şeyma

    2018-07-01

    We estimated the stellar parameters and chemical abundances of the highly neglected A-type star HR 7250. The star's high resolution spectrum, spanning a wavelength range from 3900 to 7900 Å, was obtained at the TÜBİTAK National Observatory. We derived the abundances of 14 elements (O, Na, Mg, Si, S, Ca, Sc, Ti, Cr, Fe, Ni, Sr, Y, and Ba) for HR 7250 from the unblended lines of the star's spectrum. Our analysis shows that HR 7250 is a chemically peculiar Am star. We also estimated its age and mass as 400 ± 70 Myr and 3.25 ± 0.17 M⊙ from evolutionary tracks and isochrones.

  19. Photometric theory for wide-angle phenomena

    NASA Technical Reports Server (NTRS)

    Usher, Peter D.

    1990-01-01

    An examination is made of the problem posed by wide-angle photographic photometry, in order to extract a photometric-morphological history of Comet P/Halley. Photometric solutions are presently achieved over wide angles through a generalization of an assumption-free moment-sum method. Standard stars in the field allow a complete solution to be obtained for extinction, sky brightness, and the characteristic curve. After formulating Newton's method for the solution of the general nonlinear least-square problem, an implementation is undertaken for a canonical data set. Attention is given to the problem of random and systematic photometric errors.

  20. Performance of advanced missions using fusion propulsion

    NASA Technical Reports Server (NTRS)

    Friedlander, Alan; Mcadams, Jim; Schulze, Norm

    1989-01-01

    A quantitive evaluation of the premise that nuclear fusion propulsion offers benefits as compared to other propulsion technologies for carrying out a program of advanced exploration of the solar system and beyond is presented. Using a simplified analytical model of trajectory performance, numerical results of mass requirements versus trip time are given for robotic missions beyond the solar system that include flyby and rendezvous with the Oort cloud of comets and with the star system Alpha Centauri. Round trip missions within the solar system, including robotic sample returns from the outer planet moons and multiple asteroid targets, and manned Mars exploration are also described.

  1. Epsilon Eridani Inner Asteroid Belt

    NASA Image and Video Library

    2017-09-14

    SCI2017_0004: Artist's illustration of the Epsilon Eridani system showing Epsilon Eridani b, right foreground, a Jupiter-mass planet orbiting its parent star at the outside edge of an asteroid belt. In the background can be seen another narrow asteroid or comet belt plus an outermost belt similar in size to our solar system's Kuiper Belt. The similarity of the structure of the Epsilon Eridani system to our solar system is remarkable, although Epsilon Eridani is much younger than our sun. SOFIA observations confirmed the existence of the asteroid belt adjacent to the orbit of the Jovian planet. Credit: NASA/SOFIA/Lynette Cook

  2. Astrophysical dust grains in stars, the interstellar medium, and the solar system

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1991-01-01

    Studies of astrophysical dust grains in circumstellar shells, the interstellar medium, and the solar system may provide information about stellar evolution and about physical conditions in the primitive solar nebula. The following subject areas are covered: (1) the cycling of dust in stellar evolution and the formation of planetary systems; (2) astrophysical dust grains in circumstellar environments; (3) circumstellar grain formation and mass loss; (4) interstellar dust grains; (5) comet dust and the zodiacal cloud; (6) the survival of dust grains during stellar evolution; and (7) establishing connections between stardust and dust in the solar system.

  3. Massive stars near Eta Carinae - The stellar content of TR 14 and TR 16

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Johnson, Jennifer

    1993-03-01

    The stellar content of the region around the star Eta Carinae, including the two Galactic OB clusters Tr 14 and Tr 16, are investigated using CCD photometry and spectroscopy. A physical H-R diagram is constructed which shows that several stars are located above the 85-solar mass track, as well as that the location of Eta Carinae is consistent with the interpretation that it is a very massive star undergoing a normal evolutionary stage. The W-R star which is present in this region is lower in luminosity than expected. The initial mass function derived, which is similar to two other young Galactic clusters studied, has a slope flatter than some regions in the Magellanic Clouds that are also rich in massive stars. The most luminous and massive stars near Eta Carinae are not significantly more than the most luminous and massive stars found in the Magellanic Clouds.

  4. Precise Image-Based Motion Estimation for Autonomous Small Body Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew Edie; Matthies, Larry H.

    2000-01-01

    We have developed and tested a software algorithm that enables onboard autonomous motion estimation near small bodies using descent camera imagery and laser altimetry. Through simulation and testing, we have shown that visual feature tracking can decrease uncertainty in spacecraft motion to a level that makes landing on small, irregularly shaped, bodies feasible. Possible future work will include qualification of the algorithm as a flight experiment for the Deep Space 4/Champollion comet lander mission currently under study at the Jet Propulsion Laboratory.

  5. Stellar tracking attitude reference system

    NASA Technical Reports Server (NTRS)

    Klestadt, B.

    1974-01-01

    A satellite precision attitude control system was designed, based on the use of STARS as the principal sensing system. The entire system was analyzed and simulated in detail, considering the nonideal properties of the control and sensing components and realistic spacecraft mass properties. Experimental results were used to improve the star tracker noise model. The results of the simulation indicate that STARS performs in general as predicted in a realistic application and should be a strong contender in most precision earth pointing applications.

  6. The stellar population of the Lupus clouds

    NASA Technical Reports Server (NTRS)

    Hughes, Joanne; Hartigan, Patrick; Krautter, Joachim; Kelemen, Janos

    1994-01-01

    We present photometric and spectroscopic observations of the H alpha emission stars in the Lupus dark cloud complex. We estimate the effective temperatures of the stars from their spectral types and calculate the reddening towards each object from the (R-I) colors. From these data, we derive mass and age distributions for the Lupus stars using a new set of pre-main sequence evolutionar tracks. We compare the results for the Lupus stars with those for a similar population of young stellar objects in Taurus-Auriga and Chamaeleon and with the initial mass function for field stars in the solar neighborhood. From the H-R diagrams, Lupus appears to contain older stars than Taurus. The Lupus dark clouds form a greater proportion of low mass stars than the Taurus complex. Also, the proportion of low mass stars in Lupus is higher than that predicted by the Miller-Scalo initial mass function, and the lowest mass stars in Lupus are less active than similar T Tauri stars in other regions.

