Science.gov

Sample records for commensurate monolayer films

  1. Faceting and commensurability in crystal structures of colloidal thin films.

    PubMed

    Ramiro-Manzano, F; Meseguer, F; Bonet, E; Rodriguez, I

    2006-07-14

    This Letter investigates the influence of finite size effects on the particle arrangement of thin film colloidal crystals. A rich variety of crystallographic faceting with large single domain microcrystallites is shown. Optical reflectance experiments together with scanning electron microscopy permit the identification of the crystal symmetry and the facet orientation, as well as the exact number of monolayers. When the cell thickness is not commensurable with a high symmetry layering, particles arrange themselves in a periodic distribution of (111)- and (100)-orientated face centered cubic (fcc) microcrystallites separated by planar defects. These structures can be described as a fcc ordering orientated along a vicinal surface, modified by a periodic distribution of fcc (111) stacking faults.

  2. Effective and accurate approach for modeling of commensurate-incommensurate transition in krypton monolayer on graphite.

    PubMed

    Ustinov, E A

    2014-10-07

    Commensurate-incommensurate (C-IC) transition of krypton molecular layer on graphite received much attention in recent decades in theoretical and experimental researches. However, there still exists a possibility of generalization of the phenomenon from thermodynamic viewpoint on the basis of accurate molecular simulation. Recently, a new technique was developed for analysis of two-dimensional (2D) phase transitions in systems involving a crystalline phase, which is based on accounting for the effect of temperature and the chemical potential on the lattice constant of the 2D layer using the Gibbs-Duhem equation [E. A. Ustinov, J. Chem. Phys. 140, 074706 (2014)]. The technique has allowed for determination of phase diagrams of 2D argon layers on the uniform surface and in slit pores. This paper extends the developed methodology on systems accounting for the periodic modulation of the substrate potential. The main advantage of the developed approach is that it provides highly accurate evaluation of the chemical potential of crystalline layers, which allows reliable determination of temperature and other parameters of various 2D phase transitions. Applicability of the methodology is demonstrated on the krypton-graphite system. Analysis of phase diagram of the krypton molecular layer, thermodynamic functions of coexisting phases, and a method of prediction of adsorption isotherms is considered accounting for a compression of the graphite due to the krypton-carbon interaction. The temperature and heat of C-IC transition has been reliably determined for the gas-solid and solid-solid system.

  3. Commensurability condition and hierarchy of fillings for FQHE in higher Landau levels in conventional 2DEG systems and in graphene—monolayer and bilayer

    NASA Astrophysics Data System (ADS)

    Jacak, Janusz; Jacak, Lucjan

    2016-01-01

    The structure of the filling rate hierarchy referred to as the fractional quantum Hall effect is studied in higher Landau levels using the commensurability condition. The hierarchy of fillings that are derived in this manner is consistent with the experimental observations of the first three Landau levels in conventional semiconductor Hall systems. The relative poverty of the fractional structure in higher Landau levels compared with the lowest Landau level is explained using commensurability topological arguments. The commensurability criterion for correlated states for higher Landau levels (with n≥slant 1) including the paired states at half fillings of the spin-subbands of these levels is formulated. The commensurability condition is applied to determine the hierarchy of the fractional fillings of Landau levels in the monolayer and bilayer graphene. Good agreement with current experimental observations of fractional quantum Hall effect in the graphene monolayer and bilayer is achieved. The presence of even denominator rates in the hierarchy for fractional quantum Hall effect in the bilayer graphene is also explained.

  4. Equilibrating Nanoparticle Monolayers Using Wetting Films

    SciTech Connect

    Pontoni, D.; Alvine, K; Checco, A; Gang, O; Ocko, B; Pershan, P

    2009-01-01

    Monolayers of bimodal gold nanoparticles on silicon are investigated by a combination of microscopy (dry monolayers) and x-ray diffraction (dry and wet monolayers). In the presence of an excess of small particles, the nanoscale packing structure closely resembles the small-particle-rich scenario of the structural crossover transition that has been predicted and also observed with micron-scale hard-sphere colloids. Structural morphology is monitored in situ during monolayer dissolution and reassembly within the thin liquid wetting film. This approach allows investigation of size and solvent effects on nanoparticles in quasi-two-dimensional confinement.

  5. Covalently networked monolayer-protected nanoparticle films.

    PubMed

    Tognarelli, D J; Miller, Robert B; Pompano, Rebecca R; Loftus, Andrew F; Sheibley, Daniel J; Leopold, Michael C

    2005-11-22

    Covalently networked films of nanoparticles can be assembled on various substrates from functionalized monolayer-protected clusters (MPCs) via ester coupling reactions. Exposure of a specifically modified substrate to alternating solutions of 11-mercaptoundecanoic acid exchanged and 11-mercaptoundecanol exchanged MPCs, in the presence of ester coupling reagents, 1,3-dicyclohexylcarbodiimide and 4-(dimethylamino)pyridine, results in the formation of a multilayer film with ester bridges between individual nanoparticles. These films can be grown in a controlled manner to various thicknesses and exhibit certain properties that are consistent with films having other types of interparticle connectivity, including chemical vapor response behavior and quantized double layer charging. Ester coupling of MPCs into assembled films is a straightforward and highly versatile approach that results in robust films that can endure harsher chemical environments than other types of films. The stability of these covalent films is assessed and compared to other more traditional MPC film assemblies.

  6. Sub-monolayer film growth of a volatile lanthanide complex on metallic surfaces

    PubMed Central

    Chen, Jinjie; Edelmann, Kevin; Wulfhekel, Wulf

    2015-01-01

    Summary We deposited a volatile lanthanide complex, tris(2,2,6,6-tetramethyl-3,5-heptanedionato)terbium(III), onto metal surfaces of Cu(111), Ag(111) and Au(111) in vacuum and observed well-ordered sub-monolayer films with low temperature (5 K) scanning tunneling microscopy. The films show a distorted three-fold symmetry with a commensurate structure. Scanning tunneling spectroscopy reveals molecular orbitals delocalized on the ligands of the molecule. Our results imply that this complex can be transferred onto the metal substrates without molecular decomposition or contamination of the surface. This new rare-earth-based class of molecules broadens the choice of molecular magnets to study with scanning tunneling microscopy. PMID:26733215

  7. Effect of Self-Assembled Monolayer Film Order on Nanofriction

    SciTech Connect

    Sambasivan,S.; Shieh, S.; Fischer, D.; Hsu, S.

    2006-01-01

    Self-assembled monolayers have increasingly been explored as potential protective films in devices against friction and adhesion. However, detailed characterization of the monolayer film structure is difficult. This article utilizes a combination of near edge x-ray absorption fine structure (NEXAFS) spectroscopy and Fourier transform infrared (FTIR) spectroscopy to determine the film structure in order to explain the observed nanofriction measurement results. A series of n-alkyltrichlorosilane self-assembled monolayer films with various chain lengths (C5-C30) was prepared on silicon (100) surfaces. Nanofriction measurements were conducted using an atomic force microscope. Results showed that the lowest friction was obtained with a C12 film with higher friction values observed for C5 and C30 films. To explain these observations, the x-ray absorption technique NEXAFS was used to quantitatively measure the surface molecular orientation (order) of these films. It was observed that C12, C16, and C18 films were highly ordered with a molecular orientation of the carbon backbone nearly perpendicular to the surface. C5 and C30 films were less oriented and C10 film showed partial orientation. FTIR spectra suggested that these films possessed different degrees of order. This combination of molecular orientation and order supports and confirms that nanofriction results were heavily influenced by the order and structure of these films.

  8. The influence of the surface composition of mixed monolayer films on the evaporation coefficient of water.

    PubMed

    Miles, Rachael E H; Davies, James F; Reid, Jonathan P

    2016-07-20

    We explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films. As a droplet continues to diminish in surface area with continued loss of water, the more-soluble, shorter alkyl chain component preferentially partitions into the droplet bulk with the evaporation coefficient tending towards that through a single component film formed simply from the less-soluble, longer chain alcohol. We also show that the addition of a long chain alcohol to an aqueous-sucrose droplet can facilitate control over the degree of dehydration achieved during evaporation. After undergoing rapid gas-phase diffusion limited water evaporation, binary aqueous-sucrose droplets show a continued slow evaporative flux that is limited by slow diffusional mass transport within the particle bulk due to the rapidly increasing particle viscosity and strong concentration gradients that are established. The addition of a long chain alcohol to the droplet is shown to slow the initial rate of water loss, leading to a droplet composition that remains more homogeneous for a longer period of time. When the sucrose concentration has achieved a sufficiently high value, and the diffusion constant of water has decreased accordingly so that bulk phase diffusion arrest occurs in the monolayer

  9. Controlled electrodeposition of Au monolayer film on ionic liquid

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei; Liu, Shengzhong Frank

    2016-05-01

    Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF6] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  10. Photoresponsive Wettability in Monolayer Films from Sinapinic Acid

    PubMed Central

    Moura, Cleverson A. S.; Gomes, Douglas J. C.; de Souza, Nara C.; Silva, Josmary R.

    2013-01-01

    Sinapinic acid is an interesting material because it is both antioxidant and antibacterial agent. In addition, when illuminated with ultraviolet light, it can exhibit the so-called photodimerization process. In this paper, we report on the investigation of monolayer films from 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid, SinA) deposited onto poly(allylamine hydrochloride), PAH, films. SinA monolayers were prepared by using the layer-by-layer (LbL) self-assembly technique. Adsorption kinetics curves were well fitted by a biexponential function suggesting that the adsorption process is determined by two mechanisms: nucleation and growth of aggregates. By using wetting contact angle analysis, we have found that SinA monolayers exhibit photoresponsive wettability under UV irradiation (365 nm); that is, wettability decreases with increasing UV irradiation time. The photoresponse of wettability was attributed to photodimerization process. This hypothesis was supported by the dependence of surface morphological structure and absorption on UV irradiation time. The mechanism found in the well-known transcinnamic acid crystals is used to explain the photodimerization process in SinA monolayers. PMID:24302879

  11. Graphene-like monolayer low-buckled honeycomb germanium film

    NASA Astrophysics Data System (ADS)

    He, Yezeng; Luo, Haibo; Li, Hui; Sui, Yanwei; Wei, Fuxiang; Meng, Qingkun; Yang, Weiming; Qi, Jiqiu

    2017-04-01

    Molecular dynamics simulations have been performed to study the cooling process of two-dimensional liquid germanium under nanoslit confinement. The results clearly indicates that the liquid germanium undergoes an obvious liquid-solid phase transition to a monolayer honeycomb film with the decrease of temperature, accompanying the rapid change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the solidification process, some hexagonal atomic islands first randomly emerge in the disordered liquid film and then grow up to stable crystal grains which keep growing and finally connect together to form a honeycomb polycrystalline film. It is worth noting that the honeycomb germanium film is low-buckled, quite different from the planar graphene.

  12. Surface energetics of freely suspended fluid molecular monolayer and multilayer smectic liquid crystal films

    PubMed Central

    Nguyen, Zoom Hoang; Park, Cheol Soo; Pang, Jinzhong; Clark, Noel A.

    2012-01-01

    A study of the surface energetics of the thinnest substrate-free liquid films, fluid molecular monolayer and multilayer smectic liquid crystal films suspended in air, is reported. In films having monolayer and multilayer domains, the monolayer areas contract, contrary to predictions from the van der Waals disjoining pressure of thin uniform slabs. This discrepancy is accounted for by modeling the environmental asymmetry of the surface layers in multilayer films, leading to the possibility that preferential end-for-end polar ordering of the rod shaped molecules can reduce the surface energy of multilayers relative to that of the monolayer, which is inherently symmetric. PMID:22826264

  13. Mixed DPPC/DPPG monolayers at very high film compression.

    PubMed

    Saad, Sameh M I; Policova, Zdenka; Acosta, Edgar J; Hair, Michael L; Neumann, A Wilhelm

    2009-09-15

    A drop shape technique using a constrained sessile drop constellation (ADSA-CSD) has been introduced as a superior technique for studying spread films specially at high collapse pressures [Saad et al. Langmuir 2008, 24, 10843-10850]. It has been shown that ADSA-CSD has certain advantages including the need only for small quantities of liquid and insoluble surfactants, the ability to measure very low surface tension values, easier deposition procedure, and leak-proof design. Here, this technique was applied to investigate mixed DPPC/DPPG monolayers to characterize the role of such molecules in maintaining stable film properties and surface activity of lung surfactant preparations. Results of compression isotherms were obtained for different DPPC/DPPG mixture ratios: 90/10, 80/20, 70/30, 60/40, and 50/50 in addition to pure DPPC and pure DPPG at room temperature of 24 degrees C. The ultimate collapse pressure of DPPC/DPPG mixtures was found to be 70.5 mJ/m2 (similar to pure DPPC) for the cases of low DPPG content (up to 20%). Increasing the DPPG content in the mixture (up to 40%) caused a slight decrease in the ultimate collapse pressure. However, further increase of DPPG in the mixture (50% or more) caused a sharp decrease in the ultimate collapse pressure to a value of 59.9 mJ/m2 (similar to pure DPPG). The change in film elasticity was also tracked for the range of mixture ratios studied. The physical reasons for such changes and the interaction between DPPC and DPPG molecules are discussed. The results also show a change in the film hysteresis upon successive compression and expansion cycles for different mixture ratios.

  14. Electrodeposition of a Pt monolayer film: using kinetic limitations for atomic layer epitaxy.

    PubMed

    Brimaud, Sylvain; Behm, R Jürgen

    2013-08-14

    A new and facile one-step method to prepare a smooth Pt monolayer film on a metallic substrate in the absence of underpotential deposition-type stabilizations is presented as a general approach and applied to the growth of Pt monolayer films on Au. The strongly modified electronic properties of these films were demonstrated by in situ IR spectroscopy at the electrified solid-liquid interface with adsorbed carbon monoxide serving as a probe molecule. The Pt monolayer on Au is kinetically stabilized by adsorbed CO, inhibiting further Pt deposition in higher layers.

  15. Studies on monolayers. Part 2. Design monolayer assemblies of mixed films of surface-active azo dyes

    SciTech Connect

    Heesemann, J.

    1980-03-26

    This work is concerned with designed self-organization of surfactants to highly organized monomolecular layers, which may be used for molecular engineering. The monolayer properties of 2-component and 3-component films are studied at the air-water and air-glass interface. The 2-component films consist of the chromophoric diglyceride and the chromophoric triglyceride (one fatty acid residue was substituted by n-(4'nitro-1'-phenylazo-P-phe methylaminopropionic acid). The Pi-Alpha curves of the mixed films showed marked deviations from the addivity rule. For the mole fraction 0.35 of the diglyceride component the surface pressure-area isotherm shows the characteristics of an eutectic film. The results of absorbance spectra and surface pressure-area isotherms suggest that the close-packed monolayer of the eutectic mixture consist of molecules in the stretched conformation with the chromophores in a card-pack-like arrangement (H aggregates). The 3-component films consists of stearic acid, stearylamine, and 12-(4'nitro-4- dimethylaminoazobenzene-3'-car acid. Neutral 3-component films are deposited onto glass slides and absorbance spectra are measured with polarized light.

  16. Superconducting Gap Anisotropy in Monolayer FeSe Thin Film

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Lee, J. J.; Moore, R. G.; Li, W.; Yi, M.; Hashimoto, M.; Lu, D. H.; Devereaux, T. P.; Lee, D.-H.; Shen, Z.-X.

    2016-09-01

    Superconductivity originates from pairing of electrons near the Fermi energy. The Fermi surface topology and pairing symmetry are thus two pivotal characteristics of a superconductor. Superconductivity in one monolayer (1 ML) FeSe thin film has attracted great interest recently due to its intriguing interfacial properties and possibly high superconducting transition temperature over 65 K. Here, we report high-resolution measurements of the Fermi surface and superconducting gaps in 1 ML FeSe using angle-resolved photoemission spectroscopy. Two ellipselike electron pockets are clearly resolved overlapping with each other at the Brillouin zone corner. The superconducting gap is nodeless but moderately anisotropic, which puts strong constraint on determining the pairing symmetry. The gap maxima locate on the dx y bands along the major axis of the ellipse and four gap minima are observed at the intersections of electron pockets. The gap maximum location combined with the Fermi surface geometry deviate from a single d -wave, extended s -wave or s± gap function, suggesting an important role of the multiorbital nature of Fermi surface and orbital-dependent pairing in 1 ML FeSe. The gap minima location may be explained by a sign change on the electron pockets, or a competition between intra- and interorbital pairing.

  17. Formation of Monolayer Films by the Spontaneous Assembly of Organic Thiols from Solution onto Gold

    DTIC Science & Technology

    1988-09-01

    structure of the terminal group, X, widely and thus permit the introduction of a great range of functional groups into a surface. Studies of wettability of...permit the introduction of a great range of functional groups into a surface. Studies of wettability of these monolayers, and of their composition using...relationships between the microscopic structure of organic surfaces and their macroscopic properties (especially wettability ). Studies of organic monolayer films

  18. Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance.

    PubMed

    Huang, Lizhen; Hu, Xiaorong; Chi, Lifeng

    2015-09-15

    Increased interest in wearable and smart electronics is driving numerous research works on organic electronics. The control of film growth and patterning is of great importance when targeting high-performance organic semiconductor devices. In this Feature Article, we summarize our recent work focusing on the growth, crystallization, and device operation of organic semiconductors intermediated by ultrathin organic films (in most cases, only a monolayer). The site-selective growth, modified crystallization and morphology, and improved device performance of organic semiconductor films are demonstrated with the help of the inducing layers, including patterned and uniform Langmuir-Blodgett monolayers, crystalline ultrathin organic films, and self-assembled polymer brush films. The introduction of the inducing layers could dramatically change the diffusion of the organic semiconductors on the surface and the interactions between the active layer with the inducing layer, leading to improved aggregation/crystallization behavior and device performance.

  19. Nanometer-scale organic thin film transistors from self-assembled monolayers.

    PubMed

    Vuillaume, Dominique

    2002-01-01

    A survey of the most interesting results on nanometer-scale organic thin film transistors (nano-OTFT) is presented. Additionally, we discuss our recent results on the properties of end-group functionalized organic self-assembled monolayers and on their use in the fabrication of nanometer-scale field-effect transistors. Nanometer-scale organic transistors (channel length 30 nm) were fabricated, with a self-assembled monolayer as gate insulator. The carrier transport in these transistors, as a function of the channel length, was investigated, and a transition from a dispersive to a ballistic transport at a channel length of 200 nm was observed. On a molecular scale, alkyl monolayers functionalized at their omega-ends by aromatic moieties were prepared. A high anisotropic conductivity in molecular insulator/semiconductor heterostructures of monolayer thickness was observed. These molecular architectures provide a basis for the building blocks of molecular transistors.

  20. Strictly monolayer large continuous MoS2 films on diverse substrates and their luminescence properties

    NASA Astrophysics Data System (ADS)

    Mohapatra, P. K.; Deb, S.; Singh, B. P.; Vasa, P.; Dhar, S.

    2016-01-01

    Despite a tremendous interest on molybdenum disulfide as a thinnest direct band gap semiconductor, single step synthesis of a large area purely monolayer MoS2 film has not yet been reported. Here, we report a CVD route to synthesize a continuous film of strictly monolayer MoS2 covering an area as large as a few cm2 on a variety of different substrates without using any seeding material or any elaborate pretreatment of the substrate. This is achieved by allowing the growth to take place in the naturally formed gap between a piece of SiO2 coated Si wafer and the substrate, when the latter is placed on top of the former inside a CVD reactor. We propose a qualitative model to explain why the MoS2 films are always strictly monolayer in this method. The photoluminescence study of these monolayers shows the characteristic excitonic and trionic features associated with monolayer MoS2. In addition, a broad defect related luminescence band appears at ˜1.7 eV. As temperature decreases, the intensity of this broad feature increases, while the band edge luminescence reduces.

  1. Controlled Synthesis of Monolayer Graphene Toward Transparent Flexible Conductive Film Application.

    PubMed

    Lee, Byeong-Joo; Yu, Han-Young; Jeong, Goo-Hwan

    2010-07-28

    We demonstrate the synthesis of monolayer graphene using thermal chemical vapor deposition and successive transfer onto arbitrary substrates toward transparent flexible conductive film application. We used electron-beam-deposited Ni thin film as a synthetic catalyst and introduced a gas mixture consisting of methane and hydrogen. To optimize the synthesis condition, we investigated the effects of synthetic temperature and cooling rate in the ranges of 850-1,000°C and 2-8°C/min, respectively. It was found that a cooling rate of 4°C/min after 1,000°C synthesis is the most effective condition for monolayer graphene production. We also successfully transferred as-synthesized graphene films to arbitrary substrates such as silicon-dioxide-coated wafers, glass, and polyethylene terephthalate sheets to develop transparent, flexible, and conductive film application.

  2. Second-harmonic generation in resonant waveguide gratings incorporating ionic self-assembled monolayer polymer films.

    PubMed

    Purvinis, Georgeanne; Priambodo, Purnomo S; Pomerantz, Martin; Zhou, Ming; Maldonado, Theresa A; Magnusson, Robert

    2004-05-15

    Experimental results on resonantly excited second-harmonic generation (SHG) in a periodic ionically self-assembled monolayer (ISAM) film are reported. A double-layer guided-mode resonance filter (GMRF) structure is coated with 40 bilayers of pyrlium-based chi(2) ISAM thin film and excited with the fundamental of a Nd:YAG laser. Enhanced second-harmonic conversion in the ISAM film is achieved because of the local field enhancement associated with the fundamental resonating leaky mode. This method of SHG is particularly promising, as the ISAM films under investigation exhibit anomalous dispersion that may be applied for phase matching to improve nonlinear conversion efficiency.

  3. Magnetic phases of fcc Fe films in the 5{endash}11 monolayer thickness range

    SciTech Connect

    Escorcia-Aparicio, E.J.; Choi, H.J.; Kawakami, R.K.; Qiu, Z.Q.

    1998-07-01

    Using the methods of artificial roughening and interfacial doping, we investigated the effects of film roughness and interdiffusion on the formation of the magnetic phase of the fcc Fe film in the Fe/Co/Cu(100) system. We found that it is the degree of film roughness that determines the magnetic phase of the fcc Fe film in the 5{endash}11 monolayer thickness range, and that the interdiffusion plays no appreciable role in the formation of the magnetic phase. {copyright} {ital 1998} {ital The American Physical Society}

  4. Monolayer film behavior of lipopolysaccharide from Pseudomonas aeruginosa at the air-water interface.

    PubMed

    Abraham, Thomas; Schooling, Sarah R; Beveridge, Terry J; Katsaras, John

    2008-10-01

    Lipopolysaccharide (LPS) is an essential biomacromolecule making up approximately 50% of the outer membrane of gram-negative bacteria. LPS chemistry facilitates cellular barrier and permeability functions and mediates interactions between the cell and its environment. To better understand the local interactions within LPS membranes, the monolayer film behavior of LPS extracted from Pseudomonas aeruginosa, an opportunistic pathogen of medical importance, was investigated by Langmuir film balance. LPS formed stable monolayers at the air-water interface and the measured lateral stresses and modulus (rigidity) of the LPS film in the compressed monolayer region were found to be appreciable. Scaling theories for two-dimensional (2D) polymer chain conformations were used to describe the pi-A profile, in particular, the high lateral stress region suggested that the polysaccharide segments reside at the 2D air-water interface. Although the addition of monovalent and divalent salts caused LPS molecules to adopt a compact conformation at the air-water interface, they did not appear to have any influence on the modulus (rigidity) of the LPS monolayer film under biologically relevant stressed conditions. With increasing divalent salt (CaCl2) content in the subphase, however, there is a progressive reduction of the LPS monolayer's collapse pressure, signifying that, at high concentrations, divalent salts weaken the ability of the membrane to withstand elevated stress. Finally, based on the measured viscoelastic response of the LPS films, we hypothesize that this property of LPS-rich outer membranes of bacteria permits the deformation of the membrane and may consequently protect bacteria from catastrophic structural failure when under mechanical-stress.

  5. Self-assembled monolayer films of C[sub 60]/on cysteamine-modified gold

    SciTech Connect

    Caldwell, W.B.; Chen, K.; Mirkin, C.A.; Babinec, S.J. Dow Chemical Company, Midland, MI )

    1993-08-01

    Self-assembled monolayer films (SAMs) of C[sub 60] on cysteamine-modified and cysteamine/ethanethiol-modified Au are reported. The monolayers were characterized via contact angle measurements, X-ray photoelectron spectroscopy, electrochemistry, and quartz crystal microbalance (QCM) measurements. C[sub 60] surface coverage (2.0 [times] 10[sup [minus]10] mol/cm[sup 2]) for a film formed on pure cysteamine was determined by QCM measurements and compares remarkably well with monolayer coverage (1.9 [times] 10[sup [minus]10] mol/cm[sup 2]) predicted by a model based on crystallographic data for C[sub 60]. These experiments demonstrate the utility of the QCM in characterizing and monitoring the growth of fullerene SAMs. C[sub 60] SAMs formed on pure cysteamine yield strikingly different electrochemical responses than those formed on prelayers consisting of varying ratios of ethanethiol and cysteamine and previously reported monolayers of C[sub 60] on (aminopropyl)silanized oxide surfaces. Although the C[sub 60] SAMs are stable under ambient conditions, the fullerenes may be desorbed from the surface through electrochemical reduction of the films for extended periods of time (> 10 min). 11 refs., 2 figs.

  6. Sputtering and secondary ion emission properties of alkali metal films and adsorbed monolayers

    SciTech Connect

    Krauss, A R; Gruen, D M

    1980-01-01

    The secondary ion emission of alkali metal adsorbed monlayer and multilayer films has been studied. Profiling with sub-monolayer resolution has been performed by Auger, x-ray photoemission and secondary ion mass spectroscopy. Characteristic differences in the sputtering yields, and ion fraction have been observed which are associated with both the surface bonding properties and the mechanism leading to the formation of secondary ions. By sputtering with a negative bias applied to the sample, positive secondary ions are returned to the surface, resulting in a reduced sputter-induced erosion rate. Comparison with the results obtained with K and Li overlayers sputtered without sample bias provides an experimental value of both the total and secondary ion sputtering yields. The first and second monolayers can be readily identified and the first monolayer exhibits a lower sputtering yield and higher secondary ion fraction. This result is related to adsorption theory and measured values are compared with those obtained by thermal desorption measurements.

  7. Plasticity resulted from phase transformation for monolayer molybdenum disulfide film during nanoindentation simulations.

    PubMed

    Wang, Weidong; Li, Longlong; Yang, Chenguang; Soler-Crespo, Rafael A; Meng, Zhaoxu; Li, Minglin; Zhang, Xu; Keten, Sinan; Espinosa, Horacio D

    2017-04-21

    Molecular dynamics simulations on nanoindentation of circular monolayer molybdenum disulfide (MoS2) film are carried out to elucidate the deformation and failure mechanisms. Typical force-deflection curves are obtained, and in-plane stiffness of MoS2 is extracted according to a continuum mechanics model. The measured in-plane stiffness of monolayer MoS2 is about 182 ± 14 N m(-1), corresponding to an effective Young's modulus of 280 ± 21 GPa. More interestingly, at a critical indentation depth, the loading force decreases sharply and then increases again. The loading-unloading-reloading processes at different initial unloading deflections are also conducted to explain the phenomenon. It is found that prior to the critical depth, the monolayer MoS2 film can return to the original state after completely unloading, while there is hysteresis when unloading after the critical depth and residual deformation exists after indenter fully retracted, indicating plasticity. This residual deformation is found to be caused by the changed lattice structure of the MoS2, i.e. a phase transformation. The critical pressure to induce the phase transformation is then calculated to be 36 ± 2 GPa, consistent with other studies. Finally, the influences of temperature, the diameter and indentation rate of MoS2 monolayer on the mechanical properties are also investigated.

  8. Quantifying Plasmon-Enhanced Light Absorption in Monolayer WS2 Films.

    PubMed

    Butun, Serkan; Palacios, Edgar; Cain, Jeffrey D; Liu, Zizhuo; Dravid, Vinayak P; Aydin, Koray

    2017-04-10

    Transition metal dichalcogenide semiconductors hold great promise in photonic and optoelectronic applications such as flexible solar cells and ultrafast photodetectors due to their direct band-gap and few-atom thicknesses. However, it is crucial to understand and improve the absorption characteristics of these monolayer semiconducting materials. In this paper, we performed a systematic numerical and experimental investigation to demonstrate and quantify absorption enhancement in WS2 monolayer films, in the presence of silver plasmonic nanodisk arrays. Our analysis combining full-field electromagnetic simulations and optical absorption spectroscopy measurements indicate a 4-fold enhancement in the absorption of WS2 film near its band edge, close to the plasmonic resonance wavelength of Ag nanodisk arrays. Proposed Ag/WS2 heterostructure exhibited 2.5-fold enhancement in calculated short circuit current. Such hybrid plasmonic/2D materials with enhanced absorption pave the way towards practical realization of 2D optoelectronic devices including ultrafast photodetectors and solar cells.

  9. Quantitative determination of melamine in milk using Ag nanoparticle monolayer film as SERS substrate

    NASA Astrophysics Data System (ADS)

    Li, Ruoping; Yang, Jingliang; Han, Junhe; Liu, Junhui; Huang, Mingju

    2017-04-01

    A Raman method employing silver nanoparticle (Ag NP) monolayer film as Surface-enhanced Raman Scattering (SERS) substrate was presented to rapidly detect melamine in milk. The Ag NPs with 80 nm diameter were modified by polyvinylpyrrolidone to improve their uniformity and chemical stability. The treatment procedure of liquid milk required only addition of acetic acid and centrifugation, and required time is less than 15 min. The Ag NP monolayer film significantly enhanced Raman signal from melamine and allowed experimentally reproducible determination of the melamine concentration. A good linear relationship (R2=0.994) between the concentration and Raman peak intensity of melamine at 681 cm-1 was obtained for melamine concentrations between 0.10 mg L-1 and 5.00 mg L-1. This implies that this method can detect melamine concentrations below 1.0 mg L-1, the concentration currently considered unsafe.

  10. Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Pacios, Merce; Bhaskaran, Harish; Warner, Jamie H.

    2016-02-01

    Growing monolayer MoS2 films that are continuous with large domain sizes by chemical vapor deposition is one of the major challenges in 2D materials research at the moment. Here, we explore how atmospheric pressure CVD can be used to grow centimeter scale continuous films of monolayer MoS2 films directly on Si substrates with an oxide layer whilst also obtaining large domain sizes exceeding 20 μm within the films. This is achieved by orientating the growth substrate in a vertical position to improve the uniformity of precursor feed-stock compared to horizontally orientated growth substrates. This leads to continuous films of monolayer MoS2 over a significantly larger area without the need for low-pressure vacuum systems or volatile precursors. This provides important insights into novel approaches for maximizing domain sizes within MoS2 films, with concomitant large area uniform coverage.

  11. Single Crystalline Film of Hexagonal Boron Nitride Atomic Monolayer by Controlling Nucleation Seeds and Domains.

    PubMed

    Wu, Qinke; Park, Ji-Hoon; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Park, Noejung; Wongwiriyapan, Winadda; Lee, Sungjoo; Lee, Young Hee; Song, Young Jae

    2015-11-05

    A monolayer hexagonal boron nitride (h-BN) film with controllable domain morphology and domain size (varying from less than 1 μm to more than 100 μm) with uniform crystalline orientation was successfully synthesized by chemical vapor deposition (CVD). The key for this extremely large single crystalline domain size of a h-BN monolayer is a decrease in the density of nucleation seeds by increasing the hydrogen gas flow during the h-BN growth. Moreover, the well-defined shape of h-BN flakes can be selectively grown by controlling Cu-annealing time under argon atmosphere prior to h-BN growth, which provides the h-BN shape varies in triangular, trapezoidal, hexagonal and complex shapes. The uniform crystalline orientation of h-BN from different nucleation seeds can be easily confirmed by polarized optical microscopy (POM) with a liquid crystal coating. Furthermore, seamlessly merged h-BN flakes without structural domain boundaries were evidence by a selective hydrogen etching after a full coverage of a h-BN film was achieved. This seamless large-area and atomic monolayer of single crystalline h-BN film can offer as an ideal and practical template of graphene-based devices or alternative two-dimensional materials for industrial applications with scalability.

  12. Single Crystalline Film of Hexagonal Boron Nitride Atomic Monolayer by Controlling Nucleation Seeds and Domains

    NASA Astrophysics Data System (ADS)

    Wu, Qinke; Park, Ji-Hoon; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Park, Noejung; Wongwiriyapan, Winadda; Lee, Sungjoo; Lee, Young Hee; Song, Young Jae

    2015-11-01

    A monolayer hexagonal boron nitride (h-BN) film with controllable domain morphology and domain size (varying from less than 1 μm to more than 100 μm) with uniform crystalline orientation was successfully synthesized by chemical vapor deposition (CVD). The key for this extremely large single crystalline domain size of a h-BN monolayer is a decrease in the density of nucleation seeds by increasing the hydrogen gas flow during the h-BN growth. Moreover, the well-defined shape of h-BN flakes can be selectively grown by controlling Cu-annealing time under argon atmosphere prior to h-BN growth, which provides the h-BN shape varies in triangular, trapezoidal, hexagonal and complex shapes. The uniform crystalline orientation of h-BN from different nucleation seeds can be easily confirmed by polarized optical microscopy (POM) with a liquid crystal coating. Furthermore, seamlessly merged h-BN flakes without structural domain boundaries were evidence by a selective hydrogen etching after a full coverage of a h-BN film was achieved. This seamless large-area and atomic monolayer of single crystalline h-BN film can offer as an ideal and practical template of graphene-based devices or alternative two-dimensional materials for industrial applications with scalability.

  13. Chemical films and monolayers on the water surface and their interactions with ultraviolet radiation: a pilot investigation

    NASA Astrophysics Data System (ADS)

    Schouten, Peter; Lemckert, Charles; Turnbull, David; Parisi, Alfio; Downs, Nathan; Underhill, Ian; Turner, Geoff

    2011-06-01

    Over the past 50 years numerous types of chemical films and monolayers have been deployed on top of a wide variety of water reserves in an endeavour to reduce evaporation. To date very little knowledge has been assimilated on how these chemical films and monolayers, once applied to a water surface, influence the underwater UV light field and, in turn, the delicate ecosystems that exist in aquatic environments. This manuscript presents underwater UV exposure profiles weighted to the DNA damage action spectrum measured under an octadecanol/hexadecanol/lime chemical film mixture, a silicone-based chemical film and an octadecanol monolayer applied to the water surface. UV transmission and absorption properties were also evaluated for each of these chemical films and monolayers. From this it was found that when chemical films/monolayers are applied to surface water they can reduce the penetration of biologically effective UV into the water column by up to 85% at a depth as small as 1 cm. This could have a positive influence on the aquatic ecosystem, as harmful UV radiation may be prevented from reaching and consequently damaging a variety of life forms or it could have a negative effect by potentially stopping aquatic organisms from adapting to solar ultraviolet radiation over extended application intervals. Additionally, there is currently no readily applicable system or technique available to readily detect or visualize chemical films and monolayers on the water surface. To overcome this problem a new method of monolayer and chemical film visualization, using a UV camera system, is detailed and tested and its applicability for usage in both laboratory-based trials and real-world operations is evaluated.

  14. Spontaneously adsorbed monolayer films: Fabrication, characterization, and application of monolayers of alkanethiol and sulfur-bearing cyclodestrin derivatives

    SciTech Connect

    Chinkap, Chung.

    1991-03-12

    Monolayers of n-alkanethiols (CH{sub 3}(CH{sub 2}){sub n}SH, n=1--17) and sulfur-bearing cyclodextrin derivatives spontaneously adsorbed on Ag and Au have been studied with a variety of surface characterization methods, such as infrared inflection spectroscopy, contact angle measurements, electro-chemistry, optical ellipsometry, and scanning tunneling microscopy. Long chain n-alkanethiols monolayers on Ag and Au are insulating to electron transfer and have contact angles indicative of well-ordered hydrocarbon terminated structures. Infrared and contact angle data indicate a different orientation of the methyl group with respect to the surface for chains with odd and even numbers of methylene groups. Compared to monolayers on Au, the alkanethiol monolayers on Ag are oriented more towards the surface normal. The observed odd-even effect methyl group orientation for these monolayers on Ag is offset by a methylene group from that on Au. The relationships between the structure and packing of the monolayers on Ag and Au and the composition, roughness, and crystallinity of the substrate are also discussed. Monolayers of sulfur-bearing cyclodextrin derivatives on Au and Ag are fabricated by spontaneous adsorption and characterized by the above techniques. Size-selectively and molecular recognition of the {alpha}- and {beta}- cyclodextrin cavity are shown with our monolayers. Because of molecular recognition, p-nitrophenol is retained preferrentially by the cyclodextrin monolayers over o-nitrophenol. 146 refs., 44 figs., 5 tabs.

  15. Achieving Uniform Monolayer Transition Metal Dichalcogenides Film on Silicon Wafer via Silanization Treatment: A Typical Study on WS2.

    PubMed

    Chen, Ying; Gan, Lin; Li, Huiqiao; Ma, Ying; Zhai, Tianyou

    2017-02-01

    A silanization reaction is employed to improve the dispersion of precursors on a silicon wafer for a large-size uniform transition metal dichalcogenide (TMD) film synthesis and to achieve a highly crystalline monolayer WS2 film up to 1 cm(2) . The novel strategy is also verified for the synthesis of WSe2 and MoS2 uniform films, suggesting universality for TMD film fabrication.

  16. Physical and monolayer film properties of potential fatty ester biolubricants

    SciTech Connect

    Yao, Linxing; Hammond, Earl G; Wang, Tong; Bu, Wei; Vaknin, David

    2014-04-03

    The desire to replace petroleum-based lubricants with alternatives that are environmentally friendly and made from sustainable sources has encouraged the development of biolubricants based on vegetable oils. To be good lubricants, the materials should have low melting points, appropriate viscosity and oxidative stability. In this paper, we report the melting point and viscosity of oleate esters of ethylene glycol, 1,2-propanediol, 2,3-butanediol, and pentaerythritol as well as the decanoate esters of 2,3-butanediol and the 12-methyltetradecanoate esters of 1,2-propanediol. Polyol esters that have a free hydroxy group had lower melting points than the completely esterified polyols, but the completely esterified polyol esters exhibited less change in viscosity with temperature than those having a free hydroxy group. 2, 3-Butanediol monooleate, which melted at -48.6°C shows promise as a biolubricant, but its viscosity index was estimated to be 100. Pentaerythritol oleate esters, with melting points below -10°C and viscosity indices in the range of 170–197, may be suitable candidates as biolubricants. The behavior of esters spread as a monomolecular film at air/water interface may provide insight into the way they behave when spread on metal or polar surfaces, so the pressure-area isotherms of 2,3-butanediol monoleate and selected esters are also reported.

  17. Effects of annealing on properties of Al2O3 monolayer film at 355 nm

    NASA Astrophysics Data System (ADS)

    Tu, Feifei; Wang, Hu; Xing, Huanbin; Zheng, Ruxi; Zhang, Weili; Yi, Kui

    2015-07-01

    Al2O3 monolayer films were deposited on fused silica substrate and K9 glass substrate by electron-beam deposition. Annealing as a general post-treatment was used to enhance the quality of the Al2O3 coatings. The optical properties of the films were analyzed from the transmission spectra of the samples. The composition of the samples before and after annealing were measured by X-ray photoelectron spectroscopy (XPS). According to the analysis of the results, it can be found that the oxidation degree of the coatings increases after annealing in O2 inside coating chamber. The laser-induced damage thresholds of the Al2O3 films can be increased after the annealing process. Finally, the damage morphologies of the Al2O3 coatings were analyzed.

  18. Characterization of Monolayer Formation on Aluminum-Doped Zinc Oxide Thin Films

    SciTech Connect

    Rhodes,C.; Lappi, S.; Fischer, D.; Sambasivan, S.; Genzer, J.; Franzen, S.

    2008-01-01

    The optical and electronic properties of aluminum-doped zinc oxide (AZO) thin films on a glass substrate are investigated experimentally and theoretically. Optical studies with coupling in the Kretschmann configuration reveal an angle-dependent plasma frequency in the mid-IR for p-polarized radiation, suggestive of the detection of a Drude plasma frequency. These studies are complemented by oxygen depletion density functional theory studies for the calculation of the charge carrier concentration and plasma frequency for bulk AZO. In addition, we report on the optical and physical properties of thin film adlayers of n-hexadecanethiol (HDT) and n-octadecanethiol (ODT) self-assembled monolayers (SAMs) on AZO surfaces using reflectance FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), contact angle, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Our characterization of the SAM deposition onto the AZO thin film reveals a range of possible applications for this conducting metal oxide.

  19. Comparative study of electroless copper film on different self-assembled monolayers modified ABS substrate.

    PubMed

    Xu, Jiushuai; Fan, Ruibin; Wang, Jiaolong; Jia, Mengke; Xiong, Xuanrui; Wang, Fang

    2014-04-15

    Copper films were grown on (3-Mercaptopropyl)trimethoxysilane (MPTMS), (3-Aminopropyl)triethoxysilane (APTES) and 6-(3-(triethoxysilyl)propylamino)-1,3,5- triazine-2,4-dithiol monosodium (TES) self-assembled monolayers (SAMs) modified acrylonitrile-butadiene-styrene (ABS) substrate via electroless copper plating. The copper films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and contact angle were also investigated to compare the properties of SAMs and electroless copper films. The results indicated that the formation of copper nuclei on the TES-SAMs modified ABS substrate was faster than those on the MPTMS-SAMs and APTES-SAMs modified ABS substrate. SEM images revealed that the copper film on TES-SAM modified ABS substrate was smooth and uniform, and the density of copper nuclei was much higher. Compared with that of TES-SAMs modified resin, the coverage of copper nuclei on MPTMS and APTES modified ABS substrate was very limited and the copper particle size was too big. The adhesion property test demonstrated that all the SAMs enhanced the interfacial interaction between copper plating and ABS substrate. XRD analysis showed that the copper film deposited on SAM-modified ABS substrate had a structure with Cu(111) preferred orientation, and the copper film deposited on TES-SAMs modified ABS substrate is better than that deposited on MPTMS-SAMs or APTES-SAMs modified ABS resins in electromigrtion resistance.

  20. Ultrafast electron diffraction optimized for studying structural dynamics in thin films and monolayers

    PubMed Central

    Badali, D. S.; Gengler, R. Y. N.; Miller, R. J. D.

    2016-01-01

    A compact electron source specifically designed for time-resolved diffraction studies of free-standing thin films and monolayers is presented here. The sensitivity to thin samples is achieved by extending the established technique of ultrafast electron diffraction to the “medium” energy regime (1–10 kV). An extremely compact design, in combination with low bunch charges, allows for high quality diffraction in a lensless geometry. The measured and simulated characteristics of the experimental system reveal sub-picosecond temporal resolution, while demonstrating the ability to produce high quality diffraction patterns from atomically thin samples. PMID:27226978

  1. Smooth cubic commensurate oxides on gallium nitride

    SciTech Connect

    Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Losego, Mark D.; Mita, Seiji; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul; Biegalski, Michael D.; Christen, Hans M.

    2014-02-14

    Smooth, commensurate alloys of 〈111〉-oriented Mg{sub 0.52}Ca{sub 0.48}O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100× reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.

  2. Melting transition of near-monolayer xenon films on graphite: A computer simulation study. II.

    NASA Astrophysics Data System (ADS)

    Abraham, Farid F.

    1984-03-01

    Xenon films of greater than one monolayer thickness are simulated using the molecular-dynamics technique. If the total substrate area and coverage are held constant, we find that the first layer of the xenon film melts in an apparent continuous manner over a small temperature interval and is consistent with two-phase, solid-liquid coexistence. The quantitative features of the correlation functions are in excellent agreement with recent x-ray experiments [P. A. Heiney et al.,

    Phys. Rev. Lett. 48, 104 (1982)
    T. F. Rosenbaum et al.,
    Phys. Rev. Lett. 50, 1791 (1983)
    ]. If the spreading pressure and total coverage are held constant, we find that the melting transition is first order. This is in conflict with the conclusions of Heiney et al. based on constant-chemical-potential experiments but is consistent with the constant-area and -coverage simulation. A possible explanation is proposed.

  3. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer.

    PubMed

    Li, Jinhua; Wang, Gang; Zhu, Hongqin; Zhang, Miao; Zheng, Xiaohu; Di, Zengfeng; Liu, Xuanyong; Wang, Xi

    2014-03-12

    Graphene has attracted increasing attention for potential applications in biotechnology due to its excellent electronic property and biocompatibility. Here we use both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) to investigate the antibacterial actions of large-area monolayer graphene film on conductor Cu, semiconductor Ge and insulator SiO2. The results show that the graphene films on Cu and Ge can surprisingly inhibit the growth of both bacteria, especially the former. However, the proliferation of both bacteria cannot be significantly restricted by the graphene film on SiO2. The morphology of S. aureus and E. coli on graphene films further confirms that the direct contact of both bacteria with graphene on Cu and Ge can cause membrane damage and destroy membrane integrity, while no evident membrane destruction is induced by graphene on SiO2. From the viewpoint of charge transfer, a plausible mechanism is proposed here to explain this phenomenon. This study may provide new insights for the better understanding of antibacterial actions of graphene film and for the better designing of graphene-based antibiotics or other biomedical applications.

  4. Monolayer and bilayer structures in ionic liquids and their mixtures confined to nano-films.

    PubMed

    Smith, Alexander M; Lovelock, Kevin R J; Perkin, Susan

    2013-01-01

    The confinement of liquids to thin films can lead to dramatic changes in their structural arrangement and dynamic properties. Ionic liquids display nano-structures in the bulk of the liquid, consisting of polar and non-polar domains, whereas a solid surface can induce layered structures in the near-surface liquid. Here we compare and contrast the layer structures in a series of imidazolium and pyrrolidinium-based ionic liquids upon confinement of the liquids to films of approximately 0-20 nm between two negatively charged mica surfaces. Using a surface force balance (SFB) we measured the force between the two atomically smooth mica surfaces with ionic liquid between, directly revealing the ion packing and dimensions of layered structures for each liquid. The ionic liquids with shorter alkyl chain substituents form alternating cation-anion monolayer structures on confinement, whilst a longer alkyl chain leads to alignment of the cations in bilayer formation. The crossover from monolayers to bilayers, however, occurs at different alkyl chain lengths for imidazolium- and pyrrolidinium-based ionic liquids with a common anion. In addition, we find that imidazolium cation bilayers are arranged in toe-to-toe orientation, whereas pyrrolidinium cations form bilayers consisting of fully interdigitated alkyl chains. Results for a mixture of monolayer-preferring (i.e. short alkyl chain) and bilayer-preferring (i.e. long alkyl chain) liquids indicate alkyl chain segregation and bilayer-like structures. We discuss the driving forces for these self-assembly effects, and the contrasting behaviour of the imidazolium and pyrrolidinium-type ionic liquids.

  5. Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film

    NASA Astrophysics Data System (ADS)

    Qiu, Hengwei; Gao, Saisai; Chen, Peixi; Li, Zhen; Liu, Xiaoyun; Zhang, Chao; Xu, Yuanyuan; Jiang, Shouzhen; Yang, Cheng; Huo, Yanyan; Yue, Weiwei

    2016-05-01

    An evanescent wave absorption (EWA) sensor based on tapered multimode fiber (TMMF) coated with monolayer graphene film for the detection of double-stranded DNA (DS-DNA) is investigated in this work. The TMMF is a silica multimode fiber (nominally at 62.5 μm), which was tapered to symmetric taper with waist diameters of ~30 μm and total length of ~3 mm. Monolayer graphene film was grown on a copper foil via chemical vapor deposition (CVD) technology and transferred onto skinless tapered fiber core via dry transfer technology. All the components of the sensor are coupled together by fusion splicer in order to eliminate the external disturbance. DS-DNA is created by the assembly of two relatively complemented oligonucleotides. The measurements are obtained by using a spectrometer in the optical wavelength range of 400-900 nm. With the increase of DS-DNA concentration, the output light intensity (OPLI) arisen an obvious attenuation. Importantly, the absorbance (A) and the DS-DNA concentrations shown a reasonable linear variation in a wide range of 5-400 μM. Through a series of comparison, the accuracy of TMMF sensor with graphene (G-TMMF) is much better than that without graphene (TMMF), which can be attributed to the molecular enrichment of graphene by π-π stacking.

  6. Self-assembled copt nanoparticles monolayer film and its IR optical properties.

    PubMed

    Zhou, Xin-Wen; Zhang, Rong-Hua; Jiang, Yan-Xia; Sun, Shi-Gang

    2010-12-01

    CoPt nanoparticles were prepared by galvanic displacement reaction, followed by a chemical reduction. The CoPt nanoparticles were spherical and the average diameter was about 33 nm obtained from the results of transmission electron microscopy (TEM), high resolution TEM and scanning electron microscopy (SEM). The results of powder X-ray diffration (XRD), energy dispersed X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) demonstrated that the surface of the product was mostly consist of Pt nanoparticles. An ordered monolayer film of CoPt nanoparticles on Si wafer was obtained by a Liquid/Liquid interface technique. In situ FTIR transmission spectral study indicates that the ordered self-assembled monolayer film of the CoPt nanoparticles shows Fano-like infrared effects, while the deposited CoPt nanoparticles exhibit normal enhanced IR adsorption. The results of the present paper demonstrated that the IR optical properties are closely related to the interactions and thickness of the nanomaterials and significant to understand the anomalous IR properties of nanometer materials.

  7. Tribology of monolayer films: comparison between n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon.

    PubMed

    Booth, Brandon D; Vilt, Steven G; McCabe, Clare; Jennings, G Kane

    2009-09-01

    This Article presents a quantitative comparison of the frictional performance for monolayers derived from n-alkanethiolates on gold and n-alkyl trichlorosilanes on silicon. Monolayers were characterized by pin-on-disk tribometry, contact angle analysis, ellipsometry, and electrochemical impedance spectroscopy (EIS). Pin-on-disk microtribometry provided frictional analysis at applied normal loads from 10 to 1000 mN at a speed of 0.1 mm/s. At low loads (10 mN), methyl-terminated n-alkanethiolate self-assembled monolayers (SAMs) exhibited a 3-fold improvement in coefficient of friction over SAMs with hydroxyl- or carboxylic-acid-terminated surfaces. For monolayers prepared from both n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon, a critical chain length of at least eight carbons is required for beneficial tribological performance at an applied load of 9.8 mN. Evidence for disruption of chemisorbed alkanethiolate SAMs with chain lengths n monolayers shows that monolayers prepared from n-octadecyl dimethylchlorosilane and n-octadecyl trichlorosilane withstood normal loads at least 30 times larger than those that damaged octadecanethiolate SAMs. Collectively, our results show that the tribological properties of monolayer films are dependent on their internal stabilities, which are influenced by cohesive chain interactions (van der Waals) and the adsorbate-substrate bond.

  8. Realization of Large-Area Wrinkle-Free Monolayer Graphene Films Transferred to Functional Substrates

    PubMed Central

    Park, Byeong-Ju; Choi, Jin-Seok; Kim, Hyun-Suk; Kim, Hyun-You; Jeong, Jong-Ryul; Choi, Hyung-Jin; Jung, Hyun-June; Jung, Min-Wook; An, Ki-Seok; Yoon, Soon-Gil

    2015-01-01

    Structural inhomogeneities, such as the wrinkles and ripples within a graphene film after transferring the free-standing graphene layer to a functional substrate, degrade the physical and electrical properties of the corresponding electronic devices. Here, we introduced titanium as a superior adhesion layer for fabricating wrinkle-free graphene films that is highly applicable to flexible and transparent electronic devices. The Ti layer does not influence the electronic performance of the functional substrates. Experimental and theoretical investigations confirm that the strong chemical interactions between Ti and any oxygen atoms unintentionally introduced on/within the graphene are responsible for forming the clean, defect-free graphene layer. Our results accelerate the practical application of graphene-related electronic devices with enhanced functionality. The large-area monolayer graphenes were prepared by a simple attachment of the Ti layer with the multi-layer wrinkle-free graphene films. For the first time, the graphene films were addressed for applications of superior bottom electrode for flexible capacitors instead of the novel metals. PMID:26043868

  9. Strictly monolayer large continuous MoS{sub 2} films on diverse substrates and their luminescence properties

    SciTech Connect

    Mohapatra, P. K.; Deb, S.; Singh, B. P.; Vasa, P.; Dhar, S.

    2016-01-25

    Despite a tremendous interest on molybdenum disulfide as a thinnest direct band gap semiconductor, single step synthesis of a large area purely monolayer MoS{sub 2} film has not yet been reported. Here, we report a CVD route to synthesize a continuous film of strictly monolayer MoS{sub 2} covering an area as large as a few cm{sup 2} on a variety of different substrates without using any seeding material or any elaborate pretreatment of the substrate. This is achieved by allowing the growth to take place in the naturally formed gap between a piece of SiO{sub 2} coated Si wafer and the substrate, when the latter is placed on top of the former inside a CVD reactor. We propose a qualitative model to explain why the MoS{sub 2} films are always strictly monolayer in this method. The photoluminescence study of these monolayers shows the characteristic excitonic and trionic features associated with monolayer MoS{sub 2}. In addition, a broad defect related luminescence band appears at ∼1.7 eV. As temperature decreases, the intensity of this broad feature increases, while the band edge luminescence reduces.

  10. Active Antifogging Property of Monolayer SiO2 Film with Bioinspired Multiscale Hierarchical Pagoda Structures.

    PubMed

    Han, Zhiwu; Mu, Zhengzhi; Li, Bo; Wang, Ze; Zhang, Junqiu; Niu, Shichao; Ren, Luquan

    2016-09-27

    Antifogging surfaces with hydrophilic or even superhydrophilic wetting behavior have received significant attention due to their ability to reduce light scattering by film-like condensation. However, a major challenge remains in achieving high-speed antifogging performance and revealing the hydrophilic-based antifogging mechanism of glass or other transparent materials under aggressive fogging conditions. Herein, with inspiration from the fog-free property of the typical Morpho menelaus terrestris butterfly (Butler, 1866) wing scales, a monolayer SiO2 film with multiscale hierarchical pagoda structures (MHPSs) based on glass substrate was designed and fabricated using an optimized biotemplate-assisted wet chemical method without any post-treatments. The biomimetic monolayer film (BMF) composed of nanoscale SiO2 3D networks displayed excellent antifogging properties, which is superior to that of the glass substrate itself. The MHPS-based BMF even kept high transmittance (∼95%) under aggressive fog conditions, and it almost instantaneously recovered to a fog-free state (<5 s). Moreover, the underlying active antifogging strategy gathering initial fog capture and final antifog together was revealed. The fogdrops spontaneously adhered on the BMF surface and rapidly spread along the MHPSs in an anisotropic way, which made the fogdrops evaporate instantaneously to attain an initial fog-free state, leading to an efficient active antifogging performance. These properties mainly benefit from the synergistic effect of both hydrophilic chemical compositions (nanoscale SiO2) and physical structures (biomimetic MHPSs) of the BMF. High-speed active antifogging performance of the glass materials enabled the retention of a high transmittance property even in humid conditions, heralding reliable optical performance in outdoor practical applications, especially in aggressive foggy environments. More importantly, the investigations in this work offer a promising way to handily

  11. Spreading of a surfactant monolayer on a thin liquid film: Onset and evolution of digitated structures.

    PubMed

    Matar, Omar K.; Troian, Sandra M.

    1999-03-01

    We describe the response of an insoluble surfactant monolayer spreading on the surface of a thin liquid film to small disturbances in the film thickness and surfactant concentration. The surface shear stress, which derives from variations in surfactant concentration at the air-liquid interface, rapidly drives liquid and surfactant from the source toward the distal region of higher surface tension. A previous linear stability analysis of a quasi-steady state solution describing the spreading of a finite strip of surfactant on a thin Newtonian film has predicted only stable modes. [Dynamics in Small Confining Systems III, Materials Research Society Symposium Proceedings, edited by J. M. Drake, J. Klafter, and E. R. Kopelman (Materials Research Society, Boston, 1996), Vol. 464, p. 237; Phys. Fluids A 9, 3645 (1997); O. K. Matar Ph.D. thesis, Princeton University, Princeton, NJ, 1998]. A perturbation analysis of the transient behavior, however, has revealed the possibility of significant amplification of disturbances in the film thickness within an order one shear time after the onset of flow [Phys. Fluids A 10, 1234 (1998); "Transient response of a surfactant monolayer spreading on a thin liquid film: Mechanism for amplification of disturbances," submitted to Phys. Fluids]. In this paper we describe the linearized transient behavior and interpret which physical parameters most strongly affect the disturbance amplification ratio. We show how the disturbances localize behind the moving front and how the inclusion of van der Waals forces further enhances their growth and lifetime. We also present numerical solutions to the fully nonlinear 2D governing equations. As time evolves, the nonlinear system sustains disturbances of longer and longer wavelength, consistent with the quasi-steady state and transient linearized descriptions. In addition, for the parameter set investigated, disturbances consisting of several harmonics of a fundamental wavenumber do not couple

  12. Thickness-dependent nanofriction of a rare gas monolayer sliding on Pb(111) ultrathin films

    NASA Astrophysics Data System (ADS)

    Cai, X. L.; Wang, J. J.; Fu, X. N.; Bai, S. Y.; Niu, C. Y.; Jia, Y.

    2016-02-01

    The friction can be affected dramatically by quantum size effects (QSEs) and edge effects at nanoscale. The modulations of QSEs on nanofriction of a rare gas (RG) monolayer sliding on Pb(111) ultrathin films were investigated by using the first-principles approach within density functional theory (DFT) with van der Waals (vdW) interaction correction. Our findings revealed that there exist even-odd oscillations in the friction with the thickness of Pb(111) substrate and the friction can be tuned up to 30% by the different thicknesses of Pb(111) films. Moreover, such modulation is more obvious for the RG adatoms with larger radius. The underlying physics is that the oscillations of the electronic density of states at Fermi level induce different interactions and energy barriers between RG and Pb(111) films with different thicknesses. Overall, we here propose an approach to tune friction and a way to identify the electronic contribution to friction via the different thicknesses of substrates at nanoscale.

  13. Tribological properties of self-assembled monolayers of catecholic imidazolium and the spin-coated films of ionic liquids.

    PubMed

    Liu, Jianxi; Li, Jinlong; Yu, Bo; Ma, Baodong; Zhu, Yangwen; Song, Xinwang; Cao, Xulong; Yang, Wu; Zhou, Feng

    2011-09-20

    A novel compound of an imidazolium type of ionic liquid (IL) containing a biomimetic catecholic functional group normally seen in mussel adhesive proteins was synthesized. The IL can be immobilized on a silicon surface and a variety of other engineering material surfaces via the catecholic anchor, allowing the tribological protection of these substrates for engineering applications. The surface wetting and adhesive properties and the tribological property of the synthesized self-assembled monolayers (SAMs) are successfully modulated by altering the counteranions. The chemical composition and wettability of the IL SAMs were characterized by means of X-ray photoelectron spectroscopy (XPS) and contact angle (CA) measurements. The adhesive and friction forces were measured with an atomic force microscope (AFM) on the nanometer scale. IL composite films were prepared by spin coating thin IL films on top of the SAMs. The macrotribological properties of these IL composite films were investigated with a pin-on-disk tribometer. The results indicate that the presence of IL SAMs on a surface can improve the wettability of spin-coated ionic liquids and thus the film quality and the tribological properties. These films registered a reduced friction coefficient and a significantly enhanced durability and load-carrying capacity. The tribological properties of the composite films are better than those of pure IL films because the presence of the monolayers improves the adhesion and compatibility of spin-coated IL films with substrates.

  14. In situ growth of monolayer porous gold nanoparticles film as high-performance SERS substrates

    NASA Astrophysics Data System (ADS)

    Song, Chunyuan; Wei, Yuhan; Da, Bingtao; Zhang, Haiting; Cong, Xing; Yang, Boyue; Yang, Yanjun; Wang, Lianhui

    2016-07-01

    Surface-enhanced Raman scattering (SERS) has recently received considerable attention as an ultrasensitive analytic technique. However, its wide application is limited by lack of excellent SERS-active substrates. In this work a SERS substrate with arrayed monolayer films of porous gold nanoparticles is prepared on a solid substrate by a facile, in situ and one-step growth approach. Specifically, the solid substrate was coated with a layer of dense positive charges first by layer-by-layer assembly, followed by patterned a PDMS film with arrayed wells on the substrate. Then the growth solution including chlorauric acid, cetyltrimethylammonium chloride, and ascorbic acid in a certain proportion was transferred into the wells for in situ and one-step growth of porous gold nanoparticles on the substrate. The growth time, feed ratio of the reagents, and repeat times of the in situ growth were studied systematically to obtain optimal parameters for preparing an optimal SERS substrate. The as-prepared optimal SERS substrate not only has good SERS performance with the enhancement factor up to ∼1.10 × 106, but also shows good uniformity and stability. The SERS substrate was further utilized to be ultrasensitive SERS-based chemical sensors for ppb-level detection of highly toxic dyfonate. The preliminary result indicates that the as-prepared SERS substrate has good SERS performance and shows a number of great potential applications in SERS-based sensors.

  15. Monolayer-crystal streptavidin support films provide an internal standard of cryo-EM image quality.

    PubMed

    Han, Bong-Gyoon; Watson, Zoe; Cate, Jamie H D; Glaeser, Robert M

    2017-03-01

    Analysis of images of biotinylated Escherichia coli 70S ribosome particles, bound to streptavidin affinity grids, demonstrates that the image-quality of particles can be predicted by the image-quality of the monolayer crystalline support film. The quality of the Thon rings is also a good predictor of the image-quality of particles, but only when images of the streptavidin crystals extend to relatively high resolution. When the estimated resolution of streptavidin was 5Å or worse, for example, the ribosomal density map obtained from 22,697 particles went to only 9.5Å, while the resolution of the map reached 4.0Å for the same number of particles, when the estimated resolution of streptavidin crystal was 4Å or better. It thus is easy to tell which images in a data set ought to be retained for further work, based on the highest resolution seen for Bragg peaks in the computed Fourier transforms of the streptavidin component. The refined density map obtained from 57,826 particles obtained in this way extended to 3.6Å, a marked improvement over the value of 3.9Å obtained previously from a subset of 52,433 particles obtained from the same initial data set of 101,213 particles after 3-D classification. These results are consistent with the hypothesis that interaction with the air-water interface can damage particles when the sample becomes too thin. Streptavidin monolayer crystals appear to provide a good indication of when that is the case.

  16. Enhanced nonlinear spectroscopy for monolayers and thin films in near-Brewster's angle reflection pump-probe geometry

    NASA Astrophysics Data System (ADS)

    Nishida, Jun; Yan, Chang; Fayer, Michael D.

    2017-03-01

    We experimentally demonstrate and theoretically explicate a method that greatly enhances the detection of third-order nonlinear signals from monolayers and thin films on dielectric substrates. Nonlinear infrared signals, including two dimensional infrared (2D IR) vibrational echo signals, were detected from a functionalized alkyl chain monolayer on a dielectric SiO2 surface in a near-Brewster's angle reflection pump-probe geometry. We observed a tremendous enhancement of the signal-to-noise (S/N) ratio in this geometry compared with a conventional transmission pump-probe geometry signal. The S/N enhancement is achieved by the greatly increased modulation of the local oscillator (LO) field that is induced by the nonlinear signal field. By reducing the LO field without loss of the signal field, the modulation amplitude acquired in this geometry was enhanced by more than a factor of 50. The incident angle dependence of the enhancement was measured and the result agreed remarkably well with theoretical calculations. We combined this geometry with a germanium acousto-optic modulator pulse shaping system to apply 2D IR spectroscopy to the monolayer. The enhanced and phase-stable 2D IR spectra gave detailed dynamical information for the functionalized alkyl chain monolayer. The application of the method to films with finite thickness was described theoretically. The range of film thicknesses over which the method is applicable is delineated, and we demonstrate that accurate dynamical information from thin films can be obtained in spite of dispersive contributions that increase with the film thickness. While we focus on infrared experiments in this article, the method and the theory are applicable to visible and ultraviolet experiments as well.

  17. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solidsa)

    NASA Astrophysics Data System (ADS)

    Greene, J. E.

    2015-03-01

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (˜1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ˜78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese "floating-ink" art (suminagashi) developed ˜1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO2 and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including controlled wetting

  18. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solids

    SciTech Connect

    Greene, J. E.

    2015-03-15

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (∼1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ∼78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese “floating-ink” art (suminagashi) developed ∼1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO{sub 2} and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including

  19. Inorganic-organic composite nanoengineered films using self-assembled monolayers for directed zeolite film growth

    SciTech Connect

    Dye, R.C.; Hermes, R.E.; Martinez, M.G.; Peachey, N.M.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Zeolites, or molecular sieves, are aluminosilicate cage structures that are typically grown from a heterogeneous mixture of organic template molecules, inorganic salts of alumina and silica, and water. These zeolites are used in industry for catalytic cracking of hydrocarbons (gasoline manufacture from oil), and contaminant removal from chemical production processes. Within one year, we developed a viable method for the deposition of a quaternary ammonium salt amphiphile onto silicon wafer substrates. Using a biomimetic growth process, we were also able to demonstrate the first thin-film formation of a zeolite structure from such an organic template. Additionally, we synthesized the precursor to another amphiphile which was to be for further studies.

