Sample records for command exchange xtce

  1. XTCE: XML Telemetry and Command Exchange Tutorial, XTCE Version 1

    NASA Technical Reports Server (NTRS)

    Rice, Kevin; Kizzort, Brad

    2008-01-01

    These presentation slides are a tutorial on XML Telemetry and Command Exchange (XTCE). The goal of XTCE is to provide an industry standard mechanism for describing telemetry and command streams (particularly from satellites.) it wiill lower cost and increase validation over traditional formats, and support exchange or native format.XCTE is designed to describe bit streams, that are typical of telemetry and command in the historic space domain.

  2. XTCE. XML Telemetry and Command Exchange Tutorial

    NASA Technical Reports Server (NTRS)

    Rice, Kevin; Kizzort, Brad; Simon, Jerry

    2010-01-01

    An XML Telemetry Command Exchange (XTCE) tutoral oriented towards packets or minor frames is shown. The contents include: 1) The Basics; 2) Describing Telemetry; 3) Describing the Telemetry Format; 4) Commanding; 5) Forgotten Elements; 6) Implementing XTCE; and 7) GovSat.

  3. XTCE GOVSAT Tool Suite 1.0

    NASA Technical Reports Server (NTRS)

    Rice, J. Kevin

    2013-01-01

    The XTCE GOVSAT software suite contains three tools: validation, search, and reporting. The Extensible Markup Language (XML) Telemetric and Command Exchange (XTCE) GOVSAT Tool Suite is written in Java for manipulating XTCE XML files. XTCE is a Consultative Committee for Space Data Systems (CCSDS) and Object Management Group (OMG) specification for describing the format and information in telemetry and command packet streams. These descriptions are files that are used to configure real-time telemetry and command systems for mission operations. XTCE s purpose is to exchange database information between different systems. XTCE GOVSAT consists of rules for narrowing the use of XTCE for missions. The Validation Tool is used to syntax check GOVSAT XML files. The Search Tool is used to search (i.e. command and telemetry mnemonics) the GOVSAT XML files and view the results. Finally, the Reporting Tool is used to create command and telemetry reports. These reports can be displayed or printed for use by the operations team.

  4. XTCE (XML Telemetric and Command Exchange) Standard Making It Work at NASA. Can It Work For You?

    NASA Technical Reports Server (NTRS)

    Munoz-Fernandez, Michela; Smith, Danford S.; Rice, James K.; Jones, Ronald A.

    2017-01-01

    The XML Telemetric and Command Exchange (XTCE) standard is intended as a way to describe telemetry and command databases to be exchanged across centers and space agencies. XTCE usage has the potential to lead to consolidation of the Mission Operations Center (MOC) Monitor and Control displays for mission cross-support, reducing equipment and configuration costs, as well as a decrease in the turnaround time for telemetry and command modifications during all the mission phases. The adoption of XTCE will reduce software maintenance costs by reducing the variation between our existing mission dictionaries. The main objective of this poster is to show how powerful XTCE is in terms of interoperability across centers and missions. We will provide results for a use case where two centers can use their local tools to process and display the same mission telemetry in their MOC independently of one another. In our use case we have first quantified the ability for XTCE to capture the telemetry definitions of the mission by use of our suite of support tools (Conversion, Validation, and Compliance measurement). The next step was to show processing and monitoring of the same telemetry in two mission centers. Once the database was converted to XTCE using our tool, the XTCE file became our primary database and was shared among the various tool chains through their XTCE importers and ultimately configured to ingest the telemetry stream and display or capture the telemetered information in similar ways.Summary results include the ability to take a real mission database and real mission telemetry and display them on various tools from two centers, as well as using commercially free COTS.

  5. XTCE and XML Database Evolution and Lessons from JWST, LandSat, and Constellation

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Kreistle, Steven; Fatig. Cirtos; Jones, Ronald

    2008-01-01

    The database organizations within three different NASA projects have advanced current practices by creating database synergy between the various spacecraft life cycle stakeholders and educating users in the benefits of the Consultative Committee for Space Data Systems (CCSDS) XML Telemetry and Command Exchange (XTCE) format. The combination of XML for managing program data and CCSDS XTCE for exchange is a robust approach that will meet all user requirements using Standards and Non proprietary tools. COTS tools for XTCEKML are very wide and varied. To combine together various low cost and free tools can be more expensive in the long run than choosing a more expensive COTS tool that meets all the needs. This was especially important when deploying in 32 remote sites with no need for licenses. A common mission XTCEKML format between dissimilar systems is possible and is not difficult. Command XMLKTCE is more complex than telemetry and the use of XTCEKML metadata to describe pages and scripts is needed due to the proprietary nature of most current ground systems. Other mission and science products such as spacecraft loads, science image catalogs, and mission operation procedures can all be described with XML as well to increase there flexibility as systems evolve and change. Figure 10 is an example of a spacecraft table load. The word is out and the XTCE community is growing, The f sXt TCE user group was held in October and in addition to ESAESOC, SC02000, and CNES identified several systems based on XTCE. The second XTCE user group is scheduled for March 10, 2008 with LDMC and others joining. As the experience with XTCE grows and the user community receives the promised benefits of using XTCE and XML the interest is growing fast.

  6. Beyond the New Architectures - Enabling Rapid System Configurations

    NASA Technical Reports Server (NTRS)

    Smith, Dan

    2009-01-01

    This presentation slide document reviews the attempts to integrate systems and create common standards for missions. A primary example is telemetry and command sets for satellites. The XML Telemetric and Command Exchange (XTCE) exists, but this is not easy to implement. There is a need for a new standard. The document proposes a method to achieve the standard, and the benefits of using a new standard,

  7. James Webb Space Telescope XML Database: From the Beginning to Today

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Fatig, Curtis C.

    2005-01-01

    The James Webb Space Telescope (JWST) Project has been defining, developing, and exercising the use of a common eXtensible Markup Language (XML) for the command and telemetry (C&T) database structure. JWST is the first large NASA space mission to use XML for databases. The JWST project started developing the concepts for the C&T database in 2002. The database will need to last at least 20 years since it will be used beginning with flight software development, continuing through Observatory integration and test (I&T) and through operations. Also, a database tool kit has been provided to the 18 various flight software development laboratories located in the United States, Europe, and Canada that allows the local users to create their own databases. Recently the JWST Project has been working with the Jet Propulsion Laboratory (JPL) and Object Management Group (OMG) XML Telemetry and Command Exchange (XTCE) personnel to provide all the information needed by JWST and JPL for exchanging database information using a XML standard structure. The lack of standardization requires custom ingest scripts for each ground system segment, increasing the cost of the total system. Providing a non-proprietary standard of the telemetry and command database definition formation will allow dissimilar systems to communicate without the need for expensive mission specific database tools and testing of the systems after the database translation. The various ground system components that would benefit from a standardized database are the telemetry and command systems, archives, simulators, and trending tools. JWST has exchanged the XML database with the Eclipse, EPOCH, ASIST ground systems, Portable spacecraft simulator (PSS), a front-end system, and Integrated Trending and Plotting System (ITPS) successfully. This paper will discuss how JWST decided to use XML, the barriers to a new concept, experiences utilizing the XML structure, exchanging databases with other users, and issues that have been experienced in creating databases for the C&T system.

  8. Command Generation and Control of Momentum Exchange Electrodynamic Reboost Tethered Satellite

    NASA Technical Reports Server (NTRS)

    Robertson, Michael J.

    2005-01-01

    The research completed for this NASA Graduate Student Research Program Fellowship sought to enhance the current state-of-the-art dynamic models and control laws for Momentum Exchange Electrodynamic Reboost satellite systems by utilizing command generation, specifically Input Shaping. The precise control of tethered spacecraft with flexible appendages is extremely difficult. The complexity is magnified many times when the satellite must interact with other satellites as in a momentum exchange via a tether. The Momentum Exchange Electronic Reboost Tether (MXER) concept encapsulates all of these challenging tasks [l]. Input Shaping is a command generation technique that allows flexible spacecraft to move without inducing residual vibration [2], limit transient deflection [3] and utilize fuel-efficient actuation [4]. Input shaping is implemented by convolving a sequence of impulses, known as the input shaper, with a desired system command to produce a shaped input that is then used to drive the system. This process is demonstrated in Figure 1. The shaped command is then use to drive the system without residual vibration while meeting many other performance specifications. The completed work developed tether control algorithms for retrieval. A simple model of the tether response has been developed and command shaping was implemented to minimize unwanted dynamics. A model of a flexible electrodynamic tether has been developed to investigate the tether s response during reboost. Command shaping techniques have been developed to eliminate the tether oscillations and reduce the tether s deflection to pre-specified levels during reboost. Additionally, a model for the spin-up of a tethered system was developed. This model was used in determining the parameters for optimization the resulting angular velocity.

  9. UAV Data Exchange Test Bed for At-Sea and Ashore Information Systems

    DTIC Science & Technology

    2014-12-02

    29 3.2 Visualization using NASA World Wind . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Visualization using Quantum GIS...Data Server and the Global Positioning Warehouse 37 4.1 Naval Position Repository Installation . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2...4.4 Data Exchange between CSD and NPR . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Maritime Tactical Command and Control 43 5.1 Global Command

  10. The Fabric of Air Warfare; Doctrine, Operational Experience, and Integration of Strategic and Tactical Air Power From World War I Through World War II

    DTIC Science & Technology

    1991-04-01

    African Air Forces, Middle East Air Command, based in Cairo, and RAP Malta Air Command. This, in effect, was a �theater� command in a larger sense, for...Force, under the command of AVM Sir Hugh Lloyd, and absorbed Malta Air Command and US XII Fighter Command, then under Pete Quesada, later commander...trained pilots, that exchange ratio steadily worsened for the enemy. In fact, the 5th Air Force could boast the two highest scoring American aces early

  11. STS-84 and Mir 23 crewmembers exchange gifts during welcome ceremony after docking

    NASA Image and Video Library

    1997-05-17

    STS084-376-005 (15-24 May 1997) --- Onboard the Core Module of Russia's Mir Space Station, the American Space Shuttle commander exchanges gifts with the Mir-23 crew. Astronaut Charles J. Precourt has just handed two picture albums, documenting several months of interface between the Americans and Russians, to cosmonauts Aleksandr I. Lazutkin (left), flight engineer; and Vasili Tsibliyev, commander.

  12. Defense Data Network/TOPS-20 Tutorial. An Interative Computer Program.

    DTIC Science & Technology

    1985-12-01

    33 XI. ELECTRONIC MAIL HOST ( EMH )-------------------------- 34 XII. EMACS...contents of text buffer to a file X EXCHANGE , used to search for and replace text Z ZAP, puts your entire file into the print buffer 23 - -° SWITCH...prompt USC-ISIE.ARPA> Sample foreign host command level prompt FTP COMMAND LEVEL COMMANDS COMMAND USE(S) FTP Invokes the FTP protocol CONNECT Connects

  13. 32 CFR 643.112 - Army exchange activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Army exchange activities. 643.112 Section 643.112 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE Additional Authority of Commanders § 643.112 Army exchange activities. Use of space and structures by the Army Exchange and its...

  14. A Message Exchange Protocol in Command and Control Systems Integration, using the JC3IEDM

    DTIC Science & Technology

    2014-06-01

    19TH International Command and Control Research and Technology Symposium C2 Agility: Lessons Learned from Research and Operations. A Message...distribution unlimited 13. SUPPLEMENTARY NOTES Presented at the 18th International Command & Control Research & Technology Symposium (ICCRTS) held 16...presents approaches of integration, compares their technologies , points out their advantages, proposes requirements, and provides the design of a protocol

  15. Performance Comparison of Relational and Native-XML Databases using the Semantics of the Land Command and Control Information Exchange Data Model (LC2IEDM)

    DTIC Science & Technology

    2005-09-01

    aid this thesis would not have come to existence. First, we would like to thank Eric Chaum for his enthusiasm and recommendation for doing this...by David Hina [HINA 00], discusses the use of available Commercial-Off-The-Shelf (COTS) XML technology to provide for the exchange of data between...air and maritime components and therefore forms the basis of a joint command and control data model [ CHAUM 04]. The data model is one of the two

  16. Expedition 5 and STS-112 CDRs poses for portrait in Destiny module

    NASA Image and Video Library

    2002-10-13

    STS112-329-015 (13 October 2002) --- Cosmonaut Valery G. Korzun (left), Expedition Five mission commander, and astronaut Jeffrey S. Ashby, STS-112 mission commander, exchange greetings in the Destiny laboratory on the International Space Station (ISS). Korzun represents Rosaviakosmos.

  17. Standardization of XML Database Exchanges and the James Webb Space Telescope Experience

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Detter, Ryan; Jones, Ron; Fatig, Curtis C.

    2007-01-01

    Personnel from the National Aeronautics and Space Administration (NASA) James Webb Space Telescope (JWST) Project have been working with various standard communities such the Object Management Group (OMG) and the Consultative Committee for Space Data Systems (CCSDS) to assist in the definition of a common extensible Markup Language (XML) for database exchange format. The CCSDS and OMG standards are intended for the exchange of core command and telemetry information, not for all database information needed to exercise a NASA space mission. The mission-specific database, containing all the information needed for a space mission, is translated from/to the standard using a translator. The standard is meant to provide a system that encompasses 90% of the information needed for command and telemetry processing. This paper will discuss standardization of the XML database exchange format, tools used, and the JWST experience, as well as future work with XML standard groups both commercial and government.

  18. Next Generation Flight Displays Using HTML5

    NASA Technical Reports Server (NTRS)

    Greenwood, Brian

    2016-01-01

    The Human Integrated Vehicles and Environments (HIVE) lab at Johnson Space Center (JSC) is focused on bringing together inter-disciplinary talent to design and integrate innovative human interface technologies for next generation manned spacecraft. As part of this objective, my summer internship project centered on an ongoing investigation in to building flight displays using the HTML5 standard. Specifically, the goals of my project were to build and demo "flight-like" crew and wearable displays as well as create a webserver for live systems being developed by the Advanced Exploration Systems (AES) program. In parallel to my project, a LabVIEW application, called a display server, was created by the HIVE that uses an XTCE (XML (Extensible Markup Language) Telemetry and Command Exchange) parser and CCSDS (Consultative Committee for Space Data System) space packet decoder to translate telemetry items sent by the CFS (Core Flight Software) over User Datagram Protocol (UDP). It was the webserver's job to receive these UDP messages and send them to the displays. To accomplish this functionality, I utilized Node.js and the accompanying Express framework. On the display side, I was responsible for creating the power system (AMPS) displays. I did this by using HTML5, CSS and JavaScript to create web pages that could update and change dynamically based on the data they received from the webserver. At this point, I have not started on the commanding, being able to send back to the CFS, portion of the displays but hope to have this functionality working by the completion of my internship. I also created a way to test the webserver's functionality without the display server by making a JavaScript application that read in a comma-separate values (CSV) file and converted it to XML which was then sent over UDP. One of the major requirements of my project was to build everything using as little preexisting code as possible, which I accomplished by only using a handful of JavaScript libraries. As a side project, I created a model of the HIVE lab and Building 29 using SketchUp. I obtained the floorplans of the building from the JSC Geographic Information Systems (GIS), which were computer-aided design (CAD) files, and imported them into SketchUp. I then took those floorplans and created a 3D model of the building from them. Working in conjunction with the Hybrid Reality lab in Building 32, the SketchUp model was imported into Unreal Engine for use with the HTC Vive. Using the Vive, I was able to interact with the model I created in virtual reality (VR). The purpose of this side project was to be able to visualize potential lab layouts and mockup designs as they are in development in order to finalize design decisions. Pending approval, the model that I created will be used in the Build-As-You-Test: Can Hybrid Reality Improve the SE/HSI Design Process project in the fall. Getting the opportunity to work at NASA has been one of the most memorable experiences of my life. Over the course of my internship, I improved my programming and web development abilities substantially. I will take all the skills and experiences I have had while at NASA back to school with me in the fall and hope to pursue a career in the aerospace industry after graduating in the spring.

  19. Expedition 38 Crewmembers during Transfer of Command Ceremony

    NASA Image and Video Library

    2014-03-09

    ISS038-E-068899 (9 March 2014) --- The new commander of the current crew on the International Space Station (Expedition 39) and the Expedition 38/39 flight engineers exchange handshakes inside the Kibo laboratory. Their celebration may very well be a follow-up gesture following the transfer of command ceremony and a symbolic farewell to the Expedition 38 crew members (out of frame) who are on the eve of their departure from the orbital outpost. Expedition 39 Commander Koichi Wakata (center) of the Japanese Aerospace Exploration Agency (JAXA) is joined here by Flight Engineers Rick Mastracchio (right) of NASA and cosmonaut Mikhail Tyurin of the Russian Federal Space Agency (Roscosmos).

  20. Development of an Integrated Package of Physics Models for Scene Simulation Studies to Support Smart Weapons Design Studies

    DTIC Science & Technology

    1992-03-17

    No. 1 Approved for Public Release; Distribution Unlimited PHILLIPS LABORATORY AIR FORCE SYSTEMS COMMAND HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731...the SWOE thermal models and the design of a new Command Interface System and User Interface System . 14. SUBJECT TERMS 15. NUMBER OF PAGES 116 BTI/SWOE...to the 3-D Tree Model 24 4.2.1 Operation Via the SWOE Command Interface System 26 4.2.2 Addition of Radiation Exchange to the Environment 26 4.2.3

  1. Friendly Neighborhood Computer Project. Extension of the IBM NJE network to DEC VAX computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raffenetti, R.C.; Bertoncini, P.J.; Engert, D.E.

    1984-07-01

    This manual is divided into six chapters. The first is an overview of the VAX NJE emulator system and describes what can be done with the VAX NJE emulator software. The second chapter describes the commands that users of the VAX systems will use. Each command description includes the format of the command, a list of valid options and parameters and their meanings, and several short examples of command use. The third chapter describes the commands and capabilities for sending general, sequential files from and to VAX VMS nodes. The fourth chapter describes how to transmit data to a VAXmore » from other computer systems on the network. The fifth chapter explains how to exchange electronic mail with IBM CMS users and with users of other VAX VMS systems connected by NJE communications. The sixth chapter describes operator procedures and the additional commands operators may use.« less

  2. A design proposal of a certain missile tactical command system based on Beidou satellite communication and GPS positioning techniques

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Hao, Yongsheng; Miao, Jian; Zhang, Jianmao

    2007-11-01

    This paper introduced a design proposal of tactical command system that applied to a kind of anti-tank missile carriers. The tactical command system was made up of embedded computer system based on PC104 bus, Linux operating system, digital military map, Beidou satellite communication equipments and GPS positioning equipments. The geographic coordinates was measured by the GPS receiver, the positioning data, commands and information were transmitted real-time between tactical command systems, tactical command systems and command center, by the Beidou satellite communication systems. The Beidou satellite communication equipments and GPS positioning equipments were integrated to an independent module, exchanging data with embedded computer through RS232 serial ports and USB ports. The decision support system software based on information fusion, calculates positioning data, geography information and battle field information synthetically, shows the position of allies and the position of enemy on the military map, and assesses the various threats of different enemy objects, educes a situation assessment and threat assessment.

  3. Foreign Personnel Exchange Programs: A Supporting Effort in Building Partnership Capacity

    DTIC Science & Technology

    2008-01-01

    New Zealand Defence Force Relating to the Conduct ofExercise Long Look, (obtained from Daryl J. Cambell , 16 January, 2008). 45. U.S. Department...Daryl J. Cambell , 16 January, 2008). Commandant of the Marine Corps. 1STHALF CY 2008 A VIATION PERSONNEL EXCHANGE PROGRAM (PEP) AND lINTER-SERVICE

  4. Burbank works at the MSG

    NASA Image and Video Library

    2012-01-10

    ISS030-E-030125 (10 Jan. 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, works on the Selectable Optical Diagnostics Instrument C Colloid (SODI-COLLOID) hardware in the Microgravity Science Glovebox in the International Space Station?s Destiny laboratory. Burbank is supporting ground-commanded operations by exchanging out some disks. COLLOID is part of ESA?s triple experiment series for advancement in liquids, diffusion measurements in petroleum reservoirs and the study on growth and properties of advanced photonic materials within colloidal solutions. The commander is currently joined by five other Expedition 30 astronauts and cosmonauts, all flight engineers, aboard the orbital outpost.

  5. Cosmonauts Solovyev and Dezhurov exchange information on Mir

    NASA Image and Video Library

    1995-07-10

    STS071-118-007 (27 June - 7 July 1995) --- Onboard the Russia?s Mir Space Station Mir Base Block, cosmonauts Anatoly Y. Solovyev (left) and Vladimir N. Dezhurov, Mir 19 and 18 commanders, respectively, exchange information about their research tasks. The two represent a change of guard aboard Mir, as Dezhurov prepares to come back to Earth with the STS-71 crew aboard Space Shuttle Atlantis. Nikolai M. Budarin and Gennadiy M. Strekalov - cosmonaut/flight engineers making the same exchange -- are out of frame.

  6. 32 CFR 507.6 - Authority to manufacture.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... companies who have manufacturing capability and agree to manufacture heraldic items according to applicable... to the Army and Air Force Exchange Service and, upon request, to Army and Air Force commanders. ...

  7. 32 CFR 507.6 - Authority to manufacture.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... companies who have manufacturing capability and agree to manufacture heraldic items according to applicable... to the Army and Air Force Exchange Service and, upon request, to Army and Air Force commanders. ...

  8. Defense Energy Support Center Fact Book, Fiscal Year 2001, Twenty-Fourth Edition

    DTIC Science & Technology

    2001-01-01

    PMA-272). He was assigned to the U.S. European Command in Stuttgart, Germany from 1991 to 1994, serving in the Joint Petroleum Office as the Staff...Air Force Base, Florida from July 1990 to June 1993. He then served as Logistics Officer (G4) at 3rd Corps Support Command in Wiesbaden, Germany from...TURNOVER TO DESC FUEL SALES TO NORWAY AND EXCHANGES OF PRODUCT WITH GERMANY WILL LEAD TO TERMINATION OF AGREEMENTS WITH NORWAY AND DENMARK IN 2002 SOURCE

  9. Using T2-Exchange from Ln3+DOTA-Based Chelates for Contrast-Enhanced Molecular Imaging of Prostate Cancer with MRI

    DTIC Science & Technology

    2016-04-01

    group meetings to help with collaboration among the group members. He also gave two conference presentations (see Section 6) about this research ...Dallas Dallas, TX 75390-8568 REPORT DATE: April 2016 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick...SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Physical device safety is typically implemented locally using embedded controllers, while operations safety is primarily performed in control centers. Safe operations can be enhanced by correct design of device-level control algorithms, and protocols, procedures and operator training at the control-room level, but all can fail. Moreover, these elements exchange data and issue commands via vulnerable communication layers. In order to secure these gaps and enhance operational safety, we believe monitoring of command sequences must be combined with an awareness of physical device limitations and automata models that capture safety mechanisms. One way of doing this is by leveraging specification-based intrusionmore » detection to monitor for physical constraint violations. The method can also verify that physical infrastructure state is consistent with monitoring information and control commands exchanged between field devices and control centers. This additional security layer enhances protection from both outsider attacks and insider mistakes. We implemented specification-based SCADA command analyzers using physical constraint algorithms directly in the Bro framework and Broccoli APIs for three separate scenarios: a water heater, an automated distribution system, and an over-current protection scheme. To accomplish this, we added low-level analyzers capable of examining control system-specific protocol packets for both Modbus TCP and DNP3, and also higher-level analyzers able to interpret device command and data streams within the context of each device's physical capabilities and present operational state. Thus the software that we are making available includes the Bro/Broccoli scripts for these three scenarios, as well as simulators, written in C, of those scenarios that generate sample traffic that is monitored by the Bro/Broccoli scripts. In addition, we have also implemented systems to directly pull cyber-physical information from the OSIsoft PI historian system. We have included the Python scripts used to perform that monitoring.« less

  11. Battle Management Language Transformations

    DTIC Science & Technology

    2006-10-01

    Simulation (M&S) systems. Battlefield Management Language (BML) is being developed as a common representation of military mission suitable for automated ... processing . Within NATO the task group MSG-048 Coalition BML is defining a BML using the Joint Command, Control and Consultation Information Exchange

  12. Operational Leadership in Kosovo

    DTIC Science & Technology

    2004-02-09

    ARRC) LGEN Michael Jackson Allied Air Forces North (COMAIRNORTH) GEN John Jumper Allied Naval Forces North (COMNAVNORTH) U.K. Allied Naval Forces South... Michael Jackson reportedly told the US commander (Clark) during one heated exchange. When General Jackson refused, General Clark asked Admiral James

  13. Robotics control using isolated word recognition of voice input

    NASA Technical Reports Server (NTRS)

    Weiner, J. M.

    1977-01-01

    A speech input/output system is presented that can be used to communicate with a task oriented system. Human speech commands and synthesized voice output extend conventional information exchange capabilities between man and machine by utilizing audio input and output channels. The speech input facility is comprised of a hardware feature extractor and a microprocessor implemented isolated word or phrase recognition system. The recognizer offers a medium sized (100 commands), syntactically constrained vocabulary, and exhibits close to real time performance. The major portion of the recognition processing required is accomplished through software, minimizing the complexity of the hardware feature extractor.

  14. 32 CFR 235.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... intended or designed to elicit a sexual response. Material. An audio recording, a film or video recording... Service, the Navy Exchange Service Command, the Navy Resale and Services Support Office, Marine Corps... depiction or description of nudity, including sexual or excretory activities or organs, in a lascivious way. ...

  15. 32 CFR 235.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... intended or designed to elicit a sexual response. Material. An audio recording, a film or video recording... Service, the Navy Exchange Service Command, the Navy Resale and Services Support Office, Marine Corps... depiction or description of nudity, including sexual or excretory activities or organs, in a lascivious way. ...

  16. 32 CFR 235.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... intended or designed to elicit a sexual response. Material. An audio recording, a film or video recording... Service, the Navy Exchange Service Command, the Navy Resale and Services Support Office, Marine Corps... depiction or description of nudity, including sexual or excretory activities or organs, in a lascivious way. ...

  17. 32 CFR 235.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... intended or designed to elicit a sexual response. Material. An audio recording, a film or video recording... Service, the Navy Exchange Service Command, the Navy Resale and Services Support Office, Marine Corps... depiction or description of nudity, including sexual or excretory activities or organs, in a lascivious way. ...

  18. Improving community health through marketing exchanges: A participatory action research study on water, sanitation, and hygiene in three Melanesian countries.

    PubMed

    Barrington, D J; Sridharan, S; Saunders, S G; Souter, R T; Bartram, J; Shields, K F; Meo, S; Kearton, A; Hughes, R K

    2016-12-01

    Diseases related to poor water, sanitation and hygiene (WaSH) are major causes of mortality and morbidity. While pursuing marketing approaches to WaSH to improve health outcomes is often narrowly associated with monetary exchange, marketing theory recognises four broad marketing exchange archetypes: market-based, non-market-based, command-based and culturally determined. This diversity reflects the need for parameters broader than monetary exchange when improving WaSH. This study applied a participatory action research process to investigate how impoverished communities in Melanesian urban and peri-urban informal settlements attempt to meet their WaSH needs through marketing exchange. Exchanges of all four archetypes were present, often in combination. Motivations for participating in the marketing exchanges were based on social relationships alongside WaSH needs, health aspirations and financial circumstances. By leveraging these motivations and pre-existing, self-determined marketing exchanges, WaSH practitioners may be able to foster WaSH marketing exchanges consistent with local context and capabilities, in turn improving community physical, mental and social health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Understanding and Improving Knowledge Transactions in Command and Control

    DTIC Science & Technology

    2003-06-01

    implications for the development of tools to facilitate efficient and effectiv and knowledge exchange. Cognitive task analysis (CTA) in support...makers]?” *quotes taken from K-web cognitive task analysis , Global 2000 and Global 2001 War Games, interviews with Carl Vinson K-Web users following

  20. 32 CFR Appendix C to Part 247 - Mailing of DoD Newspapers, Magazines, CE Guides, and Installation Maps; Sales and Distribution of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Government Agencies, Members of Congress, libraries, hospitals, schools, and depositories. f. Mailing of an... by the commander, such as the foyers of open messes or exchanges. They will be placed only in stands...