  7. NASA's Marshall Space Flight Center Recent Studies and Technology Developments in the Area of SSA/Orbital Debris

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.; Hovater, Mary; Kos, Larry

    2012-01-01

    NASA/MSFC has been investigating the various aspects of the growing orbital debris problem since early 2009. Data shows that debris ranging in size from 5 mm to 10 cm presents the greatest threat to operational spacecraft today. Therefore, MSFC has focused its efforts on small orbital debris. Using off-the-shelf analysis packages, like the ESA MASTER software, analysts at MSFC have begun to characterize the small debris environment in LEO to support several spacecraft concept studies and hardware test programs addressing the characterization, mitigation, and ultimate removal, if necessary, of small debris. The Small Orbital Debris Active Removal (SODAR) architectural study investigated the overall effectiveness of removing small orbital debris from LEO using a low power, space-based laser. The Small Orbital Debris Detection, Acquisition, and Tracking (SODDAT) conceptual technology demonstration spacecraft was developed to address the challenges of in-situ small orbital debris environment classification including debris observability and instrument requirements for small debris observation. Work is underway at MSFC in the areas of hardware and testing. By combining off the shelf digital video technology, telescope lenses, and advanced video image FPGA processing, MSFC is building a breadboard of a space based, passive orbital tracking camera that can detect and track faint objects (including small debris, satellites, rocket bodies, and NEOs) at ranges of tens to hundreds of kilometers and speeds in excess of 15 km/sec,. MSFC is also sponsoring the development of a one-of-a-kind Dynamic Star Field Simulator with a high resolution large monochrome display and a custom collimator capable of projecting realistic star images with simple orbital debris spots (down to star magnitude 11-12) into a passive orbital detection and tracking system with simulated real-time angular motions of the vehicle mounted sensor. The dynamic star field simulator can be expanded for multiple sensors (including advanced star trackers), real-time vehicle pointing inputs, and more complex orbital debris images. This system is also adaptable to other sensor optics, missions, and installed sensor testing.

  8. The Explosive Counterparts of Gravitational Waves (Silent Animation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Astronomy collaborations like the Dark Energy Survey, which Fermilab leads, can track down the visible sources of gravitational waves caused by binary neutron stars. This animation, presented here without sound, takes you through the collision of two neutron stars, and shows you the explosion of light and energy seen by the Dark Energy Camera on August 17, 2017.

  9. Are We at the Crossroads for Wisconsin Child Care? Policies in Conflict

    ERIC Educational Resources Information Center

    Wisconsin Council on Children and Families, 2016

    2016-01-01

    This report examines the conflicting public policies in child care and their implications. The policy analysis tracks the history of two major child care programs, the Wisconsin Shares child care subsidy program and the YoungStar Quality Rating and Improvement System. While YoungStar shows promising trends in improving the quality of early care…

  10. Covering Ground: Movement Patterns and Random Walk Behavior in Aquilonastra anomala Sea Stars.

    PubMed

    Lohmann, Amanda C; Evangelista, Dennis; Waldrop, Lindsay D; Mah, Christopher L; Hedrick, Tyson L

    2016-10-01

    The paths animals take while moving through their environments affect their likelihood of encountering food and other resources; thus, models of foraging behavior abound. To collect movement data appropriate for comparison with these models, we used time-lapse photography to track movements of a small, hardy, and easy-to-obtain organism, Aquilonastra anomala sea stars. We recorded the sea stars in a tank over many hours, with and without a food cue. With food present, they covered less distance, as predicted by theory; this strategy would allow them to remain near food. We then compared the paths of the sea stars to three common models of animal movement: Brownian motion, Lévy walks, and correlated random walks; we found that the sea stars' movements most closely resembled a correlated random walk. Additionally, we compared the search performance of models of Brownian motion, a Lévy walk, and a correlated random walk to that of a model based on the sea stars' movements. We found that the behavior of the modeled sea star walk was similar to that of the modeled correlated random walk and the Brownian motion model, but that the sea star walk was slightly more likely than the other walks to find targets at intermediate distances. While organisms are unlikely to follow an idealized random walk in all details, our data suggest that comparing the effectiveness of an organism's paths to those from theory can give insight into the organism's actual movement strategy. Finally, automated optical tracking of invertebrates proved feasible, and A. anomala was revealed to be a tractable, 2D-movement study system.

  11. The nature of the island and banana states in atoll sources and a unified model for low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Church, M. J.; Gibiec, A.; Bałucińska-Church, M.

    2014-03-01

    We propose an explanation of the island and banana states and the relation between atoll and Z-track sources, constituting a unified model for low-mass X-ray binaries (LMXB). We find a dramatic transition at a luminosity of 1-2 × 1037 erg s-1 above which the high-energy cut-off ECO of the Comptonized emission in all sources is low at a few keV. There is thermal equilibrium between the neutron star at ˜2 keV and the Comptonizing accretion disc corona (ADC) causing the low ECO in the banana state of atolls and all states of the Z-track sources. Below this luminosity, ECO increases towards 100 keV causing the hardness of the island state. Thermal equilibrium is lost, the ADC becoming much hotter than the neutron star via an additional coronal heating mechanism. This suggests a unified model of LMXB: the banana state is a basic state with the mass accretion rate dot{M} increasing, corresponding to the normal branch of Z-track sources. The island state has high ADC temperature, this state not existing in the Z-sources with luminosities much greater than the critical value. The Z-track sources have an additional flaring branch consistent with unstable nuclear burning on the neutron star at high dot{M}. This burning regime does not exist at low dot{M} so this branch is not seen in atolls (except GX atolls). The horizontal branch in Z-track sources has a strong increase in radiation pressure disrupting the inner disc and launching relativistic jets.

  12. SED16 autonomous star tracker night sky testing

    NASA Astrophysics Data System (ADS)

    Foisneau, Thierry; Piriou, Véronique; Perrimon, Nicolas; Jacob, Philippe; Blarre, Ludovic; Vilaire, Didier

    2017-11-01

    The SED16 is an autonomous multi-missions star tracker which delivers three axis satellite attitude in an inertial reference frame and the satellite angular velocity with no prior information. The qualification process of this star sensor includes five validation steps using optical star simulator, digitized image simulator and a night sky tests setup. The night sky testing was the final step of the qualification process during which all the functions of the star tracker were used in almost nominal conditions : Autonomous Acquisition of the attitude, Autonomous Tracking of ten stars. These tests were performed in Calern in the premises of the OCA (Observatoire de la Cote d'Azur). The test set-up and the test results are described after a brief review of the sensor main characteristics and qualification process.

  13. ESA's Rosetta mission and the puzzles that Hale-Bopp left behind

    NASA Astrophysics Data System (ADS)