  20. Intercalated samarium as an agent enabling the intercalation of oxygen under a monolayer graphene film on iridium

    NASA Astrophysics Data System (ADS)

    Afanas'eva, E. Yu.; Rut'kov, E. V.; Gall', N. R.

    2016-06-01

    Using thermal desorption time-of-flight mass spectrometry and thermionic methods, it is shown that oxygen does not intercalate under a graphene monolayer grown correctly on iridium, at least at temperatures of T = 300-400 K and exposures below 12000 L. However, if the graphene film on iridium is preliminary intercalated with samarium atoms (up to coverage of θSm = 0.2-0.45), the penetration of oxygen atoms under the graphene film is observed. The oxygen atoms in the intercalated state are chemically bonded to samarium atoms and remain under graphene up to high temperatures (~2150 K).

  1. Commensurate states in quasicrystalline superconducting networks

    SciTech Connect

    Jing, X. ); Zhang, Z. , P.O. Box 8730, Beijing, China Institute of Physics, Chinese Academy of Sciences, Beijing, China)

    1989-09-01

    By using the theory of de Gennes and Alexander, the commensurate states of the fluxoid configuration on the phase boundaries of superconducting networks with the Fibonacci pattern are studied explicitly for one- and two-strip geometries. The case in which the network contains three tiles with irrational ratios of areas is also studied. Our numerical results strongly indicate that the amplitude of the wave function of a commensurate state has two-cycle self-similar behavior. The locations of the magnetic field where the commensurate states may occur in an {ital M}-strip network are also predicted.

  2. Atomic structure of an ultrathin Fe-silicate film grown on a metal: a monolayer of clay?

    PubMed

    Włodarczyk, Radosław; Sauer, Joachim; Yu, Xin; Boscoboinik, Jorge Anibal; Yang, Bing; Shaikhutdinov, Shamil; Freund, Hans-Joachim

    2013-12-26

    Ultrathin Fe-doped silicate films were prepared on a Ru(0001) surface and, as a function of the Fe/Si ratio, structurally characterized by low-energy electron diffraction, X-ray photoelectron spectroscopy, infrared reflection-absorption spectroscopy, and scanning tunneling microscopy. Density functional theory (DFT) was used to identify the atomic structure. The results show that uniform substitution of Si by Fe in the silicate bilayer frame is thermodynamically unfavorable: the film segregates into a pure silicate and an Fe-silicate phase. The DFT calculations reveal that the Fe-silicate film with an Fe/Si = 1:1 ratio consists of a monolayer of [SiO4] tetrahedra on top of an iron oxide monolayer. As such, it closely resembles the structure of the clay mineral nontronite, a representative of the Fe-rich smectites. Furthermore, the DFT calculations predict formation of bridging Fe-O-Ru bonds between the Fe-silicate film and the Ru substrate accompanied by charge transfer from the metal substrate to the film, so that iron is in the oxidation state +III as in nontronite.

  3. Support-Free Transfer of Ultrasmooth Graphene Films Facilitated by Self-Assembled Monolayers for Electronic Devices and Patterns.

    PubMed

    Wang, Bin; Huang, Ming; Tao, Li; Lee, Sun Hwa; Jang, A-Rang; Li, Bao-Wen; Shin, Hyeon Suk; Akinwande, Deji; Ruoff, Rodney S

    2016-01-26

    We explored a support-free method for transferring large area graphene films grown by chemical vapor deposition to various fluoric self-assembled monolayer (F-SAM) modified substrates including SiO2/Si wafers, polyethylene terephthalate films, and glass. This method yields clean, ultrasmooth, and high-quality graphene films for promising applications such as transparent, conductive, and flexible films due to the absence of residues and limited structural defects such as cracks. The F-SAM introduced in the transfer process can also lead to graphene transistors with enhanced field-effect mobility (up to 10,663 cm(2)/Vs) and resistance modulation (up to 12×) on a standard silicon dioxide dielectric. Clean graphene patterns can be realized by transfer of graphene onto only the F-SAM modified surfaces.

  4. 7 CFR 1400.503 - Commensurate reduction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., general partnership, or joint venture will be reduced by an amount commensurate with the direct and indirect ownership interest in the legal entity, general partnership, or joint venture of each person...

  5. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films

    PubMed Central

    Yu, Yifei; Li, Chun; Liu, Yi; Su, Liqin; Zhang, Yong; Cao, Linyou

    2013-01-01

    Two dimensional (2D) materials with a monolayer of atoms represent an ultimate control of material dimension in the vertical direction. Molybdenum sulfide (MoS2) monolayers, with a direct bandgap of 1.8 eV, offer an unprecedented prospect of miniaturizing semiconductor science and technology down to a truly atomic scale. Recent studies have indeed demonstrated the promise of 2D MoS2 in fields including field effect transistors, low power switches, optoelectronics, and spintronics. However, device development with 2D MoS2 has been delayed by the lack of capabilities to produce large-area, uniform, and high-quality MoS2 monolayers. Here we present a self-limiting approach that can grow high quality monolayer and few-layer MoS2 films over an area of centimeters with unprecedented uniformity and controllability. This approach is compatible with the standard fabrication process in semiconductor industry. It paves the way for the development of practical devices with 2D MoS2 and opens up new avenues for fundamental research. PMID:23689610

  6. Field dependent resonance frequency of hysteresis loops in a few monolayer thick Co/Cu(001) films

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Yang, H.-N.; Wang, G.-C.

    1996-04-01

    Dynamic responses of magnetic hysteresis loops in a few monolayer (ML) thick Co/Cu(001) films were studied using surface magneto-optic Kerr effect (SMOKE). For a fixed external field strength H0, the hysteresis loop area increases as a function of frequency with a power law and reaches a maximum at a resonance frequency Ω0. This Ω0 depends on the external periodic field strength as well as the thickness and roughness of the films. The thickness and roughness parameters were measured quantitatively using high-resolution low-energy electron diffraction. For a fixed film thickness, the Ω0 in the low field region is highly dependent on H0, which is consistent with the prediction from the mean field model. For two Co films with an equivalent thickness but different degrees of film roughness, the resonance frequency Ω0 is lower for the rougher films in all the field strengths studied. For a fixed field strength, the value of Ω0 decreases as Co film roughness increases in a few ML regime. The roughness dependency in Ω0 indicates that the slowing down in the magnetization reversal process is due to the increased film roughness.

  7. CO Oxidation Prefers the Eley-Rideal or Langmuir-Hinshelwood Pathway: Monolayer vs Thin Film of SiC.

    PubMed

    Sinthika, S; Vala, Surya Teja; Kawazoe, Y; Thapa, Ranjit

    2016-03-02

    Using the first-principles approach, we investigated the electronic and chemical properties of wurtzite silicon carbide (2H-SiC) monolayer and thin film structures and substantiated their catalytic activity toward CO oxidation. 2H-SiC monolayer, being planar, is quite stable and has moderate binding with O2, while CO interacts physically; thus, the Eley-Rideal (ER) mechanism prevails over the Langmuir-Hinshelwood (LH) mechanism with an easily cleared activation barrier. Contrarily, 2H-SiC thin film, which exhibits a nonplanar structure, allows moderate binding of both CO and O2 on its surface, thus favoring the LH mechanism over the ER one. Comprehending these results leads to a better understanding of the reaction mechanisms involving structural contrast. Weak overlapping between the 2p(z)(C) and 3p(z)(Si) orbitals of the SiC monolayer system has been found to be the primary reason to revert the active site toward sp(3) hybridization, during interaction with the molecules. In addition, the influences of graphite and Ag(111) substrates on the CO oxidation mechanism were also studied, and it is observed that the ER mechanism is preserved on SiC/G system, while CO oxidation on the SiC/Ag(111) system follows the LH mechanism. The calculated Sabatier activities of the SiC catalysts show that the catalysts are very efficient in catalyzing CO oxidation.

  8. Low adhesion, non-wetting phosphonate self-assembled monolayer films formed on copper oxide surfaces.

    PubMed

    Hoque, E; DeRose, J A; Bhushan, B; Hipps, K W

    2009-07-01

    Self-assembled monolayer (SAM) films have been formed on oxidized copper (Cu) substrates by reaction with 1H,1H,2H,2H-perfluorodecylphosphonic acid (PFDP), octadecylphosphonic acid (ODP), decylphosphonic acid (DP), and octylphosphonic acid (OP) and then investigated by X-ray photoelectron spectroscopy (XPS), contact angle measurement (CAM), and atomic force microscopy (AFM). The presence of alkyl phosphonate molecules, PFDP, ODP, DP, and OP, on Cu were confirmed by CAM and XPS analysis. No alkyl phosphonate molecules were seen by XPS on unmodified Cu as a control. The PFDP/Cu and ODP/Cu SAMs were found to be very hydrophobic having water sessile drop static contact angles of more than 140 degrees , while DP/Cu and OP/Cu have contact angles of 119 degrees and 76 degrees , respectively. PFDP/Cu, ODP/Cu, DP/Cu, and OP/Cu SAMs were studied by friction force microscopy, a derivative of AFM, to better understand their micro/nanotribological properties. PFDP/Cu, ODP/Cu, and DP/Cu had comparable adhesive force, which is much lower than that for unmodified Cu. ODP/Cu had the lowest friction coefficient followed by PFDP/Cu, DP/Cu, and OP/Cu while unmodified Cu had the highest. XPS data gives some indication that a bidentate bond forms between the alkyl phosphonate molecules and the oxidized Cu surface. Hydrophobic phosphonate SAMs could be useful as corrosion inhibitors in micro/nanoelectronic devices and/or as promoters for anti-wetting, low adhesion surfaces.

  9. Immobilization of biomaterials to nano-assembled films (self-assembled monolayers, Langmuir-Blodgett films, and layer-by-layer assemblies) and their related functions.

    PubMed

    Ariga, Katsuhiko; Nakanishi, Takashi; Michinobu, Tsuyoshi

    2006-08-01

    For utilization of highly sophisticated functions of biomaterials in nano-scale functional systems, immobilization of biomaterials on artificial devices such as electrodes via thin film technology is one of the most powerful strategies. In this review, we focus on three major organic ultrathin films, self-assembled monolayers (SAM), Langmuir-Blodgett (LB) films, and layer-by-layer (LBL) assemblies, and from the viewpoints of biomaterial immobilization, typical examples and recent progresses in these film technologies are described. The SAM method allows facile contact between biomaterials and man-made devices, and well used for bio-related sensors. In addition, recent micro-fabrication techniques such as micro-contact printing and dip-pen nanolithography were successfully applied to preparation of biomaterial patterning. A monolayer at the air-water interface, which is a unit structure of LB films, provides a unique environment for recognition of aqueous biomaterials. Recognition and immobilization of various biomaterials including nucleotides, nucleic acid bases, amino acids, sugars, and peptides were widely investigated. The LB film can be also used for immobilization of enzymes in an ultrathin film on an electrode, resulting in sensor application. The LBL assembling method is available for wide range of biomaterials and provides great freedom in designs of layered structures. These advantages are reflected in preparation of thin-film bio-reactors where multiple kinds of enzymes sequentially operate. LBL assemblies were also utilized for sensors and drug delivery systems. This kind of assembling structures can be prepared on micro-size particle and very useful for preparation of hollow capsules with biological functions.

  10. Commensurabilities between ETNOs: a Monte Carlo survey

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2016-07-01

    Many asteroids in the main and trans-Neptunian belts are trapped in mean motion resonances with Jupiter and Neptune, respectively. As a side effect, they experience accidental commensurabilities among themselves. These commensurabilities define characteristic patterns that can be used to trace the source of the observed resonant behaviour. Here, we explore systematically the existence of commensurabilities between the known ETNOs using their heliocentric and barycentric semimajor axes, their uncertainties, and Monte Carlo techniques. We find that the commensurability patterns present in the known ETNO population resemble those found in the main and trans-Neptunian belts. Although based on small number statistics, such patterns can only be properly explained if most, if not all, of the known ETNOs are subjected to the resonant gravitational perturbations of yet undetected trans-Plutonian planets. We show explicitly that some of the statistically significant commensurabilities are compatible with the Planet Nine hypothesis; in particular, a number of objects may be trapped in the 5:3 and 3:1 mean motion resonances with a putative Planet Nine with semimajor axis ˜700 au.

  11. Phase transitions in polymer monolayers: Application of the Clapeyron equation to PEO in PPO-PEO Langmuir films.

    PubMed

    Deschênes, Louise; Lyklema, Johannes; Danis, Claude; Saint-Germain, François

    2015-08-01

    In this paper we investigate the application of the two-dimensional Clapeyron law to polymer monolayers. This is a largely unexplored area of research. The main problems are (1) establishing if equilibrium is reached and (2) if so, identifying and defining phases as functions of the temperature. Once this is validated, the Clapeyron law allows us to obtain the entropy and enthalpy differences between two coexisting phases. In turn, this information can be used to obtain insight into the conformational properties of the films and changes therein. This approach has a wide potential for obtaining additional information on polymer adsorption at interfaces and the structure of their monolayer films. The 2D Clapeyron law was applied emphasizing polyethylene oxide (PEO) in polypropylene oxide (PPO)-PEO block copolymers, based on new well-defined data for their Langmuir films. Values for enthalpy per monomer of 0.12 and 0.23 kT were obtained for the phase transition of two different PEO chains (Neo of 2295 and 409, respectively). This enthalpy was estimated to correspond to 1.2±0.4 kT per EO monomer present in train conformation at the air/water interface.

  12. Effects of odd-even side chain length of alkyl-substituted diphenylbithiophenes on first monolayer thin film packing structure.

    PubMed

    Akkerman, Hylke B; Mannsfeld, Stefan C B; Kaushik, Ananth P; Verploegen, Eric; Burnier, Luc; Zoombelt, Arjan P; Saathoff, Jonathan D; Hong, Sanghyun; Atahan-Evrenk, Sule; Liu, Xueliang; Aspuru-Guzik, Alán; Toney, Michael F; Clancy, Paulette; Bao, Zhenan

    2013-07-31

    Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5'bis(4-alkylphenyl)-2,2'-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding odd-even effect in the strength of the intermolecular electronic coupling.

  13. Continuous ultrathin silver films deposited on SiO2 and SiNx using a self-assembled monolayer

    NASA Astrophysics Data System (ADS)

    Hafezian, Soroush; Maloney, Kate; Lefebvre, Josianne; Martinu, Ludvik; Kéna-Cohen, Stéphane

    2016-09-01

    In this letter, we study the deposition of ultrathin silver films on silicon oxide and nitride surfaces functionalized with self-assembled monolayers of (3-mercaptopropyl)-trimethoxysilane. First, we compare both solution and vapour-phase functionalization techniques and find the greatest improvement in electrical and optical properties using deposition from solution. Using X-ray photoelectron spectroscopy, we demonstrate that the formation of silver-sulfur covalent bonds is at the root of the improved wetting confirmed by ellipsometry, sheet resistance measurement, and atomic force microscopy. Second, we show that this technique can be extended to functionalize silicon nitride. Finally, we demonstrate a simple, but efficient, low-emissivity optical filter.

  14. Self-assembled monolayer initiated electropolymerization: a route to thin-film materials with enhanced photovoltaic performance.

    PubMed

    Hwang, Euiyong; de Silva, K M Nalin; Seevers, Chad B; Li, Jie-Ren; Garno, Jayne C; Nesterov, Evgueni E

    2008-09-02

    Continuing progress in the field of organic polymer photovoltaic (PV) devices requires the development of new materials with better charge-transport efficiency. To improve this parameter, we have investigated surface-attached bilayer polymer PV thin films prepared starting from a covalently attached monolayer of an electroactive initiator using sequential electropolymerization of dithiophene and its derivatives. These systems were found to show significantly increased photocurrent generation quantum yields as compared to systems made through conventional approaches. In addition, the described PV thin films possess remarkable mechanical, air, and photostability. These properties likely arise from the more uniform and better ordered bulk layer morphologies as well as tighter covalently bonded contacts at the interfacial junctions, contributing to improved charge transport. While more studies on the fundamental reasons behind the discovered phenomenon are currently underway, this information can be readily applied to build more efficient organic polymer photovoltaics.

  15. Site-selective electroless metallization on porous organosilica films by multisurface modification of alkyl monolayer and vacuum plasma.

    PubMed

    Chen, Giin-Shan; Chen, Sung-Te; Chen, Yenying W; Hsu, Yen-Che

    2013-01-15

    Taking plasma-enhanced chemical vapor deposited porous SiOCH (p-SiOCH) and octadecyltrichlorosilane (OTS) as model cases, this study elucidates the chemical reaction pathways for alkyl-based self-assembled monolayers (SAMs) on porous carbon-doped organosilica films under N(2)-H(2) vacuum plasma illumination. In contrast to previous findings that carboxylic groups are found in alkyl-based SAMs only by exposure to oxygen-based plasma, this study discovers that, upon exposure to reductive nitrogen-based vacuum plasma, surface carboxylic functional groups can be instantly formed on OTS-coated p-SiOCH films. Particular attention is given to developing a multisurface modification process, starting with the modification of p-SiOCH films by N(2)-H(2) plasma and continuing with SAM deposition and plasma patterning; this ultimately leads to site-selective seeding for the spatially controlled fabrication of Cu-wire metallization by electroless deposition. Plasma diagnosis and X-ray near-edge absorption and Fourier transform infrared spectroscopies show that, by adequately controlling the plasma parameters, the bulk of the p-SiOCH films are free from plasma damage (in terms of degradation in bonding structures and electrical properties); the formation of the seed-trapping carboxylic functional groups on the surface, the key factor for the validity of this new seeding process, is due to a water-mediated chemical oxygenation route.

  16. Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices

    DTIC Science & Technology

    1998-05-12

    elevated temperatures that is accompanied by a decreased film thickness. As the temperature is decreased water is reabsorbed , and the film swells to its...Vogtle, Supramolecular Chemistry; Wiley, New York, 1993. ISAM NLO Thin Films and Devices Final Report 28 [6] J. H. Fuhrhop and J. Koning, Membrane and

  17. Controlled hierarchical assembly of gold nanoparticles in macroscopic films: from densely packed monolayers to networks of micropores and nanobundles.

    PubMed

    Gravelsins, Steven; Hasham, Minhal; Lin, Yi; Yu, Kevin; Tie, Monique; Goh, Cynthia; Dhirani, Al-Amin

    2017-03-29

    The present study demonstrates the ability of excess, weakly amphiphilic n-alkanethiols (n = 4, 12, 18) and solvent composition to tune through a wide range of large-scale, macroscopic architectures formed by alkanethiol-capped Au nanoparticles (NPs). Both the alkanethiols and NPs are significantly hydrophobic species and compete for surface area at an air-water interface. When solutions of the two species are spread on a large (50 cm(2)) water surface in a Teflon well, a thin film forms and exhibits co-existing macroscopic regions with various distinct NP self-assembled architectures, namely a close packed monolayer, a network phase characterized by micron-sized pores (micropores) surrounded by quasi-linear bundles of nanoparticles, and finally aggregates. We hypothesize that the co-existence of various NP architectures results from fast, non-uniform evaporation across the large water surface. When solutions are instead deposited on a smaller (5 cm(2)) water surface contained within a Teflon ring to control the water surface curvature and the evaporation rate is slowed, we show for the first time that NPs form macroscopically uniform self-assemblies whose architectures can be tuned from monolayersmonolayers with micropores → extended micropore/NP bundle networks by varying excess alkanethiol concentration and solvent composition. We propose that competition between NPs and excess alkanethiols for water surface area, and alkanethiol self-assembly as well as solvent dewetting play important roles in the formation of the network phase, and discuss a potential mechanism for its formation.

  18. Excitonic resonances in thin films of WSe2: from monolayer to bulk material

    NASA Astrophysics Data System (ADS)

    Arora, Ashish; Koperski, Maciej; Nogajewski, Karol; Marcus, Jacques; Faugeras, Clément; Potemski, Marek

    2015-06-01

    We present optical spectroscopy (photoluminescence and reflectance) studies of thin layers of the transition metal dichalcogenide WSe2, with thickness ranging from mono- to tetra-layer and in the bulk limit. The investigated spectra show the evolution of excitonic resonances as a function of layer thickness, due to changes in the band structure and, importantly, due to modifications of the strength of Coulomb interactions as well. The observed temperature-activated energy shift and broadening of the fundamental direct exciton are well accounted for by standard formalisms used for conventional semiconductors. A large increase of the photoluminescence yield with temperature is observed in a WSe2 monolayer, indicating the existence of competing radiative channels. The observation of absorption-type resonances due to both neutral and charged excitons in the WSe2 monolayer is reported and the effect of the transfer of oscillator strength from charged to neutral excitons upon an increase of temperature is demonstrated.

  19. Large-roll growth of 25-inch hexagonal BN monolayer film for self-release buffer layer of free-standing GaN wafer

    PubMed Central

    Wu, Chenping; Soomro, Abdul Majid; Sun, Feipeng; Wang, Huachun; Huang, Youyang; Wu, Jiejun; Liu, Chuan; Yang, Xiaodong; Gao, Na; Chen, Xiaohong; Kang, Junyong; Cai, Duanjun

    2016-01-01

    Hexagonal boron nitride (h-BN) is known as promising 2D material with a wide band-gap (~6 eV). However, the growth size of h-BN film is strongly limited by the size of reaction chamber. Here, we demonstrate the large-roll synthesis of monolayer and controllable sub-monolayer h-BN film on wound Cu foil by low pressure chemical vapor deposition (LPCVD) method. By winding the Cu foil substrate into mainspring shape supported by a multi-prong quartz fork, the reactor size limit could be overcome by extending the substrate area to a continuous 2D curl of plane inward. An extremely large-size monolayer h-BN film has been achieved over 25 inches in a 1.2” tube. The optical band gap of h-BN monolayer was determined to be 6.0 eV. The h-BN film was uniformly transferred onto 2” GaN or 4” Si wafer surfaces as a release buffer layer. By HVPE method, overgrowth of thick GaN wafer over 200 μm has been achieved free of residual strain, which could provide high quality homo-epitaxial substrate. PMID:27756906

  20. Large-roll growth of 25-inch hexagonal BN monolayer film for self-release buffer layer of free-standing GaN wafer

    NASA Astrophysics Data System (ADS)

    Wu, Chenping; Soomro, Abdul Majid; Sun, Feipeng; Wang, Huachun; Huang, Youyang; Wu, Jiejun; Liu, Chuan; Yang, Xiaodong; Gao, Na; Chen, Xiaohong; Kang, Junyong; Cai, Duanjun

    2016-10-01

    Hexagonal boron nitride (h-BN) is known as promising 2D material with a wide band-gap (~6 eV). However, the growth size of h-BN film is strongly limited by the size of reaction chamber. Here, we demonstrate the large-roll synthesis of monolayer and controllable sub-monolayer h-BN film on wound Cu foil by low pressure chemical vapor deposition (LPCVD) method. By winding the Cu foil substrate into mainspring shape supported by a multi-prong quartz fork, the reactor size limit could be overcome by extending the substrate area to a continuous 2D curl of plane inward. An extremely large-size monolayer h-BN film has been achieved over 25 inches in a 1.2” tube. The optical band gap of h-BN monolayer was determined to be 6.0 eV. The h-BN film was uniformly transferred onto 2” GaN or 4” Si wafer surfaces as a release buffer layer. By HVPE method, overgrowth of thick GaN wafer over 200 μm has been achieved free of residual strain, which could provide high quality homo-epitaxial substrate.

  1. Characteristic Fragmentation of Polysiloxane Monolayer Films by Bombardment with Monatomic and Polyatomic Primary Ions in TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Moon, Hye Kyoung; Wells, David D.; Gardella, Joseph A.

    2012-01-01

    This study reports the characteristic fragmentation patterns from two polysiloxane polymers that form ordered overlayer on silver substrates. Results are compared for the bombardment of various monatomic and polyatomic projectiles of Cs+, C{60/+} (10 keV), Bi{1/+}, and Bi{3/+} (25 keV) in the high mass range time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra. Results are reported from sub-monolayer (solution cast) coverages of poly(dimethylsiloxane)s with the number average molecular weights (Mn) of 2200 and 6140 Da, respectively, and Langmuir-Blodgett monolayers of poly(methylphenylsiloxane) with molecular weights (MW) from 600 and 1000 Da. For each film, Bi projectiles resulted in the emission of positive silver cluster ions from the substrate under the polymer overlayer and peaks corresponding to silver cluster ions with larger mass were observed by impact of polyatomic 25 keV Bi{3/+} projectiles. In addition, depending on the change of energy of Bi{3/+}, a different pattern of fragments was observed. With Cs+ and C{60/+} impact, however, the emission of silver cluster ions was not detected. In the case of C{60/+} impact for PDMS-6140, peaks corresponding to silver-cationized intact oligomers were not observed. In this paper, these results are explained by the possible bombardment mechanism for each projectile, based on its mass, energy, and split trajectories of the component atoms under the polyatomic impact.

  2. Characteristic fragmentation of polysiloxane monolayer films by bombardment with monatomic and polyatomic primary ions in TOF-SIMS.

    PubMed

    Moon, Hye Kyoung; Wells, David D; Gardella, Joseph A

    2012-01-01

    This study reports the characteristic fragmentation patterns from two polysiloxane polymers that form ordered overlayer on silver substrates. Results are compared for the bombardment of various monatomic and polyatomic projectiles of Cs(+), C(60)(+) (10 keV), Bi(1)(+), and Bi(3)(+) (25 keV) in the high mass range time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra. Results are reported from sub-monolayer (solution cast) coverages of poly(dimethylsiloxane)s with the number average molecular weights (M(n)) of 2200 and 6140 Da, respectively, and Langmuir-Blodgett monolayers of poly(methylphenylsiloxane) with molecular weights (MW) from 600 and 1000 Da. For each film, Bi projectiles resulted in the emission of positive silver cluster ions from the substrate under the polymer overlayer and peaks corresponding to silver cluster ions with larger mass were observed by impact of polyatomic 25 keV Bi(3)(+) projectiles. In addition, depending on the change of energy of Bi (3) (+) , a different pattern of fragments was observed. With Cs(+) and C(60)(+) impact, however, the emission of silver cluster ions was not detected. In the case of C(60)(+) impact for PDMS-6140, peaks corresponding to silver-cationized intact oligomers were not observed. In this paper, these results are explained by the possible bombardment mechanism for each projectile, based on its mass, energy, and split trajectories of the component atoms under the polyatomic impact.

  3. Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors.

    PubMed

    Nie, Biao; Hu, Ji-Gang; Luo, Lin-Bao; Xie, Chao; Zeng, Long-Hui; Lv, Peng; Li, Fang-Ze; Jie, Jian-Sheng; Feng, Mei; Wu, Chun-Yan; Yu, Yong-Qiang; Yu, Shu-Hong

    2013-09-09

    A new Schottky junction ultraviolet photodetector (UVPD) is fabricated by coating a free-standing ZnO nanorod (ZnONR) array with a layer of transparent monolayer graphene (MLG) film. The single-crystalline [0001]-oriented ZnONR array has a length of about 8-11 μm, and a diameter of 100∼600 nm. Finite element method (FEM) simulation results show that this novel nanostructure array/MLG heterojunction can trap UV photons effectively within the ZnONRs. By studying the I-V characteristics in the temperature range of 80-300 K, the barrier heights of the MLG film/ZnONR array Schottky barrier are estimated at different temperatures. Interestingly, the heterojunction diode with typical rectifying characteristics exhibits a high sensitivity to UV light illumination and a quick response of millisecond rise time/fall times with excellent reproducibility, whereas it is weakly sensitive to visible light irradiation. It is also observed that this UV photodetector (PD) is capable of monitoring a fast switching light with a frequency as high as 2250 Hz. The generality of the above results suggest that this MLG film/ZnONR array Schottky junction UVPD will have potential application in future optoelectronic devices.

  4. Microwave-Accelerated Surface Modification of Plasmonic Gold Thin Films with Self-Assembled Monolayers of Alkanethiols

    PubMed Central

    Grell, Tsehai A.J.; Alabanza, Anginelle M.; Gaskell, Karen; Aslan, Kadir

    2013-01-01

    A rapid surface modification technique for the formation of self-assembled monolayers (SAMs) of alkanethiols on gold thin films using microwave heating in less than 10 min is reported. In this regard, SAMs of two model alkanethiols, 11-mercaptoundecanoic acid (11-MUDA, to generate a hydrophilic surface) and undecanethiol (UDET, a hydrophobic surface), were successfully formed on gold thin films using selective microwave heating in 1) a semi-continuous and 2) a continuous fashion and at room temperature (24 hours, control experiment, no microwave heating). The formation of SAMs of 11-MUDA and UDET were confirmed by contact angle measurements, Fourier–transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The contact angles for water on SAMs formed by the selective microwave heating and conventional room temperature incubation technique (24 hours) were measured to be similar for 11-MUDA and UDET. FT-IR spectroscopy results confirmed that the internal structure of SAMs prepared using both microwave heating and at room temperature were similar. XPS results revealed that the organic and sulfate contaminants found on bare gold thin films were replaced by SAMs after the surface modification process was carried out using both microwave heating and at room temperature. PMID:24083414

  5. Microwave-accelerated surface modification of plasmonic gold thin films with self-assembled monolayers of alkanethiols.

    PubMed

    Grell, Tsehai A J; Alabanza, Anginelle M; Gaskell, Karen; Aslan, Kadir

    2013-10-29

    A rapid surface modification technique for the formation of self-assembled monolayers (SAMs) of alkanethiols on gold thin films using microwave heating in <10 min is reported. In this regard, SAMs of two model alkanethiols, 11-mercaptoundecanoic acid (11-MUDA, to generate a hydrophilic surface) and undecanethiol (UDET, a hydrophobic surface), were successfully formed on gold thin films using selective microwave heating in (1) a semicontinuous fashion and (2) a continuous fashion at room temperature (24 h, control experiment, no microwave heating). The formation of SAMs of 11-MUDA and UDET was confirmed by contact angle measurements, Fourier transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The contact angles for water on SAMs formed by the selective microwave heating and conventional room temperature incubation technique (24 h) were measured to be similar for 11-MUDA and UDET. FT-IR spectroscopy results confirmed that the internal structures of SAMs prepared using both microwave heating and room temperature were similar. XPS results revealed that the organic and sulfate contaminants found on bare gold thin films were replaced by SAMs after the surface modification process had been conducted using both microwave heating and room temperature.

  6. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film.

    PubMed

    Yao, Wei; Wang, Eryin; Huang, Huaqing; Deng, Ke; Yan, Mingzhe; Zhang, Kenan; Miyamoto, Koji; Okuda, Taichi; Li, Linfei; Wang, Yeliang; Gao, Hongjun; Liu, Chaoxing; Duan, Wenhui; Zhou, Shuyun

    2017-01-31

    The generally accepted view that spin polarization in non-magnetic solids is induced by the asymmetry of the global crystal space group has limited the search for spintronics materials mainly to non-centrosymmetric materials. In recent times it has been suggested that spin polarization originates fundamentally from local atomic site asymmetries and therefore centrosymmetric materials may exhibit previously overlooked spin polarizations. Here, by using spin- and angle-resolved photoemission spectroscopy, we report the observation of helical spin texture in monolayer, centrosymmetric and semiconducting PtSe2 film without the characteristic spin splitting in conventional Rashba effect (R-1). First-principles calculations and effective analytical model analysis suggest local dipole induced Rashba effect (R-2) with spin-layer locking: opposite spins are degenerate in energy, while spatially separated in the top and bottom Se layers. These results not only enrich our understanding of the spin polarization physics but also may find applications in electrically tunable spintronics.

  7. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film

    NASA Astrophysics Data System (ADS)

    Yao, Wei; Wang, Eryin; Huang, Huaqing; Deng, Ke; Yan, Mingzhe; Zhang, Kenan; Miyamoto, Koji; Okuda, Taichi; Li, Linfei; Wang, Yeliang; Gao, Hongjun; Liu, Chaoxing; Duan, Wenhui; Zhou, Shuyun

    2017-01-01

    The generally accepted view that spin polarization in non-magnetic solids is induced by the asymmetry of the global crystal space group has limited the search for spintronics materials mainly to non-centrosymmetric materials. In recent times it has been suggested that spin polarization originates fundamentally from local atomic site asymmetries and therefore centrosymmetric materials may exhibit previously overlooked spin polarizations. Here, by using spin- and angle-resolved photoemission spectroscopy, we report the observation of helical spin texture in monolayer, centrosymmetric and semiconducting PtSe2 film without the characteristic spin splitting in conventional Rashba effect (R-1). First-principles calculations and effective analytical model analysis suggest local dipole induced Rashba effect (R-2) with spin-layer locking: opposite spins are degenerate in energy, while spatially separated in the top and bottom Se layers. These results not only enrich our understanding of the spin polarization physics but also may find applications in electrically tunable spintronics.

  8. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film

    PubMed Central

    Yao, Wei; Wang, Eryin; Huang, Huaqing; Deng, Ke; Yan, Mingzhe; Zhang, Kenan; Miyamoto, Koji; Okuda, Taichi; Li, Linfei; Wang, Yeliang; Gao, Hongjun; Liu, Chaoxing; Duan, Wenhui; Zhou, Shuyun

    2017-01-01

    The generally accepted view that spin polarization in non-magnetic solids is induced by the asymmetry of the global crystal space group has limited the search for spintronics materials mainly to non-centrosymmetric materials. In recent times it has been suggested that spin polarization originates fundamentally from local atomic site asymmetries and therefore centrosymmetric materials may exhibit previously overlooked spin polarizations. Here, by using spin- and angle-resolved photoemission spectroscopy, we report the observation of helical spin texture in monolayer, centrosymmetric and semiconducting PtSe2 film without the characteristic spin splitting in conventional Rashba effect (R-1). First-principles calculations and effective analytical model analysis suggest local dipole induced Rashba effect (R-2) with spin-layer locking: opposite spins are degenerate in energy, while spatially separated in the top and bottom Se layers. These results not only enrich our understanding of the spin polarization physics but also may find applications in electrically tunable spintronics. PMID:28139646

  9. Molecular mobility in the monolayers of foam films stabilized by porcine lung surfactant.

    PubMed Central

    Lalchev, Z I; Todorov, R K; Christova, Y T; Wilde, P J; Mackie, A R; Clark, D C

    1996-01-01

    Certain physical properties of a range of foam film types that are believed to exist in vivo in the lung have been investigated. The contribution of different lung surfactant components found in porcine lung surfactant to molecular surface diffusion in the plane of foam films has been investigated for the first time. The influence of the type and thickness of black foam films, temperature, electrolyte concentration, and extract composition on surface diffusion has been studied using the fluorescence recovery after photobleaching technique. Fluorescent phospholipid probe molecules in foam films stabilized by porcine lung surfactant samples or their hydrophobic extracts consisting of surfactant lipids and hydrophobic lung surfactant proteins, SP-B and SP-C, exhibited more rapid diffusion than observed in films of its principal lipid component alone, L-alpha-phosphatidylcholine dipalmitoyl. This effect appears to be due to contributions from minor lipid components present in the total surfactant lipid extracts. The minor lipid components influence the surface diffusion in foam films both by their negative charge and by lowering the phase transition temperature of lung surfactant samples. In contrast, the presence of high concentrations of the hydrophillic surfactant protein A (SP-A) and non-lung-surfactant proteins in the sample reduced the diffusion coefficient (D) of the lipid analog in the adsorbed layer of the films. Hysteresis behavior of D was observed during temperature cycling, with the cooling curve lying above the heating curve. However, in cases where some surface molecular aggregation and surface heterogeneity were observed during cooling, the films became more rigid and molecules at the interfaces became immobilized. The thickness, size, capillary pressure, configuration, and composition of foam films of lung surfactant prepared in vitro support their investigation as realistic structural analogs of the surface films that exist in vivo in the lung

  10. Studies on Mixed Monolayers and Langmuir-Blodgett Films of Schiff-Base Complex Cu(SBC(18))(2) and Calix

    PubMed

    Pang, Shufeng; Ye, Zhifeng; Li, Chun; Liang, Yingqiu

    2001-08-15

    Mixed monolayers of Schiff-base complex Cu(SBC(18))(2) with an octadecyl hydrocarbon chain and Calix[4]arene without a long alkyl chain at an air/water interface were studied in ultrapure water at different temperatures. Interface behavior and thermodynamic estimation of the mixed monolayer indicate that a strong intermolecular interaction exists between the mixed components (Cu(SBC(18))(2) and calix[4]arene) and the two-dimensional miscibility decreases with the molar fraction of Cu(SBC(18))(2). It is noticeable that the calix[4]arene monolayer can be transferred successfully onto solid substrates due to the introduction of Cu(SBC(18))(2). FTIR transmission and UV-Vis absorption spectra of mixed LB films provide further evidence of molecular interaction between the headgroups. Copyright 2001 Academic Press.

  11. Coexistence of Replica Bands and Superconductivity in FeSe Monolayer Films

    NASA Astrophysics Data System (ADS)

    Rebec, S. N.; Jia, T.; Zhang, C.; Hashimoto, M.; Lu, D.-H.; Moore, R. G.; Shen, Z.-X.

    2017-02-01

    To elucidate the mechanisms behind the enhanced Tc in monolayer (1 ML) FeSe on SrTiO3 (STO), we grew highly strained 1 ML FeSe on the rectangular (100) face of rutile TiO2 , and observed the coexistence of replica bands and superconductivity with a Tc of 63 K. From the similar Tc between this system and 1ML FeSe on STO (001), we conclude that strain and dielectric constant are likely unimportant to the enhanced Tc in these systems. A systematic comparison of 1 ML FeSe on TiO2 with other systems in the FeSe family shows that while charge transfer alone can enhance Tc, it is only with the addition of interfacial electron-phonon coupling that Tc can be increased to the level seen in 1 ML FeSe on STO.

  12. Structure and spectroscopic analysis of the graphene monolayer film directly grown on the quartz substrate via the HF-CVD technique

    NASA Astrophysics Data System (ADS)

    Mahmoud, Waleed E.; Al-Hazmi, Farag S.; Al-Ghamdi, A. A.; Shokr, F. S.; Beall, Gary W.; Bronstein, Lyudmila M.

    2016-08-01

    Direct growth of a monolayer graphene film on a quartz substrate by a hot filament chemical vapor deposition technique is reported. The monolayer graphene film prepared was characterized by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), selected area electron diffraction (SAED), and atomic force microscopy (AFM). The optical properties were studied by spectroscopic elliposmetry. The experimental data were fitted by the Forouhi-Bloomer model to estimate the extinction coefficient and the refractive index of the monolayer graphene film. The refractive index spectrum in the visible region was studied based on the harmonic oscillator model. The lattice dielectric constant, real and imaginary dielectric constants and the ratio of the charge carrier number to the effective mass were determined. The surface and volume energy loss parameters were also found and showed that the value of the surface energy loss is greater than the volume energy loss. The determination of these optical constants will open new avenue for novel applications of graphene films in the field of wave plates, light modulators, ultrahigh-frequency signal processing and LCDs.

  13. Cognition and order in Langmuir-Blodgett films of a 3-hexadecyl pyrrole and ferrocene-derivatized pyrrole mixed monolayer system

    SciTech Connect

    Samuelson, L.; Rahman, A.K.M.; Puglia, G.P.; Clough, S.; Tripathy, S.; Inagaki, T.; Yang, X.Q.; Skotheim, T.A.; Okamoto, Y.

    1989-01-01

    Novel, self-assembled materials have been designed and produced from first principle to possess unique structural hierarchy and electronic and optical properties. The Langmuir-Blodgett technique was used to study the molecular organization of a mixed 3-hexadecyl pyrrole (3HDP) and ferrocene-derivatized pyrrole (Fc-Py) surfactant system. The pyrrole moiety was chosen for its' well established electronic and optical properties when polymerized, while ferrocene, it is theorized, if properly oriented into a Langmuir-Blodgett monolayer film may show a layered array of transition metals which would be extremely valuable as a model for two-dimensional magnets. The ferrocene group may also provide the possibility of charge coupling between neutral ferrocene and oxidized ferricenium which could be controlled electrochemically or photochemically. It has been determined that stable monolayer films of the mixed system could be formed at the air-water interface. The growth and assembly process led to polypyrrole 2-D lattices with heretofore unsurpassed order. In fact, the process of template polymerization leads to a new crystal phase for the polypyrrole component of the thin film structure. Various monolayer and multilayer films were prepared on platinum coated substrates for surface spectroscopic characterization using synchrotron radiation. Near Edge X-Ray Absorption Fine Structure studies revealed that highly ordered multilayer structures are being formed. 8 refs., 4 figs., 1 tab.

  14. Water-repellent ZnO nanowires films obtained by octadecylsilane self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Badre, C.; Pauporté, T.; Turmine, M.; Dubot, P.; Lincot, D.

    2008-05-01

    Zinc oxide (ZnO) films with well-controlled morphologies have been prepared by electrochemical deposition. A seed layer of nanocrystallites of ZnO was prepared from which ZnO nanowires were grown from a low concentration of ZnCl 2. The nanowires are rough and dense and their superhydrophilicity is enhanced. A treatment with an alkylsilane (octadecylsilane) yields superhydrophobic surfaces with very high advancing and receding contact angles 173°/172° and a very low roll-off angle. Our superhydrophobic films are stable for more than 6 months.

  15. Macromolecular dimensions and mechanical properties of monolayer films of Sonorean mesquite gum.

    PubMed

    López-Franco, Yolanda L; Valdez, Miguel A; Hernández, Javier; Calderón de la Barca, Ana M; Rinaudo, Marguerite; Goycoolea, Francisco M

    2004-09-16

    Mesquite gum sourced from Prosopis velutina trees and gum arabic (Acacia spp.) were characterized using light scattering and Langmuir isotherms. Both gum materials were fractionated by hydrophobic interaction chromatography, yielding four fractions for both gums: FI, FIIa, FIIb and FIII in mesquite gum and FI, FII, FIIIa and FIIIb in gum arabic. In mesquite gum, the obtained fractions had different protein content (7.18-38.60 wt.-%) and macromolecular dimensions (M approximately 3.89 x 10(5)-8.06 x 10(5) g.mol(-1), RG approximately 48.83-71.11 nm, RH approximately 9.61-24.06 nm) and architecture given by the structure factor (RG/RH ratio approximately 2.96-5.27). The mechanical properties of Langmuir monolayers at the air-water interface were very different on each gum and their fractions. For mesquite gum, the most active species at the interface were those comprised in Fractions IIa and IIb and III, while Fraction I the pi/A isotherm lied below that of the whole gum. In gum arabic only Fraction III developed greater surface pressure at the same surface per milligram of material than whole gum. This is rationalized in terms of structural differences in both materials. Mesquite gum tertiary structure seems to fit best with an elongated polydisperse macrocoil in agreement with the "twisted hairy rope" proposal for arabinogalactan proteoglycans.

  16. Coexistence of Replica Bands and Superconductivity in FeSe Monolayer Films.

    PubMed

    Rebec, S N; Jia, T; Zhang, C; Hashimoto, M; Lu, D-H; Moore, R G; Shen, Z-X

    2017-02-10

    To elucidate the mechanisms behind the enhanced T_{c} in monolayer (1 ML) FeSe on SrTiO_{3} (STO), we grew highly strained 1 ML FeSe on the rectangular (100) face of rutile TiO_{2}, and observed the coexistence of replica bands and superconductivity with a T_{c} of 63 K. From the similar T_{c} between this system and 1ML FeSe on STO (001), we conclude that strain and dielectric constant are likely unimportant to the enhanced T_{c} in these systems. A systematic comparison of 1 ML FeSe on TiO_{2} with other systems in the FeSe family shows that while charge transfer alone can enhance T_{c}, it is only with the addition of interfacial electron-phonon coupling that T_{c} can be increased to the level seen in 1 ML FeSe on STO.

  17. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film.

    PubMed

    Chang, Chun-Chao; Yang, Kuang-Hsuan; Liu, Yu-Chuan; Yu, Chung-Chin; Wu, Yi-Hao

    2012-11-07

    As shown in the literature, electrochemical underpotential deposition (UPD) offers the ability to deposit up to a monolayer of one metal onto a more noble metal with a flat surface. In this work, we develop an electrochemical pathway to prepare more surface-enhanced Raman scattering (SERS)-active substrates with Ag UPD-modified Au nanoparticles (NPs) by using sonoelectrochemical deposition-dissolution cycles (SEDDCs). Encouragingly, the SERS of Rhodamine 6G (R6G) adsorbed on these Ag UPD-modified Au NPs exhibits a higher intensity by ca. 12-fold magnitude, as compared with that of R6G adsorbed on unmodified Au NPs. The prepared SERS-active substrate demonstrates a large Raman scattering enhancement for R6G with a detection limit of 2 × 10(-14) M and an enhancement factor of 5.0 × 10(8). Also, the strategy proposed in this work to improve the SERS effects by using UPD Ag based on SEDDCs has an effect on the smaller probe molecules of 2,2'-bipyridine (BPy).

  18. Chemical stability of nonwetting, low adhesion self-assembled monolayer films formed by perfluoroalkylsilanization of copper.

    PubMed

    Hoque, E; DeRose, J A; Hoffmann, P; Bhushan, B; Mathieu, H J

    2007-03-21

    A self-assembled monolayer (SAM) has been produced by reaction of 1H,1H,2H,2H-perfluorodecyldimethylchlorosilane (PFMS) with an oxidized copper (Cu) substrate and investigated by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), friction force microscopy (FFM), a derivative of AFM, and contact angle measurement. FFM showed a significant reduction in the adhesive force and friction coefficient of PFMS modified Cu (PFMS/Cu) compared to unmodified Cu. The perfluoroalkyl SAM on Cu is found to be extremely hydrophobic, yielding sessile drop static contact angles of more than 130 degrees for pure water and a "surface energy" (which is proportional to the Zisman critical surface tension for a Cu surface with 0 rms roughness) of 14.5 mJm2(nMm). Treatment by exposure to harsh conditions showed that PFMS/Cu SAM can withstand boiling nitric acid (pH=1.8), boiling water, and warm sodium hydroxide (pH=12, 60 degrees C) solutions for at least 30 min. Furthermore, no SAM degradation was observed when PFMS/Cu was exposed to warm nitric acid solution for up to 70 min at 60 degrees C or 50 min at 80 degrees C. Extremely hydrophobic (low surface energy) and stable PFMS/Cu SAMs could be useful as corrosion inhibitors in micro/nanoelectronic devices and/or as promoters for antiwetting, low adhesion surfaces or dropwise condensation on heat exchange surfaces.

  19. Kinetics of monolayer and bilayer nanoparticle film formation during electrophoretic deposition

    DTIC Science & Technology

    2014-01-01

    and Astronomy , Vanderbilt University, Nashville, TN 37235, USA 2Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University...crystal microbalance or X- ray scattering measurements. Another possible route to increasing time resolution and repeatability is by acquiring in-situ...suppression, and inhibition in the electrophoretic deposition of nanocrystal mixture films for CdSe nanocrystals with gamma -Fe2O3 and Au nanocrystals’, Nano

  20. Large area growth of monolayer MoS2 film on quartz and its use as a saturable absorber in laser mode-locking

    NASA Astrophysics Data System (ADS)

    Zhao, Wei-fang; Yu, Hua; Liao, Meng-zhou; Zhang, Ling; Zou, Shu-zhen; Yu, Hai-juan; He, Chao-jian; Zhang, Jing-yuan; Zhang, Guang-yu; Lin, Xue-chun

    2017-02-01

    Monolayer MoS2 film on quartz was fabricated by a home-made three-temperature zone chemical vapor deposition method. The photo, AFM image, Raman spectroscopy and HRTEM image showed that high quality as-grown MoS2 film completely covered the whole quartz substrate of a few cm2. A Nd:YVO4 laser with mode-locking operation was obtained by using the monolayer MoS2 on quartz as the saturable absorber (SA). To the best of our knowledge, this is the first report on large-area growth of high quality monolayer MoS2 film on transparent quartz substrate, and the first time that the CVD MoS2 SA was used in mode-locked solid state lasers. Because of the large area, high transmission, low non-saturable loss and high optical damage threshold of this material, it is very suitable for application in mode-locked solid state lasers.

  1. Detection of saccharides with a fluorescent sensing device based on a gold film modified with 4-mercaptophenylboronic acid monolayer

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Jen; Chang, Jui-Feng; Cheng, Nai-Jen; Yih, Jeng-Nan; Chiu, Kuo-Chi

    2013-09-01

    An extremely sensitive fluorescent sensor based on a phenylboronic acid monolayer was developed for detecting saccharide molecules. The fluorescent sensor was prepared by assembling a monolayer of 4-mercaptophenylboronic acid (4-MPBA) onto a gold-coated compact disk. The change in the fluorescence of the 4-MPBA monolayer was extremely obvious in basic methanolic buffer containing monosaccharides down to the picomolar level. The fluorescence spectra demonstrated that the 4-MPBA monolayer was sensitive to monosaccharides and disaccharides, and the affinity of the monolayer toward saccharides was in the order of glucose < fructose < mannose < galactose < maltose > lactose > sucrose. Additionally, the fluorescence intensity of 4-MPBA monolayer was restorable after cleaning with weak acid, indicating that the reported fluorescent sensor with the detection limit of glucose down to the picomolar level is reusable for sensing saccharides.

  2. Fabrication of SnO2-Reduced Graphite Oxide Monolayer-Ordered Porous Film Gas Sensor with Tunable Sensitivity through Ultra-Violet Light Irradiation

    NASA Astrophysics Data System (ADS)

    Xu, Shipu; Sun, Fengqiang; Yang, Shumin; Pan, Zizhao; Long, Jinfeng; Gu, Fenglong

    2015-03-01

    A new graphene-based composite structure, monolayer-ordered macroporous film composed of a layer of orderly arranged macropores, was reported. As an example, SnO2-reduced graphite oxide monolayer-ordered macroporous film was fabricated on a ceramic tube substrate under the irradiation of ultra-violet light (UV), by taking the latex microsphere two-dimensional colloid crystal as a template. Graphite oxide sheets dispersed in SnSO4 aqueous solution exhibited excellent affinity with template microspheres and were in situ incorporated into the pore walls during UV-induced growth of SnO2. The growing and the as-formed SnO2, just like other photocatalytic semiconductor, could be excited to produce electrons and holes under UV irradiation. Electrons reduced GO and holes adsorbed corresponding negative ions, which changed the properties of the composite film. This film was directly used as gas-sensor and was able to display high sensitivity in detecting ethanol gas. More interestingly, on the basis of SnO2-induced photochemical behaviours, this sensor demonstrated tunable sensitivity when UV irradiation time was controlled during the fabrication process and post in water, respectively. This study provides efficient ways of conducting the in situ fabrication of a semiconductor-reduced graphite oxide film device with uniform surface structure and controllable properties.

  3. Fabrication of SnO2-Reduced Graphite Oxide Monolayer-Ordered Porous Film Gas Sensor with Tunable Sensitivity through Ultra-Violet Light Irradiation

    PubMed Central

    Xu, Shipu; Sun, Fengqiang; Yang, Shumin; Pan, Zizhao; Long, Jinfeng; Gu, Fenglong

    2015-01-01

    A new graphene-based composite structure, monolayer-ordered macroporous film composed of a layer of orderly arranged macropores, was reported. As an example, SnO2-reduced graphite oxide monolayer-ordered macroporous film was fabricated on a ceramic tube substrate under the irradiation of ultra-violet light (UV), by taking the latex microsphere two-dimensional colloid crystal as a template. Graphite oxide sheets dispersed in SnSO4 aqueous solution exhibited excellent affinity with template microspheres and were in situ incorporated into the pore walls during UV-induced growth of SnO2. The growing and the as-formed SnO2, just like other photocatalytic semiconductor, could be excited to produce electrons and holes under UV irradiation. Electrons reduced GO and holes adsorbed corresponding negative ions, which changed the properties of the composite film. This film was directly used as gas-sensor and was able to display high sensitivity in detecting ethanol gas. More interestingly, on the basis of SnO2-induced photochemical behaviours, this sensor demonstrated tunable sensitivity when UV irradiation time was controlled during the fabrication process and post in water, respectively. This study provides efficient ways of conducting the in situ fabrication of a semiconductor-reduced graphite oxide film device with uniform surface structure and controllable properties. PMID:25758292

  4. Commensurability and stability in nonperiodic systems

    PubMed Central

    Fasano, Y.; De Seta, M.; Menghini, M.; Pastoriza, H.; de la Cruz, F.

    2005-01-01

    We have investigated the response of 3D Bi2Sr2CaCu2O8 vortex structures to a weak perturbation induced by 2D Fe pinning structures acting on one extremity of vortex lines. The pinning patterns were nano-engineered at the sample surface by means of either a Bitter decoration of the vortex lattice or electron-beam lithography. The commensurability conditions between 2D rigid pinning potentials and 3D elastic structures with short-range positional and long-range orientational correlation have been experimentally determined. When the 2D potential is a replica of the nonperiodic vortex structure an amplification of its interaction with the vortex structure takes place. This effect is detected only for the first matching field, becoming negligible for other matching fields. On the other hand, a periodic 2D perturbation is shown to transform the nonperiodic Bragg glass-like structure into an Abrikosov crystal with an effective Debye–Waller factor. PMID:16576763

  5. Observation of dopant-profile independent electron transport in sub-monolayer TiO{sub x} stacked ZnO thin films grown by atomic layer deposition

    SciTech Connect

    Saha, D. E-mail: pmisra@rrcat.gov.in; Misra, P. E-mail: pmisra@rrcat.gov.in; Joshi, M. P.; Kukreja, L. M.; Das, Gangadhar

    2016-01-18

    Dopant-profile independent electron transport has been observed through a combined study of temperature dependent electrical resistivity and magnetoresistance measurements on a series of Ti incorporated ZnO thin films with varying degree of static-disorder. These films were grown by atomic layer deposition through in-situ vertical stacking of multiple sub-monolayers of TiO{sub x} in ZnO. Upon decreasing ZnO spacer layer thickness, electron transport smoothly evolved from a good metallic to an incipient non-metallic regime due to the intricate interplay of screening of spatial potential fluctuations and strength of static-disorder in the films. Temperature dependent phase-coherence length as extracted from the magnetotransport measurement revealed insignificant role of inter sub-monolayer scattering as an additional channel for electron dephasing, indicating that films were homogeneously disordered three-dimensional electronic systems irrespective of their dopant-profiles. Results of this study are worthy enough for both fundamental physics perspective and efficient applications of multi-stacked ZnO/TiO{sub x} structures in the emerging field of transparent oxide electronics.

  6. Interactions between polymers and lipid monolayers at the air/water interface: surface behavior of poly(methyl methacrylate)-cholesterol mixed films.

    PubMed

    Miñones Conde, M; Conde, O; Trillo, J M; Miñones, J

    2010-08-26

    The behavior of mixed monolayers of cholesterol and poly(methyl methacrylate) (PMMA) with molecular weights of M(w) = 120,000 g/mol and M(w) = 15,000 g/mol was investigated at the air/water interface using Langmuir and Brewster angle microscopy techniques. From the data of surface pressure (pi)-area (A) isotherms, compressional modulus-surface pressure (C(s)(-1)-pi) curves, and film thickness, complemented with Brewster angle microscopy images, the interaction between the components was analyzed. Regardless of the surface pressure (pi = 10, 20, or 30 mN/m) at which the mean molecular/monomer areas (Am) were calculated, the Am-mole fraction plots (corresponding to X(PMMA) = 0.1, 0.3, 0.5, 0.7, and 0.9) show that all the experimental points obtained are placed on the theoretical straight line calculated according to the additivity rule. This fact, together with the existence of two collapses in the mixed monolayers and with the fact that the surface pressure of the liquid-expanded LE-L'E phase transition of PMMA does not change with the monolayer composition, demonstrates the immiscibility of the film components at the interface. The application of the Crisp phase rule to the phase diagram of PMMA-cholesterol mixed monolayers helps to explain the existence of a biphasic system, regardless of their composition and surface pressure. Besides, Brewster angle microscopy (BAM) images showed the existence of heterogeneous cholesterol domains with high reflectivity immersed in a homogeneous polymer separate phase with low reflectivity.

  7. Highly ordered monolayer/bilayer TiO2 hollow sphere films with widely tunable visible-light reflection and absorption bands.

    PubMed

    Li, Jie; Qin, Yao; Jin, Chao; Li, Ying; Shi, Donglu; Schmidt-Mende, Lukas; Gan, Lihua; Yang, Jinhu

    2013-06-07

    Monolayer and bilayer TiO2 hollow hemisphere/sphere (THH/THS) films consisting of highly ordered hexagonal-patterned THHs/THSs with thin shells of ~10 nm and different diameters of ~170 and ~470 nm have been prepared by templating of two-dimensional polystyrene sphere (PS) assembly films coupled with TiO2 sputtering/wet coating approaches. Owing to their precisely adjustable structural parameters, such as THH/THS shape and diameter as well as film layer thickness, the prepared THH/THS films exhibit widely tunable visible-light reflection and absorption bands, i.e. from 380 to 850 nm for reflection and 390 to 520 nm for absorption, respectively. The mechanism of the novel optical behaviors of the THH/THS films has been discussed in depth, combined with some calculations according to Bragg's law. In addition, photocatalytic experiments of RhB degradation employing the THH/THS films as recyclable catalysts have been conducted. The THH/THS films with controlled structures and precisely tunable optical properties are attractive for a wide range of applications, such as recyclable catalysts for photocatalysis, efficient oxide electrodes or scattering layers for solar cells, gas-permeable electrode materials for high-performance sensors and so on.

  8. Unconventional fractional quantum Hall effect in monolayer and bilayer graphene

    PubMed Central

    Jacak, Janusz; Jacak, Lucjan

    2016-01-01

    The commensurability condition is applied to determine the hierarchy of fractional fillings of Landau levels in monolayer and in bilayer graphene. The filling rates for fractional quantum Hall effect (FQHE) in graphene are found in the first three Landau levels in one-to-one agreement with the experimental data. The presence of even denominator filling fractions in the hierarchy for FQHE in bilayer graphene is explained. Experimentally observed hierarchy of FQHE in the first and second Landau levels in monolayer graphene and in the zeroth Landau level in bilayer graphene is beyond the conventional composite fermion interpretation but fits to the presented nonlocal topology commensurability condition. PMID:27877866

  9. Iso-oriented monolayer α-MoO 3 (010) films epitaxially grown on SrTiO 3 (001)

    SciTech Connect

    Du, Yingge; Li, Guoqiang; Peterson, Erik W.; Zhou, Jing; Zhang, Xin; Mu, Rentao; Dohnálek, Zdenek; Bowden, Mark; Lyubinetsky, Igor; Chambers, Scott A.

    2016-01-01

    The ability to synthesis well-ordered two-dimensional materials under ultra-high vacuum and directly characterize them by other techniques in-situ can greatly advance our current understanding on their physical and chemical properties. In this paper, we demonstrate that iso-oriented α-MoO3 films with as low as single monolayer thickness can be reproducibly grown on SrTiO3(001) substrates by molecular beam epitaxy ( (010)MoO3 || (001)STO, [100]MoO3 || [100]STO or [010]STO) through a self-limiting process. While one in-plane lattice parameter of the MoO3 is very close to that of the SrTiO3 (aMoO3 = 3.96 Å, aSTO = 3.905 Å), the lattice mismatch along other direction is large (~5%, cMoO3 = 3.70 Å), which leads to relaxation as clearly observed from the splitting of streaks in reflection high-energy electron diffraction (RHEED) patterns. A narrow range in the growth temperature is found to be optimal for the growth of monolayer α-MoO3 films. Increasing deposition time will not lead to further increase in thickness, which is explained by a balance between deposition and thermal desorption due to the weak van der Waals force between α-MoO3 layers. Lowering growth temperature after the initial iso-oriented α-MoO3 monolayer leads to thicker α-MoO3(010) films with excellent crystallinity.

  10. Magnetism in the few-monolayers limit: A surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111)

    NASA Astrophysics Data System (ADS)

    Huang, F.; Kief, M. T.; Mankey, G. J.; Willis, R. F.

    1994-02-01

    The surface magneto-optic Kerr effect (SMOKE) was used to investigate the magnetic properties of epitaxial thin films of Co, Ni, and their alloys grown on Cu(100) and Cu(111). The Curie temperature TC is higher for the same films of a given thickness on Cu(111) than on Cu(100). All the films show a change in the power-law exponent β of the magnetization density M~(1-T/TC)β with reducing film thickness. Ni films on Cu(100) undergo a particularly abrupt crossover at ~7 monolayers (ML) from three-dimensional Heisenberg (β=0.37) to finite-size two-dimensional XY (β=0.23) behavior as the film thickness is reduced. The characteristic power-law exponent β=0.23 of these films appears to be an experimental realization of Kosterlitz-Thouless behavior over a restricted temperature range. A similar, but more gradual crossover occurs for the Ni films on Cu(111) at 8 to 12 ML. The finite-size scaling behavior in the few-monolayers-thickness range is compared with that reported for Ising thin-film behavior. In all instances TC extrapolates with decreasing thickness to zero at one monolayer. The dimensionality crossover and finite-size scaling behavior is discussed in the light of our current understanding of spin-wave quantization, anisotropy, and film microstructure.

  11. Rotation dynamics of C{sub 60} molecules in a monolayer fullerene film on the WO{sub 2}/W(110) surface near the rotational phase transition

    SciTech Connect

    Bozhko, S. I.; Levchenko, E. A.; Semenov, V. N.; Bulatov, M. F.; Shvets, I. V.

    2015-05-15

    The rotation dynamics of C{sub 60} molecules in monolayer fullerene films grown on the WO{sub 2}/W(110) surface is studied by scanning tunneling microscopy. The formation of molecule clusters, which have a high libron vibration amplitude, is detected near the rotational phase transition temperature. The energy parameters that determine a change in the molecule orientation, namely, the energy difference between the nearest minima of the C{sub 60} molecule energy (30 meV) as a function of the molecule orientation and the potential barrier between them (610 meV), are determined. The results are discussed in terms of the mean-field approximation.

  12. Ultraviolet-visible and surface-enhanced Raman scattering spectroscopy studies on self-assembled metalloporphyrin films on organic monolayer-modified ultra-thin silver substrates.

    PubMed

    Li, Xiaoling; Xu, Weiqing; Jia, Huiying; Wang, Xu; Zhao, Bing; Li, Bofu; Ozaki, Yukihiro

    2004-03-01

    A self-assembled monolayer (SAM) film of 5,10,15,20-tetra-(para-chlorophenyl)-porphyrin terbium (or lutetium) hydroxy compound (TbOH/LuOH) fabricated on a silver substrate premodified with a SAM of 4-mercaptopyridine (PySH) was studied by ultraviolet-visible (UV-Vis) spectroscopy and surface-enhanced Raman scattering (SERS) spectroscopy. PySH can modify the substrate and deliver its pyridyl group pointing out from the silver surface. Thus, we can investigate the effects of the central metals of the metalloporphyrins in the formation of the composite films. For the TbOH-PySH composite film, a new absorption band arising from TbOH appears at 425 nm, and a band at 512 nm due to the PySH-modified silver substrate shifts to a longer wavelength (538 nm). The results suggest that TbOH is successfully assembled on the top of PySH-modified silver film and that there is an interaction between TbOH and PySH in the film. The frequency shifts and relative intensity changes of bands due to PySH in the SERS spectra imply the coordination of the pyridyl group on Tb in the SAM. As for the LuOH-PySH composite film, its SERS spectrum shows bands arising from both the LuOH and PySH moieties, indicating that LuOH is assembled on the PySH-modified silver film. Furthermore, a band at 1221 cm(-1) due to the in-plane C-H bending mode of PySH disappears, implying that the pyridyl moiety of PySH becomes more parallel to the silver surface upon the formation of the LuOH-PySH composite film. Additionally, an absorption band at 515 nm shifts to a longer wavelength (541 nm) and becomes broad upon the formation of the composite film, suggesting an interaction between LuOH and PySH in the film. By comparing the spectral changes between the two self-assembled composite films, we find that the central metal is crucial in the formation of the composite films. The structure and orientation of the composite films depend on the central metal of the metalloporphyrin compounds.

  13. Experimental investigation and molecular dynamics simulations of impact-mode wear mechanisms in silicon micromachines with alkylsilane self-assembled monolayer films

    NASA Astrophysics Data System (ADS)

    Douglas, C. M.; Rouse, W. A.; Driscoll, J. A.; Timpe, S. J.

    2015-10-01

    In the current work, polycrystalline silicon microdevices are treated with a 1H,1H,2H,2H-Perfluorodecyltrichlorosilane (FDTS) self-assembled monolayer (SAM) film. Using a microelectromechanical systems-based tribometer, the adhesion characteristics of the FDTS-treated surfaces are compared to those of untreated surfaces over a range of approximately 10 × 106 impact cycles. FDTS-treated surfaces showed a lower zero-hour adhesion force compared to untreated surfaces under identical environmental conditions. The presence of the monolayer did not have a discernible effect on the number of cycles to initiate the surface degradation that was manifested as an increase in the adhesion force. Based on trends in degradation, it is concluded that similar chemical and physical wear mechanisms dominate the evolution of adhesion in both treated and untreated devices. The qualitative results of the experiment are reinforced by molecular dynamics (MD) simulations of a single nanoasperity contact coated with an octadecyltrichlorosilane (ODTS) SAM. MD simulations show cleavage of bonds along the aliphatic chains of ODTS resulting in adhesion fluctuations. In agreement with experimental observations, the MD simulation shows a logarithmic increase in adhesion force with increasing number of cycles. MD simulations also predict a logarithmic decrease in adhesion energy with increasing cycles. These results provide insight into the physicohemical changes occurring during repetitive impact of surfaces coated with low surface energy films.