  1. View of special 'gift bag' of exchange items to be carried during ASTP

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A close-up view of the special 'gift bag' in which several exchange/gift items will be carried aboard the Apollo Command Module during the joint U.S.-U.S.S.R. Apollo Soyuz Test Project (ASTP) mission. Some of these items are seen here alongside the bag. They are the sectionized ASTP Commemorative Plaque, ten 8X12 inch American flags, 8.07X16.14 inch (205mm x 410mm) Soviet Union flag, a special box of white spruce tree seeds, and the ASTP Certification to authorize the ASTP docking. The gifts will be presented and the exchange made while the Apollo and Soyuz spacecraft are docked in Earth orbit.

  2. Knowledge Mobilization and Educational Research: Politics, Languages and Responsibilities

    ERIC Educational Resources Information Center

    Fenwick, Tara, Ed.; Farrell, Lesley, Ed.

    2011-01-01

    How can educational research have more impact? What processes of knowledge exchange are most effective for increasing the uses of research results? How can research-produced knowledge be better "mobilized" among users such as practicing educators, policy makers, and the public communities? These sorts of questions are commanding urgent…

  3. Modeling the Creation of Actionable Knowledge within a Joint Task Force Command System (Project GNOSIS)

    DTIC Science & Technology

    2006-08-01

    Force Research Laboratory This report is published in the interest of scientific and technical information exchange, and its publication does not...SYSTEM SJ SYSTEM INTERACTIONS AND INFLUENCES SOCIAL ORGANIZATIONAL SYSTEM SYSTEM I Multiple actors egaglng In comunities of Commrunitles of Interest

  4. Foale works at the MSG / ESEM in the U.S. Lab during Expedition 8

    NASA Image and Video Library

    2004-04-05

    ISS008-E-20622 (5 April 2004) --- Astronaut C. Michael Foale, Expedition 8 commander and NASA ISS science officer, conducts an inspection of the Microgravity Science Glovebox (MSG) / Exchangeable Standard Electronic Module (ESEM) in the Destiny laboratory of the International Space Station (ISS).

  5. Foale works at the MSG / ESEM in the U.S. Lab during Expedition 8

    NASA Image and Video Library

    2004-04-05

    ISS008-E-20632 (5 April 2004) --- Astronaut C. Michael Foale, Expedition 8 commander and NASA ISS science officer, conducts an inspection of the Microgravity Science Glovebox (MSG) / Exchangeable Standard Electronic Module (ESEM) in the Destiny laboratory of the International Space Station (ISS).

  6. Systems Analysis of Alternative Architectures for Riverine Warfare in 2010

    DTIC Science & Technology

    2006-12-01

    propose system of systems improvements for the RF in 2010. With the RF currently working to establish a command structure, train and equip its forces...opposing force. Measures of performance such as time to first enemy detection and loss exchange ratio were collected from MANA. A detailed statistical

  7. STS-79 Commander Readdy, Pilot Wilcutt and MS Jay Apt at SLF

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 Commander William F. Readdy (left), Pilot Terrence W. Wilcutt and Mission Specialist Jay Apt chat after the six-member flight crew arrived at KSC's Shuttle Landing Facility. The astronauts' return to KSC coincides with the beginning of a three-day launch countdown that will culminate in the Sept. 16 liftoff of the Space Shuttle Atlantis on Mission STS-79. The 79th Shuttle flight will be highlighted by the fourth docking between the U.S. Shuttle and Russian Space Station Mir and the first U.S. crew exchange on the station. Launch from Pad 39A is set for about 4:54 a.m. EDT.

  8. Erythropoietin-Mediated Regulation of Central Respiratory Command.

    PubMed

    Seaborn, Tommy; Caravagna, Céline

    2017-01-01

    Erythropoietin (Epo) is a cytokine expressed throughout the body, including in the central nervous system where it can act as a breathing modulator in the central respiratory network. In vitro, Epo allows maintaining the activity of respiratory neurons during acute hypoxia, resulting in inhibition of the hypoxia-induced rhythm depression. In vivo, Epo action on the central respiratory command results in enhancement of the acute hypoxic ventilatory response, allowing a better oxygenation of the body by improvement of gases exchanges in the lungs. Importantly, this effect of Epo is age-dependent, being observed at adulthood and at both early and late postnatal ages, but not at middle postnatal ages, when an important setup of the central respiratory command occurs. Epo regulation of the central respiratory command involves at least two intracellular signaling pathways, PI3K-Akt and MEK-ERK pathways. However, the exact mechanism underlying the action of Epo on the central respiratory control remains to be deciphered, as well as the exact cell types and nuclei involved in this control. Epo-mediated effect on the central respiratory command is regulated by several factors, including hypoxia, sex hormones, and an endogen antagonist. Although more knowledge is needed before reaching the clinical trial step, Epo seems to be a promising therapeutic treatment, notably against newborn breathing disorders. © 2017 Elsevier Inc. All rights reserved.

  9. Exploration and Evaluation of Nanometer Low-power Multi-core VLSI Computer Architectures

    DTIC Science & Technology

    2015-03-01

    ICC, the Milkway database was created using the command: milkyway –galaxy –nogui –tcl –log memory.log one.tcl As stated previously, it is...EDA tools. Typically, Synopsys® tools use Milkway databases, whereas, Cadence Design System® use Layout Exchange Format (LEF) formats. To help

  10. 17 CFR 3.12 - Registration of associated persons of futures commission merchants, retail foreign exchange...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the information supplied by the applicant in response to the questions on Form 8-R which relate to the... sponsor's knowledge, information, and belief, all of the publicly available information supplied by the...) The chief operating officer, general partner or other person in the supervisory chain-of-command...

  11. 17 CFR 3.12 - Registration of associated persons of futures commission merchants, retail foreign exchange...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the information supplied by the applicant in response to the questions on Form 8-R which relate to the... sponsor's knowledge, information, and belief, all of the publicly available information supplied by the...) The chief operating officer, general partner or other person in the supervisory chain-of-command...

  12. Forrester is presented with a medal by Voss and Horowitz in Node 1

    NASA Image and Video Library

    2001-08-01

    ISS003-E-6193 (August 2001) --- Astronauts James S. Voss (left), Expedition Two flight engineer, Patrick G. Forrester, STS-105 mission specialist, and Scott J. Horowitz, mission commander, exchange greetings in the Unity node on the International Space Station (ISS). This image was taken with a digital still camera.

  13. Vibrational Spectroscopic Studies on the Formation of Ion-exchangeable Titania Nanotubes

    NASA Astrophysics Data System (ADS)

    Hodos, Mária; Haspel, Henrik; Horváth, Endre; Kukovecz, Ákos; Kónya, Zoltán; Kiricsi, Imre

    2005-09-01

    Ion-exchangeable titanium-oxide nanotubes have commanded considerable interest from the materials science community in the past five years. Synthesized under hydrothermal conditions from TiO2, typical nanotubes are 150-200 nm long and 8-20 nm wide. High resolution TEM images revealed that unlike multiwall carbon nanotubes which are made of coaxial single-wall nanotubes, the titania tubes possess a spiral cross-section. An interesting feature of the titania tubes is their considerable ion-exchange capacity which could be utilized e.g. for enhancing their photocatalytic activity by doping the titania tubes with CdS nanoparticles. In this contribution we present a comprehensive TEM, FT-Raman and FT-farIR characterization study of the formation process.

  14. DYNACLIPS (DYNAmic CLIPS): A dynamic knowledge exchange tool for intelligent agents

    NASA Technical Reports Server (NTRS)

    Cengeloglu, Yilmaz; Khajenoori, Soheil; Linton, Darrell

    1994-01-01

    In a dynamic environment, intelligent agents must be responsive to unanticipated conditions. When such conditions occur, an intelligent agent may have to stop a previously planned and scheduled course of actions and replan, reschedule, start new activities and initiate a new problem solving process to successfully respond to the new conditions. Problems occur when an intelligent agent does not have enough knowledge to properly respond to the new situation. DYNACLIPS is an implementation of a framework for dynamic knowledge exchange among intelligent agents. Each intelligent agent is a CLIPS shell and runs a separate process under SunOS operating system. Intelligent agents can exchange facts, rules, and CLIPS commands at run time. Knowledge exchange among intelligent agents at run times does not effect execution of either sender and receiver intelligent agent. Intelligent agents can keep the knowledge temporarily or permanently. In other words, knowledge exchange among intelligent agents would allow for a form of learning to be accomplished.

  15. 17 CFR 3.12 - Registration of associated persons of futures commission merchants, retail foreign exchange...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... information supplied by the applicant in response to the questions on Form 8-R which relate to the applicant's... knowledge, information, and belief, all of the publicly available information supplied by the applicant on... partner or other person in the supervisory chain-of-command, provided the futures commission merchant...

  16. An Exploratory Study of Individual and Organizational Variable Interrelationships in Research and Development Organizations within Air Force Systems Command.

    DTIC Science & Technology

    1986-09-01

    31:493). Farace defines communication as "the exchange of symbols 6 that are commonly shared by the individuals involved, and which evoke 13 Ip...1981). r 9. Evans, C. George. Supervising R&D Personnel. New York: American Management Association, 1969. 10. Farace , Richard V. and others

  17. Expedition 5 Crew Interviews: Valery Korzun, Commander

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 5 Commander Valery Kozun is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission and what his responsibilities will be as commander, what the crew exchange will be like (the Expedition 5 crew will replace the Expedition 4 crew on the International Space Station (ISS)), the daily life on an extended stay mission, the loading operations that will take place, the experiments he will be conducting on board, and the planned extravehicular activities (EVAs) scheduled for the mission. Kozun discusses the EVAs in greater detail and explains the significance of the Mobile Base System and the Crew Equipment Translation Aid (CETA) cart for the ISS. He also explains at some length the science experiments which will be conducted on board by the Expedition 5 crew members. Korzun also touches on how his previous space experience on Mir (including dealing with a very serious fire) will benefit the Expedition 5 mission.

  18. STS-113 Crew Interviews: Jim Wetherbee, Commander

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-113 Commander Jim Wetherbee is seen during this preflight interview where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Wetherbee outlines his role in the mission, what his responsibilities will be, what the crew exchange will be like (transferring the Expedition 6 crew in place of the Expedition 5 crew on the International Space Station (ISS)) and what the importance of the primary payload (the P1 truss) will be. He also provides a detailed account of the three planned extravehicular activities (EVAs) and additional transfer duties. He ends by offering his thoughts on the success of the ISS as the second anniversary of continuous human occupation of the ISS approaches.

  19. 46 CFR 67.167 - Requirement for exchange of Certificate of Documentation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...; (5) The hailing port of the vessel changes; or (6) The vessel is placed under the command of a person... this section, if the vessel is not a sea, or upon the vessel's next arrival in port anywhere in the world if the vessel is at sea, when: (1) The gross or net tonnages or dimensions of the vessel change...

  20. Defining Virtual Interactions: A Taxonomy for Researchers and Practitioners

    DTIC Science & Technology

    1999-11-01

    Engineering and Management of the Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the...information technology and produce the maximum benefits for all virtual components involved. Vlll DEFINING VIRTUAL INTERACTIONS: A TAXONOMY FOR...allow the human factor to maximize information exchange and provide high quality products to intelligence consumers. Applicability of this research In

  1. Designing a Common Interchange Format for Unit Data Using the Command and Control Information Exchange Data Model (C2IEDM) and XSLT

    DTIC Science & Technology

    2004-09-01

    Required> </Equipment> <Equipment code="L44680"> <Description>LAUNCHER GRENADE SMOKE: SCREENING RP M250 </Description> <Required...EquipmentPiecesOnHand> </UnitEquipment> <UnitEquipment> <EquipmentDescription>LAUNCHER GRENADE SMOKE: SCREENING RP M250 </EquipmentDescription

  2. Preschool Children Pay Attention to Their Addressees: Effects of Gender Composition on Peer Disputes.

    ERIC Educational Resources Information Center

    Killen, Melanie; Naigles, Letitia R.

    1995-01-01

    Examines whether preschool children take the gender of the addressee into account when disputing during peer exchanges. Finds that both boys and girls modified their language use in mixed-sex groups, with boys using fewer commands when more girls were present, and girls using more contradictions in mixed-sex than same-sex groups. (SR)

  3. "Science Capital": A Conceptual, Methodological, and Empirical Argument for Extending Bourdieusian Notions of Capital beyond the Arts

    ERIC Educational Resources Information Center

    Archer, Louise; Dawson, Emily; DeWitt, Jennifer; Seakins, Amy; Wong, Billy

    2015-01-01

    This paper sets out an argument and approach for moving beyond a primarily arts-based conceptualization of cultural capital, as has been the tendency within Bourdieusian approaches to date. We advance the notion that, in contemporary society, scientific forms of cultural and social capital can command a high symbolic and exchange value. Our…

  4. Applying a World-City Network Approach to Globalizing Higher Education: Conceptualization, Data Collection and the Lists of World Cities

    ERIC Educational Resources Information Center

    Chow, Alice S. Y.; Loo, Becky P. Y.

    2015-01-01

    Both the commercial and education sectors experience an increase in inter-city exchanges in the forms of goods, capital, commands, people and information/knowledge under globalization. The quantification of flows and structural relations among cities in globalizing education are under-researched compared to the well-established world/global cities…

  5. Designing Collaboration Tools to Optimize Distributed Battlespace Synchronization

    DTIC Science & Technology

    2009-08-01

    Collective Efficacy Self-efficacy represents the belief that one possesses the ability to meet the demands of a specific situation ( Bandura , 1997). These...military teams ( Alberts & Hayes, 2003). Research has shown that high- performing teams tend to optimize information exchange (Aubert & Kelsey, 2003...17    REFERENCES Alberts , D.S., & Hayes, R.E. (2003). Power to the edge: Command control in the

  6. Ship to Shore Data Communication and Prioritization

    DTIC Science & Technology

    2011-12-01

    First Out FTP File Transfer Protocol GCCS-M Global Command and Control System Maritime HAIPE High Assurance Internet Protocol Encryptor HTTP Hypertext...Transfer Protocol (world wide web protocol ) IBS Integrated Bar Code System IDEF0 Integration Definition IER Information Exchange Requirements...INTEL Intelligence IP Internet Protocol IPT Integrated Product Team ISEA In-Service Engineering Agent ISNS Integrated Shipboard Network System IT

  7. Naval Sea Systems Command Acquisition Strategy Guide v1.0

    DTIC Science & Technology

    2010-04-01

    necessary to perform the contract. 2. Program context in overall prime system and major subsystem level industry sector and market . 3...organizations, and with industry through maximum use of alerts and the Government- Industry Data Exchange Program (GIDEP). 6.9 Military Equipment Valuation...simplified acquisition threshold. (2) The head of an agency shall use the results of market research to determine whether there are commercial

  8. Company and Below Command and Control Information Exchange Study

    DTIC Science & Technology

    2007-10-22

    between text and graphical forms of visual communication as well. With limited exceptions, verbal/auditory communication remains the best choice...Text and graphics. At the squad level and above visual communication system is best for complex information and/or less time critical information...Battalion o 13.2.2 Request Casualty Evacuation (CASEVAC) from Battalion Best: A mixed auditory/ visual communication would be ideal for a CASEVAC

  9. Command and Control for Joint Air Operations

    DTIC Science & Technology

    2010-01-12

    systems, to include collaborative air planning tools such as the theater battle management core system ( TBMCS ). Operational level air planning occurs in...sight communications and data exchange equipment in order to respond to joint force requirements. For example, the TBMCS is often used. The use of ATO...generation and dissemination software portions of TBMCS has been standardized. This ATO feature allows the JAOC to be interoperable with other

  10. Study of Tools for Command and Telemetry Dictionaries

    NASA Technical Reports Server (NTRS)

    Pires, Craig; Knudson, Matthew D.

    2017-01-01

    The Command and Telemetry Dictionary is at the heart of space missions. The C&T Dictionary represents all of the information that is exchanged between the various systems both in space and on the ground. Large amounts of ever-changing information has to be disseminated to all for the various systems and sub-systems throughout all phases of the mission. The typical approach of having each sub-system manage it's own information flow, results in a patchwork of methods within a mission. This leads to significant duplication of effort and potential errors. More centralized methods have been developed to manage this data flow. This presentation will compare two tools that have been developed for this purpose, CCDD and SCIMI that were designed to work with the Core Flight System (cFS).

  11. Design and Realization of Silhouette Operation Platform Based on GIS

    NASA Astrophysics Data System (ADS)

    Fu, Jia; Cui, Xinqiang; Yuan, Zhengteng

    2018-01-01

    Artificial weather effects after several generations of unremitting efforts in many provinces, municipalities and districts have become a regular business to serve the community. In the actual operation of the actual impact of weather operations, onsite job terminal system functional integration is not high, such as the operation process cumbersome operation instructions unreasonable, the weather data lag, the data form of a single factor and other factors seriously affect the weather conditions, Sexual and intuitive improvement. Therefore, this paper adopts the Android system as the carrier for the design and implementation of the silhouette intelligent terminal system. The intelligent terminal system has carried on the preliminary deployment trial in the real-time intelligent command system which realizes the weather operation in a province, and has formed a centralized, unified and digital artificial influence in combination with the self-developed multi-function server system platform and the remote centre command system Weather operation communication network, to achieve intelligent terminal and remote centre commander between the efficient, timely and stable information exchange, improve the shadow of the economic and social benefits, basically reached the initial design purpose.

  12. SSC San Diego Command History Calendar Year 2006

    DTIC Science & Technology

    2007-03-01

    Year: Dr. Visarath In, Yong Kho, Dr. Adi Bulsara, Dr. Joseph Neff, Dr. Brian Meadows, “Self-Induced Oscillations in Coupled Fluxgate Magnetometer : A... digital assistant. The USCG’s Underwater Port Security Working Group reviews ongoing efforts and provides direction to the USCG and the Department...provides the data link gateway as the JDN communications equipment that is used in MDSE to exchange Tactical Digital Information Link (TADIL) J, Satellite

  13. Review and Implementation Status of Prior Defense Business Board Recommendations

    DTIC Science & Technology

    2007-04-01

    Resource Management • Support unified models for shared services , and be prepared to adjust forward approaches for a Unified Medical Command...models for shared services – including by and between Veterans Affairs and Defense, electronic information exchange, disease treatment and prevention...www.dod.mil/dbb/pdf/DBB- Report-on-the-Military.pdf. • Continue to support unified models for shared services – including by and between Veterans Affairs

  14. Analysis of Satellite Communication as a Method to Meet Information Exchange Requirements for the Enhanced Company Concept

    DTIC Science & Technology

    2008-09-01

    For the technical support and on the job training: Donovan Dinger, Swe-Dish Michael Clement, NPS CENETIX Lab Maj Cornell, MCTSSA Eric Gay , MCTSSA...OPERATION ENDURING FREEDOM (OEF). Of note, the Battalion’s current operations officer, Capt Jeremiah Salame, a company commander during the 2006...was for higher headquarters or even high level decision makers 10 Capt Salame (1/7 Battalion

  15. SPAR reference manual. [for stress analysis

    NASA Technical Reports Server (NTRS)

    Whetstone, W. D.

    1974-01-01

    SPAR is a system of related programs which may be operated either in batch or demand (teletype) mode. Information exchange between programs is automatically accomplished through one or more direct access libraries, known collectively as the data complex. Card input is command-oriented, in free-field form. Capabilities available in the first production release of the system are fully documented, and include linear stress analysis, linear bifurcation buckling analysis, and linear vibrational analysis.

  16. Expedition 6 Crew Interviews: Ken Bowersox CDR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 6 Commander Ken Bowersox is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission, what his responsibilities will be as commander, what the crew exchange will be like (transferring the Expedition 6 crew in place of the Expedition 5 crew on the International Space Station (ISS)) and what day-to-day life on an extended stay mission is like. Bowersox also discusses in some detail the planned extravehicular activities (EVAs), the anticipated use of the robot arms in installing the P1 truss and the on-going science experiments which will be conducted by the Expedition 6 crew. He touches on challenges posed by a late change in the crew roster. Bowersox ends with his thoughts on the value on the ISS in fostering international cooperation.

  17. STS-114 Crew Interview: Soichi Noguchi

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Soichi Noguchi, Mission Specialist 1 (MS1) representing Japan's National Space Development Agency (NASDA) is seen during a prelaunch interview. He discusses the main goals of this flight which are to take expedition 7 to the International Space Station and bring back expedition 6 to the Earth. He is also responsible for all Extravehicular (EVA) work on this mission. Expedition seven includes: Mission Specialist and Commander Yuri Malenchenko; NASA ISS Science Officer Edward Lu; and Flight Engineer Alexander Kaleri. Expedition Six includes: Commander Kenneth Bowersox; NASA ISS Science Officer Donald Petit; and Flight Engineer Nikolai Budarin. Noguchi explains the Utilization and Logistics Flight 1 (ULF1) Mission which entails the exchange of crewmembers, various supplies and experiments and the replacement of a control component on the International Space Station. This is also will be Soichi Noguchi's first spacewalk.

  18. Joint in-flight portrait of the STS-81 and Mir 22 crew on Mir

    NASA Image and Video Library

    1997-02-26

    STS081-369-003 (12-22 Jan. 1997) --- Traditional inflight crew portrait of the combined Mir-22 and STS-81 crews in the Base Block Module aboard Russia's Mir Space Station. Front row: left to right, Michael A. Baker, commander; John M. Grunsfeld, mission specialist; and cosmonaut Aleksandr Y. Kaleri, Mir-22 flight engineer. Middle row: cosmonaut Valeri G. Korzun, Mir-22 commander; Marsha S. Ivins, mission specialist; and John E. Blaha, former cosmonaut guest researcher. Back row: Jerry M. Linenger, cosmonaut guest researcher; Peter J. K. (Jeff) Wisoff, mission specialist; and Brent W. Jett, Jr., pilot. Linenger is seen in a Russian jump suit, and Blaha now wears a Space Shuttle inflight garment as the two exchanged cosmonaut guest researcher roles on January 14, 1997, following the docking of the Atlantis and the Mir complex.

  19. Employing a Secure Virtual Private Network (VPN) Infrastructure as a Global Command and Control Gateway to Dynamically Connect and Disconnect Diverse Forces an a Task-Force-By-Task-Force Basis

    DTIC Science & Technology

    2009-09-01

    DIFFIE-HELLMAN KEY EXCHANGE .......................14 III. GHOSTNET SETUP .........................................15 A. INSTALLATION OF OPENVPN FOR...16 3. Verifying the Secure Connection ..............16 B. RUNNING OPENVPN AS A SERVER ON WINDOWS ............17 1. Creating...Generating Server and Client Keys ............20 5. Keys to Transfer to the Client ...............21 6. Configuring OpenVPN to Use Certificates

  20. Nodes

    NASA Technical Reports Server (NTRS)

    Hanson, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    Nodes is a technology demonstration mission that is scheduled for launch to the International SpaceStation no earlier than Nov.19, 2015. The two Nodes satellites will be deployed from the Station in early 2016 todemonstrate new network capabilities critical to the operation of swarms of spacecraft. They will demonstrate the ability ofmulti spacecraft swarms to receive and distribute ground commands, exchange information periodically, andautonomously configure the network by determining which spacecraft should communicate with the ground each day ofthe mission.

  1. The Analysis of Information Exchange Capability for Battlefield Networks Using M&S Techniques of the NetSPIN

    DTIC Science & Technology

    2013-06-01

    of the ATCIS in the NetSPIN Name Main functions Terminal Functions as the terminal that generates traffics MFE (Multi-Function accessing...generates traffics : MFE Function to transform messages of SST into TCP liP packets (Multi-Function accessing Equipment) Termmal PPP Functions of the...center Operation battalion DMT Computer shelter DLP Operation center MFE DMTTerminal Command post of a corps Brigade communication Operation

  2. STS-114 Crew Interviews Eileen Collins, CDR

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Commander Eileen Collins of the STS-114 space mission is seen during a pre-launch interview. She answers questions about the primary goals of the mission which are to exchange the expedition six and expedition seven crews. Also, she says that a large amount of logistics will be taken up to the International Space Station. The primary payload on this mission include: 1) The Utilization and Logistics Flight-1 (ULF-1); 2) Raffaello Multi-Purpose Logistics Module (MPLM); and 3) External Stowage Platform (ESP-2) which are all explained in detail by the Commander. The Window Observational Research Facility (WORF) rack, Human Research Facility (HRF) rack, Minus Eighty Degree Laboratory Freezer (MELF) and EXPRESS rack are the Space Station equipment to be installed on the International Space Station (I.S.S.). Collins is the Intravehicular Activity (IVA) specialist for this mission who oversees the three Extravehicular Activity (EVA)'s performed by Mission Specialists Soichi Noguchi and Stephen Robinson. The three EVA's include an external camera installation, positioning devices for an ammonia system and the installation of Floating Potential Measuring Unit (FPMU). Commander Collins expresses that she wants to have a successful mission, and also wants to see the Earth from space.

  3. Information Fusion for Collaborating Commanders at Different Levels

    DTIC Science & Technology

    2011-06-01

    times, and thus given too much importance (also known as data incest ). The third level in the picture shows how the national situational picture is...this is still not feasible for political reasons. In this process, data incest is even more of a problem since the data probably is exchanged at a...partners, something that for political reasons is made at a rather high information level causing problems such as data incest . There exist some methods

  4. Air Command and Staff College (ACSC) Academic Year (AY) 1999 Multimedia Yearbook

    DTIC Science & Technology

    1999-04-01

    step in the project was to identify other software applications that would be beneficial in this endeavor. Initially, I reviewed a PC Magazine article...I looked at Adobe’s Photoshop  versions 4.0 and 5.0. This application is an extremely powerful graphics program, which aids in photo-retouching...application is our “bread and butter.” The advertising companies that have purchased space or provided services at a reduced price in exchange for

  5. Dynamic Information Management and Exchange for Command and Control Applications, Modelling and Enforcing Category-Based Access Control via Term Rewriting

    DTIC Science & Technology

    2015-03-01

    a hotel and a hospital. 2. Event handler for emergency policies (item 2 above): this has been implemented in two UG projects, one project developed a...Workshop on Logical and Se- mantic Frameworks, with Applications, Brasilia, Brazil , September 2014. Electronic Notes in Theoretical Computer Science (to...Brasilia, Brazil , September 2014, 2015. [3] S. Barker. The next 700 access control models or a unifying meta-model? In SACMAT 2009, 14th ACM Symposium on

  6. Integration of the MIP Command and Control Information Exchange Data Model into National Systems

    DTIC Science & Technology

    2005-06-01

    Solutions for the Java programming language include Hibernate ( Hibernate , 2005), Java Data Objects (JDO, 2005), J2EE Container Managed Persistence (CMP) and... Java , C++, or UML classes in a first step. The semantical gap between the relational and the object-oriented world, also called O-R impedance, is a...cannot be achieved at the interfaces – it needs to be established in the core of national systems! References Hibernate (2005). www.hibernate.org. JDO

  7. Environmental Assessment for the Expansion and Consolidation of the Base Exchange at Joint Base Andrews-Naval Air Facility Washington, Prince George’s County, Maryland

    DTIC Science & Technology

    2013-08-01

    Wildlife Service VOC volatile organic compound WG/CC Wing, Commanding Officer WSSC Washington Suburban Sanitary Commission WWTP waste water...2009a). 3.3 Infrastructure and Utilities 3.3.1 Wastewater Collection and Treatment Sanitary Sewer The sanitary sewer system at JBA was privatized...in February 2006. Terrapin Utility Services, Inc., owns and operates the sanitary sewer system (JBA-NAFW 2013). The majority of the sanitary sewer

  8. 2011 Marine Corps Systems Command Small Business Opportunities Conference Held in Fredericksburg, Virginia on December 14, 2011

    DTIC Science & Technology

    2011-12-14

    Manager, Mine Resistant Ambush Protected (MRAP) Vehicle Program u Mr. David Karcher, Director, Energy & Counter-Improvised Explosive Devices (C-IED...objective is to allow Marines to travel lighter, with less, and move faster through the reduction in size and amount of equipment and the dependence on...Lead Acid/Ni-Cd Kinetic Solid Oxide Gasoline Lithium Ion Solar Proton Exchange Membrane (PEM) Diesel/JP-8 A set of power technologies might also

  9. AAtS over AeroMACS Technology Trials on the Airport Surface

    NASA Technical Reports Server (NTRS)

    Apaza, Rafael; Abraham, Biruk; Maeda, Toshihide

    2016-01-01

    Air-Ground component of SWIM; Enables enhanced two-way information exchanges between flight operators, aircrew, and ATSP (TFM); Used in all flight domains including pre-departure and post-arrival; Aircrew active in CDM; For strategic planning, advisory information; Not for command control (data voice) Wireless communications system for airport surface; Family member of Mobile WiMAX: (IEEE802.16e), Band 5091-5150 MHz, Bandwidth 5 MHz - TDDOFDMA - Adaptive Modulation and Coding - Quality of Service (QoS)

  10. KSC-98pc259

    NASA Image and Video Library

    1998-01-31

    KENNEDY SPACE CENTER, FLA. -- STS-89 Commander Terrence Wilcutt, at left, shakes hands with Pilot Joe Edwards Jr. under the orbiter Endeavour after it landed on Runway 15 at KSC’s Shuttle Landing Facility Jan. 31. Kneeling in front of the wheel of the orbiter's nose, the commander and pilot congratulate each other on a perfect alignment of the wheel down the center of the runway. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the orbiter with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Wilcutt; Pilot Edwards; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov of the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts

  11. STS-84 Commander Charles J. Precourt in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-84 Commander Charles J. Precourt prepares to enter the Space Shuttle Atlantis at Launch Pad 39A with help from white room closeout crew members. The fourth Shuttle mission of 1997 will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. The commander is Charles J. Precourt. The pilot is Eileen Marie Collins. The five mission specialists are C. Michael Foale, Carlos I. Noriega, Edward Tsang Lu, Jean-Francois Clervoy of the European Space Agency and Elena V. Kondakova of the Russian Space Agency. The planned nine-day mission will include the exchange of Foale for U.S. astronaut and Mir 23 crew member Jerry M. Linenger, who has been on Mir since Jan. 15. Linenger transferred to Mir during the last docking mission, STS-81; he will return to Earth on Atlantis. Foale is slated to remain on Mir for about four months until he is replaced in September by STS-86 Mission Specialist Wendy B. Lawrence. During the five days Atlantis is scheduled to be docked with the Mir, the STS-84 crew and the Mir 23 crew, including two Russian cosmonauts, Commander Vasily Tsibliev and Flight Engineer Alexander Lazutkin, will participate in joint experiments. The STS-84 mission also will involve the transfer of more than 7,300 pounds of water, logistics and science equipment to and from the Mir. Atlantis is carrying a nearly 300-pound oxygen generator to replace one of two Mir units which have experienced malfunctions. The oxygen it generates is used for breathing by the Mir crew.