    1997-04-01

    The scientific payload was confirmed by ESA's Science Programme Committee in February. Now the scientists must perfect the full range of ultra-sensitive yet spaceworthy instruments in good time for Rosetta's despatch by an Ariane 5 launcher in January 2003. And even as most of the world was admiring Comet Hale-Bopp at its brightest, dedicated astronomers were examining the comet that will be Rosetta's target. Although too faint to be seen with the naked eye, Comet Wirtanen made its closest approach to the Sun on 14 March and a fairly close approach to the Earth on 24 March. This comet comes back every 5.5 years. Rosetta will dance attendance on Comet Wirtanen, not at the next return in 2002, nor even in 2008, but in 2013. The project is an ambitious and patient effort to achieve the most thorough investigation of a comet ever attempted. As the successor to ESA's highly successful Giotto mission to Halley's Comet and Comet Grigg-Skjellerup (which took seven years) Rosetta will spend eight years positioning itself. It will manoeuvre around the planets until it is shadowing Comet Wirtanen far beyond Mars, on nearly the same path around the Sun. In 2011 it will rendezvous with the comet and fly near it. In April 2012 Rosetta will go into a near orbit around Comet Wirtanen, and escort it for 17 busy months, as it flies in to make its closest approach to the Sun in September 2013, at the climax of the mission. "The Giotto mission placed us at the forefront of cometary exploration," comments Roger Bonnet, ESA's director of science. "The motivation came from European scientists with a sharp sense of the special importance of comets for understanding the Solar System. The same enthusiasm drives us onward to Rosetta, which will ensure our continued leadership in this important branch of space science." Scientific tasks During its prolonged operations in very close company with the comet's nucleus, Rosetta will map and examine its entire surface from distances of 10 to 50 kilometres with a set of remote-sensing instruments. As the spacecraft moves around the nucleus at a very leisurely walking pace, other onboard instruments will analyse the dust and vapours, which will emanate from Comet Wirtanen with ever-increasing vigour as the Sun's rays warm it. Rosetta will drop a lander on to the comet's surface, for close inspection of its physical condition and chemical composition. The lander is a venture led by Germany, France and Italy, with participation from Austria, Finland, Hungary, Poland and the UK. As a box packed with scientific instruments and standing on three legs, the lander will be capable of anchoring itself to one spot and drilling into the surface. It may also be able to hop like a flea to visit another part of the nucleus. A combination of solar energy and electric batteries will enable operations to last for several months. "The combination of Rosetta in orbit around the comet and the lander on its surface is very powerful from a scientific point of view," says Gerhard Schwehm, ESA's project scientist for Rosetta. "We shall watch Comet Wirtanen brewing up like a volcano as it feels the heat of the Sun. In place of hazy impressions of the nucleus of a comet half hidden by its dust clouds, we shall see all the details with unprecedented clarity." Unanswered questions During and after the 1986 appearance of Halley's Comet, comet science made great progress. More recent comets have revealed important secrets to ESA's Infrared Space Observatory and to other space telescopes examining them at wavelengths unobservable from the Earth. Yet basic questions about comets remain unanswered. Just as the Rosetta Stone was the key that unlocked the meaning of Egyptian hieroglyphs, so the Rosetta spacecraft is intended to decipher the meaning of comets and their role in the origin and history of the Solar System. Here are a few of the main puzzles. * What does a comet weigh? Guesses about the density of cometary material vary widely, and only an orbiting spacecraft can give exact measurements of the comet's volume and mass. * Is a comet a dirty snowball or an icy dirtball? In other words, is it made of ices contaminated with mineral and tarry dust, or is it a consolidation of dust coated with ices? * Why is the nucleus of a comet so dark? Giotto established that Halley's nucleus is like brownish-black velvet, absorbing 96 per cent of the sunlight falling on it. Is the colour due to a surface deposit of tarry dust, or is the interior dark too? * Why are small regions of a comet highly active when most of its surface is not? Multiple jets of dust seen emanating from Halley's Comet, and spectacularly from Comet Hale-Bopp, imply that certain hot-spots differ physically or chemically from the rest of the comet's surface. * Is a comet made as single piece, or does it consist of loosely joined blocks, as suggested by the Giotto images? This relates to the questions of how comets are built, and why they break up into smaller fragments, as seen spectacularly with Comet Shoemaker-Levy 9 which hit Jupiter in 1994. * Does a dying comet evaporate and disappear, or does it simply exhaust the stocks of ice that drive the emissions of gas and dust from an active comet? If the latter answer is correct, dead comets persist long afterwards as dark, inactive masses of minerals and tar, and pose a lasting threat of collisions with the Earth. * What is a comet's exact composition? Many ingredients are known, and the approximate abundances of the main constituents. Details coming from Rosetta will pin down (1) how comets were fashioned from similar constituents of interstellar dust and (2) how comets contributed to building the planets, including the Earth, and stocking their atmospheres. * Is the tarry, carbon-rich material in comets a jumble of every kind of chemical that inorganic processes can make from carbon, nitrogen, oxygen and hydrogen, or does it contain special compounds? This is relevant to assessing the role of comets in the origin of life on the Earth. The comet specialist Uwe Keller of the Max-Planck Institut fur Aeronomie, Germany, is one of the Giotto veterans who has helped with the planning of Rosetta. He was in charge of Giotto's camera. "Rosetta is the mission we are all waiting for," Dr Keller comments. "After I spent six years analysing our images of the Halley nucleus, I say that basic scientific assumptions about the nature of comets are still contradictory. We shall settle the arguments only by the close, prolonged inspection that Rosetta will make possible." Engineering the Rosetta mission To build up the speed needed to adopt the same orbit around the Sun as Comet Wirtanen, Rosetta must steal energy of motion from the planets, in a swingby of Mars and two swingbys of the Earth. During its far-flung manoeuvres in pursuit of the comet, Rosetta will inspect the asteroids Mimistrobell and Rodari at close quarters. When Rosetta is far from the Earth, or on the wrong side of the Sun, communication will be difficult. The spacecraft will therefore have a high degree of robotic self-reliance. It will also be capable of hibernating for more than two years without attention -- a technique devised by ESA for the later stages of the Giotto mission. Rosetta will rely on solar power, even when more than five times further than the Earth from the Sun. Special low-intensity solar cells are under development for Rosetta. Conditions in this farthest phase of Rosetta's voyage will be very chilly, but ESA's engineers are satisfied that the temperatures inside the spacecraft can be kept within limits by black paint, multilayer insulation and electric heaters. Despite its originality and sophistication, Rosetta will be just a flying box with solar arrays like wings, looking rather like a telecommunications satellite. "Keep it simple," is the motto of John Credland, ESA's project manager for Rosetta. "Simplicity brings reliability," he explains, "and that is my overriding concern for the engineering of a spacecraft that has to survive and operate far from the Earth for nearly eleven years." To command Rosetta, and to receive its signals carrying new of the comet, ESA will use a new 32-metre deep-space tracking antenna at Perth in Australia, and a 15-metre antenna in Spain. The spacecraft operations, especially in the near-comet phase of the mission, will be a novel experience for the controllers at the European Space Operations Centre in Darmstadt, Germany. The gravity of the comet will be weak, and Rosetta's manoeuvres around it will be like a ballet in slow motion. At around 10 kilometres distance, the spacecraft will travel at only 1-2 kilometres per hour in relation to the comet and take about a week to circle once around the nucleus. Sometimes Rosetta will swoop even closer to the comet's surface, to inspect possible landing sights and to drop the lander. The spacecraft's thrusters will adjust the orbit. To keep manoeuvres to a minimum, and so conserve fuel and avoid polluting the comet's environment, computer simulations will help the spacecraft navigators to predict the consequences of any manoeuvre for weeks in advance. The target comet Present-day space propulsion systems allow a rendezvous only with a comet with a predictable and relatively small orbit around the Sun. All comets of this kind are "old", in the sense that they have visited the Sun's vicinity many times and are no longer vigorous in the dust and gas formation that makes their visible comas and tails. The second comet visited by Giotto, Comet Grigg-Skjellerup, was of this elderly kind. From among several short-period candidates, the mission team chose Comet Wirtanen as Rosetta's target comet because it offered the quickest timetable between the launch of the spacecraft and the completion of the mission. The comet was discovered by chance by Carl Wirtanen in 1948 on photographic plates at the Lick Observatory in California. In 1972 and 1984 encounters with the planet Jupiter reduced the size of Comet Wirtanen's orbit, and shortened the interval between its visits to the Sun from 6.65 to 5.5 years. Despite many observations no one really knows the comet's mass, size and shape. The uncertainties are reflected in the computer simulations of manoeuvres near the comet. These cover a wide range of possibilities from a lightweight comet to a massive one, and from a small comet 1 kilometre in diameter to a large one 20 kilometres wide. The best estimate may be 1.5 kilometres. But it is in the nature of a voyage of exploration like Rosetta's that you don't know what you will find!