  14. Influence of buried hydrogen-bonding groups within monolayer films on gas-surface energy exchange and accommodation.

    PubMed

    Ferguson, M K; Lohr, J R; Day, B S; Morris, J R

    2004-02-20

    Self-assembled monolayers (SAMs) of carbonyl-containing alkanethiols on gold are employed to explore the influence of hydrogen-bonding interactions on gas-surface energy exchange and accommodation. H-bonding, COOH-terminated SAMs are found to produce more impulsive scattering and less thermal accommodation than non-H-bonding, COOCH3-terminated monolayers. For carbamate-functionalized SAMs of the form Au/S(CH2)16OCONH(CH2)(n-1)CH3, impulsive scattering decreases and accommodation increases as the H-bonding group is positioned farther below the terminal CH3.

  15. Rotationally Commensurate Growth of MoS2 on Epitaxial Graphene.

    PubMed

    Liu, Xiaolong; Balla, Itamar; Bergeron, Hadallia; Campbell, Gavin P; Bedzyk, Michael J; Hersam, Mark C

    2016-01-26

    Atomically thin MoS2/graphene heterostructures are promising candidates for nanoelectronic and optoelectronic technologies. Among different graphene substrates, epitaxial graphene (EG) on SiC provides several potential advantages for such heterostructures, including high electronic quality, tunable substrate coupling, wafer-scale processability, and crystalline ordering that can template commensurate growth. Exploiting these attributes, we demonstrate here the thickness-controlled van der Waals epitaxial growth of MoS2 on EG via chemical vapor deposition, giving rise to transfer-free synthesis of a two-dimensional heterostructure with registry between its constituent materials. The rotational commensurability observed between the MoS2 and EG is driven by the energetically favorable alignment of their respective lattices and results in nearly strain-free MoS2, as evidenced by synchrotron X-ray scattering and atomic-resolution scanning tunneling microscopy (STM). The electronic nature of the MoS2/EG heterostructure is elucidated with STM and scanning tunneling spectroscopy, which reveals bias-dependent apparent thickness, band bending, and a reduced band gap of ∼0.4 eV at the monolayer MoS2 edges.

  16. Characterization of heterojunctions via x-ray and uv photoemission spectroscopy: energy level implications for single and mixed monolayer SAMs, cadmium selenide nanoparticle films, and organic semiconductor depositions

    NASA Astrophysics Data System (ADS)

    Graham, Amy L.

    This work has centered on the interface dipoles arising at heterojunctions between metals, semiconductor nanoparticles, self-assembled monolayers, and organic semiconductor materials. Alkanethiol self-assembled monolayers, CdSe nanocrystals, and the organic semiconductors zinc phthalocyanine (ZnPc) and Buckminster fullerene (C60) were the basis of these investigations. UV photoemission spectroscopy has proven to be an invaluable tool to observe the vacuum level shifts for these analyses while using XPS to corroborate surface structure. With a full evaluation of these surfaces, the shifts in the vacuum level, valence ionizations, and core ionizations, the impact of these interfaces, as well as their influence on the subsequent deposition of organic semiconductor layers is established. Alkanethiols possessing varying dipole moments were examined on gold and silver substrates. The viability of these alkanethiols was demonstrated to predictively adjust the work function of these metals as a function of their intrinsic dipole moments projected to surface normal, and established differences between Ag---S and Au---S bonds. The capability of the SAMs to modify the work function of gold provided an opportunity for mixed monolayers of the alkanethiols to produce a precise range of work functions by minimal adjustments of solution concentration, which were examined with a simple point dipole model. Photoemission spectroscopy offers a thorough analysis of CdSe nanoparticle films. Despite a plethora of research on these nanocrystals, there still is controversy on the magnitude of the shift in the valence band with diameter. In our research we found the majority of the valence band shift could be attributed to the interface dipole, ignored previously. Meanwhile, the valence band tethered films was obscured by the sulfur of the thiol tether. Finally, organic semiconductor layers deposited on SAMs on gold exhibited various interface dipole effects at these heterojunctions. Charge

  17. Effect of fluorocarbon self-assembled monolayer films on sidewall adhesion and friction of surface micromachines with impacting and sliding contact interfaces

    SciTech Connect

    Xiang, H.; Komvopoulos, K.

    2013-06-14

    A self-assembled monolayer film consisting of fluoro-octyltrichlorosilane (FOTS) was vapor-phase deposited on Si(100) substrates and polycrystalline silicon (polysilicon) surface micromachines. The hydrophobic behavior and structural composition of the FOTS film deposited on Si(100) were investigated by goniometry and X-ray photoelectron spectroscopy, respectively. The effects of contact pressure, relative humidity, temperature, and impact/sliding cycles on the adhesive and friction behavior of uncoated and FOTS-coated polysilicon micromachines (referred to as the Si and FOTS/Si micromachines, respectively) were investigated under controlled loading and environmental conditions. FOTS/Si micromachines demonstrated much lower and stable adhesion than Si micromachines due to the highly hydrophobic and conformal FOTS film. Contrary to Si micromachines, sidewall adhesion of FOTS/Si micromachines demonstrated a weak dependence on relative humidity, temperature, and impact cycles. In addition, FOTS/Si micromachines showed low and stable adhesion and low static friction for significantly more sliding cycles than Si micromachines. The adhesive and static friction characteristics of Si and FOTS/Si micromachines are interpreted in the context of physicochemical surface changes, resulting in the increase of the real area of contact and a hydrophobic-to-hydrophilic transition of the surface chemical characteristics caused by nanoscale surface smoothening and the removal of the organic residue (Si micromachines) or the FOTS film (FOTS/Si micromachines) during repetitive impact and oscillatory sliding of the sidewall surfaces.

  18. Study of Fused Thiophene Based Organic Semiconductors and Interfacial Self-Assembled Monolayer (SAM) for Thin-Film Transistor (TFT) Application

    NASA Astrophysics Data System (ADS)

    Youn, Jangdae

    In this thesis, the molecular packing motifs of our newly designed fused thiophenes, benzo[d,d]thieno[3,2-b;4,5-b]dithiophene (BTDT) derivatives, were studied by utilizing grazing incidence wide angle X-ray scattering (GIWAXS). Considering the potential of fused thiophene molecules as an environmentally stable, high performance semiconductor building block, it must be an important groundwork to investigate their thin film structures in relation to molecular structures, single crystal structures, and organic thin-film transistors (OTFT) performances. OTFT device performance is not only determined by semiconductor materials, but also influenced by the interfacial properties. Since there are three major components in TFT structures---electrodes, semiconductors, and dielectrics, two types of major interfaces exist. One is the semiconductor-electrode interface, and the other is the semiconductor-dielectric interface. Both of these interfaces have critical roles for TFT operation. For example, the semiconductor-electrode interface determines the charge injection barrier. Before charge carriers go through the electrode (source)-semiconductor-electrode (drain) pathways, the energy gaps between the work function of the electrodes and the HOMO energy of the semiconductor materials must be overcome for hole injection, or the energy gap between the metal work function of the electrodes and the LUMO energy of the semiconductor materials must be overcome for electron injection. These charge injection barriers are largely determined by the energetic structure of the semiconductor material and work function of the electrode. However, the size of energy gap can be modified by introducing an organic self-assembled monolayer (SAM) on the surface of metal electrode. In addition, the structure of semiconductor films, especially within several monolayers right above the electrode, is greatly influenced by the SAM, and it changes charge injection property of OTFT devices. In this thesis

  19. Temperature effect on thin lipid film elasticity and phase separation: insights from Langmuir monolayer and fluorescence microscopy techniques

    NASA Astrophysics Data System (ADS)

    Khattari, Z.; Maghrabi, M.; Al-Abdullah, T.

    2015-07-01

    Langmuir monolayer pressure isotherms and compressibility modulus measurements of phospholipid mixtures in several Langmuir monolayer systems at the air/water interface were investigated in this study. The ultimate aim was to carry out a comparison of the elasticity modulus for monolayers with different mixtures of l,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), l,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and chicken egg yolk sphingomyelin (eSM), in the presence/absence of cholesterol (Chol). In particular, we were able to propose that the leading force beyond the phase separation into liquid expanded (LE-) and liquid condensed (LC-) phases emerges from the increasing barrier to incorporate DOPC molecules into a highly ordered LC-phase. In addition, our findings suggest that DOPC lipid molecules have a priority to incorporate in a disordered LE-phase, while DPPC and eSM prefer the ordered one. Also, Chol seems to split almost equally into both phases, indicating that Chol has no priority for either phase and there are no particular interactions between Chol and saturated lipid molecules.

  20. Phase behavior of mixed submonolayer films of krypton and xenon on graphite.

    PubMed

    Patrykiejew, A; Sokołowski, S

    2012-04-14

    Using the results of extensive Monte Carlo simulations in the canonical and grand canonical ensembles, we discuss the phase behavior of mixed submonolayer films of krypton and xenon adsorbed on the graphite basal plane. The calculations have been performed using two- and three-dimensional models of the systems studied. It has been demonstrated that out-of-plane motion does not affect the properties of the films as long as the total density is well below the monolayer completion and at moderate temperatures. For the total densities close to the monolayer completion, the promotion of particles to the second layer considerably affects the film properties. Our results are in a reasonable agreement with the available experimental data. The melting point of submonolayer films has been shown to exhibit non-monotonous changes with the film composition, and reaches minimum for the xenon concentration of about 50%. At the temperatures below the melting point, the structure of solid phases depends upon the film composition and the temperature; one can also distinguish commensurate and incommensurate phases. Two-dimensional calculations have demonstrated that for the xenon concentration between about 15% and 65% the adsorbed film exhibits the formation of a superstructure, in which each Xe atom is surrounded by six Kr atoms. This superstructure is stable only at very low temperatures and transforms into the mixed commensurate (√3×√3)R30° phase upon the increase of temperature. Such a superstructure does not appear when a three-dimensional model is used. Grand canonical ensemble calculations allowed us to show that for the xenon concentration of about 3% the phase diagram topology of monolayer films changes from the krypton-like (with incipient triple point) to the xenon-like (with ordinary triple point).

  1. Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films

    NASA Astrophysics Data System (ADS)

    Guo, Tianle; Sampat, Siddharth; Zhang, Kehao; Robinson, Joshua A.; Rupich, Sara M.; Chabal, Yves J.; Gartstein, Yuri N.; Malko, Anton V.

    2017-02-01

    Two-dimensional transition metal dichalcogenides (TMDCs) like MoS2 are promising candidates for various optoelectronic applications. The typical photoluminescence (PL) of monolayer MoS2 is however known to suffer very low quantum yields. We demonstrate a 10-fold increase of MoS2 excitonic PL enabled by nonradiative energy transfer (NRET) from adjacent nanocrystal quantum dot (NQD) films. The understanding of this effect is facilitated by our application of transient absorption (TA) spectroscopy to monitor the energy influx into the monolayer MoS2 in the process of ET from photoexcited CdSe/ZnS nanocrystals. In contrast to PL spectroscopy, TA can detect even non-emissive excitons, and we register an order of magnitude enhancement of the MoS2 excitonic TA signatures in hybrids with NQDs. The appearance of ET-induced nanosecond-scale kinetics in TA features is consistent with PL dynamics of energy-accepting MoS2 and PL quenching data of the energy-donating NQDs. The observed enhancement is attributed to the reduction of recombination losses for excitons gradually transferred into MoS2 under quasi-resonant conditions as compared with their direct photoproduction. The TA and PL data clearly illustrate the efficacy of MoS2 and likely other TMDC materials as energy acceptors and the possibility of their practical utilization in NRET-coupled hybrid nanostructures.

  2. Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films.

    PubMed

    Guo, Tianle; Sampat, Siddharth; Zhang, Kehao; Robinson, Joshua A; Rupich, Sara M; Chabal, Yves J; Gartstein, Yuri N; Malko, Anton V

    2017-02-03

    Two-dimensional transition metal dichalcogenides (TMDCs) like MoS2 are promising candidates for various optoelectronic applications. The typical photoluminescence (PL) of monolayer MoS2 is however known to suffer very low quantum yields. We demonstrate a 10-fold increase of MoS2 excitonic PL enabled by nonradiative energy transfer (NRET) from adjacent nanocrystal quantum dot (NQD) films. The understanding of this effect is facilitated by our application of transient absorption (TA) spectroscopy to monitor the energy influx into the monolayer MoS2 in the process of ET from photoexcited CdSe/ZnS nanocrystals. In contrast to PL spectroscopy, TA can detect even non-emissive excitons, and we register an order of magnitude enhancement of the MoS2 excitonic TA signatures in hybrids with NQDs. The appearance of ET-induced nanosecond-scale kinetics in TA features is consistent with PL dynamics of energy-accepting MoS2 and PL quenching data of the energy-donating NQDs. The observed enhancement is attributed to the reduction of recombination losses for excitons gradually transferred into MoS2 under quasi-resonant conditions as compared with their direct photoproduction. The TA and PL data clearly illustrate the efficacy of MoS2 and likely other TMDC materials as energy acceptors and the possibility of their practical utilization in NRET-coupled hybrid nanostructures.

  3. Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films

    PubMed Central

    Guo, Tianle; Sampat, Siddharth; Zhang, Kehao; Robinson, Joshua A.; Rupich, Sara M.; Chabal, Yves J.; Gartstein, Yuri N.; Malko, Anton V.

    2017-01-01

    Two-dimensional transition metal dichalcogenides (TMDCs) like MoS2 are promising candidates for various optoelectronic applications. The typical photoluminescence (PL) of monolayer MoS2 is however known to suffer very low quantum yields. We demonstrate a 10-fold increase of MoS2 excitonic PL enabled by nonradiative energy transfer (NRET) from adjacent nanocrystal quantum dot (NQD) films. The understanding of this effect is facilitated by our application of transient absorption (TA) spectroscopy to monitor the energy influx into the monolayer MoS2 in the process of ET from photoexcited CdSe/ZnS nanocrystals. In contrast to PL spectroscopy, TA can detect even non-emissive excitons, and we register an order of magnitude enhancement of the MoS2 excitonic TA signatures in hybrids with NQDs. The appearance of ET-induced nanosecond-scale kinetics in TA features is consistent with PL dynamics of energy-accepting MoS2 and PL quenching data of the energy-donating NQDs. The observed enhancement is attributed to the reduction of recombination losses for excitons gradually transferred into MoS2 under quasi-resonant conditions as compared with their direct photoproduction. The TA and PL data clearly illustrate the efficacy of MoS2 and likely other TMDC materials as energy acceptors and the possibility of their practical utilization in NRET-coupled hybrid nanostructures. PMID:28155920

  4. Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films

    DOE PAGES

    Guo, Tianle; Sampat, Siddharth; Zhang, Kehao; ...

    2017-02-03

    Two-dimensional transition metal dichalcogenides (TMDCs) like MoS2 are promising candidates for various optoelectronic applications. The typical photoluminescence (PL) of monolayer MoS2 is however known to suffer very low quantum yields. We demonstrate a 10-fold increase of MoS2 excitonic PL enabled by nonradiative energy transfer (NRET) from adjacent nanocrystal quantum dot (NQD) films. The understanding of this effect is facilitated by our application of transient absorption (TA) spectroscopy to monitor the energy influx into the monolayer MoS2 in the process of ET from photoexcited CdSe/ZnS nanocrystals. In contrast to PL spectroscopy, TA can detect even non-emissive excitons, and we register anmore » order of magnitude enhancement of the MoS2 excitonic TA signatures in hybrids with NQDs. The appearance of ET-induced nanosecond-scale kinetics in TA features is consistent with PL dynamics of energy-accepting MoS2 and PL quenching data of the energy-donating NQDs. The observed enhancement is attributed to the reduction of recombination losses for excitons gradually transferred into MoS2 under quasi-resonant conditions as compared with their direct photoproduction. Furthermore, the TA and PL data clearly illustrate the efficacy of MoS2 and likely other TMDC materials as energy acceptors and the possibility of their practical utilization in NRET-coupled hybrid nanostructures.« less

  5. Electrostatic surface plasmon resonance: Direct electric field-induced hybridization and denaturation in monolayer nucleic acid films and label-free discrimination of base mismatches

    PubMed Central

    Heaton, Richard J.; Peterson, Alexander W.; Georgiadis, Rosina M.

    2001-01-01

    We demonstrate that in situ optical surface plasmon resonance spectroscopy can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The dc field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interface is extremely large, the tethered single-stranded DNA thiol probes remain bound and can be reused for subsequent hybridization reactions without loss of efficiency. Only capacitive charging currents are drawn; redox reactions are avoided by maintaining the gold electrode potential within the ideally polarizable region. Because of potential-induced changes in the shape of the surface plasmon resonance curve, we account for the full curve rather than simply the shift in the resonance minimum. PMID:11259682

  6. Frictional transition from superlubric islands to pinned monolayers

    NASA Astrophysics Data System (ADS)

    Pierno, Matteo; Bruschi, Lorenzo; Mistura, Giampaolo; Paolicelli, Guido; di Bona, Alessandro; Valeri, Sergio; Guerra, Roberto; Vanossi, Andrea; Tosatti, Erio

    2015-08-01

    The inertial sliding of physisorbed submonolayer islands on crystal surfaces contains unexpected information on the exceptionally smooth sliding state associated with incommensurate superlubricity and on the mechanisms of its disappearance. Here, in a joint quartz crystal microbalance and molecular dynamics simulation case study of Xe on Cu(111), we show how superlubricity emerges in the large size limit of naturally incommensurate Xe islands. As coverage approaches a full monolayer, theory also predicts an abrupt adhesion-driven two-dimensional density compression on the order of several per cent, implying a hysteretic jump from superlubric free islands to a pressurized commensurate immobile monolayer. This scenario is fully supported by the quartz crystal microbalance data, which show remarkably large slip times with increasing submonolayer coverage, signalling superlubricity, followed by a dramatic drop to zero for the dense commensurate monolayer. Careful analysis of this variety of island sliding phenomena will be essential in future applications of friction at crystal/adsorbate interfaces.

  7. Frictional transition from superlubric islands to pinned monolayers.

    PubMed

    Pierno, Matteo; Bruschi, Lorenzo; Mistura, Giampaolo; Paolicelli, Guido; di Bona, Alessandro; Valeri, Sergio; Guerra, Roberto; Vanossi, Andrea; Tosatti, Erio

    2015-08-01

    The inertial sliding of physisorbed submonolayer islands on crystal surfaces contains unexpected information on the exceptionally smooth sliding state associated with incommensurate superlubricity and on the mechanisms of its disappearance. Here, in a joint quartz crystal microbalance and molecular dynamics simulation case study of Xe on Cu(111), we show how superlubricity emerges in the large size limit of naturally incommensurate Xe islands. As coverage approaches a full monolayer, theory also predicts an abrupt adhesion-driven two-dimensional density compression on the order of several per cent, implying a hysteretic jump from superlubric free islands to a pressurized commensurate immobile monolayer. This scenario is fully supported by the quartz crystal microbalance data, which show remarkably large slip times with increasing submonolayer coverage, signalling superlubricity, followed by a dramatic drop to zero for the dense commensurate monolayer. Careful analysis of this variety of island sliding phenomena will be essential in future applications of friction at crystal/adsorbate interfaces.

  8. 7 CFR 1400.7 - Commensurate contributions and risk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Commensurate contributions and risk. 1400.7 Section 1400.7 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT... contributions and risk. (a) In order to be considered eligible to receive payments under the programs...

  9. Low-Temperature Heat Capacity of 4 He Films on Graphite

    NASA Astrophysics Data System (ADS)

    Morishita, Masashi

    2017-02-01

    Heat capacities of 4 He films have been measured at rather low temperatures between 2 and 80 mK and at areal densities between 2 and 24 nm^{-2} . These areal densities correspond to a monolayer fluid and third-layer fluid. For monolayer films, the results do not contradict previous measurements carried out at high temperatures. On the other hand, at some areal densities, small and broad but definite bumps, whose origin has not yet been understood, have been observed around 15 mK. Between 13 and 24 nm^{-2} , the measured heat capacities above 40 mK are proportional to T2 and hardly change with areal density. These behaviors suggest that the second atomic layer does not solidify before the third-layer promotion, at least not into a commensurate solid, such as the so-called 4/7 phase.

  10. Structural Order in Ultrathin Films of the Monolayer Protected Clusters Based Upon 4-nm Gold Nanocrystals: An Experimental and Theoretical Study

    PubMed Central

    Bhattarai, Nabraj; Khanal, Subarna; Bahena, Daniel; Olmos-Asar, Jimena A.; Ponce, Arturo; Whetten, Robert L.; Mariscal, Marcelo M.; Jose-Yacaman, Miguel

    2014-01-01

    The structural order in ultrathin films of monolayer protected clusters (MPCs) is important in a number of application areas but can be difficult to demonstrate by conventional methods, particularly when the metallic core dimension, d, is in the intermediate size-range, 1.5 < d < 5.0 nm. Here, improved techniques for the synthesis of monodisperse thiolate-protected gold nanoparticles have made possible the production of dodecane-thiolate saturated ~ 4 ± 0.5 nm Au clusters with single-crystal core structure and morphology. An ultrathin ordered film or superlattice of these nanocrystal-core MPCs is prepared and investigated using aberration corrected scanning/transmission electron microscopy (STEM) which allowed imaging of long-range hexagonally ordered superlattices of the nanocrystals, separated by the thiolate groups. The lattice constants determined by direct imaging are in good agreement with those determined by small-angle electron diffraction. The STEM image revealed the characteristic grain boundary (GB) with sigma (Σ) 13 in the interface between two crystals. The formation and structures found are interpreted on the basis of theoretical calculations employing molecular dynamics (MD) simulations and coarse-grained (CG) approach. PMID:24875295

  11. Nodeless pairing in superconducting copper-oxide monolayer films on Bi2Sr2CaCu2O8+δ

    DOE PAGES

    Zhong, Yong; Wang, Yang; Han, Sha; ...

    2016-07-12

    We report that the pairing mechanism of high-temperature superconductivity in cuprates remains the biggest unresolved mystery in condensed matter physics. To solve the problem, one of the most effective approaches is to investigate directly the superconducting CuO2 layers. Here, by growing CuO2 monolayer films on Bi2Sr2CaCu2O8+δ substrates, we identify two distinct and spatially separated energy gaps centered at the Fermi energy, a smaller U-like gap and a larger V-like gap on the films, and study their interactions with alien atoms by low-temperature scanning tunneling microscopy. The newly discovered U-like gap exhibits strong phase coherence and is immune to scattering bymore » K, Cs and Ag atoms, suggesting its nature as a nodeless superconducting gap in the CuO2 layers, whereas the V-like gap agrees with the well-known pseudogap state in the underdoped regime. In conclusion, our results support an s-wave superconductivity in Bi2Sr2CaCu2O8+δ, which, we propose, originates from the modulation-doping resultant two-dimensional hole liquid confined in the CuO2 layers.« less

  12. Van der Waals materials for the passivation of monolayer closed-packed films of CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Dennis Zi-Ren; Zhang, Datong; Creswell, Richard; Lu, Chenguang; Hu, Jiayang; Herman, Irving P.

    2015-03-01

    Van der Waals (vdW) materials are shown to protect CdSe quantum dots (QDs) from oxidization. Few-layer vdW materials, e.g. graphene and MoS2, were transferred onto a monolayer closed-packed CdSe quantum dots and were examined by photoluminescence (PL) after different time periods. By comparing the PL of CdSe QDs in uncovered areas and those covered by different numbers of layers of graphene and MoS2, we saw that vdW encapsulation slows down the aging of CdSe QDs dramatically. PL mapping results clearly showed better protection of the CdSe QDs under the central part of the vdW material compared to that at the edge; this can be explained by the diffusion of oxygen and water vapor from the edge of the vdW materials.

  13. Transverse commensurability effect for vortices on periodic pinning arrays

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J

    2008-01-01

    Using computer simulations, we demonstrate a type of commensurability that occurs for vortices moving longitudinally through periodic pinning arrays in the presence of an additional transverse driving force. As a function of vortex density, there is a series of broad maxima in the transverse critical depinning force that do not fall at the matching fields where the number of vortices equals an integer multiple of the number of pinning sites. The commensurability effects are associated with dynamical states in which evenly spaced structures consisting of one or more moving rows of vortices form between rows of pinning sites. Remarkably, the critical transverse depinning force can be more than an order of magnitude larger than the longitudinal depinning force.

  14. Phase transitions of monolayers on graphene

    NASA Astrophysics Data System (ADS)

    Kahn, Joshua; Dzyubenko, Boris; Vilches, Oscar; Cobden, David

    We have studied physisorbed layers of monatomic and diatomic gases on graphene. We used devices in which few-layer graphene, ranging from monolayer to trilayer, is suspended across a trench between two platinum contacts and are cleaned by thermal and current annealing. We found that the density of adsorbates is revealed by the conductance, similar to the case with nanotubes. The conductance change for a monolayer can be large. On trilayer graphene the adsorbed gases can be seen to exhibit transitions between two-dimensional phases identical to those on bulk graphite, including incommensurate and commensurate solid, fluid and vapor and multiple layers. New features appear in the conductance at the boundaries of the commensurate phase of Kr. We are able to measure single-particle binding energies very accurately and see how it depends on thickness; investigate the effects of changing disorder by gradually current annealing; and search for new phases in the case of monolayer graphene where atoms adsorbed on both sides can interact. We can map out the 2d phase diagrams very quickly by ohmic heating, which gives nearly instantaneous control of the temperature.

  15. Perforated monolayers

    SciTech Connect

    Regen, S.L.

    1992-01-01

    Our research over this past grant period has focused on (1) developing methods for making in situ permeation measurements at the air-water interface, (2) defining the structural and conformational behavior of selected calix(4)arenes, (3) defining the metal complexation properties of certain upper-rim functionalized calix(4)arenes, and (4) synthesizing a broad series of polymerizable calixarenes, to be used for constructing perforated monolayers and multilayers.

  16. Phase transitions in two-dimensional monolayer films on the (110) face-centered-cubic crystal surface

    NASA Astrophysics Data System (ADS)

    Patrykiejew, A.; Sokołowski, S.; Zientarski, T.; Binder, K.

    1998-03-01

    The results of Monte Carlo simulation of two-dimensional films formed on the (110) face of a face-centered-cubic crystal are presented. Systems with different corrugation of the gas-solid potential and different size of adsorbed atoms are discussed. It is demonstrated that even small changes in the gas-solid potential corrugation considerably affect the inner structure of the low-temperature ordered phases and the location of the order-disorder phase transition.

  17. Interface effects and deposition process of ionically self-assembled monolayer films: In situ and ex situ second harmonic generation measurements

    NASA Astrophysics Data System (ADS)

    Brands, Charles

    2003-07-01

    In this thesis, detailed studies are presented into self-assembled, noncentrosymmetric, optically active films. Second harmonic generation (SHG) is used to measure the second order nonlinear optical susceptibility (chi(2)) of ionically self-assembled monolayer (ISAM) thin films. Conventional ISAM films are fabricated by alternately immersing a substrate into oppositely-charged polyelectrolyte solutions. The polyelectrolytes bind electrostatically to the oppositely-charged substrate, and thus reverse the charge of the substrate. The charge reversal limits the amount of adsorbed material and primes the substrate for the next layer. During the deposition of the nonlinear optical (NLO) active layer, the chromophores are attracted to the oppositely-charged surface, which results in net orientation of the chromophores. Some of the net orientation is lost during the deposition of the next NLO-inactive layer as this layer orients some of the chromophores away from the substrate. A disadvantage of the polymer ISAM deposition method is that although there is a net orientation toward the substrate, a large number of chromophores are randomly or oppositely oriented. This reduces the nonlinear optical response. To overcome this problem, two alternative methods with a better net orientation are discussed: hybrid covalent/ionic deposition and multivalent monomer deposition. In both deposition methods, the NLO-active material is a monomer instead of a polymer. In hybrid covalent/ionic deposition, the NLO-inactive polymer is deposited using electrostatic attraction while the NLO-active monomer is deposited covalently. This forces alignment of the chromophores. The multivalent method uses chromophores with multiple charges on one side of the molecule and one charge (same sign) on the other. The difference in electrostatic attraction causes a preferential orientation of the chromophores during deposition. Attempts have been made to further improve the net orientation by complexation

  18. On the relationship between the structure of self-assembled carboxylic acid monolayers on alumina and the organization and electrical properties of a pentacene thin film

    NASA Astrophysics Data System (ADS)

    Lang, Philippe; Mottaghi, Daniel; Lacaze, Pierre-Camille

    2016-03-01

    The modification of insulating surfaces by self-assembled monolayers (SAMs) is an elegant way of tailoring the gate dielectric of organic field effect transistors (OFET) to pentacene and is commonly used to improve electrical performance. A SAM based on an alkylcarboxylic acid deposited on a thin layer of alumina, serving as the gate dielectric is considered. The relationship between carrier mobility and (i) the length of the carboxylic acid (CH3(CH2)nCOOH; n = 9, 14, 18), (ii) substrate preparation and (iii) the SAM and pentacene thin film structures is considered. The size and boundaries of pentacene grains are not limiting factors for carrier mobility, and the most relevant parameter, which depends on whether there is a SAM or not, is the organization of the first pentacene layers in contact with the gate dielectric. The variation of the interplanar distance d(0 0 1) of the pentacene layers close to the alumina surface is much greater without SAM than with, and this could explain the lower carrier mobility observed in the case of a bare alumina dielectric. The relationship between the disorder associated with this variation and mobility is discussed.

  19. Charge-Density Wave in Ca-Intercalated Bilayer Graphene Induced by Commensurate Lattice Matching

    NASA Astrophysics Data System (ADS)

    Shimizu, Ryota; Sugawara, Katsuaki; Kanetani, Kohei; Iwaya, Katsuya; Sato, Takafumi; Takahashi, Takashi; Hitosugi, Taro

    2015-04-01

    We report the emergence of a charge-density wave (CDW) in Ca-intercalated bilayer graphene (C6Ca C6 ), the thinnest limit of superconducting C6Ca , observed by low-temperature, high-magnetic-field scanning tunneling microscopy or spectroscopy, and angle-resolved photoemission spectroscopy. While the possible superconductivity was not observed in epitaxially grown C6Ca C6 on a SiC substrate, a CDW order different from that observed on the surface of bulk C6Ca was observed. It is inferred that the CDW state is induced by the potential modulation due to the commensurate lattice matching between the C6Ca C6 film and the SiC substrate.

  20. Measuring mental disorders: The failed commensuration project of DSM-5.

    PubMed

    Whooley, Owen

    2016-10-01

    Commensuration - the comparison of entities according to a common quantitative metric - is a key process in efforts to rationalize medicine. The push toward evidence-based medicine and quantitative assessment has led to the proliferation of metrics in healthcare. While social scientific attention has revealed the effects of these metrics once institutionalized - on clinical practice, on medical expertise, on outcome assessment, on valuations of medical services, and on experiences of illness - less attention has been paid to the process of developing metrics. This article examines the attempt to create severity scales during the revision to the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) as a case of failed commensuration. Using data from interviews with participants in the DSM-5 revision (n = 30), I reconstruct the problems that emerged in the DSM-5 Task Force's effort to develop viable psychometric instruments to measure severity. Framed as a part of a "paradigm shift" in psychiatry, the revision produced ad hoc, heterogeneous severity scales with divergent logics. I focus on two significant issues of metric construction in this case - diagnostic validity and clinical utility. Typically perceived as technical and conceptual challenges of design, I show how these issues were infused with, and undermined by, professional political dynamics, specifically tensions between medical researchers and clinicians. This case reveals that, despite its association with objectivity and transparency, commensuration encompasses more than identifying, operationalizing, and measuring an entity; it demands the negotiation of extra-scientific, non-empirical concerns that get written into medical metrics themselves.

  1. Hierarchy of fillings for the FQHE in monolayer graphene

    PubMed Central

    Łydżba, Patrycja; Jacak, Lucjan; Jacak, Janusz

    2015-01-01

    In this paper, the commensurability conditions, which originated from the unique topology of two-dimensional systems, are applied to determine the quantum Hall effect hierarchy in the case of a monolayer graphene. The fundamental difference in a definition of a typical semiconductor and a monolayer graphene filling factor is pointed out. The calculations are undertaken for all spin-valley branches of two lowest Landau levels, since only they are currently experimentally accessible. The obtained filling factors are compared with the experimental data and a very good agreement is achieved. The work also introduces a concept of the single-loop fractional quantum Hall effect. PMID:26392385

  2. The breakdown of superlubricity by driving-induced commensurate dislocations

    NASA Astrophysics Data System (ADS)

    Benassi, A.; Ma, Ming; Urbakh, M.; Vanossi, A.

    2015-11-01

    In the framework of a Frenkel-Kontorova-like model, we address the robustness of the superlubricity phenomenon in an edge-driven system at large scales, highlighting the dynamical mechanisms leading to its failure due to the slider elasticity. The results of the numerical simulations perfectly match the length critical size derived from a parameter-free analytical model. By considering different driving and commensurability interface configurations, we explore the distinctive nature of the transition from superlubric to high-friction sliding states which occurs above the critical size, discovering the occurrence of previously undetected multiple dissipative jumps in the friction force as a function of the slider length. These driving-induced commensurate dislocations in the slider are then characterized in relation to their spatial localization and width, depending on the system parameters. Setting the ground to scale superlubricity up, this investigation provides a novel perspective on friction and nanomanipulation experiments and can serve as a theoretical basis for designing high-tech devices with specific superlow frictional features.

  3. Commensurability oscillations in a two-dimensional lateral superlattice

    NASA Astrophysics Data System (ADS)

    Davies, John; Long, Andrew; Grant, David; Chowdhury, Suja

    2000-03-01

    We have calculated and measured conduction in a two-dimensional electron gas subject to a weak two-dimensional periodic potential and a normal magnetic field. Simulations with a potential Vx \\cos(2π x/a) + Vy \\cos(2π y/a) show the usual commensurability oscillations in ρ_xx(B) with Vx alone. The introduction of Vy suppresses these oscillations, rather than introducing the additional oscillations in ρ_yy(B) expected from previous perturbation theories. We explain this in terms of drift of the guiding center of cyclotron motion along contours of an effective potential: open orbits of the guiding center contribute to conduction but closed orbits do not. All orbits are closed in a symmetric superlattice with |V_x| = |V_y| and commensurability oscillations are therefore quenched. Experiments on etched superlattices confirm this picture. Conventional lattice-matched samples give a symmetric potential and weak oscillations; the symmetry is broken by the piezoelectric effect in stressed samples, leading to strong oscillations. Periodic modulation of the magnetic field can be treated in the same way, which explains previous experimental results.

  4. The breakdown of superlubricity by driving-induced commensurate dislocations.

    PubMed

    Benassi, A; Ma, Ming; Urbakh, M; Vanossi, A

    2015-11-10

    In the framework of a Frenkel-Kontorova-like model, we address the robustness of the superlubricity phenomenon in an edge-driven system at large scales, highlighting the dynamical mechanisms leading to its failure due to the slider elasticity. The results of the numerical simulations perfectly match the length critical size derived from a parameter-free analytical model. By considering different driving and commensurability interface configurations, we explore the distinctive nature of the transition from superlubric to high-friction sliding states which occurs above the critical size, discovering the occurrence of previously undetected multiple dissipative jumps in the friction force as a function of the slider length. These driving-induced commensurate dislocations in the slider are then characterized in relation to their spatial localization and width, depending on the system parameters. Setting the ground to scale superlubricity up, this investigation provides a novel perspective on friction and nanomanipulation experiments and can serve as a theoretical basis for designing high-tech devices with specific superlow frictional features.

  5. The breakdown of superlubricity by driving-induced commensurate dislocations

    PubMed Central

    Benassi, A.; Ma, Ming; Urbakh, M.; Vanossi, A.

    2015-01-01

    In the framework of a Frenkel-Kontorova-like model, we address the robustness of the superlubricity phenomenon in an edge-driven system at large scales, highlighting the dynamical mechanisms leading to its failure due to the slider elasticity. The results of the numerical simulations perfectly match the length critical size derived from a parameter-free analytical model. By considering different driving and commensurability interface configurations, we explore the distinctive nature of the transition from superlubric to high-friction sliding states which occurs above the critical size, discovering the occurrence of previously undetected multiple dissipative jumps in the friction force as a function of the slider length. These driving-induced commensurate dislocations in the slider are then characterized in relation to their spatial localization and width, depending on the system parameters. Setting the ground to scale superlubricity up, this investigation provides a novel perspective on friction and nanomanipulation experiments and can serve as a theoretical basis for designing high-tech devices with specific superlow frictional features. PMID:26553308

  6. The registry index: a quantitative measure of materials' interfacial commensurability.

    PubMed

    Hod, Oded

    2013-08-05

    Nanoscale tribology is an active and rapidly developing area of research that poses fundamental scientific questions that, if answered, may offer great technological potential in the fields of friction, wear, and lubrication. When considering nanoscale material's junctions, surface commensurability often plays a crucial rule in dictating the tribological properties of the interface. This Review surveys recent theoretical work in this area, with the aim of providing a quantitative measure of the crystal lattice commensurability at interfaces between rigid materials and relating it to the tribological properties of the junction. By considering a variety of hexagonal layered materials, including graphene, hexagonal boron nitride, and molybdenum disulfide, we show how a simple geometrical parameter, termed the "registry index" (RI), can capture the interlayer sliding energy landscape as calculated using advanced electronic structure methods. The predictive power of this method is further demonstrated by showing how the RI is able to fully reproduce the experimentally measured frictional behavior of a graphene nanoflake sliding over a graphite surface. It is shown that generalizations towards heterogeneous junctions and non-planar structures (e.g., nanotubes) provide a route for designing nanoscale systems with unique tribological properties, such as robust superlubricity. Future extension of this method towards nonparallel interfaces, bulk-material junctions, molecular surface diffusion barriers, and dynamic simulations are discussed.

  7. Perforated monolayers

    SciTech Connect

    Regen, S.L.

    1992-12-01

    Goal of this research program is to create ultrathin organic membranes that possess uniform and adjustable pores ( < 7[angstrom] diameter). Such membranes are expected to possess high permeation selectivity (permselectivity) and high permeability, and to provide the basis for energy-efficient methods of molecular separation. Work carried out has demonstrated feasibility of using perforated monolayer''-based composites as molecular sieve membranes. Specifically, composite membranes derived from Langmuir-Blodgett multilayers of the calix[6]arene-based surfactant shown below plus poly[l-(trimethylsilyl)-l-propyne] (PTMSP) were found to exhibit sieving behavior towards He, N[sub 2] and SF[sub 6]. Results of derivative studies that have also been completed are also described in this report.

  8. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene: both in stacking and sliding assembly pathways

    NASA Astrophysics Data System (ADS)

    Lv, Wenping; Wu, Ren'an

    2013-03-01

    A computational investigation was carried out to understand the aggregation of nanoscale graphene with two typical pathways of stacking assembly and sliding assembly in water. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene in both stacking and sliding assembly pathways was reported for the first time. By means of potential mean forces (PMFs) calculation, no energy barrier was observed during the sliding assembly of two graphene nanosheets, while the PMF profiles could be impacted by the contact forms of nanographene and the MWF within the interplate of two graphene nanosheets. To explore the potential physical basis of the ``hindering role'' of self-organized interfacial water, the dynamical and structural properties as well as the status of hydrogen bonds (H-bonds) for interfacial water were investigated. We found that the compact, ordered structure and abundant H-bonds of the MWF could be taken as the fundamental aspects of the ``hindering role'' of interfacial water for the hydrophobic assembly of nanographene. These findings are displaying a potential to further understand the hydrophobic assembly which mostly dominate the behaviors of nanomaterials, proteins etc. in aqueous solutions.A computational investigation was carried out to understand the aggregation of nanoscale graphene with two typical pathways of stacking assembly and sliding assembly in water. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene in both stacking and sliding assembly pathways was reported for the first time. By means of potential mean forces (PMFs) calculation, no energy barrier was observed during the sliding assembly of two graphene nanosheets, while the PMF profiles could be impacted by the contact forms of nanographene and the MWF within the interplate of two graphene nanosheets. To explore the potential physical basis of the ``hindering role'' of self-organized interfacial

  9. Experimental tests of interference commensurate effect in TMTSF conductors

    NASA Astrophysics Data System (ADS)

    Ha, Heon-Ick; Naughton, M. J.

    2004-03-01

    It has recently been suggested via analytical theory [1] and experiment that the origin of certain "LN"-type [2] angular magnetoresistance oscillations in (TMTSF)_2PF6 is related to interference effects due to commensurate electron trajectories in a tilted magnetic field. Here we show similar effects via calculation and experiment on (TMTSF)_2ClO4 that relate to the physical meaning of the oscillations and demonstrate unique behavior in magnetic field, where the magnetoresistance obeys different power laws at different angles. These results address the physical nature of the LN oscillations with respect to an interference effect and projections of Lebed magic angles. [1] A.G. Lebed and M.J. Naughton, Phys. Rev. Lett. 91, 187003 (2003). [2] I.J. Lee and M.J. Naughton, Phys. Rev. Lett. 57, 7423 (1998).

  10. Interlayer commensurability and superlubricity in rigid layered materials

    NASA Astrophysics Data System (ADS)

    Hod, Oded

    2012-08-01

    Superlubricity is a frictionless tribological state sometimes occurring in nanoscale material junctions. It is often associated with incommensurate surface lattice structures appearing at the interface. Here, by using the recently introduced registry-index concept that quantifies the registry mismatch in layered materials and reproduces their interlayer sliding energy landscape, we prove the existence of a direct relation between interlayer commensurability and wearless friction in rigid layered materials. We show that our simple and intuitive model is able to capture, down to fine details, the experimentally measured frictional behavior of a hexagonal graphene flake sliding on top of the surface of graphite. We further predict that superlubricity is expected to occur in hexagonal boron nitride as well with tribological characteristics very similar to those observed for the graphitic system. The success of our method in predicting experimental results along with its high computational efficiency marks the registry index as a promising tool for studying tribological properties of nanoscale material interfaces.

  11. On chaos control and synchronization of the commensurate fractional order Liu system

    NASA Astrophysics Data System (ADS)

    Hegazi, A. S.; Ahmed, E.; Matouk, A. E.

    2013-05-01

    In this work, we study chaos control and synchronization of the commensurate fractional order Liu system. Based on the stability theory of fractional order systems, the conditions of local stability of nonlinear three-dimensional commensurate fractional order systems are discussed. The existence and uniqueness of solutions for a class of commensurate fractional order Liu systems are investigated. We also obtain the necessary condition for the existence of chaotic attractors in the commensurate fractional order Liu system. The effect of fractional order on chaos control of this system is revealed by showing that the commensurate fractional order Liu system is controllable just in the fractional order case when using a specific choice of controllers. Moreover, we achieve chaos synchronization between the commensurate fractional order Liu system and its integer order counterpart via function projective synchronization. Numerical simulations are used to verify the analytical results.

  12. Structure and phase transitions of monolayers of intermediate-length n-alkanes on graphite studied by neutron diffraction and molecular dynamics simulation.

    PubMed

    Diama, A; Matthies, B; Herwig, K W; Hansen, F Y; Criswell, L; Mo, H; Bai, M; Taub, H

    2009-08-28

    We present evidence from neutron diffraction measurements and molecular dynamics (MD) simulations of three different monolayer phases of the intermediate-length alkanes tetracosane (n-C(24)H(50) denoted as C24) and dotriacontane (n-C(32)H(66) denoted as C32) adsorbed on a graphite basal-plane surface. Our measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows of molecules in their all-trans conformation aligned with their long axis parallel to the surface and forming so-called lamellas of width approximately equal to the all-trans length of the molecule. The RC structure is uniaxially commensurate with the graphite surface in its [110] direction such that the distance between molecular rows in a lamella is 4.26 A=sqrt[3a(g)], where a(g)=2.46 A is the lattice constant of the graphite basal plane. Molecules in adjacent rows of a lamella alternate in orientation between the carbon skeletal plane being parallel and perpendicular to the graphite surface. Upon heating, the crystalline monolayers transform to a "smectic" phase in which the inter-row spacing within a lamella expands by approximately 10% and the molecules are predominantly oriented with the carbon skeletal plane parallel to the graphite surface. In the smectic phase, the MD simulations show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously.

  13. Electrochemical Deposition Of Thiolate Monolayers On Metals

    NASA Technical Reports Server (NTRS)

    Porter, Marc D.; Weissharr, Duane E.

    1995-01-01

    Electrochemical method devised for coating metal (usually, gold) surfaces with adherent thiolate monolayers. Affords greater control over location and amount of material deposited and makes it easier to control chemical composition of deposits. One important potential use for this method lies in fabrication of chemically selective thin-film resonators for microwave oscillators used to detect pollutants: monolayer formulated to bind selectively pollutant chemical species of interest, causing increase in mass of monolayer and corresponding decrease in frequency of resonance. Another important potential use lies in selective chemical derivatization for purposes of improving adhesion, lubrication, protection against corrosion, electrocatalysis, and electroanalysis.

  14. Molecular orientation of copper phthalocyanine thin films on different monolayers of fullerene on SiO{sub 2} or highly oriented pyrolytic graphite

    SciTech Connect

    Wang, Chenggong; Wang, Congcong; Liu, Xiaoliang; Xu, Xumei; Li, Youzhen; Xie, Fangyan; Gao, Yongli

    2015-03-23

    The interface electronic structures of copper phthalocyanine (CuPc) have been studied using ultraviolet photoemission spectroscopy as different monolayers of C{sub 60} were inserted between CuPc and a SiO{sub 2} or highly ordered pyrolytic graphite (HOPG) substrate. The results show that CuPc has standing up configuration with one monolayer of C{sub 60} insertion on SiO{sub 2} while lying down on HOPG, indicating that the insertion layer propagates the CuPc-substrate interaction. Meanwhile, CuPc on more than one monolayers of C{sub 60} on different substrates show that the substrate orientation effect quickly vanished. Our study elucidates intriguing molecular interactions that manipulate molecular orientation and donor-acceptor energy level alignment.

  15. Application of disorganized monolayer films on gold electrodes to the prevention of surfactant inhibition of the voltammetric detection of trace metals via anodic stripping of underpotential deposits: detection of copper.

    PubMed

    Herzog, Grégoire; Arrigan, Damien W M

    2003-01-15

    Development of an approach to prevention of electrode surface fouling by surfactants in samples is demonstrated. Spontaneously adsorbed monolayer systems employing short alkyl chains and bulky end groups are used to form porous disorganized monolayers on gold electrodes. Detection of copper by stripping of underpotential deposits formed at electrodes modified with disorganized films of mercaptoethanesulfonate (MES), mercaptopropanesulfonate, mercaptoacetic acid, and mercaptopropanoic acid was possible, and to a much lesser extent at aminoethanethiol and L-cysteine films. Use of short deposition times in conjunction with linear sweep anodic stripping voltammetry allowed detection of Cu2+ ions down to 1 x 10(-6) M in sulfuric acid solution, using underpotential deposition as the deposition step of the procedure. Calibration graphs were linear in the concentration range (1-80) x 10(-6) M Cu2+ using 15-s deposition at 0.00 V versus Ag/AgCl. The surfactants Tween 20, Tween 80, and Triton X-100 were found to have no affect on detection of Cu2+ ions in the calibration curve concentration range using MES-modified gold electrodes, whereas at unmodified gold electrodes very severe attenuation of the detection capability was manifested. The average slope for all calibration curves at the MES-modified electrode in the absence and presence of the surfactants at two different concentration levels was 0.0710 +/- 0.0024 microA microM(-1); in contrast, the slope of the calibration line at uncoated gold electrodes in the presence of surfactant was 0.0268 microA microM(-1). These results indicate the excellent ability of a disorganized, porous monolayer for prevention of fouling of the electrode surface by the surfactants.

  16. Molecular self-assembly guided by surface reconstruction: CH 3SH monolayer on the Au(1 1 1) surface

    NASA Astrophysics Data System (ADS)

    Maksymovych, Peter; Dougherty, Daniel B.

    2008-06-01

    Self-assembly of methanethiol (CH 3SH) on Au(1 1 1) was studied using scanning tunneling microscopy at T < 150 K when the S-H bond is intact. The CH 3SH monolayer assumes a commensurate structure with a

  17. SYNCHROTRON X - RAY OBSERVATIONS OF A MONOLAYER TEMPLATE FOR MINERALIZATION.

    SciTech Connect

    DIMASI,E.; GOWER,L.B.

    2000-11-27

    Mineral nucleation at a Langmuir film interface has been studied by synchrotron x-ray scattering. Diluted calcium bicarbonate solutions were used as subphases for arachidic and stearic acid monolayers, compressed in a Langmuir trough. Self-assembly of the monolayer template is observed directly, and subsequent crystal growth monitored in-situ.

  18. Nanoparticle interaction with model lung surfactant monolayers

    PubMed Central

    Harishchandra, Rakesh Kumar; Saleem, Mohammed; Galla, Hans-Joachim

    2010-01-01

    One of the most important functions of the lung surfactant monolayer is to form the first line of defence against inhaled aerosols such as nanoparticles (NPs), which remains largely unexplored. We report here, for the first time, the interaction of polyorganosiloxane NPs (AmorSil20: 22 nm in diameter) with lipid monolayers characteristic of alveolar surfactant. To enable a better understanding, the current knowledge about an established model surface film that mimics the surface properties of the lung is reviewed and major results originating from our group are summarized. The pure lipid components dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol have been used to study the biophysical behaviour of their monolayer films spread at the air–water interface in the presence of NPs. Film balance measurements combined with video-enhanced fluorescence microscopy have been used to investigate the formation of domain structures and the changes in the surface pattern induced by NPs. We are able to show that NPs are incorporated into lipid monolayers with a clear preference for defect structures at the fluid–crystalline interface leading to a considerable monolayer expansion and fluidization. NPs remain at the air–water interface probably by coating themselves with lipids in a self-assembly process, thereby exhibiting hydrophobic surface properties. We also show that the domain structure in lipid layers containing surfactant protein C, which is potentially responsible for the proper functioning of surfactant material, is considerably affected by NPs. PMID:19846443

  19. Growth of rare-earth monolayers on synthetic fluorine mica

    NASA Astrophysics Data System (ADS)

    Tsui, F.; Han, P. D.; Flynn, C. P.

    1993-05-01

    We have grown single-crystal rare-earth films on cleaved faces of synthetic fluorine mica fluorophlogopite by molecular-beam-epitaxy techniques. This has made it possible to measure material properties such as magnetism in monolayer structures.

  20. Assembly of self-assembled monolayer-coated Al2O3 on TiO2 thin films for the fabrication of renewable superhydrophobic-superhydrophilic structures.

    PubMed

    Nishimoto, Shunsuke; Sekine, Hitomi; Zhang, Xintong; Liu, Zhaoyue; Nakata, Kazuya; Murakami, Taketoshi; Koide, Yoshihiro; Fujishima, Akira

    2009-07-07

    A renewable superhydrophobic-superhydrophilic pattern with a minimum dimension of 50 microm is prepared from octadecyltrimethoxysilane self-assembled monolayer-covered superhydrophobic Al2O3 overlayers on a superhydrophilic TiO2 surface via self-assembly and calcination of boehmite (AlOOH.nH2O) particles. The resulting Al2O3 layer plays dual roles as a superhydrophobic layer and as a UV-blocking layer for the underlying TiO2.

  1. A perturbative treatment of motion near the 3/1 commensurability

    NASA Technical Reports Server (NTRS)

    Wisdom, J.

    1985-01-01

    A semianalytic perturbation theory for motion near the 3/1 commensurability in the planar elliptic restricted three-body problem is presented. The predictions of the theory are in good agreement with the features found on numerically generated surfaces of section; a global understanding of the phase space is achieved. The principal cause of the large chaotic zone near the 3/1 commensurability is identified, and a new criterion for the existence of large-scale chaotic behavior is presented.

  2. Reorientation of a dipolar monolayer and dipolar solvent.

    PubMed

    Yi, Taeil; Lichter, Seth

    2014-06-01

    The reliable persistence of an adhered monolayer film on a substrate is critical for film function. The process by which monolayers degrade or disperse remains unclear. Our study investigates the properties and dynamics of a solute of dipolar molecules initially adhered as a monolayer on a substrate in a water-like Stockmayer solvent. We find that for a rigid solute, both the solute and solvent show qualitatively different dynamics than for a flexible solute and its solvent. For the rigid solute, spreading is hindered and solvent orientation is more pronounced. We formulate a simple kinetic model that shows qualitatively similar results to the molecular dynamics simulations of the time evolution of the monolayer. Simple kinetics of molecules on substrates is a starting point for understanding important industrial monolayer applications and complex interactions on membranes.

  3. Alternating chirality in the monolayer H2TPP on Cu(110)-(2 × 1)O.

    PubMed

    Wagner, Margareta; Puschnig, Peter; Berkebile, Stephen; Netzer, Falko P; Ramsey, Michael G

    2013-04-07

    In this work, the structure of the tetraphenylporphyrin (H2TPP) monolayer grown on the oxygen passivated Cu(110)-(2 × 1)O surface has been investigated with LT-STM and elucidated by DFT-calculations. The monolayer is commensurate with all molecules occupying the same adsorption site, but there are two molecules per unit cell. The STM images suggest alternating chirality for the molecules within one unit cell which is supported by DFT total energy calculations for monolayers on the Cu-O substrate. STM simulations for alternating and single chirality monolayers have subtle differences which indicate that the experimentally observed surface is one containing molecules with alternating chirality, that is racemicity within the unit cell.

  4. Stability and Electronic properties of Ultra-thin Metallic nanowires on MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Zhong, Xiaoliang; Gupta, Sanjeev K.; Ahluwalia, P. K.; Karna, Shashi P.; Pandey, Ravindra

    2014-03-01

    MoS2 has emerged as a promising 2D nanomaterial for several technological applications. It has recently been shown that the highly capacitive Au nanoparticles raised the effective gate voltage for the MoS2 based device by an order of magnitude (Nano Lett. 13, 4434-41, 2013). In this talk, we examine stability and electronic properties of commensurable ultra-thin noble-metal nanowires (Cu, Ag, Au, Pt) on MoS2 monolayer. Results based on density functional theory will be presented to determine the preferred configuration for nanowires on the monolayer together with the enhancement in the conductivity of the composite system considered.

  5. Optical emission and vibrational modes of uniform pentacene monolayers (*)

    NASA Astrophysics Data System (ADS)

    He, Rui; Tassi, Nancy; Blanchet, Graciela; Pinczuk, Aron

    2006-03-01

    Pentacene monolayers are probed by photoluminescence and resonant Raman spectroscopies below 10K. Monolayers grown on polymeric substrate of poly-alpha-methyl-styrene (PAMS) exhibit high uniformity within micron size clusters. These films show sharp exciton luminescence bands, and the energy of the exciton optical emission displays a red-shift as the average film thickness increases. The large resonance enhancements of Raman scattering intensities enable the measurements of low-lying (40- 200cm-1) optical lattice vibrations from these monolayers. These experiments demonstrate that luminescence and resonant Raman scattering from single pentacene monolayers are venues for probing 2D properties, studies of interface effects, and thin film characterization. (*) Supported primarily by the Nanoscale Science and Engineering Initiative of the National Science Foundation under NSF Award No. CHE-0117752 and by the New York State Office of Science, Technology, and Academic Research (NYSTAR), and by a research grant of the W. M. Keck Foundation.

  6. Monolayer Films Prepared by the Spontaneous Self-Assembly of Symmetrical and Unsymmetrical Dialkyl Sulfides from Solution Onto Gold Substrates: Structure, Properties, and Reactivity of Constituent Functional Groups.

    DTIC Science & Technology

    1987-10-01

    adsorption of dialkyl sulfides from alcohol solution onto supported evaporated gold films and examines relations between the molecular structure of the...derivatives. The particular hypothesis used as the basis for this work is summarized in Figure 1. Adsorption of an unsymmetrical dialkyl sulfide, CH3 (CH2...minutes to hours. The adsorption process, and the characteristics of the resulting films, were followed using a number of techniques, of which

  7. Nodeless pairing in superconducting copper-oxide monolayer films on Bi2Sr2CaCu2O8+δ

    SciTech Connect

    Zhong, Yong; Wang, Yang; Han, Sha; Lv, Yan-Feng; Wang, Wen-Lin; Zhang, Ding; Ding, Hao; Zhang, Yi-Min; Wang, Lili; He, Ke; Zhong, Ruidan; Schneeloch, John A.; Gu, Gen-Da; Song, Can-Li; Ma, Xu-Cun; Xue, Qi-Kun

    2016-07-12

    We report that the pairing mechanism of high-temperature superconductivity in cuprates remains the biggest unresolved mystery in condensed matter physics. To solve the problem, one of the most effective approaches is to investigate directly the superconducting CuO2 layers. Here, by growing CuO2 monolayer films on Bi2Sr2CaCu2O8+δ substrates, we identify two distinct and spatially separated energy gaps centered at the Fermi energy, a smaller U-like gap and a larger V-like gap on the films, and study their interactions with alien atoms by low-temperature scanning tunneling microscopy. The newly discovered U-like gap exhibits strong phase coherence and is immune to scattering by K, Cs and Ag atoms, suggesting its nature as a nodeless superconducting gap in the CuO2 layers, whereas the V-like gap agrees with the well-known pseudogap state in the underdoped regime. In conclusion, our results support an s-wave superconductivity in Bi2Sr2CaCu2O8+δ, which, we propose, originates from the modulation-doping resultant two-dimensional hole liquid confined in the CuO2 layers.

  8. Novel behavior of monolayer quantum gases on graphene, graphane and fluorographene.

    PubMed

    Reatto, Luciano; Galli, Davide E; Nava, Marco; Cole, Milton W

    2013-11-06

    This article discusses the behavior of submonolayer quantum films (He and H2) on graphene and newly discovered surfaces that are derived from graphene. Among these substrates are graphane (abbreviated GH), which has an H atom bonded to each C atom, and fluorographene (GF). The subject is introduced by describing the related problem of monolayer films on graphite. For that case, extensive experimental and theoretical investigations have revealed that the phase diagrams of the Bose gases (4)He and para-H2 are qualitatively similar, differing primarily in a higher characteristic temperature scale for H2 than for He. The phase behavior of these films on one side of pristine graphene, or both sides of free-standing graphene, is expected to be similar to that on graphite. We point out the possibility of novel phenomena in adsorption on graphene related to the large flexibility of the graphene sheet, to the non-negligible interaction between atoms adsorbed on opposite sides of the sheet and to the perturbation effect of the adsorbed layer on the Dirac electrons. In contrast, the behavior predicted on GF and GH surfaces is very different from that on graphite, a result of the different corrugation, i.e., the lateral variation of the potential experienced by these gases. This arises because on GF, for example, half of the F atoms are located above the C plane while the other half are below this plane. Hence, the He and H2 gases experience very different potentials from those on graphite or graphene. As a result of this novel geometry and potential, distinct properties are observed. For example, the (4)He film's ground state on graphite is a two-dimensional (2D) crystal commensurate with the substrate, the famous [Formula: see text] phase; on GF and GH, instead, it is predicted to be an anisotropic superfluid. On GF the anisotropy is so extreme that the roton excitations are very anisotropic, as if the bosons are moving in a multiconnected space along the bonds of a

  9. Epitaxial two dimensional aluminum films on silicon (111) by ultra-fast thermal deposition

    SciTech Connect

    Levine, Igal; Li Wenjie; Vilan, Ayelet; Yoffe, Alexander; Feldman, Yishay; Salomon, Adi

    2012-06-15

    Aluminum thin films are known for their extremely rough surface, which is detrimental for applications such as molecular electronics and photonics, where protrusions cause electrical shorts or strong scattering. We achieved atomically flat Al films using a highly non-equilibrium approach. Ultra-fast thermal deposition (UFTD), at rates >10 nm/s, yields RMS roughness of 0.4 to 0.8 nm for 30-50 nm thick Al films on variety of substrates. For UFTD on Si(111) substrates, the top surface follows closely the substrate topography (etch pits), indicating a 2D, layer-by-layer growth. The Al film is a mixture of (100) and (111) grains, where the latter are commensurate with the in-plane orientation of the underlying Si (epitaxy). We show the use of these ultra-smooth Al films for highly reproducible charge-transport measurements across a monolayer of alkyl phosphonic acid as well as for plasmonics applications by directly patterning them by focused ion beam to form a long-range ordered array of holes. UFTD is a one-step process, with no need for annealing, peeling, or primer layers. It is conceptually opposite to high quality deposition methods, such as MBE or ALD, which are slow and near-equilibrium processes. For Al, though, we find that limited diffusion length (and good wetting) is critical for achieving ultra-smooth thin films.

  10. Effect of intervalley interaction on band topology of commensurate graphene/EuO heterostructures

    NASA Astrophysics Data System (ADS)

    Su, Shanshan; Barlas, Yafis; Li, Junxue; Shi, Jing; Lake, Roger K.

    2017-02-01

    Recent experiments demonstrating proximity induced ferromagnetism in graphene motivate this study of commensurate graphene/EuO heterostructures. Due to the commensurability of graphene with the (111)-EuO layer, graphene's Dirac points are mapped to the Γ point of the commensurate Brillouin zone. The Eu atoms not only induce proximity exchange on the graphene layer, but they also introduce intervalley interactions resulting in a nonlinear dispersion at Γ . We develop a model Hamiltonian, consistent with the lattice symmetries, that includes proximity induced exchange splitting, spin-orbit coupling, and intervalley interactions with parameters fitted to ab initio calculations. The intervalley interaction opens up a trivial gap preventing the system from crossing into a nontrivial state. The model Hamiltonian is analyzed to determine the conditions under which the heterostructures can exhibit topologically nontrivial bands.

  11. Modern approaches to investigation of thin films and monolayers: X-ray reflectivity, grazing-incidence X-ray scattering and X-ray standing waves

    NASA Astrophysics Data System (ADS)

    Shcherbina, M. A.; Chvalun, S. N.; Ponomarenko, S. A.; Kovalchuk, M. V.

    2014-12-01

    The review concerns modern experimental methods of structure determination of thin films of different nature. The methods are based on total reflection of X-rays from the surface and include X-ray reflectivity, grazing-incidence X-ray scattering and X-ray standing waves. Their potential is exemplified by the investigations of various organic macromolecular systems that exhibit the properties of semiconductors and are thought to be promising as thin-film transistors, light-emitting diodes and photovoltaic cells. It is shown that combination of the title methods enable high-precision investigations of the structure of thin-film materials and structure formation in them, i.e., it is possible to obtain information necessary for improvement of the operating efficiency of elements of organic electronic devices. The bibliography includes 92 references.

  12. Optical modeling of the plasmon band of monolayer-protected nanometal clusters in pure and in polymer matrix thin films as a function of heat treatment

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Sankaran; Anto, Bibin T.; Ho, Peter K.-H.

    2009-03-01

    The plasmon band shape of thin films of gold nanoparticles and their composites can be quantitatively modeled in a surprisingly simple way by taking into account (i) quantum-size effect of the Au core on its permittivity, (ii) nanostructure effect of the core shell and matrix on the effective medium, and (iii) optical properties of thin films in a transfer-matrix formalism. From the excellent agreement achieved with the optical spectra of these films, neat and when dispersed in poly(3,4-ethylenedioxythiophene) matrices, details of the nanocrystal relaxation, desorption of the ligand shell, and ultimate surface melting and core-core coalescence to give percolating conductive paths during heat treatment were extracted.

  13. Dynamic in-plane potential gradients for actively controlling electrochemical reactions: Part I. Characterization of 1- and 2-component alkanethiol monolayer gradients on thin gold films. Part II. Applications of in-plane potential gradients

    NASA Astrophysics Data System (ADS)

    Balss, Karin Maria

    The research contained in this thesis is focused on the formation and characterization of surface composition gradients on thin gold films that are formed by applications of in-plane potential gradients. Injecting milliamp currents into thin Au films yields significant in-plane voltage drops so that, rather than assuming a single value of potential, an in-plane potential gradient is imposed on the film which depends on the resistivity of the film, the cross sectional area and the magnitude of the potential drop. Furthermore, the in-plane electric potential gradient means that, relative to a solution reference couple, electrochemical reactions occurs at defined spatial positions corresponding to the local potential, V(x) ˜ E0. The spatial gradient in electrochemical potential can then produce spatially dependent electrochemistry. Surface-chemical potential gradients can be prepared by arranging the spread of potentials to span an electrochemical wave mediating redox-associated adsorption or desorption. Examples of reactions that can be spatially patterned include the electrosorption of alkanethiols and over-potential metal deposition. The unique advantage of this method for patterning spatial compositions is the control of surface coverage in both space and time. The thesis is organized into two parts. In Part I, formation and characterization of 1- and 2-component alkanethiol monolayer gradients is investigated. Numerous surface science tools are employed to examine the distribution in coverage obtained by application of in-plane potential gradients. Macroscopic characterization was obtained by sessile water drop contact angle measurements and surface plasmon resonance imaging. Gradients were also imaged on micron length scales with pulsed-force mode atomic force microscopy. Direct chemical evidence of surface compositions in aromatic thiol surface coverage was obtained by surface-enhanced Raman spectroscopy. In Part II, the applications of in-plane potential

  14. On the characteristics of mixed Langmuir monolayer templates containing dipalmitoyl phosphatidylcholine for gold nanoparticle formation.