  12. Welcome ceremony and gift exchange in the Mir Base Module

    NASA Image and Video Library

    1996-03-24

    S76-E-5157 (24 March 1996) --- Two Russian cosmonauts and five of six NASA astronauts exchange gifts soon after reuniting in the Base Block Module of Russia's Mir Space Station. From the left are Linda M. Godwin, Kevin P. Chilton, Yury V. Usachev, Shannon W. Lucid, Yury I. Onufrienko, Ronald M. Sega and Richard A. Searfoss. Not pictured is astronaut Michael R. (Rich) Clifford. In a light moment around this time, ground controllers informed Chilton, the STS-76 mission commander, that Lucid, who will spend several months onboard Mir as a cosmonaut guest researcher, should now be considered a Mir-21 crew member, along with Onufrienko and Usachev, Mir-21 flight engineer. The image was recorded with a 35mm Electronic Still Camera (ESC) and downlinked at a later time to ground controllers in Houston, Texas.

  13. The contaminant analysis automation robot implementation for the automated laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younkin, J.R.; Igou, R.E.; Urenda, T.D.

    1995-12-31

    The Contaminant Analysis Automation (CAA) project defines the automated laboratory as a series of standard laboratory modules (SLM) serviced by a robotic standard support module (SSM). These SLMs are designed to allow plug-and-play integration into automated systems that perform standard analysis methods (SAM). While the SLMs are autonomous in the execution of their particular chemical processing task, the SAM concept relies on a high-level task sequence controller (TSC) to coordinate the robotic delivery of materials requisite for SLM operations, initiate an SLM operation with the chemical method dependent operating parameters, and coordinate the robotic removal of materials from the SLMmore » when its commands and events has been established to allow ready them for transport operations as well as performing the Supervisor and Subsystems (GENISAS) software governs events from the SLMs and robot. The Intelligent System Operating Environment (ISOE) enables the inter-process communications used by GENISAS. CAA selected the Hewlett-Packard Optimized Robot for Chemical Analysis (ORCA) and its associated Windows based Methods Development Software (MDS) as the robot SSM. The MDS software is used to teach the robot each SLM position and required material port motions. To allow the TSC to command these SLM motions, a hardware and software implementation was required that allowed message passing between different operating systems. This implementation involved the use of a Virtual Memory Extended (VME) rack with a Force CPU-30 computer running VxWorks; a real-time multitasking operating system, and a Radiuses PC compatible VME computer running MDS. A GENISAS server on The Force computer accepts a transport command from the TSC, a GENISAS supervisor, over Ethernet and notifies software on the RadiSys PC of the pending command through VMEbus shared memory. The command is then delivered to the MDS robot control software using a Windows Dynamic Data Exchange conversation.« less

  14. Space Shuttle Projects

    NASA Image and Video Library

    2001-04-01

    The STS-105 crew patch symbolizes the exchange of the Expedition Two and Expedition Three crews aboard the International Space Station (ISS). The three gold stars near the ascending orbiter represent the U.S. commanded Expedition Three Crew journeying into space, while the two gold stars near the descending orbiter represent the Russian commanded Expedition Two crew on their return to Earth. The ascending and descending Orbiters form a circle that represents both the crew rotation and the continuous presence in space aboard the station. The plumes of each orbiter represent the flags of the U.S. and Russia, symbolizing the close cooperation between the two nations. The Astronaut office symbol, a star with three rays of light, depicts the unbroken link between Earth and the brightest star on the horizon, the ISS. The names of Discovery's crew of four astronauts are shown along the border of the patch while the names of the Expedition crews are shown on the chevron at the bottom of the patch.

  15. VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans.

    PubMed

    Fry, Amanda L; Laboy, Jocelyn T; Norman, Kenneth R

    2014-11-21

    The complex molecular and cellular mechanisms underlying neuronal control of animal movement are not well understood. Locomotion of Caenorhabditis elegans is mediated by a neuronal circuit that produces coordinated sinusoidal movement. Here we utilize this simple, yet elegant, behaviour to show that VAV-1, a conserved guanine nucleotide exchange factor for Rho-family GTPases, negatively regulates motor circuit activity and the rate of locomotion. While vav-1 is expressed in a small subset of neurons, we find that VAV-1 function is required in a single interneuron, ALA, to regulate motor neuron circuit activity. Furthermore, we show by genetic and optogenetic manipulation of ALA that VAV-1 is required for the excitation and activation of this neuron. We find that ALA signalling inhibits command interneuron activity by abrogating excitatory signalling in the command interneurons, which is responsible for promoting motor neuron circuit activity. Together, our data describe a novel neuromodulatory role for VAV-1-dependent signalling in the regulation of motor circuit activity and locomotion.

  16. SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots.

    PubMed

    Li, Xin; Bilbao, Sonia; Martín-Wanton, Tamara; Bastos, Joaquim; Rodriguez, Jonathan

    2017-03-11

    In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning.

  17. STS-81 and Mir 22 crews exchange gifts in the Mir Base Block

    NASA Image and Video Library

    1997-02-21

    STS081-350-013 (12-22 Jan 1997) --- Members of Mir-22 crew show appreciation for small flash lights brought up by the STS-81 crew. Left to right, new cosmonaut guest researcher Jerry M. Linenger, cosmonauts Valeri G. Korzun, mission commander, and Aleksandr Y. Kaleri, flight engineer, along with former cosmonaut guest researcher John E. Blaha. The four are on the Base Block Module of Russia?s Mir Space Station on the eve of the Space Shuttle Atlantis and Mir undocking day.

  18. Dynamic Information Management and Exchange for Command and Control Applications: A Framework in Support of Emergency Management for Specified and Unspecified Emergencies

    DTIC Science & Technology

    2014-03-01

    64 selections, 128 aggregations and 510 join operators . 0 100 200 300 400 500 600 700 800 900 1000 0 10 20 30 40 50 60 70 T im e...DC, USA, 2001, IEEE Computer So- ciety, pp. 391–398. [66] E. Network and I. S. A. (ENISA), Inventory of risk managemen - t /risk assessment methods, Sept... Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that

  19. Utilization of Porous Media for Condensing Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Tuan, George C.

    2006-01-01

    The use of porous media as a mean of separating liquid condensate from the air stream in condensing heat exchangers has been explored in the past inside small plant growth chambers and in the Apollo Command Module. Both applications used a cooled porous media made of sintered stainless steel to cool and separate condensation from the air stream. However, the main issues with the utilization of porous media in the past have been the deterioration of the porous media over long duration, such as clogging and changes in surface wetting characteristics. In addition, for long duration usage, biofilm growth from microorganisms on the porous medial would also be an issue. In developing Porous Media Condensing Heat Exchangers (PMCHX) for future space applications, different porous materials and microbial growth control methods will need to be explored. This paper explores the work performed at JSC and GRC to evaluate different porous materials and microbial control methods to support the development of a Porous Media Condensing Heat Exchanger. It outlines the basic principles for designing a PMCHX and issues that were encountered and ways to resolve those issues. The PMCHX has potential of mass, volume, and power savings over current CHX and water separator technology and would be beneficial for long duration space missions.

  20. Networked sensors for the combat forces

    NASA Astrophysics Data System (ADS)

    Klager, Gene

    2004-11-01

    Real-time and detailed information is critical to the success of ground combat forces. Current manned reconnaissance, surveillance, and target acquisition (RSTA) capabilities are not sufficient to cover battlefield intelligence gaps, provide Beyond-Line-of-Sight (BLOS) targeting, and the ambush avoidance information necessary for combat forces operating in hostile situations, complex terrain, and conducting military operations in urban terrain. This paper describes a current US Army program developing advanced networked unmanned/unattended sensor systems to survey these gaps and provide the Commander with real-time, pertinent information. Networked Sensors for the Combat Forces plans to develop and demonstrate a new generation of low cost distributed unmanned sensor systems organic to the RSTA Element. Networked unmanned sensors will provide remote monitoring of gaps, will increase a unit"s area of coverage, and will provide the commander organic assets to complete his Battlefield Situational Awareness (BSA) picture for direct and indirect fire weapons, early warning, and threat avoidance. Current efforts include developing sensor packages for unmanned ground vehicles, small unmanned aerial vehicles, and unattended ground sensors using advanced sensor technologies. These sensors will be integrated with robust networked communications and Battle Command tools for mission planning, intelligence "reachback", and sensor data management. The network architecture design is based on a model that identifies a three-part modular design: 1) standardized sensor message protocols, 2) Sensor Data Management, and 3) Service Oriented Architecture. This simple model provides maximum flexibility for data exchange, information management and distribution. Products include: Sensor suites optimized for unmanned platforms, stationary and mobile versions of the Sensor Data Management Center, Battle Command planning tools, networked communications, and sensor management software. Details of these products and recent test results will be presented.

  1. Investigation of signal models and methods for evaluating structures of processing telecommunication information exchange systems under acoustic noise conditions

    NASA Astrophysics Data System (ADS)

    Kropotov, Y. A.; Belov, A. A.; Proskuryakov, A. Y.; Kolpakov, A. A.

    2018-05-01

    The paper considers models and methods for estimating signals during the transmission of information messages in telecommunication systems of audio exchange. One-dimensional probability distribution functions that can be used to isolate useful signals, and acoustic noise interference are presented. An approach to the estimation of the correlation and spectral functions of the parameters of acoustic signals is proposed, based on the parametric representation of acoustic signals and the components of the noise components. The paper suggests an approach to improving the efficiency of interference cancellation and highlighting the necessary information when processing signals from telecommunications systems. In this case, the suppression of acoustic noise is based on the methods of adaptive filtering and adaptive compensation. The work also describes the models of echo signals and the structure of subscriber devices in operational command telecommunications systems.

  2. A robot end effector exchange mechanism for space applications

    NASA Technical Reports Server (NTRS)

    Gorin, Barney F.

    1990-01-01

    Efficient robot operation requires the use of specialized end effectors or tools for tasks. In spacecraft applications, the microgravity environment precludes the use of gravitational forces to retain the tools in holding fixture. As a result of this, a retention mechanism which forms a part of the tool storage container is required. A unique approach to this problem has resulted in the development of an end effector exchange mechanism that meets the requirements for spaceflight applications while avoiding the complexity usually involved. This mechanism uses multiple latching cams both on the manipulator and in the tool storage container, combined with a system of catch rings to provide retention in both locations and the required failure tolerance. Because of the cam configuration the mechanism operates passively, requiring no electrical commands except those needed to move the manipulator into position. Similarly, it inherently provides interlocks to prevent the release of one cam before its opposite number is engaged.

  3. Integrating sequence and structural biology with DAS

    PubMed Central

    Prlić, Andreas; Down, Thomas A; Kulesha, Eugene; Finn, Robert D; Kähäri, Andreas; Hubbard, Tim JP

    2007-01-01

    Background The Distributed Annotation System (DAS) is a network protocol for exchanging biological data. It is frequently used to share annotations of genomes and protein sequence. Results Here we present several extensions to the current DAS 1.5 protocol. These provide new commands to share alignments, three dimensional molecular structure data, add the possibility for registration and discovery of DAS servers, and provide a convention how to provide different types of data plots. We present examples of web sites and applications that use the new extensions. We operate a public registry of DAS sources, which now includes entries for more than 250 distinct sources. Conclusion Our DAS extensions are essential for the management of the growing number of services and exchange of diverse biological data sets. In addition the extensions allow new types of applications to be developed and scientific questions to be addressed. The registry of DAS sources is available at PMID:17850653

  4. Ground station software for receiving and handling Irecin telemetry data

    NASA Astrophysics Data System (ADS)

    Ferrante, M.; Petrozzi, M.; Di Ciolo, L.; Ortenzi, A.; Troso, G

    2004-11-01

    The on board resources, needed to perform the mission tasks, are very limited in nano-satellites. This paper proposes a software system to receive, manage and process in Real Time the Telemetry data coming from IRECIN nanosatellite and transmit operator manual commands and operative procedures. During the receiving phase, it shows the IRECIN subsystem physical values, visualizes the IRECIN attitude, and performs other suitable functions. The IRECIN Ground Station program is in charge to exchange information between IRECIN and the Ground segment. It carries out, in real time during IRECIN transmission phase, IRECIN attitude drawing, sun direction drawing, power supply received from Sun, visualization of the telemetry data, visualization of Earth magnetic field and more other functions. The received data are memorized and interpreted by a module, parser, and distribute to the suitable modules. Moreover it allows sending manual and automatic commands. Manual commands are delivered by an operator, on the other hand, automatic commands are provided by pre-configured operative procedures. Operative procedures development is realized in a previous phase called configuration phase. This program is also in charge to carry out a test session by mean the scheduler and commanding modules allowing execution of specific tasks without operator control. A log module to memorize received and transmitted data is realized. A phase to analyze, filter and visualize in off line the collected data, called post analysis, is based on the data extraction form the log module. At the same time, the Ground Station Software can work in network allowing managing, receiving and sending data/commands from different sites. The proposed system constitutes the software of IRECIN Ground Station. IRECIN is a modular nanosatellite weighting less than 2 kg, constituted by sixteen external sides with surface-mounted solar cells and three internal Al plates, kept together by four steel bars. Lithium-ions batteries are used. Attitude is determined by two three-axis magnetometers and the solar panels data. Control is provided by an active magnetic control system. The spacecraft will be spin- stabilized with the spin-axis normal to the orbit. All IRECIN electronic components are SMD technology in order to reduce weight and size. The realized Electronic board are completely developed, realized and tested at the Vitrociset S.P.A. under control of Research and Develop Group

  5. Pulse Generator Exchange Does Not Accelerate the Rate of Electrical Failure in a Recalled Small Caliber ICD Lead.

    PubMed

    Lovelock, Joshua D; Premkumar, Ajay; Levy, Mathew R; Mengistu, Andenet; Hoskins, Michael H; El-Chami, Mikhael F; Lloyd, Michael S; Leon, Angel R; Langberg, Jonathan J; Delurgio, David B

    2015-12-01

    St. Jude Riata/Riata ST defibrillator leads (St. Jude Medical, Sylmar, CA, USA) were recalled by the Food and Drug Administration in 2011 for an increased rate of failure. More than 227,000 leads were implanted and at least 79,000 patients still have active Riata leads. Studies have examined clinical predictors of lead failure in Riata leads, but none have addressed the effect of implantable cardioverter defibrillator (ICD) generator exchange on lead failure. The purpose of this study is to assess the effect of ICD generator exchange on the rate of electrical failure in the Riata lead at 1 year. A retrospective chart review was conducted in patients who underwent implantation of a Riata/Riata ST lead at one center. Patients with a functioning Riata lead (with/without externalized conductor) at the time of ICD exchange were compared to controls with Riata leads implanted for a comparable amount of time who did not undergo generator replacement. Riata leads were implanted in 1,042 patients prior to the recall and 153 of these patients underwent generator exchange without lead replacement. Conductor externalization was noted in 21.5% of Riata leads in the ICD exchange cohort, which was not different from the control group (19.2%; P = 0.32). Two leads failed in the first year after generator replacement (1.5%) which did not significantly differ from the control group (2.0%; P = 0.57). At change-out, 54% received a commanded shock (18.6 ± 0.9 J) that did not result in any change in the high-voltage lead impedance (46.1 ± 1.1 ohms). Conductor externalization was seen frequently in our cohort of patients. ICD generator exchange did not accelerate the rate of Riata lead failure at 1 year. Although both the control and the change-out cohorts failed at a rate much greater than nonrecalled leads, generator exchange did not appear to add to the problem. ©2015 Wiley Periodicals, Inc.

  6. SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots

    PubMed Central

    Li, Xin; Bilbao, Sonia; Martín-Wanton, Tamara; Bastos, Joaquim; Rodriguez, Jonathan

    2017-01-01

    In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning. PMID:28287468

  7. STS-84 and Mir 23 crewmembers exchange gifts during meal after docking

    NASA Image and Video Library

    1997-05-17

    STS084-377-026 (15-24 May 1997) --- Cosmonaut Elena V. Kondakova opens a gift box and a number of tiny chocolate Space Shuttles free-float in Russia's Mir Space Station's Base Block. The STS-84 mission specialist and her crew mates had earlier presented the gift to the Mir-23 crew members, including Vasili Tsibliyev (right), mission commander. In the background are astronauts Eileen M. Collins, STS-84 pilot, and Jerry M. Linenger, mission specialist. Linenger was in his last days aboard Mir prior to returning to Earth with the STS-84 crew aboard the Space Shuttle Atlantis.

  8. Expedition 4 Crew Interviews: Yury I. Onufrienko

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 4 Commander Yury Onufrienko is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission, what his responsibilities will be, what the crew exchange will be like (transferring the Expedition 4 crew in place of the Expedition 3 crew on the International Space Station (ISS)), the day-to-day life on an extended stay mission, the experiments he will be conducting on board, and what the S0 truss will mean to ISS. Onufrienko ends with his thoughts on the short-term and long-term future of the International Space Station.

  9. STS-84 Crew inspect tires after Landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    KENNEDY SPACE CENTER, FL - STS-84 crew members, from left, Mission Specialist Carlos I. Noriega, Commander Charles J. Precourt and Mission Specialist Jean-Francois Clervoy examine the tires of the Space Shuttle Atlantis after landing. Atlantis traveled about 3.6 million miles during the nine-day mission, which was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. The mission also included the exchange of STS-84 Mission Specialist C. Michael Foale for astronaut and Mir 23 crew member, Jerry M. Linenger, who spent the last four months on the Russian space station.

  10. Evaluation of Potential Test Environments for Assessing the Impact of Multi-Sensor Data Fusion on Command and Control Operations in the HALIFAX Class Frigate

    DTIC Science & Technology

    2001-05-01

    specifying the gaming area and land masses , the meteorological and ocean environments, and the sea conditions that exist within the gaming area. Unlike...exchanges 1.12. Customise env1ronment for data collection 1.12.1. Extra audio and v1deo 1.12.2. Add on software modules 1.13. Standalone keypads...State boards No, could be added Manuals I Charts IT acpacs I Post its I etc. No, could be added 1.11 Customise environment for data collection Ability

  11. NASA World Wind: Infrastructure for Spatial Data

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick

    2011-01-01

    The world has great need for analysis of Earth observation data, be it climate change, carbon monitoring, disaster response, national defense or simply local resource management. To best provide for spatial and time-dependent information analysis, the world benefits from an open standards and open source infrastructure for spatial data. In the spirit of NASA's motto "for the benefit of all" NASA invites the world community to collaboratively advance this core technology. The World Wind infrastructure for spatial data both unites and challenges the world for innovative solutions analyzing spatial data while also allowing absolute command and control over any respective information exchange medium.

  12. Integrated Ion Exchange Regeneration Process for Perchlorate in Drinking Water

    DTIC Science & Technology

    2010-08-01

    chloride NDEA N-Nitrosodiethylamine NDMA N-Nitrosodimethylamine NDPA N-Nitrosodipropylamine NAVFAC ESC Naval Facilities Engineering Command...NO3 37 mg/L as NO3 Uranium 1.6 μg/L 2.6 μg/L 2.2 mg/L NDMA ɚ.0 ng/L 32 ng/L ɚ.0 ng/L NDEA ɚ.0 ng/L ɚ.0 ng/L ɚ.0 ng/L NDPA ɚ.0 ng/L ɚ.0 ng...L ɚ.0 ng/L NDMA – N-Nitrosodimethylamine NDEA – N-Nitrosodiethylamine NDPA – N-Nitrosodipropylamine 15 Figure 5. Influent perchlorate

  13. MCCx C3I Control Center Interface Emulator

    NASA Technical Reports Server (NTRS)

    Mireles, James R.

    2010-01-01

    This slide presentation reviews the project to develop and demonstrate alternate Information Technologies and systems for new Mission Control Centers that will reduce the cost of facility development, maintenance and operational costs and will enable more efficient cost and effective operations concepts for ground support operations. The development of a emulator for the Control Center capability will enable the facilities to conduct the simulation requiring interactivity with the Control Center when it is off line or unavailable, and it will support testing of C3I interfaces for both command and telemetry data exchange messages (DEMs).

  14. Distributed collaborative environments for predictive battlespace awareness

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2003-09-01

    The past decade has produced significant changes in the conduct of military operations: asymmetric warfare, the reliance on dynamic coalitions, stringent rules of engagement, increased concern about collateral damage, and the need for sustained air operations. Mission commanders need to assimilate a tremendous amount of information, make quick-response decisions, and quantify the effects of those decisions in the face of uncertainty. Situational assessment is crucial in understanding the battlespace. Decision support tools in a distributed collaborative environment offer the capability of decomposing complex multitask processes and distributing them over a dynamic set of execution assets that include modeling, simulations, and analysis tools. Decision support technologies can semi-automate activities, such as analysis and planning, that have a reasonably well-defined process and provide machine-level interfaces to refine the myriad of information that the commander must fused. Collaborative environments provide the framework and integrate models, simulations, and domain specific decision support tools for the sharing and exchanging of data, information, knowledge, and actions. This paper describes ongoing AFRL research efforts in applying distributed collaborative environments to predictive battlespace awareness.

  15. NASA Tech Briefs, March 2013

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Topics covered include: Remote Data Access with IDL Data Compression Algorithm Architecture for Large Depth-of-Field Particle Image Velocimeters Vectorized Rebinning Algorithm for Fast Data Down-Sampling Display Provides Pilots with Real-Time Sonic-Boom Information Onboard Algorithms for Data Prioritization and Summarization of Aerial Imagery Monitoring and Acquisition Real-time System (MARS) Analog Signal Correlating Using an Analog-Based Signal Conditioning Front End Micro-Textured Black Silicon Wick for Silicon Heat Pipe Array Robust Multivariable Optimization and Performance Simulation for ASIC Design; Castable Amorphous Metal Mirrors and Mirror Assemblies; Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems; Apparatus for Pumping a Fluid; Cobra Fiber-Optic Positioner Upgrade; Improved Wide Operating Temperature Range of Li-Ion Cells; Non-Toxic, Non-Flammable, -80 C Phase Change Materials; Soft-Bake Purification of SWCNTs Produced by Pulsed Laser Vaporization; Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models; Hand-Based Biometric Analysis; The Next Generation of Cold Immersion Dry Suit Design Evolution for Hypothermia Prevention; Integrated Lunar Information Architecture for Decision Support Version 3.0 (ILIADS 3.0); Relay Forward-Link File Management Services (MaROS Phase 2); Two Mechanisms to Avoid Control Conflicts Resulting from Uncoordinated Intent; XTCE GOVSAT Tool Suite 1.0; Determining Temperature Differential to Prevent Hardware Cross-Contamination in a Vacuum Chamber; SequenceL: Automated Parallel Algorithms Derived from CSP-NT Computational Laws; Remote Data Exploration with the Interactive Data Language (IDL); Mixture-Tuned, Clutter Matched Filter for Remote Detection of Subpixel Spectral Signals; Partitioned-Interval Quantum Optical Communications Receiver; and Practical UAV Optical Sensor Bench with Minimal Adjustability.

  16. KSC-97PC807

    NASA Image and Video Library

    1997-05-15

    STS-84 Commander Charles J. Precourt prepares to enter the Space Shuttle Atlantis at Launch Pad 39A with help from white room closeout crew members. The fourth Shuttle mission of 1997 will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. The commander is Charles J. Precourt. The pilot is Eileen Marie Collins. The five mission specialists are C. Michael Foale, Carlos I. Noriega, Edward Tsang Lu, Jean-Francois Clervoy of the European Space Agency and Elena V. Kondakova of the Russian Space Agency. The planned nine-day mission will include the exchange of Foale for U.S. astronaut and Mir 23 crew member Jerry M. Linenger, who has been on Mir since Jan. 15. Linenger transferred to Mir during the last docking mission, STS-81; he will return to Earth on Atlantis. Foale is slated to remain on Mir for about four months until he is replaced in September by STS-86 Mission Specialist Wendy B. Lawrence. During the five days Atlantis is scheduled to be docked with the Mir, the STS-84 crew and the Mir 23 crew, including two Russian cosmonauts, Commander Vasily Tsibliev and Flight Engineer Alexander Lazutkin, will participate in joint experiments. The STS-84 mission also will involve the transfer of more than 7,300 pounds of water, logistics and science equipment to and from the Mir. Atlantis is carrying a nearly 300-pound oxygen generator to replace one of two Mir units which have experienced malfunctions. The oxygen it generates is used for breathing by the Mir crew

  17. Web-based interactive drone control using hand gesture

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng

    2018-01-01

    This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.

  18. Web-based interactive drone control using hand gesture.

    PubMed

    Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng

    2018-01-01

    This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.

  19. STS-108 Crew Interviews: Dom Gorie

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Commander Dom Gorie is seen during a prelaunch interview. He answers questions about the mission's goals and significance, explaining the meaning of 'utilization flight 1' (UF-1) as opposed to an 'assembly flight'. He gives details on the payload (Starshine Satellite, Avian Development Facility, and Rafaello Multipurpose Logistics Module (MPLM)), his role in the rendezvous, docking, and undocking of the Endeavour Orbiter to the International Space Station (ISS), how he will participate in the unloading and reloading of the MPLM, and the way in which the old and new resident crews of ISS will exchanged. Gorie ends with his thoughts on the short-term and long-term future of the International Space Station.

  20. STS-79 landing views

    NASA Image and Video Library

    1996-09-26

    STS079-S-022 (26 Sept. 1996) --- The main landing gear of the space shuttle Atlantis touches down on Runway 15 at the Shuttle Landing Facility (SLF) at the Kennedy Space Center (KSC), bringing an end to the successful ten-day mission. Landing occurred at 8:13:15 a.m. (EDT), Sept. 26, 1996. The touchdown marked the end of 188 days in space for astronaut Shannon W. Lucid, following her in-space exchange with astronaut John E. Blaha, who is now aboard Russia's Mir Space Station. Returning along with Lucid were her STS-79 crew mates - astronauts William F. Readdy, commander; Terrence W. Wilcutt, pilot; and Thomas D. Akers, Jerome (Jay) Apt and Carl E. Walz, mission specialists.