  14. Passive Infrared (PIR)-Based Indoor Position Tracking for Smart Homes Using Accessibility Maps and A-Star Algorithm.

    PubMed

    Yang, Dan; Xu, Bin; Rao, Kaiyou; Sheng, Weihua

    2018-01-24

    Indoor occupants' positions are significant for smart home service systems, which usually consist of robot service(s), appliance control and other intelligent applications. In this paper, an innovative localization method is proposed for tracking humans' position in indoor environments based on passive infrared (PIR) sensors using an accessibility map and an A-star algorithm, aiming at providing intelligent services. First the accessibility map reflecting the visiting habits of the occupants is established through the integral training with indoor environments and other prior knowledge. Then the PIR sensors, which placement depends on the training results in the accessibility map, get the rough location information. For more precise positioning, the A-start algorithm is used to refine the localization, fused with the accessibility map and the PIR sensor data. Experiments were conducted in a mock apartment testbed. The ground truth data was obtained from an Opti-track system. The results demonstrate that the proposed method is able to track persons in a smart home environment and provide a solution for home robot localization.

  15. Passive Infrared (PIR)-Based Indoor Position Tracking for Smart Homes Using Accessibility Maps and A-Star Algorithm

    PubMed Central

    Yang, Dan; Xu, Bin; Rao, Kaiyou; Sheng, Weihua

    2018-01-01

    Indoor occupants’ positions are significant for smart home service systems, which usually consist of robot service(s), appliance control and other intelligent applications. In this paper, an innovative localization method is proposed for tracking humans’ position in indoor environments based on passive infrared (PIR) sensors using an accessibility map and an A-star algorithm, aiming at providing intelligent services. First the accessibility map reflecting the visiting habits of the occupants is established through the integral training with indoor environments and other prior knowledge. Then the PIR sensors, which placement depends on the training results in the accessibility map, get the rough location information. For more precise positioning, the A-start algorithm is used to refine the localization, fused with the accessibility map and the PIR sensor data. Experiments were conducted in a mock apartment testbed. The ground truth data was obtained from an Opti-track system. The results demonstrate that the proposed method is able to track persons in a smart home environment and provide a solution for home robot localization. PMID:29364188

  16. Educational Aspects of the CONCAM Sky Monitoring Project

    NASA Astrophysics Data System (ADS)

    Nemiroff, R. J.; Rafert, J. B.; Ftaclas, C.; Pereira, W. E.; Perez-Ramirez, D.

    2000-12-01

    We have built a prototype CONtinuous CAMera (CONCAM) that mates a fisheye lens to a CCD camera run by a laptop computer. Presently, one CONCAM is deployed at Kitt Peak National Observatory and another is being set up on Mauna Kea in Hawaii. CONCAMs can detect stars of visual magnitude 6 near the image center in a two-minute exposure. CONCAMs are weather-proof, take continuous data from 2 π steradians on the sky, are programmable over the internet, create data files downloadable over the internet, are small enough to fit inside a briefcase, and cost under \\$10 K. . Images archived at http://concam.net can be used to teach many introductory concepts. These include: the rotation of the Earth, the relative location and phase of the Moon, the location and relative motion of planets, the location of the Galactic plane, the motion of Earth satellites, the location and motion of comets, the motion of meteors, the radiant of a meteor shower, the relative locations of interesting stars, and the relative brightness changes of highly variable stars. Concam.net is not meant to replace first hand student observations of the sky, but rather to complement them with classroom-accessible actual-sky-image examples.

  17. The Intermediate Stellar Population in R136 Determined from Hubble Space Telescope Images

    NASA Astrophysics Data System (ADS)

    Hunter, D. A.; WFPC1 IDT; WFPC2 IDT

    1994-12-01

    We have analyzed Hubble Space Telescope (HST) images of the compact, luminous star cluster R136 in the LMC that were taken with the refurbished HST and new Wide Field/Planetary Camera. These images allow us to examine the stellar population in a region of unusually intense star formation at a scale of 0.01 pc. We have detected stars to 23.5 in F555W and have quantified the stellar population to an M_{555,o} of 0.9 or a mass of 2.8 cal Msolar . Comparisons of HR diagrams with isochrones that were constructed for the HST flight filter system from theoretical stellar evolutionary tracks reveal massive stars, a main sequence to at least 2.8 cal Msolar , and stars with M_{555,o}>=0.5 still on pre-main sequence tracks. The average stellar population is fit with a 3--4 Myr isochrone. Contrary to expectations from star formation models, however, the formation period for the massive stars and lower mass stars appear to largely overlap. We have measured the IMF for stars 2.8--15 cal Msolar in three annuli from 0.5--4.7 pc from the center of the cluster. The slopes of the IMF in all three annuli are the same within the uncertainties, thus, showing no evidence for mass segregation beyond 0.5 pc. Furthermore, the combined IMF slope, -1.2+/-0.1, is close to a normal Salpeter IMF. The lower mass limit must be lower than the limits of our measurements: <=2.8 cal Msolar beyond 0.5 pc and <=7 cal Msolar within 0.1 pc. This is contrary to some predictions that the lower mass limit could be as high as 10 cal Msolar in regions of intense massive star formation. Integrated properties of R136 are consistent with its being comparable to a rather small globular cluster when such clusters were the same age as R136.

  18. Accumulation of Cytoplasmic Dynein and Dynactin at Microtubule Plus Ends in Aspergillus nidulans Is Kinesin DependentV⃞

    PubMed Central

    Zhang, Jun; Li, Shihe; Fischer, Reinhard; Xiang, Xin

    2003-01-01

    The mechanism(s) by which microtubule plus-end tracking proteins are targeted is unknown. In the filamentous fungus Aspergillus nidulans, both cytoplasmic dynein and NUDF, the homolog of the LIS1 protein, localize to microtubule plus ends as comet-like structures. Herein, we show that NUDM, the p150 subunit of dynactin, also forms dynamic comet-like structures at microtubule plus ends. By examining proteins tagged with green fluorescent protein in different loss-of-function mutants, we demonstrate that dynactin and cytoplasmic dynein require each other for microtubule plus-end accumulation, and the presence of cytoplasmic dynein is also important for NUDF's plus-end accumulation. Interestingly, deletion of NUDF increases the overall accumulation of dynein and dynactin at plus ends, suggesting that NUDF may facilitate minus-end–directed dynein movement. Finally, we demonstrate that a conventional kinesin, KINA, is required for the microtubule plus-end accumulation of cytoplasmic dynein and dynactin, but not of NUDF. PMID:12686603

  19. The U.S. Rosetta Project: Preparations for Prime Mission, 2014

    NASA Technical Reports Server (NTRS)

    Alexander, C.; Chmielewski, A.; Aguinaldo, A. M.; Ko, A.; Accomazzo, A.; Taylor, M. G. G.