    PubMed

    Hsiao, Fang-Wei; Lee, Yuh-Lang; Chang, Chien-Hsiang

    2009-10-01

    Mixed Langmuir monolayers containing dipalmitoyl phosphatidylcholine (DPPC) were applied as two-dimensional templates to incorporate with gold precursor AuCl4- in the subphases. The organic monolayer templates were then transferred onto solid substrates to form ultra-thin films by the Langmuir-Blodgett (LB) deposition technique. With an UV irradiation approach, gold nanoparticles were thus fabricated in the LB films of monolayer templates. Characteristics of the monolayer templates were studied by the surface pressure-area isotherm measurements and Brewster angle microscopy (BAM) observation. The factors affecting the formation of gold nanoparticle structures in the LB films of organic monolayer templates were elucidated by the atomic force microscopy (AFM). The monolayer isotherms and BAM images suggested that by changing the gold precursor concentration in the subphase, one could control the adsorption behavior of the gold precursor onto the monolayer templates. It was found that the association of the gold precursor with a pure DPPC monolayer template resulted in an unstable Langmuir monolayer, which was inappropriate for the following LB deposition. With the presence of n-hexadecanol in a DPPC monolayer, the monolayer template stability and corresponding LB deposition quality could be tremendously improved. Moreover, the distribution of DPPC molecules in the monolayer templates was possible to be regulated by the addition of n-hexadecanol, and the association behavior of the gold precursor with the monolayer templates was thus controlled. The AFM analysis then indicated that the number and size of gold nanoparticles fabricated in the LB films of the mixed DPPC/n-hexadecanol monolayer templates by a photoreduction reaction could be manipulated by the mole fraction of n-hexadecanol and UV irradiation time.

  15. Metastability of a Supercompressed Fluid Monolayer

    PubMed Central

    Smith, Ethan C.; Crane, Jonathan M.; Laderas, Ted G.; Hall, Stephen B.

    2003-01-01

    Previous studies showed that monomolecular films of extracted calf surfactant collapse at the equilibrium spreading pressure during quasi-static compressions but become metastable at much higher surface pressures when compressed faster than a threshold rate. To determine the mechanism by which the films become metastable, we studied single-component films of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC). Initial experiments confirmed similar metastability of POPC if compressed above a threshold rate. Measurements at different surface pressures then showed that rates of collapse, although initially increasing above the equilibrium spreading pressure, reached a sharply defined maximum and then slowed considerably. When heated, rapidly compressed films recovered their ability to collapse with no discontinuous change in area, arguing that the metastability does not reflect transition of the POPC film to a new phase. These observations indicate that in several respects, the supercompression of POPC monolayers resembles the supercooling of three-dimensional liquids toward a glass transition. PMID:14581205

  16. Ionization of covalent immobilized poly(4-vinylphenol) monolayers measured by ellipsometry, QCM and SPR

    NASA Astrophysics Data System (ADS)

    Uppalapati, Suji; Kong, Na; Norberg, Oscar; Ramström, Olof; Yan, Mingdi

    2015-07-01

    Covalently immobilized poly(4-vinylphenol) (PVP) monolayer films were fabricated by spin coating PVP on perfluorophenyl azide (PFPA)-functionalized surfaces followed by UV irradiation. The pH-responsive behavior of these PVP ultrathin films was evaluated by ellipsometry, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). By monitoring the responses of these films to pH in situ, the ionization constant of the monolayer thin films was obtained. The apparent pKa value of these covalently immobilized PVP monolayers, 13.4 by SPR, was 3 units higher than that of the free polymer in aqueous solution.

  17. Persistent monolayer-scale chemical ordering in Si{sub 1−x}Ge{sub x} heteroepitaxial films during surface roughening and strain relaxation

    SciTech Connect

    Amatya, J. M.; Floro, J. A.

    2015-12-28

    Chemical ordering in semiconductor alloys could modify thermal and electronic transport, with potential benefits to thermoelectric properties. Here, metastable ordering that occurs during heteroepitaxial growth of Si{sub 1−x}Ge{sub x} thin film alloys on Si(001) and Ge(001) substrates is investigated. A parametric study was performed to study how strain, surface roughness, and growth parameters affect the order parameter during the alloy growth. The order parameter for the alloy films was carefully quantified using x-ray diffraction, taking into account an often-overlooked issue associated with the presence of multiple spatial variants associated with ordering along equivalent <111> directions. Optimal ordering was observed in the films having the smoothest surfaces. Extended strain relaxation is suggested to reduce the apparent order through creation of anti-phase boundaries. Ordering surprisingly persists even when the film surface extensively roughens to form (105) facets. Growth on deliberately miscut Si(001) surfaces does not affect the volume-averaged order parameter but does impact the relative volume fractions of the equivalent ordered variants in a manner consistent with geometrically necessary changes in step populations. These results provide somewhat self-contradictory implications for the role of step edges in controlling the ordering process, indicating that our understanding is still incomplete.

  18. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2013-10-29

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  19. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli [El Cerrito, CA; Fabbri, Jason D [San Francisco, CA; Melosh, Nicholas A [Menlo Park, CA; Hussain, Zahid [Orinda, CA; Shen, Zhi-Xun [Stanford, CA

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  20. Reduction of interfacial friction in commensurate graphene/h-BN heterostructures by surface functionalization.

    PubMed

    Guo, Yufeng; Qiu, Jiapeng; Guo, Wanlin

    2016-01-07

    The reduction of interfacial friction in commensurately stacked two-dimensional layered materials is important for their application in nanoelectromechanical systems. Our first-principles calculations on the sliding energy corrugation and friction at the interfaces of commensurate fluorinated-graphene/h-BN and oxidized-graphene/h-BN heterostructures show that the sliding energy barriers and shear strengths for these heterostructures are approximately decreased to 50% of those of commensurate graphene/h-BN. The adsorbed F and O atoms significantly suppress the interlayer electrostatic and van der Waals energy corrugations by modifying the geometry and charge redistribution of the graphene layers. Our empirical registry index models further reveal the difference between the roles of the F and O atoms in affecting the sliding energy landscapes, and are also utilized to predict the interlayer superlubricity in a large-scale oxidized-graphene/h-BN system. Surface functionalization is a valid way to control and reduce the interlayer friction in commensurate graphene/h-BN heterostructures.

  1. Reduction of interfacial friction in commensurate graphene/h-BN heterostructures by surface functionalization

    NASA Astrophysics Data System (ADS)

    Guo, Yufeng; Qiu, Jiapeng; Guo, Wanlin

    2015-12-01

    The reduction of interfacial friction in commensurately stacked two-dimensional layered materials is important for their application in nanoelectromechanical systems. Our first-principles calculations on the sliding energy corrugation and friction at the interfaces of commensurate fluorinated-graphene/h-BN and oxidized-graphene/h-BN heterostructures show that the sliding energy barriers and shear strengths for these heterostructures are approximately decreased to 50% of those of commensurate graphene/h-BN. The adsorbed F and O atoms significantly suppress the interlayer electrostatic and van der Waals energy corrugations by modifying the geometry and charge redistribution of the graphene layers. Our empirical registry index models further reveal the difference between the roles of the F and O atoms in affecting the sliding energy landscapes, and are also utilized to predict the interlayer superlubricity in a large-scale oxidized-graphene/h-BN system. Surface functionalization is a valid way to control and reduce the interlayer friction in commensurate graphene/h-BN heterostructures.

  2. Multifunctional self-assembled monolayers

    SciTech Connect

    Zawodzinski, T.; Bar, G.; Rubin, S.; Uribe, F.; Ferrais, J.

    1996-06-01

    This is the final report of at three year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The specific goals of this research project were threefold: to develop multifunctional self-assembled monolayers, to understand the role of monolayer structure on the functioning of such systems, and to apply this knowledge to the development of electrochemical enzyme sensors. An array of molecules that can be used to attach electrochemically active biomolecules to gold surfaces has been synthesized. Several members of a class of electroactive compounds have been characterized and the factors controlling surface modification are beginning to be characterized. Enzymes have been attached to self-assembled molecules arranged on the gold surface, a critical step toward the ultimate goal of this project. Several alternative enzyme attachment strategies to achieve robust enzyme- modified surfaces have been explored. Several means of juxtaposing enzymes and mediators, electroactive compounds through which the enzyme can exchange electrons with the electrode surface, have also been investigated. Finally, the development of sensitive biosensors based on films loaded with nanoscale-supported gold particles that have surface modified with the self-assembled enzyme and mediator have been explored.

  3. Fabrication of an a-IGZO thin film transistor using selective deposition of cobalt by the self-assembly monolayer (SAM) process.

    PubMed

    Cho, Young-Je; Kim, HyunHo; Park, Kyoung-Yun; Lee, Jaegab; Bobade, Santosh M; Wu, Fu-Chung; Choi, Duck-Kyun

    2011-01-01

    Interest in transparent oxide thin film transistors utilizing ZnO material has been on the rise for many years. Recently, however, IGZO has begun to draw more attention due to its higher stability and superior electric field mobility when compared to ZnO. In this work, we address an improved method for patterning an a-IGZO film using the SAM process, which employs a cost-efficient micro-contact printing method instead of the conventional lithography process. After a-IGZO film deposition on the surface of a SiO2-layered Si wafer, the wafer was illuminated with UV light; sources and drains were then patterned using n-octadecyltrichlorosilane (OTS) molecules by a printing method. Due to the low surface energy of OTS, cobalt was selectively deposited on the OTS-free a-IGZO surface. The selective deposition of cobalt electrodes was successful, as confirmed by an optical microscope. The a-IZGO TFT fabricated using the SAM process exhibited good transistor performance: electric field mobility (micro(FE)), threshold voltage (V(th)), subthreshold slope (SS) and on/off ratio were 2.1 cm2/Vs, 2.4 V, 0.35 V/dec and 2.9 x 10(6), respectively.

  4. Self-Assembled, Perforated Monolayers for Enhanced Permselectivity in Membranes

    DTIC Science & Technology

    2006-11-01

    Selective Membranes. In the 1930s, Irving Langmuir and Katherine Blodgett introduced a method for fabricating monolayer and multilayer arrays of... Langmuir -Blodgett (LB) films. Here, we show how ionic cross-linking of multiply-charged surfactants (a process that we have termed, “gluing”) can yield...LB films on the order of 6 nm thick having extraordinary barrier properties, high flux, and stability. 2. Langmuir -Blodgett Films as Permeation

  5. Study of the improvements in the electrical performance of solution-processed metal oxide thin-film transistors using self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Park, Jin-Woo; Kim, Hyungjoong; Kim, Dae Hwan; Lee, Mijung

    2014-10-01

    Thin-film transistors (TFTs) of a metal oxide semiconductor typically are transparent and have high mobility to be paid attention for back plane of displays. One of the most actively studied fabrication methods of metal oxide semiconductors is the solution processing (sol-gel) method, owing to its low-cost, simple and fast steps that ensure good product uniformity, and applicability to roll-to-roll processing. Our study focused on probing the electronic properties of solution-processed metal oxide TFTs. We have calculated the density of state (DOS) with monochromatic photonic capacitance-voltage (MPCV) measurements. Improvements in device are proved by electronic and photo-electronic methods.

  6. Commensurable Triangles

    ERIC Educational Resources Information Center

    Parris, Richard

    2007-01-01

    Everyone knows what makes a 3-4-5 triangle special, but how many know what makes a 4-5-6 triangle special? It is an integer-sided triangle in which one angle is twice another. It is enjoyable to search for these things, but for those who are impatient, this article derives explicit polynomial formulas that generate all of the basic examples of…

  7. Adsorption of Ions at Uncharged Insoluble Monolayers.

    PubMed

    Peshkova, Tatyana V; Minkov, Ivan L; Tsekov, Roumen; Slavchov, Radomir I

    2016-09-06

    A method is proposed for the experimental determination of the adsorption of inorganic electrolytes at a surface covered with insoluble surfactant monolayer. This task is complicated by the fact that the change of the salt concentration alters both chemical potentials of the electrolyte and the surfactant. Our method resolves the question by combining data for the surface pressure versus area of the monolayer at several salt concentrations with data for the equilibrium spreading pressure of crystals of the surfactant (used to fix a standard state). We applied the method to alcohols spread at the surface of concentrated halide solutions. The measured salt adsorption is positive and has nonmonotonic dependence on the area per surfactant molecule. For the liquid expanded film, depending on the concentration, there is one couple of ions adsorbed per each 3-30 surfactant molecules. We analyzed which ion, the positive or the negative, stands closer to the surface, by measuring the effect of NaCl on the Volta potential of the monolayer. The potentiometric data suggest that Na(+) is specifically adsorbed, while Cl(-) remains in the diffuse layer, i.e., the surface is positively charged. The observed reverse Hofmeister series of the adsorptions of NaF, NaCl, and NaBr suggests the same conclusion holds for all these salts. The force that causes the adsorption of Na(+) seems to be the interaction of the ion with the dipole moment of the monolayer.

  8. Hydrolytic kinetics of biodegradable polyester monolayers

    SciTech Connect

    Lee, W.K.; Gardella, J.A. Jr.

    2000-04-04

    The rate of hydrolysis of Langmuir monolayer films of a series of biodegradable polyesters was investigated at the air/water interface. The present study investigated parameters such as degradation medium, pH, and time. The hydrolysis of polyester monolayers strongly depended on both the degradation medium used to control subphase pH and the concentration of active ions. Under the conditions studied here, polymer monolayers showed faster hydrolysis when they were exposed to a basic subphase rather than that of acidic or neutral subphase. The basic (pH = 10) hydrolysis of [poly(l-lactide)/polycaprolactone](l-PLA/PCL 1/1 by mole) blend was faster than that of each homopolymer at the initial stage. This result is explained by increasing numbers of base attack sites per unit area owing to the very slow hydrolysis of PCL, a dilution effect on the concentration of l-PLA monolayers. Conversely the hydrolytic behavior of l-lactide-co-caprolactone (1/1 by mole) was similar to that of PCL even though the chemical compositions of the blend and the copolymer are very similar to each other. The resistance of the copolymer to hydrolysis might be attributed to the hydrophobicity and the steric hindrance of caprolactone unit in the copolymer.

  9. Adsorption of Ions at Uncharged Insoluble Monolayers

    NASA Astrophysics Data System (ADS)

    Peshkova, T. V.; Minkov, I. L.; Tsekov, R.; Slavchov, R. I.

    2016-08-01

    A method is proposed for the experimental determination of the adsorption of inorganic electrolytes at a surface covered with insoluble surfactant monolayer. This task is complicated by the fact that the change of the salt concentration alters both chemical potentials of the electrolyte and the surfactant. Our method resolves the question by combining data for the surface pressure versus area of the monolayer at several salt concentrations with data for the equilibrium spreading pressure of crystals of the surfactant (used to fix a standard state). We applied the method to alcohols spread at the surface of concentrated halide solutions. The measured salt adsorption is positive and has nonmonotonic dependence on the area per surfactant molecule. For the liquid expanded film, depending on the concentration, there is one couple of ions adsorbed per each 3–30 surfactant molecules. We analyzed which ion, the positive or the negative, stands closer to the surface, by measuring the effect of NaCl on the Volta potential of the monolayer. The potentiometric data suggest that Na+ is specifically adsorbed, while Cl– remains in the diffuse layer, i.e., the surface is positively charged. The observed reverse Hofmeister series of the adsorptions of NaF, NaCl, and NaBr suggests the same conclusion holds for all these salts. The force that causes the adsorption of Na+ seems to be the interaction of the ion with the dipole moment of the monolayer.

  10. On the orientational effects in monolayers of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Patrykiejew, A.; Sałamacha, A.; Sokołowski, S.; Zientarski, T.; Binder, K.

    2001-09-01

    The Monte Carlo simulation method is used to study orientational ordering in monolayer films of diatomic molecules on the (100) plane of face centered cubic crystal. Systems of admolecules with different elongation are studied and their orientational and positional ordering discussed. It is shown that in the case of small elongations the adsorbed monolayer orders into a simple (1×1) structure. When the elongation of adsorbed molecules increases, the film orders into more complex structures. In such cases, the adsorbate lattice decomposes into four interpenetrating sublattices.

  11. Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Wang, Zhan; Yao, Wang; Liu, Gui-Bin; Yu, Hongyi

    2017-03-01

    The interlayer couplings in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides are investigated with perturbative treatment. The interlayer coupling in ±K valleys can be decomposed into a series of hopping terms with distinct phase factors. In H-type and R-type commensurate bilayers, the interference between the three main hopping terms leads to a sensitive dependence of the interlayer coupling strength on the translation that can explain the position dependent local band gap modulation in a heterobilayer moiré superlattice. The interlayer couplings in the Γ valley of valence band and Q valley of conduction band are also studied, where the strong coupling strengths of several hundred meV can play important roles in mediating the ultrafast interlayer charge transfer in heterobilayers of transition-metal dichalcogenides.

  12. Commensurate-incommensurate transition and domain wall dynamics of adsorbed overlayers on a honeycomb substrate

    NASA Astrophysics Data System (ADS)

    Elder, K. R.; Achim, C. V.; Granato, E.; Ying, S. C.; Ala-Nissila, T.

    2016-12-01

    We introduce an effective one-mode phase-field crystal model for studying the commensurate-incommensurate transition and domain wall dynamics of the (\\sqrt{3}×\\sqrt{3})R30\\circ phase found in systems such as Xe/Pt(111), or Xe and Kr on graphite. The model allows us to study large systems where the domain walls can be separated over large macroscopic distances and at the same time incorporate the microscopic details of the domain wall structures. The resulting phase diagram shows that an intermediate stripe incommensurate phase always separates the commensurate phase from the honeycomb incommensurate phases. The energy of the domain wall crossing is investigated. We also find that near a step edge, the domain walls tend to align perpendicularly to the step edge, in agreement with recent experimental observations.

  13. Commensurate states on incommensurate lattices. [for superconducting arrays in magnetic fields

    NASA Technical Reports Server (NTRS)

    Grest, Gary S.; Chaikin, Paul M.; Levine, Dov

    1988-01-01

    A simple one-dimensional model related to flux quantization on superconducting networks or charged particles on a substrate is proposed to investigate whether commensurate states can exist on incommensurate lattices. For both periodic and quasi-crystalline patterns, a set of low-energy states is found which is related to decimation symmetry and periodicity. It is suggested that the present quasi-periodic arrays which possess a decimation operation can be generalized to more-dimensional quasi-crystalline systems.

  14. Commensurability effects in a Josephson tunnel junction in the field of an array of magnetic particles

    SciTech Connect

    Samokhvalov, A. V.

    2007-03-15

    Commensurability effects have been theoretically studied in a hybrid system consisting of a Josephson junction located in a nonuniform field induced by an array of magnetic particles. A periodic phase-difference distribution in the junction that is caused by the formation of a regular lattice of Abrikosov vortices generated by the magnetic field of the particles in superconducting electrodes is calculated. The dependence of the critical current through the junction I{sub c} on the applied magnetic field H is shown to differ strongly from the conventional Fraunhofer diffraction pattern because of the periodic modulation of the Josephson phase difference created by the vortices. More specifically, the I{sub c}(H) pattern contains additional resonance peaks, whose positions and heights depend on the parameters and magnetic state of the particles in the array. These specific features of the I{sub c}(H) dependence are observed when the period of the Josephson current modulation by the field of the magnetic particles and the characteristic scale of the change in the phase difference by the applied magnetic field are commensurable. The conditions that determine the positions of the commensurability peaks are obtained, and they are found to agree well with experimental results.

  15. The Formation and Stability of Alkylthiol Monolayers on Carbon Substrates

    PubMed Central

    Lockett, Matthew R.; Smith, Lloyd M.

    2010-01-01

    The formation and stability of alkylthiol monolayers on amorphous carbon thin films are investigated. Alkylthiol monolayers were prepared via a two-step, wet chemical process in which the carbon surface was first halogenated and then incubated with (4-(trifluoromethyl)phenyl)methanethiol (4tBM). The 4tBM covalently attaches to the surface in a substitution reaction in which the 4tBM thiol replaces the surface halogen. Studies of the substitution mechanism showed that monolayer formation is affected by the nature of the surface-bound halogen as well as the concentration and nucleophilicity of the 4tBM sulfur atom, consistent with a bimolecular (SN2) substitution reaction mechanism. The alkylthiol monolayers are stable over a wide range of solvent, pH, and temperature conditions. PMID:20706614

  16. Realization of continuous Zachariasen carbon monolayer.

    PubMed

    Joo, Won-Jae; Lee, Jae-Hyun; Jang, Yamujin; Kang, Seog-Gyun; Kwon, Young-Nam; Chung, Jaegwan; Lee, Sangyeob; Kim, Changhyun; Kim, Tae-Hoon; Yang, Cheol-Woong; Kim, Un Jeong; Choi, Byoung Lyong; Whang, Dongmok; Hwang, Sung-Woo

    2017-02-01

    Rapid progress in two-dimensional (2D) crystalline materials has recently enabled a range of device possibilities. These possibilities may be further expanded through the development of advanced 2D glass materials. Zachariasen carbon monolayer, a novel amorphous 2D carbon allotrope, was successfully synthesized on germanium surface. The one-atom-thick continuous amorphous layer, in which the in-plane carbon network was fully sp(2)-hybridized, was achieved at high temperatures (>900°C) and a controlled growth rate. We verified that the charge carriers within the Zachariasen carbon monolayer are strongly localized to display Anderson insulating behavior and a large negative magnetoresistance. This new 2D glass also exhibited a unique ability as an atom-thick interface layer, allowing the deposition of an atomically flat dielectric film. It can be adopted in conventional semiconductor and display processing or used in the fabrication of flexible devices consisting of thin inorganic layers.

  17. Visualizing Individual Nitrogen Dopants in Monolayer Graphene

    SciTech Connect

    L Zhao; R He; K Rim; T Schiros; K Kim; H Zhou; C Gutierrez; S Chockalingam; C Arguello; et al.

    2011-12-31

    In monolayer graphene, substitutional doping during growth can be used to alter its electronic properties. We used scanning tunneling microscopy, Raman spectroscopy, x-ray spectroscopy, and first principles calculations to characterize individual nitrogen dopants in monolayer graphene grown on a copper substrate. Individual nitrogen atoms were incorporated as graphitic dopants, and a fraction of the extra electron on each nitrogen atom was delocalized into the graphene lattice. The electronic structure of nitrogen-doped graphene was strongly modified only within a few lattice spacings of the site of the nitrogen dopant. These findings show that chemical doping is a promising route to achieving high-quality graphene films with a large carrier concentration.

  18. Realization of continuous Zachariasen carbon monolayer

    PubMed Central

    Joo, Won-Jae; Lee, Jae-Hyun; Jang, Yamujin; Kang, Seog-Gyun; Kwon, Young-Nam; Chung, Jaegwan; Lee, Sangyeob; Kim, Changhyun; Kim, Tae-Hoon; Yang, Cheol-Woong; Kim, Un Jeong; Choi, Byoung Lyong; Whang, Dongmok; Hwang, Sung-Woo

    2017-01-01

    Rapid progress in two-dimensional (2D) crystalline materials has recently enabled a range of device possibilities. These possibilities may be further expanded through the development of advanced 2D glass materials. Zachariasen carbon monolayer, a novel amorphous 2D carbon allotrope, was successfully synthesized on germanium surface. The one-atom-thick continuous amorphous layer, in which the in-plane carbon network was fully sp2-hybridized, was achieved at high temperatures (>900°C) and a controlled growth rate. We verified that the charge carriers within the Zachariasen carbon monolayer are strongly localized to display Anderson insulating behavior and a large negative magnetoresistance. This new 2D glass also exhibited a unique ability as an atom-thick interface layer, allowing the deposition of an atomically flat dielectric film. It can be adopted in conventional semiconductor and display processing or used in the fabrication of flexible devices consisting of thin inorganic layers. PMID:28246635

  19. Films.

    ERIC Educational Resources Information Center

    Philadelphia Board of Education, PA. Div. of Instructional Materials.

    The Affective Curriculum Research Project produced five films and two records during a series of experimental summer programs. The films and records form part of a curriculum designed to teach to the concerns of students. The films were an effort to describe the Philadelphia Cooperative Schools Program, to explain its importance, and to…

  20. Transition from superlubrically sliding islands to pinned monolayer, demonstrated in Xe/Cu(111)

    NASA Astrophysics Data System (ADS)

    Guerra, Roberto; Vanossi, Andrea; Tosatti, Erio; Trieste Nanofriction Team

    A molecular dynamics simulation case study of Xe on Cu(111) reveals unexpected information on the exceptionally smooth sliding state associated with incommensurate superlubricity which is argued to emerge in the large size limit of naturally incommensurate Xe islands. As coverage approaches a full monolayer, theory predicts an abrupt adhesion-driven two-dimensional density compression on the order of several per cent, implying a hysteretic jump from superlubric free islands to a pressurized sqrt()x sqrt()commensurate (and pinned, and therefore immobile) monolayer. These results match with recent quartz crystal microbalance data which show remarkably large slip times with increasing submonolayer coverage, signalling superlubricity, followed by a dramatic drop to zero for the dense commensurate monolayer. Careful analysis of this variety of island sliding phenomena should be essential in future applications of friction at crystal/adsorbate interfaces. Matching experimental work by M. Pierno, L. Bruschi, G. Mistura, G. Paolicelli, A. di Bona, S. Valeri. Supported by ERC Advanced Grant N. 320796 - MODPHYSFRICT.

  1. Patterning Self-Assembled Monolayers on Gold: Green Materials Chemistry in the Teaching Laboratory

    ERIC Educational Resources Information Center

    McFarland, Adam D.; Huffman, Lauren M.; Parent, Kathryn, E.; Hutchison, James E.; Thompson, John E.

    2004-01-01

    An experiment demonstrating self-assembled monolayer (SAM) chemistry, organic thin-film patterning and the use of molecular functionality to control macroscopic properties is described. Several important green chemistry principles are introduced.

  2. Neutron Reflectivity Measurement for Polymer Dynamics near Graphene Oxide Monolayers

    NASA Astrophysics Data System (ADS)

    Koo, Jaseung

    We investigated the diffusion dynamics of polymer chains confined between graphene oxide layers using neutron reflectivity (NR). The bilayers of polymethylmetacrylate (PMMA)/ deuterated PMMA (d-PMMA) films and polystyrene (PS)/d-PS films with various film thickness sandwiched between Langmuir-Blodgett (LB) monolayers of graphene oxide (GO) were prepared. From the NR results, we found that PMMA diffusion dynamics was reduced near the GO surface while the PS diffusion was not significantly changed. This is due to the different strength of GO-polymer interaction. In this talk, these diffusion results will be compared with dewetting dynamics of polymer thin films on the GO monolayers. This has given us the basis for development of graphene-based nanoelectronics with high efficiency, such as heterojunction devices for polymer photovoltaic (OPV) applications.

  3. Spin-Orbit Resonances in Super-Earth Systems Close to Mean-motion Commensurabilities

    NASA Astrophysics Data System (ADS)

    Ribeiro, F. B.; Callegari, N., Jr.

    2014-10-01

    There is a great deal of planets in close-in orbits and low mass on order of magnitude less than 10 Earth mass. Valencia et al. (2006) call them Super-Earths. Recently, several efforts have been done in order to understand the dynamics of rotation of these planets, including spin-orbit resonance and spin tidal evolution (Rodríguez et al. (2012), Callegari and Rodríguez (2013)). In the referred papers, it is considered a single planet whose motion around the star is governed by the rules of the two-body problem. However, many Super-Earths are present in systems where other terrestrial or giant planets are present, and that problem must be checked. In this work we study the dynamical effects of mean-motion commensurabilities on rigid body rotation and spin-orbit resonances. Emphasis is given in the cases of the multi-planetary systems Kepler-11, KOI-55 and KOI-961, where the mean motions of several pairs of planets are commensurable. In some cases we have observed that the period associated to a particular commensurability is close to the period of the free libration of the rotation of one of the super-Earths. Thus, we investigate the role of the mean motion resonance on the synchronous rotation. Depending on the initial conditions inside the synchronous domain, the stable librations induced by the torque of the central star on the figure of the planet can lead to instabilities on its rotation which are not expected in such regular regions of rotational phase space. This phenomenon has been observed in the cases of Kepler-11 b (disturbed by Kepler-11 c), KOI-55 b (disturbed by KOI-55 c), KOI-961c (disturbed by KOI-961b and KOI-961d).

  4. Interlayer locking and atomic-scale friction in commensurate small-diameter boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Shin, Homin; Kim, Keun Su; Simard, Benoit; Klug, Dennis D.

    2017-02-01

    Density functional theory applied to small-diameter boron nitride nanotubes (BNNTs) finds out-of-plane structural buckling in contrast to large-diameter tubes that exhibit faceting. Buckling significantly affects interlayer interactions in commensurate double-walled BNNTs. Energy corrugation amplitudes in relative motions of BNNT walls change up to fourfold, depending on interlayer registry relaxation, in marked contrast to carbon nanotubes. Large differences between relaxed and unrelaxed energy corrugations of BNNTs could yield energy dissipation via the strain-induced anelastic relaxation of interlayer locking (or "lattice kinks"), which can be exploited for mechanical damping applications.

  5. Commensurate germanium light emitters in silicon-on-insulator photonic crystal slabs.

    PubMed

    Jannesari, R; Schatzl, M; Hackl, F; Glaser, M; Hingerl, K; Fromherz, T; Schäffler, F

    2014-10-20

    We report on the fabrication and characterization of silicon-on-insulator (SOI) photonic crystal slabs (PCS) with commensurately embedded germanium quantum dot (QD) emitters for near-infrared light emission. Substrate pre-patterning defines preferential nucleation sites for the self-assembly of Ge QDs during epitaxial growth. Aligned two-dimensional photonic crystal slabs are then etched into the SOI layer. QD ordering enhances the photoluminescence output as compared to PCSs with randomly embedded QDs. Rigorously coupled wave analysis shows that coupling of the QD emitters to leaky modes of the PCS can be tuned via their location within the unit cell of the PCS.

  6. Commensurability oscillations due to pinned and drifting orbits in a two-dimensional lateral surface superlattice

    NASA Astrophysics Data System (ADS)

    Grant, David E.; Long, Andrew R.; Davies, John H.

    2000-05-01

    We have simulated conduction in a two-dimensional electron gas subject to a weak two-dimensional periodic potential Vx cos(2πx/a)+Vy cos(2πy/a). The usual commensurability oscillations in ρxx(B) are seen with Vx alone. An increase of Vy suppresses these oscillations, rather than introducing the additional oscillations in ρyy(B) expected from previous perturbation theories. We show that this behavior arises from drift of the guiding center of cyclotron motion along contours of an effective potential. Periodic modulation in the magnetic field can be treated in the same way.

  7. Quantum melting of valence-bond crystal insulators and novel supersolid phase at commensurate density.

    PubMed

    Ralko, Arnaud; Trousselet, Fabien; Poilblanc, Didier

    2010-03-26

    Bosonic and fermionic Hubbard models on the checkerboard lattice are studied numerically for infinite on-site repulsion. At particle density n=1/4 and strong nearest-neighbor repulsion, insulating Valence-Bond crystals (VBC) of resonating particle pairs are stabilized. Their melting into superfluid or metallic phases under increasing hopping is investigated at T=0 K. We identify a novel and unconventional commensurate VBC supersolid region, precursor to the melting of the bosonic crystal. Hardcore bosons (spins) are compared to fermions (electrons), as well as positive to negative (frustrating) hoppings.

  8. Proximity Driven Commensurate Pinning in YBa2Cu3O7 through All-Oxide Magnetic Nanostructures.

    PubMed

    Rocci, M; Azpeitia, J; Trastoy, J; Perez-Muñoz, A; Cabero, M; Luccas, R F; Munuera, C; Mompean, F J; Garcia-Hernandez, M; Bouzehouane, K; Sefrioui, Z; Leon, C; Rivera-Calzada, A; Villegas, J E; Santamaria, J

    2015-11-11

    The design of artificial vortex pinning landscapes is a major goal toward large scale applications of cuprate superconductors. Although disordered nanometric inclusions have shown to modify their vortex phase diagram and to produce enhancements of the critical current ( MacManus-Driscoll , J. L. ; Foltyn , S. R. ; Jia , Q. X. ; Wang , H. ; Serquis , A. ; Civale , L. ; Maiorov , B. ; Hawley , M. E. ; Maley , M. P. ; Peterson , D. E. Nat. Mater. 2004 , 3 , 439 - 443 and Yamada , Y. ; Takahashi , K. ; Kobayashi , H. ; Konishi , M. ; Watanabe , T. ; Ibi , A. ; Muroga , T. ; Miyata , S. ; Kato , T. ; Hirayama , T. ; Shiohara , Y. Appl. Phys. Lett. 2005 , 87 , 1 - 3 ), the effect of ordered oxide nanostructures remains essentially unexplored. This is due to the very small nanostructure size imposed by the short coherence length, and to the technological difficulties in the nanofabrication process. Yet, the novel phenomena occurring at oxide interfaces open a wide spectrum of technological opportunities to interplay with the superconductivity in cuprates. Here, we show that the unusual long-range suppression of the superconductivity occurring at the interface between manganites and cuprates affects vortex nucleation and provides a novel vortex pinning mechanism. In particular, we show evidence of commensurate pinning in YBCO films with ordered arrays of LCMO ferromagnetic nanodots. Vortex pinning results from the proximity induced reduction of the condensation energy at the vicinity of the magnetic nanodots, and yields an enhanced friction between the nanodot array and the moving vortex lattice in the liquid phase. This result shows that all-oxide ordered nanostructures constitute a powerful, new route for the artificial manipulation of vortex matter in cuprates.

  9. Growth of calcium oxalate monohydrate at phospholipid Langmuir monolayers

    NASA Astrophysics Data System (ADS)

    Whipps, Scott; Khan, Saeed R.; Jeffrey O'Palko, F.; Backov, Rénal; Talham, Daniel R.

    1998-08-01

    Calcium oxalate monohydrate crystals have been nucleated from metastable solutions at Langmuir monolayers of the phospholipids dipalmitoylphosphatidylglycerol (DPPG), dipalmitoylphosphatidylserine and dipalmitoylphosphatidylcholine and the fatty acid arachidic acid. The phospholipid monolayers were used as model systems for domains of pure lipid in cellular media as part of investigations of their potential role in the nucleation of calcium oxalate in the urinary tract. Crystal formation was monitored at the air/water interface using Brewster angle microscopy and in transferred films using SEM and TEM. For each Langmuir monolayer, it was observed that nucleation is heterogeneous and is selective with respect to the orientation and morphology of the precipitated crystals with up to 90% of crystals growing with the ( 1 0 1¯) face oriented towards the monolayer interface. The selectivity is attributed to calcium binding at the lipid monolayer favoring formation of the calcium-rich ( 1 0 1¯) face. The behavior at each monolayer was similar, although a higher rate of crystal formation was observed at the anionic DPPG interface.

  10. Films

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhang, Yang; Shao, Yayun; Zeng, Min; Zhang, Zhang; Gao, Xingsen; Lu, Xubing; Liu, J.-M.; Ishiwara, Hiroshi

    2014-09-01

    In this paper, we investigated the microstructure and electrical properties of Bi2SiO5 (BSO) doped SrBi2Ta2O9 (SBT) films deposited by chemical solution deposition. X-ray diffraction observation indicated that the crystalline structures of all the BSO-doped SBT films are nearly the same as those of a pure SBT film. Through BSO doping, the 2Pr and 2Ec values of SBT films were changed from 15.3 μC/cm2 and 138 kV/cm of pure SBT to 1.45 μC/cm2 and 74 kV/cm of 10 wt.% BSO-doped SBT. The dielectric constant at 1 MHz for SBT varied from 199 of pure SBT to 96 of 10 wt.% BSO-doped SBT. The doped SBT films exhibited higher leakage current than that of non-doped SBT films. Nevertheless, all the doped SBT films still had small dielectric loss and low leakage current. Our present work will provide useful insights into the BSO doping effects to the SBT films, and it will be helpful for the material design in the future nonvolatile ferroelectric memories.

  11. Stellar Rotation-Planetary Orbit Period Commensurability in the HAT-P-11 System

    NASA Astrophysics Data System (ADS)

    Béky, Bence; Holman, Matthew J.; Kipping, David M.; Noyes, Robert W.

    2014-06-01

    A number of planet host stars have been observed to rotate with a period equal to an integer multiple of the orbital period of their close planet. We expand this list by analyzing Kepler data of HAT-P-11 and finding a period ratio of 6:1. In particular, we present evidence for a long-lived spot on the stellar surface that is eclipsed by the planet in the same position four times, every sixth transit. We also identify minima in the out-of-transit light curve and confirm that their phase with respect to the stellar rotation is mostly stationary for the 48 month time frame of the observations, confirming the proposed rotation period. For comparison, we apply our methods to Kepler-17 and confirm the findings of Bonomo & Lanza that the period ratio is not exactly 8:1 in that system. Finally, we provide a hypothesis on how interactions between a star and its planet could possibly result in an observed commensurability for systems where the stellar differential rotation profile happens to include a period at some latitude that is commensurable to the planetary orbit.

  12. Commensurate Priors for Incorporating Historical Information in Clinical Trials Using General and Generalized Linear Models.

    PubMed

    Hobbs, Brian P; Sargent, Daniel J; Carlin, Bradley P

    2012-08-28

    Assessing between-study variability in the context of conventional random-effects meta-analysis is notoriously difficult when incorporating data from only a small number of historical studies. In order to borrow strength, historical and current data are often assumed to be fully homogeneous, but this can have drastic consequences for power and Type I error if the historical information is biased. In this paper, we propose empirical and fully Bayesian modifications of the commensurate prior model (Hobbs et al., 2011) extending Pocock (1976), and evaluate their frequentist and Bayesian properties for incorporating patient-level historical data using general and generalized linear mixed regression models. Our proposed commensurate prior models lead to preposterior admissible estimators that facilitate alternative bias-variance trade-offs than those offered by pre-existing methodologies for incorporating historical data from a small number of historical studies. We also provide a sample analysis of a colon cancer trial comparing time-to-disease progression using a Weibull regression model.

  13. Stellar rotation-planetary orbit period commensurability in the HAT-P-11 system

    SciTech Connect

    Béky, Bence; Holman, Matthew J.; Noyes, Robert W.; Kipping, David M.

    2014-06-10

    A number of planet host stars have been observed to rotate with a period equal to an integer multiple of the orbital period of their close planet. We expand this list by analyzing Kepler data of HAT-P-11 and finding a period ratio of 6:1. In particular, we present evidence for a long-lived spot on the stellar surface that is eclipsed by the planet in the same position four times, every sixth transit. We also identify minima in the out-of-transit light curve and confirm that their phase with respect to the stellar rotation is mostly stationary for the 48 month time frame of the observations, confirming the proposed rotation period. For comparison, we apply our methods to Kepler-17 and confirm the findings of Bonomo and Lanza that the period ratio is not exactly 8:1 in that system. Finally, we provide a hypothesis on how interactions between a star and its planet could possibly result in an observed commensurability for systems where the stellar differential rotation profile happens to include a period at some latitude that is commensurable to the planetary orbit.

  14. Pulsed-field study of the interference commensurate effect in quasi-one-dimensional organic conductors

    NASA Astrophysics Data System (ADS)

    Roy, J.; Oh, J. I.; Yoshino, H.; Dhakal, P.; Naughton, M. J.

    2008-03-01

    We report angle-dependent magnetoresistance oscillations for fields up to 43 T oriented mainly in the most conducting x-y plane, with small field component along the least conducting z axis, in the q1d compounds (TMTSF)2ClO4 and (DMET)2I3 at 1.5 K. A hybrid plastic-metal cryoprobe system with pseudo dual-axis rotation has been built for these pulsed-field measurements. Due to the interference commensurate effect, (aka Lee-Naughton oscillations) [1-3], we have observed rich magnetoresistance oscillations, resulting from an interference effect of commensurate electron trajectories in the extended Brillouin zone. Also, we have found that, as theoretically expected [2], field-dependent magnetoresistance shows 1D and 2D transport behavior at local resistance maxima and^ minima (versus field angle), respectively. [1] I.J. Lee and M.J. Naughton, Phys. Rev. B 57, 7423 (1998).[2] A.G. Lebed, et al., Phys. Rev. Lett. 91, 187003 (2003).[3] H.I. Ha, et al., Phys. Rev. B 73, 033107 (2006).

  15. Thermodynamic aspects of cholesterol effect on properties of phospholipid monolayers: Langmuir and Langmuir-Blodgett monolayer study.

    PubMed

    Jurak, Małgorzata

    2013-04-04

    Cholesterol is an important component of lipid rafts in mammalian cell membranes. Studies of phospholipid monolayers containing cholesterol provide insight into the role of cholesterol in regulating the properties of animal cells, raft stability, and organization. In this contribution, a study of the characteristics of binary Langmuir monolayers consisting of phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG), and cholesterol (Chol), was conducted on the basis of the surface pressure-area per molecule (π-A) isotherms. Analysis of the results obtained provided information on the mean molecular area, the excess Gibbs energy of mixing, and condensation in the monolayer. The mixed monolayers were also deposited onto the mica plates and investigated by the contact angle measurements of water, formamide, and diiodomethane. The contact angles allowed calculating surface free energy of the films from the van Oss et al. approach. It was found that cholesterol determines the molecular packing and ordering of the monolayers closely connected with the kind of phospholipid. This is reflected in the values of surface free energy of the model membranes. From the thermodynamic analysis of phospholipid/cholesterol/liquid interactions, one may draw conclusions about the most favorable composition (stoichiometry) of the binary film which is especially important in view of the lipid rafts formation.

  16. Articles including thin film monolayers and multilayers

    DOEpatents

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    Articles of manufacture including: (a) a base substrate having an oxide surface layer, and a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, (b) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, and a metal species attached to the multidentate ligand, (c) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, and a multifunctional organic ligand attached to the metal species, and (d) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, a multifunctional organic ligand attached to the metal species, and a second metal species attached to the multifunctional organic ligand, are provided, such articles useful in detecting the presence of a selected target species, as nonliear optical materials, or as scavengers for selected target species.

  17. Depinning transition and 2D superlubricity in incommensurate colloidal monolayers

    NASA Astrophysics Data System (ADS)

    Mandelli, Davide; Vanossi, Andrea; Manini, Nicola; Tosatti, Erio

    2014-03-01

    Colloidal monolayers sliding over periodic corrugated potential are highly tunable systems allowing to visualize the dynamics between crystalline surfaces. Based on molecular dynamics, Vanossi and coworkers reproduced the main experimental results and explored the potential impact of colloid sliding in nanotribology. The degree of interface commensurability was found to play a major role in determining the frictional properties, the static friction force Fs becoming vanishingly small in incommensurate geometries for weak corrugation U0.Lead by this result,here we systematically investigate the possibility to observe a 2D Aubry-like transition from a superlubric state to a pinned state for increasing U0. By using a reliable protocol, we generate annealed configurations at different values of U0 for an underdense monolayer. We find Fs to be vanishingly small up to a critical corrugation Uc coinciding with an abrupt structural transition in the ground state configuration. Similarly to what is observed in the Frenkel Kontorova model,this transition is characterized by a significant decrease in the number of particles sampling regions near the maxima of the substrate potential. Research partly sponsored by Sinergia Project CRSII2 136287-1 and ERC 2012ADG320796 MODPHYSFRICT.

  18. UV-induced reaction kinetics of dilinoleoylphosphatidylethanolamine monolayers.

    PubMed Central

    Viitala, T; Peltonen, J

    1999-01-01

    The UV-induced reactivity of dilinoleoylphosphatidylethanolamine (DLiPE) Langmuir and Langmuir-Blodgett films has been studied by in situ measurements of the changes in the mean molecular area, UV-vis and Fourier transform infrared spectroscopy, and atomic force microscopy (AFM). Optimum orientation and packing density of the DLiPE molecules in the monolayer were achieved by adding uranyl acetate to the subphase. A first-order reaction kinetic model was successfully fitted to the experimental reaction kinetics data obtained at a surface pressure of 30 mN/m. Topographical studies of LB films by AFM were performed on bilayer structures as a function of subphase composition and UV irradiation time. The orientational effect of the uranyl ions on the monolayer molecules was observed as an enhanced homogeneity of the freshly prepared monomeric LB films. However, the long-term stability of these films proved to be bad; clear reorganization and loss of a true monolayer structure were evidenced by the AFM images. This instability was inhibited for the UV-irradiated films, indicating that the UV irradiation gave rise to a cross-linked structure. PMID:10233096

  19. Frequency control of photonic crystal membrane resonators by monolayer deposition

    NASA Astrophysics Data System (ADS)

    Strauf, S.; Rakher, M. T.; Carmeli, I.; Hennessy, K.; Meier, C.; Badolato, A.; DeDood, M. J. A.; Petroff, P. M.; Hu, E. L.; Gwinn, E. G.; Bouwmeester, D.

    2006-01-01

    We study the response of GaAs photonic crystal membrane resonators to thin-film deposition. Slow spectral shifts of the cavity mode of several nanometers are observed at low temperatures, caused by cryo-gettering of background molecules. Heating the membrane resets the drift and shielding will prevent drift altogether. In order to explore the drift as a tool to detect surface layers, or to intentionally shift the cavity resonance frequency, we studied the effect of self-assembled monolayers of polypeptide molecules attached to the membranes. The 2-nm-thick monolayers lead to a discrete step in the resonance frequency and partially passivate the surface.

  20. Probing high quality pentacene monolayers by optical methods

    NASA Astrophysics Data System (ADS)

    He, Rui; Tassi, Nancy G.; Blanchet, Graciela B.; Pinczuk, Aron

    2006-05-01

    We report optical studies of pentacene monolayers grown on poly-alpha-methyl-styrene (PAMS) substrates of high uniformity that reaches into the micron length-scale in the lateral dimension. Raman scattering intensities from a two-monolayer pentacene film exhibit large resonance enhancements when incoming and outgoing photon energies overlap the free exciton measured in optical emission. The incoming and outgoing resonance enhancements are of about the same strength. The free exciton optical emission band is sharp and intense, and it blue-shifts by about 85 meV from that of the pentacene single crystal.

  1. Size-dependent commensurability and its possible role in determining the frictional behavior of adsorbed systems.

    PubMed

    Restuccia, Paolo; Ferrario, Mauro; Sivestrelli, Pier Luigi; Mistura, Giampaolo; Righi, Maria Clelia

    2016-10-19

    Recent nanofriction experiments of xenon on graphene revealed that the slip onset can be induced by increasing the adsorbate coverage above a critical value, which depends on temperature. Moreover, the xenon slippage on gold is much higher than on graphene in spite of the same physical nature of the interactions. To shed light on these intriguing results we have performed molecular dynamics simulations relying on ab initio derived potentials. By monitoring the interfacial structure factor as a function of coverage and temperature, we show that the key mechanism to interpret the observed frictional phenomena is the size-dependence of the island commensurability. The latter quantity is deeply affected also by the lattice misfit, which explains the different frictional behavior of Xe on graphene and gold.

  2. Correlation versus commensurability effects for finite bosonic systems in one-dimensional lattices

    SciTech Connect

    Brouzos, Ioannis; Schmelcher, Peter; Zoellner, Sascha

    2010-05-15

    We investigate few-boson systems in finite one-dimensional multiwell traps covering the full interaction crossover from uncorrelated to fermionized particles. Our treatment of the ground-state properties is based on the numerically exact multiconfigurational time-dependent Hartree method. For commensurate filling, we trace the fingerprints of localization as the interaction strength increases, in several observables like reduced-density matrices, fluctuations, and momentum distribution. For a filling factor larger than 1 we observe on-site repulsion effects in the densities and fragmentation of particles beyond the validity of the Bose-Hubbard model upon approaching the Tonks-Girardeau limit. The presence of an incommensurate fraction of particles induces incomplete localization and spatial modulations of the density profiles, taking into account the finite size of the system.

  3. The melting of pulmonary surfactant monolayers.

    PubMed

    Yan, Wenfei; Biswas, Samares C; Laderas, Ted G; Hall, Stephen B

    2007-05-01

    Monomolecular films of phospholipids in the liquid-expanded (LE) phase after supercompression to high surface pressures (pi), well above the equilibrium surface pressure (pi(e)) at which fluid films collapse from the interface to form a three-dimensional bulk phase, and in the tilted-condensed (TC) phase both replicate the resistance to collapse that is characteristic of alveolar films in the lungs. To provide the basis for determining which film is present in the alveolus, we measured the melting characteristics of monolayers containing TC dipalmitoyl phosphatidylcholine (DPPC), as well as supercompressed 1-palmitoyl-2-oleoyl phosphatidylcholine and calf lung surfactant extract (CLSE). Films generated by appropriate manipulations on a captive bubble were heated from < or =27 degrees C to > or =60 degrees C at different constant pi above pi(e). DPPC showed the abrupt expansion expected for the TC-LE phase transition, followed by the contraction produced by collapse. Supercompressed CLSE showed no evidence of the TC-LE expansion, arguing that supercompression did not simply convert the mixed lipid film to TC DPPC. For both DPPC and CLSE, the melting point, taken as the temperature at which collapse began, increased at higher pi, in contrast to 1-palmitoyl-2-oleoyl phosphatidylcholine, for which higher pi produced collapse at lower temperatures. For pi between 50 and 65 mN/m, DPPC melted at 48-55 degrees C, well above the main transition for bilayers at 41 degrees C. At each pi, CLSE melted at temperatures >10 degrees C lower. The distinct melting points for TC DPPC and supercompressed CLSE provide the basis by which the nature of the alveolar film might be determined from the temperature-dependence of pulmonary mechanics.

  4. The melting of pulmonary surfactant monolayers

    PubMed Central

    Yan, Wenfei; Biswas, Samares C.; Laderas, Ted G.; Hall, Stephen B.

    2012-01-01

    Monomolecular films of phospholipids in the liquid-expanded (LE) phase after supercompression to high surface pressures (π), well above the equilibrium surface pressure (πe) at which fluid films collapse from the interface to form a three-dimensional bulk phase, and in the tilted-condensed (TC) phase both replicate the resistance to collapse that is characteristic of alveolar films in the lungs. To provide the basis for determining which film is present in the alveolus, we measured the melting characteristics of monolayers containing TC dipalmitoyl phosphatidylcholine (DPPC), as well as supercompressed 1-palmitoyl-2-oleoyl phosphatidylcholine and calf lung surfactant extract (CLSE). Films generated by appropriate manipulations on a captive bubble were heated from ≤27°C to ≥60°C at different constant π above πe. DPPC showed the abrupt expansion expected for the TC-LE phase transition, followed by the contraction produced by collapse. Supercompressed CLSE showed no evidence of the TC-LE expansion, arguing that supercompression did not simply convert the mixed lipid film to TC DPPC. For both DPPC and CLSE, the melting point, taken as the temperature at which collapse began, increased at higher π, in contrast to 1-palmitoyl-2-oleoyl phosphatidylcholine, for which higher π produced collapse at lower temperatures. For π between 50 and 65 mN/m, DPPC melted at 48–55°C, well above the main transition for bilayers at 41°C. At each π, CLSE melted at temperatures >10°C lower. The distinct melting points for TC DPPC and supercompressed CLSE provide the basis by which the nature of the alveolar film might be determined from the temperature-dependence of pulmonary mechanics. PMID:17194731

  5. Assembly of designed protein scaffolds into monolayers for nanoparticle patterning.

    PubMed

    Mejias, Sara H; Couleaud, Pierre; Casado, Santiago; Granados, Daniel; Garcia, Miguel Angel; Abad, Jose M; Cortajarena, Aitziber L

    2016-05-01

    The controlled assembly of building blocks to achieve new nanostructured materials with defined properties at different length scales through rational design is the basis and future of bottom-up nanofabrication. This work describes the assembly of the idealized protein building block, the consensus tetratricopeptide repeat (CTPR), into monolayers by oriented immobilization of the blocks. The selectivity of thiol-gold interaction for an oriented immobilization has been verified by comparing a non-thiolated protein building block. The physical properties of the CTPR protein thin biomolecular films including topography, thickness, and viscoelasticity, are characterized. Finally, the ability of these scaffolds to act as templates for inorganic nanostructures has been demonstrated by the formation of well-packed gold nanoparticles (GNPs) monolayer patterned by the CTPR monolayer.

  6. Neutron and X-ray reflectivity studies on DNA adsorption on mixed DPPC/DC-Cholesterol monolayers

    NASA Astrophysics Data System (ADS)

    Wu, Jui-Ching; Lin, Tsang-Lang; Jeng, U.-Ser; Lee, Hsin-Yi; Gutberlet, Thomas

    2006-11-01

    We have studied DNA adsorption on mixed DPPC/DC-Chol monolayers. Solid supported mixed monolayers on silicon wafers were prepared using Langmuir-Blodgett (LB) dipping technique. Neutron and X-ray reflectivity measurements were used to characterize these LB monofilms. For LB monofilms with DNA adsorption, the reflectivity data of the DPPC/DNA film are very close to that from the DPPC film, which indicates only minor DNA adsorption on the pure DPPC monolayer. Increasing the percentage of DC-Chol, film thickness increases. The DC-Chol/DNA film is thicker than the pure DC-Chol film (film thickness 18 Å) by about 9 Å due to the presence of adsorbed DNA. A model is presented to explain the structure of the lipid/DNA film.

  7. Ferrocene-based monolayers: Self-assembly via rigid bidentate anchor groups

    NASA Astrophysics Data System (ADS)

    Weidner, Tobias; Krohn, Bianca; Trojtza, Marta; Bruhn, Clemens; Rother, Dag; Siemeling, Ulrich; Träger, Frank

    2006-02-01

    Self-assembled monolayers of the bidentate ferrocene containing ligands diisocyanoferrocene (1), bis(diphenylphosphanyl) ferrocene (2), and diisothiocyanatoferrocene (3) have been prepared and their adsorption kinetics on gold films were characterized with optical second-harmonic generation and ellipsometry. As opposed to ferrocenylfunctionalized ligands used in earlier studies, the redox-active moieties discussed here carry two anchor groups to "pin" them to the substrate in a well-defined orientation and distance to the surface. 1 and 3 show monolayer film formation that follows first order, while film assembly of 2 is best described by a second order Langmuir kinetics.

  8. Structure and function evolution of thiolate monolayers on gold

    SciTech Connect

    Edwards, Grant Alvin

    2006-01-01

    The use of n-alkanethiolate self-assembled monolayers on gold has blossomed in the past few years. These systems have functioned as models for common interfaces. Thiolate monolayers are ideal because they are easily modified before or after deposition. The works contained within this dissertation include interfacial characterization (infrared reflection absorption spectroscopy, ellipsometry, contact angle, scanning probe microscopy, and heterogeneous electron-transfer kinetics) and various modeling scenarios. The results of these characterizations present ground-breaking insights into the structure, function, and reproducible preparation of these monolayers. Surprisingly, three interfacial properties (electron-transfer, contact angle, and ellipsometry) were discovered to depend directly on the odd-even character of the monolayer components. Molecular modeling was utilized to investigate adlayer orientation, and suggests that these effects are adlayer structure specific. Finally, the electric force microscopy and theoretical modeling investigations of monolayer samples are presented, which show that the film dielectric constant, thickness, and dipole moment directly affect image contrast. In addition, the prospects for utilization of this emerging technique are outlined.

  9. Structure and Function Evolution of Thiolate Monolayers on Gold

    SciTech Connect

    Edwards, Grant Alvin

    2006-01-01

    The use of n-alkanethiolate self-assembled monolayers on gold has blossomed in the past few years. These systems have functioned as models for common interfaces. Thiolate monolayers are ideal because they are easily modified before or after deposition. The works contained within this dissertation include interfacial characterization (inbred reflection absorption spectroscopy, ellipsometry, contact angle, scanning probe microscopy, and heterogeneous electron-transfer kinetics) and various modeling scenarios. The results of these characterizations present ground-breaking insights into the structure, function, and reproducible preparation of these monolayers. Surprisingly, three interfacial properties (electron-transfer, contact angle, and ellipsometry) were discovered to depend directly on the odd-even character of the monolayer components. Molecular modeling was utilized to investigate adlayer orientation, and suggests that these effects are adlayer structure specific. Finally, the electric force microscopy and theoretical modeling investigations of monolayer samples are presented, which show that the film dielectric constant, thickness, and dipole moment directly affect image contrast. In addition, the prospects for utilization of this emerging technique are outlined.

  10. Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors.

    PubMed

    Wei, Qingshuo; Tajima, Keisuke; Tong, Yujin; Ye, Shen; Hashimoto, Kazuhito

    2009-12-09

    We report a new type of ordered monolayer for the surface modification of organic semiconductors. Fullerene derivatives with fluorocarbon chains ([6,6]-phenyl-C(61)-buryric acid 1H,1H-perfluoro-1-alkyl ester or FC(n)) spontaneously segregated as a monolayer on the surface of a [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) film during a spin-coating process from the mixture solutions, as confirmed by X-ray photoelectron spectroscopy (XPS). Ultraviolet photoelectron spectroscopy (UPS) showed the shift of ionization potentials (IPs) depending on the fluorocarbon chain length, indicating the formation of surface dipole moments. Surface-sensitive vibrational spectroscopy, sum frequency generation (SFG) revealed the ordered molecular orientations of the C(60) moiety in the surface FC(n) layers. The intensity of the SFG signals from FC(n) on the surface showed a clear odd-even effect when the length of the fluorocarbon chain was changed. This new concept of the surface-segregated monolayer provides a facile and versatile approach to modifying the surface of organic semiconductors and is applicable to various organic optoelectronic devices.

  11. Prediction of stable C7 /12 and metastable C4 /7 commensurate solid phases for 4He on graphite

    NASA Astrophysics Data System (ADS)

    Ahn, Jeonghwan; Lee, Hoonkyung; Kwon, Yongkyung

    2016-02-01

    Using a substrate potential described by a pairwise sum of empirical 4He-C interatomic potentials, we have performed path-integral Monte Carlo calculations for 4He adatoms on graphite. It is found that a second-layer commensurate structure is not stable above an incommensurate first-layer triangular solid. This is consistent with the conclusion of the previous theoretical study of Corboz et al. [Phys. Rev. B 78, 245414 (2008), 10.1103/PhysRevB.78.245414] that was based on a laterally averaged one-dimensional potential. On the other hand, we observe a new stable C7 /12 commensurate solid in the first 4He layer at the areal density of 0.111 Å-2, which is close to the second-layer promotion density. This high-density commensurate solid exhibits a √{12 }×√{12 } structure registered to the graphite surface that is not disrupted by the development of the second 4He layer. Furthermore, a second-layer 4/7 commensurate structure relative to the first-layer C7 /12 solid is found to be at least metastable, opening the possibility of two-dimensional supersolidity.

  12. Producing air-stable monolayers of phosphorene and their defect engineering

    NASA Astrophysics Data System (ADS)

    Pei, Jiajie; Gai, Xin; Yang, Jiong; Wang, Xibin; Yu, Zongfu; Choi, Duk-Yong; Luther-Davies, Barry; Lu, Yuerui

    2016-01-01

    It has been a long-standing challenge to produce air-stable few- or monolayer samples of phosphorene because thin phosphorene films degrade rapidly in ambient conditions. Here we demonstrate a new highly controllable method for fabricating high quality, air-stable phosphorene films with a designated number of layers ranging from a few down to monolayer. Our approach involves the use of oxygen plasma dry etching to thin down thick-exfoliated phosphorene flakes, layer by layer with atomic precision. Moreover, in a stabilized phosphorene monolayer, we were able to precisely engineer defects for the first time, which led to efficient emission of photons at new frequencies in the near infrared at room temperature. In addition, we demonstrate the use of an electrostatic gate to tune the photon emission from the defects in a monolayer phosphorene. This could lead to new electronic and optoelectronic devices, such as electrically tunable, broadband near infrared lighting devices operating at room temperature.

  13. Effect of surface charge distribution on the adsorption orientation of proteins to lipid monolayers.

    PubMed

    Tiemeyer, Sebastian; Paulus, Michael; Tolan, Metin

    2010-09-07

    The adsorption orientation of the proteins lysozyme and ribonuclease A (RNase A) to a neutral 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and a negatively charged stearic acid lipid film was investigated by means of X-ray reflectivity. Both proteins adsorbed to the negatively charged lipid monolayer, whereas at the neutral monolayer, no adsorption was observed. For acquiring comprehensive information on the proteins' adsorption, X-ray reflectivity data were combined with electron densities obtained from crystallographic data. With this method, it is possible to determine the orientation of adsorbed proteins in solution underneath lipid monolayers. While RNase A specifically coupled with its positively charged active site to the negatively charged lipid monolayer, lysozyme prefers an orientation with its long axis parallel to the Langmuir film. In comparison to the electrostatic maps of the proteins, our results can be explained by the discriminative surface charge distribution of lysozyme and RNase A.

  14. All-Carbon Electrode Molecular Electronic Devices Based on Langmuir-Blodgett Monolayers.

    PubMed

    Sangiao, Soraya; Martín, Santiago; González-Orive, Alejandro; Magén, César; Low, Paul J; De Teresa, José M; Cea, Pilar

    2017-02-01

    Nascent molecular electronic devices, based on monolayer Langmuir-Blodgett films sandwiched between two carbonaceous electrodes, have been prepared. Tightly packed monolayers of 4-((4-((4-ethynylphenyl)ethynyl)phenyl)ethynyl)benzoic acid are deposited onto a highly oriented pyrolytic graphite electrode. An amorphous carbon top contact electrode is formed on top of the monolayer from a naphthalene precursor using the focused electron beam induced deposition technique. This allows the deposition of a carbon top-contact electrode with well-defined shape, thickness, and precise positioning on the film with nm resolution. These results represent a substantial step toward the realization of integrated molecular electronic devices based on monolayers and carbon electrodes.

  15. Producing air-stable monolayers of phosphorene and their defect engineering

    PubMed Central

    Pei, Jiajie; Gai, Xin; Yang, Jiong; Wang, Xibin; Yu, Zongfu; Choi, Duk-Yong; Luther-Davies, Barry; Lu, Yuerui

    2016-01-01

    It has been a long-standing challenge to produce air-stable few- or monolayer samples of phosphorene because thin phosphorene films degrade rapidly in ambient conditions. Here we demonstrate a new highly controllable method for fabricating high quality, air-stable phosphorene films with a designated number of layers ranging from a few down to monolayer. Our approach involves the use of oxygen plasma dry etching to thin down thick-exfoliated phosphorene flakes, layer by layer with atomic precision. Moreover, in a stabilized phosphorene monolayer, we were able to precisely engineer defects for the first time, which led to efficient emission of photons at new frequencies in the near infrared at room temperature. In addition, we demonstrate the use of an electrostatic gate to tune the photon emission from the defects in a monolayer phosphorene. This could lead to new electronic and optoelectronic devices, such as electrically tunable, broadband near infrared lighting devices operating at room temperature. PMID:26794866

  16. Phenomenological Modeling for Langmuir Monolayers

    NASA Astrophysics Data System (ADS)

    Baptiste, Dimitri; Kelly, David; Safford, Twymun; Prayaga, Chandra; Varney, Christopher N.; Wade, Aaron

    Experimentally, Langmuir monolayers have applications in molecular optical, electronic, and sensor devices. Traditionally, Langmuir monolayers are described by a rigid rod model where the rods interact via a Leonard-Jones potential. Here, we propose effective phenomenological models and utilize Monte Carlo simulations to analyze the phase behavior and compare with experimental isotherms. Research reported in this abstract was supported by UWF NIH MARC U-STAR 1T34GM110517-01.

  17. Perforated Monolayers for Enhanced Permselectivity in Chemical Biological Barrier Membranes

    DTIC Science & Technology

    2004-12-01

    Membranes. In the 1930s, Irving Langmuir and Katherine Blodgett introduced a method for fabricating monolayer and multilayer arrays of surfactants...pass. With this goal in mind, we have been developing an ultra-thin membrane capable of blocking chemical agents, utilizing Langmuir -Blodgett (LB...order of 6 nm thick having extraordinary barrier properties, high flux, and stability. 2. Langmuir -Blodgett Films as Permeation-Selective

  18. Conjugated carbon monolayer membranes: methods for synthesis and integration.

    PubMed

    Unarunotai, Sakulsuk; Murata, Yuya; Chialvo, Cesar E; Mason, Nadya; Petrov, Ivan; Nuzzo, Ralph G; Moore, Jeffrey S; Rogers, John A

    2010-03-12

    Monolayer membranes of conjugated carbon represent a class of nanomaterial with demonstrated uses in various areas of electronics, ranging from transparent, flexible, and stretchable thin film conductors, to semiconducting materials in moderate and high-performance field-effect transistors. Although graphene represents the most prominent example, many other more structurally and chemically diverse systems are also of interest. This article provides a review of demonstrated synthetic and integration strategies, and speculates on future directions for the field.