  1. STS-79 landing views

    NASA Image and Video Library

    1996-09-26

    STS079-S-021 (26 Sept. 1996) --- The drag chute on the space shuttle Atlantis is fully deployed as the orbiter rolls down Runway 15 at the Shuttle Landing Facility (SLF) at the Kennedy Space Center (KSC), bringing an end to the successful ten-day mission. Landing occurred at 8:13:15 a.m. (EDT), Sept. 26, 1996. The touchdown marked the end of 188 days in space for astronaut Shannon W. Lucid, following her in-space exchange with astronaut John E. Blaha, who is now aboard Russia's Mir Space Station. Returning along with Lucid were her STS-79 crew mates - astronauts William F. Readdy, commander; Terrence W. Wilcutt, pilot; and Thomas D. Akers, Jerome (Jay) Apt and Carl E. Walz, mission specialists.

  2. Transferable Output ASCII Data (TOAD) editor version 1.0 user's guide

    NASA Technical Reports Server (NTRS)

    Bingel, Bradford D.; Shea, Anne L.; Hofler, Alicia S.

    1991-01-01

    The Transferable Output ASCII Data (TOAD) editor is an interactive software tool for manipulating the contents of TOAD files. The TOAD editor is specifically designed to work with tabular data. Selected subsets of data may be displayed to the user's screen, sorted, exchanged, duplicated, removed, replaced, inserted, or transferred to and from external files. It also offers a number of useful features including on-line help, macros, a command history, an 'undo' option, variables, and a full compliment of mathematical functions and conversion factors. Written in ANSI FORTRAN 77 and completely self-contained, the TOAD editor is very portable and has already been installed on SUN, SGI/IRIS, and CONVEX hosts.

  3. An initial approach towards quality of service based Spectrum Trading

    NASA Astrophysics Data System (ADS)

    Bastidas, Carlos E. Caicedo; Vanhoy, Garret; Volos, Haris I.; Bose, Tamal

    Spectrum scarcity has become an important issue as demands for higher data rates increase in diverse wireless applications and aerospace communication scenarios. To address this problem, it becomes necessary to manage radio spectrum assignment in a way that optimizes the distribution of spectrum resources among several users while taking into account the quality of service (QoS) characteristics desired by the users of spectrum. In this paper, a novel approach to managing spectrum assignment based on Spectrum Trading (ST) will be presented. Market based spectrum assignment mechanisms such as spectrum trading are of growing interest to many spectrum management agencies that are planning to increase the use of these mechanisms for spectrum management and reduce their emphasis on command and control methods. This paper presents some of our initial work into incorporating quality of service information into the mechanisms that determine how spectrum should be traded when using a spectrum exchange. Through simulations and a testbed implementation of a QoS aware spectrum exchange our results show the viability of using QoS based mechanisms in spectrum trading and in the enhancement of dynamic spectrum assignment systems.

  4. Architectures for intelligent machines

    NASA Technical Reports Server (NTRS)

    Saridis, George N.

    1991-01-01

    The theory of intelligent machines has been recently reformulated to incorporate new architectures that are using neural and Petri nets. The analytic functions of an intelligent machine are implemented by intelligent controls, using entropy as a measure. The resulting hierarchical control structure is based on the principle of increasing precision with decreasing intelligence. Each of the three levels of the intelligent control is using different architectures, in order to satisfy the requirements of the principle: the organization level is moduled after a Boltzmann machine for abstract reasoning, task planning and decision making; the coordination level is composed of a number of Petri net transducers supervised, for command exchange, by a dispatcher, which also serves as an interface to the organization level; the execution level, include the sensory, planning for navigation and control hardware which interacts one-to-one with the appropriate coordinators, while a VME bus provides a channel for database exchange among the several devices. This system is currently implemented on a robotic transporter, designed for space construction at the CIRSSE laboratories at the Rensselaer Polytechnic Institute. The progress of its development is reported.

  5. FAST: FAST Analysis of Sequences Toolbox

    PubMed Central

    Lawrence, Travis J.; Kauffman, Kyle T.; Amrine, Katherine C. H.; Carper, Dana L.; Lee, Raymond S.; Becich, Peter J.; Canales, Claudia J.; Ardell, David H.

    2015-01-01

    FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought. PMID:26042145

  6. STS-111 Mission Highlights Resource Tape. Part 1 of 4; Flight Days 1 - 4

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This video, Part 1 of 4, shows the activities of the STS-111 crew (Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Phillipe Perrin, Mission Specialists) during flight days 1 through 4. Also shown are the incoming Expedition 5 (Valeri Korzun, Commander; Peggy Whitson, NASA ISS Science Officer; Sergei Treschev, Flight Engineer) and outgoing Expedition 4 (Yuri Onufriyenko, Commander; Carl Walz, Daniel Bursch, Flight Engineers) crews of the ISS (International Space Station). The activities from other flight days can be seen on 'STS-111 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002139469), 'STS-111 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139468), and 'STS-111 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002139474). The primary activity of flight day 1 is the launch of Space Shuttle Endeavour. The crew is seen before the launch at a meal and suit-up, and some pre-flight procedures are shown. Perrin holds a sign with a personalized message. The astronauts communicate with Mission Control extensively after launch, and an inside view of the shuttle cabin is shown. The replays of the launch include close-ups of the nozzles at liftoff, and the fall of the solid rocket boosters and the external fuel tank. Flight day 2 shows footage of mainland Asia at night, and daytime views of the eastern United States and Lake Michigan. Flight day three shows the Endeavour orbiter approaching and docking with the ISS. After the night docking, the crews exchange greetings, and a view of the Nile river and Egypt at night is shown. On flight day 4, the MPLM (Multi-Purpose Logistics Module) Leonardo was temporarily transferred from Endeavour's payload bay to the ISS.

  7. Technologies for network-centric C4ISR

    NASA Astrophysics Data System (ADS)

    Dunkelberger, Kirk A.

    2003-07-01

    Three technologies form the heart of any network-centric command, control, communication, intelligence, surveillance, and reconnaissance (C4ISR) system: distributed processing, reconfigurable networking, and distributed resource management. Distributed processing, enabled by automated federation, mobile code, intelligent process allocation, dynamic multiprocessing groups, check pointing, and other capabilities creates a virtual peer-to-peer computing network across the force. Reconfigurable networking, consisting of content-based information exchange, dynamic ad-hoc routing, information operations (perception management) and other component technologies forms the interconnect fabric for fault tolerant inter processor and node communication. Distributed resource management, which provides the means for distributed cooperative sensor management, foe sensor utilization, opportunistic collection, symbiotic inductive/deductive reasoning and other applications provides the canonical algorithms for network-centric enterprises and warfare. This paper introduces these three core technologies and briefly discusses a sampling of their component technologies and their individual contributions to network-centric enterprises and warfare. Based on the implied requirements, two new algorithms are defined and characterized which provide critical building blocks for network centricity: distributed asynchronous auctioning and predictive dynamic source routing. The first provides a reliable, efficient, effective approach for near-optimal assignment problems; the algorithm has been demonstrated to be a viable implementation for ad-hoc command and control, object/sensor pairing, and weapon/target assignment. The second is founded on traditional dynamic source routing (from mobile ad-hoc networking), but leverages the results of ad-hoc command and control (from the contributed auctioning algorithm) into significant increases in connection reliability through forward prediction. Emphasis is placed on the advantages gained from the closed-loop interaction of the multiple technologies in the network-centric application environment.

  8. Interagency Evaluation of the Section 1206 Global Train and Equip Program

    DTIC Science & Technology

    2009-08-31

    Capabilities, Joint Staff, U.S. Africa Command, U.S. Central Command, U.S Joint Forces Command, U.S. Pacific Command, U.S. Southern Command, U.S. Special...Intensity Conflict & Interdependent Capabilities; Commanders of U.S. Africa Command, U.S. Central Command, U.S. Joint Forces Command, U.S. Pacific... Central Command, commented that coordinating the Section 1206 project proposal with the partner nation prior to submission would inflate the

  9. 5. Command center doors at command center entry, building 501, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Command center doors at command center entry, building 501, looking north - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  10. The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei

    2012-01-01

    The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.

  11. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 3: Commands specification

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1990-01-01

    This volume (3 of 4) contains the specification for the command language for the AMPS system. The volume contains a requirements specification for the operating system and commands and a design specification for the operating system and command. The operating system and commands sits on top of the protocol. The commands are an extension of the present set of AMPS commands in that the commands are more compact, allow multiple sub-commands to be bundled into one command, and have provisions for identifying the sender and the intended receiver. The commands make no change to the actual software that implement the commands.

  12. Joint Chiefs of Staff > Media > Photos

    Science.gov Websites

    U.S. Army Gen. Curtis M. Scaparrotti, left, Commander of U.S. European Command and Supreme Allied , Commander of U.S. European Command and Supreme Allied Commander, Europe; speaks after receiving the . U.S. Army Gen. Curtis M. Scaparrotti, Commander of U.S. European Command and Supreme Allied Commander

  13. 32 CFR 700.1053 - Commander of a task force.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Commander of a task force. 700.1053 Section 700... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any other naval commander, may detail in command of a task force, or other task command, any eligible...

  14. STS-76 Flight Day 7

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this seventh day of the STS-76 mission, the flight crew, Cmdr. Kevin P. Chilton, Pilot Richard A Searfoss, and Mission Specialists Linda M. Godwin, Michael R. Clifford, and Ronald M. Sega are shown bidding the Mir crew and Shannon W. Lucid an emotional farewell, Chilton calling it 'a bittersweet moment.' The Atlantis and Mir commanders, Chilton and Onufrienko, along with spacewalkers Godwin and Clifford took time out to talk with CBS' 'Up to the Minute.' The space flyers discussed the success of their joint mission and the 6-hour spacewalk. The astronauts and cosmonauts exchanged handshakes and hugs in the Mir core module, and then praised both mission control centers, Houston and Kaliningrad for their support throughout the joint phase of the mission.

  15. The C3-System User. Volume II. Workshop Notes

    DTIC Science & Technology

    1977-02-01

    system that provides the means for operational direction and technical administrative support involved in the function of command and control of U.S...information systems of the Headquarters of the Military Depart- ments; the command and control systems of the Headquarters of the Service Component Commands...the Service Component Commands - Military Airlift Command - Military Sealift Command - Military Traffic Management Command - 3.2.5 Command and

  16. 32 CFR 700.703 - To announce assumption of command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...

  17. 32 CFR 700.703 - To announce assumption of command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...

  18. 32 CFR 536.8 - Responsibilities and operations of command claims services.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Responsibilities and operations of command claims... operations of command claims services. (a) Chiefs of command claims services. Chiefs of command claims... Commander USARCS, and assigned an office code. However, the chief of a command claims service may...

  19. 32 CFR 700.703 - To announce assumption of command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...

  20. 32 CFR 700.703 - To announce assumption of command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...

  1. 32 CFR 700.703 - To announce assumption of command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...

  2. 32 CFR 536.8 - Responsibilities and operations of command claims services.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Responsibilities and operations of command claims... operations of command claims services. (a) Chiefs of command claims services. Chiefs of command claims... Commander USARCS, and assigned an office code. However, the chief of a command claims service may...

  3. 32 CFR 536.8 - Responsibilities and operations of command claims services.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Responsibilities and operations of command claims... operations of command claims services. (a) Chiefs of command claims services. Chiefs of command claims... Commander USARCS, and assigned an office code. However, the chief of a command claims service may...

  4. The United States Navy Arctic Roadmap for 2014 to 2030

    DTIC Science & Technology

    2014-02-01

    of the Oceanographer of the Navy; the Chief of Naval Research; Commander, Naval Meteorology and Oceanography Command; Commander, Office of Naval...Q3, FY14 Q3, FY15 FY15-18 FY18 2.3.4: Improve traditional meteorological forecast capability in the polar regions through the...CNE Commander Naval Forces Europe CNIC Commander Navy Installations Command CNMOC Commander Naval Meteorology and Oceanography Command CNO Chief

  5. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  6. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  7. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  8. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  9. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Commanders of major Army commands. 536.14... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  10. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  11. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  12. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  13. 32 CFR 536.14 - Commanders of major Army commands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Commanders of major Army commands. 536.14... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...

  14. 32 CFR 536.12 - Commanding General, U.S. Army Medical Command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...

  15. The SAS-3 delayed command system

    NASA Technical Reports Server (NTRS)

    Hoffman, E. J.

    1975-01-01

    To meet the requirements arising from the increased complexity of the power, attitude control and telemetry systems, a full redundant high-performance control section with delayed command capability was designed for the Small Astronomy Satellite-3 (SAS-3). The relay command system of SAS-3 is characterized by 56 bystate relay commands, with capability for handling up to 64 commands in future versions. The 'short' data command service of SAS-1 and SAS-2 consisting of shifting 24-bit words to two users was expanded to five users and augmented with a 'long load' data command service (up to 4080 bits) used to program the telemetry system and the delayed command subsystem. The inclusion of a delayed command service ensures a program of up to 30 relay or short data commands to be loaded for execution at designated times. The design and system operation of the SAS-3 command section are analyzed, with special attention given to the delayed command subsystem.

  16. 14 CFR 91.1031 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...

  17. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...

  18. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in the Navy, eligible for command at sea and qualified for command of...

  19. 14 CFR 135.109 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation required. (a) Each certificate holder shall designate a— (1) Pilot in command for each flight; and (2...

  20. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...

  1. 14 CFR 1214.703 - Chain of command.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Chain of command. 1214.703 Section 1214.703... Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA astronaut who has been... particular flight and is second in command of the flight. If the commander is unable to carry out the...

  2. 14 CFR 135.109 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation required. (a) Each certificate holder shall designate a— (1) Pilot in command for each flight; and (2...

  3. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...

  4. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...

  5. 14 CFR 91.1031 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...

  6. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in the Navy, eligible for command at sea and qualified for command of...

  7. 14 CFR 1214.703 - Chain of command.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Chain of command. 1214.703 Section 1214.703... Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA astronaut who has been... particular flight and is second in command of the flight. If the commander is unable to carry out the...

  8. 14 CFR 91.1031 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...

  9. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in the Navy, eligible for command at sea and qualified for command of...

  10. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in the Navy, eligible for command at sea and qualified for command of...

  11. 14 CFR 135.109 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation required. (a) Each certificate holder shall designate a— (1) Pilot in command for each flight; and (2...

  12. 14 CFR 135.109 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation required. (a) Each certificate holder shall designate a— (1) Pilot in command for each flight; and (2...

  13. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in the Navy, eligible for command at sea and qualified for command of...

  14. 32 CFR 724.405 - Commandant of the Marine Corps or the Commander, Naval Military Personnel Command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Commandant of the Marine Corps or the Commander, Naval Military Personnel Command. 724.405 Section 724.405 National Defense Department of Defense... Personnel Command. Personnel managers of the Marine Corps and the Navy; responsible for providing limited...

  15. 14 CFR 1214.703 - Chain of command.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Chain of command. 1214.703 Section 1214.703... Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA astronaut who has been... particular flight and is second in command of the flight. If the commander is unable to carry out the...

  16. 14 CFR 1214.703 - Chain of command.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Chain of command. 1214.703 Section 1214.703... Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA astronaut who has been... particular flight and is second in command of the flight. If the commander is unable to carry out the...

  17. 14 CFR 135.109 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot in command or second in command... ON BOARD SUCH AIRCRAFT Flight Operations § 135.109 Pilot in command or second in command: Designation required. (a) Each certificate holder shall designate a— (1) Pilot in command for each flight; and (2...

  18. 14 CFR 91.1031 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...

  19. 14 CFR 91.1031 - Pilot in command or second in command: Designation required.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Pilot in command or second in command... RULES Fractional Ownership Operations Program Management § 91.1031 Pilot in command or second in command: Designation required. (a) Each program manager must designate a— (1) Pilot in command for each program flight...

  20. Re-engineering the Multimission Command System at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Alexander, Scott; Biesiadecki, Jeff; Cox, Nagin; Murphy, Susan C.; Reeve, Tim

    1994-01-01

    The Operations Engineering Lab (OEL) at JPL has developed the multimission command system as part of JPL's Advanced Multimission Operations System. The command system provides an advanced multimission environment for secure, concurrent commanding of multiple spacecraft. The command functions include real-time command generation, command translation and radiation, status reporting, some remote control of Deep Space Network antenna functions, and command file management. The mission-independent architecture has allowed easy adaptation to new flight projects and the system currently supports all JPL planetary missions (Voyager, Galileo, Magellan, Ulysses, Mars Pathfinder, and CASSINI). This paper will discuss the design and implementation of the command software, especially trade-offs and lessons learned from practical operational use. The lessons learned have resulted in a re-engineering of the command system, especially in its user interface and new automation capabilities. The redesign has allowed streamlining of command operations with significant improvements in productivity and ease of use. In addition, the new system has provided a command capability that works equally well for real-time operations and within a spacecraft testbed. This paper will also discuss new development work including a multimission command database toolkit, a universal command translator for sequencing and real-time commands, and incorporation of telecommand capabilities for new missions.

  1. STS-79 Liftoff of Shuttle Atlantis (front view portrait)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis roars into the night from Launch Pad 39A. Liftoff on the 79th Shuttle mission occurred on time at 4:54:49 a.m. EDT, Sept. 16. The 10-day spaceflight will be highlighted by the fourth docking between the U.S. Space Shuttle and Russian Space Station Mir and the first in a series of crew exchanges aboard the station. Leading the STS-79 crew is Commander William F. Readdy. The pilot is Terrence W. Wilcutt, and the four mission specialists making the trip to Mir are Jay Apt, Thomas D. Akers, Carl E. Walz and John E. Blaha. Blaha will exchange places on Mir with U.S. astronaut Shannon W. Lucid, who will return to Earth with the STS-79 flight crew after a record- setting stay on the Russian station. STS-79 is the second Shuttle-Mir mission to carry a SPACEHAB module on board and the first to carry a double module. The STS-79 mission is part of the NASA/Mir program which is now into the Phase 1B portion, consisting of nine Shuttle-Mir docking flights and seven long- duration flights of U.S. astronauts aboard the station between early 1996 and late 1998.

  2. Biconic cargo return vehicle with an advanced recovery system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The current space exploration initiative is focused around the development of the Space Station Freedom (SSF). Regular resupply missions must support a full crew on the station. The present mission capability of the shuttle is insufficient, making it necessary to find an alternative. One alternative is a reusable Cargo Return Vehicle (CRV). The suggested design is a biconic shaped, dry land recovery CRV with an advance recovery system (ARC). A liquid rocket booster will insert the CRV into a low Earth orbit. Three onboard liquid hydrogen/liquid oxygen engines are used to reach the orbit of the station. The CRV will dock to the station and cargo exchange will take place. Within the command and control zone (CCZ), the CRV will be controlled by a gaseous nitrogen reaction control system (RCS). The CRV will have the capability to exchange the payload with the Orbital Maneuvering Vehicle (OMV). The bent biconic shape will give the CRV sufficient crossrange to reach Edwards Air Force Base and several alternative sites. Near the landing site, a parafoil-shaped ARS is deployed. The CRV is designed to carry a payload of 40 klb, and has an unloaded weight of 35 klb.

  3. STS-79 Liftoff of Shuttle Atlantis (below SRB)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis roars into the night from Launch Pad 39A. Liftoff on the 79th Shuttle mission occurred on time at 4:54:49 a.m. EDT, Sept. 16. The 10-day spaceflight will be highlighted by the fourth docking between the U.S. Space Shuttle and Russian Space Station Mir and the first in a series of crew exchanges aboard the station. Leading the STS-79 crew is Commander William F. Readdy. The pilot is Terrence W. Wilcutt, and the four mission specialists making the trip to Mir are Jay Apt, Thomas D. Akers, Carl E. Walz and John E. Blaha. Blaha will exchange places on Mir with U.S. astronaut Shannon W. Lucid, who will return to Earth with the STS-79 flight crew after a record- setting stay on the Russian station. STS-79 is the second Shuttle-Mir mission to carry a SPACEHAB module on board and the first to carry a double module. The STS-79 mission is part of the NASA/Mir program which is now into the Phase 1B portion, consisting of nine Shuttle-Mir docking flights and seven long- duration flights of U.S. astronauts aboard the station between early 1996 and late 1998.

  4. High field ESR study of the pi-d interaction effect in beta-(BDA-TTP)2MCl4 (M=Fe, Ga)

    NASA Astrophysics Data System (ADS)

    Tokumoto, Takahisa; Vantol, J.; Brunel, L.-C.; Choi, E. S.; Brooks, J. S.; Kaihatsu, T.; Akutsu, H.; Yamada, J.

    2007-03-01

    Novel magnetic organic conductors with pi-d interaction have commanded attention since the discovery of field induced superconductivity. One of them, beta-(BDA-TTP)2FeCl4, has alternating donor molecules and quasi 2D electrical properties. Previous studies of electrical and magnetic properties show an M-I transition at 120K and an AF transition at TN=8.5K, suggesting an exchange interaction between the conduction electrons and the Fe^3+ d-electrons. The properties of beta-(BDA-TTP)2GaCl4 are similar with exception of the absence of the AF transition, which is apparently due to the absence of pi-d exchange interaction. We report angular/temperature dependent 240GHz quasi optical ESR measurements on both compounds to probe the magnetic properties. The Ga compound signals follow the donor molecule structure, and show no magnetic order at any temperature. The Fe compound signals are quite different from the Ga compound, and exhibit AF behavior below TN. The difference of Fe and Ga compounds will be discussed in terms of the interaction between localized and itinerant magnetic moments.

  5. STS-79 Liftoff of Shuttle Atlantis (side view portrait)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis roars into the night from Launch Pad 39A. Liftoff on the 79th Shuttle mission occurred on time at 4:54:49 a.m. EDT, Sept. 16. The 10-day spaceflight will be highlighted by the fourth docking between the U.S. Space Shuttle and Russian Space Station Mir and the first in a series of crew exchanges aboard the station. Leading the STS-79 crew is Commander William F. Readdy. The pilot is Terrence W. Wilcutt, and the four mission specialists making the trip to Mir are Jay Apt, Thomas D. Akers, Carl E. Walz and John E. Blaha. Blaha will exchange places on Mir with U.S. astronaut Shannon W. Lucid, who will return to Earth with the STS-79 flight crew after a record- setting stay on the Russian station. STS-79 is the second Shuttle-Mir mission to carry a SPACEHAB module on board and the first to carry a double module. The STS-79 mission is part of the NASA/Mir program which is now into the Phase 1B portion, consisting of nine Shuttle-Mir docking flights and seven long- duration flights of U.S. astronauts aboard the station between early 1996 and late 1998.

  6. STS-79 Liftoff of Shuttle Atlantis (front view landscape)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis roars into the night from Launch Pad 39A. Liftoff on the 79th Shuttle mission occurred on time at 4:54:49 a.m. EDT, Sept. 16. The 10-day spaceflight will be highlighted by the fourth docking between the U.S. Space Shuttle and Russian Space Station Mir and the first in a series of crew exchanges aboard the station. Leading the STS-79 crew is Commander William F. Readdy. The pilot is Terrence W. Wilcutt, and the four mission specialists making the trip to Mir are Jay Apt, Thomas D. Akers, Carl E. Walz and John E. Blaha. Blaha will exchange places on Mir with U.S. astronaut Shannon W. Lucid, who will return to Earth with the STS-79 flight crew after a record- setting stay on the Russian station. STS-79 is the second Shuttle-Mir mission to carry a SPACEHAB module on board and the first to carry a double module. The STS-79 mission is part of the NASA/Mir program which is now into the Phase 1B portion, consisting of nine Shuttle-Mir docking flights and seven long- duration flights of U.S. astronauts aboard the station between early 1996 and late 1998.

  7. STS-79 LIFTS OFF FROM PAD 39A

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis roars into the night from Launch Pad 39A. Liftoff on the 79th Shuttle mission occurred on time at 4:54:49 a.m. EDT, Sept. 16. The 10-day spaceflight will be highlighted by the fourth docking between the U.S. Space Shuttle and Russian Space Station Mir and the first in a series of crew exchanges aboard the station. Leading the STS-79 crew is Commander William F. Readdy. The pilot is Terrence W. Wilcutt, and the four mission specialists making the trip to Mir are Jay Apt, Thomas D. Akers, Carl E. Walz and John E. Blaha. Blaha will exchange places on Mir with U.S. astronaut Shannon W. Lucid, who will return to Earth with the STS-79 flight crew after a record- setting stay on the Russian station. STS-79 is the second Shuttle-Mir mission to carry a SPACEHAB module on board and the first to carry a double module. The STS- 79 mission is part of the NASA/Mir program which is now into the Phase 1B portion, consisting of nine Shuttle-Mir docking flights and seven long- duration flights of U.S. astronauts aboard the station between early 1996 and late 1998.

  8. 14 CFR § 1214.703 - Chain of command.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Chain of command. § 1214.703 Section Â... of the Space Shuttle Commander § 1214.703 Chain of command. (a) The Commander is a career NASA... the pilot on a particular flight and is second in command of the flight. If the commander is unable to...

  9. Evaluation of Organisational Interoperabiity in a Network Centric Warfare Environment

    DTIC Science & Technology

    2004-09-01

    understanding developed. Command and Coordination examines issues related to command structure, command and leadership styles . Ethos covers socio...harmonisation of command arrangements and the accommodation of differences in command and leadership styles . 3.2.4 Ethos Future warfare will... leadership styles . • changes to give less emphasis to hierarchy and command and more to coordination. Any reference to a single chain of command has been

  10. Fuel cell system logic for differentiating between rapid and normal shutdown commands

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2000-01-01

    A method of controlling the operation of a fuel cell system wherein each shutdown command for the system is subjected to decision logic which determines whether the command should be a normal shutdown command or rapid shutdown command. If the logic determines that the shutdown command should be a normal shutdown command, then the system is shutdown in a normal step-by-step process in which the hydrogen stream is consumed within the system. If the logic determines that the shutdown command should be a rapid shutdown command, the hydrogen stream is removed from the system either by dumping to atmosphere or routing to storage.

  11. 75 FR 19627 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... address: Delete entry and replace with ``Commander, Navy Personnel Command (PERS-31), 5720 Integrity Drive... to the Commander, Navy Personnel Command (PERS-312), 5720 Integrity Drive, Millington, TN 38055-3120... should address written inquiries to Commander, Navy Personnel Command (PERS- 312), 5720 Integrity Drive...

  12. 32 CFR 700.860 - Customs and immigration inspections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Commanding Officer Commanding Officers Afloat § 700.860 Customs and immigration inspections. (a) The commanding officer or aircraft commander shall facilitate any proper examination which it may be the duty of.... The commanding officer or air craft commander shall not permit a foreign customs officer or an...

  13. 32 CFR 700.860 - Customs and immigration inspections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Commanding Officer Commanding Officers Afloat § 700.860 Customs and immigration inspections. (a) The commanding officer or aircraft commander shall facilitate any proper examination which it may be the duty of.... The commanding officer or air craft commander shall not permit a foreign customs officer or an...

  14. 32 CFR 700.860 - Customs and immigration inspections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Commanding Officer Commanding Officers Afloat § 700.860 Customs and immigration inspections. (a) The commanding officer or aircraft commander shall facilitate any proper examination which it may be the duty of.... The commanding officer or air craft commander shall not permit a foreign customs officer or an...

  15. 32 CFR 700.860 - Customs and immigration inspections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Commanding Officer Commanding Officers Afloat § 700.860 Customs and immigration inspections. (a) The commanding officer or aircraft commander shall facilitate any proper examination which it may be the duty of.... The commanding officer or air craft commander shall not permit a foreign customs officer or an...

  16. 32 CFR 700.860 - Customs and immigration inspections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Commanding Officer Commanding Officers Afloat § 700.860 Customs and immigration inspections. (a) The commanding officer or aircraft commander shall facilitate any proper examination which it may be the duty of.... The commanding officer or air craft commander shall not permit a foreign customs officer or an...

  17. 32 CFR 700.804 - Organization of commands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Organization of commands. 700.804 Section 700... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.804 Organization of commands. All commands and other activities of the...

  18. 32 CFR 700.804 - Organization of commands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Organization of commands. 700.804 Section 700... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.804 Organization of commands. All commands and other activities of the...

  19. 32 CFR 700.804 - Organization of commands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Organization of commands. 700.804 Section 700... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.804 Organization of commands. All commands and other activities of the...