    2014-01-01

    In 2014, the International Rosetta mission will place a spacecraft in orbit around comet 67P/Churyumov-Gerasimenko and deliver a lander to the comet's surface. The National Aeronautics and Space Administration's (NASA) contribution to the International Rosetta mission, designated the U.S. Rosetta Project, includes several instruments, tracking support, and science support for some non-US payloads. In July 2011 the spacecraft was placed in a long-duration hibernation mode planned to last approximately 37 months to conserve electrical power. Rosetta will rendezvous with 67P/Churyumov-Gerasimenko in 2014. On the eve of the mission's arrival at its target, this paper highlights three issues related to Rosetta's looming prime mission: (A) measures taken in 2009 to prepare the US Rosetta Project for the long-duration hibernation mode; (B) risk reviews conducted in 2013 to prepare the US Rosetta Project for exit from hibernation; (C) ESA and NASA preparations for use of NASA Deep Space Network (DSN) assets related to keyword files.

  20. Stardust Curation at Johnson Space Center: Photo Documentation and Sample Processing of Submicron Dust Samples from Comet Wild 2 for Meteoritics Science Community

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Zolensky, M. E.; Bastien, R.; See, T. H.; Warren, J. L.; Bevill, T. J.; Cardenas, F.; Vidonic, L. F.; Horz, F.; McNamara, K. M.; hide

    2007-01-01

    Dust particles released from comet 81P/Wild-2 were captured in silica aerogel on-board the STARDUST spacecraft and successfully returned to the Earth on January 15, 2006. STARDUST recovered thousands of particles ranging in size from 1 to 100 micrometers. The analysis of these samples is complicated by the small total mass collected ( < 1mg), its entrainment in the aerogel collection medium, and the fact that the cometary dust is comprised of submicrometer minerals and carbonaceous material. During the six month Preliminary Examination period, 75 tracks were extracted from the aerogel cells , but only 25 cometary residues were comprehensively studied by an international consortium of 180 scientists who investigated their mineralogy/petrology, organic/inorganic chemistry, optical properties and isotopic compositions. These detailed studies were made possible by sophisticated sample preparation methods developed for the STARDUST mission and by recent major advances in the sensitivity and spatial resolution of analytical instruments.

  1. Small Body Landing Accuracy Using In-Situ Navigation

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam; Nandi, Sumita; Broschart, Stephen; Wallace, Mark; Olson, Corwin; Cangahuala, L. Alberto

    2011-01-01

    Spacecraft landings on small bodies (asteroids and comets) can require target accuracies too stringent to be met using ground-based navigation alone, especially if specific landing site requirements must be met for safety or to meet science goals. In-situ optical observations coupled with onboard navigation processing can meet the tighter accuracy requirements to enable such missions. Recent developments in deep space navigation capability include a self-contained autonomous navigation system (used in flight on three missions) and a landmark tracking system (used experimentally on the Japanese Hayabusa mission). The merging of these two technologies forms a methodology to perform autonomous onboard navigation around small bodies. This paper presents an overview of these systems, as well as the results from Monte Carlo studies to quantify the achievable landing accuracies by using these methods. Sensitivity of the results to variations in spacecraft maneuver execution error, attitude control accuracy and unmodeled forces are examined. Cases for two bodies, a small asteroid and on a mid-size comet, are presented.

  2. Observing Comet Halley with Space Telescope

    NASA Technical Reports Server (NTRS)

    Caldwell, J.

    1983-01-01

    The NASA Space Telescope (ST) to be launched into LEO by STS in late 1985 is characterized, and its potential use for observations of Comet Halley shortly after the perihelion passage in February, 1986, is discussed. The ST comprises a 2.4-m MgF2-coated primary reflector (with maximum field of view 2.7 x 2.7 arcmin, wavelength coverage 120-1100 nm, and maximum tracking rate 0.21 arcsec/sec) and five first-generation scientific instruments (wide-field planetary camera, faint-object camera, high-resolution and faint-object spectrographs, and high-speed photometer). Planned ST observations of Halley include periods of continuous observation much longer than can be obtained from the ground, provision of supplementary data and navigation information to Giotto and other deep-space missions, emission spectroscopy, UV polarimetry, and possible detection of 124-nm H2O absorption. Before March 11, 1986, earth occultation or similar procedures will be required to observe Halley because it will be within the ST 50-deg solar-elongation-distance limit.

  3. NASA-ARC 91.5-cm airborne infrared telescope. [tracking mechanism

    NASA Technical Reports Server (NTRS)

    Mobley, R. E.; Brown, T. M.

    1979-01-01

    A 91.5 cm aperture telescope installed aboard NASA-Lockheed C-141A aircraft for the performance of infrared astronomy is described. A unique feature of the telescope is that its entire structure is supported by a 41 cm spherical air bearing which effectively uncouples it from aircraft angular motion, and with inertial stabilization and star tracking, limits tracking errors to less than 1 arc second in most applications. A general description of the system, a summary of its performance, and a detailed description of an offset tracking mechanism is presented.

  4. A-Track: A New Approach for Detection of Moving Objects in FITS Images

    NASA Astrophysics Data System (ADS)

    Kılıç, Yücel; Karapınar, Nurdan; Atay, Tolga; Kaplan, Murat

    2016-07-01

    Small planet and asteroid observations are important for understanding the origin and evolution of the Solar System. In this work, we have developed a fast and robust pipeline, called A-Track, for detecting asteroids and comets in sequential telescope images. The moving objects are detected using a modified line detection algorithm, called ILDA. We have coded the pipeline in Python 3, where we have made use of various scientific modules in Python to process the FITS images. We tested the code on photometrical data taken by an SI-1100 CCD with a 1-meter telescope at TUBITAK National Observatory, Antalya. The pipeline can be used to analyze large data archives or daily sequential data. The code is hosted on GitHub under the GNU GPL v3 license.

  5. Comets, Meteors, and Eclipses: Art and Science in Early Renaissance Italy (Invited)

    NASA Astrophysics Data System (ADS)

    Olson, R. J. M.; Pasachoff, J. M.

    1999-09-01

    We discuss several topics relating artists and their works with actual astronomical events in early Renaissance Italy to reveal the revolutionary advances made in both astronomy and naturalistic painting. Padua, where Galileo would eventually hold a chair at the University, was already by the fourteenth century (trecento) a renowned center for mathematics and nascent astronomy (which was separating from astrology). It is no wonder that when Enrico Scrovegni commissioned the famous Florentine artist Giotto di Bondone to decorate his lavish family chapel (c. 1303) that in the scene of the Adoration of the Magi Giotto painted a flaming comet in lieu of the traditional Star of Bethlehem. Moreover, he painted an historical apparition he recently had observed with a great understanding of its scientific structure: Halley's Comet of 1301 (since Olson's first publication of this idea in Scientific American we have expanded the argument in several articles and talks). While we do not know the identity of the artist's theological advisor, we discuss the possibility that Pietro d'Abano, the Paduan medical doctor and ``astronomer" who wrote on comets, might have been influential. We also compare Giotto's blazing comet with two others painted by the artist's shop in San Francesco at Assisi (before 1316) and account for the differences. In addition, we tackle the question how Giotto's pupil, Taddeo Gaddi, who is documented as having been partially blinded by lengthy unprotected observation of the partial phase of an annular solar eclipse, reflects his observations in his frescoes in Santa Croce, Florence (1328-30). Giotto also influenced the Sienese painter Pietro Lorenzetti, two of whose Passion cycle frescoes at Assisi (1316-20), contain dazzling meteor showers that hold important symbolic meanings in the cyle's argument but more importantly reveal that the artist observed astronomical phenomena, such as the ``radiant" effect, which was first recorded by Alexander von Humboldt in 1799 and only accepted in the nineteenth century. Lorenzetti also painted sporadic, independent meteors, which do not emanate from the radiant, demonstrating that he observed this phenomenon as well. (It is significant that these artists knew the differences between comets and meteors, facts which were not absolutely established until the eighteenth century.) We demonstrate that artistic and scientific visual acuity were part of the burgeoning empiricism of the fourteenth century that eventually yielded modern observational astronomy. Our joint work has been supported in part by the National Endowment for the Humanities and the Getty Grant Program.