  19. Monolayers of spin-coated L10 FePt nanoparticles

    NASA Astrophysics Data System (ADS)

    Azarkharman, Fereshteh; Iranizad, Esmaiel Saievar; Sebt, Seyed Ali

    2013-04-01

    Monolayers of FePt nanoparticles were synthesized on SiO2/Si substrates by spin-coating method. The effects of spin-coating conditions on surface morphology of FePt system was studied with FE-SEM. A high temperature annealing on the FePt monolayer films resulted in phase transition from fcc into fct (L10 phase), while preventing nanoparticles from sintering. Furthermore, L10 FePt nanoparticles with an average size of 15 nm are coated on SiO2/Si surface. Uniform nanoparticle monolayer was obtained by optimizing the experiment parameters such as spin time and controlling hexane evaporation rate.

  20. Commensurability Oscillations of Composite Fermions Induced by the Periodic Potential of a Wigner Crystal

    NASA Astrophysics Data System (ADS)

    Deng, H.; Liu, Y.; Jo, I.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.

    2016-08-01

    When the kinetic energy of a collection of interacting two-dimensional (2D) electrons is quenched at very high magnetic fields so that the Coulomb repulsion dominates, the electrons are expected to condense into an ordered array, forming a quantum Wigner crystal (WC). Although this exotic state has long been suspected in high-mobility 2D electron systems at very low Landau level fillings (ν ≪1 ), its direct observation has been elusive. Here we present a new technique and experimental results directly probing the magnetic-field-induced WC. We measure the magnetoresistance of a bilayer electron system where one layer has a very low density and is in the WC regime (ν ≪1 ), while the other ("probe") layer is near ν =1 /2 and hosts a sea of composite fermions (CFs). The data exhibit commensurability oscillations in the magnetoresistance of the CF layer, induced by the periodic potential of WC electrons in the other layer, and provide a unique, direct glimpse at the symmetry of the WC, its lattice constant, and melting. They also demonstrate a striking example of how one can probe an exotic many-body state of 2D electrons using equally exotic quasiparticles of another many-body state.

  1. Quantum walks in the commensurate off-diagonal Aubry-André-Harper model

    NASA Astrophysics Data System (ADS)

    Wang, Li; Liu, Na; Chen, Shu; Zhang, Yunbo

    2017-01-01

    Due to the topological nature of the Aubry-André-Harper (AAH) model, interesting edge states have been found existing in one-dimensional periodic and quasiperiodic lattices. In this article, we investigate continuous-time quantum walks of identical particles initially located on either edge of commensurate AAH lattices in detail. It is shown that the quantum walker is delocalized among the whole lattice until the strength of periodic modulation is strong enough. The inverse participation ratios (IPRs) for all of the eigenstates are calculated. It is found that the localization properties of the quantum walker is mainly determined by the IPRs of the topologically protected edge states. More interestingly, the edge states are shown to have an evident "repulsion" effect on quantum walkers initiated from the lattice sites inside the bulk. Furthermore, we examine the role of nearest-neighbor interaction on the quantum walks of two identical fermions. Clear enhancement of the repulsion effect by strong interaction has been shown.

  2. Coherent commensurate electronic states at the interface between misoriented graphene layers

    NASA Astrophysics Data System (ADS)

    Koren, Elad; Leven, Itai; Lörtscher, Emanuel; Knoll, Armin; Hod, Oded; Duerig, Urs

    2016-09-01

    Graphene and layered materials in general exhibit rich physics and application potential owing to their exceptional electronic properties, which arise from the intricate π-orbital coupling and the symmetry breaking in twisted bilayer systems. Here, we report room-temperature experiments to study electrical transport across a bilayer graphene interface with a well-defined rotation angle between the layers that is controllable in situ. This twisted interface is artificially created in mesoscopic pillars made of highly oriented pyrolytic graphite by mechanical actuation. The overall measured angular dependence of the conductivity is consistent with a phonon-assisted transport mechanism that preserves the electron momentum of conduction electrons passing the interface. The most intriguing observations are sharp conductivity peaks at interlayer rotation angles of 21.8° and 38.2°. These angles correspond to a commensurate crystalline superstructure leading to a coherent two-dimensional (2D) electronic interface state. Such states, predicted by theory, form the basis for a new class of 2D weakly coupled bilayer systems with hitherto unexplored properties and applications.

  3. Large-area monolayer hexagonal boron nitride on Pt foil.

    PubMed

    Park, Ji-Hoon; Park, Jin Cheol; Yun, Seok Joon; Kim, Hyun; Luong, Dinh Hoa; Kim, Soo Min; Choi, Soo Ho; Yang, Woochul; Kong, Jing; Kim, Ki Kang; Lee, Young Hee

    2014-08-26

    Hexagonal boron nitride (h-BN) has recently been in the spotlight due to its numerous applications including its being an ideal substrate for two-dimensional electronics, a tunneling material for vertical tunneling devices, and a growth template for heterostructures. However, to obtain a large area of h-BN film while maintaining uniform thickness is still challenging and has not been realized. Here, we report the systematical study of h-BN growth on Pt foil by using low pressure chemical vapor deposition with a borazine source. The monolayer h-BN film was obtained over the whole Pt foil (2 × 5 cm(2)) under <100 mTorr, where the size is limited only by the Pt foil size. A borazine source was catalytically decomposed on the Pt surface, leading to the self-limiting growth of the monolayer without the associating precipitation, which is very similar to the growth of graphene on Cu. The orientation of the h-BN domains was largely confined by the Pt domain, which is confirmed by polarizing optical microscopy (POM) assisted by the nematic liquid crystal (LC) film. The total pressure and orientation of the Pt lattice plane are crucial parameters for thickness control. At high pressure (∼0.5 Torr), thick film was grown on Pt (111), and in contrast, thin film was grown on Pt (001). Our advances in monolayer h-BN growth will play an important role to further develop a high quality h-BN film that can be used for vertical tunneling, optoelectronic devices and growth templates for a variety of heterostructures.

  4. Phospholipid monolayers between fluid and solid states.

    PubMed Central

    Helm, C A; Möhwald, H; Kjaer, K; Als-Nielsen, J

    1987-01-01

    Monolayers of the phospholipid dimyristoyl phosphatidic acid on the surface of water have been studied by a combination of the new techniques of synchrotron x-ray diffraction and fluorescence microscopy with classical surface pressure data. The pressure vs. area isotherm changes slope at the surface pressures pi c and pi s. The optical technique demonstrates that between pi c and pi s the fluid phase coexists with a denser "gel" phase. Electron diffraction data have shown that the gel phase has bond orientational order over tens of micrometers. However, the x-ray data demonstrate that positional correlations extend only over tens of angstroms. Thus, the gel phase is not crystalline. Above pi s a solid phase is formed with a positional correlation range that is eight times longer for the chemically purest films. Images FIGURE 1 FIGURE 2 PMID:3651557

  5. Graphene monolayer rotation on Ni(111) facilitates bilayer graphene growth

    NASA Astrophysics Data System (ADS)

    Dahal, Arjun; Addou, Rafik; Sutter, Peter; Batzill, Matthias

    2012-06-01

    Synthesis of bilayer graphene by chemical vapor deposition is of importance for graphene-based field effect devices. Here, we demonstrate that bilayer graphene preferentially grows by carbon-segregation under graphene sheets that are rotated relative to a Ni(111) substrate. Rotated graphene monolayer films can be synthesized at growth temperatures above 650 °C on a Ni(111) thin-film. The segregated second graphene layer is in registry with the Ni(111) substrate and this suppresses further C-segregation, effectively self-limiting graphene formation to two layers.

  6. Heat Conduction across Monolayer and Few-Layer Graphenes

    DTIC Science & Technology

    2010-05-01

    film. We note that even though the metal films were deposited in vacuum , water vapor that adsorbs on the substrate during the air exposure after the... developed approach based on Raman spectroscopy16 to count the number of layers n of the graphene flakes. In this approach, n is determined from the ratio...Au/Ti, we coated a monolayer graphene (1- LG) sample with a semitransparent layer of Au (8 nm)/Ti (2 nm) and compared the Raman spectrum of the sample

  7. Graphene Monolayer Rotation on Ni(111) Facilities Bilayer Graphene Growth

    SciTech Connect

    Batzill M.; Sutter P.; Dahal, A.; Addou, R.

    2012-06-11

    Synthesis of bilayer graphene by chemical vapor deposition is of importance for graphene-based field effect devices. Here, we demonstrate that bilayer graphene preferentially grows by carbon-segregation under graphene sheets that are rotated relative to a Ni(111) substrate. Rotated graphene monolayer films can be synthesized at growth temperatures above 650 C on a Ni(111) thin-film. The segregated second graphene layer is in registry with the Ni(111) substrate and this suppresses further C-segregation, effectively self-limiting graphene formation to two layers.

  8. Large-area, high-quality monolayer graphene from polystyrene at atmospheric pressure.

    PubMed

    Xu, Junqi; Fu, Can; Sun, Haibin; Meng, Lanxiang; Xia, Yanjie; Zhang, Chongwu; Yi, Xiaolei; Yang, Wenchao; Guo, Pengfei; Wang, Chunlei; Liu, Jiangfeng

    2017-04-18

    Graphene films have been attracting great interest owing to their unique physical properties. In this paper, we develop an efficient method to prepare large-area monolayer graphene (97.5% coverage) by atmospheric pressure chemical vapor deposition on Cu foils using polystyrene in a short time (3 min). Raman spectroscopy, transmission electron microscopy and scanning electron microscopy are employed to confirm the thickness and uniformity of the graphene films. Graphene films on glass substrates show high optical transmittance and electrical conductivity. Magnetic transport studies demonstrate that the as-grown monolayer graphene exhibits a high carrier mobility of 3395 cm(2) V(-1) s(-1) at 25 K. On the basis of the analysis, it is concluded that our method is a simple, safe and versatile approach for the synthesis of monolayer graphene.

  9. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution.

    PubMed

    Kye, Joohong; Shin, Muncheol; Lim, Bora; Jang, Jae-Won; Oh, Ilwhan; Hwang, Seongpil

    2013-07-23

    Pt monolayer decorated gold nanostructured film on planar p-type silicon is utilized for photoelectrochemical H2 generation in this work. First, gold nanostructured film on silicon was spontaneously produced by galvanic displacement of the reduction of gold ion and the oxidation of silicon in the presence of fluoride anion. Second, underpotential deposition (UPD) of copper under illumination produced Cu monolayer on gold nanostructured film followed by galvanic exchange of less-noble Cu monolayer with more-noble PtCl6(2-). Pt(shell)/Au(core) on p-type silicon showed the similar activity with platinum nanoparticle on silicon for photoelectrochemical hydrogen evolution reaction in spite of low platinum loading. From Tafel analysis, Pt(shell)/Au(core) electrocatalyst shows the higher area-specific activity than platinum nanoparticle on silicon demonstrating the significant role of underlying gold for charge transfer reaction from silicon to H(+) through platinum catalyst.

  10. Nanopatterning of mobile lipid monolayers on electron-beam-sculpted Teflon AF surfaces.

    PubMed

    Shaali, Mehrnaz; Lara-Avila, Samuel; Dommersnes, Paul; Ainla, Alar; Kubatkin, Sergey; Jesorka, Aldo

    2015-02-24

    Direct electron-beam lithography is used to fabricate nanostructured Teflon AF surfaces, which are utilized to pattern surface-supported monolayer phospholipid films with 50 nm lateral feature size. In comparison with unexposed Teflon AF coatings, e-beam-irradiated areas show reduced surface tension and surface potential. For phospholipid monolayer spreading experiments, these areas can be designed to function as barriers that enclose unexposed areas of nanometer dimensions and confine the lipid film within. We show that the effectiveness of the barrier is defined by pattern geometry and radiation dose. This surface preparation technique represents an efficient, yet simple, nanopatterning strategy supporting studies of lipid monolayer behavior in ultraconfined spaces. The generated structures are useful for imaging studies of biomimetic membranes and other specialized surface applications requiring spatially controlled formation of self-assembled, molecularly thin films on optically transparent patterned polymer surfaces with very low autofluorescence.

  11. Large-area, high-quality monolayer graphene from polystyrene at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Xu, Junqi; Fu, Can; Sun, Haibin; Meng, Lanxiang; Xia, Yanjie; Zhang, Chongwu; Yi, Xiaolei; Yang, Wenchao; Guo, Pengfei; Wang, Chunlei; Liu, Jiangfeng

    2017-04-01

    Graphene films have been attracting great interest owing to their unique physical properties. In this paper, we develop an efficient method to prepare large-area monolayer graphene (97.5% coverage) by atmospheric pressure chemical vapor deposition on Cu foils using polystyrene in a short time (3 min). Raman spectroscopy, transmission electron microscopy and scanning electron microscopy are employed to confirm the thickness and uniformity of the graphene films. Graphene films on glass substrates show high optical transmittance and electrical conductivity. Magnetic transport studies demonstrate that the as-grown monolayer graphene exhibits a high carrier mobility of 3395 cm2 V‑1 s‑1 at 25 K. On the basis of the analysis, it is concluded that our method is a simple, safe and versatile approach for the synthesis of monolayer graphene.

  12. Monolayer coated aerogels and method of making

    DOEpatents

    Zemanian, Thomas Samuel; Fryxell, Glen; Ustyugov, Oleksiy A.

    2006-03-28

    Aerogels having a monolayer coating are described. The aerogel and a monolayer forming precursor are provided in a supercritical fluid, whereupon the aerogel and the monolayer forming precursor are reacted in said supercritical fluid to form a covalent bond between the aerogel and the monolayer forming precursor. Suitable aerogels are ceramic oxides such as silica, alumina, aluminosilicate, and combinations thereof. Suitable monolayer forming precursors include alkyl silanes, chlorosilanes, boranes, chloroboranes, germanes, and combinations thereof. The method may also include providing a surface preparation agent such as water, or hydroetching an aerogel to enhance the coating of the monolayer.

  13. Incommensurate and commensurate magnetic structures of the ternary germanide CeNiGe3

    NASA Astrophysics Data System (ADS)

    Durivault, L.; Bourée, F.; Chevalier, B.; André, G.; Weill, F.; Etourneau, J.; Martinez-Samper, P.; Rodrigo, J. G.; Suderow, H.; Vieira, S.

    2003-01-01

    The structural properties of CeNiGe3 have been investigated via electron diffraction and neutron powder diffraction (NPD). This ternary germanide crystallizes in the orthorhombic SmNiGe3-type structure (Cmmm space group). Electrical resistivity, ac- and dc-magnetization measurements show that CeNiGe3 orders antiferromagnetically below TN = 5.5(2) K and exclude the occurrence at low temperatures of a spin-glass state for CeNiGe3 as previously reported. Specific heat measurements and NPD both reveal two magnetic transitions, observed at TN1 = 5.9(2) K and TN2 = 5.0(2) K. Between TN1 and TN2, the Ce magnetic moments in CeNiGe3 are ordered in a collinear antiferromagnetic structure associated with the k1 = (100) wavevector and showing a relationship with the magnetic structure of the Ce3Ni2Ge7 ternary germanide. Below TN2, this k1 = (100) commensurate magnetic structure coexists with an incommensurate helicoîdal magnetic structure associated with k2 = (00.409(1)1/2). This last magnetic structure is highly preponderant below TN2 (93(5)% in volume). At 1.5 K, the Ce atoms in CeNiGe3 carry a reduced ordered magnetic moment (0.8(2) muB). This value, smaller than that obtained in Ce3Ni2Ge7, results from an important hybridization of the 4f(Ce) orbitals with those of the Ni and Ge ligands.

  14. Refractive index and thickness determination in Langmuir monolayers of myelin lipids.

    PubMed

    Pusterla, Julio M; Malfatti-Gasperini, Antonio A; Puentes-Martinez, Ximena E; Cavalcanti, Leide P; Oliveira, Rafael G

    2017-05-01

    Langmuir monolayers at the air/water interface are widely used as biomembrane models and for amphiphilic molecules studies in general. Under controlled intermolecular organization (lateral molecular area), surface pressure, surface potential, reflectivity (R) and other magnitudes can be precisely determined on these planar monomolecular films. However, some physical parameters such as the refractive index of the monolayer (n) still remain elusive. The refractive index is very relevant because (in combination with R) it allows for the determination of the thickness of the film. The uncertainties of n determine important errors that propagate non-linearly into the calculation of monolayers thickness. Here we present an analytical method for the determination of n in monolayers based on refractive index matching. By using a Brewster angle microscopy (BAM) setup and monolayers spread over subphases with variable refractive index (n2), a minimum in R is search as a function of n2. In these conditions, n equals n2. The results shown correspond to monolayers of myelin lipids. The n values remain constant at 1.46 upon compression and equals the obtained value for myelin lipid bilayers in suspension. The values for n and R allow for the determination of thickness. We establish comparisons between these thicknesses for the monolayer and those obtained from two X-ray scattering techniques: 1) GIXOS for monolayers at the air/water interface and 2) SAXS for bilayers in bulk suspension. This allows us to conclude that the thickness that we measure by BAM includes the apolar and polar headgroup regions of the monolayer.

  15. Non-Fermi surface nesting driven commensurate magnetic ordering in Fe-doped S r2Ru O4

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Shanavas, K. V.; Wang, Y.; Zou, T.; Sun, W. F.; Tian, W.; Garlea, V. O.; Podlesnyak, A.; Matsuda, M.; Stone, M. B.; Keavney, D.; Mao, Z. Q.; Singh, D. J.; Ke, X.

    2017-02-01

    S r2Ru O4 , an unconventional superconductor, is known to possess an incommensurate spin-density wave instability driven by Fermi surface nesting. Here we report a static spin-density wave ordering with a commensurate propagation vector qc=(0.25 0.25 0 ) in Fe-doped S r2Ru O4 , despite the magnetic fluctuations persisting at the incommensurate wave vectors qic=(0.3 0.3 L ) as in the parent compound. The latter feature is corroborated by the first-principles calculations, which show that Fe substitution barely changes the nesting vector of the Fermi surface. These results suggest that in addition to the known incommensurate magnetic instability, S r2Ru O4 is also in proximity to a commensurate magnetic tendency that can be stabilized via Fe doping.

  16. Hydrodynamics of domain relaxation in a polymer monolayer

    NASA Astrophysics Data System (ADS)

    Mann, E. K.; Hénon, S.; Langevin, D.; Meunier, J.; Léger, L.

    1995-06-01

    The line tension between two phases within a monolayer can be determined from the characteristic relaxation time of deformed domains, if the hydrodynamics of that relaxation, in particular the relative roles of surface and bulk viscosity, can be established. This is accomplished here for a polymer monolayer by varying the viscosity of the bulk substrate. A Poly(dimethyl)siloxane monolayer segregates into dense and dilute polymer domains on aqueous glycerol and glucose solutions (of viscosity 1.2<η/ ηwater<75) as well as on pure water. The surface pressures of these polymer films are, for moderate surface pressures and within experimental precision, independent of the glycerol and glucose content of the substrate solutions. Isolated polymer domains relax toward the circular form, linearly for the early ``bola'' form and exponentially for moderate deformations. Relaxation times Tc are measured for domains of size 10 μmmonolayer domains in the two limits, in which surface or bulk viscosity dominates, is discussed. All data are consistent with dissipation dominated by viscosity in the substrate. The deduced line tension is λ=(1.1+/-0.3)×10-12 N.

  17. Spin Density Wave Phase Diagram in Thin Cr(110) Films

    NASA Astrophysics Data System (ADS)

    Rotenberg, Eli; Freelon, B. K.; Koh, H.; Rossnagel, K.; Kevan, S. D.

    2004-03-01

    Using angle-resolved photoemission, we have mapped the antiferromagnetic phase diagram of Cr(110) thin films grown on Mo(110) and W(110) substrates systematically as a function of both film thickness and temperature. We find commensurate and incommensurate spin density wave and paramagnetic phases that are separated by nearly continuous transitions. We determine how the spin density wave band gap evolves near the Fermi level through these phases. Our results suggest a simple model to explain the delicate interplay between commensurate and incommensurate phases that involves a balance between spin density wave stabilization energy and surface and interface magnetic anisotropies.

  18. Reflectivity of a disordered monolayer estimated by graded refractive index and scattering models.

    PubMed

    Diamant, Ruth; Garcí-Valenzuela, Augusto; Fernández-Guasti, Manuel

    2012-09-01

    Reflectivity of a random monolayer, consisting of transparent spherical particles, is estimated using a graded refractive index model, an effective medium approach, and two scattering models. Two cases, a self-standing film and one with a substrate, are considered. Neither the surrounding medium nor the substrate are absorbing materials. Results at normal incidence, with different particle sizes, covering ratios and refractive indexes, are compared. The purpose of this work is to find under which circumstances, for reflectivity at normal incidence, a particle monolayer behaves as a graded refractive index film.

  19. Electromelting of confined monolayer ice.

    PubMed

    Qiu, Hu; Guo, Wanlin

    2013-05-10

    In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under a perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to the field-induced disruption of the water-wall interaction induced well-ordered network of the hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.

  20. Superlubric-pinned Aubry transition of two dimensional monolayers in optical lattices

    NASA Astrophysics Data System (ADS)

    Mandelli, Davide; Vanossi, Andrea; Manini, Nicola; Tosatti, Erio

    Two-dimensional (2D) crystalline colloidal monolayers sliding over a laser-induced optical lattice ``corrugation'' potential emulate friction between ideal crystal surfaces. Static friction is always present when the monolayer and the optical lattices are commensurate, but when they are incommensurate the presence or absence of static friction depends upon the system parameters. In 1D, at the Aubry dynamical phase transition the static friction goes continuously from zero (superlubricity) to finite as the periodic corrugation strength is increased. We look for the Aubry-like transition in the more realistic 2D case of a monolayer in an incommensurate periodic potential using molecular dynamics simulations. Results confirm a clear and sharp 2D superlubric-pinned transition upon increasing corrugation strength. Unlike the 1D Aubry transition which is continuous, the 2D transition is first-order, with a jump of static friction. At the 2D Aubry transition there is no change of symmetry, a sudden rise of the colloid-colloid interaction energy, and a compensating drop of the colloid-corrugation energy. The observability of the superlubric-pinned colloid transition is proposed and discussed. This work has been supported by ERC Advanced Grant N. 320796 MODPHYSFRICT.

  1. Mechanical properties of water-assembled graphene oxide Langmuir monolayers: Guiding controlled transfer

    DOE PAGES

    Harrison, Katharine L.; Biedermann, Laura B.; Zavadil, Kevin R.

    2015-08-24

    Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir–Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10–25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of suchmore » behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. As a result, we hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.« less

  2. Mechanical properties of water-assembled graphene oxide Langmuir monolayers: Guiding controlled transfer

    SciTech Connect

    Harrison, Katharine L.; Biedermann, Laura B.; Zavadil, Kevin R.

    2015-08-24

    Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir–Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10–25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of such behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. As a result, we hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.

  3. Static and dynamic friction in sliding colloidal monolayers

    NASA Astrophysics Data System (ADS)

    Vanossi, Andrea; Manini, Nicola; Tosatti, Erio

    2013-03-01

    In a recent experimental breakthrough, the controlled sliding of 2D colloidal crystals over perfectly regular, laser generated periodic or quasi-periodic `corrugation` potentials has been realized in Bechinger's group. Based on realistic MD simulations which reproduce the main experimentally observed features, we explore the potential impact of colloid monolayer sliding in nanotribology. The free motion of edge-spawned kinks and antikinks in smooth incommensurate sliding is contrasted with the kink-antikink pair nucleation at the large static friction threshold in the commensurate case. The Aubry pinning/depinning transition is also demonstrated, e.g., as a function of the corrugation amplitude. Simulated sliding data allow the extraction of frictional work directly from particles coordinates and velocities as a function of classic friction parameters, primarily speed, and corrugation strength. Analogies with sliding charge-density waves, driven Josephson systems, sliding of rare gas islands, and other novel features suggest further experiments and insights, which promote colloid sliding to a novel friction study instrument. Research partly sponsored by Sinergia Project CRSII2 136287/1.

  4. Molecular organization of a water-insoluble iridium(III) complex in mixed monolayers.

    PubMed

    Giner-Casares, Juan J; Pérez-Morales, Marta; Bolink, Henk J; Muñoz, Eulogia; de Miguel, Gustavo; Martín-Romero, María T; Camacho, Luis

    2007-11-01

    In this work, organized mixed monolayers containing a cationic water-insoluble iridium(III) complex, Ir-dye, [Ir(ppy)(2)(tmphen)]PF(6), (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline, and ppy = 2-phenylpyridine), and an anionic lipid matrix, DMPA, dimyristoyl-phosphatidic acid, with different molar proportions, were formed by the co-spreading method at the air-water interface. The presence of the dye at the interface, as well as the molecular organization of the mixed films, is deduced from surface techniques such as pi-A isotherms, Brewster angle microscopy (BAM) and reflection spectroscopy. The results obtained remark the formation of an equimolar mixed film, Ir-dye/DMPA = 1:1. BAM images reveal a whole homogeneous monolayer, with gradually increasing reflectivity along the compression process up to reaching the collapse of this equimolecular monolayer at pi approximately equal to 37 mNm(-1). Increasing the molar ratio of DMPA in the mixture, the excess of lipid molecules organizes themselves forming dark flower-like domains of pure DMPA at high surface pressures, coexisting with the mixed Ir-dye/DMPA = 1:1 monolayer. On the other hand, unstable mixed monolayers are obtained by using an initial dye surface concentration higher than the equimolecular one. These mixed Langmuir monolayers have been successfully transferred onto solid substrates by the LB (Langmuir-Blodgett) technique.

  5. Commensurability effects in one-dimensional Anderson localization: Anomalies in eigenfunction statistics

    SciTech Connect

    Kravtsov, V.E.; Yudson, V.I.

    2011-07-15

    Highlights: > Statistics of normalized eigenfunctions in one-dimensional Anderson localization at E = 0 is studied. > Moments of inverse participation ratio are calculated. > Equation for generating function is derived at E = 0. > An exact solution for generating function at E = 0 is obtained. > Relation of the generating function to the phase distribution function is established. - Abstract: The one-dimensional (1d) Anderson model (AM), i.e. a tight-binding chain with random uncorrelated on-site energies, has statistical anomalies at any rational point f=(2a)/({lambda}{sub E}) , where a is the lattice constant and {lambda}{sub E} is the de Broglie wavelength. We develop a regular approach to anomalous statistics of normalized eigenfunctions {psi}(r) at such commensurability points. The approach is based on an exact integral transfer-matrix equation for a generating function {Phi}{sub r}(u, {phi}) (u and {phi} have a meaning of the squared amplitude and phase of eigenfunctions, r is the position of the observation point). This generating function can be used to compute local statistics of eigenfunctions of 1d AM at any disorder and to address the problem of higher-order anomalies at f=p/q with q > 2. The descender of the generating function P{sub r}({phi}){identical_to}{Phi}{sub r}(u=0,{phi}) is shown to be the distribution function of phase which determines the Lyapunov exponent and the local density of states. In the leading order in the small disorder we derived a second-order partial differential equation for the r-independent ('zero-mode') component {Phi}(u, {phi}) at the E = 0 (f=1/2 ) anomaly. This equation is nonseparable in variables u and {phi}. Yet, we show that due to a hidden symmetry, it is integrable and we construct an exact solution for {Phi}(u, {phi}) explicitly in quadratures. Using this solution we computed moments I{sub m} = N< vertical bar {psi} vertical bar {sup 2m}> (m {>=} 1) for a chain of the length N {yields} {infinity} and found an

  6. Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction

    PubMed Central

    Li, Man; Ma, Qiang; Zi, Wei; Liu, Xiaojing; Zhu, Xuejie; Liu, Shengzhong (Frank)

    2015-01-01

    A deposition process has been developed to fabricate a complete-monolayer Pt coating on a large-surface-area three-dimensional (3D) Ni foam substrate using a buffer layer (Ag or Au) strategy. The quartz crystal microbalance, current density analysis, cyclic voltammetry integration, and X-ray photoelectron spectroscopy results show that the monolayer deposition process accomplishes full coverage on the substrate and the deposition can be controlled to a single atomic layer thickness. To our knowledge, this is the first report on a complete-monolayer Pt coating on a 3D bulk substrate with complex fine structures; all prior literature reported on submonolayer or incomplete-monolayer coating. A thin underlayer of Ag or Au is found to be necessary to cover a very reactive Ni substrate to ensure complete-monolayer Pt coverage; otherwise, only an incomplete monolayer is formed. Moreover, the Pt monolayer is found to work as well as a thick Pt film for catalytic reactions. This development may pave a way to fabricating a high-activity Pt catalyst with minimal Pt usage. PMID:26601247

  7. Raman spectroscopy and surface wetting of self-assembled monolayer (SAM) of 1-octanethiol and 1,10-decanedithiol

    NASA Astrophysics Data System (ADS)

    Lukose, J.; Kulal, V.; Bankapur, A.; George, S. D.; Chidangil, S.; Sinha, R. K.

    2016-08-01

    We report the preparation of mixed self-assembled monolayer of 1-octanethiol and 1,10-decanedithiol on Au thin film with preferential Au(111) surface and their characterization using Raman spectroscopy of cysteine adsorbed on mixed self-assembled monolayer mediated isolated Ag nanoparticles. The self-assembled monolayer characterization has been also performed through water contact angle measurement. A significant enhancement in water contact angle from 24° to 103° has been observed on Au surface after self-assembled monolayer formation, primarily due to the hydrophobic nature of the methyl group at the terminal end of the 1-octanethiol, which confirms regular self-assembled monolayer formation. Availability of -SH group from 1,10-decanedithiol on the self-assembled monolayer surface and so, the formation of mixed self-assembled monolayer has been ascertained by immobilization of Ag nanoparticles probed via scanning electron microscopy and Raman spectroscopy of cysteine adsorbed on Ag nanoparticles. Raman spectrum of cysteine on self-assembled monolayer mediated Ag nanoparticles in the fingerprint region of 500-1800 cm-1 shows appreciable increase in the band intensity due to surface enhanced Raman scattering as compared to the band intensity on bare Au surface. These results clearly indicate that the mixed self-assembled monolayer with adequate proportion of component molecules can be utilized as a suitable and inexpensive host for surface enhanced Raman scattering substrates.

  8. Spin coherence and dephasing of localized electrons in monolayer MoS2

    SciTech Connect

    Yang, Luyi; Chen, Weibing; McCreary, Kathleen M.; Jonker, Berend T.; Lou, Jun; Crooker, Scott A.

    2015-11-10

    Here, we report a systematic study of coherent spin precession and spin dephasing in electron-doped monolayer MoS2. Using time-resolved Kerr rotation spectroscopy and applied in-plane magnetic fields, a nanosecond time scale Larmor spin precession signal commensurate with g-factor |g0| ≃ 1.86 is observed in several different MoS2 samples grown by chemical vapor deposition. The dephasing rate of this oscillatory signal increases linearly with magnetic field, suggesting that the coherence arises from a subensemble of localized electron spins having an inhomogeneously broadened distribution of g-factors, g0 + Δg. In contrast to g0, Δg is sample-dependent and ranges from 0.042 to 0.115.

  9. Spin coherence and dephasing of localized electrons in monolayer MoS2

    DOE PAGES

    Yang, Luyi; Chen, Weibing; McCreary, Kathleen M.; ...

    2015-11-10

    Here, we report a systematic study of coherent spin precession and spin dephasing in electron-doped monolayer MoS2. Using time-resolved Kerr rotation spectroscopy and applied in-plane magnetic fields, a nanosecond time scale Larmor spin precession signal commensurate with g-factor |g0| ≃ 1.86 is observed in several different MoS2 samples grown by chemical vapor deposition. The dephasing rate of this oscillatory signal increases linearly with magnetic field, suggesting that the coherence arises from a subensemble of localized electron spins having an inhomogeneously broadened distribution of g-factors, g0 + Δg. In contrast to g0, Δg is sample-dependent and ranges from 0.042 to 0.115.

  10. Mysterious Lattice Rotations in Adsorbed Monolayers

    NASA Astrophysics Data System (ADS)

    Diehl, Renee D.

    1997-03-01

    Lattice rotations due to a mismatch in structure have been observed in film growth for many years, probably beginning in the 1930's with the Nishiyama-Wasserman and Kurdjumov-Sachs orientations observed when fcc(111) films grow on bcc(110) surfaces, or vice versa. Early analysis of this problem was carried out with the aid of Moiré patterns and the observation that the preferred lattice orientations are those which maximize the Moiré fringe spacing. Later energy calculations indicated that the structures which were predicted by the the Moiré technique actually do correspond to energy minima. Epitaxial rotation in adsorbed monolayers is a conceptually simpler problem since in principle it involves only two planes of atoms, and it was first observed in 1977 for Ar on a graphite surface(C. G. Shaw, M. D. Chinn, S. C. Fain, Jr. Phys. Rev. Lett. 41 (1978) 955.). This observation came only a few months after a new theory, based on the expected elastic behavior of an overlayer, was developed by A. D. Novaco and J. P. McTague(A. D. Novaco and J. P. McTague, Phys. Rev. Lett. 38 (1977) 1286.), and the agreement with the experimental results was remarkable. It was later shown that a few symmetry principles similar to those used for the film growth studies sometimes can also predict the observed structures. However, the situation for incommensurate layers physisorbed on metal surfaces currently looks bleak. None of the existing theories or models appears to describe the experimental results. New data for physisorbed gases on metal surfaces will be presented, along with some half-baked (and probably wrong) ideas for what might be happening. This work was supported by NSF.

  11. Fruit and vegetable films and uses thereof

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present invention is directed to monolayer, bilayer, and multilayer films made from fruit, vegetable or a combination thereof, which films have the thinness, strength, flexibility and crispness to serve as alternates or substitutes for seaweed-based films such as nori, while providing nutrition ...

  12. Surface enhanced Raman scattering of a lipid Langmuir monolayer at the air-water interface.

    PubMed

    Mangeney, C; Dupres, V; Roche, Y; Felidj, N; Levi, G; Aubard, J; Bernard, S

    Surface enhanced Raman spectra were recorded from a phospholipid monolayer directly at the air-water interface. We used an organized monolayer of negatively charged tetramyristoyl cardiolipins as a template for the electrochemical generation of silver deposits. This two-dimensional electrodeposition of silver under potentiostatic control was the substrate for enhancement of Raman spectra. We report the optimized conditions for the Raman enhancement, the microscopic observations of the deposits, and their characterization by atomic force microscopy. Laser excitation at 514.5 nm leads to intense and reproducible surface enhanced Raman scattering spectra recorded in situ from one monolayer of cardiolipin, using 0.5 mol % of 10N nonyl acridine orange or 5 mol % of acridine in the film, and demonstrates the possibility of estimating the pH at the metal/phospholipidic film interface.

  13. Spin- and valley-coupled electronic states in monolayer WSe{sub 2} on bilayer graphene

    SciTech Connect

    Sugawara, K.; Souma, S.; Sato, T.; Tanaka, Y.; Takahashi, T.

    2015-08-17

    We have fabricated a high-quality monolayer WSe{sub 2} film on bilayer graphene by epitaxial growth and revealed the electronic states by spin- and angle-resolved photoemission spectroscopy. We observed a direct energy gap at the Brillouin-zone corner in contrast to the indirect nature of gap in bulk WSe{sub 2}, which is attributed to the lack of interlayer interaction and the breaking of space-inversion symmetry in monolayer film. A giant spin splitting of ∼0.5 eV, which is the largest among known monolayer transition-metal dichalcogenides, is observed in the energy band around the zone corner. The present results suggest a high potential applicability of WSe{sub 2} to develop advanced devices based with the coupling of spin- and valley-degrees of freedom.

  14. Chemical Vapor Deposition Growth of Linked Carbon Monolayers with Acetylenic Scaffoldings on Silver Foil.

    PubMed

    Liu, Rong; Gao, Xin; Zhou, Jingyuan; Xu, Hua; Li, Zhenzhu; Zhang, Shuqing; Xie, Ziqian; Zhang, Jin; Liu, Zhongfan

    2017-03-02

    Graphdiyne analogs, linked carbon monolayers with acetylenic scaffoldings, are fabricated by adopting low-temperature chemical vapor deposition which provides a route for the synthesis of two-dimensional carbon materials via molecular building blocks. The electrical conductivity of the as-grown films can reach up to 6.72 S cm(-1) . Moreover, the films show potential as promising substrates for fluorescence suppressing and Raman advancement.

  15. Structural and electric properties of two semifluorinated alkane monolayers compressed on top of a controlled hydrophobic monolayer substrate

    NASA Astrophysics Data System (ADS)

    El Abed, Abdel-Illah; Ionov, Radoslav; Goldmann, Michel

    2007-10-01

    We investigate the dynamic behavior upon lateral compression of two mixed films made with one of the two semifluorinated alkanes F(CF2)8(CH2)18H and F(CF2)10(CH2)10H and the natural α -helix alamethicin peptide. Surface pressure, surface potential versus molecular area isotherms, and grazing-incidence x-ray diffraction were applied to characterize this system. We show that both mixed films demix vertically to form two asymmetric flat bilayers where the lower layer is made of alamethicin and the upper layer is made of semifluorinated molecules. The structure matching of the semifluorinated alkanes (where the hydrophilic group is missing) with a suitable organization of the underlying alamethicin monolayer allows for a continuous compression of the upper semifluorinated layers while the density of the lower alamethicin monolayer remains constant. Comparing data of the two studied mixed films enables us to evaluate the effect of chain length on the in-plane organization of the molecules and on the electric properties of the upper layers.

  16. Morphology in electrochemically grown conducting polymer films

    DOEpatents

    Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

    1992-04-28

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol. 2 figs.

  17. Morphology in electrochemically grown conducting polymer films

    DOEpatents

    Rubinstein, Israel; Gottesfeld, Shimshon; Sabatani, Eyal

    1992-01-01

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventioonally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol.

  18. Phase-sensitive magnetoresistance oscillations induced by commensurate bichromatic irradiations in a two-dimensional electron system

    SciTech Connect

    Lei, X. L.; Liu, S. Y.

    2014-06-21

    We analyze a phase-sensitive contribution to the oscillating magnetoresistance induced by the combined driving of two microwave fields having commensurate frequencies ω{sub 1} and ω{sub 2} (m{sub 1}ω{sub 1} + m{sub 2}ω{sub 2} = 0 for at least a set of nonzero integers m{sub 1} and m{sub 2}), based on the balance-equation approach to magnetotransport for high-density two-dimensional electron systems. This commensurate oscillating photoresistance not only depends on the frequencies and polarizations of both microwaves, but varies drastically when changing the relative phases of two incident radiation fields. It shows up most significantly in the case of ω{sub 2}/ω{sub 1} = 3 and may lead to a phase-controllable change of more than a factor of two in the total magnetoresistivity in the vicinity of ω{sub 1}/ω{sub c} = 1.5 and 2.5 (ω{sub c} is the cyclotron frequency), when both radiation fields are linearly x-direction polarized.

  19. The origin of the Kirkwood gaps - A mapping for asteroidal motion near the 3/1 commensurability

    NASA Technical Reports Server (NTRS)

    Wisdom, J.

    1982-01-01

    A mapping of the phase space onto itself with the same low-order resonance structure as the 3/1 commensurability in the planar-elliptic restricted three-body problem is obtained. This mapping is about 1,000 times faster than the usual method of numerically integrating the averaged equations of motion. It exhibits some surprising behavior that might provide a key to the origin of the Kirkwood gaps. It is noted that a test asteroid placed in the gap may evolve for a million years with low eccentricity (less than 0.05) and then suddenly jump to large eccentricity (greater than 0.3), becoming a Mars crosser. The removal of the asteroid by a close encounter with Mars would then be possible. As a first test of this hypothesis, a distribution of 300 test asteroids in the area of the 3/1 commensurability was evolved for two million years. When the Mars crossers are removed, the distribution of initial conditions reveals a gap at the location of the 3/1 Kirkwood gap.

  20. Top-grid monolayer graphene/Si Schottkey solar cell

    SciTech Connect

    Wang, Yusheng; Chen, Caiyun; Fang, Xiao; Li, Zhipeng; Qiao, Hong; Sun, Baoquan; Bao, Qiaoliang

    2015-04-15

    Monolayer graphene/Si Schottkey solar cell was fabricated using a top-grid structure. In comparison with the prevailing “top-window” structure, the newly-designed device structure has simplified the fabrication procedures to avoid ultraviolet (UV) photolithography and SiO{sub 2}-eching. We systematically investigated the effect of chemical doping as well as device area on the device performance. It was found that a power conversion efficiency (PCE) of 5.9% can be achieved by engineering the work function of graphene through chemical doping. Our study indicates that top grid structure is suitable to make low-cost, large area and high efficiency graphene/Si Schottkey solar cell. - Graphical abstract: The engineering of the work function of graphene through chemical doping is an effective approach to improve the performance of monolayer graphene/Si Schottky solar cell. - Highlights: • Monolayer graphene/Si Schottkey solar cell was fabricated. • Chemical doping can effectively tune the work function of graphene film. • Chemical doping has significant effect on the device performance. • The top-grid device structure with graphene is promising with low-cost and high efficiency.

  1. Chemical trends of the magnetocrystalline anisotropy of magnetic monolayers

    NASA Astrophysics Data System (ADS)

    Nie, X.; Wei, Su-Huai; Blügel, Stefan

    2001-03-01

    The in-plane and out-of-plane magnetocrystalline anisotropy energies of 3d, 4d, and 5d magnetic monolayers are calculated using the self-consistent density functional theory in the local spin density approximation (LSDA) and the generalized gradient approximation (GGA), as implemented by the film and bulk FLAPW code FLEUR. The spin-orbit interaction is included using a second variation method. The magnetic monolayers are treated as free-standing or strained coherently on various substrates [e.g., Cu(100), Ag(100)]. To monitor the chemical trend of the magnetocrystalline anisotropy, orbital and spin moment, the nuclear number Z of the atom was varied artificially in steps of Δ Z = 0.1. This approach is better than the simple band filling arguments since it includes the change of the electronic structure due to the change of the atomic potentials. We find that the magnetic anisotropy and the anisotropy of the orbital moment is a rapidly oscillating function between in-plane and out-of-plane easy axis across the transition-metal series. The anisotropy energy increases rapidly when the atomic number of the atom increases in a row. Monolayers grown on Cu(100) and Ag(100) substrate show a very similar trend. The trend of the anisotropy energy is explained in terms evolution of the band structures. The relation between the anisotropy energy and the orbital moment is discussed.

  2. Assembly of citrate gold nanoparticles on hydrophilic monolayers

    NASA Astrophysics Data System (ADS)

    Vikholm-Lundin, Inger; Rosqvist, Emil; Ihalainen, Petri; Munter, Tony; Honkimaa, Anni; Marjomäki, Varpu; Albers, Willem M.; Peltonen, Jouko

    2016-08-01

    Self-assembled monolayers (SAMs) as model surfaces were linked onto planar gold films thorough lipoic acid or disulfide groups. The molecules used were polyethylene glycol (EG-S-S), N-[tris-(hydroxymethyl)methyl]acrylamide polymers with and without lipoic acid (Lipa-pTHMMAA and pTHMMAA) and a lipoic acid triazine derivative (Lipa-MF). All the layers, but Lipa-MF with a primary amino group were hydroxyl terminated. The layers were characterized by contact angle measurements and atomic force microscopy, AFM. Citrate stabilized nanoparticles, AuNPs in water and phosphate buffer were allowed to assemble on the layers for 10 min and the binding was followed in real-time with surface plasmon resonance, SPR. The SPR resonance curves were observed to shift to higher angles and become increasingly damped, while also the peaks strongly broaden when large nanoparticles assembled on the surface. Both the angular shift and the damping of the curve was largest for nanoparticles assembling on the EG-S-S monolayer. High amounts of particles were also assembled on the pTHMMAA layer without the lipoic acid group, but the damping of the curve was considerably lower with a more even distribution of the particles. Topographical images confirmed that the highest number of particles were assembled on the polyethylene glycol monolayer. By increasing the interaction time more particles could be assembled on the surface.

  3. Molecular Packing of Functionalized Fluorinated Lipids in Langmuir Monolayers

    SciTech Connect

    Landsberg, Michael J.; Ruggles, Jeremy L.; Hussein, Waleed M.; McGeary, Ross P.; Gentle, Ian R.; Hankamer, Ben

    2012-01-20

    Fluorinated amphipaths are a fascinating class of compounds, which, despite significant challenges associated with their syntheses, have found use across a number of areas of biotechnology. Applications range from the in vitro stabilization of membrane proteins to the development of enhanced stability intravenous drug and gene delivery systems. More recently, monolayer-forming fluorinated lipids have found use in the 2D crystallization of detergent-solubilized hydrophobic or partially hydrophobic proteins at the air-water interface. In this study, we investigate the surface properties of a novel suite of monolayer forming, partially fluorinated lipids. These modular lipid structures contain a densely fluorinated insertion in the hydrocarbon tail and a synthetically modifiable headgroup. Analyses of surface-pressure area isotherms and X-ray reflectometry profiles reveal that the lipids spread into fluid monolayers and are more compressible than their non-fluorinated counterparts. Furthermore, the data support a model whereby the partially fluorinated chains of the lipid tails form a film which is fundamentally incompatible with detergents and other destabilizing amphipaths.

  4. Properties of Langmuir monolayers from semifluorinated alkanes

    NASA Astrophysics Data System (ADS)

    Broniatowski, M.; Macho, I. Sandez; Miñones, J.; Dynarowicz-Łątka, P.

    2005-06-01

    The aim of this study was to characterize several semifluorinated alkanes (SFA), of the general formula F(CF 2) m(CH 2) nH (in short F mH n), containing 25 carbon atoms in total (pentacosanes) differing in the m/ n ratio, as Langmuir monolayers at the free water surface. The following compounds have been studied: F6H19, F8H17, F10H15 and F12H13. Surface pressure ( π) and electric surface potential (Δ V) isotherms were recorded in addition to quantitative Brewster angle microscopy results. The negative sign of Δ V evidenced for the orientation of all the investigated semifluorinated pentacosanes, regardless the length of the hydrogenated segment, with their perfluorinated parts directed towards the air. As inferred from apparent dipole moment values and relative reflectivity results, the fluorinated pentacosanes with shorter perfluorinated fragment (F6H19 and F8H17) were found to be vertically oriented at the air/water interface, while those with longer perfluorinated moiety (F10H15 and F12H13) remain titled even in the vicinity of the film collapse.

  5. Modeling Stimuli-Responsive Nanoparticle Monolayer

    NASA Astrophysics Data System (ADS)

    Yong, Xin

    2015-03-01

    Using dissipative particle dynamics (DPD), we model a monolayer formed at the water-oil interface, which comprises stimuli-responsive nanoparticles. The solid core of the nanoparticle encompasses beads arranged in an fcc lattice structure and its surface is uniformly grafted with stimuli-responsive polymer chains. The surface-active nanoparticles adsorb to the interface from the suspension to minimize total energy of the system and create a monolayer covering the interface. We investigate the monolayer formation by characterizing the detailed adsorption kinetics. We explore the microstructure of the monolayer at different surface coverage, including the particle crowding and ordering, and elucidate the response of monolayer to external stimuli. The collective behavior of the particles within the monolayer is demonstrated quantitatively by vector-vector autocorrelation functions. This study provides a fundamental understanding of the interfacial behavior of stimuli-responsive nanoparticles.

  6. Electrochemical and scanning probe microscopic characterization of spontaneously adsorbed organothiolate monolayers at gold

    SciTech Connect

    Wong, Sze-Shun Season

    1999-12-10

    This dissertation presented several results which add to the general knowledge base regarding organothiolates monolayer spontaneously adsorbed at gold films. Common to the body of this work is the use of voltammetric reductive resorption and variants of scanning probe microscopy to gain insight into the nature of the monolayer formation process as well as the resulting interface. The most significant result from this work is the success of using friction force microscopy to discriminate the end group orientation of monolayer chemisorbed at smooth gold surfaces with micrometer resolution (Chapter 4). The ability to detect the differences in the orientational disposition is demonstrated by the use PDMS polymer stamp to microcontact print an adlayer of n-alkanethiolate of length n in a predefine pattern onto a gold surface, followed by the solution deposition of a n-alkanethiol of n ± 1 to fill in the areas on the gold surface intentionally not coated by the stamping process. These two-component monolayers can be discriminated by using friction force microscopy which detects differences in friction contributed by the differences in the orientation of the terminal groups at surfaces. This success has recently led to the detection of the orientation differences at nanometer scale. Although the substrates examined in this work consisted entirely of smooth gold films, the same test can be performed on other smooth substrates and monolayer materials.

  7. Enantiomeric interactions between liquid crystals and organized monolayers of tyrosine-containing dipeptides.

    PubMed

    Bai, Yiqun; Abbott, Nicholas L

    2012-01-11

    We have examined the orientational ordering of nematic liquid crystals (LCs) supported on organized monolayers of dipeptides with the goal of understanding how peptide-based interfaces encode intermolecular interactions that are amplified into supramolecular ordering. By characterizing the orientations of nematic LCs (4-cyano-4'-pentylbiphenyl and TL205 (a mixture of mesogens containing cyclohexane-fluorinated biphenyls and fluorinated terphenyls)) on monolayers of l-cysteine-l-tyrosine, l-cysteine-l-phenylalanine, or l-cysteine-l-phosphotyrosine formed on crystallographically textured films of gold, we conclude that patterns of hydrogen bonds generated by the organized monolayers of dipeptides are transduced via macroscopic orientational ordering of the LCs. This conclusion is supported by the observation that the ordering exhibited by the achiral LCs is specific to the enantiomers used to form the dipeptide-based monolayers. The dominant role of the -OH group of tyrosine in dictating the patterns of hydrogen bonds that orient the LCs was also evidenced by the effects of phosphorylation of the tyrosine on the ordering of the LCs. Overall, these results reveal that crystallographic texturing of gold films can direct the formation of monolayers of dipeptides with long-range order, thus unmasking the influence of hydrogen bonding, chirality, and phosphorylation on the macroscopic orientational ordering of LCs supported on these surfaces. These results suggest new approaches based on supramolecular assembly for reporting the chemical functionality and stereochemistry of synthetic and biological peptide-based molecules displayed at surfaces.

  8. Thermal stability and molecular ordering of organic semiconductor monolayers: effect of an anchor group.

    PubMed

    Jones, Andrew O F; Knauer, Philipp; Resel, Roland; Ringk, Andreas; Strohriegl, Peter; Werzer, Oliver; Sferrazza, Michele

    2015-06-08

    The thermal stability and molecular order in monolayers of two organic semiconductors, PBI-PA and PBI-alkyl, based on perylene derivatives with an identical molecular structure except for an anchor group for attachment to the substrate in PBI-PA, are reported. In situ X-ray reflectivity measurements are used to follow the stability of these monolayers in terms of order and thickness as temperature is increased. Films have thicknesses corresponding approximately to the length of one molecule; molecules stand upright on the substrate with a defined structure. PBI-PA monolayers have a high degree of order at room temperature and a stable film exists up to 250 °C, but decomposes rapidly above 300 °C. In contrast, stable physisorbed PBI-alkyl monolayers only exist up to 100 °C. Above the bulk melting point at 200 °C no more order exists. The results encourage using anchor groups in monolayers for various applications as it allows enhanced stability at the interface with the substrate.

  9. Characterization and reactivity of organic monolayers on gold and platinum surfaces

    SciTech Connect

    Wu, Chien-Ching

    1995-12-06

    Purpose is to understand how the mobilization, dielectric, orientation, composition, coverage, and structure of self-assembled organic monolayers on metal surfaces affects the surface reactivities and properties of these films in order to facilitate the construction of desired films. Two model systems were used: tiols at Au and aromatic acids at Pt. Surface analysis methods, including contact angle, electrochemistry, ellipsometry, infrared reflection absorption spectroscopy (IRRAS), and x-ray photospectroscopy, were used to study the self-assembled organic monolayers on Au and Pt. IRRAS, contact angle, and electrochemistry were used to determine the surface pKa of phenylcarboxylic acids and pyridylcarboxylic acids monolayers on Pt. These techniques were also used to determine the orientation of polymethylene chain axis and the carboxylic follow the structural evolution of the chains and end group of the thiolate monolayers during formation. IRRAS was also used to assess the carboxylic acid group in terms of its possible existence as the non-hydrogen-bonded species, the hydrogen-bonded dimeric group, and the hydrogen-bonded polymeric group. These different forms of the end group were also followed vs coverage, as well as the reactivity vs solution pH. IRRAS and contact angle were used to calculate the rate constant of the esterification of carboxylic acid-terminated monolayers on Au.

  10. Surface activity coefficients of spread monolayers of behenic acid salts at air-water interface.

    PubMed

    Chattoraj, D K; Halder, E; Das, K P; Mitra, A

    2006-11-16

    The pressure-area isotherms of ionized monolayers of behenic acid at air-water interface at pH 12.0 have been obtained from the Langmuir film balance experiments under various physico-chemical conditions. The value of the measured surface pressure at a given area per molecule is equal to the sum of the ideal pressure, cohesive pressure and electrical pressure. The electrical pressure term is regarded as the sum of the pressure originating from the Gouy-Chapman double layer including discrete ion effect, ion binding and monolayer hydration effect. At a given area, the deviation of the measured surface pressure from its ideal value has been calculated in terms of the apparent surface compressibility coefficients, surface fugacity coefficients for gaseous monolayer and surface activity coefficients of solute forming two-dimensional solutions in the monolayer phase respectively. Values of all these coefficients have been calculated for different compositions of the monolayer using non-ideal gas model and Raoult's and Henry's laws modified for two-dimensional non-ideal solutions respectively. Values of these coefficients may be higher or lower than unity depending upon ionic strengths and nature of inorganic salts present in the sub-phase. Using these values of surface activity coefficients, the standard free energies of formation, of spread monolayers of salts of behenic acid have been calculated at different standard states of reference.

  11. Well-ordered monolayers of alkali-doped coronene and picene: Molecular arrangements and electronic structures

    SciTech Connect

    Yano, M.; Endo, M.; Hasegawa, Y.; Okada, R.; Yamada, Y. Sasaki, M.

    2014-07-21

    Adsorptions of alkali metals (such as K and Li) on monolayers of coronene and picene realize the formation of ordered phases, which serve as well-defined model systems for metal-intercalated aromatic superconductors. Upon alkali-doping of the monolayers of coronene and picene, scanning tunneling microscopy and X-ray absorption spectroscopy revealed the rearrangement of the entire molecular layer. The K-induced reconstruction of both monolayers resulted in the formation of a structure with a herringbone-like arrangement of molecules, suggesting the intercalation of alkali metals between molecular planes. Upon reconstruction, a shift in both the vacuum level and core levels of coronene was observed as a result of a charge transfer from alkali metals to coronene. In addition, a new density of states near the Fermi level was formed in both the doped coronene and the doped picene monolayers. This characteristic electronic feature of the ordered monolayer has been also reported in the multilayer picene films, ensuring that the present monolayer can model the properties of the metal-intercalated aromatic hydrocarbons. It is suggested that the electronic structure near the Fermi level is sensitive to the molecular arrangement, and that both the strict control and determinations of the molecular structure in the doped phase should be important for the determination of the electronic structure of these materials.

  12. Anti-fouling chemistry of chiral monolayers: enhancing biofilm resistance on racemic surface.

    PubMed

    Bandyopadhyay, Debjyoti; Prashar, Deepali; Luk, Yan-Yeung

    2011-05-17

    This work reports the resistance to protein adsorption and bacterial biofilm formation by chiral monolayers of polyol-terminated alkanethiols surrounding micrometer-sized patterns of methyl-terminated alkanethiols on gold films. We discover that patterned surfaces surrounded by chiral polyol monolayers can distinguish different stages of biofilm formation. After inoculation on the surfaces, bacteria first reversibly attached on the chiral polyol monolayers. Over time, the bacteria detached from the polyol surfaces, and attached on the hydrophobic micropatterns to form biofilms. Interestingly, while both enantiomers of gulitol- and mannonamide-terminated monolayer resisted adsorption of proteins (bovine serum albumin, lysozyme, and fibrinogen) and confined biofilms formed on the micropatterns, the monolayers formed by the racemic mixture of either pair of enantiomers exhibited stronger antifouling chemistry against both protein adsorption and biofilm formation than monolayers formed by one enantiomer alone. These results reveal the different chemistries that separate the different stages of biofilm formation, and the stereochemical influence on resisting biofoulings at a molecular-level.

  13. Mixed multilayered vertical heterostructures utilizing strained monolayer WS2

    NASA Astrophysics Data System (ADS)

    Sheng, Yuewen; Xu, Wenshuo; Wang, Xiaochen; He, Zhengyu; Rong, Youmin; Warner, Jamie H.

    2016-01-01

    Creating alternating layers of 2D materials forms vertical heterostructures with diverse electronic and opto-electronic properties. Monolayer WS2 grown by chemical vapour deposition can have inherent strain due to interactions with the substrate. The strain modifies the band structure and properties of monolayer WS2 and can be exploited in a wide range of applications. We demonstrate a non-aqueous transfer method for creating vertical stacks of mixed 2D layers containing a strained monolayer of WS2, with Boron Nitride and Graphene. The 2D materials are all grown by CVD, enabling large area vertical heterostructures to be formed. WS2 monolayers grown by CVD directly on Si substrates with SiO2 surface are easily washed off by water and this makes aqueous based transfer methods challenging for creating vertical stacks on the growth substrate. 2D hexagonal Boron Nitride films are used to provide an insulating layer that limits interactions with a top graphene layer and preserve the strong photoluminescence from the WS2. This transfer method is suitable for layer by layer control of 2D material vertical stacks and is shown to be possible for all CVD grown samples, which opens up pathways for the rapid large scale fabrication of vertical heterostructure systems with atomic thickness depth control and large area coverage.Creating alternating layers of 2D materials forms vertical heterostructures with diverse electronic and opto-electronic properties. Monolayer WS2 grown by chemical vapour deposition can have inherent strain due to interactions with the substrate. The strain modifies the band structure and properties of monolayer WS2 and can be exploited in a wide range of applications. We demonstrate a non-aqueous transfer method for creating vertical stacks of mixed 2D layers containing a strained monolayer of WS2, with Boron Nitride and Graphene. The 2D materials are all grown by CVD, enabling large area vertical heterostructures to be formed. WS2 monolayers grown by

  14. Structure and shear response of lipid monolayers

    SciTech Connect

    Dutta, P.; Ketterson, J.B.

    1990-02-01

    Organic monolayers and multilayers are both scientifically fascinating and technologically promising; they are, however, both complex systems and relatively inaccessible to experimental probes. In this Progress Report, we describe our X-ray diffraction studies, which have given us substantial new information about the structures and phase transitions in monolayers on the surface of water; our use of these monolayers as a unique probe of the dynamics of wetting and spreading; and our studies of monolayer mechanical properties using a simple but effective technique available to anyone using the Wilhelmy method to measure surface tension.

  15. Nucleation Control for Large, Single Crystalline Domains of Monolayer Hexagonal Boron Nitride via Si-Doped Fe Catalysts

    PubMed Central

    2015-01-01

    The scalable chemical vapor deposition of monolayer hexagonal boron nitride (h-BN) single crystals, with lateral dimensions of ∼0.3 mm, and of continuous h-BN monolayer films with large domain sizes (>25 μm) is demonstrated via an admixture of Si to Fe catalyst films. A simple thin-film Fe/SiO2/Si catalyst system is used to show that controlled Si diffusion into the Fe catalyst allows exclusive nucleation of monolayer h-BN with very low nucleation densities upon exposure to undiluted borazine. Our systematic in situ and ex situ characterization of this catalyst system establishes a basis for further rational catalyst design for compound 2D materials. PMID:25664483

  16. Syntheses, spectral, electrochemical and thermal studies of mononuclear manganese(III) complexes with ligands derived from 1,2-propanediamine and 2-hydroxy-3 or 5-methoxybenzaldehyde: Self-assembled monolayer formation on nanostructure zinc oxide thin film

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad Hossein; Askari, Elham; Amirnasr, Mehdi; Amiri, Ahmad; Yamane, Yuki; Suzuki, Takayoshi

    2011-08-01

    Mononuclear Mn(III) complexes have been prepared via the Mn(II) reaction of an equimolar of Schiff-bases derived from reaction of 2-hydroxy-3-methoxybenzaldehyde or 2-hydroxy-5-methoxybenzaldehyde with 1,2-diaminopropane. Axial ligands L include: pyridine (py) and H 2O. The resulting complexes have been characterized by FT-IR and UV-vis spectroscopy. The crystal structures of the complexes were determined and indicate that in the solid state the complex adopts a slightly distorted octahedral environment of the imine N and hydroxo O with the two axial ligands. The electrochemical reduction of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to Mn III-Mn II is electrochemically quasi-reversible. Thermal stability of these complexes was determined by TG and DTG. Layers of these complexes were formed on nanostructure zinc oxide thin film and a red shift was observed when zinc oxide thin film is modified by complex.

  17. Syntheses, spectral, electrochemical and thermal studies of mononuclear manganese(III) complexes with ligands derived from 1,2-propanediamine and 2-hydroxy-3 or 5-methoxybenzaldehyde: self-assembled monolayer formation on nanostructure zinc oxide thin film.

    PubMed

    Habibi, Mohammad Hossein; Askari, Elham; Amirnasr, Mehdi; Amiri, Ahmad; Yamane, Yuki; Suzuki, Takayoshi

    2011-08-01

    Mononuclear Mn(III) complexes have been prepared via the Mn(II) reaction of an equimolar of Schiff-bases derived from reaction of 2-hydroxy-3-methoxybenzaldehyde or 2-hydroxy-5-methoxybenzaldehyde with 1,2-diaminopropane. Axial ligands L include: pyridine (py) and H(2)O. The resulting complexes have been characterized by FT-IR and UV-vis spectroscopy. The crystal structures of the complexes were determined and indicate that in the solid state the complex adopts a slightly distorted octahedral environment of the imine N and hydroxo O with the two axial ligands. The electrochemical reduction of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to Mn(III)-Mn(II) is electrochemically quasi-reversible. Thermal stability of these complexes was determined by TG and DTG. Layers of these complexes were formed on nanostructure zinc oxide thin film and a red shift was observed when zinc oxide thin film is modified by complex.

  18. Dewetting of a solid monolayer.

    PubMed

    Pierre-Louis, O; Chame, Anna; Saito, Yukio

    2007-09-28

    We report on the dewetting of a monolayer on a solid substrate, where mass transport occurs via surface diffusion. For a wide range of parameters, a labyrinthine pattern of bilayer islands is formed. An irreversible regime and a thermodynamic regime are identified. In both regimes, the velocity of a dewetting front, the wavelength of the bilayer island pattern, and the rate of nucleation of dewetted zones are obtained. We also point out the existence of a scaling behavior, which is analyzed by means of a geometrical model.

  19. Superlubric-pinned transition in sliding incommensurate colloidal monolayers

    NASA Astrophysics Data System (ADS)

    Mandelli, Davide; Vanossi, Andrea; Invernizzi, Michele; Paronuzzi, Stella; Manini, Nicola; Tosatti, Erio

    2015-10-01

    Two-dimensional (2D) crystalline colloidal monolayers sliding over a laser-induced optical lattice providing the periodic "corrugation" potential recently emerged as a new tool for the study of friction between ideal crystal surfaces. Here, we focus in particular on static friction, the minimal sliding force necessary to depin one lattice from the other. If the colloid and the optical lattices are mutually commensurate, the colloid sliding is always pinned by static friction; however, when they are incommensurate, the presence or absence of pinning can be expected to depend upon the system parameters, like in one-dimensional (1D) systems. If a 2D analogy to the mathematically established Aubry transition of one-dimensional systems were to hold, an increasing periodic corrugation strength U0 should turn an initially free-sliding, superlubric colloid into a pinned state, where the static friction force goes from zero to finite through a well-defined dynamical phase transition. We address this problem by the simulated sliding of a realistic model 2D colloidal lattice, confirming the existence of a clear and sharp superlubric-pinned transition for increasing corrugation strength. Unlike the 1D Aubry transition, which is continuous, the 2D transition exhibits a definite first-order character, with a jump of static friction. With no change of symmetry, the transition entails a structural character, with a sudden increase of the colloid-colloid interaction energy, accompanied by a compensating downward jump of the colloid-corrugation energy. The transition value for the corrugation amplitude U0 depends upon the misalignment angle θ between the optical and the colloidal lattices, superlubricity surviving until larger corrugations for angles away from the energetically favored orientation, which is itself generally slightly misaligned, as shown in recent work. The observability of the superlubric-pinned colloid transition is proposed and discussed.

  20. Magnetism induced by the organization of self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Carmeli, I.; Leitus, G.; Naaman, R.; Reich, S.; Vager, Z.

    2003-06-01

    Unique occurrence of magnetism is shown, in which magnetism appears ex nihilo, when organic molecules are self-assembled as monolayers on gold substrate. The molecules as well as the substrate, when they stand alone, are diamagnetic. Using a superconducting quantum interference device type magnetometer we obtained direct evidence that close-packed organized thio-organic films adsorbed on gold substrates possess magnetic properties at room temperature. The films studied show very high specific magnetization, up to many tens Bohr magnetons per adsorbed molecule, with a very small hysteresis. It is highly anisotropic and shows almost no temperature dependence. The magnetism observed is related to charge transfer between the organic layer and the metal substrate. Yet, the uniqueness here is that many spins are polarized per adsorbed molecules. The magnetic effect is related to the two dimensional organization of the organic molecules on the metal substrate which might explain the high anisotropy.

  1. [Characteristics of interaction of adenylate cyclase modulators and phosphoinositide cell signaling systems with lipid langmuir monolayers].