  20. 32 CFR 700.804 - Organization of commands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Organization of commands. 700.804 Section 700... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.804 Organization of commands. All commands and other activities of the...

  1. 32 CFR 700.804 - Organization of commands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Organization of commands. 700.804 Section 700... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.804 Organization of commands. All commands and other activities of the...

  2. On the role of exchange of power and information signals in control and stability of the human-robot interaction

    NASA Technical Reports Server (NTRS)

    Kazerooni, H.

    1991-01-01

    A human's ability to perform physical tasks is limited, not only by his intelligence, but by his physical strength. If, in an appropriate environment, a machine's mechanical power is closely integrated with a human arm's mechanical power under the control of the human intellect, the resulting system will be superior to a loosely integrated combination of a human and a fully automated robot. Therefore, we must develop a fundamental solution to the problem of 'extending' human mechanical power. The work presented here defines 'extenders' as a class of robot manipulators worn by humans to increase human mechanical strength, while the wearer's intellect remains the central control system for manipulating the extender. The human, in physical contact with the extender, exchanges power and information signals with the extender. The aim is to determine the fundamental building blocks of an intelligent controller, a controller which allows interaction between humans and a broad class of computer-controlled machines via simultaneous exchange of both power and information signals. The prevalent trend in automation has been to physically separate the human from the machine so the human must always send information signals via an intermediary device (e.g., joystick, pushbutton, light switch). Extenders, however are perfect examples of self-powered machines that are built and controlled for the optimal exchange of power and information signals with humans. The human wearing the extender is in physical contact with the machine, so power transfer is unavoidable and information signals from the human help to control the machine. Commands are transferred to the extender via the contact forces and the EMG signals between the wearer and the extender. The extender augments human motor ability without accepting any explicit commands: it accepts the EMG signals and the contact force between the person's arm and the extender, and the extender 'translates' them into a desired position. In this unique configuration, mechanical power transfer between the human and the extender occurs because the human is pushing against the extender. The extender transfers to the human's hand, in feedback fashion, a scaled-down version of the actual external load which the extender is manipulating. This natural feedback force on the human's hand allows him to 'feel' a modified version of the external forces on the extender. The information signals from the human (e.g., EMG signals) to the computer reflect human cognitive ability, and the power transfer between the human and the machine (e.g., physical interaction) reflects human physical ability. Thus the information transfer to the machine augments cognitive ability, and the power transfer augments motor ability. These two actions are coupled through the human cognitive/motor dynamic behavior. The goal is to derive the control rules for a class of computer-controlled machines that augment human physical and cognitive abilities in certain manipulative tasks.

  3. 7. General view of command center, building 501, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. General view of command center, building 501, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  4. 6. General view of command center, building 501, looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. General view of command center, building 501, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  5. 32 CFR 724.306 - Functions of the Commander, Naval Medical Command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Functions of the Commander, Naval Medical Command. 724.306 Section 724.306 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... § 724.306 Functions of the Commander, Naval Medical Command. Under the CNO the COMNAVMEDCOM shall...

  6. 32 CFR 755.6 - Action where offenders are members of one command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... command. 755.6 Section 755.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of one command. (a) Action by commanding officer. The commanding... declines to submit information, he shall so state in writing within the 20 day period. The commanding...

  7. 32 CFR 724.306 - Functions of the Commander, Naval Medical Command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Functions of the Commander, Naval Medical Command. 724.306 Section 724.306 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... § 724.306 Functions of the Commander, Naval Medical Command. Under the CNO the COMNAVMEDCOM shall...

  8. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...

  9. 32 CFR 755.6 - Action where offenders are members of one command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... command. 755.6 Section 755.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of one command. (a) Action by commanding officer. The commanding... declines to submit information, he shall so state in writing within the 20 day period. The commanding...

  10. 32 CFR 755.6 - Action where offenders are members of one command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... command. 755.6 Section 755.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of one command. (a) Action by commanding officer. The commanding... declines to submit information, he shall so state in writing within the 20 day period. The commanding...

  11. 32 CFR 755.6 - Action where offenders are members of one command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... command. 755.6 Section 755.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of one command. (a) Action by commanding officer. The commanding... declines to submit information, he shall so state in writing within the 20 day period. The commanding...

  12. 32 CFR 724.306 - Functions of the Commander, Naval Medical Command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Functions of the Commander, Naval Medical Command. 724.306 Section 724.306 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... § 724.306 Functions of the Commander, Naval Medical Command. Under the CNO the COMNAVMEDCOM shall...

  13. 32 CFR 724.306 - Functions of the Commander, Naval Medical Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Functions of the Commander, Naval Medical Command. 724.306 Section 724.306 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... § 724.306 Functions of the Commander, Naval Medical Command. Under the CNO the COMNAVMEDCOM shall...

  14. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...

  15. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...

  16. 32 CFR 755.6 - Action where offenders are members of one command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... command. 755.6 Section 755.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... Action where offenders are members of one command. (a) Action by commanding officer. The commanding... declines to submit information, he shall so state in writing within the 20 day period. The commanding...

  17. 32 CFR 724.306 - Functions of the Commander, Naval Medical Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Functions of the Commander, Naval Medical Command. 724.306 Section 724.306 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... § 724.306 Functions of the Commander, Naval Medical Command. Under the CNO the COMNAVMEDCOM shall...

  18. 11. SAC command center, main operations area, underground structure, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SAC command center, main operations area, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  19. 4. Sac shield at entry of command center, building 501, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Sac shield at entry of command center, building 501, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  20. 9. SAC command center, main operations area, underground structure, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. SAC command center, main operations area, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  1. 13. SAC command center, weather center, underground structure, building 501, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SAC command center, weather center, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  2. Navy Operational Planner

    DTIC Science & Technology

    2015-03-01

    wine warfare NCC naval component commander NFC numbered fleet commander NM nautical mile NMP Navy mission planner NOP Navy...principles for naval component commanders ( NCCs ), numbered fleet commanders (NFCs) or joint force maritime component commanders (JFMCCs) and their

  3. Reaction Decoder Tool (RDT): extracting features from chemical reactions.

    PubMed

    Rahman, Syed Asad; Torrance, Gilliean; Baldacci, Lorenzo; Martínez Cuesta, Sergio; Fenninger, Franz; Gopal, Nimish; Choudhary, Saket; May, John W; Holliday, Gemma L; Steinbeck, Christoph; Thornton, Janet M

    2016-07-01

    Extracting chemical features like Atom-Atom Mapping (AAM), Bond Changes (BCs) and Reaction Centres from biochemical reactions helps us understand the chemical composition of enzymatic reactions. Reaction Decoder is a robust command line tool, which performs this task with high accuracy. It supports standard chemical input/output exchange formats i.e. RXN/SMILES, computes AAM, highlights BCs and creates images of the mapped reaction. This aids in the analysis of metabolic pathways and the ability to perform comparative studies of chemical reactions based on these features. This software is implemented in Java, supported on Windows, Linux and Mac OSX, and freely available at https://github.com/asad/ReactionDecoder : asad@ebi.ac.uk or s9asad@gmail.com. © The Author 2016. Published by Oxford University Press.

  4. Computer aided control of a mechanical arm

    NASA Technical Reports Server (NTRS)

    Derocher, W. L., Jr.; Zermuehlen, r. O.

    1979-01-01

    A method for computer-aided remote control of a six-degree-of-freedom manipulator arm involved in the on-orbit servicing of a spacecraft is presented. The control configuration features a supervisory type of control in which each of the segments of a module exchange trajectory is controlled automatically under human supervision, with manual commands to proceed to the next step and in the event of a failure or undesirable outcome. The implementation of the supervisory system is discussed in terms of necessary onboard and ground- or Orbiter-based hardware and software, and a one-g demonstration system built to allow further investigation of system operation is described. Possible applications of the system include the construction of satellite solar power systems, environmental testing and the control of heliostat solar power stations.

  5. STS-112 Flight Day 10 Highlights

    NASA Astrophysics Data System (ADS)

    2002-10-01

    On Flight Day 10 of the STS-112 mission, its crew (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Mission Specialist; Piers Sellers, Mission Specialist; Sandra Magnus, Mission Specialist; Fyodor Yurchikhin, Mission Specialist) on the Atlantis and the Expedition 5 crew on the International Space Station (ISS) (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer) are shown exchanging farewells in the ISS's Destiny Laboratory Module following the completion of a week-long period of docked operations. The Expedition 5 crew is nearing the end of five and a half continuous months aboard the space station. Following the closing of the hatches, the Atlantis Orbiter undocks from the station, and Melroy pilots the shuttle slowly away from the ISS, and engages in a radial fly-around of the station. During the fly-around cameras aboard Atlantis shows ISS from a number of angles. ISS cameras also show Atlantis. There are several shots of each craft with a variety of background settings including the Earth, its limb, and open space. The video concludes with a live interview of Ashby, Melroy and Yurchikhin, still aboard Atlantis, conducted by a reporter on the ground. Questions range from feelings on the conclusion of the mission to the experience of being in space. The primary goal of the mission was the installation of the Integrated Truss Structure S1 on the ISS.

  6. The Isonzo front in the First World War: glass ampoules found in the vicinity of the village Kred.

    PubMed

    Krbavcic, Ales

    2015-01-01

    To identify the contents of ampoules stored items at the WW I Kobarid Museum, Slovenia. Sources and methods: Analysis of ampoules from the Kobarid Museum using pharmacopoeial methods. The contents of the unlabelled ampoules were identified as calcium hypochlorite, a decontaminant for mustard gas (Yperite). The Isonzo front/Soška fronta was opened on May 24 1915 by the Kingdom of Italy according to a secret London Treaty. In exchange for the opening of this front, the Kingdom of Italy would be granted large tracts of territory in the wesster provinces of the Austro-Hungarian Empire and along the Adriatic coast. The ensuing trench-warfare during the eleven Isonzo battles ended with the 12th battle known as the Kobarid/Karfeit/Caporetto break-thru in October 1917. The joint German and Austro-Hungarian forces waged a massive gas-attack with dichloroarsine and phosgene, which was later disclosed as the horrifying overture to the general disordered retreat of the Italian troops to Piave. The possibility of a chemical attack was underestimated by the Italian high command as shown by the ineffective gas-masks issued to the troops. Hovewer, a recent find of ampoules with calcium hypochlorite at the village of Kred, now exhibited at the Kobarid WWI Museum, leads to the conclusion that the Italian IVth army's command, located in Kred, considered decontamination measures against Yperite necessary.

  7. A feedback linearization approach to spacecraft control using momentum exchange devices. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Dzielski, John Edward

    1988-01-01

    Recent developments in the area of nonlinear control theory have shown how coordiante changes in the state and input spaces can be used with nonlinear feedback to transform certain nonlinear ordinary differential equations into equivalent linear equations. These feedback linearization techniques are applied to resolve two problems arising in the control of spacecraft equipped with control moment gyroscopes (CMGs). The first application involves the computation of rate commands for the gimbals that rotate the individual gyroscopes to produce commanded torques on the spacecraft. The second application is to the long-term management of stored momentum in the system of control moment gyroscopes using environmental torques acting on the vehicle. An approach to distributing control effort among a group of redundant actuators is described that uses feedback linearization techniques to parameterize sets of controls which influence a specified subsystem in a desired way. The approach is adapted for use in spacecraft control with double-gimballed gyroscopes to produce an algorithm that avoids problematic gimbal configurations by approximating sets of gimbal rates that drive CMG rotors into desirable configurations. The momentum management problem is stated as a trajectory optimization problem with a nonlinear dynamical constraint. Feedback linearization and collocation are used to transform this problem into an unconstrainted nonlinear program. The approach to trajectory optimization is fast and robust. A number of examples are presented showing applications to the proposed NASA space station.

  8. STS-112 Flight Day 10 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Flight Day 10 of the STS-112 mission, its crew (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Mission Specialist; Piers Sellers, Mission Specialist; Sandra Magnus, Mission Specialist; Fyodor Yurchikhin, Mission Specialist) on the Atlantis and the Expedition 5 crew on the International Space Station (ISS) (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer) are shown exchanging farewells in the ISS's Destiny Laboratory Module following the completion of a week-long period of docked operations. The Expedition 5 crew is nearing the end of five and a half continuous months aboard the space station. Following the closing of the hatches, the Atlantis Orbiter undocks from the station, and Melroy pilots the shuttle slowly away from the ISS, and engages in a radial fly-around of the station. During the fly-around cameras aboard Atlantis shows ISS from a number of angles. ISS cameras also show Atlantis. There are several shots of each craft with a variety of background settings including the Earth, its limb, and open space. The video concludes with a live interview of Ashby, Melroy and Yurchikhin, still aboard Atlantis, conducted by a reporter on the ground. Questions range from feelings on the conclusion of the mission to the experience of being in space. The primary goal of the mission was the installation of the Integrated Truss Structure S1 on the ISS.

  9. Torque shudder protection device and method

    DOEpatents

    King, Robert D.; De Doncker, Rik W. A. A.; Szczesny, Paul M.

    1997-01-01

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency.

  10. Torque shudder protection device and method

    DOEpatents

    King, R.D.; Doncker, R.W.A.A. De.; Szczesny, P.M.

    1997-03-11

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency. 5 figs.

  11. 10. SAC command center, main operations area, underground structure, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. SAC command center, main operations area, underground structure, building 501, circa 1980 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  12. 12. SAC command center, main operations area, underground structure, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. SAC command center, main operations area, underground structure, building 501, circa 1960 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  13. 32 CFR 700.1054 - Command of a naval base.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a naval base. 700.1054 Section 700... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval base shall be an officer of the line in the Navy, eligible for command at sea. ...

  14. 32 CFR 700.1054 - Command of a naval base.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a naval base. 700.1054 Section 700... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval base shall be an officer of the line in the Navy, eligible for command at sea. ...

  15. 32 CFR 700.1056 - Command of a ship.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer detailed...

  16. 32 CFR 700.1054 - Command of a naval base.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a naval base. 700.1054 Section 700... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval base shall be an officer of the line in the Navy, eligible for command at sea. ...

  17. 32 CFR 700.1054 - Command of a naval base.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a naval base. 700.1054 Section 700... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval base shall be an officer of the line in the Navy, eligible for command at sea. ...

  18. 32 CFR 700.1054 - Command of a naval base.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a naval base. 700.1054 Section 700... Command Detail to Duty § 700.1054 Command of a naval base. The officer detailed to command a naval base shall be an officer of the line in the Navy, eligible for command at sea. ...

  19. 32 CFR 700.1056 - Command of a ship.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer detailed...

  20. 32 CFR 700.1056 - Command of a ship.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer detailed...

  1. 32 CFR 700.1056 - Command of a ship.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer detailed...

  2. 32 CFR 700.1056 - Command of a ship.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a ship. 700.1056 Section 700.1056... Command Detail to Duty § 700.1056 Command of a ship. (a) The officer detailed to command a commissioned ship shall be an officer of the line in the Navy eligible for command at sea. (b) The officer detailed...

  3. NASIS data base management system: IBM 360 TSS implementation. Volume 5: Retrieval command system reference manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The retrieval command subsystem reference manual for the NASA Aerospace Safety Information System (NASIS) is presented. The command subsystem may be operated conversationally or in the batch mode. Retrieval commands are categorized into search-oriented and output-oriented commands. The characteristics of ancillary commands and their application are reported.

  4. 8. SAC command center underground structure, building 501, basement entry, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SAC command center underground structure, building 501, basement entry, machine room, April 11, 1955 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  5. Squad-Level Soldier-Robot Dynamics: Exploring Future Concepts Involving Intelligent Autonomous Robots

    DTIC Science & Technology

    2015-02-01

    unanimous for the run and duck commands as other commands commonly used. The verbal commands surveyed, as well as other suggested verbal commands that...stop, and duck . Additional verbal commands suggested were shut down, follow, destroy, status, and move out. The verbal commands surveyed and the...identify the verbal commands you would use to control the squad and the ASM: Phrase Yes No Halt 9 3 Stop 9 3 Move 11 1 Run 7 5 Duck 6 6 Other

  6. Defense.gov - Special Report - Travels With Mullen

    Science.gov Websites

    European Command’s change of command ceremony. Top Stories Stavridis Assumes Top European Command Post the top post at U.S. European Command. He will also serve as NATO's supreme allied commander for

  7. 32 CFR 700.1057 - Command of an air activity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of an air activity. 700.1057 Section 700... Command Detail to Duty § 700.1057 Command of an air activity. (a) The officer detailed to command a naval... for command at sea. (b) For the purposes of Title 10 U.S.C. § 5942, a naval air training squadron is...

  8. 78 FR 72025 - Security Zones; Naval Base Point Loma; Naval Mine Anti Submarine Warfare Command; San Diego Bay...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ...-AA87 Security Zones; Naval Base Point Loma; Naval Mine Anti Submarine Warfare Command; San Diego Bay... establishing a new security zone at the Naval Mine and Anti-Submarine Warfare Command to protect the relocated... Commander of Naval Base Point Loma, the Commander of the Naval Mine Anti Submarine Warfare Command, and the...

  9. 32 CFR 700.1057 - Command of an air activity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Command of an air activity. 700.1057 Section 700... Command Detail to Duty § 700.1057 Command of an air activity. (a) The officer detailed to command a naval... for command at sea. (b) For the purposes of Title 10 U.S.C. § 5942, a naval air training squadron is...

  10. 32 CFR 700.1057 - Command of an air activity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of an air activity. 700.1057 Section 700... Command Detail to Duty § 700.1057 Command of an air activity. (a) The officer detailed to command a naval... for command at sea. (b) For the purposes of Title 10 U.S.C. § 5942, a naval air training squadron is...

  11. 32 CFR 700.1057 - Command of an air activity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of an air activity. 700.1057 Section 700... Command Detail to Duty § 700.1057 Command of an air activity. (a) The officer detailed to command a naval... for command at sea. (b) For the purposes of Title 10 U.S.C. § 5942, a naval air training squadron is...

  12. 32 CFR 700.1057 - Command of an air activity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of an air activity. 700.1057 Section 700... Command Detail to Duty § 700.1057 Command of an air activity. (a) The officer detailed to command a naval... for command at sea. (b) For the purposes of Title 10 U.S.C. § 5942, a naval air training squadron is...

  13. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  14. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  15. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  16. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  17. 14 CFR 417.303 - Command control system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...

  18. Defense Headquarters: Geographic Combatant Commands Rely on Subordinate Commands for Mission Management and Execution

    DTIC Science & Technology

    2016-06-30

    These figures do not include personnel performing contract services. The service component commands , subordinate unified commands , and joint task forces...GAO has previously found that the combatant commands do not have oversight or visibility over authorized manpower or assigned personnel at the...Jack Reed Ranking Member Committee on Armed Services United States Senate Defense Headquarters: Geographic Combatant Commands Rely on Subordinate

  19. United States Forces Korea > Home

    Science.gov Websites

    commander; Gen. Leem Ho Young, Combined Forces Command deputy commander; and Gen. Lee Sun-jin, Gen. Lee, Sun Forces Command deputy commander; and Gen. Lee Sun-jin, Gen. Lee, Sun-Jin, Chairman of the Republic of deputy commander; and Gen. Lee Sun-jin, Gen. Lee, Sun-Jin, Chairman of the Republic of Korea Joint Chiefs

  20. Incomplete Victory: General Allenby and Mission Command in Palestine, 1917-1918

    DTIC Science & Technology

    2012-12-14

    challenges in mission command. While General Allenby, commanding the Allied Egyptian Expeditionary Force (EEF), gained several victories in the...challenges in mission command. While General Allenby, commanding the Allied Egyptian Expeditionary Force (EEF), gained several victories in the early stages...

  1. Numerical Electromagnetic Code (NEC)-Basic Scattering Code. Part I. User’s Manual.

    DTIC Science & Technology

    1979-09-01

    Command RT : 29 I. Command PG: 32 J. Command GP: 35 K. Command CG: 36 L. Command SG: 39 M. Command AM: 44 N. Conumand PR: 48 0. Command NP: 49 P...these points and con- firm the validity of the solution. 1 0 1 -.- ’----.- ... The source presently considered in the computer code is an Plec - tric...Range Input 28 * RT : Translate and/or Rotate Coordinates 29 SG: Source Geometry Input IQ TO: Test Data Generation Options 17 [IN: Units of Input U)S

  2. NORAD

    Science.gov Websites

    TERRENCE J. O'SHAUGHNESSY, USAF Command, United States Northern Command VIEW BIO LIEUTENANT GENERAL REYNOLD N. HOOVER, USA Deputy Commander, United States Northern Command VIEW BIO MAJOR GENERAL PEGGY C . COMBS, USA Chief of Staff, United States Northern Command VIEW BIO SERGEANT MAJOR PAUL MCKENNA, USMC

  3. 32 CFR 700.856 - Pilotage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.856 Pilotage. (a) The commanding officer shall: (1) Pilot the ship under all ordinary... to the commanding officer. The presence on board of a pilot shall not relieve the commanding officer...

  4. 32 CFR 700.856 - Pilotage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.856 Pilotage. (a) The commanding officer shall: (1) Pilot the ship under all ordinary... to the commanding officer. The presence on board of a pilot shall not relieve the commanding officer...

  5. 32 CFR 700.859 - Quarantine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...

  6. 32 CFR 700.856 - Pilotage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.856 Pilotage. (a) The commanding officer shall: (1) Pilot the ship under all ordinary... to the commanding officer. The presence on board of a pilot shall not relieve the commanding officer...

  7. 32 CFR 700.859 - Quarantine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...

  8. 32 CFR 700.859 - Quarantine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...

  9. 32 CFR 700.859 - Quarantine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...

  10. 32 CFR 700.856 - Pilotage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.856 Pilotage. (a) The commanding officer shall: (1) Pilot the ship under all ordinary... to the commanding officer. The presence on board of a pilot shall not relieve the commanding officer...

  11. 32 CFR 700.856 - Pilotage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.856 Pilotage. (a) The commanding officer shall: (1) Pilot the ship under all ordinary... to the commanding officer. The presence on board of a pilot shall not relieve the commanding officer...

  12. 32 CFR 700.859 - Quarantine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...

  13. 32 CFR 724.406 - Commander, Naval Medical Command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Commander, Naval Medical Command. 724.406 Section 724.406 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Medical Command. Custodian of Navy and Marine Corps health records. (See subpart C). ...

  14. 32 CFR 724.406 - Commander, Naval Medical Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Commander, Naval Medical Command. 724.406 Section 724.406 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Medical Command. Custodian of Navy and Marine Corps health records. (See subpart C). ...

  15. 32 CFR 724.406 - Commander, Naval Medical Command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Commander, Naval Medical Command. 724.406 Section 724.406 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Medical Command. Custodian of Navy and Marine Corps health records. (See subpart C). ...

  16. 32 CFR 724.406 - Commander, Naval Medical Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Commander, Naval Medical Command. 724.406 Section 724.406 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Medical Command. Custodian of Navy and Marine Corps health records. (See subpart C). ...

  17. 32 CFR 724.406 - Commander, Naval Medical Command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Commander, Naval Medical Command. 724.406 Section 724.406 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Medical Command. Custodian of Navy and Marine Corps health records. (See subpart C). ...

  18. 48 CFR 202.101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Command Air Force Materiel Command Air Force Reserve Command Air Combat Command Air Mobility Command Air... agencies have been delegated authority to act as head of the agency for their respective agencies (i.e., to... offers, means a procedure used in negotiated acquisitions, when market research is inconclusive for...

  19. 75 FR 49482 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... replace with ``Incident Report Records.'' System location: Delete entry and replace with ``Command Support... may be accessed only by the Commander, Deputy Commander, Chief, Command Support Division, or other... and replace with ``Command Support Division, EU1, Defense Information Systems Agency-Europe, APO AE...

  20. 75 FR 42719 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ...: Commander, Navy Expeditionary Combat Command, 1575 Gator Blvd, Joint Expeditionary Base Little Creek... Expeditionary Combat Command, Code (N8), 1575 Gator Blvd, Joint Expeditionary Base Little Creek, Virginia Beach... to the Commander, Navy Expeditionary Combat Command, Code (N8), 1575 Gator Blvd, Joint Expeditionary...

  1. Dynamic Characteristics of Ventilatory and Gas Exchange during Sinusoidal Walking in Humans.

    PubMed

    Fukuoka, Yoshiyuki; Iihoshi, Masaaki; Nazunin, Juhelee Tuba; Abe, Daijiro; Fukuba, Yoshiyuki

    2017-01-01

    Our present study investigated whether the ventilatory and gas exchange responses show different dynamics in response to sinusoidal change in cycle work rate or walking speed even if the metabolic demand was equivalent in both types of exercise. Locomotive parameters (stride length and step frequency), breath-by-breath ventilation (V̇E) and gas exchange (CO2 output (V̇CO2) and O2 uptake (V̇O2)) responses were measured in 10 healthy young participants. The speed of the treadmill was sinusoidally changed between 3 km·h-1 and 6 km·h-1 with various periods (from 10 to 1 min). The amplitude of locomotive parameters against sinusoidal variation showed a constant gain with a small phase shift, being independent of the oscillation periods. In marked contrast, when the periods of the speed oscillations were shortened, the amplitude of V̇E decreased sharply whereas the phase shift of V̇E increased. In comparing walking and cycling at the equivalent metabolic demand, the amplitude of V̇E during sinusoidal walking (SW) was significantly greater than that during sinusoidal cycling (SC), and the phase shift became smaller. The steeper slope of linear regression for the V̇E amplitude ratio to V̇CO2 amplitude ratio was observed during SW than SC. These findings suggested that the greater amplitude and smaller phase shift of ventilatory dynamics were not equivalent between SW and SC even if the metabolic demand was equivalent between both exercises. Such phenomenon would be derived from central command in proportion to locomotor muscle recruitment (feedforward) and muscle afferent feedback.

  2. 32 CFR 700.723 - Administration and discipline: Separate and detached command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... detached command. 700.723 Section 700.723 National Defense Department of Defense (Continued) DEPARTMENT OF... Administration and discipline: Separate and detached command. Any flag or general officer in command, any officer... are separate or detached commands. Such officer shall state in writing that it is a separate or...

  3. 32 CFR 700.722 - Administration and discipline: Staff unassigned to an administrative command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to an administrative command. 700.722 Section 700.722 National Defense Department of Defense....722 Administration and discipline: Staff unassigned to an administrative command. (a) When it is not... administration and discipline, the commander may designate an officer of the staff to act as the commanding...

  4. 32 CFR 536.8 - Responsibilities and operations of command claims services.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Responsibilities and operations of command... Responsibilities and operations of command claims services. (a) Chiefs of command claims services. Chiefs of command claims services shall: (1) Exercise claims settlement authority as specified in this part...

  5. 32 CFR 700.723 - Administration and discipline: Separate and detached command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... detached command. 700.723 Section 700.723 National Defense Department of Defense (Continued) DEPARTMENT OF... Administration and discipline: Separate and detached command. Any flag or general officer in command, any officer... are separate or detached commands. Such officer shall state in writing that it is a separate or...

  6. 32 CFR 700.722 - Administration and discipline: Staff unassigned to an administrative command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to an administrative command. 700.722 Section 700.722 National Defense Department of Defense....722 Administration and discipline: Staff unassigned to an administrative command. (a) When it is not... administration and discipline, the commander may designate an officer of the staff to act as the commanding...

  7. 32 CFR 700.722 - Administration and discipline: Staff unassigned to an administrative command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to an administrative command. 700.722 Section 700.722 National Defense Department of Defense....722 Administration and discipline: Staff unassigned to an administrative command. (a) When it is not... administration and discipline, the commander may designate an officer of the staff to act as the commanding...

  8. 32 CFR 700.723 - Administration and discipline: Separate and detached command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... detached command. 700.723 Section 700.723 National Defense Department of Defense (Continued) DEPARTMENT OF... Administration and discipline: Separate and detached command. Any flag or general officer in command, any officer... are separate or detached commands. Such officer shall state in writing that it is a separate or...

  9. 32 CFR 536.8 - Responsibilities and operations of command claims services.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Responsibilities and operations of command... Responsibilities and operations of command claims services. (a) Chiefs of command claims services. Chiefs of command claims services shall: (1) Exercise claims settlement authority as specified in this part...

  10. 32 CFR 700.723 - Administration and discipline: Separate and detached command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... detached command. 700.723 Section 700.723 National Defense Department of Defense (Continued) DEPARTMENT OF... Administration and discipline: Separate and detached command. Any flag or general officer in command, any officer... are separate or detached commands. Such officer shall state in writing that it is a separate or...