  6. Catching Comet's Particles in the Earth's Atmosphere by Using Balloons

    NASA Astrophysics Data System (ADS)

    Potashko, Oleksandr; Viso, Michel

    The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use Indian Space Research Organization experience that launched a balloon to stratosphere in 2009 and successfully caught particles with organics at an altitude of 42 km. The main aim of the project is to catch cometary particles by using balloons and to make this method steady and reliable. Why are the comet particles interesting? The nature of a comet is full of puzzles; many researchers think that comets may give keys to the origin of the Solar System and origin of life on the Earth. 2014 and 2015 are special years for comet science: mission Rozetta will reach the vicinity of the comet 67P/Churyumov-Gerasimenko - 10 years after leaving the Earth. Using astronomic data, one may choose date for ballooning, specify the altitude of comet particles by photometry and laser measurement of particle outburst. After height measurement one may launch a balloon. For example, for Draconids particles (Parent comet: 21PGiacobini-Zinner) the expected time of outburst maximum - hence that for catching is 22:42 UT, October 6, 2014. The best conditions for catching will be in Greenland and extreme north-eastern part of North America. Draconids are very convenient for the initial stage of the project - the altitude of observed Draconids outburst is 10 km. One may catch them above 10 km, e.g. 10500 m. We consider ballooning is quite a good method to get experimental data as an additional technique in comparison with big space missions. Moreover, it might be a part of cosmic mission to other planets such as Mars and Venus. The approach of the project is to make targeting catch of comet particles. The method consists of choosing the right place and time for ballooning.

  7. Los mitos como memoria colectiva de Los Pueblos.

    NASA Astrophysics Data System (ADS)

    Martín, P. T.

    Myths are essentially something practical that allows those who believe in them to solve any ambiguity which could come up in their relation with nature. Since they bring information about the condition of the reality to which they belong, they are but the appropriate instrument to insert nature into culture by actually achieving an adaptation to the environment. The purpose of this essay is to show how the deification of plants, animals, and stars, which are present in the daily lives of "Amerindian" people, not only constitutes a source of rich mythology but also turns out to be an effective measure towards the continuity of social groups. Similarities or identifications between human life and the life of plants, animals and stars as well as mutual interplay are somehow present in those myths: stars which create or are changed into human being, animals or plants; human beings who create or are transformed into astral bodies; battles between peoples and stars, etc. On this base, mythology can provide not only keys to show how certain human groups have achieved their adaptation to the environment and how the different social systems and their relations to nature have developed, but also hints of changes which have taken place in other heavenly spheres such as the falling of meteors, the appearance of comets or any other significant events of this kind in the lives of these groups.

  8. Title Requested

    NASA Astrophysics Data System (ADS)

    Ruzmaikina, T. V.

    2000-12-01

    Precise measurements of D/H in Halley and Hyakutake reveal larger excess of D than in Uranus and Neptune. This might imply that at least a fraction of Oort cloud comets have been accumulated in a cooler environment beyond the planetary system. This paper suggests that the scattering of planetesimals from the periphery of the protoplanetary disk by a passing star might have included them in the populating of the Oort cloud. The probability of the necessary close encounter is very small in the present Galactic environment of the solar system. However it might be relatively high if the solar system was formed in a denser environment, like the Rho Ophiuchus star-forming region or a small and dense cloud core which fragmented during the collapse to form a small group of stars. Outcomes of a passage of a star with mass 1 to 0.3 solar masses were studied numerically by Everhart method. Disk penetrating or disk grazing encounters revealed that planetesimals closest to the stellar trajectory can be ejected from the solar system or sent on highly eccentric bound orbits. Some planetesimals acquire orbits with perihelion distances larger than planet orbits, i.e., become immediate members of the Oort cloud. For others, external pertubations cause stochastic growth of perihelion distances and decoupling from the planetary system, transferring them into the Oort cloud. These Oort cloud bodies could be accumulated well beyond the planetary system, and preserve higher D/H, CO ice, etc.

  9. Spacelab

    NASA Image and Video Library

    1990-12-01

    In this photograph, the instruments of the Astro-1 Observatory are erected in the cargo bay of the Columbia orbiter. Astro-1 was launched aboard the the Space Shuttle Orbiter Columbia (STS-35) mission on December 2, 1990. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Astronomical targets of observation selected for Astro missions included planets, stars, star clusters, galaxies, clusters of galaxies, quasars, remnants of exploded stars (supernovae), clouds of gas and dust (nebulae), and the interstellar medium. Astro-1 used a Spacelab pallet system with an instrument pointing system and a cruciform structure for bearing the three ultraviolet instruments mounted in a parallel configuration. The three instruments were:The Hopkins Ultraviolet Telescope (HUT), the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE), and the Ultraviolet Imaging Telescope (UIT). Also in the payload bay was the Broad Band X-Ray Telescope (BBXRT). Scientific return included approximately 1,000 photographs of the ultraviolet sky in the most extensive ultraviolet imagery ever attempted, the longest ultraviolet spectral observation of a comet ever made, and data never before seen on types of active galaxies called Seyfert galaxies. The mission also provided data on a massive supergiant star captured in outburst and confirmed that a spectral feature observed in the interstellar medium was due to graphite. In addition, Astro-1 acquired superb observations of the Jupiter magnetic interaction with one of its satellites.

  10. David Levy's Guide to Observing and Discovering Comets

    NASA Astrophysics Data System (ADS)

    Levy, David H.

    2003-05-01

    Preface; Part I. Why Observe Comets?: 1. Of history, superstition, magic, and science; 2. Comet science progresses; Part II. Discovering Comets: 3. Comet searching begins; 4. Tails and trails; 5. Comet searching in the twentieth century; 6. How I search for comets; 7. Searching for comets photographically; 8. Searching for comets with CCDs; 9. Comet hunting by reading; 10. Hunting for sungrazers over the Internet; 11. What to do when you think you've found a comet; Part III. A New Way of Looking at Comets: 12. When comets hit planets; 13. The future of visual comet hunting; Part IV. How to Observe Comets: 14. An introduction to comet hunting; 15. Visual observing of comets; 16. Estimating the magnitude of a comet; 17. Taking a picture of a comet; 18. Measuring where a comet is in the sky; Part V. Closing Notes: 19. My passion for comets.