    PubMed

    Liakhov, O M; Prokopenko, V V; Prokopenko, R A; Mohylevych, S Ie

    2006-01-01

    Interaction of two groups of bioregulators, which oppositely affect activity of adenylate cyclase and phosphoinositide cellular signaling systems, with the Langmuir monolayer films made of natural lecithin was studied. Most significant influence on the structural and energy characteristics of lipid monolayers was revealed for the group of bioregulators, which inhibit polyphosphoinositide signaling system or/and activate adenylate cyclase signaling system. It is shown, that using the cluster analysis the bioregulators can be divided into two groups according to general orientation of their action on the considered systems of transduction of a signal.

  2. Negative dipole potentials of uncharged langmuir monolayers due to fluorination of the hydrophilic heads.

    PubMed

    Petrov, Jordan G; Andreeva, Tonya D; Kurth, Dirk G; Möhwald, Helmuth

    2005-07-28

    The dipole potential, affecting the structure, functions, and interactions of biomembranes, lipid bilayers, and Langmuir monolayers, is positive toward the hydrocarbon moieties. We show that uncharged Langmuir monolayers of docosyl trifluoroethyl ether (DFEE) exhibit large negative dipole potentials, while the nonfluorinated docosyl ethyl ether (DEE) forms films with positive dipole potentials. Comparison of the Delta V values for these ethers with those of the previously studied(37-39) monolayers of trifluoroethyl ester (TFEB) and ethyl ester of behenic acid (EB) shows that the reversal of the sign of Delta V causes the same change Delta(Delta V) = -706 +/- 16 mV due to fluorination of heads. The Delta V values of both TFEB and EB films differ by -122 +/- 16 mV from those of DFEE and DEE monolayers, respectively, with the same density. Such quantitative coincidence points to a common mechanism of reversal of the sign of the dipole potential for the ether and ester films despite the different structure of their heads. The mechanical properties and phase behaviors of these monolayers show that both fluorinated heads are less hydrated, suggesting that the change of the sign of Delta V could, at least partially, be related to different hydration water structure. The same negative contribution of the carbonyl bond in both TFEB and EB films contrasts with the generally accepted positive contribution of the C(delta+)=O(delta-) bond in condensed Langmuir monolayers of fatty acids, their alcohol esters, glycerides, and phospholipids but concurs with the theoretical analysis of Delta V of stearic acid monolayers. Both results question the literature values of the molecular dipole moments of these substances calculated via summation of bonds and atomic group contributions. Mixed monolayers of DFEE and DEE show smooth monotonic variation of Delta V from +450 to -235 mV, indicating a way for adjustment of the sign and magnitude of the dipole potential at the membrane

  3. High-temperature superconductivity in FeSe monolayers

    NASA Astrophysics Data System (ADS)

    Sadovskii, M. V.

    2016-10-01

    This paper reviews the basic experimental and theoretical aspects of high-temperature superconductivity in intercalated FeSe compounds and FeSe monolayer films on SrTiO_3 and similar substrates. The paper examines in detail the electronic structure of these systems, how it is calculated, and how the calculated results compare with ARPES experiments. It is emphasized that the reviewed systems have qualitatively different electronic spectra from the typical pattern of well-studied FeAs superconductors and explores the implications of these differences for a theoretical description of how these spectra form. Possible mechanisms of Cooper pairing in FeSe monolayers are discussed and the associated problems are examined. Because FeSe monolayer films on SrTiO_3 are typical Ginzburg 'sandwiches', the possibility of increasing their T_c via 'excitonic' superconductivity mechanisms is considered. It is shown that, while the classical version of this mechanism (as proposed for such systems by Allender, Bray, and Bardeen) fails to explain the observed values of T_c, the situation changes when optical phonons in SrTiO_3 (with energy of about 100 meV) are considered to be 'excitons'. Both the simplest possible model of T_c enhancement due to interaction with such phonons and more complex ones with dominant 'forward' scattering that explain successfully the increase in T_c compared to bulk FeSe and intercalated FeSe systems are verified. Problems related to the antiadiabatic nature of this superconductivity mechanism are also discussed.

  4. Scanning Electrochemical Microscopy of DNA Monolayers Modified with Nile Blue

    PubMed Central

    Gorodetsky, Alon A.; Hammond, William J.; Hill, Michael G.; Slowinski, Krzysztof; Barton, Jacqueline K.

    2009-01-01

    Scanning electrochemical microscopy (SECM) is used to probe long-range charge transport (CT) through DNA monolayers containing the redox-active Nile Blue (NB) intercalator covalently affixed at a specific location in the DNA film. At substrate potentials negative of the formal potential of covalently attached NB, the electrocatalytic reduction of Fe(CN)63− generated at the SECM tip is observed only when NB is located at the DNA/solution interface; for DNA films containing NB in close proximity to the DNA/electrode interface, the electrocatalytic effect is absent. This behavior is consistent with both rapid DNA-mediated CT between the NB intercalator and the gold electrode as well as a rate-limiting electron transfer between NB and the solution phase Fe(CN)63−. The DNA-mediated nature of the catalytic cycle is confirmed through sequence-specific and localized detection of attomoles of TATA-binding protein, a transcription factor that severely distorts DNA upon binding. Importantly, the strategy outlined here is general and allows for the local investigation of the surface characteristics of DNA monolayers both in the absence and in the presence of DNA binding proteins. These experiments highlight the utility of DNA-modified electrodes as versatile platforms for SECM detection schemes that take advantage of CT mediated by the DNA base pair stack. PMID:19053641

  5. Force modulated conductance of artificial coiled-coil protein monolayers.

    PubMed

    Atanassov, Alexander; Hendler, Ziv; Berkovich, Inbal; Ashkenasy, Gonen; Ashkenasy, Nurit

    2013-01-01

    Studies of charge transport through proteins bridged between two electrodes have been the subject of intense research in recent years. However, the complex structure of proteins makes it difficult to elucidate transport mechanisms, and the use of simple peptide oligomers may be an over simplified model of the proteins. To bridge this structural gap, we present here studies of charge transport through artificial parallel coiled-coil proteins conducted in dry environment. Protein monolayers uniaxially oriented at an angle of ∼ 30° with respect to the surface normal were prepared. Current voltage measurements, obtained using conductive-probe atomic force microscopy, revealed the mechano-electronic behavior of the protein films. It was found that the low voltage conductance of the protein monolayer increases linearly with applied force, mainly due to increase in the tip contact area. Negligible compression of the films for loads below 26 nN allowed estimating a tunneling attenuation factor, β(0) , of 0.5-0.6 Å(-1) , which is akin to charge transfer by tunneling mechanism, despite the comparably large charge transport distance. These studies show that mechano-electronic behavior of proteins can shed light on their complex charge transport mechanisms, and on how these mechanisms depend on the detailed structure of the proteins. Such studies may provide insightful information on charge transfer in biological systems.

  6. Thiolated cyclodextrin self-assembled monolayer-like characterized with secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Rabara, L.; Aranyosiova, M.; Velic, D.

    2011-01-01

    In the work the focus is on the preparation of self-assembled monolayer-like films consisting of thiolated cyclodextrin on gold substrate and a characterization by using secondary ion mass spectrometry. The short (1 min) and long (1 h) time preparations of self-assembled monolayer-like films, resulting in submonolayer and monolayer regimes, are investigated, respectively. The observed species of thiolated cyclodextrin (M as molecular ion) self-assembled monolayer-like films are assigned to three groups: Au xH yS z clusters, fragments with origin in cyclodextrin molecule associated with Au, and molecular ions. The group of Au xH yS z ( x = 2-17, y = 0-2, z = 1-5) clusters have higher intensities than other species in the positive and even more in negative mass spectra. Interestingly, the dependence between the number of Au and S atoms shows that with the increasing size of Au xH yS z clusters up to 11 Au atoms, the number of associated S atoms is also increasing and then decreasing. Molecular species as (M-S+H)Na +, (M+H)Na +, AuMNa +, (M 2-S)Na +, and M 2Na + are determined, and also in cationized forms with K +. The intensities of thiolated cyclodextrin fragments at the long time preparation are approximately 10 times higher than the intensities of the same fragments observed at the short time. The largest observed ions in thiolated cyclodextrin self-assembled monolayer-like films are AuM 2 and Au 2M. The thiolated cyclodextrin molecular ions are compared with hexadecanethiol molecular ions in the form of Au xM w where the values of x and w are smaller for thiolated cyclodextrin than for hexadecanethiol. This result is supported with larger, more compact, and more stabile thiolated cyclodextrin molecule.

  7. Computational study of low-friction quasicrystalline coatings via simulations of thin film growth of hydrocarbons and rare gases

    NASA Astrophysics Data System (ADS)

    Setyawan, Wahyu

    Quasicrystalline compounds (QC) have been shown to have lower friction compared to other structures of the same constituents. The abscence of structural interlocking when two QC surfaces slide against one another yields the low friction. To use QC as low-friction coatings in combustion engines where hydrocarbon-based oil lubricant is commonly used, knowledge of how a film of lubricant forms on the coating is required. Any adsorbed films having non-quasicrystalline structure will reduce the self-lubricity of the coatings. In this manuscript, we report the results of simulations on thin films growth of selected hydrocarbons and rare gases on a decagonal Al73Ni10Co17 quasicrystal (d-AlNiCo). Grand canonical Monte Carlo method is used to perform the simulations. We develop a set of classical interatomic many-body potentials which are based on the embedded-atom method to study the adsorption processes for hydrocarbons. Methane, propane, hexane, octane, and benzene are simulated and show complete wetting and layered films. Methane monolayer forms a pentagonal order commensurate with the d-AlNiCo. Propane forms disordered monolayer. Hexane and octane adsorb in a close-packed manner consistent with their bulk structure. The results of hexane and octane are expected to represent those of longer alkanes which constitute typical lubricants. Benzene monolayer has pentagonal order at low temperatures which transforms into triangular lattice at high temperatures. The effects of size mismatch and relative strength of the competing interactions (adsorbate-substrate and between adsorbates) on the film growth and structure are systematically studied using rare gases with Lennard-Jones pair potentials. It is found that the relative strength of the interactions determines the growth mode, while the structure of the film is affected mostly by the size mismatch between adsorbate and substrate's characteristic length. On d-AlNiCo, xenon monolayer undergoes a first-order structural

  8. Mechanism of Pb Adsorption to Fatty Acid Langmuir Monolayers Studied by X-ray Absorption Fine Structure Spectroscopy

    SciTech Connect

    Boyanov, M.I.; Kmetko, J.; Shibata, T.; Datta, A.; Dutta, P.; Bunker, B.A.

    2010-09-30

    The local atomic environment of lead (Pb) adsorbed to a CH{sub 3}(CH{sub 2}){sub 19}COOH Langmuir monolayer was investigated in situ using grazing-incidence X-ray absorption fine structure (GI-XAFS) spectroscopy at the Pb L{sub III} edge. Measurements were performed at pH 6.5 of the 10{sup -5} M PbCl{sub 2} solution subphase, a condition under which grazing incidence diffraction (GID) revealed a large-area commensurate superstructure underneath the close-packed organic monolayer. The XAFS results indicate covalent binding of the Pb cations to the carboxyl headgroups, and the observed Pb-Pb coordination suggests that the metal is adsorbed as a hydrolysis polymer, rather than as individual Pb{sup 2+} ions. The data are consistent with a bidentate chelating mechanism and a one Pb atom to one carboxyl headgroup binding stoichiometry. We discuss how this adsorption model can explain the peculiarities observed with Pb in previous metal-Langmuir monolayer studies. A systematic study of lead perchlorate and lead acetate aqueous solutions is presented and used in the analysis. XAFS multiple scattering effects from alignment of the Pb-C-C atoms in the lead acetate solutions are reported.

  9. Phase transition to a commensurate magnetic structure in PrMn{sub 2}O{sub 5} oxide

    SciTech Connect

    Men’shenin, V. V.

    2015-06-15

    On the basis of the experimentally obtained structure of the magnetic phase of the PrMn{sub 2}O{sub 5} oxide, it is found that in the temperature interval from 18 to 25 K, a transition to this phase should be analytically described by a two-component order parameter and that the effective Hamiltonian of the system should contain two independent fourth-order invariants with respect to the components of this parameter. With the use of the results of renormalization group analysis of phase transitions with this effective Hamiltonian, which are known from the literature, it is established that a second-order transition occurs. It is shown that the commensurate antiferromagnetic phase resulting from this transition has no electric polarization because this polarization is forbidden by the symmetry of the system.

  10. Coexistence of superconductivity and commensurate charge density wave in 4Hb-TaS2-xSex single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, L. J.; Lu, W. J.; Ang, R.; Liu, X. Z.; Sun, Y. P.

    2014-01-01

    The transition-metal dichalcogenides, a family of graphene-like two-dimensional (2D) materials, exhibit exciting properties for potential applications and fundamental researches. We successfully fabricated a new series of 4Hb-TaS2-xSex (0 ≤ x ≤ 1.5) single crystals by chemical vapor transport technique. This is the first time to demonstrate the coexistence of superconductivity and commensurate charge density wave (CCDW) in 4Hb-TaS2-xSex (0 ≤ x ≤ 1.5). The evolution of the electronic states tuned by Se-doping are also exhibited in the phase diagram. Taking into account the special crystal structure of 4Hb-TaS2-xSex (0 ≤ x ≤ 1.5), we draw a conclusion that the H- and T-layers play a crucial role to dominate the state of superconductivity and CCDW, respectively.

  11. Commensurability Oscillations in the Radio-Frequency Conductivity of Unidirectional Lateral Superlattices: Measurement of Anisotropic Conductivity by Coplanar Waveguide

    NASA Astrophysics Data System (ADS)

    Endo, Akira; Kajioka, Toshiyuki; Iye, Yasuhiro

    2013-05-01

    We have measured the rf magnetoconductivity of unidirectional lateral superlattices (ULSLs) by detecting the attenuation of microwave through a coplanar waveguide placed on the surface. ULSL samples with the principal axis of the modulation perpendicular (S\\bot) and parallel (S\\|) to the microwave electric field are examined. For low microwave power, we observe expected anisotropic behavior of the commensurability oscillations (CO), with CO in samples S\\bot and S\\| dominated by the diffusion and the collisional contributions, respectively. Amplitude modulation of the Shubnikov--de Haas oscillations is observed to be more prominent in sample S\\|. The difference between the two samples is washed out with the increase of the microwave power, letting the diffusion contribution govern the CO in both samples. The dominance of the diffusion contribution even in sample S\\| in the CO measured with high microwave power is interpreted in terms of large-angle electron--phonon scattering.

  12. Stilling Waves with Ordered Molecular Monolayers

    ERIC Educational Resources Information Center

    Vitz, Ed

    2008-01-01

    A demonstration of the damping effect of an oil monolayer on water waves is described. The history of this remarkable demonstration--with a 2000 (or more) year span--and a brief explanation in terms of the properties of water and the monolayer are presented. If a layer of olive oil, one molecule thick (about one-ten millionth of a centimeter), is…

  13. Nonlinear light scattering by a dipole monolayer

    NASA Astrophysics Data System (ADS)

    Averbukh, B. B.; Averbukh, I. B.

    2013-08-01

    Scattering of a strong p-polarized monochromatic field by a dipole monolayer is considered. It is shown that a triplet should be observed at incident angles (between the wave vector of the incident wave and the normal to the monolayer surface) not too close to π/2 in the spectrum of the scattered radiation. For grazing incidence of a strong field on the monolayer, waves with frequencies of the strong field and the high-frequency component of the triplet scatter forward and backward. In this case, radiation with frequency of the low-frequency component of the triplet propagates in the form of two inhomogeneous waves along the monolayer on both sides of it, exponentially decaying with distance from the monolayer.

  14. Persistence of Metastability after Expansion of a Supercompressed Fluid Monolayer

    PubMed Central

    Smith, Ethan C.; Laderas, Ted G.; Crane, Jonathan M.; Hall, Stephen B.

    2012-01-01

    Fluid monolayers of 1-palmitoyl-2-oleoyl-phosphatidylcholine collapse from an air/water interface to form a three-dimensional bulk phase at the equilibrium spreading pressure (πe) of ~47 mN/m. This phase transition limits access to higher surface pressures under equilibrium conditions or during slow continuous compressions. We have shown previously that these films avoid collapse and become metastable when compressed on a captive bubble to surface pressures above 60 mN/m and that the metastability persists during expansion at least to πe. Here, we first documented the extent of this persistent metastability. Rates of isobaric collapse during expansion of the metastable films were up to 3 orders of magnitude slower than those during the initial compression to high surface pressures. Recovery of the ability to collapse depended on the surface pressure to which the films were expanded and how long they were held there. Films reverted after brief exposure to 20 mN/m and after 1 h at 35 mN/m. At πe, films remained capable of reaching high surface pressures during slow compressions after 65 h, although an increase in compressibility above 55 mN/m suggested somewhat increased rates of collapse. We also determined if the films remained metastable when they acquired sufficient free area to allow reinsertion of collapsed material. Faster isobaric expansion in the presence of more collapsed material and with further deviation below πe supported the existence of reinsertion. The persistence of metastability to πe shows that films with sufficient free area to allow reinsertion remain resistant to collapse. Observations that suggest heterogeneous reinsertion, however, argue that free area may be distributed heterogeneously and leave open the possibility that metastability persists because significant regions retain a restricted free area. PMID:15984255

  15. The study of the formation of monolayers of quantum dots at different temperatures

    NASA Astrophysics Data System (ADS)

    Gorbachev, Ilya A.; Goryacheva, Irina Y.; Brezesinski, Gerald; Gluhovskoy, Evgeny G.

    2016-04-01

    The process of formation of Langmuir monolayers of quantum dots at the different subphase temperatures was studied by means of compression isotherm, Brewster angle microscopy and transmission electron microscopy. The increasing of the maximum surface pressure from 32 to 44 mN/m takes place with decreasing the temperature from 34 to 11°C. This is due to a decrease in the rate of dissolution of surfactant molecules in water. The increasing of a filling degree of monolayer by the quantum dots and increasing of it uniformity in thickness takes place in this temperature range. The area of bilayer and multilayer film of quantum dots decreasing and the area of quantum dots monolayer is increasing. This change explained by the difference in the phase condition of oleic acid molecules, which stabilized quantum dots.

  16. Coulomb excitations of monolayer germanene

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsin; Chiu, Yu-Huang; Wu, Jhao-Ying; Shyu, Feng-Lin; Lin, Ming-Fa

    2017-01-01

    The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams. They behave as two-dimensional acoustic modes at long wavelength. However, for the larger momenta, they might change into another kind of undamped plasmons, become the seriously suppressed modes in the heavy intraband e–h excitations, keep the same undamped plasmons, or decline and then vanish in the strong interband e–h excitations. Germanene, silicene and graphene are quite different from one another in the main features of the diverse plasmon modes.

  17. Coulomb excitations of monolayer germanene

    PubMed Central

    Shih, Po-Hsin; Chiu, Yu-Huang; Wu, Jhao-Ying; Shyu, Feng-Lin; Lin, Ming-Fa

    2017-01-01

    The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams. They behave as two-dimensional acoustic modes at long wavelength. However, for the larger momenta, they might change into another kind of undamped plasmons, become the seriously suppressed modes in the heavy intraband e–h excitations, keep the same undamped plasmons, or decline and then vanish in the strong interband e–h excitations. Germanene, silicene and graphene are quite different from one another in the main features of the diverse plasmon modes. PMID:28091555

  18. Thermoelectric transport in monolayer phosphorene

    NASA Astrophysics Data System (ADS)

    Zare, Moslem; Rameshti, Babak Zare; Ghamsari, Farnood G.; Asgari, Reza

    2017-01-01

    We apply the generalized Boltzmann theory to describe thermoelectric transport properties of monolayer phosphorene in the presence of short- and long-range charged impurity interactions. First, we propose a low-energy Hamiltonian to explore the accurate electronic band structure of phosphorene in comparison with those results obtained by density-functional simulations. We explain the effect of the coupling between the conduction and valence bands on the thermoelectric properties. We show that the electric conductivity of phosphorene is highly anisotropic, while the Seebeck coefficient and figure of merit, without being influenced via either the presence or absence of the coupling term, are nearly isotropic. Furthermore, we demonstrate that the conductivity for the n type of doping is more influenced by the coupling term than that of the p type. Along with thermopower sign change, profound thermoelectric effects can be achieved.

  19. Study of relaxation process of dipalmitoyl phosphatidylcholine monolayers at air-water interface: effect of electrostatic energy.

    PubMed

    Ou-Yang, Wei; Weis, Martin; Manaka, Takaaki; Iwamoto, Mitsumasa

    2011-04-21

    The instability of organic monolayer composed of polar molecules at the air-water interface has been a spotlight in interface science for many decades. However, the effect of electrostatic energy contribution to the free energy in the system is still not understood. Herein, we investigate the mechanical and electrical properties by studying the isobaric relaxation process of a dipalmitoyl phosphatidylcholine monolayer on water subphase with various concentrations of divalent ions to reveal the effect of electrostatic energy on thermodynamics and kinetics of the collapse mechanism. Our results demonstrate that electrical energy among the dipolar molecules plays an important role in the stability of monolayer and enhances the formation of micelles into subphase under high pressure. In addition, to confirm the electrostatic energy contribution, the well-known thermal effect on the stability of the film is compared. Hence, the general description of the monolayer free energy with contribution of electrostatic energy is suggested to describe the phase transition.

  20. Toward Dynamic Control over Ordered Nanoparticle Monolayer Fabrication by Electrophoretic Deposition

    NASA Astrophysics Data System (ADS)

    Dickerson, James; Gonzalo-Juan, Isabel; Krejci, Alex

    2013-03-01

    A primary challenges to the implementation of nanoparticles into device applications is the rapid production of densely packed, ordered films of these materials. The ordered arrangement of the nanomaterials is required for applications that rely on the collective interactions of the constituents or on the high density of the materials for information storage or surface protection. Rapid fabrication is a manufacturing demand to reduce operation costs and to streamline production. We have achieved a substantial milestone toward the mass production of macroscopic monolayers and thin films of colloidal nanocrystals on various substrates, including conducting metals and doped-semiconducting substrates. Our approach combines the advantages of liquid-phase, colloidal suspension approaches with the superior deposition rate, size scalability, and cost effective features of electrophoretic deposition (EPD) to achieve monolayer-by-monolayer deposition control over nanocrystal films with various degrees of internal order. Such work has the potential for the fabrication of industrial scale quantities and surface areas of these colloidal solids. Our recent research activities have demonstrated film formation with titanium dioxide nanoparticles and core/shell iron oxide nanoparticles. This research was partially supported by the United States Office of Naval Research, Award N000140910523, and the National Science Foundation (NSF), Awards DMR- 0757380 and CAREER DMR-1054161.

  1. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils

    PubMed Central

    Gao, Yang; Liu, Zhibo; Sun, Dong-Ming; Huang, Le; Ma, Lai-Peng; Yin, Li-Chang; Ma, Teng; Zhang, Zhiyong; Ma, Xiu-Liang; Peng, Lian-Mao; Cheng, Hui-Ming; Ren, Wencai

    2015-01-01

    Large-area monolayer WS2 is a desirable material for applications in next-generation electronics and optoelectronics. However, the chemical vapour deposition (CVD) with rigid and inert substrates for large-area sample growth suffers from a non-uniform number of layers, small domain size and many defects, and is not compatible with the fabrication process of flexible devices. Here we report the self-limited catalytic surface growth of uniform monolayer WS2 single crystals of millimetre size and large-area films by ambient-pressure CVD on Au. The weak interaction between the WS2 and Au enables the intact transfer of the monolayers to arbitrary substrates using the electrochemical bubbling method without sacrificing Au. The WS2 shows high crystal quality and optical and electrical properties comparable or superior to mechanically exfoliated samples. We also demonstrate the roll-to-roll/bubbling production of large-area flexible films of uniform monolayer, double-layer WS2 and WS2/graphene heterostructures, and batch fabrication of large-area flexible monolayer WS2 film transistor arrays. PMID:26450174

  2. Highly doped silicon nanowires by monolayer doping.

    PubMed

    Veerbeek, Janneke; Ye, Liang; Vijselaar, Wouter; Kudernac, Tibor; van der Wiel, Wilfred G; Huskens, Jurriaan

    2017-02-23

    Controlling the doping concentration of silicon nanostructures is challenging. Here, we investigated three different monolayer doping techniques to obtain silicon nanowires with a high doping dose. These routes were based on conventional monolayer doping, starting from covalently bound dopant-containing molecules, or on monolayer contact doping, in which a source substrate coated with a monolayer of a carborane silane was the dopant source. As a third route, both techniques were combined to retain the benefits of conformal monolayer formation and the use of an external capping layer. These routes were used for doping fragile porous nanowires fabricated by metal-assisted chemical etching. Differences in porosity were used to tune the total doping dose inside the nanowires, as measured by X-ray photoelectron spectroscopy and secondary ion mass spectrometry measurements. The higher the porosity, the higher was the surface available for dopant-containing molecules, which in turn led to a higher doping dose. Slightly porous nanowires could be doped via all three routes, which resulted in highly doped nanowires with (projected areal) doping doses of 10(14)-10(15) boron atoms per cm(2) compared to 10(12) atoms per cm(2) for a non-porous planar sample. Highly porous nanowires were not compatible with the conventional monolayer doping technique, but monolayer contact doping and the combined route resulted for these highly porous nanowires in tremendously high doping doses up to 10(17) boron atoms per cm(2).

  3. Assembling and compressing a semifluorinated alkane monolayer on a hydrophobic surface: Structural and dielectric properties

    SciTech Connect

    El Abed, Abdel I.; Ionov, Radoslav; Daoud, Mohamed; Abillon, Olivier

    2004-11-01

    We investigate the dynamic behavior upon lateral compression of a semifluorinated alkane F(CF{sub 2}){sub 8}(CH{sub 2}){sub 18}H (denoted F{sub 8}H{sub 18}), spread on the hydrophobic top of a suitable amphiphilic monolayer: namely, a natural {alpha}-helix alamethicin peptide (alam). We show, in particular, the formation of an asymmetric flat bilayer by compressing at the air-water interface a mixed Langmuir film made of F{sub 8}H{sub 18} and alam. The particular chemical structure of F{sub 8}H{sub 18}, the suitable structure of the underlying alam monolayer and its collapse properties, allow for a continuous compression of the upper F{sub 8}H{sub 18} monolayer while the density of the lower alam monolayer remains constant. Combining grazing incidence x-ray reflectivity, surface potential, and atomic force microscopy data allow for the determination of the orientation and dielectric constant of the upper F{sub 8}H{sub 18} monolayer.

  4. Formation of protein molecular imprints within Langmuir monolayers: a quartz crystal microbalance study.

    PubMed

    Turner, Nicholas W; Wright, Bryon E; Hlady, Vladimir; Britt, David W

    2007-04-01

    Protein imprinting leading to enhanced rebinding of ferritin to ternary lipid monolayers is demonstrated using a quartz crystal microbalance. Monolayers consisting of cationic dioctadecyldimethylammonium bromide, non-ionic methyl stearate, and poly(ethylene glycol) bearing phospholipids were imprinted with ferritin at the air/water interface of a Langmuir-Blodgett trough and transferred hydrated to hydrophobic substrates for study. This immobilization was shown by fluorescence correlation spectroscopy to significantly hinder any further diffusion of lipids, while rebinding studies demonstrated up to a six-fold increase in ferritin adsorption to imprinted versus control monolayers. A diminished rebinding of ferritin to its imprint was observed through pH reduction to below the protein isoelectric point, demonstrating the electrostatic nature of the interaction. Rebinding to films where imprint pockets remained occupied by the template protein was also minimal. Studies with a smaller acidic protein revealed the importance of the steric influence of poly(ethylene glycol) in forming the protein binding pockets, as albumin-imprinted monolayers showed low binding of ferritin, while ferritin-imprinted monolayers readily accommodated albumin. The controllable structure-function relationship and limitations of this system are discussed with respect to the application of protein imprinting in sensor development as well as fundamental studies of proteins at dynamic interfaces.

  5. Visualizing monolayers with a water-soluble fluorophore to quantify adsorption, desorption, and the double layer

    PubMed Central

    Shieh, Ian C.; Zasadzinski, Joseph A.

    2015-01-01

    Contrast in confocal microscopy of phase-separated monolayers at the air–water interface can be generated by the selective adsorption of water-soluble fluorescent dyes to disordered monolayer phases. Optical sectioning minimizes the fluorescence signal from the subphase, whereas convolution of the measured point spread function with a simple box model of the interface provides quantitative assessment of the excess dye concentration associated with the monolayer. Coexisting liquid-expanded, liquid-condensed, and gas phases could be visualized due to differential dye adsorption in the liquid-expanded and gas phases. Dye preferentially adsorbed to the liquid-disordered phase during immiscible liquid–liquid phase coexistence, and the contrast persisted through the critical point as shown by characteristic circle-to-stripe shape transitions. The measured dye concentration in the disordered phase depended on the phase composition and surface pressure, and the dye was expelled from the film at the end of coexistence. The excess concentration of a cationic dye within the double layer adjacent to an anionic phospholipid monolayer was quantified as a function of subphase ionic strength, and the changes in measured excess agreed with those predicted by the mean-field Gouy–Chapman equations. This provided a rapid and noninvasive optical method of measuring the fractional dissociation of lipid headgroups and the monolayer surface potential. PMID:25675499

  6. Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: Electroactive self-assembled monolayers

    SciTech Connect

    Chidsey, C.E.D.; Bertozzi, C.R.; Putvinski, T.M.; Mujsce, A.M. )

    1990-05-23

    Self-assembled monolayers provide an ideal system for disentangling the fundamental events in interfacial electron transfer. Coadsorption of ferrocene-terminated alkanethiols with unsubstituted n-alkanethiols on evaporated gold films yields stable, electroactive self-assembled monolayers. Monolayers containing low concentrations of alkanethiols linked to ferrocene by a polar ester group (FcCO{sub 2}(CH{sub 2}){sub n}SH, Fc = ({eta}{sup 5}-C{sub 5}H{sub 5})Fe({eta}{sup 5}-C{sub 5}H{sub 4})) show thermodynamically ideal surface electrochemistry in 1 M HClO{sub 4}, indicating the ferrocene groups to be homogeneous and noninteracting. Higher surface concentrations or use of alkanethiols linked directly to the nonpolar ferrocene group (Fc(CH{sub 2}){sub n}SH) lead to broadened electrochemical features, indicating interactions among ferrocene groups or inhomogeneous sites. Longer chain lengths and lower ferrocene surface concentrations result in slower electron-transfer kinetics with the ferrocene groups. A fraction of the thiols in a monolayer exchange with thiols in an ethanol solution, but much of the monolayer remains unequilibrated after 10 days.

  7. Overpotential deposition of Ag monolayer and bilayer on Au(1 1 1) mediated by Pb adlayer underpotential deposition/stripping cycles

    NASA Astrophysics Data System (ADS)

    Wang, J. X.; Ocko, B. M.; Adzic, R. R.

    2003-08-01

    Ultra-thin Ag films on the Au(1 1 1) surface were prepared via overpotential deposition (OPD) in the presence of Pb 2+ ions. By carrying out repetitive Pb adlayer underpotential deposition (UPD) and stripping cycles during Ag bulk deposition, the two-dimensional growth of Ag films was significantly enhanced in high OPD. The Ag monolayer sample was made by comparing the voltammetry curves, in which the signatures for Pb adlayer UPD on Au(1 1 1) changed to that on Ag(1 1 1). As demonstrated by the X-ray specular reflectivity measurements, nearly complete monolayer and bilayer films can be made with optimized deposition procedures. On subatomic scale, however, we found that these films have significant higher root-mean-square displacement amplitudes than those underpotentially deposited Ag monolayer and bilayer on either Au(1 1 1) or Pt(1 1 1).

  8. Monolayer coated gold nanoparticles for delivery applications

    PubMed Central

    Rana, Subinoy; Bajaj, Avinash; Mout, Rubul; Rotello, Vincent M.

    2011-01-01

    Gold nanoparticles (AuNPs) provide attractive vehicles for delivery of drugs, genetic materials, proteins, and small molecules. AuNPs feature low core toxicity coupled with the ability to parametrically control particle size and surface properties. In this review, we focus on engineering of the AuNP surface monolayer, highlighting recent advances in tuning monolayer structures for efficient delivery of drugs and biomolecules. This review covers two broad categories of particle functionalization, organic monolayers and biomolecule coatings, and discusses their applications in drug, DNA/RNA, protein and small molecule delivery. PMID:21925556

  9. Incommensurate and commensurate modulations of Ba5RTi3Nb7O30 (R = La, Nd) tungsten bronzes and the ferroelectric domain structures

    NASA Astrophysics Data System (ADS)

    Mao, Min Min; Li, Kun; Zhu, Xiao Li; Chen, Xiang Ming

    2015-04-01

    Incommensurate and commensurate structural modulations of Ba5RTi3Nb7O30 (R = La, Nd) tungsten bronze ceramics were investigated by using a cooling holder equipped transmission electron microscopy in the temperature range from 100 K to 363 K. The incommensurate modulation was observed in both Ba5LaTi3Nb7O30 and Ba5NdTi3Nb7O30 at room temperature, while there was a transition from incommensurate tilted structure to commensurate superstructure for Ba5NdTi3Nb7O30 with decreasing temperature. The incommensurate and commensurate modulations were determined by the A-site occupancy of Ba and R cations. The A-site disorder resulted in larger incommensurability parameter δ and the diffusion of the satellite reflection spots. The effect of A-site disorder on the coupling between long-range dipolar order and the commensurate modulation was also discussed. The obvious ferroelectric 180° domains with spike-like shape parallel to c axis were observed for Ba5NdTi3Nb7O30, while no macro ferroelectric domain was determined for Ba5LaTi3Nb7O30.

  10. Commensurate and Incommensurate Phases in the System A4A'Ir 2O 9( A=Sr, Ba; A'=Cu, Zn)

    NASA Astrophysics Data System (ADS)

    Battle, Peter D.; Blake, Graeme R.; Sloan, Jeremy; Vente, Jaap F.

    1998-02-01

    The crystal structure of Sr 4CuIr 2O 9is very sensitive to the conditions of synthesis. Prolonged heating of a commensurate trigonal sample prepared at 1120°C leads to the adoption of an incommensurate structure which can be regarded as a composite of two substructures having common unit cell parameters aand bbut different parameters c1and c2. No detectable change in chemical composition accompanies the structural transition, nor do the magnetic properties of the sample change significantly. The structure of the commensurate form has been determined from neutron powder diffraction data collected at 4.5 K (space group P321, a=9.68540(3) Å, c=8.04726(6) Å). Ir 2O 9octahedral dimers and CuO 6trigonal prisms alternate in chains parallel to z, with the Sr cations located between the chains; the Cu 2+cations are disordered within the prisms. The incommensurate form has been studied by X-ray diffraction and electron microscopy ( a=9.7020(6) Å, c1=4.0069(5) Å, c2=2.6993(4) Å). The relationship between the commensurate and incommensurate unit cells is discussed ( c˜2 c1˜3 c2). No commensurate Ba 4A'Ir 2O 9phases could be prepared, but incommensurate samples having A'=Cu, Zn showed behavior similar to that of Sr 4CuIr 2O 9.

  11. Characterization of Two Oxidatively Modified Phospholipids in Mixed Monolayers with DPPC

    PubMed Central

    Sabatini, Karen; Mattila, Juha-Pekka; Megli, Francesco M.; Kinnunen, Paavo K. J.

    2006-01-01

    The properties of two oxidatively modified phospholipids viz. 1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC) and 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), were investigated using a Langmuir balance, recording force-area (π-A) isotherms and surface potential ψ. In mixed monolayers with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) a progressive disappearance of the liquid expanded-liquid condensed transition and film expansion was observed with increasing content of the oxidized phospholipids. The above is in agreement with fluorescence microscopy of the monolayers, which revealed an increase in the liquid expanded region of DPPC monolayers. At a critical pressure πs ∼ 42 mN/m both Poxo- and PazePC induced a deflection in the π-A isotherms, which could be rationalized in terms of reorientation of the oxidatively modified acyl chains into aqueous phase (adaptation of the so-called extended conformation), followed upon further film compression by solubilization of the oxidized phospholipids into the aqueous phase. Surface potential displayed a discontinuity at the same value of area/molecule, corresponding to the loss of the oxidized phospholipids from the monolayers. Our data support the view that lipid oxidation modifies both the small-scale structural dynamics of biological membranes as well as their more macroscopic lateral organization. Accordingly, oxidatively modified lipids can be expected to influence the organization and functions of membrane associated proteins. PMID:16581831

  12. Film Balance Studies of Membrane Lipids and Related Molecules

    ERIC Educational Resources Information Center

    Cadenhead, D. A.

    1972-01-01

    Discusses apparatus, techniques, and measurements used to determine cell membrane composition. The use of a film balance to study monolayer membranes of selected lipids is described and results reported. (TS)

  13. Langmuir-Blodgett film of phycobilisomes from blue-green alga Spirulina platensis.

    PubMed

    Chen, Chao; Zhang, Yu-Zhong; Chen, Xiu-Lan; Zhou, Bai-Cheng; Gao, Hong-Jun

    2003-10-01

    The phycobilisomes were isolated from blue-green alga Spirulina platensis, and could form monolayer film at air/water interface. The monolayer film of phycobilisomes was transferred to newly cleaved mica, and coated with gold. Scanning tunneling microscope was used to investigate the structure of the Langmuir-Blodgett film of phycobilisomes. It was shown that phycobilisomes in the monolayer arrayed in rows with core attaching on the substrate surface and rods radiating towards the air phase, this phenomenon was similar to the arrangement of phycobilisomes on cytoplasmic surface of thylakoid membrane in vivo. The possible applications of the Langmuir-Blodgett film of phycobilisomes were also discussed.

  14. Enhancement of resistive switching under confined current path distribution enabled by insertion of atomically thin defective monolayer graphene

    PubMed Central

    Lee, Keundong; Hwang, Inrok; Lee, Sangik; Oh, Sungtaek; Lee, Dukhyun; Kim, Cheol Kyeom; Nam, Yoonseung; Hong, Sahwan; Yoon, Chansoo; Morgan, Robert B.; Kim, Hakseong; Seo, Sunae; Seo, David H.; Lee, Sangwook; Park, Bae Ho

    2015-01-01

    Resistive random access memory (ReRAM) devices have been extensively investigated resulting in significant enhancement of switching properties. However fluctuations in switching parameters are still critical weak points which cause serious failures during ‘reading’ and ‘writing’ operations of ReRAM devices. It is believed that such fluctuations may be originated by random creation and rupture of conducting filaments inside ReRAM oxides. Here, we introduce defective monolayer graphene between an oxide film and an electrode to induce confined current path distribution inside the oxide film, and thus control the creation and rupture of conducting filaments. The ReRAM device with an atomically thin interlayer of defective monolayer graphene reveals much reduced fluctuations in switching parameters compared to a conventional one. Our results demonstrate that defective monolayer graphene paves the way to reliable ReRAM devices operating under confined current path distribution. PMID:26161992

  15. Enhancement of resistive switching under confined current path distribution enabled by insertion of atomically thin defective monolayer graphene.

    PubMed

    Lee, Keundong; Hwang, Inrok; Lee, Sangik; Oh, Sungtaek; Lee, Dukhyun; Kim, Cheol Kyeom; Nam, Yoonseung; Hong, Sahwan; Yoon, Chansoo; Morgan, Robert B; Kim, Hakseong; Seo, Sunae; Seo, David H; Lee, Sangwook; Park, Bae Ho

    2015-07-10

    Resistive random access memory (ReRAM) devices have been extensively investigated resulting in significant enhancement of switching properties. However fluctuations in switching parameters are still critical weak points which cause serious failures during 'reading' and 'writing' operations of ReRAM devices. It is believed that such fluctuations may be originated by random creation and rupture of conducting filaments inside ReRAM oxides. Here, we introduce defective monolayer graphene between an oxide film and an electrode to induce confined current path distribution inside the oxide film, and thus control the creation and rupture of conducting filaments. The ReRAM device with an atomically thin interlayer of defective monolayer graphene reveals much reduced fluctuations in switching parameters compared to a conventional one. Our results demonstrate that defective monolayer graphene paves the way to reliable ReRAM devices operating under confined current path distribution.

  16. Magnetism of coherent Co and Ni thin films on Cu(111) and Au(111) substrates: An ab initio study

    NASA Astrophysics Data System (ADS)

    Zelený, Martin; Dlouhý, Ivo

    2017-02-01

    We present an ab initio study of structural and magnetic properties of coherent Co and Ni thin films on Cu(111) and Au(111) substrates with thicknesses of up to 6 monolayers. All studied films on Cu(111) substrates prefer structures close their ground state (hcp for Co and fcc for Ni), whereas only the hcp stacking sequence has been found for both films on Au(111) substrates. All studied films exhibit instability of the first monolayer with respect to decomposition into 2-monolayer- or 3-monolayer-high islands, which is in agreement with experimental findings. All studied films are also ferromagnetic, nevertheless the Ni/Cu(111) films reduce their magnetic moments in the layer adjacent to the substrate due to a stronger Cu-Ni interaction at the interface. The magnetic anisotropy of a Co film does not depend on the film thickness: all the studied Co/Au(111) films exhibit a perpendicular magnetic anisotropy, whereas all the Co/Cu(111) films prefer in-plane magnetization. On the other hand, both Ni films change their preference for in-plane orientation of their easy axis to out-of-plane orientation at a critical thickness of 2 monolayers, however, the magnetic anisotropy energies for films thicker than 1 monolayer are smaller than 1 meV/Ni atom. These behaviors of magnetic anisotropy do not depend on the structure of the studied films.

  17. Frictional properties of thin chain alcohol films

    SciTech Connect

    Mugele, Friedrich; Salmeron, Miquel

    2000-05-08

    We used the surface forces apparatus (SFA) to measure the viscosity and friction of confined films of octanol and undecanol as a function of film thickness. We find that strongly surface-bound monolayers form. These monolayers display solid-like stick-slip motion upon shearing. Additional liquid between these monolayers shows liquid-like viscosity. The transition from liquid-like to solid-like friction occurs abruptly upon the expulsion of the last liquid-like layer. For the surface-bound monolayers, the stick-slip motion is investigated as a function of both sliding speed and load. We find a well-defined critical shear stress, which depends only weakly on sliding speed.

  18. Multicellular density fluctuations in epithelial monolayers

    NASA Astrophysics Data System (ADS)

    Zehnder, Steven M.; Wiatt, Marina K.; Uruena, Juan M.; Dunn, Alison C.; Sawyer, W. Gregory; Angelini, Thomas E.

    2015-09-01

    Changes in cell size often accompany multicellular motion in tissue, and cell number density is known to strongly influence collective migration in monolayers. Density fluctuations in other forms of active matter have been explored extensively, but not the potential role of density fluctuations in collective cell migration. Here we investigate collective motion in cell monolayers, focusing on the divergent component of the migration velocity field to probe density fluctuations. We find spatial patterns of diverging and converging cell groups throughout the monolayers, which oscillate in time with a period of approximately 3-4 h. Simultaneous fluorescence measurements of a cytosol dye within the cells show that fluid passes between groups of cells, facilitating these oscillations in cell density. Our findings reveal that cell-cell interactions in monolayers may be mediated by intercellular fluid flow.

  19. Accurate Molecular Dimensions from Stearic Acid Monolayers.

    ERIC Educational Resources Information Center

    Lane, Charles A.; And Others

    1984-01-01

    Discusses modifications in the fatty acid monolayer experiment to reduce the inaccurate moleculary data students usually obtain. Copies of the experimental procedure used and a Pascal computer program to work up the data are available from the authors. (JN)

  20. Method to synthesize metal chalcogenide monolayer nanomaterials

    SciTech Connect

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  1. Novel Behavior in Self-Assembled Superparamagnetic Nanoparticle Monolayers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Stanley, Jacob; Boucheron, Leandra; Dai, Yeling; Lin, Binhua; Meron, Mati; Shpyrko, Oleg

    2013-03-01

    Iron oxide nanoparticles, coated with an oleic acid ligand, have been found to form self-assembled monolayers when deposited at the air-water interface. Even for low particle densities these particles aggregate into hexagonally close-packed islands which merge into a uniform layer at higher densities. Using Grazing Incidence Small Angle X-Ray Scattering (GISAXS) we were able to measure the first through fifth order diffraction peaks. By analyzing the positions and shapes of these peaks we investigated the in-plane structure of these monolayers and characterized how the structure changes as a function of compression in a Langmuir-Blodgett trough. Since iron oxide nanoparticles are known to be super-paramagnetic, we sought to investigate the role magnetic effects may have on the interparticle interactions and ordering within the film. We performed Grazing Incidence Diffraction (GID) measurements on the film while varying an external magnetic field. We will discuss the results of our findings.

  2. Change of cobalt magnetic anisotropy and spin polarization with alkanethiolates self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Campiglio, Paolo; Breitwieser, Romain; Repain, Vincent; Guitteny, Solène; Chacon, Cyril; Bellec, Amandine; Lagoute, Jérôme; Girard, Yann; Rousset, Sylvie; Sassella, Adele; Imam, Mighfar; Narasimhan, Shobhana

    2015-06-01

    We demonstrate that the deposition of a self-assembled monolayer of alkanethiolates on a 1 nm thick cobalt ultrathin film grown on Au(111) induces a spin reorientation transition from in-plane to out-of-plane magnetization. Using ab initio calculations, we show that a methanethiolate layer changes slightly both the magnetocrystalline and shape anisotropy, both effects almost cancelling each other out for a 1 nm Co film. Finally, the change in hysteresis cycles upon alkanethiolate adsorption could be assigned to a molecular-induced roughening of the Co layer, as shown by STM. In addition, we calculate how a methanethiolate layer modifies the spin density of states of the Co layer and we show that the spin polarization at the Fermi level through the organic layer is reversed as compared to the uncovered Co. These results give new theoretical and experimental insights for the use of thiol-based self-assembled monolayers in spintronic devices.

  3. Direct Structural Identification of Gas Induced Gate-Opening Coupled with Commensurate Adsorption in a Microporous Metal-Organic Framework.

    PubMed

    Banerjee, Debasis; Wang, Hao; Plonka, Anna M; Emge, Thomas J; Parise, John B; Li, Jing

    2016-08-08

    Gate-opening is a unique and interesting phenomenon commonly observed in flexible porous frameworks, where the pore characteristics and/or crystal structures change in response to external stimuli such as adding or removing guest molecules. For gate-opening that is induced by gas adsorption, the pore-opening pressure often varies for different adsorbate molecules and, thus, can be applied to selectively separate a gas mixture. The detailed understanding of this phenomenon is of fundamental importance to the design of industrially applicable gas-selective sorbents, which remains under investigated due to the lack of direct structural evidence for such systems. We report a mechanistic study of gas-induced gate-opening process of a microporous metal-organic framework, [Mn(ina)2 ] (ina=isonicotinate) associated with commensurate adsorption, by a combination of several analytical techniques including single crystal X-ray diffraction, in situ powder X-ray diffraction coupled with differential scanning calorimetry (XRD-DSC), and gas adsorption-desorption methods. Our study reveals that the pronounced and reversible gate opening/closing phenomena observed in [Mn(ina)2 ] are coupled with a structural transition that involves rotation of the organic linker molecules as a result of interaction of the framework with adsorbed gas molecules including carbon dioxide and propane. The onset pressure to open the gate correlates with the extent of such interaction.

  4. Vortex lock-in transition and evidence for transitions among commensurate kinked vortex configurations in single-layered Fe arsenides

    NASA Astrophysics Data System (ADS)

    Li, G.; Grissonnanche, G.; Conner, B. S.; Wolff-Fabris, F.; Putzke, C.; Zhigadlo, N. D.; Katrych, S.; Bukowski, Z.; Karpinski, J.; Balicas, L.

    2013-03-01

    We report an angle-dependent study of the magnetic torque τ(θ) within the vortex state of single-crystalline LaO0.9F0.1FeAs and SmO0.9F0.1FeAs as a function of both temperature T and magnetic field H. Sharp peaks are observed at a critical angle θc at either side of θ=90∘, where θ is the angle between H and the interplanar c axis. θc is interpreted as the critical depinning angle where the vortex lattice, pinned and locked by the intrinsic planar structure, unlocks and acquires a component perpendicular to the planes. We observe a series of smaller replica peaks as a function of θ and as θ is swept away from the planar direction. These suggest commensurability effects between the period of the vortex lattice and the interplanar distance leading to additional kinked vortex configurations.

  5. Quantum dynamics in the highly discrete, commensurate Frenkel Kontorova model: A path-integral molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Krajewski, Florian R.; Müser, Martin H.

    2005-03-01

    The commensurate Frenkel Kontorova (FK) model is studied using path-integral molecular dynamics (PIMD). We focus on the highly discrete case, in which the embedding potential has a much greater maximum curvature than the harmonic potential connecting two particles in the FK chain. When efficient sampling methods are used, the dynamical interpretation of adiabatic PIMD appears to represent quite accurately the true time correlation functions of this highly correlated many-body system. We have found that the discrete, quantum FK model shows different behavior than its continuum version. The spectral density does not show the characteristic ω-2Θ(ω-ωc) cusp of the continuum solution in the pinned phase (m>mc). We also identify a dynamical quantum hysteresis in addition to the regular classical hysteresis when an external force is applied to the FK chain. In the unpinned phase (m⩽mc), we find a linear response damping coefficient which is finite and only weakly dependent on temperature T at small values of T.

  6. C60 fullerene promotes lung monolayer collapse

    PubMed Central

    Barnoud, Jonathan; Urbini, Laura; Monticelli, Luca

    2015-01-01

    Airborne nanometre-sized pollutants are responsible for various respiratory diseases. Such pollutants can reach the gas-exchange surface in the alveoli, which is lined with a monolayer of lung surfactant. The relationship between physiological effects of pollutants and molecular-level interactions is largely unknown. Here, we determine the effects of carbon nanoparticles on the properties of a model of lung monolayer using molecular simulations. We simulate phase-separated lipid monolayers in the presence of a model pollutant nanoparticle, C60 fullerene. In the absence of nanoparticles, the monolayers collapse only at very low surface tensions (around 0 mN m−1). In the presence of nanoparticles, instead, monolayer collapse is observed at significantly higher surface tensions (up to ca 10 mN m−1). Collapse at higher tensions is related to lower mechanical rigidity of the monolayer. It is possible that similar mechanisms operate on lung surfactant in vivo, which suggests that health effects of airborne carbon nanoparticles may be mediated by alterations of the mechanical properties of lung surfactant. PMID:25589571

  7. Omega-Terminated Alkanethiolate Monolayers on Surfaces of Copper, Silver and Gold Have Similar Wettabilities

    DTIC Science & Technology

    1991-12-01

    metal cxides and form oriented, oleophobic monolayers,25 0-hydroxy- and W-amino-alkanoic acids adsorb and form poorly organized films that are not wet...gold. Experinental Materials . 1l-Bromo-undecyl t-butyldimethylsilyl ether and most alkanethiols were available from pcrevious studies;6, 2 1, 4 8 ctn...er materials were obtained from Aldrich and used as received unless Specified. Octadecanethiol was distilled under reduced pressure prior to use

  8. Polarized neutron reflectivity from monolayers of self-assembled magnetic nanoparticles.

    PubMed

    Mishra, D; Petracic, O; Devishvili, A; Theis-Bröhl, K; Toperverg, B P; Zabel, H

    2015-04-10

    We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence. This is attributed to the dipolar coupling amongst the nanoparticles.

  9. Required Equipment for Photo-Switchable Donor-Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells

    DTIC Science & Technology

    2014-01-24

    Effects on interfacial morphology and charge injection in organic light-emitting diodes. Thin Solid Films 2007, 515 (5), 2833-2841. 3. Lee, J.; Jung...HBCU) - Required Equipment for Photo-switchable Donor- Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells...Equipment for Photo-switchable Donor-Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells" N/A FA9550-12-1-0468 CFDA

  10. Protein-induced surface structuring in myelin membrane monolayers.

    PubMed

    Rosetti, Carla M; Maggio, Bruno

    2007-12-15

    Monolayers prepared from myelin conserve all the compositional complexity of the natural membrane when spread at the air-water interface. They show a complex pressure-dependent surface pattern that, on compression, changes from the coexistence of two liquid phases to a viscous fractal phase embedded in a liquid phase. We dissected the role of major myelin protein components, myelin basic protein (MBP), and Folch-Lees proteolipid protein (PLP) as crucial factors determining the structural dynamics of the interface. By analyzing mixtures of a single protein with the myelin lipids we found that MBP and PLP have different surface pressure-dependent behaviors. MBP stabilizes the segregation of two liquid phases at low pressures and becomes excluded from the film under compression, remaining adjacent to the interface. PLP, on the contrary, organizes a fractal-like pattern at all surface pressures when included in a monolayer of the protein-free myelin lipids but it remains mixed in the MBP-induced liquid phase. The resultant surface topography and dynamics is regulated by combined near to equilibrium and out-of-equilibrium effects. PLP appears to act as a surface skeleton for the whole components whereas MBP couples the structuring to surface pressure-dependent extrusion and adsorption processes.

  11. First-principles study on magnetism of Ru monolayer under an external electric field

    NASA Astrophysics Data System (ADS)

    Kitaoka, Yukie; Imamura, Hiroshi

    Electric field control of magnetic properties such as magnetic moment and magnetic anisotropy has been attracted. For the 4 d TM films, on the other hand, it was recently reported that the ferromagnetism Pd thin-film is induced by application of an external electric field otherwise Pd thin-film shows paramagnetic. However, little attention has been paid to the magnetism of other 4 d TMs. Here, we investigate the magnetism of the free-standing Ru monolayer and that on MgO(001) substrate under an external electric field by using first-principles FLAPW method. We found that the free-standing Ru monolayer is ferromagnet with magnetic moment of 1.50 ¥muB /atom. The MA energy is 3.45 meV/atom, indicating perpendicular MA, at zero electric field (E=0) and increases up to 3.84 meV/atom by application of E=1 (V/¥AA). The Ru monolayer on MgO(001) substrate is also ferromagnet with magnetic moment of 0.89 ¥muB /atom. The MA energy is 1.49 meV/atom, indicating perpendicular MA, at E=0 and decreases to 1.33 meV/atom by application of E=1 (V/¥AA).

  12. Equivalent aqueous phase modulation of domain segregation in myelin monolayers and bilayer vesicles.

    PubMed

    Oliveira, Rafael G; Schneck, Emanuel; Funari, Sergio S; Tanaka, Motomu; Maggio, Bruno

    2010-09-08

    Purified myelin can be spread as monomolecular films at the air/aqueous interface. These films were visualized by fluorescence and Brewster angle microscopy, showing phase coexistence at low and medium surface pressures (<20-30 mN/m). Beyond this threshold, the film becomes homogeneous or not, depending on the aqueous subphase composition. Pure water as well as sucrose, glycerol, dimethylsulfoxide, and dimethylformamide solutions (20% in water) produced monolayers that become homogeneous at high surface pressures; on the other hand, the presence of salts (NaCl, CaCl(2)) in Ringer's and physiological solution leads to phase domain microheterogeneity over the whole compression isotherm. These results show that surface heterogeneity is favored by the ionic milieu. The modulation of the phase-mixing behavior in monolayers is paralleled by the behavior of multilamellar vesicles as determined by small-angle and wide-angle x-ray scattering. The correspondence of the behavior of monolayers and multilayers is achieved only at high surface pressures near the equilibrium adsorption surface pressure; at lower surface pressures, the correspondence breaks down. The equilibrium surface tension on all subphases corresponds to that of the air/alkane interface (27 mN/m), independently on the surface tension of the clean subphase.

  13. Structural and electrical characterization of organic monolayers by Atomic Force Microscopy and through the nano-fabrication of a coplanar electrode-dielectric platform

    NASA Astrophysics Data System (ADS)

    Martin, Florent

    Correlating structural and electrical properties of organic thin films is a key requirement to understand charge transport in these materials. The electrical conductivity of organic films should be strongly dependent on how the molecules arrange to form films and crystals. Here we report on the structural and electrical characterization of organic monolayers by Atomic Force Microscopy and through the nano-fabrication of a coplanar electrode-dielectric platform. Organic monolayers were prepared using the solution-based Langmuir-Blodgett technique and transferred to a variety of substrates. Atomic Force Microscopy (AFM) was used to analyze the morphology and the microstructure of ultra-thin films at high resolution while electron diffraction measurements were instrumental in determining the lattice and orientation of crystalline domains within monolayers. A novel Conducting probe AFM method based on the presence of an insulating oxide layer between an organic film and a conductive silicon substrate made it possible to probe the in-plane electrical conductivity in the film. With this technique, we were able to investigate the correlation between conduction properties of oligothiophene monolayers and structural factors such as their molecular order and their lattice orientation. In order to make electrical contacts with monolayer films and study them in a Field Effect Transistor (FET) configuration, we developed coplanar electrode-dielectric substrates with roughness and surface topography in the sub-nanometer range. We present the first results on the electrical characterization of monolayers with this device which demonstrate that the coplanar geometry leads to a contact resistance by orders of magnitude lower than that found in conventional 20nm thick electrodes.

  14. Photoluminescence of monolayer transition metal dichalcogenides integrated with VO2

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chuan; DeLello, Kursti; Zhang, Hai-Tian; Zhang, Kehao; Lin, Zhong; Terrones, Mauricio; Engel-Herbert, Roman; Robinson, Joshua A.

    2016-12-01

    Integrating a phase transition material with two-dimensional semiconductors can provide a route towards tunable opto-electronic metamaterials. Here, we integrate monolayer transition metal dichalcogenides with vanadium dioxide (VO2) thin films grown via molecular beam epitaxy to form a 2D/3D heterostructure. Vanadium dioxide undergoes an insulator-to-metal transition at 60-70 °C, which changes the band alignment between MoS2 and VO2 from a semiconductor-insulator junction to a semiconductor-metal junction. By switching VO2 between insulating and metallic phases, the modulation of photoluminescence emission in the 2D semiconductors was observed. This study demonstrates the feasibility to combine TMDs and functional oxides to create unconventional hybrid optoelectronic properties derived from 2D semiconductors that are linked to functional properties of oxides through proximity coupling.

  15. Effects of irradiated biodegradable polymer in endothelial cell monolayer formation

    NASA Astrophysics Data System (ADS)

    Arbeitman, Claudia R.; del Grosso, Mariela F.; Behar, Moni; García Bermúdez, Gerardo

    2013-11-01

    In this work we study cell adhesion, proliferation and cell morphology of endothelial cell cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. Thin films of PLLA samples were irradiated with sulfur (S) at energies of 75 MeV and gold (Au) at 18 MeV ion-beams. Ion beams were provided by the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The growth of a monolayer of bovine aortic endothelial cells (BAEC) onto unirradiated and irradiated surfaces has been studied by in vitro techniques in static culture. Cell viability and proliferation increased on modified substrates. But the results on unirradiated samples, indicate cell death (necrosis/apoptosis) with the consequent decrease in proliferation. We analyzed the correlation between irradiation parameters and cell metabolism and morphology.

  16. Tuning the trion photoluminescence polarization in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Hanbicki, A. T.; McCreary, K. M.; Currie, M.; Kioseoglou, G.; Hellberg, C. S.; Friedman, A. L.; Jonker, B. T.

    Monolayer transition metal dichalcogenides (TMDs) such as MoS2 or WS2 are semiconductors with degenerate, yet inequivalent k-points labeled K and K' that define the direct gap. The valence band maximum in each valley has only one spin state of opposite sense for K and K'. Consequently, one can selectively populate each valley independently with circularly polarized light, and determine the valley populations via the polarization of emitted light. Optical emission is dominated by neutral and charged exciton (trion) features, and changes in emitted polarization provide insight into the fundamental processes of intervalley scattering. We prepare single-layer WS2 films such that the photoluminescence is from the negatively charged trion and observe a room temperature optical polarization in excess of 40 This work was supported by core programs at NRL and the NRL Nanoscience Institute, and by the Air Force Office of Scientific Research #AOARD 14IOA018-134141.

  17. Atomic force microscopy study of the adsorption of protein molecules on transferred Langmuir monolayer

    SciTech Connect

    Gainutdinov, R. V. Tolstikhina, A. L.; Stepina, N. D.; Novikova, N. N.; Yur'eva, E. A.; Khripunov, A. K.

    2010-09-15

    Ordered protein films have been obtained by the adsorption of protein molecules on a Langmuir monolayer, which had previously formed on a silicon substrate, using the Langmuir-Blodgett and molecular self-organization methods. A mixture of cholesterol with dipalmitoylphosphatidylcholine (DPPC) and a polymer-cellulose acetopivalinate-were used as immobilization materials. Protein molecules (catalase and alkaline phosphatase) immobilized on solid substrates have been investigated by atomic force micros-copy. It was shown that the developed combined technique provides a deposition of homogeneous ultrathin protein films with a high degree of filling.

  18. Atomic force microscopy study of the adsorption of protein molecules on transferred Langmuir monolayer

    NASA Astrophysics Data System (ADS)

    Gaĭnutdinov, R. V.; Tolstikhina, A. L.; Stepina, N. D.; Novikova, N. N.; Yur'eva, E. A.; Khripunov, A. K.

    2010-09-01

    Ordered protein films have been obtained by the adsorption of protein molecules on a Langmuir monolayer, which had previously formed on a silicon substrate, using the Langmuir-Blodgett and molecular self-organization methods. A mixture of cholesterol with dipalmitoylphosphatidylcholine (DPPC) and a polymer—cellulose acetopivalinate—were used as immobilization materials. Protein molecules (catalase and alkaline phosphatase) immobilized on solid substrates have been investigated by atomic force micros-copy. It was shown that the developed combined technique provides a deposition of homogeneous ultrathin protein films with a high degree of filling.

  19. The DNA Adsorption by the Charged Cholesterol Monolayer at the Air-liquid Interface

    NASA Astrophysics Data System (ADS)

    Lin, Tsang-Lang; Hu, Yuan; Wu, Jui-Ching; Yang, Chun-Pang; Jeng, U.-Ser; Shih, M.-C.

    2004-04-01

    The adsorption of DNA by the 3-,-[N-(N',N'-dimethyl amino ethane) carbamoyl] cholesterol (DC-Chol) monolayer at the air-liquid interface was studied by using the Langmuir-Blodgett film balance. With the presence of 1 μ M DNA in the subphase, the surface pressure increases right at the beginning of the compression. The liquid expanded phase of the DC-Chol disappears due to the adsorption of DNA. The AFM image of the prepared DC-Chol/DNA film has tree-branch-like fractal structure with a height of 2 nm that correspond to the diameter of DNA.

  20. Enhanced Near-Field Heat Flow of a Monolayer Dielectric Island

    NASA Astrophysics Data System (ADS)

    Worbes, Ludwig; Hellmann, David; Kittel, Achim

    2013-03-01

    We have investigated the influence of thin films of a dielectric material on the near-field mediated heat transfer at the fundamental limit of single monolayer islands on a metallic substrate. We present spatially resolved measurements by near-field scanning thermal microscopy showing a distinct enhancement in heat transfer above NaCl islands compared to the bare Au(111) film. Experiments at this subnanometer scale call for a microscopic theory beyond the macroscopic fluctuational electrodynamics used to describe near-field heat transfer today. The method facilitates the possibility of developing designs of nanostructured surfaces with respect to specific requirements in heat transfer down to a single atomic layer.

  1. Multiband enhanced absorption of monolayer graphene with attenuated total reflectance configuration and sensing application

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Bu, Lingbing; Chen, Yunyun; Zheng, Gaige; Zou, Xiujuan; Xu, Linhua; Wang, Jicheng

    2017-01-01

    An enhanced absorption of monolayer graphene is obtained in a multilayer film-based attenuated total reflectance configuration in the visible wavelength range. The enhanced absorption under transverse magnetic and electric conditions is associated with the excitation of the waveguide mode in the thin-film layer, which is verified by the numerical calculation of field profiles. The obtained results manifest that the model induces a high field enhancement at the graphene-dielectric interface with the resonant angle, which implies potential sensing applications. The magnitude of the figure of merit is found to be three times higher than that of a conventional surface plasmon sensor.

  2. Mechanism for femtosecond laser pulse patterning of self-assembled monolayers on gold-coated substrates

    NASA Astrophysics Data System (ADS)

    Kirkwood, S. E.; Shadnam, M. R.; Amirfazli, A.; Fedosejevs, R.

    2007-04-01

    Self-assembled monolayer (SAM) patterning on gold thin films was performed using 800 nm, 118 fs laser pulses. SAM removal was ablative and was observed at fluences near the multishot ablation threshold for the thin gold film. Line widths six times smaller than the 2 e-folding intensity beam diameter were observed demonstrating sub-diffraction limited patterning with femtosecond lasers. Similar experimental results in air and N2 indicated that the removal process does not involve oxidation of the gold-sulfur bond as was claimed in the literature.