  11. 32 CFR 700.723 - Administration and discipline: Separate and detached command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... detached command. 700.723 Section 700.723 National Defense Department of Defense (Continued) DEPARTMENT OF... Administration and discipline: Separate and detached command. Any flag or general officer in command, any officer... are separate or detached commands. Such officer shall state in writing that it is a separate or...

  12. 32 CFR 700.722 - Administration and discipline: Staff unassigned to an administrative command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to an administrative command. 700.722 Section 700.722 National Defense Department of Defense....722 Administration and discipline: Staff unassigned to an administrative command. (a) When it is not... administration and discipline, the commander may designate an officer of the staff to act as the commanding...

  13. 32 CFR 700.722 - Administration and discipline: Staff unassigned to an administrative command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to an administrative command. 700.722 Section 700.722 National Defense Department of Defense....722 Administration and discipline: Staff unassigned to an administrative command. (a) When it is not... administration and discipline, the commander may designate an officer of the staff to act as the commanding...

  14. Terminal Information Processing System (TIPS) Consolidated CAB Display (CCD) Comparative Analysis.

    DTIC Science & Technology

    1982-04-01

    Barometric pressure 3. Center field wind speed, direction and gusts 4. Runway visual range 5. Low-level wind shear 6. Vortex advisory 7. Runway equipment...PASSWORD Command (standard user) u. PAUSE Command (standard user) v. PMSG Command (standard user) w. PPD Command (standard user) x. PURGE Command (standard

  15. 32 CFR 151.4 - Procedures and responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... country for personnel assigned to foreign areas. (c) Designated commanding officer. Formal invocation of... geographical areas for which a unified command exists, the commander shall designate within each country the “Commanding Officer” referred to in the Senate Resolution (§ 151.6). (2) In areas where a unified command does...

  16. 46 CFR 50.10-1 - Commandant.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Commandant. 50.10-1 Section 50.10-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 50.10-1 Commandant. The term Commandant means the Commandant U.S. Coast Guard. ...

  17. Scalable Unix commands for parallel processors : a high-performance implementation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, E.; Lusk, E.; Gropp, W.

    2001-06-22

    We describe a family of MPI applications we call the Parallel Unix Commands. These commands are natural parallel versions of common Unix user commands such as ls, ps, and find, together with a few similar commands particular to the parallel environment. We describe the design and implementation of these programs and present some performance results on a 256-node Linux cluster. The Parallel Unix Commands are open source and freely available.

  18. Multi-agent autonomous system and method

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A method of controlling a plurality of crafts in an operational area includes providing a command system, a first craft in the operational area coupled to the command system, and a second craft in the operational area coupled to the command system. The method further includes determining a first desired destination and a first trajectory to the first desired destination, sending a first command from the command system to the first craft to move a first distance along the first trajectory, and moving the first craft according to the first command. A second desired destination and a second trajectory to the second desired destination are determined and a second command is sent from the command system to the second craft to move a second distance along the second trajectory.

  19. Command and data handling for Atmosphere Explorer satellite

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.

    1974-01-01

    The command and data-handling subsystem of the Atmosphere Explorer satellite provides the necessary controls for the instrumentation and telemetry, and also controls the satellite attitude and trajectory. The subsystem executes all command information within the spacecraft, either in real time (as received over the S-band command transmission link) or remote from the command site (as required by the orbit operations schedule). Power consumption in the spacecraft is optimized by suitable application and removal of power to various instruments; additional functions include control of magnetic torquers and of the orbit-adjust propulsion subsystem. Telemetry data from instruments and the spacecraft equipment are formatted into a single serial bit stream. Attention is given to command types, command formats, decoder operation, and command processing functions.

  20. Man/terminal interaction evaluation of computer operating system command and control service concepts. [in Spacelab

    NASA Technical Reports Server (NTRS)

    Dodson, D. W.; Shields, N. L., Jr.

    1978-01-01

    The Experiment Computer Operating System (ECOS) of the Spacelab will allow the onboard Payload Specialist to command experiment devices and display information relative to the performance of experiments. Three candidate ECOS command and control service concepts were reviewed and laboratory data on operator performance was taken for each concept. The command and control service concepts evaluated included a dedicated operator's menu display from which all command inputs were issued, a dedicated command key concept with which command inputs could be issued from any display, and a multi-display concept in which command inputs were issued from several dedicated function displays. Advantages and disadvantages are discussed in terms of training, operational errors, task performance time, and subjective comments of system operators.

  1. Command Disaggregation Attack and Mitigation in Industrial Internet of Things

    PubMed Central

    Zhu, Pei-Dong; Hu, Yi-Fan; Cui, Peng-Shuai; Zhang, Yan

    2017-01-01

    A cyber-physical attack in the industrial Internet of Things can cause severe damage to physical system. In this paper, we focus on the command disaggregation attack, wherein attackers modify disaggregated commands by intruding command aggregators like programmable logic controllers, and then maliciously manipulate the physical process. It is necessary to investigate these attacks, analyze their impact on the physical process, and seek effective detection mechanisms. We depict two different types of command disaggregation attack modes: (1) the command sequence is disordered and (2) disaggregated sub-commands are allocated to wrong actuators. We describe three attack models to implement these modes with going undetected by existing detection methods. A novel and effective framework is provided to detect command disaggregation attacks. The framework utilizes the correlations among two-tier command sequences, including commands from the output of central controller and sub-commands from the input of actuators, to detect attacks before disruptions occur. We have designed components of the framework and explain how to mine and use these correlations to detect attacks. We present two case studies to validate different levels of impact from various attack models and the effectiveness of the detection framework. Finally, we discuss how to enhance the detection framework. PMID:29065461

  2. Command Disaggregation Attack and Mitigation in Industrial Internet of Things.

    PubMed

    Xun, Peng; Zhu, Pei-Dong; Hu, Yi-Fan; Cui, Peng-Shuai; Zhang, Yan

    2017-10-21

    A cyber-physical attack in the industrial Internet of Things can cause severe damage to physical system. In this paper, we focus on the command disaggregation attack, wherein attackers modify disaggregated commands by intruding command aggregators like programmable logic controllers, and then maliciously manipulate the physical process. It is necessary to investigate these attacks, analyze their impact on the physical process, and seek effective detection mechanisms. We depict two different types of command disaggregation attack modes: (1) the command sequence is disordered and (2) disaggregated sub-commands are allocated to wrong actuators. We describe three attack models to implement these modes with going undetected by existing detection methods. A novel and effective framework is provided to detect command disaggregation attacks. The framework utilizes the correlations among two-tier command sequences, including commands from the output of central controller and sub-commands from the input of actuators, to detect attacks before disruptions occur. We have designed components of the framework and explain how to mine and use these correlations to detect attacks. We present two case studies to validate different levels of impact from various attack models and the effectiveness of the detection framework. Finally, we discuss how to enhance the detection framework.

  3. SAC Headquarters Underground Command Center Cutaway Axonometric Offutt ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SAC Headquarters Underground Command Center - Cutaway Axonometric - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  4. Reduction in respiratory motion artefacts on gadoxetate-enhanced MRI after training technicians to apply a simple and more patient-adapted breathing command.

    PubMed

    Gutzeit, Andreas; Matoori, Simon; Froehlich, Johannes M; von Weymarn, Constantin; Reischauer, Carolin; Kolokythas, Orpheus; Goyen, Matthias; Hergan, Klaus; Meissnitzer, Matthias; Forstner, Rosemarie; Soyka, Jan D; Doert, Aleksis; Koh, Dow-Mu

    2016-08-01

    To investigate whether a trained group of technicians using a modified breathing command during gadoxetate-enhanced liver MRI reduces respiratory motion artefacts compared to non-trained technicians using a traditional breathing command. The gadoxetate-enhanced liver MR images of 30 patients acquired using the traditional breathing command and the subsequent 30 patients after training the technicians to use a modified breathing command were analyzed. A subgroup of patients (n = 8) underwent scans both by trained and untrained technicians. Images obtained using the traditional and modified breathing command were compared for the presence of breathing artefacts [respiratory artefact-based image quality scores from 1 (best) to 5 (non-diagnostic)]. There was a highly significant improvement in the arterial phase image quality scores in patients using the modified breathing command compared to the traditional one (P < 0.001). The percentage of patients with severe and extensive breathing artefacts in the arterial phase decreased from 33.3 % to 6.7 % after introducing the modified breathing command (P = 0.021). In the subgroup that underwent MRI using both breathing commands, arterial phase image quality improved significantly (P = 0.008) using the modified breathing command. Training technicians to use a modified breathing command significantly improved arterial phase image quality of gadoxetate-enhanced liver MRI. • A modified breathing command reduced respiratory artefacts on arterial-phase gadoxetate-enhanced MRI (P < 0.001). • The modified command decreased severe and extensive arterial-phase breathing artefacts (P = 0.021). • Training technicians to use a modified breathing command improved arterial-phase images.

  5. M1A2 Adjunct Analysis (POSNOV Volume)

    DTIC Science & Technology

    1989-12-01

    MD 20814-2797 Director 2 U.S. Army Materiel Systems Analysis Activity ATTN: AMXSY-CS, AMXSY-GA Aberden Proving Grounds , MD 21005-5071 U.S. Army...Leonard Wood, MO Commander U.S. Army Ordnance Center & School ATTN: ATSL-CD-CS Aberdeen Proving Ground , MD 21005 Commander 2 U.S. Army Soldier Support...NJ Commander U.S. Army Test and Evaluation Command ATrN: AMSTE-CM-R Aberdeen Proving Ground , MD 21005 Commander U.S. Army Tank Automotive Command

  6. L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell greet STS-92 Commander Brian Duffy, Dryden Center Director Kevin Petersen, and AFFTC Commander Major General Richard Reynolds

    NASA Image and Video Library

    2001-02-20

    L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell greet STS-92 Commander Brian Duffy, Dryden Center Director Kevin Petersen, and AFFTC Commander Major General Richard Reynolds after landing on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located.

  7. Audit Oversight: Quality Control System at U.S. Special Operations Command Inspector General Audit Division

    DTIC Science & Technology

    2002-08-21

    The Audit Division provides the Commander, U.S. Special Operations Command (USSOCOM) with professional auditing services to safeguard, account for...and ensure the proper use of special operations forces assets in accomplishing the USSOCOM mission. The Audit Division reports to the USSOCOM Inspector...U.S. Army Special Operations Command, Naval Special Warfare Command, and the Joint Special Operations Command. Appendix A contains a summary of the Audit Division policy and procedures.

  8. The Glass Ceiling - A Question of Joint Officer Development - Why Only Five USAF Geographic Combatant Commanders?

    DTIC Science & Technology

    2010-07-26

    kit/OEF.asp (accessed March 6, 2011). 19 U.S. Central Command. "US CENTCOM Leadership: General James N. Mattis , Commander,‖ http... Mattis , USMC Commander, USCENTCOM 0 2 Cmdr, Task Force 58 Cmdr, USJFCOM Admiral James G. Stavridis, USN Commander, USEUCOM 1 2 Plans Officer, JCS...U.S. Central Command. "US CENTCOM Leadership." General James N. Mattis . https://slsp.http://www.centcom.mil/en/about-centcom/leadership

  9. Defense.gov Special Report: Unified Combatant Commands

    Science.gov Websites

    in support of U.S. strategic objectives. Their mission is to maintain command and control of U.S coverage and more information. Unified Combatant Command strategic map U.S. Northern Command NORTHCOM U.S U.S. Strategic Command STRATCOM . Main Menu Home Today in DOD About DOD Leaders Biographies

  10. 32 CFR 700.857 - Safe navigation and regulations governing operation of ships and aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.857 Safe navigation and regulations governing operation of ships and aircraft. (a) The commanding officer is responsible for the safe... Operations or the Commandant of the Marine Corps, as appropriate. (d) The Commanding Officer is responsible...

  11. 32 CFR 700.857 - Safe navigation and regulations governing operation of ships and aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.857 Safe navigation and regulations governing operation of ships and aircraft. (a) The commanding officer is responsible for the safe... Operations or the Commandant of the Marine Corps, as appropriate. (d) The Commanding Officer is responsible...

  12. 75 FR 22561 - Federal Advisory Committee; United States Strategic Command Strategic Advisory Group; Charter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Command Strategic Advisory Group; Charter Renewal AGENCY: Department of Defense (DoD). ACTION: Renewal of... Command Strategic Advisory Group (hereafter referred to as the Group). FOR FURTHER INFORMATION CONTACT... Chairman of the Joint Chiefs of Staff and the Commander of the U.S. Strategic Command independent advice...

  13. 32 CFR 700.1055 - Command of a naval shipyard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a naval shipyard. 700.1055 Section 700.1055 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1055 Command of a naval shipyard. The officer detailed to command a naval...

  14. 75 FR 67695 - U.S. Strategic Command Strategic Advisory Group Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... DEPARTMENT OF DEFENSE Office of the Secretary of Defense U.S. Strategic Command Strategic Advisory... meeting notice of the U.S. Strategic Command Strategic Advisory Group. DATES: December 9, 2010: 8 a.m. to..., intelligence, and policy-related issues to the Commander, U.S. Strategic Command, during the development of the...

  15. 14 CFR 61.55 - Second-in-command qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Second-in-command qualifications. 61.55...-in-command qualifications. (a) A person may serve as a second-in-command of an aircraft type certificated for more than one required pilot flight crewmember or in operations requiring a second-in-command...

  16. 32 CFR 700.1026 - Authority of an officer who succeeds to command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Authority of an officer who succeeds to command... Precedence, Authority and Command Authority § 700.1026 Authority of an officer who succeeds to command. (a) An officer who succeeds to command due to incapacity, death, departure on leave, detachment without...

  17. 32 CFR 700.1059 - Command of a staff corps activity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a staff corps activity. 700.1059..., Authority and Command Detail to Duty § 700.1059 Command of a staff corps activity. Officers in a staff corps shall be detailed to command only such activities as are appropriate to their corps. ...

  18. 32 CFR 700.1055 - Command of a naval shipyard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a naval shipyard. 700.1055 Section 700.1055 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1055 Command of a naval shipyard. The officer detailed to command a naval...

  19. 32 CFR 700.857 - Safe navigation and regulations governing operation of ships and aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.857 Safe navigation and regulations governing operation of ships and aircraft. (a) The commanding officer is responsible for the safe... Operations or the Commandant of the Marine Corps, as appropriate. (d) The Commanding Officer is responsible...

  20. 32 CFR 700.1059 - Command of a staff corps activity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a staff corps activity. 700.1059..., Authority and Command Detail to Duty § 700.1059 Command of a staff corps activity. Officers in a staff corps shall be detailed to command only such activities as are appropriate to their corps. ...

  1. 32 CFR 700.1055 - Command of a naval shipyard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a naval shipyard. 700.1055 Section 700.1055 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1055 Command of a naval shipyard. The officer detailed to command a naval...

  2. 32 CFR 700.1026 - Authority of an officer who succeeds to command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Authority of an officer who succeeds to command... Precedence, Authority and Command Authority § 700.1026 Authority of an officer who succeeds to command. (a) An officer who succeeds to command due to incapacity, death, departure on leave, detachment without...

  3. 32 CFR 700.1026 - Authority of an officer who succeeds to command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Authority of an officer who succeeds to command... Precedence, Authority and Command Authority § 700.1026 Authority of an officer who succeeds to command. (a) An officer who succeeds to command due to incapacity, death, departure on leave, detachment without...

  4. 78 FR 53109 - Security Zones; Naval Base Point Loma; Naval Mine Anti-Submarine Warfare Command; San Diego Bay...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ...-AA87 Security Zones; Naval Base Point Loma; Naval Mine Anti-Submarine Warfare Command; San Diego Bay... Anti-Submarine Warfare Command to protect the relocated marine mammal program. These security zone... Warfare Command, the Commander of Naval Region Southwest, or a designated representative of those...

  5. 32 CFR 700.1059 - Command of a staff corps activity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a staff corps activity. 700.1059..., Authority and Command Detail to Duty § 700.1059 Command of a staff corps activity. Officers in a staff corps shall be detailed to command only such activities as are appropriate to their corps. ...

  6. 78 FR 17924 - U.S. Strategic Command Strategic Advisory Group; Notice of Federal Advisory Committee Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... DEPARTMENT OF DEFENSE Office of the Secretary U.S. Strategic Command Strategic Advisory Group... following federal advisory committee: U.S. Strategic Command Strategic Advisory Group. DATES: April 18, 2013..., intelligence, and policy-related issues to the Commander, U.S. Strategic Command, during the development of the...

  7. 75 FR 18824 - Federal Advisory Committee; U.S. Strategic Command Strategic Advisory Group; Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... DEPARTMENT OF DEFENSE Office of the Secretary Federal Advisory Committee; U.S. Strategic Command... 102-3.150, the Department of Defense announces that the U.S. Strategic Command Strategic Advisory... Commander, U.S. Strategic Command, during the development of the Nation's strategic war plans. Agenda Topics...

  8. 32 CFR 700.1055 - Command of a naval shipyard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a naval shipyard. 700.1055 Section 700.1055 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1055 Command of a naval shipyard. The officer detailed to command a naval...

  9. 14 CFR 61.55 - Second-in-command qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Second-in-command qualifications. 61.55...-in-command qualifications. (a) A person may serve as a second-in-command of an aircraft type certificated for more than one required pilot flight crewmember or in operations requiring a second-in-command...

  10. 32 CFR 700.857 - Safe navigation and regulations governing operation of ships and aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.857 Safe navigation and regulations governing operation of ships and aircraft. (a) The commanding officer is responsible for the safe... Operations or the Commandant of the Marine Corps, as appropriate. (d) The Commanding Officer is responsible...

  11. 78 FR 66261 - Certified Flight Instructor Flight Reviews; Recent Pilot in Command Experience; Airmen Online...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Command Experience; Airmen Online Services; Confirmation of Effective Date AGENCY: Federal Aviation... flight experience requirements do not apply to a pilot in command who is employed by a commuter or on-demand operator if the pilot in command is in compliance with the specific pilot in command...

  12. 32 CFR 700.857 - Safe navigation and regulations governing operation of ships and aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.857 Safe navigation and regulations governing operation of ships and aircraft. (a) The commanding officer is responsible for the safe... Operations or the Commandant of the Marine Corps, as appropriate. (d) The Commanding Officer is responsible...

  13. 32 CFR 700.1026 - Authority of an officer who succeeds to command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Authority of an officer who succeeds to command... Precedence, Authority and Command Authority § 700.1026 Authority of an officer who succeeds to command. (a) An officer who succeeds to command due to incapacity, death, departure on leave, detachment without...

  14. 14 CFR 61.55 - Second-in-command qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Second-in-command qualifications. 61.55...-in-command qualifications. (a) A person may serve as a second-in-command of an aircraft type certificated for more than one required pilot flight crewmember or in operations requiring a second-in-command...

  15. 78 FR 67131 - Notice of Advisory Committee Closed Meeting; U.S. Strategic Command Strategic Advisory Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    .... Strategic Command Strategic Advisory Group AGENCY: Department of Defense. ACTION: Notice of Advisory... following Federal Advisory Committee meeting of the U.S. Strategic Command Strategic Advisory Group. DATES... issues to the Commander, U.S. Strategic Command, during the development of the Nation's strategic war...

  16. 32 CFR 700.1026 - Authority of an officer who succeeds to command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Authority of an officer who succeeds to command... Precedence, Authority and Command Authority § 700.1026 Authority of an officer who succeeds to command. (a) An officer who succeeds to command due to incapacity, death, departure on leave, detachment without...

  17. 32 CFR 700.1059 - Command of a staff corps activity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a staff corps activity. 700.1059..., Authority and Command Detail to Duty § 700.1059 Command of a staff corps activity. Officers in a staff corps shall be detailed to command only such activities as are appropriate to their corps. ...

  18. U.S. Northern Command > Newsroom > Press Releases

    Science.gov Websites

    Skip to main content (Press Enter). Toggle navigation U.S. Northern Command Search Search USNORTHCOM: Search Search USNORTHCOM: Search U.S. Northern Command U.S. Northern Command Home Leadership , 2018 NORAD and USNORTHCOM to host change of command ceremony Nov. 30, 2017 United States, Mexico to

  19. 32 CFR 700.1055 - Command of a naval shipyard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a naval shipyard. 700.1055 Section 700.1055 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1055 Command of a naval shipyard. The officer detailed to command a naval...

  20. 14 CFR 61.55 - Second-in-command qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Second-in-command qualifications. 61.55...-in-command qualifications. (a) A person may serve as a second-in-command of an aircraft type certificated for more than one required pilot flight crewmember or in operations requiring a second-in-command...

  1. 32 CFR 700.1053 - Commander of a task force.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Commander of a task force. 700.1053 Section 700.1053 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any...

  2. 32 CFR 700.1053 - Commander of a task force.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Commander of a task force. 700.1053 Section 700.1053 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any...

  3. 32 CFR 700.1053 - Commander of a task force.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Commander of a task force. 700.1053 Section 700.1053 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any...

  4. 70. SAC command post construction, building 500, undated Offutt ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. SAC command post construction, building 500, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  5. 33 CFR 1.07-90 - Criminal penalties.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Commandant is required, the Area, Maintenance & Logistics Command (MLC), and District Commanders are..., 121 to 126 inclusive). (c) The Area, MLC, or District Commander will identify the laws or regulations...

  6. 33 CFR 1.07-90 - Criminal penalties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Commandant is required, the Area, Maintenance & Logistics Command (MLC), and District Commanders are..., 121 to 126 inclusive). (c) The Area, MLC, or District Commander will identify the laws or regulations...

  7. 33 CFR 1.07-90 - Criminal penalties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Commandant is required, the Area, Maintenance & Logistics Command (MLC), and District Commanders are..., 121 to 126 inclusive). (c) The Area, MLC, or District Commander will identify the laws or regulations...

  8. 33 CFR 1.07-90 - Criminal penalties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Commandant is required, the Area, Maintenance & Logistics Command (MLC), and District Commanders are..., 121 to 126 inclusive). (c) The Area, MLC, or District Commander will identify the laws or regulations...

  9. 33 CFR 1.07-90 - Criminal penalties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Commandant is required, the Area, Maintenance & Logistics Command (MLC), and District Commanders are..., 121 to 126 inclusive). (c) The Area, MLC, or District Commander will identify the laws or regulations...

  10. Design of Flight Control Panel Layout using Graphical User Interface in MATLAB

    NASA Astrophysics Data System (ADS)

    Wirawan, A.; Indriyanto, T.

    2018-04-01

    This paper introduces the design of Flight Control Panel (FCP) Layout using Graphical User Interface in MATLAB. The FCP is the interface to give the command to the simulation and to monitor model variables while the simulation is running. The command accommodates by the FCP are altitude command, the angle of sideslip command, heading command, and setting command for turbulence model. The FCP was also designed to monitor the flight parameter while the simulation is running.

  11. A concept to standardize raw biosignal transmission for brain-computer interfaces.

    PubMed

    Breitwieser, Christian; Neuper, Christa; Müller-Putz, Gernot R

    2011-01-01

    With this concept we introduced the attempt of a standardized interface called TiA to transmit raw biosignals. TiA is able to deal with multirate and block-oriented data transmission. Data is distinguished by different signal types (e.g., EEG, EOG, NIRS, …), whereby those signals can be acquired at the same time from different acquisition devices. TiA is built as a client-server model. Multiple clients can connect to one server. Information is exchanged via a control- and a separated data connection. Control commands and meta information are transmitted over the control connection. Raw biosignal data is delivered using the data connection in a unidirectional way. For this purpose a standardized handshaking protocol and raw data packet have been developed. Thus, an abstraction layer between hardware devices and data processing was evolved facilitating standardization.

  12. STS-112 Crew Interviews: Ashby

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-112 Mission Commander Jeffrey Ashby is seen during this preflight interview, answering questions about his inspiration in becoming an astronaut and his career path and provides an overview of the mission. Ashby outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S1 truss) and the importance that the S1 truss will have in the development of the International Space Station (ISS). Ashby discusses the delivery and installation of the S1 truss scheduled to be done in the planned EVAs in some detail. He touches on the use and operation of the Canadarm 2 robotic arm in this process and outlines what supplies will be exchanged with the resident crew of the ISS during transfer activities. He ends with his thoughts on the value of the ISS in fostering international cooperation.

  13. STS-86 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Crew of STS-86 Atlantis Shuttle, Commander James D. Wetherbee, Pilot Michael J. Bloomfield, Mission Specialists Vladimar G. Titov, Scott E. Parazynski, Jean-Loup J. M. Chretien, Wendy Lawrence, and David Wolf, narrate the footage of their mission to the Mir International Space Station. Scenes include crew suit up, walk out to the transfer vehicle, strap-in into the shuttle, start of the main engine, ignition of the rocket boosters, and separation of the solid rocket boosters. The crew of Atlantis participates in an exchange of gifts with the members of Mir, and a space walk to recover experiments outside the Mir Space Station. A beautiful panoramic view of Mir above South America is seen. Scenes also depict the closing of Mir's hatch, Atlantis' separation from Mir, and the reentry of the Atlantis Space Shuttle into the Earth's atmosphere.

  14. The QDP/PLT user's guide

    NASA Technical Reports Server (NTRS)

    Tennant, Allyn F.

    1991-01-01

    PLT is a high level plotting package. A Programmer can create a default plot suited for the data being displayed. At run times, users can then interact with the plot overriding any or all of these defaults. The user is also provided the capability to fit functions to the displayed data. This ability to display, interact with, and to fit the data make PLT a useful tool in the analysis of data. The Quick and Dandy Plotter (QDP) program will read ASCII text files that contain PLT commands and data. Thus, QDP provides and easy way to use the PLT software QPD files provide a convenient way to exchange data. The QPD/PLT software is written in standard FORTRAN 77 and has been ported to VAX VMS, SUN UNIX, IBM AIX, NeXT NextStep, and MS-DOS systems.

  15. NASA astronaut and Mir 24 crew member David Wolf after landing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian Space Station Mir since late September 1997, greets his friend, Tammy Kruse, shortly after his return to Earth on Jan. 31. Dr. Wolf returned aboard the orbiter Endeavour with the rest of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded Dr. Wolf on Mir and is scheduled to remain on the Russian space station until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2001-10-08

    The STS-108 crew members take a break from their training to pose for their preflight portrait. Astronauts Dominic L. Gorie right) and Mark E. Kelly, commander and pilot, respectively, are seated in front. In the rear are astronauts Linda M. Godwin and Daniel L. Tani, both mission specialists. The 12th flight to the International Space Station (ISS) and final flight of 2001, the STS-108 mission launched aboard the Space Shuttle Endeavour on December 5, 2001. They were accompanied to the ISS by the Expedition Four crew, which remained on board the orbital outpost for several months. The Expedition Three crew members returned home with the STS-108 astronauts. In addition to the Expedition crew exchange, STS-108 crew deployed the student project STARSHINE, and delivered 2.7 metric tons (3 tons) of equipment and supplies to the ISS.

  17. 76 FR 14950 - Closed Meeting of the U.S. Strategic Command Strategic Advisory Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... DEPARTMENT OF DEFENSE Office of the Secretary Closed Meeting of the U.S. Strategic Command.... Strategic Command Strategic Advisory Group. DATES: April 7, 2011, from 8 a.m. to 5 p.m. and April 8, 2011... policy-related issues to the Commander, U.S. Strategic Command, during the development of the Nation's...

  18. 14 CFR 91.3 - Responsibility and authority of the pilot in command.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in command. 91.3 Section 91.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 91.3 Responsibility and authority of the pilot in command. (a) The pilot in command of an aircraft is...-flight emergency requiring immediate action, the pilot in command may deviate from any rule of this part...

  19. 14 CFR 91.3 - Responsibility and authority of the pilot in command.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in command. 91.3 Section 91.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 91.3 Responsibility and authority of the pilot in command. (a) The pilot in command of an aircraft is...-flight emergency requiring immediate action, the pilot in command may deviate from any rule of this part...

  20. 14 CFR 91.3 - Responsibility and authority of the pilot in command.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in command. 91.3 Section 91.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 91.3 Responsibility and authority of the pilot in command. (a) The pilot in command of an aircraft is...-flight emergency requiring immediate action, the pilot in command may deviate from any rule of this part...