  11. An Accretion Model for Anomalous X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Chatterjee, Pinaki; Hernquist, Lars; Narayan, Ramesh

    2000-05-01

    We present a model for the anomalous X-ray pulsars (AXPs) in which the emission is powered by accretion from a fossil disk, established from matter falling back onto the neutron star following its birth. The time-dependent accretion drives the neutron star toward a ``tracking'' solution in which the rotation period of the star increases slowly, in tandem with the declining accretion rate. For appropriate choices of disk mass, neutron star magnetic field strength, and initial spin period, we demonstrate that a rapidly rotating neutron star can be spun down to periods characteristic of AXPs on timescales comparable to the estimated ages of these sources. In other cases, accretion onto the neutron star switches off after a short time and the star becomes an ordinary radio pulsar. Thus, in our picture, radio pulsars and AXPs are drawn from the same underlying population, in contrast to the situation in models involving neutron stars with ultrastrong magnetic fields, which require a new population of stars with very different properties.

  12. The nature of donors in ultraluminous X-ray binaries powered by neutron stars

    NASA Astrophysics Data System (ADS)

    Karino, Shigeyuki

    2018-03-01

    This study examines the properties of the donor stars of three recently discovered ultraluminous X-ray sources (ULXs) powered by rotating neutron stars. In order to do this, a theoretical relationship was constructed between the X-ray luminosity (LX) and the orbital period (Porb) suitable for ULXs with neutron stars. Using this new LX-Porb relationship, we attempted to determine the currently unknown nature of donor stars in ULXs associated with neutron stars. In particular, from a comparison between the observed properties and the stellar evolution tracks, we suggest that the donor star in the NGC5907 ULX-1 system is a moderately massive star of 6-12 M⊙, just departing from the main sequence phase. The results of our models for the other two ULX systems (M82 X-2 and NGC7793 P-13) are consistent with those in previous studies. Although there are only a few samples, observed ULX systems with neutron stars seem to involve relatively massive donors.

  13. Observations of Interstellar Formamide: Availability of a Prebiotic Precursor in the Galactic Habitable Zone

    PubMed Central

    Adande, Gilles R.; Woolf, Neville J.

    2013-01-01

    Abstract We conducted a study on interstellar formamide, NH2CHO, toward star-forming regions of dense molecular clouds, using the telescopes of the Arizona Radio Observatory (ARO). The Kitt Peak 12 m antenna and the Submillimeter Telescope (SMT) were used to measure multiple rotational transitions of this molecule between 100 and 250 GHz. Four new sources of formamide were found [W51M, M17 SW, G34.3, and DR21(OH)], and complementary data were obtained toward Orion-KL, W3(OH), and NGC 7538. From these observations, column densities for formamide were determined to be in the range of 1.1×1012 to 9.1×1013 cm−2, with rotational temperatures of 70–177 K. The molecule is thus present in warm gas, with abundances relative to H2 of 1×10−11 to 1×10−10. It appears to be a common constituent of star-forming regions that foster planetary systems within the galactic habitable zone, with abundances comparable to that found in comet Hale-Bopp. Formamide's presence in comets and molecular clouds suggests that the compound could have been brought to Earth by exogenous delivery, perhaps with an infall flux as high as ∼0.1 mol/km2/yr or 0.18 mmol/m2 in a single impact. Formamide has recently been proposed as a single-carbon, prebiotic source of nucleobases and nucleic acids. This study suggests that a sufficient amount of NH2CHO could have been available for such chemistry. Key Words: Formamide—Astrobiology—Radioastronomy—ISM—Comets—Meteorites. Astrobiology 13, 439–453. PMID:23654214

  14. Multiplicities of Hadrons Within Jets at STAR

    NASA Astrophysics Data System (ADS)

    Wheeler, Suzanne; Drachenberg, Jim; STAR Collaboration

    2017-09-01

    Jet measurements have long been tools used to understand QCD phenomena. There is still much to be learned from the production of hadrons inside of jets. In particular, hadron yields within jets from proton-proton collisions have been proposed as a way to unearth more information on gluon fragmentation functions. In 2011, the STAR experiment at RHIC collected 23 pb-1 of data from proton-proton collisions at √{ s} = 500 GeV. The jets of most interest for gluon fragmentation functions are those with transverse momentum around 6-15 GeV/c. Large acceptance charged particle tracking and electromagnetic calorimetry make STAR an excellent jet detector. Time-of-flight and specific energy loss in the tracking system allow particle identification on the various types of hadrons within the jets, e.g., distinguishing pions from kaons and protons. An integral part of analyzing the data collected is understanding how the finite resolutions of the various detector subsystems influence the measured jet and hadron kinematics. For this reason, Monte Carlo simulations can be used to track the shifting of the hadron and jet kinematics between the generator level and the detector reconstruction level. The status of this analysis will be presented. We would like to acknowledge the Ronald E. McNair program for supporting this research.

  15. Feasibility Study of Utilizing Existing Infrared Array Cameras for Daylight Star Tracking on NASA's Ultra Long Duration Balloon (ULDB) Missions

    NASA Technical Reports Server (NTRS)

    Tueller, Jack (Technical Monitor); Fazio, Giovanni G.; Tolls, Volker

    2004-01-01

    The purpose of this study was to investigate the feasibility of developing a daytime star tracker for ULDB flights using a commercially available off-the-shelf infrared array camera. This report describes the system used for ground-based tests, the observations, the test results, and gives recommendations for continued development.

  16. Galileo Spacecraft Scan Platform Celestial Pointing Cone Control Gain Redesign

    NASA Technical Reports Server (NTRS)

    In, C-H. C.; Hilbert, K. B.

    1994-01-01

    During September and October 1991, pictures of the Gaspra asteroid and neighboring stars were taken by the Galileo Optical Navigation (OPNAV) Team for the purpose of navigation the spacecraft for a successful Gaspra encounter. The star tracks in these pictures showed that the scan platform celestial pointing cone controller performed poorly in compensating for wobble-induced cone offsets.

  17. The design of the Comet streamliner: An electric land speed record motorcycle

    NASA Astrophysics Data System (ADS)

    McMillan, Ethan Alexander

    The development of the land speed record electric motorcycle streamliner, the Comet, is discussed herein. Its design process includes a detailed literary review of past and current motorcycle streamliners in an effort to highlight the main components of such a vehicle's design, while providing baseline data for performance comparisons. A new approach to balancing a streamliner at low speeds is also addressed, a system henceforth referred to as landing gear, which has proven an effective means for allowing the driver to control the low speed instabilities of the vehicle with relative ease compared to tradition designs. This is accompanied by a dynamic stability analysis conducted on a test chassis that was developed for the primary purpose of understanding the handling dynamics of streamliners, while also providing a test bed for the implementation of the landing gear system and a means to familiarize the driver to the operation and handling of such a vehicle. Data gathered through the use of GPS based velocity tracking, accelerometers, and a linear potentiometer provided a means to validate a dynamic stability analysis of the weave and wobble modes of the vehicle through linearization of a streamliner model developed in the BikeSIM software suite. Results indicate agreement between the experimental data and the simulation, indicating that the conventional recumbent design of a streamliner chassis is in fact highly stable throughout the performance envelope beyond extremely low speeds. A computational fluid dynamics study was also performed, utilized in the development of the body of the Comet to which a series of tests were conducted in order to develop a shape that was both practical to transport and highly efficient. By creating a hybrid airfoil from a NACA 0018 and NACA 66-018, a drag coefficient of 0.1 and frontal area of 0.44 m2 has been found for the final design. Utilizing a performance model based on the proposed vehicle's motor, its rolling resistance, and the body's aerodynamic drag, the top speed is predicted at 226 mph. Further design considerations are also addressed, including the development of the component level layout of the motorcycle, weighing factors such as safety and ease of fabrication with that of performance and accessibility. At the time of composition, the Comet had started the fabrication process, and it is the intent of the author that the finished product competes in the 2016 Bonneville Motorcycle Speed Trials to set the first world record for a single track electric motorcycle streamliner.