  3. Studies of dipalmitoylphosphatidylcholine (DPPC) monolayers embedded with endohedral metallofullerene (Dy@C82).

    PubMed

    Wang, Zhining; Li, Xiaofang; Yang, Shihe

    2009-11-17

    Toxicological effects of carbon nanomaterials have attracted increasing attention. In this work, we studied the interaction between Dy@C(82) and dipalmitoylphosphatidylcholine (DPPC) in a monolayer at the N(2)/Tris buffer interface by thermodynamic analysis of surface pressure-area (pi-A) and surface potential-area (DeltaV-A) isotherms. Dy@C(82) was found to impact considerably more on the physical properties of the monolayers than C(60) because of its elliptical structure and distinctive dipole. The addition of Dy@C(82) essentially closed down the liquid expanded-liquid condensed (LE-LC) phase coexistence region of the mixed monolayers. Furthermore, Dy@C(82) reduced elasticity of the monolayers, as indicated by the decreasing elastic modulus (C(s)(-1)) with increasing molar ratio of Dy@C(82) (X(Dy@C82)). Brewster angle microscopy (BAM) and atomic force microscopy (AFM) revealed that the dispersion of Dy@C(82) depend on the state of the mixed films. Dy@C(82) formed flocs from aggregation of Dy@C(82) towers in the LE and LE-LC coexistence regions, accompanied by gradual falling down of Dy@C(82) from the towers and permeation of the falling metallofullerenes into the LE phase during their compression-induced reorientation process. In the LC and solid phases, the Dy@C(82) flocs were dispersed into isolated towers, accompanied by the partial squeezing out of the embedded metallofullerenes to above the DPPC monolayer. The continuous falling down of Dy@C(82) from the towers resulted in their height decrease but diameter enlargement. When the surface pressure was increased to the kink value (53 mN/m), Dy@C(82) was almost completely extruded from the DPPC monolayers. These findings are believed to be important for understanding the impact of fullerenes, metallofullerenes, and nanomaterials in general on biological membranes.

  4. Planned Monolayer Assemblies by Adsorption

    DTIC Science & Technology

    1988-09-01

    their precisely defined ardibcture, in tc.of the position and ortatlan of 1zuivIcAl uolecu~lar conUttu- erif in epae . of thue aW ’cation require...wettability obseratons2 were used to (3) Sebsik IL 3. CP&Wad Bed. 19K611.4131 and A -mm chkWe d 6.SUiDLs the initial composition and structture of the...34in same ceulg nl a - u- dro in their film disla similar behavior only at thicknese above RID sad BMI contact angles, while being compltely seve laYM

  5. Preparation and characterization of pure and mixed monolayers of poly(ethylene glycol) brushes chemically adsorbed to silica surfaces.

    PubMed

    McNamee, Cathy E; Yamamoto, Shinpei; Higashitani, Ko

    2007-04-10

    We prepared pure and mixed monolayers of methoxy-terminated poly(ethylene glycol)s (m-PEG's) chemically attached to silica surfaces by using m-PEG silane coupling agents of three different molecular weights. These films were subsequently characterized in water by atomic force microscopy (AFM). Images of pure m-PEG monolayers showed the formation of polymer brushes on silica. Force curves between two modified surfaces suggested that an increase in the number of oxyethylene (OE) groups from 6 (PEG6 surface) to 43 (PEG43 surface) to 113 (PEG113 surface) decreased the flexibility of the m-PEG chains in the m-PEG brushes. Frictional force measurements also showed that the friction increased in the order PEG6 < PEG43 monolayers of PEG6 and PEG113 were prepared using various fractions of PEG6 and PEG113. Images of mixed PEG6 and PEG113 monolayers showed that the size of the PEG113 islands in the film decreased as the fraction of PEG113 decreased. The force curves between two modified surfaces suggested that the flexibility of the mixed monolayers decreased as the fraction of PEG113 increased. Frictional force measurements also showed that the friction decreased as the fraction of PEG6 in the PEG6-PEG113 mixed film increased. Entanglements were therefore thought to decrease as the fraction of PEG113 in the mixed monolayer decreased.

  6. Phase-Specific Diffusivity of DPPG Monolayers

    NASA Astrophysics Data System (ADS)

    Dewitt, Joel; Thapa, Prem; Flanders, Bret

    2004-03-01

    The primary role of lung surfactant is to reduce the alveolar surface tension during exhalation in a reversible manner. Failure to do so results in respiratory distress syndrome. Model lung surfactants provide simplified systems for studying the mechanisms that underlie this essential role of alveolar surfactant. Dipalmitoyl-phosphatidylglycerol (DPPG) monolayers exhibit reversible folding when compressed to a critical surface tension. This process may exemplify how the compression-expansion cycle attains reversibility and, thus, requires penetrating study. The buckling theory for reversible collapse provides a promising though untested description of this process, but poor knowledge of domain boundary widths in DPPG monolayers impedes the evaluation of this theory as a model for the observed behavior. In turn, the measurement of the domain boundary widths requires knowledge of the phase-specific viscosities of the monolayer. In this study, multi-particle tracking has been used to determine the phase-specific diffusion coefficients of polystyrene spheres embedded in DPPG monolayers. By invoking a Stokes-Einstein relationship that is appropriate for spheres diffusing in a viscous surfactant, the phase specific viscosities of the monolayers have been estimated. The rationale for this work is that this knowledge will promote the quantitative evaluation of buckling as a model for reversible folding and, thus, promote growth in understanding of the folding mechanism in model lung surfactants.

  7. Nanosecond laser ablation of gold nanoparticle films

    SciTech Connect

    Ko, Seung H.; Choi, Yeonho; Hwang, David J.; Grigoropoulos, Costas P.; Chung, Jaewon; Poulikakos, Dimos

    2006-10-02

    Ablation of self-assembled monolayer protected gold nanoparticle films on polyimide was explored using a nanosecond laser. When the nanoparticle film was ablated and subsequently thermally sintered to a continuous film, the elevated rim structure by the expulsion of molten pool could be avoided and the ablation threshold fluence was reduced to a value at least ten times lower than the reported threshold for the gold film. This could be explained by the unusual properties of nanoparticle film such as low melting temperature, weak bonding between nanoparticles, efficient laser energy deposition, and reduced heat loss. Finally, submicron lines were demonstrated.

  8. Application of the principal fractional meta-trigonometric functions for the solution of linear commensurate-order time-invariant fractional differential equations.

    PubMed

    Lorenzo, C F; Hartley, T T; Malti, R

    2013-05-13

    A new and simplified method for the solution of linear constant coefficient fractional differential equations of any commensurate order is presented. The solutions are based on the R-function and on specialized Laplace transform pairs derived from the principal fractional meta-trigonometric functions. The new method simplifies the solution of such fractional differential equations and presents the solutions in the form of real functions as opposed to fractional complex exponential functions, and thus is directly applicable to real-world physics.

  9. Reversibly immobilized biological materials in monolayer films on electrodes

    DOEpatents

    Weaver, Paul F.; Frank, Arthur J.

    1993-01-01

    Methods and techniques are described for reversibly binding charged biological particles in a fluid medium to an electrode surface. The methods are useful in a variety of applications. The biological materials may include microbes, proteins, and viruses. The electrode surface may consist of reversibly electroactive materials such as polyvinylferrocene, silicon-linked ferrocene or quinone.

  10. Reversibly immobilized biological materials in monolayer films on electrodes

    DOEpatents

    Weaver, P.F.; Frank, A.J.

    1993-05-04

    Methods and techniques are described for reversibly binding charged biological particles in a fluid medium to an electrode surface. The methods are useful in a variety of applications. The biological materials may include microbes, proteins, and viruses. The electrode surface may consist of reversibly electroactive materials such as polyvinylferrocene, silicon-linked ferrocene or quinone.

  11. Reversibly immobilized biological materials in monolayer films on electrodes

    SciTech Connect

    Weaver, P.F.; Frank, A.J.

    1991-04-08

    A method is provided for reversibly binding charged biological particles in a fluid medium to an electrode surface. The method comprises treating (e.g., derivatizing) the electrode surface with an electrochemically active material; connecting the electrode to an electrical potential; and exposing the fluid medium to the electrode surface in a manner such that the charged particles become adsorbed on the electrode surface.

  12. Anodic passivation of tin by alkanethiol self-assembled monolayers examined by cyclic voltammetry and coulometry.

    PubMed

    Worley, Barrett C; Ricks, William A; Prendergast, Michael P; Gregory, Brian W; Collins, Ross; Cassimus, John J; Thompson, Raymond G

    2013-10-22

    The self-assembly of medium chain length alkanethiol monolayers on polycrystalline Sn electrodes has been investigated by cyclic voltammetry and coulometry. These studies have been performed in order to ascertain the conditions under which their oxidative deposition can be achieved directly on the oxide-free Sn surface, and the extent to which these electrochemically prepared self-assembled monolayers (SAMs) act as barriers to surface oxide growth. This work has shown that the potentials for their oxidative deposition are more cathodic (by 100-200 mV) than those for Sn surface oxidation and that the passivating abilities of these SAMs improve with increasing film thickness (or chain length). Oxidative desorption potentials for these films have been observed to shift more positively, and in a highly linear fashion, with increasing film thickness (~75 mV/CH2). Although reductive desorption potentials for the SAMs are in close proximity to those for reduction of the surface oxide (SnOx), little or no SnOx formation occurs unless the potential is made sufficiently anodic that the monolayers start to be removed oxidatively. Our coulometric data indicate that the charge involved with alkanethiol reductive desorption or oxidative deposition is consistent with the formation of a close-packed monolayer, given uncertainties attributable to surface roughness and heterogeneity phenomena. These experiments also reveal that the quantity of charge passed during oxidative desorption is significantly larger than what would be predicted for simple alkylsulfinate or alkylsulfonate formation, suggesting that oxidative removal involves a more complex oxidation mechanism. Analogous chronocoulometric experiments for short-chain alkanethiols on polycrystalline Au electrodes have evidenced similar oxidative charge densities. This implies that the mechanism for oxidative desorption on both surfaces may be very similar, despite the significant differences in the inherent dissolution

  13. Giant piezoelectricity of monolayer group IV monochalcogenides

    NASA Astrophysics Data System (ADS)

    Fei, Ruixiang; Li, Wenbin; Li, Ju; Yang, Li

    We predict enormous, anisotropic piezoelectric effects in intrinsic monolayer group IV monochalcogenides (MX, M =Sn or Ge, X =Se or S), including SnSe, SnS, GeSe, and GeS. Using first-principle simulations based on the modern theory of polarization, we find that their piezoelectric coefficients are about one to two orders of magnitude larger than those of other 2D materials, such as MoS2 and GaSe, and bulk quartz and AlN which are widely used in industry. This enhancement is a result of the unique ``puckered'' C2v symmetry and electronic structure of monolayer group IV monochalcogenides. Given the achieved experimental advances in the fabrication of monolayers, their flexible character, and ability to withstand enormous strain, these 2D structures with giant piezoelectric effects may be promising for a broad range of applications such as nano-sized sensors, piezotronics, and energy harvesting in portable electronic devices.

  14. Edge plasmons in monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Bao, Zhi-Wei; Wu, Hong-Wei; Zhou, Yu

    2016-12-01

    In this paper, we numerically investigate the edge plasmons in monolayer black phosphorus. It is found that the complex effective indexes of these modes depend on the molecular configuration of the edge. We have calculated the ratio of the real over the imaginary part of the mode effective index, and the results indicate that such edge modes indeed possess outstanding propagation performances in the mid-infrared. In the case of black phosphorus nanoribbon, it seems that only the anti-symmetric modes have low losses, and may be of use in applications. Compared with those at the edge of monolayer black phosphorus, the propagation performances can be further enhanced due to the mode coupling between the two edges. In the end, the effects of substrates are discussed. Our study shows that monolayer black phosphorus may be regarded as a promising candidate for plasmonic applications in the mid-infrared.

  15. Magneto photoluminescence measurements of tungsten disulphide monolayers

    NASA Astrophysics Data System (ADS)

    Kuhnert, Jan; Rahimi-Iman, Arash; Heimbrodt, Wolfram

    2017-03-01

    Layered transition-metal dichalcogenides have attracted great interest in the last few years. Thinned down to the monolayer limit they change from an indirect band structure to a direct band gap in the visible region. Due to the monolayer thickness the inversion symmetry of the crystal is broken and spin and valley are coupled to each other. The degeneracy between the two equivalent valleys, K and K‧, respectively, can be lifted by applying an external magnetic field. Here, we present photoluminescence measurements of CVD-grown tungsten disulphide (WS2) monolayers at temperatures of 2 K. By applying magnetic fields up to 7 T in Faraday geometry, a splitting of the photoluminescence peaks can be observed. The magnetic field dependence of the A-exciton, the trion and three bound exciton states is discussed and the corresponding g-factors are determined.

  16. Optical characterization of porous silicon monolayers decorated with hydrogel microspheres

    PubMed Central

    2014-01-01

    The optical response of porous silicon (pSi) films, covered with a quasi-hexagonal array of hydrogel microspheres, to immersion in ethanol/water mixtures was investigated. For this study, pSi monolayers were fabricated by electrochemical etching, stabilized by thermal oxidation, and decorated with hydrogel microspheres using spin coating. Reflectance spectra of pSi samples with and without deposited hydrogel microspheres were taken at normal incidence. The employed hydrogel microspheres, composed of poly-N-isopropylacrylamide (polyNIPAM), are stimuli-responsive and change their size as well as their refractive index upon exposure to alcohol/water mixtures. Hence, distinct differences in the interference pattern of bare pSi films and pSi layers covered with polyNIPAM spheres could be observed upon their immersion in the respective solutions using reflective interferometric Fourier transform spectroscopy (RIFTS). Here, the amount of reflected light (fast Fourier transform (FFT) amplitude), which corresponds to the refractive index contrast and light scattering at the pSi film interfaces, showed distinct differences for the two fabricated samples. Whereas the FFT amplitude of the bare porous silicon film followed the changes in the refractive index of the surrounding medium, the FFT amplitude of the pSi/polyNIPAM structure depended on the swelling/shrinking of the attached hydrogel spheres and exhibited a minimum in ethanol-water mixtures with 20 wt% ethanol. At this value, the polyNIPAM microgel is collapsed to its minimum size. In contrast, the effective optical thickness, which reflects the effective refractive index of the porous layer, was not influenced by the attached hydrogel spheres. PACS 81.05.Rm; 81.16.Dn; 83.80Kn; 42.79.Pw PMID:25221456

  17. Exciton band structure in layered MoSe2: from a monolayer to the bulk limit

    NASA Astrophysics Data System (ADS)

    Arora, Ashish; Nogajewski, Karol; Molas, Maciej; Koperski, Maciej; Potemski, Marek

    2015-12-01

    We present the micro-photoluminescence (μPL) and micro-reflectance contrast (μRC) spectroscopy studies on thin films of MoSe2 with layer thicknesses ranging from a monolayer (1L) up to 5L. The thickness dependent evolution of the ground and excited state excitonic transitions taking place at various points of the Brillouin zone is determined. Temperature activated energy shifts and linewidth broadenings of the excitonic resonances in 1L, 2L and 3L flakes are accounted for by using standard formalisms previously developed for semiconductors. A peculiar shape of the optical response of the ground state (A) exciton in monolayer MoSe2 is tentatively attributed to the appearance of a Fano-type resonance. Rather trivial and clearly decaying PL spectra of monolayer MoSe2 with temperature confirm that the ground state exciton in this material is optically bright in contrast to a dark exciton ground state in monolayer WSe2.

  18. The microstructure and dissolution behavior of lipid-monolayer-coated, air-filled microbubble

    NASA Astrophysics Data System (ADS)

    Pu, Gang

    Suspensions of lipid-coated microbubbles are currently being developed for use as ultrasound contrast agents, drug delivery vehicles and blood substitutes. In our study, first, we examined the effect of lipid acyl chain length and the cooling rate on the microbubble surface domain morphology. The average domain size decreased with increasing cooling rate for all acyl chain lengths. The shape factor increased with chain length for the highest cooling rate. Second, we investigated the effect of microstructure on molecular oxygen permeation through condensed phospholipid monolayers. Oxygen permeability was shown to increase linearly with domain boundary density at a constant phospholipid acyl chain length and, accordingly, was shown to decrease exponentially with increasing chain length at a constant domain boundary density. Modification of the energy barrier theory to account for microstructural effects, in terms of the domain boundary density, provides a general equation to model passive transport through polycrystalline monolayer films. Last, we demonstrated that the phase conditions and microstructure of the shell were critical to determine the dissolution behaviors of the lipid-coated microbubble. For these two-phase coexistence bubbles, a transition from primary collapse, as loss of expanded phase due to vesiculation, to secondary collapse, as the rapid propagation of monolayer folds and simultaneous deformation, was observed. For very rigid monolayers, we observed substantial surface buckling with simultaneous nucleation and growth of folds.

  19. Stiffness of lipid monolayers with phase coexistence.

    PubMed

    Caruso, Benjamín; Mangiarotti, Agustín; Wilke, Natalia

    2013-08-27

    The surface dilational modulus--or compressibility modulus--has been previously studied for monolayers composed of pure materials, where a jump in this modulus was related with the onset of percolation as a result of the establishment of a connected structure at the molecular level. In this work, we focused on monolayers composed of two components of low lateral miscibility. Our aim was to investigate the compressibility of mixed monolayers at pressures and compositions in the two-phase region of the phase diagram, in order to analyze the effect of the mechanical properties of each phase on the stiffness of the composite. In nine different systems with distinct molecular dipoles and charges, the stiffness of each phase and the texture at the plane of the monolayer were studied. In this way, we were able to analyze the general compressibility of two-phase lipid monolayers, regardless of the properties of their constituent parts. The results are discussed in the light of the following two hypotheses: first, the stiffness of the composite could be dominated by the stiffness of each phase as a weighted sum according to the percentage of each phase area, regardless of the distribution of the phases in the plane of the monolayer. Alternatively, the stiffness of the composite could be dominated by the mechanical properties of the continuous phase. Our results were better explained by this latter proposal, as in all the analyzed mixtures it was found that the mechanical properties of the percolating phase were the determining factors. The value of the compression modulus was closer to the value of the connected phase than to that of the dispersed phase, indicating that the bidimensional composites displayed mechanical properties that were related to the properties of each phases in a rather complex manner.

  20. Active Tensile Modulus of an Epithelial Monolayer

    NASA Astrophysics Data System (ADS)

    Vincent, Romaric; Bazellières, Elsa; Pérez-González, Carlos; Uroz, Marina; Serra-Picamal, Xavier; Trepat, Xavier

    2015-12-01

    A general trait of cell monolayers is their ability to exert contractile stresses on their surroundings. The scaling laws that link such contractile stresses with the size and geometry of constituent cells remain largely unknown. In this Letter, we show that the active tension of an epithelial monolayer scales linearly with the size of the constituent cells, a surprisingly simple relationship. The slope of this relationship defines an active tensile modulus, which depends on the concentration of myosin and spans more than 2 orders of magnitude across cell types and molecular perturbations.

  1. Monochromatic electron photoemission from diamondoid monolayers

    SciTech Connect

    Yang, Wanli; Yang, Wanli L.; Fabbri, J.D.; Willey, T.M.; Lee, J.R.I.; Dahl, J.E.; Carlson, R.M.K.; Schreiner, P.R.; Fokin, A.A.; Tkachenko, B.A.; Fokina, N.A.; Meevasana, W.; Mannella, N.; Tanaka, K.; Zhou, X.J.; van Buuren, T.; Kelly, M.A.; Hussain, Z.; Melosh, N.A.; Shen, Z.-X.

    2007-02-27

    We found monochromatic electron photoemission from large-area self-assembled monolayers of a functionalized diamondoid, [121]tetramantane-6-thiol. Photoelectron spectra of the diamondoid monolayers exhibited a peak at the low-kinetic energy threshold; up to 68percent of all emitted electrons were emitted within this single energy peak. The intensity of the emission peak is indicative of diamondoids being negative electron affinity materials. With an energy distribution width of less than 0.5 electron volts, this source of monochromatic electrons may find application in technologies such as electron microscopy, electron beam lithography, and field-emission flatpanel displays.

  2. Monochromatic Electron Photoemission from DiamondoidMonolayers

    SciTech Connect

    Yang, W.L.

    2010-04-15

    We found monochromatic electron photoemission from large-area self-assembled monolayers of a functionalized diamondoid, [121]tetramantane-6-thiol. Photoelectron spectra of the diamondoid monolayers exhibited a peak at the low-kinetic energy threshold; up to 68% of all emitted electrons were emitted within this single energy peak. The intensity of the emission peak is indicative of diamondoids being negative electron affinity materials. With an energy distribution width of less than 0.5 electron volts, this source of monochromatic electrons may find application in technologies such as electron microscopy, electron beam lithography, and field-emission flat-panel displays.

  3. Low temperature photoresponse of monolayer tungsten disulphide

    SciTech Connect

    Cao, Bingchen; Shen, Xiaonan; Shang, Jingzhi; Cong, Chunxiao; Yang, Weihuang; Eginligil, Mustafa E-mail: meginligil@ntu.edu.sg; Yu, Ting E-mail: meginligil@ntu.edu.sg

    2014-11-01

    High photoresponse can be achieved in monolayers of transition metal dichalcogenides. However, the response times are inconveniently limited by defects. Here, we report low temperature photoresponse of monolayer tungsten disulphide prepared by exfoliation and chemical vapour deposition (CVD) method. The exfoliated device exhibits n-type behaviour; while the CVD device exhibits intrinsic behaviour. In off state, the CVD device has four times larger ratio of photoresponse for laser on/off and photoresponse decay–rise times are 0.1 s (limited by our setup), while the exfoliated device has few seconds. These findings are discussed in terms of charge trapping and localization.

  4. High-pressure ultrasonic study of the commensurate-incommensurate spin-density-wave transition in an antiferromagnetic Cr-0.3 at. % Ru alloy single crystal

    NASA Astrophysics Data System (ADS)

    Cankurtaran, M.; Saunders, G. A.; Wang, Q.; Ford, P. J.; Alberts, H. L.

    1992-12-01

    A comprehensive experimental study has been made of the elastic and nonlinear acoustic behavior of a dilute Cr alloy as it undergoes a commensurate (C)-incommensurate (I) spin-density-wave transition. Simultaneous measurements of the temperature dependence of ultrasonic wave velocity and attenuation of longitudinal and shear 10-MHz ultrasonic waves propagated along both the [100] and the [110] direction of Cr-0.3 at. % Ru alloy single crystal have been made in the temperature range 200-300 K. The temperature dependence of ultrasonic attenuation for each mode is characterized by a spikelike peak centered at TCI (=238.6 K) (on cooling) and at TIC (=255.6 K) (on warming). The velocities of both longitudinal and shear ultrasonic waves exhibit a large and steep increase at TCI on cooling and a similar drop at TIC on warming with a pronounced hysteresis between TIC and TCI. These observations show that the transition between the commensurate and incommensurate phases is first order. Measurements of the effects of hydrostatic pressure (up to 0.15 GPa) on the velocities of ultrasonic waves, which were made at several fixed temperatures between 248 and 297 K, show similar features: a steep increase at PCI (increasing pressure) and a similar drop at PIC (decreasing pressure) with a well-defined hysteresis. Both TCI and TIC increase strongly and approximately linearly with pressure, the mean values of dTCI/dP and dTIC/dP being (333+/-3) K/GPa and (277+/-5) K/GPa, respectively. The pressure and temperature dependencies of the anomalies in the ultrasonic wave velocity have been used to locate both the C-I and I-C boundaries on the magnetic P-T phase diagram. There is a triple point (at about 315 K and 0.22 GPa) where the paramagnetic, commensurate, and incommensurate spin-density-wave phases coexist. Results for the complete sets of the elastic stiffness tensor components and their hydrostatic pressure derivatives have been used to evaluate the acoustic-mode Gr

  5. Pattern formation in fatty acid-nanoparticle and lipid-nanoparticle mixed monolayers at water surface

    NASA Astrophysics Data System (ADS)

    Choudhuri, M.; Datta, A.; Iyengar, A. N. Sekar; Janaki, M. S.

    2015-06-01

    Dodecanethiol-capped gold nanoparticles (AuNPs) are self-organized in two different amphiphilic monolayers one of which is a single-tailed fatty acid Stearic acid (StA) and the other a double-tailed lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). In the StA-AuNP film the AuNPs self-organize to form an interconnected network of nanoclusters on compression while in the DMPC-AuNP film the AuNPs aggregate to form random, isolated clusters in the film. The long time evolution of the films at constant surface pressure reveals ring structures in the former and diffusion limited aggregates in the latter that with time evolve into an irregular porous maze of AuNPs in the DMPC film. The difference in structure of the AuNP patterns in the two films can be attributed to a difference in the lipophilic interactions between the NPs and the amphiphilic molecules. The mean square intensity fluctuations f(ln) calculated along a typical line for the 2D structures in both the films at initial and final stages of long time evolution reflect the structural changes in the films over time.

  6. Vortex shells in mesoscopic triangles of amorphous superconducting thin films

    NASA Astrophysics Data System (ADS)

    Kokubo, N.; Miyahara, H.; Okayasu, S.; Nojima, T.

    2016-11-01

    Direct observation of vortex states confined in mesoscopic regular triangle dots of amorphous Mo-Ge thin films was made with a scanning superconducting quantum interference device microscope. The observed magnetic images illustrate clearly how vortices are distributed over the triangle dots by forming not only commensurate triangular clusters, but also unique patterns imposed by incommensurability. We discuss the results in terms of vortex shells and construct the packing sequence of vortices in the multiple shell structure.

  7. The influence of the preparation conditions on structure and optical properties of solid films of graphene oxide

    NASA Astrophysics Data System (ADS)

    Seliverstova, E.; Ibrayev, N.; Dzhanabekova, R.; Gladkova, V.

    2016-02-01

    In this study, we investigated the physico-chemical properties of graphene oxide monolayers at the interface water-air. Monolayers were formed by the spreading of dispersion of graphene oxide in acetone and THF. It was found than graphene monolayers are in the “liquid” state on the surface of subphase. Monolayers were transferred onto solid substrates according to Langmuir-Blodgett (LB) method. SEM images show that the films have an island structure. The films obtained from acetone solutions are more uniform, which makes them more promising in terms of their use as conductive coatings. Absorption spectrum of graphene LB films exhibits a broad band in the ultraviolet and visible region of the spectrum. The optical density of the film obtained from acetone solution is greater than the optical density of the film prepared from THF. In the visible region of the spectrum both films have high transparency.

  8. Monolayer Co3 O4 Inverse Opals as Multifunctional Sensors for Volatile Organic Compounds.

    PubMed

    Lee, Chul-Soon; Dai, Zhengfei; Jeong, Seong-Yong; Kwak, Chang-Hoon; Kim, Bo-Young; Kim, Do Hong; Jang, Ho Won; Park, Joon-Shik; Lee, Jong-Heun

    2016-05-17

    Monolayers of periodic porous Co3 O4 inverse opal (IO) thin films for gas-sensor applications were prepared by transferring cobalt-solution-dipped polystyrene (PS) monolayers onto sensor substrates and subsequent removal of the PS template by heat treatment. Monolayer Co3 O4 IO thin films having periodic pores (d≈500 nm) showed a high response of 112.9 to 5 ppm C2 H5 OH at 200 °C with low cross-responses to other interfering gases. Moreover, the selective detection of xylene and methyl benzenes (xylene+toluene) could be achieved simply by tuning the sensor temperature to 250 and 275 °C, respectively, so that multiple gases can be detected with a single chemiresistor. Unprecedentedly high ethanol response and temperature-modulated control of selectivity with respect to ethanol, xylene, and methyl benzenes were attributed to the highly chemiresistive IO nanoarchitecture and to the tuned catalytic promotion of different gas-sensing reactions, respectively. These well-ordered porous nanostructures could have potential in the field of high-performance gas sensors based on p-type oxide semiconductors.

  9. Gold Nanoparticle Monolayers from Sequential Interfacial Ligand Exchange and Migration in a Three-Phase System

    PubMed Central

    Yang, Guang; Hallinan, Daniel T.

    2016-01-01

    Using a three-phase system, centimeter-scale monolayer gold nanoparticle (Au NP) films have been prepared that have long-range order and hydrophobic ligands. The system contains an interface between an aqueous phase containing Au NPs and an oil phase containing one of various types of amine ligands, and a water/air interface. As the Au NPs diffuse to the water/oil interface, ligand exchange takes place which temporarily traps them at the water/oil interface. The ligand-exchanged particles then spontaneously migrate to the air/water interface, where they self-assemble, forming a monolayer under certain conditions. The spontaneous formation of the NP film at the air/water interface was due to the minimization of the system Helmholtz free energy. However, the extent of surface functionalization was dictated by kinetics. This decouples interfacial ligand exchange from interfacial self-assembly, while maintaining the simplicity of a single system. The interparticle center-to-center distance was dictated by the amine ligand length. The Au NP monolayers exhibit tunable surface plasma resonance and excellent spatial homogeneity, which is useful for surface-enhanced Raman scattering. The “air/water/oil” self-assembly method developed here not only benefits the fundamental understanding of NP ligand conformations, but is also applicable to the manufacture of plasmonic nanoparticle devices with precisely designed optical properties. PMID:27762394

  10. Phase diagram of the CF{sub 4} monolayer and bilayer on graphite

    SciTech Connect

    Thomas, Petros; Hess, George B.

    2014-05-21

    We report an experimental study of physisorbed monolayers and bilayers of CF{sub 4} on graphite using infrared reflection absorption spectroscopy supplemented by ellipsometry. The symmetric C–F stretch mode ν{sub 3} near 1283 cm{sup −1} in the gas is strongly blue shifted in the film by dynamic dipole coupling. This blue shift provides a very sensitive measure of the inter-molecular spacing in the monolayer and, less directly, in the bilayer. We find that important corrections are necessary to the volumetric coverage scales used in previous heat capacity and x-ray diffraction studies of this system. This requires quantitative and some qualitative changes to the previously proposed phase diagram. We find evidence for a new phase transition in the middle of the hexagonal incommensurate region and construct new phase diagrams in both the variables coverage-temperature and chemical potential-temperature. We determine the compressibility and thermal expansion in the low-pressure hexagonal incommensurate phase and values for the entropy change in several phase transitions. Below about 55 K there is evidence of solution of up to 7% of an impurity, most likely CO, in our monolayer but not the bilayer film.

  11. Surface anchoring structure of a liquid crystal monolayer studied via dual polarization interferometry

    NASA Astrophysics Data System (ADS)

    Tan, Osbert; Cross, Graham H.

    2009-02-01

    The self-organization of liquid crystal molecules of 4- n -pentyl- 4' -cyanobiphenyl (5CB) forming an oriented monolayer by condensation from the vapor phase onto a silicon oxynitride surface has been observed using the evanescent wave dual slab waveguide dual polarization mode interferometry (DPI) technique. Two distinct stages to the layer formation are observed: After the formation of a layer of molecules lying prone on the surface, further condensation begins to densify the layer and produces a gradual mutual alignment of the molecules until the fully condensed, fully aligned monolayer is reached. At this limit the full coverage 5CB monolayer on this surface and at a temperature of 25°C , is found to be anchored with an average molecular axis polar angle of 56±1° and with a measured thickness of 16.6±0.5Å . These results are in reasonable agreement with the molecular dimensions provided by molecular models. The apparent precision and accuracy of these results resolves some wide disparity between earlier studies of such systems. Previous difficulties in determining optogeometrical properties of such ultrathin birefringent films using ellipsometry or in the need for complex modeling of the film layer structure using x-ray reflectivity are overcome in this instance. We provide a technique for analyzing the dual polarization data from DPI such that the bulk refractive index values, when known, can be used to determine the orientation and thickness of a layer that is on the nanometer or subnanometer scale.

  12. Gold Nanoparticle Monolayers from Sequential Interfacial Ligand Exchange and Migration in a Three-Phase System

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Hallinan, Daniel T.

    2016-10-01

    Using a three-phase system, centimeter-scale monolayer gold nanoparticle (Au NP) films have been prepared that have long-range order and hydrophobic ligands. The system contains an interface between an aqueous phase containing Au NPs and an oil phase containing one of various types of amine ligands, and a water/air interface. As the Au NPs diffuse to the water/oil interface, ligand exchange takes place which temporarily traps them at the water/oil interface. The ligand-exchanged particles then spontaneously migrate to the air/water interface, where they self-assemble, forming a monolayer under certain conditions. The spontaneous formation of the NP film at the air/water interface was due to the minimization of the system Helmholtz free energy. However, the extent of surface functionalization was dictated by kinetics. This decouples interfacial ligand exchange from interfacial self-assembly, while maintaining the simplicity of a single system. The interparticle center-to-center distance was dictated by the amine ligand length. The Au NP monolayers exhibit tunable surface plasma resonance and excellent spatial homogeneity, which is useful for surface-enhanced Raman scattering. The “air/water/oil” self-assembly method developed here not only benefits the fundamental understanding of NP ligand conformations, but is also applicable to the manufacture of plasmonic nanoparticle devices with precisely designed optical properties.

  13. Silicene: from monolayer to multilayer — A concise review

    NASA Astrophysics Data System (ADS)

    Li, Hui; Hui-Xia, Fu; Meng, Sheng

    2015-08-01

    Silicene, a newly isolated silicon allotrope with a two-dimensional (2D) honeycomb lattice structure, is predicted to have electronic properties similar to those of graphene, including the existence of signature Dirac fermions. Furthermore, the strong spin-orbit interaction of Si atoms potentially makes silicene an experimentally accessible 2D topological insulator. Since 2012, silicene films have been experimentally synthesized on Ag (111) and other substrates, motivating a burst of research on silicene. We and collaborators have employed STM investigations and first principles calculations to intensively study the structure and electronic properties of silicene films on Ag (111), including monolayer, bilayer, and multilayer silicenes, as well as hydrogenation of silicene. Project supported by the National Natural Science Foundation of China (Grant Nos. 11334011, 11222431, and 11322431), the National Basic Research Program of China (Grant Nos. 2012CB921403, 2013CBA01600, and 2012CB921703), the “Strategic Priority Research Program” of the Chinese Academy of Sciences, and the Hundred Talents Program of Institute of Physics, Chinese Academy of Sciences.

  14. Bovine and human insulin adsorption at lipid monolayers: a comparison

    NASA Astrophysics Data System (ADS)

    Mauri, Sergio; Pandey, Ravindra; Rzeznicka, Izabela; Lu, Hao; Bonn, Mischa; Weidner, Tobias

    2015-07-01

    Insulin is a widely used peptide in protein research and it is utilised as a model peptide to understand the mechanics of fibril formation, which is believed to be the cause of diseases such as Alzheimer and Creutzfeld-Jakob syndrome. Insulin has been used as a model system due to its biomedical relevance, small size and relatively simple tertiary structure. The adsorption of insu lin on a variety of surfaces has become the focus of numerous studies lately. These works have helped in elucidating the consequence of surface/protein hydrophilic/hydrophobic interaction in terms of protein refolding and aggregation. Unfortunately, such model surfaces differ significantly from physiological surfaces. Here we spectroscopically investigate the adsorption of insulin at lipid monolayers, to further our understanding of the interaction of insulin with biological surfaces. In particular we study the effect of minor mutations of insulin’s primary amino acid sequence on its interaction with 1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) model lipid layers. We probe the structure of bovine and human insulin at the lipid/water interface using sum frequency generation spectroscopy (SFG). The SFG experiments are complemented with XPS analysis of Langmuir-Schaefer deposited lipid/insulin films. We find that bovine and human insulin, even though very similar in sequence, show a substantially different behavior when interacting with lipid films.

  15. Growth of Continuous Monolayer Graphene with Millimeter-sized Domains Using Industrially Safe Conditions

    PubMed Central

    Wu, Xingyi; Zhong, Guofang; D'Arsié, Lorenzo; Sugime, Hisashi; Esconjauregui, Santiago; Robertson, Alex W.; Robertson, John

    2016-01-01

    We demonstrate the growth of continuous monolayer graphene films with millimeter-sized domains on Cu foils under intrinsically safe, atmospheric pressure growth conditions, suitable for application in roll-to-roll reactors. Previous attempts to grow large domains in graphene have been limited to isolated graphene single crystals rather than as part of an industrially useable continuous film. With both appropriate pre-treatment of the Cu and optimization of the CH4 supply, we show that it is possible to grow continuous films of monolayer graphene with millimeter scale domains within 80 min by chemical vapour deposition. The films are grown under industrially safe conditions, i.e., the flammable gases (H2 and CH4) are diluted to well below their lower explosive limit. The high quality, spatial uniformity, and low density of domain boundaries are demonstrated by charge carrier mobility measurements, scanning electron microscope, electron diffraction study, and Raman mapping. The hole mobility reaches as high as ~5,700 cm2 V−1 s−1 in ambient conditions. The growth process of such high-quality graphene with a low H2 concentration and short growth times widens the possibility of industrial mass production. PMID:26883292

  16. Linear and Star Poly(ionic liquid) Assemblies: Surface Monolayers and Multilayers.

    PubMed

    Erwin, Andrew J; Xu, Weinan; He, Hongkun; Matyjaszewski, Krzysztof; Tsukruk, Vladimir V

    2017-04-04

    The surface morphology and organization of poly(ionic liquid)s (PILs), poly[1-(4-vinylbenzyl)-3-butylimidazolium bis(trifluoromethylsulfonyl)imide] are explored in conjunction with their molecular architecture, adsorption conditions, and postassembly treatments. The formation of stable PIL Langmuir and Langmuir-Blodgett (LB) monolayers at the air-water and air-solid interfaces is demonstrated. The hydrophobic bis(trifluoromethylsulfonyl)imide (Tf2N(-)) is shown to be a critical agent governing the assembly morphology, as observed in the reversible condensation of LB monolayers into dense nanodroplets. The PIL is then incorporated as an unconventional polyelectrolyte component in the layer-by-layer (LbL) films of hydrophobic character. We demonstrate that the interplay of capillary forces, macromolecular mobility, and structural relaxation of the polymer chains influence the dewetting mechanisms in the PIL multilayers, thereby enabling access to a diverse set of highly textured, porous, and interconnected network morphologies for PIL LbL films that would otherwise be absent in conventional LbL films. Their compartmentalized internal structure is relevant to molecular separation membranes, ultrathin hydrophobic coatings, targeted cargo delivery, and highly conductive films.

  17. Dynamic mechanical properties of a polyelectrolyte adsorbed insoluble lipid monolayer at the air-water interface.

    PubMed

    Park, Chang Young; Kim, Mahn Won

    2015-04-23

    Polymers have been used to stabilize interfaces or to tune the mechanical properties of interfaces in various contexts, such as in oil emulsions or biological membranes. Although the structural properties of these systems are relatively well-studied, instrumental limitations continue to make it difficult to understand how the addition of polymer affects the dynamic mechanical properties of thin and soft films. We have solved this challenge by developing a new instrument, an optical-tweezer-based interface shear microrheometer (ISMR). With this technique, we observed that the interface shear modulus, G*, of a dioctadecyldimethylammonium chloride (DODAC) monolayer at the air-water interface significantly increased with adsorption of polystyrenesulfonate (PSS). In addition, the viscous film (DODAC monolayer) became a viscoelastic film with PSS adsorption. At a low salt concentration, 10 mM of NaCl in the subphase, the viscoelasticity of the DODAC/PSS composite was predominantly determined by a particular property of PSS, that is, it behaves as a Gaussian chain in a θ-solvent. At a high salt concentration, 316 mM of NaCl, the thin film behaved as a polymer melt excluding water molecules.

  18. Surprising Electronic-Magnetic Properties of Close Packed Organized Organic Layers- Magnetization of Chiral Monolayers of Polypeptide

    NASA Astrophysics Data System (ADS)

    Naaman, Ron; Carmeli, Itai; Skakalova, Viera; Vager, Zeev

    2002-03-01

    It is usually assumed that the electronic properties of the adsorbed molecules are similar to that of the isolated molecule or of the molecule embedded in an isotropic medium. The weak coupling between the molecules in a monolayer seems to support this notion. This is taken as a justification to use molecular based calculations for predicting the properties of the monolayer. We present theoretical and experimental results that point to the fact that this assumption is generally not justified and that properties of molecules can vary significantly upon adsorption to a close packed layer. This observation may result in new electro-magnetic properties of the adsorbed film and be of importance in understanding physical properties of natural membranes. In the present work, by studying well-characterized monolayers of polyalanine we are able to obtain an insight on the details of a mechanism.

  19. Compressibility study of quaternary phospholipid blend monolayers.

    PubMed

    Cavalcanti, Leide P; Tho, Ingunn; Konovalov, Oleg; Fossheim, Sigrid; Brandl, Martin

    2011-07-01

    The mechanical properties of liposome membranes are strongly dependent on type and ratio of lipid compounds, which can have important role in drug targeting and release processes when liposome is used as drug carrier. In this work we have used Brewster's angle microscopy to monitor the lateral compression process of lipid monolayers containing as helper lipids either distearoyl phosphatidylethanolamine (DSPE) or dioleoyl phophatidylethanolamine (DOPE) molecules on the Langmuir trough. The compressibility coefficient was determined for lipid blend monolayers containing the helper lipids above, cholesterol, distearoyl phosphatidylcholine (DSPC) and pegylated-DSPE at room temperature. Two variables, the cholesterol fraction and the ratio ρ between the helper lipid (either DSPE or DOPE) and the reference lipid DSPC, were studied by multivariate analysis to evaluate their impact on the compressibility coefficient of the monolayers. The cholesterol level was found to be the most significant variable for DSPE blends while the ratio ρ was the most significant one for DOPE blend monolayers. It was also found that these two variables can exhibit positive interaction and the same compressibility value can be obtained with different blend compositions.

  20. Modulation of dipalmitoylphosphatidylcholine monolayers by dimethyl sulfoxide.

    PubMed

    Dabkowska, Aleksandra P; Collins, Louise E; Barlow, David J; Barker, Robert; McLain, Sylvia E; Lawrence, M Jayne; Lorenz, Christian D

    2014-07-29

    The action of the penetration-enhancing agent, dimethyl sulfoxide (DMSO), on phospholipid monolayers was investigated at the air-water interface using a combination of experimental techniques and molecular dynamics simulations. Brewster angle microscopy revealed that DPPC monolayers remained laterally homogeneous at subphase concentrations up to a mole fraction of 0.1 DMSO. Neutron reflectometry of the monolayers in combination with isotopic substitution enabled the determination of solvent profiles as a function of distance perpendicular to the interface for the different DMSO subphase concentrations. These experimental results were compared to those obtained from molecular dynamic (MD) simulations of the corresponding monolayer systems. There was excellent agreement found between the MD-derived reflectivity curves and the measured data for all of the H/D contrast variations investigated. The MD provide a detailed description of the distribution of water and DMSO molecules around the phosphatidylcholine headgroup, and how this distribution changes with increasing DMSO concentrations. Significantly, the measurements and simulations that are reported here support the hypothesis that DMSO acts by dehydrating the phosphatidylcholine headgroup, and as such provide the first direct evidence that it does so primarily by displacing water molecules bound to the choline group.

  1. Study of structural order in porphyrin-fullerene dyad ZnDHD6ee monolayers by electron diffraction and atomic force microscopy

    SciTech Connect

    D'yakova, Yu. A.; Suvorova, E. I.; Orekhov, Andrei S.; Orekhov, Anton S.; Alekseev, A. S.; Gainutdinov, R. V.; Klechkovskaya, V. V. Tereschenko, E. Yu.; Tkachenko, N. V.; Lemmetyinen, H.; Feigin, L. A.; Kovalchuk, M. V.

    2013-11-15

    The structure of porphyrin-fullerene dyad ZnDHD6ee monolayers formed on the surface of aqueous subphase in a Langmuir trough and transferred onto solid substrates has been studied. The data obtained are interpreted using simulation of the structure of isolated molecules and their packing in monolayer and modeling of diffraction patterns from molecular aggregates having different sizes and degrees of order. Experiments on the formation of condensed ZnDHD6ee monolayers are described. The structure of these monolayers on a water surface is analyzed using {pi}-A isotherms. The structure of the monolayers transferred onto solid substrates is investigated by electron diffraction and atomic force microscopy. The unit-cell parameters of two-dimensional domains, which are characteristic of molecular packing in monolayers and deposited films, are determined. Domains are found to be organized into a texture (the molecular axes are oriented by the [001] direction perpendicular to the substrate). The monolayers contain a limited number of small 3D domains.

  2. Genetically improved monolayer-forming tobacco mosaic viruses to generate nanostructured semiconducting bio/inorganic hybrids.

    PubMed

    Atanasova, Petia; Stitz, Nina; Sanctis, Shawn; Maurer, Johannes H M; Hoffmann, Rudolf C; Eiben, Sabine; Jeske, Holger; Schneider, Jörg J; Bill, Joachim

    2015-04-07

    The genetically determined design of structured functional bio/inorganic materials was investigated by applying a convective assembly approach. Wildtype tobacco mosaic virus (wt TMV) as well as several TMV mutants were organized on substrates over macroscopic-length scales. Depending on the virus type, the self-organization behavior showed pronounced differences in the surface arrangement under the same convective assembly conditions. Additionally, under varying assembly parameters, the virus particles generated structures encompassing morphologies emerging from single micrometer long fibers aligned parallel to the triple-contact line through disordered but dense films to smooth and uniform monolayers. Monolayers with diverse packing densities were used as templates to form TMV/ZnO hybrid materials. The semiconducting properties can be directly designed and tuned by the variation of the template architecture which are reflected in the transistor performance.

  3. Controlling surface functionality through generation of thiol groups in a self-assembled monolayer.

    SciTech Connect

    Lud, S. Q.; Neppl, S.; Richter, G.; Bruno, P.; Gruen, D. M.; Jordan, R.; Feulner, P.; Stutzmann, M.; Garrido, J. A.; Materials Science Division; Technische Univ. Munchen

    2010-01-01

    A lithographic method to generate reactive thiol groups on functionalized synthetic diamond for biosensor and molecular electronic applications is developed. We demonstrate that ultrananocrystalline diamond (UNCD) thin films covalently functionalized with surface-generated thiol groups allow controlled thiol-disulfide exchange surface hybridization processes. The generation of the thiol functional head groups was obtained by irradiating phenylsulfonic acid (PSA) monolayers on UNCD surfaces. The conversion of the functional headgroup of the self-assembled monolayer was verified by using X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and fluorescence microscopy. Our findings indicate the selective generation of reactive thiol surface groups. Furthermore, we demonstrate the grafting of yeast cytochrome c to the thiol-modified diamond surface and the electron transfer between protein and electrode.

  4. Superhigh moduli and tension-induced phase transition of monolayer gamma-boron at finite temperatures

    PubMed Central

    Zhao, Junhua; Yang, Zhaoyao; Wei, Ning; Kou, Liangzhi

    2016-01-01

    Two dimensional (2D) gamma-boron (γ-B28) thin films have been firstly reported by the experiments of the chemical vapor deposition in the latest study. However, their mechanical properties are still not clear. Here we predict the superhigh moduli (785 ± 42 GPa at 300 K) and the tension-induced phase transition of monolayer γ-B28 along a zigzag direction for large deformations at finite temperatures using molecular dynamics (MD) simulations. The new phase can be kept stable after unloading process at these temperatures. The predicted mechanical properties are reasonable when compared with our results from density functional theory. This study provides physical insights into the origins of the new phase transition of monolayer γ-B28 at finite temperatures. PMID:26979283

  5. Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    SciTech Connect

    Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; Kim, Yi-Yeoun; Schenk, Anna S.; Kulak, Alexander N.; Comyn, Timothy P.; Chammas, Oliver; Harder, Ross J.; Duffy, Dorothy M.; Robinson, Ian K.; Meldrum, Fiona C.

    2016-06-15

    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. In this study, we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. In conclusion, this work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates.

  6. Pit Formation during the Self-Assembly of Dithiol Monolayers on Au(111)

    NASA Astrophysics Data System (ADS)

    Macdairmid, A. R.; Cappello, M. L.; Keeler, W. J.; Banks, J. T.; Gallagher, M. C.

    2000-03-01

    The formation of pits one gold atom deep during the growth of alkanethiol monolayers on Au(111), has been observed previously by others. Explanations for pit formation include etching of the substrate, or mass transport of gold atom + thiol molecule on the surface, due to changes in surface energy^1. We have investigated the structure of dithiothreitol (DTT) SAMs on Au(111). Ex situ STM measurements indicate similar pitting occurs during formation of the dithiol monolayer. The degree of pitting depends on exposure time, sample temperature during formation, and subsequent annealing of the sample. Pitting is enhanced considerasbly when DTT is coordinated with Ti, in fact DTT/Ti films exhibit considerable pit motion during STM imaging. ^1 F. Teran et al. Electrochimica Acta 44, 1053 (1998).

  7. Monolayer to Bilayer Structural Transition in Confined Pyrrolidinium-Based Ionic Liquids.

    PubMed

    Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Licence, Peter; Dolan, Andrew; Welton, Tom; Perkin, Susan

    2013-02-07

    Ionic liquids can be intricately nanostructured in the bulk and at interfaces resulting from a delicate interplay between interionic and surface forces. Here we report the structuring of a series of dialkylpyrrolidinium-based ionic liquids induced by confinement. The ionic liquids containing cations with shorter alkyl chain substituents form alternating cation-anion monolayer structures on confinement to a thin film, whereas a cation with a longer alkyl chain substituent leads to bilayer formation. The crossover from monolayer to bilayer structure occurs between chain lengths of n = 8 and 10 for these pyrrolidinium-based ionic liquids. The bilayer structure for n = 10 involves full interdigitation of the alkyl chains; this is in contrast with previous observations for imidazolium-based ionic liquids. The results are pertinent to these liquids' application as electrolytes, where the electrolyte is confined inside the pores of a nanoporous electrode, for example, in devices such as supercapacitors or batteries.

  8. Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    PubMed Central

    Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; Kim, Yi-Yeoun; Schenk, Anna S.; Kulak, Alexander N.; Comyn, Timothy P.; Chammas, Oliver; Harder, Ross J.; Duffy, Dorothy M.; Robinson, Ian K.; Meldrum, Fiona C.

    2016-01-01

    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. Here we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. This work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates. PMID:27302863

  9. X-ray specular reflection studies of silicon coated by organic monolayers (alkylsiloxanes)

    NASA Astrophysics Data System (ADS)

    Tidswell, I. M.; Ocko, B. M.; Pershan, P. S.; Wasserman, S. R.; Whitesides, G. M.; Axe, J. D.

    1990-01-01

    X-ray specular reflectivity has been used to characterize the structure of silicon-silicon-oxide surfaces coated with chemisorbed hydrocarbon monolayer films (alkylsiloxanes). Using synchrotron radiation the reflectivity was followed over 9 orders of magnitude, from grazing incidence to an incident angle of φ~=6.5°, or q=(4π/λ)sin(φ)=0.8 Å-1, allowing a spatial resolution of features approximately π/0.8~=4.0 Å along the surface normal. Analysis was performed by fitting the data to reflectivities calculated from models of the surface electron density and by calculating Patterson functions directly from the data. Although the measured reflectivities could be equally well described by different sets of model parameters, the electron densities calculated from these different parameters were remarkably alike. Inspection of the electron densities allowed identification of a layer of SiO2 (~=17-Å thick), a layer of head-group region where the alkylsiloxane adsorbs to the SiO2, and the hydrocarbon layer. Fitting the data also required that the various interfaces have different widths. The fact that the same local hydrocarbon density of 0.85 g/cm3 was observed for both fully formed and partially formed monolayers with alkane chains of varying length excluded a model in which the partially formed monolayer was made up of separated islands of well-formed monolayers. Measurements before and after chemical reaction of a monolayer in which the alkyl chain was terminated by an olefinic group demonstrated the ability to use x-ray reflectivity to characterize chemical changes. The effects of radiation damage on these types of measurements are described.

  10. Improvements in the characterization of the crystalline structure of acid-terminated alkanethiol self-assembled monolayers on Au(111).

    PubMed

    Mendoza, Sandra M; Arfaoui, Imad; Zanarini, Simone; Paolucci, Francesco; Rudolf, Petra

    2007-01-16

    We report a study of acid-terminated self-assembled monolayers of alkanethiols of different length, 11-mercaptoundecanoic acid (11-MUA) and 16-mercaptohexadecanoic acid (16-MHDA), on Au(111). Scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and contact angle techniques were used for characterization, and the results were compared with those obtained from n-alkanethiols of similar chain length, providing a detailed description of the two-dimensional crystalline structure. Molecular resolution STM images show that 11-MUA forms a dense-packed monolayer arranged in a (square root 3 x square root 3)R30 degrees structure with a c(2 x 4) superlattice, where the simple hexagonal phase, the c(2 x 4) superlattice, and nonordered areas coexist. 16-MHDA assembles in a uniform monolayer with similar morphology to that of 11-MUA, but molecular resolution could not be reached in STM due to both the hydrophilicity of the acid groups and the poor conductivity of the thick monolayer. Nevertheless, the monolayer thicknesses estimated by XPS and electrochemistry and the highly blocking character of the film observed by electrochemistry as well as the low water contact angle are consistent with 16-MHDA molecules forming a compact monolayer on the Au(111) substrate with fully extended alkyl chains and acid groups pointing away from the surface. The results obtained for 16-MHDA were reproducible under different preparation conditions such as the addition or omission of acetic acid to the ethanolic solution. Contrary to other reports, we demonstrate that ordered acid-terminated self-assembled monolayers are obtained with the same preparation conditions as those of the methyl-terminated ones, without any additional treatment.

  11. Direct patterning of self-assembled monolayers on gold using a laser beam.

    PubMed

    Shadnam, Mohammad R; Kirkwood, Sean E; Fedosejevs, Robert; Amirfazli, A

    2004-03-30

    The development of a methodology to manipulate surface properties of a self-assembled monolayer (SAM) of alkanethiol on a gold film using direct laser patterning is the objective of this paper. The present study demonstrates proof of the concept for the feasibility of laser patterning monolayers and outlines theoretical modeling of the process to predict the resulting feature size. This approach is unique in that it eliminates the need for photolithography, is noncontact, and can be extended to other systems such as SAMs on silicon wafers or potentially polymeric substrates. A homogeneous SAM made of 1-hexadecanethiol is formed on a 300-A sputtered film of gold (supported by a soda lime glass substrate). Localized regions are then desorbed by scanning the focal spot of a 488-nm continuous-wave argon ion laser beam under a nitrogen atmosphere. The desorption occurs as a result of a high substrate temperature produced by the moving laser beam with a Gaussian spatial profile at a constant speed of 200 microm/s. After completing the scans, the sample is dipped into a dilute solution of 16-mercaptohexadecanoic acid and a hydrophilic monolayer self-assembles along the previously irradiated regions. The resultant lines are viewed, and line widths are measured using both wetting with tridecane under a light microscope and scanning electron microscopy. Using the direct laser patterning method, we have produced straight line patterns with widths of 28-170 microm. A thermal model was constructed to predict the line width of the desorbed monolayer. The effect of the laser power, beam waist, and temperature dependence of the substrate conductivity on the theoretical predictions is considered. It is shown that the theoretical predictions are in good agreement with the experimental results, and, thus, the model can effectively be used to predict experimental results.

  12. Effect of molecular surface packing on the enzymatic activity modulation of an anchored protein on phospholipid Langmuir monolayers.

    PubMed

    Caseli, Luciano; Oliveira, Rafael G; Masui, Douglas C; Furriel, Rosa P M; Leone, Francisco A; Maggio, Bruno; Zaniquelli, M Elisabete D

    2005-04-26

    The catalytic activity of a glycosylphosphatidylinositol (GPI)-anchored alkaline phosphatase has been studied in Langmuir phospholipid monolayers at different surface pressures. The enzyme substrate, p-nitrophenyl phosphate, was injected into the subphase of mixed enzyme/lipid Langmuir monolayers. Its hydrolysis product was followed by monitoring the absorbance at 410 nm in situ in the monolayer subphase of the Langmuir trough. Several surface pressures, corresponding to different molecular surface densities, were attained by lateral compression of the monolayers. The morphology of the monolayers, observed by fluorescence microscopy, showed three different types of domains owing to the heterogeneous partition of the enzyme within the mixed enzyme/lipid film. The catalytic activity was modulated by the enzyme surface density, and it increased until a pressure of 18 mN/m was reached, but it decreased significantly when the equilibrium in-plane elasticity (surface compressional modulus) increased more noticeably, resulting in alterations in the interface morphology. A model for the modulation of the enzyme orientation and catalytic activity by lipid/enzyme surface morphology and enzyme surface packing at the air/liquid interface is proposed. The results might have an important impact on the comprehension of the enzymatic activity regulation of GPI-anchored proteins in biomembranes.

  13. Monolayer PtSe 2 , a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt

    DOE PAGES

    Wang, Yeliang; Li, Linfei; Yao, Wei; ...

    2015-05-21

    For single-layer transition-metal dichalcogenides (TMDs) receive significant attention due to their intriguing physical properties for both fundamental research and potential applications in electronics, optoelectronics, spintronics, catalysis, and so on. Here, we demonstrate the epitaxial growth of high-quality single-crystal, monolayer platinum diselenide (PtSe2), a new member of the layered TMDs family, by a single step of direct selenization of a Pt(111) substrate. We found that a combination of atomic-resolution experimental characterizations and first-principle theoretic calculations reveals the atomic structure of the monolayer PtSe2/Pt(111). Angle-resolved photoemission spectroscopy measurements confirm for the first time the semiconducting electronic structure of monolayer PtSe2 (in contrastmore » to its semimetallic bulk counterpart). The photocatalytic activity of monolayer PtSe2 film is evaluated by a methylene-blue photodegradation experiment, demonstrating its practical application as a promising photocatalyst. Moreover, circular polarization calculations predict that monolayer PtSe2 has also potential applications in valleytronics.« less

  14. Interaction of L-Phenylalanine with a Phospholipid Monolayer at the Water-Air Interface.

    PubMed

    Griffith, Elizabeth C; Perkins, Russell J; Telesford, Dana-Marie; Adams, Ellen M; Cwiklik, Lukasz; Allen, Heather C; Roeselová, Martina; Vaida, Veronica

    2015-07-23

    The interaction of L-phenylalanine with a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer at the air-water interface was explored using a combination of experimental techniques and molecular dynamics (MD) simulations. By means of Langmuir trough methods and Brewster angle microscopy, L-phenylalanine was shown to significantly alter the interfacial tension and the surface domain morphology of the DPPC film. In addition, confocal microscopy was used to explore the aggregation state of L-phenylalanine in the bulk aqueous phase. Finally, MD simulations were performed to gain molecular-level information on the interactions of L-phenylalanine and DPPC at the interface. Taken together, these results show that L-phenylalanine intercalates into a DPPC film at the air-water interface, thereby affecting the surface tension, phase morphology, and ordering of the DPPC film. The results are discussed in the context of biological systems and the mechanism of diseases such as phenylketonuria.

  15. Ligand Replacement Approach to Raman-Responded Molecularly Imprinted Monolayer for Rapid Determination of Penicilloic Acid in Penicillin.

    PubMed

    Zhang, Liying; Jin, Yang; Huang, Xiaoyan; Zhou, Yujie; Du, Shuhu; Zhang, Zhongping

    2015-12-01

    Penicilloic acid (PA) is a degraded byproduct of penicillin and often causes fatal allergies to humans, but its rapid detection in penicillin drugs remains a challenge due to its similarity to the mother structure of penicillin. Here, we reported a ligand-replaced molecularly imprinted monolayer strategy on a surface-enhanced Raman scattering (SERS) substrate for the specific recognition and rapid detection of Raman-inactive PA in penicillin. The bis(phenylenediamine)-Cu(2+)-PA complex was first synthesized and stabilized onto the surface of silver nanoparticle film that was fabricated by a bromide ion-added silver mirror reaction. A molecularly imprinted monolayer was formed by the further modification of alkanethiol around the stabilized complex on the Ag film substrate, and the imprinted recognition site was then created by the replacement of the complex template with Raman-active probe molecule p-aminothiophenol. When PA rebound into the imprinted site in the alkanethiol monolayer, the SERS signal of p-aminothiophenol exhibited remarkable enhancement with a detection limit of 0.10 nM. The imprinted monolayer can efficiently exclude the interference of penicillin and thus provides a selective determination of 0.10‰ (w/w) PA in penicillin, which is about 1 order of magnitude lower than the prescribed residual amount of 1.0‰. The strategy reported here is simple, rapid and inexpensive compared to the traditional chromatography-based methods.

  16. Motion of the Jovian commensurability resonances and the character of the celestial mechanics in the asteroid zone - Implication for kinematics and structure

    NASA Technical Reports Server (NTRS)

    Torbett, M.; Smoluchowski, R.

    1982-01-01

    The motion of the Jovian commensurability resonances during the early evolution of the solar system induced by the dissipation of the accretion disk results in fundamental differences in the celestial mechanics of objects over which a resonance passes from that observed for a stationary resonance. Objects experiencing resonance passage acquire irreversible increases of average eccentricity to large values accounting for the present-day random velocities of the asteroids. Semi-major axes are similarly irreversibly decreased by amounts capable of clearing the Kirkwood gaps. The gap widths are in agreement with observation.

  17. Tidal evolution of the Uranian satellites. I - Passage of Ariel and Umbriel through the 5:3 mean-motion commensurability

    NASA Technical Reports Server (NTRS)

    Tittemore, William C.; Wisdom, Jack

    1988-01-01

    A significant chaotic zone is associated with the 5:3 mean-motion commensurability resonance through which Ariel and Umbriel would have passed, in the event that Uranus' specific dissipation function were less than 100,000; the standard theory for passage through orbital resonances would in this case be inapplicable, in view of significant changes in the probability and the mechanism of capture into the resonance. It is suggested that tidal evolution within the chaotic zone may have pushed eccentrocities to comparatively high values at which the probability of escape from resonance remained. Eccentricities sufficiently great to affect Ariel's thermal history have not been found.

  18. Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures.

    PubMed

    Cheon, Gowoon; Duerloo, Karel-Alexander N; Sendek, Austin D; Porter, Chase; Chen, Yuan; Reed, Evan J

    2017-03-08

    Layered materials held together by weak interactions including van der Waals forces, such as graphite, have attracted interest for both technological applications and fundamental physics in their layered form and as an isolated single-layer. Only a few dozen single-layer van der Waals solids have been subject to considerable research focus, although there are likely to be many more that could have superior properties. To identify a broad spectrum of layered materials, we present a novel data mining algorithm that determines the dimensionality of weakly bonded subcomponents based on the atomic positions of bulk, three-dimensional crystal structures. By applying this algorithm to the Materials Project database of over 50,000 inorganic crystals, we identify 1173 two-dimensional layered materials and 487 materials that consist of weakly bonded one-dimensional molecular chains. This is an order of magnitude increase in the number of identified materials with most materials not known as two- or one-dimensional materials. Moreover, we discover 98 weakly bonded heterostructures of two-dimensional and one-dimensional subcomponents that are found within bulk materials, opening new possibilities for much-studied assembly of van der Waals heterostructures. Chemical families of materials, band gaps, and point groups for the materials identified in this work are presented. Point group and piezoelectricity in layered materials are also evaluated in single-layer forms. Three hundred and twenty-five of these materials are expected to have piezoelectric monolayers with a variety of forms of the piezoelectric tensor. This work significantly extends the scope of potential low-dimensional weakly bonded solids to be investigated.

  19. Interaction of poly(L-arginine) with negatively charged DPPG membranes: calorimetric and monolayer studies.

    PubMed

    Schwieger, Christian; Blume, Alfred

    2009-08-10

    The interaction of poly(L-arginine) (PLA) with dipalmitoyl-phosphatidylglycerol (DPPG) bilayer membranes and monolayers was studied by differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC), and monolayer experiments. The binding of PLA affected the main transition temperature of lipid bilayers (T(m)) only marginally. Depending on the PLA chain length, T(m) was slightly increased or decreased. This finding was attributed to the superposition of two counteracting effects on the transition after PLA binding. The main transition enthalpy (DeltaH(m)) was decreased upon PLA binding and the formation of a ripple phase (P(beta)') was suppressed. ITC experiments showed that two distinct processes are involved in binding of PLA to gel phase (L(beta)') membranes. At low peptide content the binding reaction is endothermic, and at high peptide concentration the binding becomes exothermic. However, the enthalpy of binding to fluid (L(alpha)) membranes was exothermic for all peptide-to-lipid ratios. The temperature dependence of PLA binding to fluid palmitoyl-oleoyl-phosphatidylglycerol (POPG) membranes showed a decrease in binding enthalpy with increasing temperature (Delta(R)C(p) < 0), indicating hydrophobic contributions to the free energy of binding. For longer PLA chains, the binding enthalpy for L(alpha) membranes was more exothermic than for shorter chains. Monolayer adsorption experiments showed two consecutive binding processes. At low initial surface pressures (pi(0)) a condensation of the lipid film (Deltapi < 0) is first observed after PLA injection into the subphase, followed by an increase in film pressure (Deltapi > 0) due to insertion of peptide side chains into the monolayer. At higher pi(0) only an increase in film pressure can be observed due to the insertion of the side chains. Deltapi increases with increasing pi(0). The insertion of the peptide into the monolayer is corroborated by the observed shift of pi-A isotherms to higher

  20. Nanotribological properties of alkanephosphonic acid self-assembled monolayers on aluminum oxide: effects of fluorination and substrate crystallinity.