  1. 14 CFR 91.3 - Responsibility and authority of the pilot in command.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in command. 91.3 Section 91.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 91.3 Responsibility and authority of the pilot in command. (a) The pilot in command of an aircraft is...-flight emergency requiring immediate action, the pilot in command may deviate from any rule of this part...

  2. 76 FR 52642 - Notice of Advisory Committee Closed Meeting; U.S. Strategic Command Strategic Advisory Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... DEPARTMENT OF DEFENSE Notice of Advisory Committee Closed Meeting; U.S. Strategic Command.... Strategic Command Strategic Advisory Group. DATES: November 1, 2011, from 8 a.m. to 5 p.m. and November 2..., intelligence, and policy-related issues to the Commander, U.S. Strategic Command, during the development of the...

  3. 75 FR 20776 - Security Zone; Potomac River, Washington Channel, Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    .... Coast Guard Commandant's Change of Command ceremony from 6 a.m. through 5 p.m. on May 25, 2010. Entry.... Basis and Purpose The Coast Guard will conduct a Change of Command ceremony at Fort McNair in Washington... the U.S. Coast Guard Commandant's Change of Command ceremony. Due to the catastrophic impact a...

  4. 14 CFR 91.3 - Responsibility and authority of the pilot in command.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in command. 91.3 Section 91.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 91.3 Responsibility and authority of the pilot in command. (a) The pilot in command of an aircraft is...-flight emergency requiring immediate action, the pilot in command may deviate from any rule of this part...

  5. 71. SAC command post construction, building 500, January 20, 1987 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. SAC command post construction, building 500, January 20, 1987 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  6. 66. SAC command post lobby, building 500, undated, looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. SAC command post lobby, building 500, undated, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  7. 63. Aerial view of SAC command post construction, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Aerial view of SAC command post construction, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  8. 69. Vice President Ford entering SAC command post, February, 1974 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. Vice President Ford entering SAC command post, February, 1974 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  9. BCI Performance and Brain Metabolism Profile in Severely Brain-Injured Patients Without Response to Command at Bedside.

    PubMed

    Annen, Jitka; Blandiaux, Séverine; Lejeune, Nicolas; Bahri, Mohamed A; Thibaut, Aurore; Cho, Woosang; Guger, Christoph; Chatelle, Camille; Laureys, Steven

    2018-01-01

    Detection and interpretation of signs of "covert command following" in patients with disorders of consciousness (DOC) remains a challenge for clinicians. In this study, we used a tactile P3-based BCI in 12 patients without behavioral command following, attempting to establish "covert command following." These results were then confronted to cerebral metabolism preservation as measured with glucose PET (FDG-PET). One patient showed "covert command following" (i.e., above-threshold BCI performance) during the active tactile paradigm. This patient also showed a higher cerebral glucose metabolism within the language network (presumably required for command following) when compared with the other patients without "covert command-following" but having a cerebral glucose metabolism indicative of minimally conscious state. Our results suggest that the P3-based BCI might probe "covert command following" in patients without behavioral response to command and therefore could be a valuable addition in the clinical assessment of patients with DOC.

  10. Multi-agent autonomous system

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

  11. 67. Aerial view of SAC command post, building 500, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. Aerial view of SAC command post, building 500, looking northeast, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  12. 64. SAC command post lobby, building 500, November 8, 1956, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. SAC command post lobby, building 500, November 8, 1956, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  13. 61. SAC control center command post construction, March 2, 1956, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. SAC control center command post construction, March 2, 1956, looking northeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  14. 62. Aerial view of SAC command post, building 500, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. Aerial view of SAC command post, building 500, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  15. Stability boundaries for command augmentation systems

    NASA Technical Reports Server (NTRS)

    Shrivastava, P. C.

    1987-01-01

    The Stability Augmentation System (SAS) is a special case of the Command Augmentation System (CAS). Control saturation imposes bounds on achievable commands. The state equilibrium depends only on the open loop dynamics and control deflection. The control magnitude to achieve a desired command equilibrium is independent of the feedback gain. A feedback controller provides the desired response, maintains the system equilibrium under disturbances, but it does not affect the equilibrium values of states and control. The saturation boundaries change with commands, but the location of the equilibrium points in the saturated region remains unchanged. Nonzero command vectors yield saturation boundaries that are asymmetric with respect to the state equilibrium. Except for the saddle point case with MCE control law, the stability boundaries change with commands. For the cases of saddle point and unstable nodes, the region of stability decreases with increasing command magnitudes.

  16. General Nobile and the Airship Italia: No Second-In-Command

    NASA Technical Reports Server (NTRS)

    Bendrick, Gregg A.

    2017-01-01

    The airship Italia, commanded by General Umberto Nobile, crashed during its return flight from the North Pole in 1928. Prior work has demonstrated the possibility that this crash was fatigue-related, due to significant sleep-deprivation on the part of its Commander, and to resulting errors in cognition and judgment. However, the underlying cause of the fatigue was likely due to the fact that the Commander did not have a Second-In-Command on board to take over duties while the Commander was allowed to rest. At that time the Second-In-Command was a formally designated position, and according to Nobiles previous writings was considered to be a necessary crew member on an airship.

  17. 33 CFR 83.27 - Vessels not under command or restricted in their ability to maneuver (Rule 27).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Vessels not under command or... not under command or restricted in their ability to maneuver (Rule 27). (a) Vessels not under command. A vessel not under command shall exhibit: (1) Two all-round red lights in a vertical line where they...

  18. 32 CFR 700.847 - Responsibility of a master of an in-service ship of the Military Sealift Command.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the Military Sealift Command. 700.847 Section 700.847 National Defense Department of Defense... REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.847 Responsibility of a master of an in-service ship of the Military Sealift Command. (a) In an in-service ship of the...

  19. 75 FR 10446 - Security Zone; Potomac River, Washington Channel, Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... during the U.S. Coast Guard Commandant's Change of Command ceremony from 6 a.m. through 5 p.m. on May 25... Purpose The Coast Guard will conduct a Change of Command ceremony at Fort McNair in Washington, DC. To... the U.S. Coast Guard Commandant's Change of Command ceremony. Due to the catastrophic impact a...

  20. 33 CFR 83.27 - Vessels not under command or restricted in their ability to maneuver (Rule 27).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Vessels not under command or... not under command or restricted in their ability to maneuver (Rule 27). (a) Vessels not under command. A vessel not under command shall exhibit: (1) Two all-round red lights in a vertical line where they...

  1. 32 CFR 700.847 - Responsibility of a master of an in-service ship of the Military Sealift Command.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of the Military Sealift Command. 700.847 Section 700.847 National Defense Department of Defense... REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.847 Responsibility of a master of an in-service ship of the Military Sealift Command. (a) In an in-service ship of the...

  2. 33 CFR 83.27 - Vessels not under command or restricted in their ability to maneuver (Rule 27).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Vessels not under command or... not under command or restricted in their ability to maneuver (Rule 27). (a) Vessels not under command. A vessel not under command shall exhibit: (1) Two all-round red lights in a vertical line where they...

  3. 32 CFR 700.847 - Responsibility of a master of an in-service ship of the Military Sealift Command.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the Military Sealift Command. 700.847 Section 700.847 National Defense Department of Defense... REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.847 Responsibility of a master of an in-service ship of the Military Sealift Command. (a) In an in-service ship of the...

  4. 33 CFR 83.27 - Vessels not under command or restricted in their ability to maneuver (Rule 27).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Vessels not under command or... not under command or restricted in their ability to maneuver (Rule 27). (a) Vessels not under command. A vessel not under command shall exhibit: (1) Two all-round red lights in a vertical line where they...

  5. 32 CFR 700.847 - Responsibility of a master of an in-service ship of the Military Sealift Command.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the Military Sealift Command. 700.847 Section 700.847 National Defense Department of Defense... REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.847 Responsibility of a master of an in-service ship of the Military Sealift Command. (a) In an in-service ship of the...

  6. 33 CFR 83.27 - Vessels not under command or restricted in their ability to maneuver (Rule 27).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Vessels not under command or... not under command or restricted in their ability to maneuver (Rule 27). (a) Vessels not under command. A vessel not under command shall exhibit: (1) Two all-round red lights in a vertical line where they...

  7. 32 CFR 700.847 - Responsibility of a master of an in-service ship of the Military Sealift Command.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of the Military Sealift Command. 700.847 Section 700.847 National Defense Department of Defense... REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.847 Responsibility of a master of an in-service ship of the Military Sealift Command. (a) In an in-service ship of the...

  8. Media Independent Handover for Wireless Full Motion Video Dissemination

    DTIC Science & Technology

    2012-09-01

    ODTONE Configuration Files 51 References 63 Initial Distribution List 65 viii List of Figures Figure 2.1 MIH framework as defined by the IEEE 802.21...10 Figure 2.3 Link commands and MIH commands. From [1]. . . . . . . . . . . . . 12 Figure 2.4 Remote MIH Commands. From [1...13 Figure 2.5 Link commands. From [1]. . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 2.6 MIH commands. From [1

  9. Pages - U.S. Fleet Cyber Command

    Science.gov Websites

    Links Expand Links : U.S. Fleet Cyber Command Help (new window) Site Help Page Content Website 2nd Banner.jpg Since its establishment on Jan. 29, 2010, U.S. Fleet Cyber Command (FCC)/U.S. TENTH Fleet (C10F civilians organized into 26 active commands, 40 Cyber Mission Force units, and 27 reserve commands around

  10. Command and Control for Joint Air Operations.

    DTIC Science & Technology

    1994-11-14

    publication apply to the throughout the range of military commanders of combatant commands, operations. subunified commands, joint task forces, and...this doctrine (or operations as well as the doctrinal basis JTTP) will be followed except when, in for US military involvement in the judgment of the...commander, multinational and interagency operations. exceptional circumstances dictate It provides military guidance for the otherwise. If conflicts

  11. 46. SAC Commander in Chief entry, second floor, Awing, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. SAC Commander in Chief entry, second floor, A-wing, building 500, looking north - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  12. 47. SAC Commander in Chief office, second floor, Awing, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. SAC Commander in Chief office, second floor, A-wing, building 500, looking northwest - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  13. 68. Aerial view of SAC command post, building 500, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. Aerial view of SAC command post, building 500, looking northeast, spring, 1957 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  14. 48 CFR 202.101 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Education Activity TRICARE Management Activity Washington Headquarters Services, Acquisition and Procurement... Command Air Force Reserve Command Air Combat Command Air Mobility Command Air Education and Training..., Management Defense Business Transformation Agency Contracting Office Defense Commissary Agency Directorate of...

  15. DSN command system Mark III-78. [data processing

    NASA Technical Reports Server (NTRS)

    Stinnett, W. G.

    1978-01-01

    The Deep Space Network command Mark III-78 data processing system includes a capability for a store-and-forward handling method. The functions of (1) storing the command files at a Deep Space station; (2) attaching the files to a queue; and (3) radiating the commands to the spacecraft are straightforward. However, the total data processing capability is a result of assuming worst case, failure-recovery, or nonnominal operating conditions. Optional data processing functions include: file erase, clearing the queue, suspend radiation, command abort, resume command radiation, and close window time override.

  16. STS-105 insignia

    NASA Image and Video Library

    2001-04-01

    STS105-S-001 (April 2001) --- The STS-105 crew patch symbolizes the exchange of the Expedition Two and Expedition Three crews aboard the International Space Station. The three gold stars near the ascending orbiter represent the U.S. commanded Expedition Three crew as they journey into space, while the two gold stars near the descending orbiter represent the Russian commanded Expedition Two crew and their return to Earth. The plumes of each orbiter represent the flags of the United States and Russia and symbolize the close cooperation between the two countries. The Astronaut Office symbol, a star with three rays of light, depicts the unbroken link between Earth and the newest and brightest star on the horizon, the International Space Station (ISS). The ascending and descending orbiters form a circle that represents both the crew rotation and the continuous presence in space aboard the ISS. The names of the four astronauts who will crew Discovery are shown along the border of the patch. The names of the Expedition Three and Expedition Two crews are shown on the chevron at the bottom of the patch. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  17. Lessons from UK Digitization research

    NASA Astrophysics Data System (ADS)

    Ross, Eamon T.

    2002-08-01

    The paper describes the findings and approach of Ex NEAR HORIZONS, which as part of a series of trials, aimed to explore the performance characteristics and potential operational benefits of a number of technology inserts for the UK Digitization Programme. Although the exercise contained 5 discrete options (hypotheses) for improvement in Command, Control, Communications, Computing and Information (C4I) this paper explores only two of these: a web-based approach and the provision of technology to support distributed and co-located collaborative team working. Despite the commercial world moving towards an information exchange model based on publish and subscribe, the trial found that, although the concept was well received, the implications for changes in organsiation and process were substantial. When working collaboratively in a distributed environment, the findings indicate difficulties in gaining an initial shared understanding of the situation and to exercise command. The participants were a wide range of regular British Army Officers, not only to provide broad views on current military benefits but also to move away from the traditional trials, which tend to expose a single HQ, with prescriptive processes and organizations to the technology. The innovative trial was considered to have been very successful, gathering a considerable body of valuable data and identifying clear paths for exploitation of information technologies to support the military decision- maker. The paper extrapolates the findings of the trial to provide comment on the potential difficulties facing the concept of Network Centric Warfare.

  18. STS-113 Post Flight Presentation

    NASA Astrophysics Data System (ADS)

    2002-01-01

    The STS-113 post-flight presentation begins with a view of Mission Specialists Michael E. Lopez-Alegria and John B. Herrington getting suited for the space mission. The STS-113 crew consists of: Commander James D. Wetherbee, Pilot Paul Lockhart, Mission Specialists Michael Lopez-Alegria and John Herrington. Cosmonauts Valery Korzun, and Sergei Treschev, and astronaut Peggy Whitson who are all members of the expedition five crew, and Commander Kenneth Bowersox, Flight Engineers Nikolai Budarin and Donald Pettit, members of Expedition Six. The main goal of this mission is to take Expedition Six up to the International Space Station and Return Expedition Five to the Earth. The second objective is to install the P(1) Truss segment. Three hours prior to launch, the crew of Expedition Six along with James Wetherbee, Paul Lockhart, Michael Lopez-Alegria and John Herrington are shown walking to an astrovan, which takes them to the launch pad. The actual liftoff is presented. Three Extravehicular Activities (EVA)'s are performed on this mission. Michael Lopez-Alegria and John Herrington are shown performing EVA 1 and EVA 2 which include making connections between the P1 and S(0) Truss segments, and installing fluid jumpers. A panoramic view of the ISS with the Earth in the background is shown. The grand ceremony of the crew exchange is presented. The astronauts performing everyday duties such as brushing teeth, washing hair, sleeping, and eating pistachio nuts are shown. The actual landing of the Space Shuttle is presented.

  19. Virtual and flexible digital signal processing system based on software PnP and component works

    NASA Astrophysics Data System (ADS)

    He, Tao; Wu, Qinghua; Zhong, Fei; Li, Wei

    2005-05-01

    An idea about software PnP (Plug & Play) is put forward according to the hardware PnP. And base on this idea, a virtual flexible digital signal processing system (FVDSPS) is carried out. FVDSPS is composed of a main control center, many sub-function modules and other hardware I/O modules. Main control center sends out commands to sub-function modules, and manages running orders, parameters and results of sub-functions. The software kernel of FVDSPS is DSP (Digital Signal Processing) module, which communicates with the main control center through some protocols, accept commands or send requirements. The data sharing and exchanging between the main control center and the DSP modules are carried out and managed by the files system of the Windows Operation System through the effective communication. FVDSPS real orients objects, orients engineers and orients engineering problems. With FVDSPS, users can freely plug and play, and fast reconfigure a signal process system according to engineering problems without programming. What you see is what you get. Thus, an engineer can orient engineering problems directly, pay more attention to engineering problems, and promote the flexibility, reliability and veracity of testing system. Because FVDSPS orients TCP/IP protocol, through Internet, testing engineers, technology experts can be connected freely without space. Engineering problems can be resolved fast and effectively. FVDSPS can be used in many fields such as instruments and meter, fault diagnosis, device maintenance and quality control.

  20. 48. SAC Deputy Commander in Chief office, second floor, Awing, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. SAC Deputy Commander in Chief office, second floor, A-wing, building 500, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  1. Three astronauts inside Command Module Simulator during Apollo Simulation

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Three astronauts inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Left to right are Astronauts Thomas P. Stafford, commander; John W. Young, command module pilot; and Eugene A. Cernan, lunar module pilot.

  2. A Theory of Rate-Dependent Plasticity

    DTIC Science & Technology

    1984-05-01

    crystal microplasticity use a variety of parameters, such as mobile dislocation density and velocity, all of which are eventually related in some manner...Info Center Bldg. 2925, Box 22 Fort Ord, CA 93941 55 DISTRIBUTION LIST No. of Copies Organization 1 Commander Naval Sea Systems Command...Washington, DC 20360 Commander Naval Sea Systems Command ( SEA -62R41) ATTN: L. Pasiuk Washington, DC 20360 Commander Naval

  3. 33 CFR 334.710 - The Narrows and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base, Fla. 334.710 Section... Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base, Fla. (a) The restricted area... regulations in this section shall be enforced by the Commander, Air Force Proving Ground Command, Eglin Air...

  4. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  5. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  6. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  7. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  8. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  9. Maritime Homeland Command Control: Teaching an Old Dog New Tricks

    DTIC Science & Technology

    2002-02-04

    Security, Command and Control, Navy, Coast Guard, Customs Service, Centralized Control, Decentralized Execution, Organization by Objectives 15.Abstract...primarily responsible for the maritime homeland, the Navy, the Coast guard, the Customs Service, should provide resources and command capabilities to a...Coast Guard, the Customs Service, should provide resources and command capabilities to a unified command and control structure. Coast Guard forces and

  10. Mobilization Base Requirements Model (MOBREM) Study. Phases I-V.

    DTIC Science & Technology

    1984-08-01

    Department Health Services Command Base Mobilization Plan; DARCOM; Army Communications Command (ACC); Military Transportation Manage- ment Command...Chief of Staff. c. The major commands in CONUS are represented on the next line. FORSCOM, DARCOM, TRADOC, and Health Service Commands are the larger...specialized combat support and combat service support training. Tile general support force (GSF) units are non- deployable ’inits supporting tne CONUS

  11. Operating and Support Costing Guide: Army Weapon Systems

    DTIC Science & Technology

    1974-12-23

    First US Army 1 Commandant, US Army Logistics Management Center (Director Administration and Services) 2 Commander, US Army Management Systems Support...Army Logistics Management Center (Director, Administration and Services) Commander, US Army Management Systems Support Agency (DACS-AME) Commander

  12. Astronaut John Young in Command Module Simulator during Apollo Simulation

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut John W. Young, command module pilot, inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Astronauts Thomas P. Stafford, commander and Eugene A. Cernan, lunar module pilot are out of the view.

  13. Bi-directional power control system for voltage converter

    DOEpatents

    Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward

    1999-01-01

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.

  14. Bi-directional power control system for voltage converter

    DOEpatents

    Garrigan, N.R.; King, R.D.; Schwartz, J.E.

    1999-05-11

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals. 10 figs.

  15. Combating Terrorism: North American Aerospace Defense Command Versus Asymmetric Threats

    DTIC Science & Technology

    2016-02-01

    AU/ACSC/2016 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY COMBATING TERRORISM: NORTH AMERICAN AEROSPACE DEFENSE COMMAND...1 SECTION II: BACKGROUND ...........................................................................................5 - North ...v LIST OF ILLUSTRATIONS Figure 1: North American Aerospace Defense Command Radars in the 1960s

  16. Commander Rominger at the commander's workstation in Endeavour during STS-100

    NASA Image and Video Library

    2001-04-21

    STS100-303-004 (19 April-1 May 2001) --- Astronaut Kent V. Rominger, STS-100 commander, looks over a procedures checklist at the commander's station on the forward flight deck of the Earth-orbiting Space Shuttle Endeavour.

  17. 32 CFR 700.832 - Environmental pollution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.832 Environmental pollution. The commanding officer shall cooperate with... considerations, insufficient resources or other reason, the commanding officer shall report to the immediate...

  18. 32 CFR 700.801 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.801 Applicability. In addition to commanding officers, the provisions of this... officers and petty officers when so detailed) and those persons standing the command duty. ...

  19. 32 CFR 700.801 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.801 Applicability. In addition to commanding officers, the provisions of this... officers and petty officers when so detailed) and those persons standing the command duty. ...

  20. 32 CFR 700.832 - Environmental pollution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.832 Environmental pollution. The commanding officer shall cooperate with... considerations, insufficient resources or other reason, the commanding officer shall report to the immediate...

  1. Change of Command

    NASA Image and Video Library

    2011-11-20

    ISS029-E-043183 (20 Nov. 2011) --- NASA astronauts Dan Burbank (left), Expedition 30 commander; and Mike Fossum, Expedition 29 commander, pose for a photo in the International Space Station?s Kibo laboratory following the ceremony of Changing-of-Command from Expedition 29 to Expedition 30.

  2. 32 CFR 700.801 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.801 Applicability. In addition to commanding officers, the provisions of this... officers and petty officers when so detailed) and those persons standing the command duty. ...

  3. 32 CFR 700.801 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.801 Applicability. In addition to commanding officers, the provisions of this... officers and petty officers when so detailed) and those persons standing the command duty. ...

  4. 32 CFR 700.801 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.801 Applicability. In addition to commanding officers, the provisions of this... officers and petty officers when so detailed) and those persons standing the command duty. ...

  5. 32 CFR 700.832 - Environmental pollution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.832 Environmental pollution. The commanding officer shall cooperate with... considerations, insufficient resources or other reason, the commanding officer shall report to the immediate...

  6. U.S. Northern Command > Newsroom > Fact Sheets

    Science.gov Websites

    Operations Command, North U.S. Marine Forces Northern Command U.S. Fleet Forces Command Air Forces Northern U.S. Army North Joint Task Force North Joint Task Force Civil Support Joint Task Force Alaska Joint

  7. 32 CFR 525.5 - Entry authorization (procedure).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AUTHORITIES AND PUBLIC RELATIONS ENTRY AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.5 Entry... the National Range Commander, the Commander, Kwajalein Missile Range or the designated representative... the Commander, Kwajalein Missile Range, responds to an application, and the National Range Commander...

  8. 32 CFR 525.5 - Entry authorization (procedure).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AUTHORITIES AND PUBLIC RELATIONS ENTRY AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.5 Entry... the National Range Commander, the Commander, Kwajalein Missile Range or the designated representative... the Commander, Kwajalein Missile Range, responds to an application, and the National Range Commander...

  9. 32 CFR 525.5 - Entry authorization (procedure).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AUTHORITIES AND PUBLIC RELATIONS ENTRY AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.5 Entry... the National Range Commander, the Commander, Kwajalein Missile Range or the designated representative... the Commander, Kwajalein Missile Range, responds to an application, and the National Range Commander...

  10. 32 CFR 525.5 - Entry authorization (procedure).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AUTHORITIES AND PUBLIC RELATIONS ENTRY AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.5 Entry... the National Range Commander, the Commander, Kwajalein Missile Range or the designated representative... the Commander, Kwajalein Missile Range, responds to an application, and the National Range Commander...

  11. 32 CFR 525.5 - Entry authorization (procedure).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AUTHORITIES AND PUBLIC RELATIONS ENTRY AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.5 Entry... the National Range Commander, the Commander, Kwajalein Missile Range or the designated representative... the Commander, Kwajalein Missile Range, responds to an application, and the National Range Commander...

  12. Command and Control: Toward Arctic Unity of Command and Unity of Effort

    DTIC Science & Technology

    2011-05-19

    Russia, Norway, and Denmark) are in the process of preparing or have submitted territorial claims in the Arctic by way of this convention.58... longitude . The Unified Command Plan divides the Arctic region geographically among three GCCs. U.S. Northern Command (USNORTHCOM), U.S. European...2008, http://www.defense.gov/specials/unifiedcommand/ images /unified-command_world-map.jpg (accessed November 22, 2010). While the Department of

  13. A Work Station For Control Of Changing Systems

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel J.

    1988-01-01

    Touch screen and microcomputer enable flexible control of complicated systems. Computer work station equipped to produce graphical displays used as command panel and status indicator for command-and-control system. Operator uses images of control buttons displayed on touch screen to send prestored commands. Use of prestored library of commands reduces incidence of errors. If necessary, operator uses conventional keyboard to enter commands in real time to handle unforeseeable situations.

  14. Trust: The Key to the Success of Mission Command in the Joint Force

    DTIC Science & Technology

    2015-05-18

    Malaysia, Kuala Lumpur: International Conference on ISO9000. Schmidt, Todd A. “ Design , Mission Command and the Network: Enabling Organization...acknowledge that trust is one of the most important component of a decentralized command philosophy. Adding to this challenge is an increasingly...moving to mission command, we must acknowledge that trust is one of the most important components of a decentralized command philosophy. Adding to this

  15. 32 CFR 700.802 - Responsibility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.802 Responsibility. (a) The responsibility of the commanding officer for his or her command is absolute, except when, and to the extent, relieved therefrom by competent authority, or...

  16. Three astronauts inside Command Module Simulator during Apollo Simulation

    NASA Image and Video Library

    1968-01-15

    S68-15952 (15 Jan. 1968) --- Three astronauts inside the Command Module Simulator in Building 5 during an Apollo Simulation. Left to right, are astronauts Thomas P. Stafford, commander; John W. Young, command module pilot; and Eugene A. Cernan, lunar module pilot.

  17. 85. Command HQ. SAC control center (MOD) new work cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    85. Command HQ. SAC control center (MOD) new work cross section, drawing number AW-30-02-07, dated 7 February, 1962 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  18. 32 CFR 700.802 - Responsibility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.802 Responsibility. (a) The responsibility of the commanding officer for his or her command is absolute, except when, and to the extent, relieved therefrom by competent authority, or...

  19. 32 CFR 700.802 - Responsibility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.802 Responsibility. (a) The responsibility of the commanding officer for his or her command is absolute, except when, and to the extent, relieved therefrom by competent authority, or...

  20. Fatigue Performance under Multiaxial Loading

    DTIC Science & Technology

    1990-01-01

    Director, Structural Integrity Engineering Officer (N7) Subgroup ( SEA 55Y) Military Seaift Command Naval Sea Systems Command Dr. Donald Liu CDR Michael K...REPRESENTATIVES Mr. William J. Siekierka Mr. Greg D. Woods SEA 55Y3 SEA 55Y3 Naval Sea Systems Command Naval Sea Systems Command SHIP STRUCTURE...AMERICAN BUREAU OF SHIPPING NAVAL SEA SYSTEMS COMMAND Mr. Stephen G. Arntson (Chairman) Mr. Robert A. Sielski Mr. John F. Conlon Mr. Charles L. Null Mr

  1. A Concept of Operations for an Unclassified Common Operational Picture in Support of Maritime Domain Awareness

    DTIC Science & Technology

    2017-03-01

    Responsibility AWS Amazon Web Services C2 Command and Control C4ISR Command, Control, Communications, Computers and Intelligence, Surveillance...and Reconnaissance C5F Commander Fifth Fleet C6F Commander Sixth Fleet C7F Commander Seventh Fleet CAMTES Computer -Assisted Maritime...capabilities. C. SCOPE AND LIMITATIONS The scope of this study is considerable and encompasses numerous agencies and classification levels. Some

  2. Resilient Multi-Domain Command and Control: Enabling Solutions for 2025 with Virtual Reality

    DTIC Science & Technology

    2017-04-16

    AIR WAR COLLEGE AIR UNIVERSITY RESILIENT MULTI-DOMAIN COMMAND AND CONTROL : ENABLING SOLUTIONS FOR 2025 WITH VIRTUAL REALITY by...monolithic, command and control (C2) sites, such as the theater Air Operation Centers (AOC), at risk. The Multi-Domain Command and Control (MDC2...Air Force respond to the these threats, considering the use of new and existing weapons and concepts, to ensure our ability to command, control and

  3. The Evolution of Army Leader Development

    DTIC Science & Technology

    2013-03-01

    Human Resources Command, OPMD- MFE -I. 4 U.S. Army General Officer Management Office, Army General Officer Roster (Washington, DC, U.S. Department of the...Human Resources Command, Command Management Branch post board data analysis. 15 Data from the United States Army Human Resources Command, OPMD- MFE -A...May 1, 2008), D-1. 25 19 Data from the United States Army Human Resources Command, OPMD- MFE -A, 01 February, 2013. 20 U.S. Joint Chiefs of

  4. 32 CFR 700.809 - Persons found under incriminating circumstances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... The Commanding Officer Commanding Officers in General § 700.809 Persons found under incriminating circumstances. (a) The commanding officer shall keep under restraint or surveillance, as necessary, any person... circumstances within the command, and shall immediately initiate an investigation. (b) Should an investigation...