  18. Rossi X-Ray Timing Explorer Observations of the First Transient Z Source XTE J1701-462: Shedding New Light on Mass Accretion in Luminous Neutron Star X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Homan, Jeroen; van der Klis, Michiel; Wijnands, Rudy; Belloni, Tomaso; Fender, Rob; Klein-Wolt, Marc; Casella, Piergiorgio; Méndez, Mariano; Gallo, Elena; Lewin, Walter H. G.; Gehrels, Neil

    2007-02-01

    We report on the first 10 weeks of RXTE observations of the X-ray transient XTE J1701-462 and conclude that it had all the characteristics of the neutron star Z sources, i.e., the brightest persistent neutron star low-mass X-ray binaries. These include the typical Z-shaped tracks traced out in X-ray color diagrams and the variability components detected in the power spectra, such as kHz QPOs and normal and horizontal branch oscillations. XTE J1701-462 is the first transient Z source and provides unique insights into mass accretion rate (m˙) and luminosity dependencies in neutron star X-ray binaries. As its overall luminosity decreased, we observed a switch between two types of Z source behavior, with the branches of the Z track changing their shape and/or orientation. We interpret this as an extreme case of the more moderate long-term changes seen in the persistent Z sources and suggest that they result from changes in m˙. We also suggest that the Cyg-like Z sources (Cyg X-2, GX 5-1, and GX 340+0) are substantially more luminous (>50%) than the Sco-like Z sources (Sco X-1, GX 17+2, and GX 349+2). Adopting a possible explanation for the behavior of kHz QPOs, which involves a prompt as well as a filtered response to changes in m˙, we further propose that changes in m˙ can explain both movement along the Z track and changes in the shape of the Z track. We discuss some consequences of this and consider the possibility that the branches of the Z will smoothly evolve into the branches observed in X-ray color diagrams of the less luminous atoll sources, although not in a way that was previously suggested.

  19. Optimizing the fine lock performance of the Hubble Space Telescope fine guidance sensors

    NASA Technical Reports Server (NTRS)

    Eaton, David J.; Whittlesey, Richard; Abramowicz-Reed, Linda; Zarba, Robert

    1993-01-01

    This paper summarizes the on-orbit performance to date of the three Hubble Space Telescope Fine Guidance Sensors (FGS's) in Fine Lock mode, with respect to acquisition success rate, ability to maintain lock, and star brightness range. The process of optimizing Fine Lock performance, including the reasoning underlying the adjustment of uplink parameters, and the effects of optimization are described. The Fine Lock optimization process has combined theoretical and experimental approaches. Computer models of the FGS have improved understanding of the effects of uplink parameters and fine error averaging on the ability of the FGS to acquire stars and maintain lock. Empirical data have determined the variation of the interferometric error characteristics (so-called 's-curves') between FGS's and over each FGS field of view, identified binary stars, and quantified the systematic error in Coarse Track (the mode preceding Fine Lock). On the basis of these empirical data, the values of the uplink parameters can be selected more precisely. Since launch, optimization efforts have improved FGS Fine Lock performance, particularly acquisition, which now enjoys a nearly 100 percent success rate. More recent work has been directed towards improving FGS tolerance of two conditions that exceed its original design requirements. First, large amplitude spacecraft jitter is induced by solar panel vibrations following day/night transitions. This jitter is generally much greater than the FGS's were designed to track, and while the tracking ability of the FGS's has been shown to exceed design requirements, losses of Fine Lock after day/night transitions are frequent. Computer simulations have demonstrated a potential improvement in Fine Lock tracking of vehicle jitter near terminator crossings. Second, telescope spherical aberration degrades the interferometric error signal in Fine Lock, but use of the FGS two-thirds aperture stop restores the transfer function with a corresponding loss of throughput. This loss requires the minimum brightness of acquired stars to be about one magnitude brighter than originally planned.

  20. Rosetta performs ESA's closest-ever Earth fly-by

    NASA Astrophysics Data System (ADS)

    2005-03-01

    The passage through the Earth-Moon system allowed ground controllers to test Rosetta's 'asteroid fly-by mode' (AFM) using the Moon as a 'fake' asteroid, rehearsing the fly-bys of asteroids Steins and Lutetia due in 2008 and 2010 respectively. The AFM test started at 23:01 GMT and ran for nine minutes during which the two onboard navigation cameras successfully tracked the Moon, allowing Rosetta's attitude to be automatically adjusted. Before and after closest approach, the navigation cameras also acquired a series of images of the Moon and Earth; these data will be downloaded early today for ground processing and are expected to be available by 8 March. In addition, other onboard instruments were switched on, including ALICE (ultraviolet imaging spectrometer), VIRTIS (visible and infrared mapping spectrometer) and MIRO (microwave instrument for the Rosetta orbiter), for calibration and general testing using the Earth and Moon as targets. The fly-by manoeuvre swung the three-tonne spacecraft around our planet and out towards Mars, where it will make a fly-by on 26 February 2007. Rosetta will return to Earth again in a series of four planet fly-bys (three times with Earth, once with Mars) before reaching Comet 67P/Churyumov-Gerasimenko in 2014, when it will enter orbit and deliver a lander, Philae, onto the surface. The fly-bys are necessary to accelerate the spacecraft so as to eventually match the velocity of the target comet. They are a fuel-saving way to boost speed using planetary gravity. Yesterday's fly-by came one year and two days after launch and highlights the valuable opportunities for instrument calibration and data gathering available during the mission's multi-year voyage. In just three months, on 4 July, Rosetta will be in a good position to observe and gather data during NASA's spectacular Deep Impact event, when the Deep Impact probe will hurl a 380 kg projectile into Comet Tempel 1, revealing data on the comet's internal structure. Certain of Rosetta’s unique instruments, such as its ultraviolet light instrument ALICE, should be able to make critical contributions to the American mission. About Rosetta Rosetta is the first mission designed to both orbit and land on a comet, and consists of an orbiter and a lander. The spacecraft carries 11 scientific experiments and will be the first mission to undertake long-term exploration of a comet at close quarters. After entering orbit around Comet 67P/Churyumov-Gerasimenko in 2014, the spacecraft will release a small lander onto the icy nucleus. Rosetta will orbit the comet for about a year as it heads towards the Sun, remaining in orbit for another half-year past perihelion (closest approach to the Sun). Comets hold essential information about the origin of our Solar System because they are the most primitive objects in the Solar System and their chemical composition has changed little since their formation. By orbiting and landing on Comet 67P/Churyumov-Gerasimenko, Rosetta will help us reconstruct the history of our own neighbourhood in space. Note for broadcasters: The ESA TV Service will transmit a TV exchange with images of the fly-by, together with science results/images from observations as far as available on 11 March. For further details : http://television.esa.int

Top