  5. 32 CFR 700.809 - Persons found under incriminating circumstances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... The Commanding Officer Commanding Officers in General § 700.809 Persons found under incriminating circumstances. (a) The commanding officer shall keep under restraint or surveillance, as necessary, any person... circumstances within the command, and shall immediately initiate an investigation. (b) Should an investigation...

  6. 32 CFR 700.809 - Persons found under incriminating circumstances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... The Commanding Officer Commanding Officers in General § 700.809 Persons found under incriminating circumstances. (a) The commanding officer shall keep under restraint or surveillance, as necessary, any person... circumstances within the command, and shall immediately initiate an investigation. (b) Should an investigation...

  7. 32 CFR 700.809 - Persons found under incriminating circumstances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... The Commanding Officer Commanding Officers in General § 700.809 Persons found under incriminating circumstances. (a) The commanding officer shall keep under restraint or surveillance, as necessary, any person... circumstances within the command, and shall immediately initiate an investigation. (b) Should an investigation...

  8. 32 CFR 700.809 - Persons found under incriminating circumstances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... The Commanding Officer Commanding Officers in General § 700.809 Persons found under incriminating circumstances. (a) The commanding officer shall keep under restraint or surveillance, as necessary, any person... circumstances within the command, and shall immediately initiate an investigation. (b) Should an investigation...

  9. About USNORTHCOM

    Science.gov Websites

    defends America's homeland - protecting our people, national power, and freedom of action. USNORTHCOM's . The commander of USNORTHCOM also commands the North American Aerospace Defense Command (NORAD), a bi destruction. The command provides assistance to a Primary Agency when tasked by DOD. Per the Posse Comitatus

  10. Children's Reasoning about Three Authority Attributes: Adult Status, Knowledge, and Social Position.

    ERIC Educational Resources Information Center

    Laupa, Marta

    1991-01-01

    Assessed children's evaluations of individuals' commands and children's choices between individuals who gave opposing commands. Subjects weighted individuals' social position and knowledge more heavily than adult status in judging the legitimacy of commands and choosing between individuals giving opposing commands. (BC)

  11. 78 FR 25974 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Human Resources Command, Reclassification Management Branch, 2461 Eisenhower Avenue, Alexandria, VA... Files. System location: Commander, U.S. Army Human Resources Command, ATTN: AHRC-PED-A, 2461 Eisenhower... Human Resources Command, ATTN: AHRC-PED-A, 2461 Eisenhower Avenue, Alexandria, VA 23321-0482 for Army...

  12. [The detector, the command neuron and plastic convergence].

    PubMed

    Sokolov, E N

    1977-01-01

    The paper deals with the structure of detectors, the function of commanding neurones and the problem of relationship between detectors and commanding neurons. An example of hierarchial organization of detectors is provided by the colour analyser in which a layer of receptors, a layer of opponent neurones and a layer of colour-selective detectors are singled out. The colour detector is selectively sensitive to a certain combination of excitations at the input. If the detector is selectively activated by a certain combination of excitations at the input, the selective activation of the commanding neurone through a pool of motoneurones brings about a reaction at the output, specific in its organization. The reflexogenic zone of the reaction is determined by the detectors which converge on the commanding neurone controlling the given reaction. The plasticity of the reaction results from a plastic convergence of the detectors on the commanding neurone which controls the reaction. This comprises selective switching off the detectors from the commanding neurone (habituation) and connecting the detectors to the commanding neurone (facilitation).

  13. Sig2BioPAX: Java tool for converting flat files to BioPAX Level 3 format.

    PubMed

    Webb, Ryan L; Ma'ayan, Avi

    2011-03-21

    The World Wide Web plays a critical role in enabling molecular, cell, systems and computational biologists to exchange, search, visualize, integrate, and analyze experimental data. Such efforts can be further enhanced through the development of semantic web concepts. The semantic web idea is to enable machines to understand data through the development of protocol free data exchange formats such as Resource Description Framework (RDF) and the Web Ontology Language (OWL). These standards provide formal descriptors of objects, object properties and their relationships within a specific knowledge domain. However, the overhead of converting datasets typically stored in data tables such as Excel, text or PDF into RDF or OWL formats is not trivial for non-specialists and as such produces a barrier to seamless data exchange between researchers, databases and analysis tools. This problem is particularly of importance in the field of network systems biology where biochemical interactions between genes and their protein products are abstracted to networks. For the purpose of converting biochemical interactions into the BioPAX format, which is the leading standard developed by the computational systems biology community, we developed an open-source command line tool that takes as input tabular data describing different types of molecular biochemical interactions. The tool converts such interactions into the BioPAX level 3 OWL format. We used the tool to convert several existing and new mammalian networks of protein interactions, signalling pathways, and transcriptional regulatory networks into BioPAX. Some of these networks were deposited into PathwayCommons, a repository for consolidating and organizing biochemical networks. The software tool Sig2BioPAX is a resource that enables experimental and computational systems biologists to contribute their identified networks and pathways of molecular interactions for integration and reuse with the rest of the research community.

  14. Joint Composable Object Model and LVC Methodology

    NASA Technical Reports Server (NTRS)

    Rheinsmith, Richard; Wallace, Jeffrey; Bizub, Warren; Ceranowicz, Andy; Cutts, Dannie; Powell, Edward T.; Gustavson, Paul; Lutz, Robert; McCloud, Terrell

    2010-01-01

    Within the Department of Defense, multiple architectures are created to serve and fulfill one or several specific service or mission related LVC training goals. Multiple Object Models exist across and within those architectures and it is there that those disparate object models are a major source of interoperability problems when developing and constructing the training scenarios. The two most commonly used architectures are; HLA and TENA, with DIS and CTIA following close behind in terms of the number of users. Although these multiple architectures can share and exchange data the underlying meta-models for runtime data exchange are quite different, requiring gateways/translators to bridge between the different object model representations; while the Department of Defense's use of gateways are generally effective in performing these functions, as the LVC environment increases so too does the cost and complexity of these gateways. Coupled with the wide range of different object models across the various user communities we increase the propensity for run time errors, increased programmer stop gap measures during coordinated exercises, or failure of the system as a whole due to unknown or unforeseen incompatibilities. The Joint Composable Object Model (JCOM) project was established under an M&S Steering Committee (MSSC)-sponsored effort with oversight and control placed under the Joint Forces Command J7 Advanced Concepts Program Directorate. The purpose of this paper is to address the initial and the current progress that has been made in the following areas; the Conceptual Model Development Format, the Common Object Model, the Architecture Neutral Data Exchange Model (ANDEM), and the association methodology to allow the re-use of multiple architecture object models and the development of the prototype persistent reusable library.

  15. Evaluation of head orientation and neck muscle EMG signals as three-dimensional command sources.

    PubMed

    Williams, Matthew R; Kirsch, Robert F

    2015-03-05

    High cervical spinal cord injuries result in significant functional impairments and affect both the injured individual as well as their family and care givers. To help restore function to these individuals, multiple user interfaces are available to enable command and control of external devices. However, little work has been performed to assess the 3D performance of these interfaces. We investigated the performance of eight human subjects in using three user interfaces (head orientation, EMG from muscles of the head and neck, and a three-axis joystick) to command the endpoint position of a multi-axis robotic arm within a 3D workspace to perform a novel out-to-center 3D Fitts' Law style task. Two of these interfaces (head orientation, EMG from muscles of the head and neck) could realistically be used by individuals with high tetraplegia, while the joystick was evaluated as a standard of high performance. Performance metrics were developed to assess the aspects of command source performance. Data were analyzed using a mixed model design ANOVA. Fixed effects were investigated between sources as well as for interactions between index of difficulty, command source, and the five performance measures used. A 5% threshold for statistical significance was used in the analysis. The performances of the three command interfaces were rather similar, though significant differences between command sources were observed. The apparent similarity is due in large part to the sequential command strategy (i.e., one dimension of movement at a time) typically adopted by the subjects. EMG-based commands were particularly pulsatile in nature. The use of sequential commands had a significant impact on each command source's performance for movements in two or three dimensions. While the sequential nature of the commands produced by the user did not fit with Fitts' Law, the other performance measures used were able to illustrate the properties of each command source. Though pulsatile, given the overall similarity between head orientation and the EMG interface, (which also could be readily included in a future implanted neuroprosthesis) the use of EMG as a command source for controlling an arm in 3D space is an attractive choice.

  16. 32 CFR 700.810 - Rules for visits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.810 Rules for visits. (a) Commanding officers are responsible for the control of visitors to their commands and shall comply with the relevant provisions of Department of the...

  17. Commander Wilcutt works at the commander's workstation during STS-106

    NASA Image and Video Library

    2000-09-11

    STS106-352-009 (8-20 September 2000) --- Astronaut Terrence W. Wilcutt, STS-106 mission commander, performs a firing of the reaction control system on the flight deck of the Space Shuttle Atlantis. Earth’s horizon is visible through the commander’s window.

  18. 32 CFR 700.834 - Care of ships, aircraft, vehicles and their equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... The Commanding Officer Commanding Officers in General § 700.834 Care of ships, aircraft, vehicles and their equipment. The commanding officer shall cause such inspections and tests to be made and procedures..., vehicle, and their equipment assigned to his or her command. ...

  19. 32 CFR 700.834 - Care of ships, aircraft, vehicles and their equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... The Commanding Officer Commanding Officers in General § 700.834 Care of ships, aircraft, vehicles and their equipment. The commanding officer shall cause such inspections and tests to be made and procedures..., vehicle, and their equipment assigned to his or her command. ...

  20. 32 CFR 700.834 - Care of ships, aircraft, vehicles and their equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... The Commanding Officer Commanding Officers in General § 700.834 Care of ships, aircraft, vehicles and their equipment. The commanding officer shall cause such inspections and tests to be made and procedures..., vehicle, and their equipment assigned to his or her command. ...

  1. 32 CFR 700.810 - Rules for visits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.810 Rules for visits. (a) Commanding officers are responsible for the control of visitors to their commands and shall comply with the relevant provisions of Department of the...

  2. 32 CFR 700.811 - Dealers, tradesmen, and agents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.811 Dealers, tradesmen, and agents. (a) In general, dealers or tradesmen or their agents shall not be admitted within a command, except as authorized by the commanding...

  3. 32 CFR 700.834 - Care of ships, aircraft, vehicles and their equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... The Commanding Officer Commanding Officers in General § 700.834 Care of ships, aircraft, vehicles and their equipment. The commanding officer shall cause such inspections and tests to be made and procedures..., vehicle, and their equipment assigned to his or her command. ...

  4. 32 CFR 700.810 - Rules for visits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.810 Rules for visits. (a) Commanding officers are responsible for the control of visitors to their commands and shall comply with the relevant provisions of Department of the...

  5. 32 CFR 700.810 - Rules for visits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.810 Rules for visits. (a) Commanding officers are responsible for the control of visitors to their commands and shall comply with the relevant provisions of Department of the...

  6. 32 CFR 700.834 - Care of ships, aircraft, vehicles and their equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... The Commanding Officer Commanding Officers in General § 700.834 Care of ships, aircraft, vehicles and their equipment. The commanding officer shall cause such inspections and tests to be made and procedures..., vehicle, and their equipment assigned to his or her command. ...

  7. 32 CFR 700.811 - Dealers, tradesmen, and agents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.811 Dealers, tradesmen, and agents. (a) In general, dealers or tradesmen or their agents shall not be admitted within a command, except as authorized by the commanding...

  8. 32 CFR 700.811 - Dealers, tradesmen, and agents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.811 Dealers, tradesmen, and agents. (a) In general, dealers or tradesmen or their agents shall not be admitted within a command, except as authorized by the commanding...

  9. 32 CFR 700.810 - Rules for visits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.810 Rules for visits. (a) Commanding officers are responsible for the control of visitors to their commands and shall comply with the relevant provisions of Department of the...

  10. 3 CFR - Unified Command Plan 2011

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 3 The President 1 2012-01-01 2012-01-01 false Unified Command Plan 2011 Presidential Documents Other Presidential Documents Memorandum of April 6, 2011 Unified Command Plan 2011 Memorandum for the... implementation of the revised Unified Command Plan. Consistent with title 10, United States Code, section 161(b...

  11. 32 CFR 700.811 - Dealers, tradesmen, and agents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.811 Dealers, tradesmen, and agents. (a) In general, dealers or tradesmen or their agents shall not be admitted within a command, except as authorized by the commanding...

  12. 32 CFR 700.811 - Dealers, tradesmen, and agents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.811 Dealers, tradesmen, and agents. (a) In general, dealers or tradesmen or their agents shall not be admitted within a command, except as authorized by the commanding...

  13. 3 CFR - Disestablishment of United States Joint Forces Command

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Command Presidential Documents Other Presidential Documents Memorandum of January 6, 2011 Disestablishment of United States Joint Forces Command Memorandum for the Secretary of Defense Pursuant to my... States Joint Forces Command, effective on a date to be determined by the Secretary of Defense. I direct...

  14. 48 CFR 202.101 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Command Air Force Reserve Command Air Combat Command Air Mobility Command Air Education and Training... for their respective agencies (i.e., to perform functions under the FAR or DFARS reserved to a head of... cascading evaluation of offers, means a procedure used in negotiated acquisitions, when market research is...

  15. 32 CFR 700.702 - Responsibility and authority of commanders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Responsibility and authority of commanders. 700.702 Section 700.702 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED... authority of commanders. (a) Commanders shall be responsible for the satisfactory accomplishment of the...

  16. 32 CFR 700.702 - Responsibility and authority of commanders.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Responsibility and authority of commanders. 700.702 Section 700.702 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED... authority of commanders. (a) Commanders shall be responsible for the satisfactory accomplishment of the...

  17. 32 CFR 700.702 - Responsibility and authority of commanders.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Responsibility and authority of commanders. 700.702 Section 700.702 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED... authority of commanders. (a) Commanders shall be responsible for the satisfactory accomplishment of the...

  18. 32 CFR 700.702 - Responsibility and authority of commanders.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Responsibility and authority of commanders. 700.702 Section 700.702 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED... authority of commanders. (a) Commanders shall be responsible for the satisfactory accomplishment of the...

  19. Probability Formulas for Describing Fragment Size Distributions

    DTIC Science & Technology

    1981-06-01

    L)RCDMD-ST 5001 EisenhowerAvenue Alexandria,VA 22333 Commander US Amy MaterielDevelopment G ReadinessCommand ATTN: DRCDL 5001EisenhowerAvenue...Sieling Natick,MA 01762 CoWander US Amy Tank Automotive DevelopmentCommand ATTN: DRDTA-UL Warren,MI 48090 1 1 1 1 1 Organization Commander US Army...ATTN: D.R. Garrison 3 A. Wilner Bethesda,MD 20084 Commander 1 NavalSurfaceWeaponsCenter ATTN: Code TEB, D. W. Colberts ~n Mr. S. Hock Code TX, Dr. W.G

  20. APOLLO XII - ART CONCEPT - COMMAND MODULE

    NASA Image and Video Library

    1969-11-10

    S69-58005 (10 Nov. 1969) --- An artist's concept of the Apollo 12 Command Module's (CM) interior, with the command module pilot at the controls. The Apollo 12 Lunar Module (LM) and a portion of the lunar surface are seen out of the window. Astronaut Richard F. Gordon Jr. will maneuver the Apollo 12 Command and Service Modules (CSM) in lunar orbit while astronauts Charles Conrad Jr., commander, and Alan L. Bean, lunar module pilot, explore the moon.

  1. Reorganizing Geographic Combatant Command Headquarters for Joint Force 2020

    DTIC Science & Technology

    2013-05-01

    Corps General James N. Mattis , U.S. Central Command Commander, before the House Armed Services Committee on March 7, 2012, about the posture of U.S...Prentice Hall, 2002. Legal Organization of Defense. http://www.ndu.edu/library/pbrc/36L52.pdf (accessed January 21, 2013). 99 Mattis , James N...Statement of U.S. Marine Corps General James N. Mattis , U.S. Central Command Commander, before the House Armed Services Committee on March 7, 2012

  2. The Combat Vehicle Command and Control System. Combat Performance of Armor Battalions Using Interactive Simulation

    DTIC Science & Technology

    1994-01-31

    ncluded the Commander’s Independent Thermal Viewer and a Command and Control display. Using 1 tank simulators in the Mounted Warfare Test Bed at Fort...CCD), the Commander’s Independent Thermal Viewer (CITV), and digital TOC workstations. Using autoloading tank simulators in the Mounted Warfare Test...identifying ways that the CVCC system might best benefit the battlefield commander, and potential modifications to mounted warfare TTPs. Another area of

  3. Assessment of Arms, Ammunition, and Explosives Accountability and Control; Security Assistance; and Sustainment for the Afghan National Security Forces

    DTIC Science & Technology

    2008-10-24

    COMMANDER, U.S. ARMY MATERIAL COMMAND LOGISTICS SUPPORT ACTIVITY Department of Defense Office of Inspector General Report No. SPO-2009...report the serial numbers of weapons it controlled to the DoD SA/LW Registry maintained by the U.S. Army Material Command Logistics Support... Material Command Logistics Support Activity assist the Combined Security Transition Command- Afghanistan in reporting serial numbers for U.S.-supplied

  4. Predicting compliance with command hallucinations: anger, impulsivity and appraisals of voices' power and intent.

    PubMed

    Bucci, Sandra; Birchwood, Max; Twist, Laura; Tarrier, Nicholas; Emsley, Richard; Haddock, Gillian

    2013-06-01

    Command hallucinations are experienced by 33-74% of people who experience voices, with varying levels of compliance reported. Compliance with command hallucinations can result in acts of aggression, violence, suicide and self-harm; the typical response however is non-compliance or appeasement. Two factors associated with such dangerous behaviours are anger and impulsivity, however few studies have examined their relationship with compliance to command hallucinations. The current study aimed to examine the roles of anger and impulsivity on compliance with command hallucinations in people diagnosed with a psychotic disorder. The study was a cross-sectional design and included individuals who reported auditory hallucinations in the past month. Subjects completed a variety of self-report questionnaire measures. Thirty-two people experiencing command hallucinations, from both in-patient and community settings, were included. The tendency to appraise the voice as powerful, to be impulsive, to experience anger and to regulate anger were significantly associated with compliance with command hallucinations to do harm. Two factors emerged as significant independent predictors of compliance with command hallucinations; omnipotence and impulsivity. An interaction between omnipotence and compliance with commands, via a link with impulsivity, is considered and important clinical factors in the assessment of risk when working with clients experiencing command hallucinations are recommended. The data is highly suggestive and warrants further investigation with a larger sample. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Factors affecting compliance and resistance to auditory command hallucinations: perceptions of a clinical population.

    PubMed

    Barrowcliff, Alastair L; Haddock, Gillian

    2010-12-01

    Elements of voice content and characteristics of a hallucinatory voice are considered to be associated with compliance and resistance to auditory command hallucinations. However, a need for further exploration of such features remains. To explore the associations across different types of commands (benign, self-harm, harm-other) with a range of symptom measures and a trait measure of expressed compliance with compliance to the most recent command and command hallucinations over the previous 28 days. Participants meeting Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria for schizophrenia or schizoaffective disorder, with auditory hallucinations in the previous 28 days were screened. Where commands were reported a full-assessment of positive symptoms, social-rank, beliefs about voices and trait compliance was completed. Compliance with the last self-harm command was associated with elevated voice malevolence, heightened symptom presentation and perceived consequences for non-compliance. Compliance with the last harm-other command was associated with elevated symptom severity, higher perceived consequences for non-compliance and higher levels of voice social rank. However, these associations were not maintained for compliance during the previous 28 days. Findings indicate the importance of identifying the content of commands, overall symptom severity and core variables associated with compliance to specific command categories. The temporal stability of established mediating variables needs further examination.

  6. Command system output bit verification

    NASA Technical Reports Server (NTRS)

    Odd, C. W.; Abbate, S. F.

    1981-01-01

    An automatic test was developed to test the ability of the deep space station (DSS) command subsystem and exciter to generate and radiate, from the exciter, the correct idle bit sequence for a given flight project or to store and radiate received command data elements and files without alteration. This test, called the command system output bit verification test, is an extension of the command system performance test (SPT) and can be selected as an SPT option. The test compares the bit stream radiated from the DSS exciter with reference sequences generated by the SPT software program. The command subsystem and exciter are verified when the bit stream and reference sequences are identical. It is a key element of the acceptance testing conducted on the command processor assembly (CPA) operational program (DMC-0584-OP-G) prior to its transfer from development to operations.

  7. Land Ahoy! Understanding Submarine Command and Control During the Completion of Inshore Operations.

    PubMed

    Roberts, Aaron P J; Stanton, Neville A; Fay, Daniel

    2017-12-01

    The aim of this study was to use multiple command teams to provide empirical evidence for understanding communication flow, information pertinence, and tasks undertaken in a submarine control room when completing higher- and lower-demand inshore operation (INSO) scenarios. The focus of submarine operations has changed, and submarines are increasingly required to operate in costal littoral zones. However, submarine command team performance during INSO is not well understood, particularly from a sociotechnical systems perspective. A submarine control-room simulator was built. The creation of networked workstations allowed a team of nine operators to perform tasks completed by submarine command teams during INSO. The Event Analysis of Systematic Teamwork method was used to model the social, task, and information networks and to describe command team performance. Ten teams were recruited for the study, affording statistical comparisons of how command-team roles and level of demand affected performance. Results indicated that the submarine command-team members are required to rapidly integrate sonar and visual data as the periscope is used, periodically, in a "duck-and-run" fashion, to maintain covertness. The fusion of such information is primarily completed by the operations officer (OPSO), with this operator experiencing significantly greater demand than any other operator. The OPSO was a bottleneck in the command team when completing INSO, experiencing similar load in both scenarios, suggesting that the command team may benefit from data synthesis tasks being more evenly distributed within the command team. The work can inform future control-room design and command-team ways of working by identifying bottlenecks in terms of information and task flow between operators.

  8. The design of water markets when instream flows have value.

    PubMed

    Murphy, James J; Dinar, Ariel; Howitt, Richard E; Rassenti, Stephen J; Smith, Vernon L; Weinberg, Marca

    2009-02-01

    The main objective of this paper is to design and test a decentralized exchange mechanism that generates the location-specific pricing necessary to achieve efficient allocations in the presence of instream flow values. Although a market-oriented approach has the potential to improve upon traditional command and control regulations, questions remain about how these rights-based institutions can be implemented such that the potential gains from liberalized trade can be realized. This article uses laboratory experiments to test three different water market institutions designed to incorporate instream flow values into the allocation mechanism through active participation of an environmental trader. The smart, computer-coordinated market described herein offers the potential to significantly reduce coordination problems and transaction costs associated with finding mutually beneficial trades that satisfy environmental constraints. We find that direct environmental participation in the market can achieve highly efficient and stable outcomes, although the potential does exist for the environmental agent to influence outcomes.

  9. A Novel Technique for Running the NASA Legacy Code LAPIN Synchronously With Simulations Developed Using Simulink

    NASA Technical Reports Server (NTRS)

    Vrnak, Daniel R.; Stueber, Thomas J.; Le, Dzu K.

    2012-01-01

    This report presents a method for running a dynamic legacy inlet simulation in concert with another dynamic simulation that uses a graphical interface. The legacy code, NASA's LArge Perturbation INlet (LAPIN) model, was coded using the FORTRAN 77 (The Portland Group, Lake Oswego, OR) programming language to run in a command shell similar to other applications that used the Microsoft Disk Operating System (MS-DOS) (Microsoft Corporation, Redmond, WA). Simulink (MathWorks, Natick, MA) is a dynamic simulation that runs on a modern graphical operating system. The product of this work has both simulations, LAPIN and Simulink, running synchronously on the same computer with periodic data exchanges. Implementing the method described in this paper avoided extensive changes to the legacy code and preserved its basic operating procedure. This paper presents a novel method that promotes inter-task data communication between the synchronously running processes.

  10. Dugong: a Docker image, based on Ubuntu Linux, focused on reproducibility and replicability for bioinformatics analyses.

    PubMed

    Menegidio, Fabiano B; Jabes, Daniela L; Costa de Oliveira, Regina; Nunes, Luiz R

    2018-02-01

    This manuscript introduces and describes Dugong, a Docker image based on Ubuntu 16.04, which automates installation of more than 3500 bioinformatics tools (along with their respective libraries and dependencies), in alternative computational environments. The software operates through a user-friendly XFCE4 graphic interface that allows software management and installation by users not fully familiarized with the Linux command line and provides the Jupyter Notebook to assist in the delivery and exchange of consistent and reproducible protocols and results across laboratories, assisting in the development of open science projects. Source code and instructions for local installation are available at https://github.com/DugongBioinformatics, under the MIT open source license. Luiz.nunes@ufabc.edu.br. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. STS-79 astronauts DEPART O&C for LC39A

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 Commander William F. Readdy (far right) and Pilot Terrence W. Wilcutt (second from right) lead the way from the Operations and Checkout Building, followed by (from left to right) Mission Specialists Carl E. Walz (far left, to rear), Jay Apt, Thomas D. Akers and John E. Blaha. The crew is headed for Launch Pad 39A, where the Space Shuttle Atlantis awaits liftoff at approximately 4:54 a.m. EDT, Sept. 16. The 79th Shuttle flight will be highlighted by the fourth docking between Atlantis and the Russian Space Station Mir and the first in a series of U.S. crew exchanges aboard the station. Blaha will transfer to Mir for an extended stay and U.S. astronaut Shannon Lucid will return to Earth with the STS-79 crew after a record-setting tour of duty aboard the station.

  12. 46 CFR 147.5 - Commandant (CG-522); address.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Commandant (CG-522); address. 147.5 Section 147.5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.5 Commandant (CG-522); address. Commandant (CG-522) is the Office of Operating...

  13. 46 CFR 147.5 - Commandant (CG-OES); address.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Commandant (CG-OES); address. 147.5 Section 147.5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.5 Commandant (CG-OES); address. Commandant (CG-ENG) is the Office of Design and...

  14. 46 CFR 147.5 - Commandant (CG-522); address.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Commandant (CG-522); address. 147.5 Section 147.5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.5 Commandant (CG-522); address. Commandant (CG-522) is the Office of Operating...

  15. 46 CFR 147.5 - Commandant (CG-OES); address.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Commandant (CG-OES); address. 147.5 Section 147.5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.5 Commandant (CG-OES); address. Commandant (CG-ENG) is the Office of Design and...

  16. 46 CFR 147.5 - Commandant (CG-OES); address.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Commandant (CG-OES); address. 147.5 Section 147.5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.5 Commandant (CG-OES); address. Commandant (CG-OES) is the Office of Operating...

  17. ARMY CYBER STRUCTURE ALIGNMENT

    DTIC Science & Technology

    2016-02-16

    Director of Navy Staff Vice Admiral J. M. Bird , Missions, Functions, and Tasks of Commander, U.S. Fleet Cyber Command and Commander, U.S. Tenth Fleet...www.doncio.navy.mil/ContentView.aspx?ID=649. Director of Navy Staff Vice Admiral J. M. Bird , Missions, Functions, and Tasks of Commander, U.S. Fleet Cyber

  18. 32 CFR 215.7 - Command relationships.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Command relationships. 215.7 Section 215.7...) MISCELLANEOUS EMPLOYMENT OF MILITARY RESOURCES IN THE EVENT OF CIVIL DISTURBANCES § 215.7 Command relationships... specified commands will be transferred by the JCS to their respective military departments, when directed by...

  19. 32 CFR 700.828 - Search by foreign authorities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers in General § 700.828 Search by foreign authorities. (a) The commanding officer shall not permit a ship under his or her command to be searched on any pretense whatsoever by any person...

  20. 49 CFR 175.33 - Shipping paper and notification of pilot-in-command.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-command. 175.33 Section 175.33 Transportation Other Regulations Relating to Transportation PIPELINE AND...-in-command. (a) When a hazardous material subject to the provisions of this subchapter is carried in...-in-command with accurate and legible written information as early as practicable before departure of...

Top