    PubMed

    Brukman, Matthew J; Oncins Marco, Gerard; Dunbar, Timothy D; Boardman, Larry D; Carpick, Robert W

    2006-04-25

    Two phosphonic acid (PA) self-assembled monolayers (SAMs) are studied on three aluminum oxide surfaces: the C and R crystallographic planes of single crystal alpha-alumina (sapphire) and an amorphous vapor-deposited alumina thin film. SAMs are either fully hydrogenated CH3(CH2)17PO3H2 or semifluorinated CF3(CF2)7(CH2)11PO3H2. Atomic force microscope (AFM) topographic imaging reveals that the deposited films are homogeneous, atomically smooth, and stable for months in the laboratory environment. Static and advancing contact angle measurements agree with previous work on identical or similar films, but receding measurements suggest reduced coverage here. To enable reproducible nanotribology measurements with the AFM, a scanning protocol is developed that leads to a stable configuration of the silicon tip. Adhesion for the semifluorinated films is either comparable to or lower than that for the hydrogenated films, with a dependence on contact history observed. Friction between each film and the tips depends strongly upon the type of molecule, with the fluorinated species exhibiting substantially higher friction. Subtle but reproducible differences in friction are observed for a given SAM depending on the substrate, revealing differences in packing density for the SAMs on the different substrates. Friction is seen to increase linearly with load, a consequence of the tip's penetration into the monolayer.

  1. Ground state structures in ferrofluid monolayers.

    PubMed

    Prokopieva, Taisia A; Danilov, Victor A; Kantorovich, Sofia S; Holm, Christian

    2009-09-01

    A combination of analytical calculations and Monte Carlo simulations is used to find the ground state structures in monodisperse ferrofluid monolayers. Taking into account the magnetic dipole-dipole interaction between all particles in the system we observe different topological structures that are likely to exist at low temperatures. The most energetically favored structures we find are rings, embedded rings, and rings side by side, and we are able to derive analytical expressions for the total energy of these structures. A detailed analysis of embedded rings and rings side by side shows that the interring interactions are negligible. We furthermore find that a single ideal ring is the ground state structure for a ferrofluid monolayer. We compared our theoretical predictions to the results of simulated annealing data and found them to be in excellent agreement.

  2. Piezoelectric monolayers as nonlinear energy harvesters.

    PubMed

    López-Suárez, Miquel; Pruneda, Miguel; Abadal, Gabriel; Rurali, Riccardo

    2014-05-02

    We study the dynamics of h-BN monolayers by first performing ab-initio calculations of the deformation potential energy and then solving numerically a Langevine-type equation to explore their use in nonlinear vibration energy harvesting devices. An applied compressive strain is used to drive the system into a nonlinear bistable regime, where quasi-harmonic vibrations are combined with low-frequency swings between the minima of a double-well potential. Due to its intrinsic piezoelectric response, the nonlinear mechanical harvester naturally provides an electrical power that is readily available or can be stored by simply contacting the monolayer at its ends. Engineering the induced nonlinearity, a 20 nm2 device is predicted to harvest an electrical power of up to 0.18 pW for a noisy vibration of 5 pN.

  3. Collective cell motion in endothelial monolayers

    PubMed Central

    Szabó, A.; Ünnep, R.; Méhes, E.; Twal, W. O.; Argraves, S. W.; Cao, Y.; Czirók, A.

    2011-01-01

    Collective cell motility is an important aspect of several developmental and pathophysiological processes. Despite its importance, the mechanisms that allow cells to be both motile and adhere to one another are poorly understood. In this study we establish statistical properties of the random streaming behavior of endothelial monolayer cultures. To understand the reported empirical findings, we expand the widely used cellular Potts model to include active cell motility. For spontaneous directed motility we assume a positive feedback between cell displacements and cell polarity. The resulting model is studied with computer simulations, and is shown to exhibit behavior compatible with experimental findings. In particular, in monolayer cultures both the speed and persistence of cell motion decreases, transient cell chains move together as groups, and velocity correlations extend over several cell diameters. As active cell motility is ubiquitous both in vitro and in vivo, our model is expected to be a generally applicable representation of cellular behavior. PMID:21076204

  4. Fracture characteristics of monolayer CVD-graphene.

    PubMed

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-03-24

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized.

  5. Fracture Characteristics of Monolayer CVD-Graphene

    NASA Astrophysics Data System (ADS)

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-03-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized.

  6. Fracture Characteristics of Monolayer CVD-Graphene

    PubMed Central

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-01-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized. PMID:24657996

  7. Growth and spectroscopic characterization of monolayer and few-layer hexagonal boron nitride on metal substrates

    NASA Astrophysics Data System (ADS)

    Feigelson, Boris N.; Bermudez, Victor M.; Hite, Jennifer K.; Robinson, Zachary R.; Wheeler, Virginia D.; Sridhara, Karthik; Hernández, Sandra C.

    2015-02-01

    Atomically thin two dimensional hexagonal boron nitride (2D h-BN) is one of the key materials in the development of new van der Waals heterostructures due to its outstanding properties including an atomically smooth surface, high thermal conductivity, high mechanical strength, chemical inertness and high electrical resistance. The development of 2D h-BN growth is still in the early stages and largely depends on rapid and accurate characterization of the grown monolayer or few layers h-BN films. This paper demonstrates a new approach to characterizing monolayer h-BN films directly on metal substrates by grazing-incidence infrared reflection absorption spectroscopy (IRRAS). Using h-BN films grown by atmospheric-pressure chemical vapor deposition on Cu and Ni substrates, two new sub-bands are found for the A2u out-of-plane stretching mode. It is shown, using both experimental and computational methods, that the lower-energy sub-band is related to 2D h-BN coupled with substrate, while the higher energy sub-band is related to decoupled (or free-standing) 2D h-BN. It is further shown that this newly-observed fine structure in the A2u mode can be used to assess, quickly and easily, the homogeneity of the h-BN-metal interface and the effects of metal surface contamination on adhesion of the layer.

  8. Spontaneous phase separation during self-assembly in bi-dispersed spherical iron oxide nanoparticle monolayers

    SciTech Connect

    Stanley, Jacob; Boucheron, Leandra; Shpyrko, Oleg E-mail: oshpyrko@physics.ucsd.edu; Lin, Binhua E-mail: oshpyrko@physics.ucsd.edu; Meron, Mati

    2015-04-20

    Recent developments in the synthesis of iron oxide nanoparticles have resulted in the ability to fabricate roughly spherical particles with extremely high size uniformity (low polydispersity). These particles can form self-assembled monolayer films at an air-water interface. When the polydispersity of the particles is low, these monolayers can be well-ordered over a length scale dozens of times the particle size. The van der Waals force between the particles is what drives this self-assembly. Through the use of Grazing Incidence X-Ray Diffraction we demonstrate that, when these films are formed at the liquid surface from bi-dispersed solutions containing 10 and 20 nm spherical particles suspended in chloroform, the particles phase separate into well-ordered patches during the self-assembly process. Furthermore, the domain sizes of these phase separated regions are at most 2–3 times smaller than that of a film comprising only mono-dispersed particles and their degree of disorder is comparable. This is shown for multiple solutions with differing ratios of 10 and 20 nm particles.

  9. Thin Film Research. Volume 1

    DTIC Science & Technology

    1985-05-30

    isotherm expected for nonwetting adsorbate-adsorbent systems. 8 Type I depicts monolayer adsorption. Type II is very common in the case of physical...5.11 show the isothermal growth rate as a function of relative humidity. The shape can be classified as a type IV adsorption isotherm that corresponds...by following the fringes generated by interference effects in the growing film. The Balzers 760 evaporation system was supplied with both types of

  10. Grafted silane monolayers: reconsideration of growth mechanisms

    NASA Astrophysics Data System (ADS)

    Ivanov, D. A.; Nysten, B.; Jonas, A. M.; Legras, R.

    1998-03-01

    Chemical force microscopy is a new technique devised to image chemical heterogeneities on surfaces. It requires the chemical modification of Atomic Force Microscopy (AFM) tips in order to create chemical probes. In this respect, self-assembled monolayers (SAM) of alkylchlorosilanes are particularly interesting as modifying agents for AFM tips. We report here our results on the kinetics of silanization and on the structure of such SAM's grafted on model surfaces (hydroxylated Si(100) wafers). AFM, contact angle measurements, X-ray reflectivity and X-ray photoelectron spectroscopy were used to characterize SAM's of octadecyltrichlorosilane (OTS) and octadecyldimethylchlorosilane (ODMS) grown from hexadecane and toluene solutions. The mechanism of grafting of OTS follows two stages. The first rapid stage corresponds to the nucleation and growth of island-like monolayer domains. The second slower stage is related to the densification of the monolayer. SAM's of ODMS were found to form thinner layers as compared to OTS, due to their lower grafting density probably resulting in a more disordered state of grafted alkyl chains. We also address the problems concerning the relationships between the quality of final SAM structures and the water content as well as the nature of the solvent used for silanization.

  11. Exploring atomic defects in molybdenum disulphide monolayers

    PubMed Central

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment–theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 1013 cm−2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices. PMID:25695374

  12. Investigation on gallium ions impacting monolayer graphene

    SciTech Connect

    Wu, Xin; Zhao, Haiyan Yan, Dong; Pei, Jiayun

    2015-06-15

    In this paper, the physical phenomena of gallium (Ga{sup +}) ion impacting monolayer graphene in the nanosculpting process are investigated experimentally, and the mechanisms are explained by using Monte Carlo (MC) and molecular dynamics (MD) simulations. Firstly, the MC method is employed to clarify the phenomena happened to the monolayer graphene target under Ga{sup +} ion irradiation. It is found that substrate has strong influence on the damage mode of graphene. The mean sputtering yield of graphene under 30 keV Ga{sup +} ion irradiation is 1.77 and the least ion dose to completely remove carbon atoms in graphene is 21.6 ion/nm{sup 2}. Afterwards, the focused ion beam over 21.6 ion/nm{sup 2} is used for the irradiation on a monolayer graphene supported by SiO2 experimentally, resulting in the nanostructures, i.e., nanodot and nanowire array on the graphene. The performances of the nanostructures are characterized by atomic force microscopy and Raman spectrum. A plasma plume shielding model is put forward to explain the nanosculpting results of graphene under different irradiation parameters. In addition, two damage mechanisms are found existing in the fabrication process of the nanostructures by using empirical MD simulations. The results can help us open the possibilities for better control of nanocarbon devices.

  13. Biocompatible Ferromagnetic Cr-Trihalide Monolayers

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    Cr with an electronic configuration of 3d54s1 possesses the largest atomic magnetic moment (6µB) of all elements in the 3d transition metal series. Furthermore, the trivalent chromium (Cr3+) is biocompatible and is widely found in food and supplements. Here using first principles calculations combined with Monte Carlo simulations based on Ising model, we systematically study a class of 2D ferromagnetic monolayers CrX3 (X = Cl, Br, I). The feasibility of exfoliation from their layered bulk phase is confirmed by the small cleavage energy and high in-plane stiffness. Spin-polarized calculations, combined with self consistently determined Hubbard U that accounts for strong correlation energy, demonstrate that CrX3 (X =Cl, Br, I) monolayers are ferromagnetic and Cr is trivalent and carries a magnetic moment of 3µB, the resulting Cr3+ ions are biocompatible. The corresponding Curie temperatures for CrCl3 CrBr3 CrI3 are are found to 66, 86, and 107 K, respectively, which can be increased to 323, 314, 293 K by hole doping. The biocompatibility and ferromagnetism render these Cr-containing trichalcogenide monolayers unique for applications.

  14. Self-assembly of large-scale crack-free gold nanoparticle films using a ‘drain-to-deposit’ strategy

    SciTech Connect

    Yang, Guang; Hallinan, Daniel T.

    2016-04-26

    Gold nanoparticles are widely studied due to the ease of controlled synthesis, facile surface modification, and interesting physical properties. However, a technique for depositing large-area, crack-free monolayers on solid substrates is lacking. Herein is presented a method for accomplishing this. Spherical gold nanoparticles were synthesized as an aqueous dispersion. Assembly into monolayers and ligand exchange occurred simultaneously at an organic/aqueous interface. Then the monolayer film was deposited onto arbitrary solid substrates by slowly pumping out the lower, aqueous phase. This allowed the monolayer film (and liquid–liquid interface) to descend without significant disturbance, eventually reaching substrates contained in the aqueous phase. The resulting macroscopic quality of the films was found to be superior to films transferred by Langmuir techniques. The surface plasmon resonance and Raman enhancement of the films were evaluated and found to be uniform across the surface of each film.

  15. Electronic structure of layered 1T-TaSe2 in commensurate charge-density-wave phase studied by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Aiura, Y.; Bando, H.; Kitagawa, R.; Maruyama, S.; Nishihara, Y.; Horiba, K.; Oshima, M.; Shiino, O.; Nakatake, M.

    2003-08-01

    We present a detailed angle-resolved photoemission study of the electronic structure of layered 1T-TaSe2 in the commensurate charge-density-wave (CDW) phase. A considerable reduction in the spectral weight of a quasiparticle band centered at the binding energy of about 0.25 eV below the Fermi level is observed in the momentum space ranging from the end of the first surface Brillouin zone to the second surface Brillouin zone. Moreover, no crossings of the Fermi level are visible in the whole Brillouin zone, meaning that the Fermi level lies in a pseudogap created by the tails of two overlapping Hubbard subbands. Our results indicate that not only the electron-phonon coupling, which is responsible for the formation of the CDW, but also the subsequent electron correlation effects in the Ta 5d band play an important role for the establishment of electronic structure of 1T-TaSe2 in the commensurate CDW phase.

  16. Characterization of 10,12-pentacosadiynoic acid Langmuir–Blodgett monolayers and their use in metal–insulator–metal tunnel devices

    PubMed Central

    Sharma, Saumya; Khawaja, Mohamad; Ram, Manoj K; Goswami, D Yogi

    2014-01-01

    Summary The characterization of Langmuir–Blodgett thin films of 10,12-pentacosadiynoic acid (PDA) and their use in metal–insulator–metal (MIM) devices were studied. The Langmuir monolayer behavior of the PDA film was studied at the air/water interface using surface tension–area isotherms of polymeric and monomeric PDA. Langmuir–Blodgett (LB, vertical deposition) and Langmuir–Schaefer (LS, horizontal deposition) techniques were used to deposit the PDA film on various substrates (glass, quartz, silicon, and nickel-coated film on glass). The electrochemical, electrical and optical properties of the LB and LS PDA films were studied using cyclic voltammetry, current–voltage characteristics (I–V), and UV–vis and FTIR spectroscopies. Atomic force microscopy measurements were performed in order to analyze the surface morphology and roughness of the films. A MIM tunnel diode was fabricated using a PDA monolayer assembly as the insulating barrier, which was sandwiched between two nickel layers. The precise control of the thickness of the insulating monolayers proved critical for electron tunneling to take place in the MIM structure. The current–voltage characteristics of the MIM diode revealed tunneling behavior in the fabricated Ni–PDA LB film–Ni structures. PMID:25551052

  17. Probing Reactions in Monolayers Using Normal Incidence Cavity Ring-down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Murray, Alissa C.

    This dissertation describes a study that was conducted on a two-dimensional (2-D) polymer system to help characterize the formation and dissociation of the polymer. Normal incidence cavity ring-down spectroscopy (NICRDS) was used to probe the monolayer system. Cavity ring-down spectroscopy (CRDS) is an ultra-sensitive absorption technique which has been extensively used for detection of gas-phase species and has recently been extended to studies in condensed phases. To date, this technique had not been used to study reactions in monolayers and, more specifically, 2D polymers. The newly emerging field of 2D polymers is predicted to impact several areas of technological importance, one of which includes membrane separations. These materials are rationally synthesized and are crystalline in two dimensions forming a covalently linked sheet of molecules. This new class of materials has yet to be fully understood since characterization is difficult due to their delicacy and size. The carboxy fantrip 2D polymer system is an anthracene-based analog and was used in our studies since it is known to be photo and thermally activated. Photo polymerization and depolymerization and thermal depolymerization were monitored using NICRDS to help characterize the poly(carboxy fantrip) 2-D polymer. Relative absorbance values occurring from changes in the CRDS signal during the polymer formation or dissociation reactions are in good agreement with known absorbance values and the predicted monolayer film thickness. In addition to using NICRDS, we developed a new method of CRDS which is comprised of a dual cavity where two wavelengths of light are simultaneously used as probes. A probe at normal incidence geometry and a probe at the Brewster angle for fused silica overlap on the sample of interest. For our experiments, the Brewster angle probe served as an indicator for changes in the ring-down times for the thin film/optical flat system unrelated to the photochemistry of the 2-D polymer

  18. Interactions between the ganglioside GM1 and hexadecylphosphocholine (miltefosine) in monolayers at the air/water interface.

    PubMed

    Gómez-Serranillos, Isabel Rey; Miñones, José; Dynarowicz-Łatka, Patrycja; Iribarnegaray, Eduardo; Casas, Matilde

    2005-03-10

    The ganglioside, GM1, was studied as Langmuir monolayers at the air/water interface with surface pressure-area measurements in addition to Brewster angle microscopy. A characteristic plateau transition, observed on aqueous subphases of pH 2 and 6, 20 degrees C, at the surface pressure of ca. 20 mN/m, was attributed to the reorientation of GM1 polar group upon film compression. This transition was found to disappear at alkaline subphases (pH 10) due to the hydration of fully ionized polar group, hindering its reorientation. The interactions between GM1 and hexadecylphosphocholine (miltefosine) were investigated in mixed monolayers and analyzed with the mean molecular areas, excess areas of mixing and the excess free energy of mixing versus film composition plots. The monolayers stability, quantified by the collapse pressure values, as well as the strength of interaction was found to diminish in the following order: pH 6>pH 2>pH 10. The strongest interaction occurs for mixed films of miltefosine molar fraction, XM=0.7-0.8, especially at low pressure region, and are explained as being due to the surface complex formation of 3:1 or 4:1 (miltefosine:ganglioside) stoichiometry (XM=0.75 or 0.8, respectively).

  19. MoS2 monolayers on nanocavities: enhancement in light-matter interaction

    NASA Astrophysics Data System (ADS)

    Janisch, Corey; Song, Haomin; Zhou, Chanjing; Lin, Zhong; Elías, Ana Laura; Ji, Dengxin; Terrones, Mauricio; Gan, Qiaoqiang; Liu, Zhiwen

    2016-06-01

    Two-dimensional (2D) atomic crystals and van der Waals heterostructures constitute an emerging platform for developing new functional ultra-thin electronic and optoelectronic materials for novel energy-efficient devices. However, in most thin-film optical applications, there is a long-existing trade-off between the effectiveness of light-matter interactions and the thickness of semiconductor materials, especially when the materials are scaled down to atom thick dimensions. Consequently, enhancement strategies can introduce significant advances to these atomically thick materials and devices. Here we demonstrate enhanced absorption and photoluminescence generation from MoS2 monolayers coupled with a planar nanocavity. This nanocavity consists of an alumina nanolayer spacer sandwiched between monolayer MoS2 and an aluminum reflector, and can strongly enhance the light-matter interaction within the MoS2, increasing the exclusive absorption of monolayer MoS2 to nearly 70% at a wavelength of 450 nm. The nanocavity also modifies the spontaneous emission rate, providing an additional design freedom to control the interaction between light and 2D materials.

  20. Vibrational Spectra of Vinyltriethoxysilane (vtes) Monolayers Adsorbed on Germania and Alumina

    NASA Astrophysics Data System (ADS)

    Craig, Ronald; Mallik, Robert R.

    1997-05-01

    VTES is used as a coupling agent to improve the adhesion of various coatings especially to glass, but also to minerals, metal oxides and other substrates. It has been studied extensively in this context by Infrared, Raman, and other spectroscopic methods; however, few of these methods have the sensitivity to probe effectively the first adsorbed monolayer on the above substrates. Inelastic Electron Tunneling Spectroscopy (IETS), however, is intrinsically capable of detecting fractional monolayer coverage, but, until recently, studies have been limited primarily to the adsorption of monolayers on aluminum oxide which forms the insulating barrier in most metal/insulator/metal IET junctions. IETS has not been used to investigate adorbates on other barriers because it is difficult to make the barriers suitably thin and physically continuous. We are now able to fabricate viable IETS barriers by radio-frequency sputtering, and we present spectra of VTES adsorbed on thermally grown alumina, and sputtered germania films. Germania is chosen as a model for glass to avoid any ambiguity in assigning Si-O related vibrational modes to either the adsorband or adsorbate.

  1. The impact of solution agglomeration on the deposition of self-assembled monolayers

    SciTech Connect

    BUNKER,BRUCE C.; CARPICK,ROBERT W.; ASSINK,ROGER A.; THOMAS,MICHAEL L.; HANKINS,MATTHEW G.; VOIGT,JAMES A.; SIPOLA,DIANA L.; DE BOER,MAARTEN P.; GULLEY,GERALD L.

    2000-04-17

    Self-assembled monolayers (SAMS) are commonly produced by immersing substrates in organic solutions containing trichlorosilane coupling agents. Unfortunately, such deposition solutions can also form alternate structures including inverse micelles and lamellar phases. The formation of alternate phases is one reason for the sensitivity of SAM depositions to factors such as the water content of the deposition solvent. If such phases are present, the performance of thin films used for applications such as minimization of friction and stiction in micromachines can be seriously compromised. Inverse micelle formation has been studied in detail for depositions involve 1H-, 1H-, 2H-, 2H-perfluorodecyltrichlorosilane (FDTS) in isooctane. Nuclear magnetic resonance experiments have been used to monitor the kinetics of hydrolysis and condensation reactions between water and FDTS. Light scattering experiments show that when hydrolyzed FDTS concentrations reach a critical concentration, there is a burst of nucleation to form high concentrations of spherical agglomerates. Atomic force microscopy results show that the agglomerates then deposit on substrate surfaces. Deposition conditions leading to monolayer formation involve using deposition times that are short relative to the induction time for agglomeration. After deposition, inverse micelles can be converted into lamellar or monolayer structures with appropriate heat treatments if surface concentrations are relatively low.

  2. Tunable second harmonic generation of monolayer MoS2 by Se doping

    NASA Astrophysics Data System (ADS)

    Le, C. T.; Clark, D. J.; Senthilkumar, V.; Jang, J. I.; Cho, H.-Y.; Kim, Y. S.; Binghamton University Collaboration

    As a transition metal dichalcogenides whose bandgap becomes direct with inversion symmetry breaking in the monolayer limit, MoS2 has been getting ample attention as next-generation nonlinear optic material for its strong optical nonlinear properties. In this study, we demonstrate the wavelength second harmonic generation tunability of monolayer Mo(S, Se)2. Employing the two-zone furnaces system, we selenized as-grown monolayer MoS2at different temperature. X-ray photoluminescence spectroscopy was used to confirm the chemical composition of selenized film. Photoluminescence spectra shows the red shift in optical bandgap from 1.83 to 1.53 eV as a function of concentration Se replacing S. Second harmonic generation characteristics were measured in reflection geometry using ps pulse from Nd:YAG laser. Applying the previous bulk model, we calculated that the maximum value of χ (2)varied from ~40 pm/V for pure MoS2 to ~100 pm/V for pure MoSe2.We believe that our findings along with the ability to stack different 2D materials will create stacked 2D heterostructure with high χ (2)over a wide range of wavelength from visible to NIR. This research was supported by Priority Research Centers Program (2009-0093818), the Basic Science Research Program (2015-019609), and Basic Research Lab Program (2014-071686) through the National Research Foundation of Korea (NRF), funded by the Korean g.

  3. Self-Assembled Morphologies of Linear and Miktoarm Star Triblock Copolymer Monolayers.

    PubMed

    Deng, Hanlin; Li, Weihua; Qiu, Feng; Shi, An-Chang

    2017-04-12

    Monolayers of linear and miktoarm star ABC triblock copolymers with equal A and C blocks are investigated using the self-consistent field theory. The monolayers of ABC triblock copolymers are formed between two parallel surfaces that are attractive to the A and C blocks. The repulsive interaction parameter $\\chi_{AC}N$ between the A and C blocks is chosen to be weaker than the A/B and B/C interactions, quantified by $\\chi_{AB}N$ and $\\chi_{BC}N$, such that the B blocks are confined at the A/C interface, resulting in various B-domains with different geometries and arrangements. It is observed that two variables, the strength of the surface fields and the film thickness, are dominant factors controlling the self-assembly of the B blocks into various morphologies. For the linear triblock copolymers, the morphologies of B domains include disks, stripes (parallel cylinders), and hexagonal network (inverse disks). For the miktoarm star triblock copolymers, the competition between the tendency to align the junction points along a straight line and the constraint on their arrangement from the surface interactions leads to richer ordered morphologies. As a result of packing the junction points of the ABC miktoarm star copolymers, a counterintuitive phase sequence from low curvature phases to high curvature phases with increasing the length of B block is predicted. The study indicates that the self-assembly of monolayers of ABC triblock copolymers provides an interesting platform to engineer novel morphologies.

  4. Synthesis and Optical Control of Circular Polarization in monolayer Tungsten Disulfide

    NASA Astrophysics Data System (ADS)

    McCreary, Kathleen; Hanbicki, Aubrey; Jonker, Berend; Currie, Marc; Kioseoglou, George

    The unique electronic band structure in single layer WS2 provides the ability to selectively populate a desired valley by exciting with circularly polarized light. The valley population is reflected through the circular polarization of photoluminescence (PL). We investigate the circularly polarized PL in WS2 monolayers synthesized using chemical vapor deposition (CVD). The resulting polarization is strongly dependent on the sample preparation. As-grown CVD WS2 (still on the growth substrate) exhibits low polarized emission, regardless of laser excitation or laser power. Removing WS2 from the growth substrate and repositioning on the same substrate significantly impacts the optical properties. In transferred films, the excitonic state is optically controlled via high-powered laser exposure such that subsequent PL is solely from either the charged exciton state or the neutral exciton state. Neutral excitonic emission exhibits zero polarization whereas the trion polarization can exceed 25% at room temperature. The removal process may modify the strain, sample-to-substrate distance, and chemical doping in the WS2 monolayer, and work is underway to determine how these factors influence the valley populations. These results demonstrate a new method to control the excitonic state and PL polarization in monolayer WS2. . Supported by core programs at NRL and the NRL Nanoscience Institute, and by the Air Force Office of Scientific Research #AOARD 14IOA018-134141.

  5. Asphaltene Adsorption onto Self-Assembled Monolayers of Mixed Aromatic

    SciTech Connect

    Turgman-Cohen, S.; Smith, M; Fischer, D; Kilpatrick, P; Genzer, J

    2009-01-01

    The adsorption of asphaltenes onto flat solid surfaces modified with mixed self-assembled monolayers (SAMs) of aliphatic and aromatic trichlorosilanes with varying wettabilities, aromaticities, and thicknesses is tested. The mixed SAMs are characterized by means of contact angle to assess hydrophobicity and molecular and chemical uniformity, spectroscopic ellipsometry to measure the thickness of the films, and near edge X-ray absorption fine structure (NEXAFS) spectroscopy to assess chemical and molecular composition. The molecular characteristics of the adsorbed asphaltene layer and the extent of asphaltene adsorption are determined using NEXAFS and spectroscopic ellipsometry, respectively. The SAMs are formed by depositing phenyl-, phenethyl-, butyl-, and octadecyl- trichlorosilanes from toluene solutions onto silica-coated substrates; the chemical composition and the wettability of the SAM surface is tuned systematically by varying the trichlorosilane composition in the deposition solutions. The adsorption of asphaltenes on the substrates does not correlate strongly with the SAM chemical composition. Instead, the extent of asphaltene adsorption decreases with increasing SAM thickness. This observation suggests that the leading interaction governing the adsorption of asphaltenes is their interaction with the polar silica substrate and that the chemical composition of the SAM is of secondary importance.

  6. Monolayer graphene dispersion and radiative cooling for high power LED

    NASA Astrophysics Data System (ADS)

    Hsiao, Tun-Jen; Eyassu, Tsehaye; Henderson, Kimberly; Kim, Taesam; Lin, Chhiu-Tsu

    2013-10-01

    Molecular fan, a radiative cooling by thin film, has been developed and its application for compact electronic devices has been evaluated. The enhanced surface emissivity and heat dissipation efficiency of the molecular fan coating are shown to correlate with the quantization of lattice modes in active nanomaterials. The highly quantized G and 2D bands in graphene are achieved by our dispersion technique, and then incorporated in an organic-inorganic acrylate emulsion to form a coating assembly on heat sinks (for LED and CPU). This water-based dielectric layer coating has been formulated and applied on metal core printed circuit boards. The heat dissipation efficiency and breakdown voltage are evaluated by a temperature-monitoring system and a high-voltage breakdown tester. The molecular fan coating on heat dissipation units is able to decrease the equilibrium junction temperature by 29.1 ° C, while functioning as a dielectric layer with a high breakdown voltage (>5 kV). The heat dissipation performance of the molecular fan coating applied on LED devices shows that the coated 50 W LED gives an enhanced cooling of 20% at constant light brightness. The schematics of monolayer graphene dispersion, undispersed graphene platelet, and continuous graphene sheet are illustrated and discussed to explain the mechanisms of radiative cooling, radiative/non-radiative, and non-radiative heat re-accumulation.

  7. Interfacial approach to polyaromatic hydrocarbon toxicity: phosphoglyceride and cholesterol monolayer response to phenantrene, anthracene, pyrene, chrysene, and benzo[a]pyrene.

    PubMed

    Korchowiec, Beata; Corvis, Yohann; Viitala, Tapani; Feidt, Cyril; Guiavarch, Yann; Corbier, Catherine; Rogalska, Ewa

    2008-10-30

    Interactions of phenantrene, anthracene, pyrene, chrysene, and benzo[a]pyrene (polyaromatic hydrocarbons) with model phospholipid membranes were probed using the Langmuir technique. The lipid monolayers were prepared using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol, 1,2-dipalmitoyl-sn-glycero-3-phosphoserine, 1,2-myristoyl-sn-glycero-3-phosphoethanolamine, 1,2-dilauroyl-sn-glycero-3-phosphocholine, and cholesterol. Surface pressure and electrical surface potential were measured on mixed phospholipid/PAH monolayers spread on a pure water subphase. The morphology of the mixed monolayers was followed with Brewster angle microscopy. Polarization-modulation infrared reflection-absorption spectroscopy spectra obtained on DPPE/benzo[a]pyrene showed that the latter interacts with the carbonyl groups of the phospholipid. On the other hand, the activity of phospholipase A2 toward DLPC used as a probe to locate benzo[a]pyrene in the monolayers indicates that the polyaromatic hydrocarbons are not accessible to the enzyme. The results obtained show that all PAHs studied affect the properties of the pure lipid, albeit in different ways. The most notable effects, namely, film fluidization and morphology changes, were observed with benzo[a]pyrene. In contrast, the complexity of mixed lipid monolayers makes the effect of PAHs difficult to detect. It can be assumed that the differences observed between PAHs in monolayers correlate with their toxicity.

  8. Substrate and band bending effects on monolayer FeSe on SrTiO3(001).

    PubMed

    Xu, Meiling; Song, Xianqi; Wang, Hui

    2017-03-15

    Motivated by the high superconducting transition temperature (TC) shown by monolayer FeSe on cubic perovskite SrTiO3(001) and SrTiO3(001)-2×1 reconstructed surfaces, in this study, we explore the atomic and electronic structures of monolayer FeSe on various SrTiO3(001)-2×1 surface reconstructions using the CALYPSO method and first-principles calculations. Our search reveals two new Ti2O2 and Ti2O reconstructed surface structures, besides the Ti2O3 and double TiO2 layer reconstructed surfaces, and the two new Ti2O2 and Ti2O reconstructed surface structures are more stable under Ti-rich conditions than under Ti-poor conditions. The Fermi-surface topology of an FeSe monolayer on Ti2O3- and Ti2O2-type reconstructed STO surfaces is different from that of an FeSe monolayer on a Ti2O-type STO reconstructed surface. The established structure of monolayer FeSe on a Ti2O-type STO(001) reconstructed surface can naturally explain the experimental observation of the electronic band structure on the monolayer FeSe superconductor and obtained electrons counting per Fe atom. Surface states in the mid-gap induced by various STO surface reconstructions will result in band bending. The surface-state-induced band bending is also responsible for the electron transfer from the STO substrate to the FeSe films.

  9. Interfacial stabilization of the antitumoral drug Paclitaxel in monolayers of GM1 and GD1a gangliosides.

    PubMed

    Heredia, Valeria; Maggio, Bruno; Beltramo, Dante M; Dupuy, Fernando G

    2015-10-01

    Molecular interactions between the anti-cancer agent Paclitaxel (Ptx), and two gangliosides with different sialic acid content, GM1 and GD1a, were investigated using the Langmuir film balance technique. Ptx showed interfacial activity reducing the air/water surface tension by 18 mN·m(-1). However, the drug was able to insert into preformed ganglioside monolayers at much higher surface pressures, indicating a preferential interaction of Ptx with GM1 and GD1a. Compression isotherms of binary mixtures of Ptx and GM1 or GD1a also indicated non-ideal mixed monolayers in which the drug became stabilized at the interface in the presence of gangliosides. Ptx reached much higher surface pressure values in the mixed monolayers than those sustained in pure Ptx, although partial desorption of the drug from the interface into the subphase was also observed at high Ptx contents. The mean molecular area of the mixtures showed condensation, mainly in the case of GD1a, whereas Ptx induced a decrease in the compressibility of monolayers when mixed with either GM1 or GD1a. Additionally, Brewster angle microscopy analysis indicated that higher amounts of Ptx are present at the mixed ganglioside/Ptx interface when compared to pure drug monolayers. Finally, GD1a micelles increased in size in the presence of Ptx, whereas GM1 micelles kept their diameter, according to dynamic light scattering measurements, which could be explained by the different properties of ganglioside monolayers. The results obtained on ganglioside-Ptx interactions allowed interpreting the different Ptx loading capacity of GM1 and GD1a, enabling them to act as potential drug carriers.

  10. In Situ Monitoring of the Thermal-Annealing Effect in a Monolayer of MoS2

    NASA Astrophysics Data System (ADS)

    Su, Liqin; Yu, Yifei; Cao, Linyou; Zhang, Yong

    2017-03-01

    We perform in situ two-cycle thermal-annealing studies for a transferred CVD-grown monolayer MoS2 on a SiO2/Si substrate, using spatially resolved micro-Raman and photoluminescence spectroscopy. The evolution in film morphology and film-substrate bonding is continuously monitored by Raman spectroscopy. After the thermal cycling and being annealed at 305 °C twice, the film morphology and film-substrate bonding are significantly modified, which together with the removal of polymer residues causes major changes in the strain and doping distribution over the film, and thus the optical properties. Before annealing, the strain associated with ripples in the transferred film dominates the spatial distributions of the photoluminescence peak position and intensity over the film; after annealing, the variation in film-substrate bonding, affecting both strain and doping, becomes the leading factor. This work reveals that the film-substrate bonding, and thus the strain and doping, is nonstationary under thermal stress, which is important for understanding the substrate effects on the optical and transport properties of the 2D material and their impact on device applications.

  11. Influence of bioregulators on the phospholipid Langmuir monolayers.

    PubMed

    Mogilevich, A S; Mogilevich, S E; Luik, A L

    1997-01-01

    Influence of bioregulators on the phospholipid Langmuir monolayers made of distearoylphosphatidylcholine and its equimolar mixture with dimitrystoylphosphatidylcholine was investigated. The results obtained allow concluding that the presence of physiologically active compounds in the subphase weakens the lipid-lipid interaction and increases the free energy change of air-liquid interface in the case of pure distearoylphosphatidylcholine monolayers, but in the case of mixed monolayers it leads both to the increase and decrease of these parameters. Presence of the dimirystoylphosphatidylcholine molecules with the short fatty acyl chains in the monolayer destabilizes it. This effect is partially compensated by the interaction between lipid and subphase molecules.

  12. Carbon phosphide monolayers with superior carrier mobility

    NASA Astrophysics Data System (ADS)

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P.

    2016-04-01

    Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics.Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great

  13. On the inclusion of alkanes into the monolayer of aliphatic alcohols at the water/alkane vapor interface: a quantum chemical approach.

    PubMed

    Vysotsky, Yuri B; Fomina, Elena S; Belyaeva, Elena A; Fainerman, Valentin B; Vollhardt, Dieter

    2013-02-14

    In the framework of the quantum chemical semiempirical PM3 method thermodynamic and structural parameters of the formation and clusterization of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K at the water/alkane vapor C(n)H(2n+2), (n(CH(3)) = 6-16) interface were calculated. The dependencies of enthalpy, entropy and Gibbs' energy of clusterization per one monomer molecule of 2D films on the alkyl chain length of corresponding alcohols and alkanes, the molar fraction of alkanes in the monolayers and the immersion degree of alcohol molecules into the water phase were shown to be linear or stepwise. The threshold of spontaneous clusterization of aliphatic alcohols at the water/alkane vapor interface was 10-11 carbon atoms at 298 K which is in line with experimental data at the air/water interface. It is shown that the presence of alkane vapor does not influence the process of alcohol monolayer formation. The structure of these monolayers is analogous to those obtained at the air/water interface in agreement with experimental data. The inclusion of alkane molecules into the amphiphilic monolayer at the water/alkane vapor interface is possible for amphiphiles with the spontaneous clusterization threshold at the air/water interface (n(s)(0)) of at least 16 methylene units in the alkyl chain, and it does not depend on the molar fraction of alkanes in the corresponding monolayer. The inclusion of alkanes from the vapor phase into the amphiphilic monolayer also requires that the difference between the alkyl chain lengths of alcohols and alkanes is not larger than n(s)(0) - 15 and n(s)(0) - 14 for the 2D film 1 and 2D film 2, respectively.

  14. Bacterial Lipopolysaccharide Promotes Destabilization of Lung Surfactant-Like Films

    PubMed Central

    Cañadas, Olga; Keough, Kevin M.W.; Casals, Cristina

    2011-01-01

    The airspaces are lined with a dipalmitoylphosphatidylcholine (DPPC)-rich film called pulmonary surfactant, which is named for its ability to maintain normal respiratory mechanics by reducing surface tension at the air-liquid interface. Inhaled airborne particles containing bacterial lipopolysaccharide (LPS) may incorporate into the surfactant monolayer. In this study, we evaluated the effect of smooth LPS (S-LPS), containing the entire core oligosaccharide region and the O-antigen, on the biophysical properties of lung surfactant-like films composed of either DPPC or DPPC/palmitoyloleoylphosphatidylglycerol (POPG)/palmitic acid (PA) (28:9:5.6, w/w/w). Our results show that low amounts of S-LPS fluidized DPPC monolayers, as demonstrated by fluorescence microscopy and changes in the compressibility modulus. This promoted early collapse and prevented the attainment of high surface pressures. These destabilizing effects could not be relieved by repeated compression-expansion cycles. Similar effects were observed with surfactant-like films composed of DPPC/POPG/PA. On the other hand, the interaction of SP-A, a surfactant membrane-associated alveolar protein that also binds to LPS, with surfactant-like films containing S-LPS increased monolayer destabilization due to the extraction of lipid molecules from the monolayer, leading to the dissolution of monolayer material in the aqueous subphase. This suggests that SP-A may act as an LPS scavenger. PMID:21190662

  15. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB.

  16. Chiral solidification of a phospholipid monolayer

    NASA Technical Reports Server (NTRS)

    Langer, J. S.

    1985-01-01

    The formation of chiral solidlike domains observed by Weiss and McConnell (1984) in monolayers of depalmitoylphosphatidylcholine (DPPC) floating on an air-water interface is investigated theoretically. It is proposed that the diffusion tensor for the two-dimensional fluidlike phase of the DPPC molecules has a chiral component acting perpendicular to the concentration gradient and coupled to the rotational motion of a pinwheellike molecule by the viscous forces. Diagrams are provided, and numerical estimates of the forces involved are shown to be in agreement with the observed behavior of the structures.

  17. Processing of monolayer materials via interfacial reactions

    DOEpatents

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2014-05-20

    A method of forming and processing of graphene is disclosed based on exposure and selective intercalation of the partially graphene-covered metal substrate with atomic or molecular intercalation species such as oxygen (O.sub.2) and nitrogen oxide (NO.sub.2). The process of intercalation lifts the strong metal-carbon coupling and restores the characteristic Dirac behavior of isolated monolayer graphene. The interface of graphene with metals or metal-decorated substrates also provides for controlled chemical reactions based on novel functionality of the confined space between a metal surface and a graphene sheet.

  18. Fluidization of a horizontally driven granular monolayer.

    PubMed

    Heckel, Michael; Sack, Achim; Kollmer, Jonathan E; Pöschel, Thorsten

    2015-06-01

    We consider the transition of a horizontally vibrated monodisperse granular monolayer between its condensed state and its three-dimensional gaseous state as a function of the vibration parameters, amplitude, and frequency as well as particle number density. The transition is characterized by an abrupt change of the dynamical state which leaves its fingerprints in several measurable quantities including dissipation rate, sound emission, and a gap size which characterizes the sloshing motion of the material. The transition and its pronounced hysteresis is explained through the energy due to the collective motion of the particles relative to the container.

  19. Method for fabricating hafnia films

    DOEpatents

    Hu, Michael Z [Knoxville, TN

    2007-08-21

    The present invention comprises a method for fabricating hafnia film comprising the steps of providing a substrate having a surface that allows formation of a self-assembled monolayer thereon via covalent bonding; providing an aqueous solution that provides homogeneous hafnium ionic complexes and hafnium nanoclusters wherein the aqueous solution is capable of undergoing homogeneous precipitation under controlled conditions for a desired period of time at a controlled temperature and controlled solution acidity for desired nanocluster nucleation and growth kinetics, desired nanocluster size, desired growth rate of film thickness and desired film surface characteristics. The method further comprising forming the self-assembled monolayer on the surface of the substrate wherein the self-assembled monolayer comprises a plurality of hydrocarbon chains cross-linked together along the surface of the substrate, the hydrocarbon chains being uniformly spaced from one another and wherein each of the hydrocarbon chains having a functional anchoring group at a first end of the chain covalently bonded with the surface of the substrate and each of the hydrocarbon chains having a functional terminating group projected away from the surface wherein the functional terminating group provides a bonding site for the hafnium film to grow; and exposing the substrate to the aqueous solution for a desired period of time at a controlled temperature wherein the hafnium ionic complexes and the hafnium nanoclusters are deposited on the bonding site of the functional terminating group thereby forming the hafnia film wherein the hafnium bonded to the hydrocarbons and to one another provide a uniform ordered arrangement defined by the uniform arrangement of the hydrocarbons.

  20. Using phospholipid Langmuir and Langmuir-Blodgett films as matrix for urease immobilization.

    PubMed

    Caseli, Luciano; Crespilho, Frank N; Nobre, Thatyane M; Zaniquelli, Maria Elisabete D; Zucolotto, Valtencir; Oliveira, Osvaldo N

    2008-03-01

    The immobilization of enzymes in organized two-dimensional matrices is a key requirement for many biotechnological applications. In this paper, we used the Langmuir-Blodgett (LB) technique to obtain controlled architectures of urease immobilized in solid supports, whose physicochemical properties were investigated in detail. Urease molecules were adsorbed at the air-water interface and incorporated into Langmuir monolayers of the phospholipid dipalmitoyl phosphatidyl glycerol (DPPG). Incorporation of urease made DPPG monolayers more flexible and caused the reduction of the equilibrium and dynamic elasticity of the film. Urease and DPPG-urease mixed monolayers could be transferred onto solid substrates, forming LB films. A close packing arrangement of urease was obtained, especially in the mixed LB films, which was inferred with nanogravimetry and electrochemistry measurements. From the blocking effect of the LB films deposited onto indium tin oxide (ITO) substrates, the electrochemical properties of the LB films pointed to a charge transport controlled by the lipid architecture.

  1. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2

    SciTech Connect

    Yang, Luyi; Sinitsyn, Nikolai A.; Chen, Weibing; Yuan, Jiangtan; Zhang, Jing; Lou, Jun; Crooker, Scott  A.

    2015-08-03

    The recently discovered monolayer transition metal dichalcogenides (TMDCs) provide a fertile playground to explore new coupled spin–valley physics. Although robust spin and valley degrees of freedom are inferred from polarized photoluminescence (PL) experiments PL timescales are necessarily constrained by short-lived (3–100 ps) electron–hole recombination9, 10. Direct probes of spin/valley polarization dynamics of resident carriers in electron (or hole)-doped TMDCs, which may persist long after recombination ceases, are at an early stage. Here we directly measure the coupled spin–valley dynamics in electron-doped MoS2 and WS2 monolayers using optical Kerr spectroscopy, and reveal very long electron spin lifetimes, exceeding 3 ns at 5 K (2-3 orders of magnitude longer than typical exciton recombination times). In contrast with conventional III–V or II–VI semiconductors, spin relaxation accelerates rapidly in small transverse magnetic fields. Supported by a model of coupled spin–valley dynamics, these results indicate a novel mechanism of itinerant electron spin dephasing in the rapidly fluctuating internal spin–orbit field in TMDCs, driven by fast inter-valley scattering. Additionally, a long-lived spin coherence is observed at lower energies, commensurate with localized states. These studies provide insight into the physics underpinning spin and valley dynamics of resident electrons in atomically thin TMDCs.

  2. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2

    DOE PAGES

    Yang, Luyi; Sinitsyn, Nikolai A.; Chen, Weibing; ...

    2015-08-03

    The recently discovered monolayer transition metal dichalcogenides (TMDCs) provide a fertile playground to explore new coupled spin–valley physics. Although robust spin and valley degrees of freedom are inferred from polarized photoluminescence (PL) experiments PL timescales are necessarily constrained by short-lived (3–100 ps) electron–hole recombination9, 10. Direct probes of spin/valley polarization dynamics of resident carriers in electron (or hole)-doped TMDCs, which may persist long after recombination ceases, are at an early stage. Here we directly measure the coupled spin–valley dynamics in electron-doped MoS2 and WS2 monolayers using optical Kerr spectroscopy, and reveal very long electron spin lifetimes, exceeding 3 ns atmore » 5 K (2-3 orders of magnitude longer than typical exciton recombination times). In contrast with conventional III–V or II–VI semiconductors, spin relaxation accelerates rapidly in small transverse magnetic fields. Supported by a model of coupled spin–valley dynamics, these results indicate a novel mechanism of itinerant electron spin dephasing in the rapidly fluctuating internal spin–orbit field in TMDCs, driven by fast inter-valley scattering. Additionally, a long-lived spin coherence is observed at lower energies, commensurate with localized states. These studies provide insight into the physics underpinning spin and valley dynamics of resident electrons in atomically thin TMDCs.« less

  3. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    PubMed

    Grasso, E J; Oliveira, R G; Maggio, B

    2016-02-15

    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning.

  4. Near-Infrared Light Absorption and Scattering Based on a Mono-Layer of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Soltanmoradi, R.; Wang, Q.; Qiu, M.; Popov, S.; Yan, M.

    2015-06-01

    We report fabrication and characterization of large-area ultrathin near-infrared light absorbers and scatterers based on a mono-layer of gold nanoparticles laying on top of a dielectric spacer and an aluminum reflector. The nanoparticles are formed through thermal annealing of an evaporated continuous gold film. Through optimization of initial gold-film thickness, spacer thickness, as well as annealing temperature we obtained samples that exhibit very low (~2%) broadband specular reflectance at near-infrared (NIR) wavelength range. By considering also diffuse reflection, we identify that the low specular reflectance can be due to either relatively high light absorption (~70%) or high light scattering (over 60%), with the latter achieved for samples having relatively sparse gold nanoparticles. Both strong absorption and scattering of NIR light are not inherent properties of the bulk materials used for fabricating the samples. Such composite optical surfaces can potentially be integrated to solar-energy harvesting and LED devices.

  5. Formation of a two-dimensionally well-ordered monolayer of a peptide oligomer by a simple spin-coating process.

    PubMed

    Yoon, Jinhwan; Ree, Moonhor; Hwang, Yongtaek; Lee, Seung Woo; Lee, Byeongdu; Kim, Jong-Seong; Kim, Heesoo; Magonov, Sergei N

    2004-02-03

    Oligo(N(6)-carbobenzyloxy-L-lysine) (OCBL) with n = 8 (n is the number-average degree of polymerization) was synthesized by the n-propylamine-catalyzed ring-opening polymerization of N(6)-carbobenzyloxy-L-lysine N-carboxylic anhydride, which was derived from N(6)-carbobenzyloxy-L-lysine. The formation of two-dimensionally well-ordered strip array monolayer films of the OBCL oligopeptide on graphite substrates was first succeeded by a conventional solution spin-coating process. The ordered strip array monolayer structure was characterized in detail by atomic force microscopy, and its assembly mechanism was examined.

  6. Commensurate structural modulation in the charge- and orbitally ordered phase of the quadruple perovskite (NaMn3)Mn4O12

    NASA Astrophysics Data System (ADS)

    Prodi, A.; Daoud-Aladine, A.; Gozzo, F.; Schmitt, B.; Lebedev, O.; van Tendeloo, G.; Gilioli, E.; Bolzoni, F.; Aruga-Katori, H.; Takagi, H.; Marezio, M.; Gauzzi, A.

    2014-11-01

    By means of synchrotron x-ray and electron diffraction, we studied the structural changes at the charge order transition TCO=176 K in the mixed-valence quadruple perovskite (NaMn3)Mn4O12. Below TCO we find satellite peaks indicating a commensurate structural modulation with the same propagation vector q =(1 /2 ,0 ,-1 /2 ) of the CE magnetic structure that orders at low temperatures, similarly to the case of simple perovskites such as La0.5Ca0.5MnO3. In the present case, the modulated structure, together with the observation of a large entropy change at TCO, gives evidence of a rare case of full Mn3 +/Mn4 + charge and orbital order, consistent with the Goodenough-Kanamori model.

  7. Interactions of pulmonary surfactant protein A with phospholipid monolayers change with pH.

    PubMed Central

    Ruano, M L; Nag, K; Casals, C; Pérez-Gil, J; Keough, K M

    1999-01-01

    The interaction of pulmonary surfactant protein A (SP-A) labeled with Texas Red (TR-SP-A) with monolayers containing zwitterionic and acidic phospholipids has been studied at pH 7.4 and 4.5 using epifluorescence microscopy. At pH 7.4, TR-SP-A expanded the pi-A isotherms of film of dipalmitoylphosphatidylcholine (DPPC). It interacted at high concentration at the edges of condensed-expanded phase domains, and distributed evenly at lower concentration into the fluid phase with increasing pressure. At pH 4.5, TR-SP-A expanded DPPC monolayers to a slightly lower extent than at pH 7.4. It interacted primarily at the phase boundaries but it did not distribute into the fluid phase with increasing pressure. Films of DPPC/dipalmitoylphosphatidylglycerol (DPPG) 7:3 mol/mol were somewhat expanded by TR-SP-A at pH 7.4. The protein was distributed in aggregates only at the condensed-expanded phase boundaries at all surface pressures. At pH 4.5 TR-SP-A caused no expansion of the pi-A isotherm of DPPC/DPPG, but its fluorescence was relatively homogeneously distributed throughout the expanded phase at all pressures studied. These observations can be explained by a combination of factors including the preference for SP-A aggregates to enter monolayers at packing dislocations and their disaggregation in the presence of lipid under increasing pressure, together with the influence of pH on the aggregation state of SP-A and the interaction of SP-A with zwitterionic and acidic lipid. PMID:10465757

  8. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins.

    PubMed

    Ataka, Kenichi; Stripp, Sven Timo; Heberle, Joachim

    2013-10-01

    Surface-enhanced infrared absorption spectroscopy (SEIRAS) represents a variation of conventional infrared spectroscopy and exploits the signal enhancement exerted by the plasmon resonance of nano-structured metal thin films. The surface enhancement decays in about 10nm with the distance from the surface and is, thus, perfectly suited to selectively probe monolayers of biomembranes. Peculiar to membrane proteins is their vectorial functionality, the probing of which requires proper orientation within the membrane. To this end, the metal surface used in SEIRAS is chemically modified to generate an oriented membrane protein film. Monolayers of uniformly oriented membrane proteins are formed by tethering His-tagged proteins to a nickel nitrilo-triacetic acid (Ni-NTA) modified gold surface and SEIRAS commands molecular sensitivity to probe each step of surface modification. The solid surface used as plasmonic substrate for SEIRAS, can also be employed as an electrode to investigate systems where electron transfer reactions are relevant, like e.g. cytochrome c oxidase or plant-type photosystems. Furthermore, the interaction of these membrane proteins with water-soluble proteins, like cytochrome c or hydrogenase, is studied on the molecular level by SEIRAS. The impact of the membrane potential on protein functionality is verified by monitoring light-dark difference spectra of a monolayer of sensory rhodopsin (SRII) at different applied potentials. It is demonstrated that the interpretations of all of these experiments critically depend on the orientation of the solid-supported membrane protein. Finally, future directions of SEIRAS including cellular systems are discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.

  9. Infrared spectroelectrochemical characterization of ferrocene-terminated alkanethiolate monolayers at gold

    SciTech Connect

    Popenoe, D.D.; Deinhammer, R.S.; Porter, M.D. Iowa State Univ., Ames, IA )

    1992-10-01

    Cyclic voltammetry and in situ infrared reflection-absorption spectroscopy with electrochemical modulation were applied to the study of monolayers self-assembled from 11-mercaptoundecyl ferrocene-carboxylate (FcCOOC[sub 11]SH) at gold. Voltammetry was used to assess both the reactivity and stability of the surface film in various aqueous electrolytes. The results of these studies indicated that the ferrocenyl monolayers are relatively unstable at pH > 2, except when perchlorate is the dominant anion present. A large change in double-layer capacitance observed upon oxidation of the ferrocenyl end group was attributed to the creation of cationic sites in the diffuse layer. Compositional and structural correlations between the monolayer and the redox chemistry of the ferrocenyl end group were probed using the in situ spectroscopic technique. The features observed in the differential spectra of the oxidized form of the film were ascribed to changes in the bond strengths of the adsorbate as a result of generation of a ferricinium ion. No detectable changes in orientation of the polymethylene chains as a function of applied voltage were observed. The spectral data also suggest that the redox chemistry leads to a reorientation of the water molecules in the region near the ferrocenyl end group. Vibrational mode assignments for FcCOOC[sub 11]SH, based on studies of several analogs with different alkoxy groups, are presented along with infrared spectra and band assignments for several isotopically labeled ferrocenyl esters (i.e., ethyl ferrocenecarboxylate, ethyl-d[sub 5] ferrocenecarboxylate, and 2-(dimethylamino)ethyl ferrocenecarboxylate). 55 refs., 7 figs., 2 tabs.

  10. Melting of thin films of alkanes on magnesium oxide

    NASA Astrophysics Data System (ADS)

    Arnold, T.; Barbour, A.; Chanaa, S.; Cook, R. E.; Fernandez-Canato, D.; Landry, P.; Seydel, T.; Yaron, P.; Larese, J. Z.

    2009-02-01

    Recent incoherent neutron scattering investigations of the dynamics of thin alkane films adsorbed on the Magnesium Oxide (100) surface are reported. There are marked differences in the behaviour of these films, as a function of temperature and coverage, compared to similar measurements on graphite. In particular, it has previously been shown that adsorbed multilayer films on graphite exhibit an interfacial solid monolayer that coexists with bulk-like liquid, well above the bulk melting point. In contrast, these studies show that the alkane films on MgO exhibit no such stabilization of the solid layer closest to the substrate as a function of the film thickness, even though the monolayer crystal structures are remarkably similar. These studies are supported by extensive thermodynamic data, a growing body of structural data from neutron diffraction and state of the art computer modelling

  11. Geometric Stability and Elastic Response of a Supported Nanoparticle Film

    SciTech Connect

    Leahy, Brian D.; Pocivavsek, Luka; Meron, Mati; Lam, Kin Lok; Salas, Desiree; Viccaro, P. James; Lee, Ka Yee C.; Lin, Binhua

    2011-09-16

    The mechanical response to compression of a self-assembled gold nanoparticle monolayer and trilayer at the air-liquid interface is examined. Analysis of the film's buckling morphology under compression reveals an anomalously low bending rigidity for both the monolayer and the trilayer, in contrast with continuum elastic plates. We attribute this to the spherical geometry of the nanoparticles and poor coupling between layers, respectively. The elastic energy of the trilayers is first delocalized in wrinkles and then localized into folds, as predicted by linear and nonlinear elastic theory for an inextensible thin film supported on a fluid.

  12. Growth of C 60 films on silicon surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Sarid, Dror

    1994-10-01

    The growth of crystalline C 60 films on Si(111) and Si (100) surfaces has been studied using scanning tunneling microscopy and atomic force microscopy. It is found that the films on these two silicon substrates, which consist of both partially ordered monolayer and crystalline islands, differ in their morphologies. The results are explained in terms of the relative strength of interaction of the first monolayer of C 60 molecules with the silicon substrate and the C 60 islands above it. Annealing the samples to elevated temperatures causes the C 60 islands to evaporate, leaving a full layer of C 60 molecules capped on the substrate.

  13. Tribological Characterization of Nanoclustered Lead Films

    NASA Astrophysics Data System (ADS)

    Stevens, Keeley M.; Krim, Jacqueline

    2011-03-01

    For thin films of Pb on Ti, a system which does not wet, it is known that when studying coverages below the percolation transition measurement of surface friction via a sliding gas monolayer is an effective probe of electronic structure for the isolated lead nanoclusters. This technique is capable of studying superconductors as they pass through the transition temperature. Motivated by on-going reports of quantum size effects in thin lead films grown on Si(111) 2009, 157: 221-251.} and Cu(001), we examine the issue of nitrogen adsorption onto such nanostructured films. Funding provided by NSF DMR. Highland, M. et al. in preparation.

  14. Fabrication of protein chips based on 3-aminopropyltriethoxysilane as a monolayer.

    PubMed

    Jang, Ling-Sheng; Liu, Hao-Juin

    2009-04-01

    Although 3-aminopropyltriethoxysilane (APTES) is widely adopted as a monolayer in biosensors, experimental silanization takes at least 1 h at high temperature. Therefore, the feasibility of the silanization with APTES in a short reaction time and at room temperature was investigated. The surface modification of glass slides using a self-assembled monolayer of APTES with a concentration of 10% was studied by immobilizing FITC. APTES was successfully immobilized on the glass slide. The effect of reaction temperature and time of silanization were investigated. Various silanization conditions of APTES were examined by contact angle measurement and fluorescence microscopy. The surface of glass patterns with a gold thin film as background was characterized by determining the fluorescent intensities following the immobilization of fluorescein isothiocyanate (FITC), protein A-FITC, antimouse IgG-FITC and sheep anti-bovine albumin-FITC. The normalized fluorescent intensity indicated that a short period (4 min) of silanization at 25 degrees C suffices to form an APTES thin film by the immobilization of protein A on a glass surface. Such a condition does not require microheaters and temperature sensors in a microfluidic system, which will significantly reduce the manufacturing process, cost, and reaction time in the future.

  15. Effect of precursor on growth and morphology of MoS2 monolayer and multilayer

    NASA Astrophysics Data System (ADS)

    Ganorkar, Shraddha; Kim, Jungyoon; Kim, Young-Hwan; Kim, Seong-II

    2015-12-01

    The rise of two-dimensional (2D) material is one of the results of successful efforts of researchers which laid the path to the new era of electronics. One of the most exciting materials is MoS2. Synthesis has been always a major issue as electronic devices need reproducibility along with similar properties for mass productions. Chemical vapor deposition (CVD) is one of the successful methods for 2D materials including graphene. Furthermore, the choice of starting materials for Mo and S source is crucial. The different source has different effects on the layers and morphology of MoS2 films. In this work, we have extensively studied the CVD technique to grow few layers of MoS2 with two precursors MoO3 and MoCl5, show remarkable changes. The MoO3 source gives a triangular shaped MoS2 monolayer while that of MoCl5 can achieve uniform MoS2 without triangle. The absence of geometric shapes with MoCl5 is poorly understood. We tried to explain with MoCl5 precursor, the formation of continuous monolayer of MoS2 without any triangle on the basis of chemical reaction formalism mostly due to one step reaction process and formation of MoS2 from gas phase to the solid phase. The film synthesized by MoCl5 is more continuous and it would be a good choice for device applications.

  16. Predicting Two-Dimensional Silicon Carbide Monolayers.

    PubMed

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  17. Filled and empty states of Zn-TPP films deposited on Fe(001)-p(1×1)O

    PubMed Central

    Calloni, Alberto; Yivlialin, Rossella; Picone, Andrea; Bottegoni, Federico; Finazzi, Marco

    2016-01-01

    Zn-tetraphenylporphyrin (Zn-TPP) was deposited on a single layer of metal oxide, namely an Fe(001)-p(1×1)O surface. The filled and empty electronic states were measured by means of UV photoemission and inverse photoemission spectroscopy on a single monolayer and a 20 monolayer thick film. The ionization energy and the electron affinity of the organic film were deduced and the interface dipole was determined and compared with data available in the literature. PMID:28144503

  18. Tidal evolution of the Uranian satellites. III - Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel 2:1 mean-motion commensurabilities

    NASA Technical Reports Server (NTRS)

    Tittemore, William C.; Wisdom, Jack

    1990-01-01

    Numerical experiments have been conducted which indicate that the orbital eccentricity of Miranda may have reached a value sufficiently large to have affected its thermal evolution. There is a large chaotic zone associated with the Miranda-Ariel 5:3 mean-motion commensurability, even in the planar approximation; the orbital eccentricities of both satellites may vary chaotically for a considerable period. Since the anomalously high orbital inclination of Miranda is a consequence of passage through the 3:1 commensurability with Umbriel, the requirement that the satellites encountered this resonance places a lower limit on the Uranian specific dissipation function of 39,000.

  19. Adsorption geometry and electronic properties of flat-lying monolayers of tetracene on the Ag(111) surface

    NASA Astrophysics Data System (ADS)

    Zaitsev, N. L.; Nechaev, I. A.; Höfer, U.; Chulkov, E. V.

    2016-10-01

    The geometrical and electronic properties of the monolayer (ML) of tetracene (Tc) molecules on Ag(111) are systematically investigated by means of DFT calculations with the use of a localized basis set. The bridge and hollow adsorption positions of the molecule in the commensurate γ -Tc/Ag(111) are revealed to be the most stable and equally favorable irrespective to the approximation chosen for the exchange-correlation functional. The binding energy is entirely determined by the long-range dispersive interaction. The former lowest unoccupied molecular orbital remains being unoccupied in the case of γ -Tc/Ag(111) as well as in the α phase with increased coverage. The unit cell of the α phase with point-on-line registry was adapted for calculations based on the available experimental data and computed structures of the γ phase. The calculated position of the Tc/Ag(111) interface state is found to be noticeably dependent on the lattice constant of the substrate, however its energy shift with respect to the Shockley surface state of the unperturbed clean side of the slab is sensitive only to the adsorption distance and in good agreement with the experimentally measured energy shift.

  20. Abscisic acid-lipid interactions: a phospholipid monolayer study.

    PubMed

    Bürner, H; Benz, R; Gimmler, H; Hartung, W; Stillwell, W

    1993-08-15

    Lipid monolayer studies were performed on a Langmuir trough in the absence and in the presence of the plant hormone abscisic acid (ABA). The ABA-induced effects on the lipid monolayers can be summarized as follows: (i) ABA as the free acid (pH below 5.3) increased the molecular area and slightly decreased the surface pressure in the collapse points of monolayers made of saturated, unsaturated and of mixed lipids; ABA as the anion showed only minor effects. (ii) The ABA-induced area increase of the lipid monolayers decreased when the surface pressure increased, but some ABA remained in the monolayers made of unsaturated phospholipids even at collapse pressure. (iii) The incorporation of ABA into the monolayers could be inhibited by adding the plant sterol beta-sitosterol to the monolayer forming phospholipids. (iv) There was no substantial difference of ABA action on plant phospholipids as compared with other phospholipids. (v) ABA had a much stronger influence on unsaturated phospholipids than on saturated ones. (vi) ABA decreased the phase-transition temperature of saturated phospholipids. These results, which agree with those obtained from phospholipid vesicle studies, indicate that the physical state of the lipid is important for the ability of ABA penetrating into the lipid monolayer. Finally, a possible relevance of these results is discussed in terms of the action of ABA on guard cell membranes of plants.

  1. Synthesis of copper monolayer and particles at aqueous organic interface

    NASA Astrophysics Data System (ADS)

    Yang, Jian-guang; Yang, Sheng-hai; Okamoto, Takeshi; Bessho, Takeshi; Satake, Shigeru; Ichino, Ryoichi; Okido, Masazumi

    2006-12-01

    Using aqueous-organic interface (water-oleic acid) reduction of Cu 2+ by ascorbic acid, hydrophobic copper monolayer and copper particles have been prepared and characterized. The resultant monolayer could be transferred from the interface onto solid substrate or be dissolved to yield an organosol and copper nanoparticles.

  2. Hydrogen exchange mass spectrometry of proteins at Langmuir monolayers

    PubMed Central

    Pirrone, Gregory F.; Vernon, Briana C.; Kent, Michael S.; Engen, John R.

    2015-01-01

    Hydrogen exchange (HX) mass spectrometry (MS) is valuable for providing conformational information for proteins/peptides that are very difficult to analyze with other methods such as peripheral membrane proteins and peptides that interact with membranes. We developed a new type of HX MS measurement that integrates Langmuir monolayers. A lipid monolayer was generated, a peptide or protein associated with it, and then the monolayer-associated peptide or protein was exposed to deuterium. The deuterated species was recovered from the monolayer, digested, and deuterium incorporation monitored by MS. Test peptides showed that deuterium recovery in an optimized protocol was equivalent to deuterium recovery in conventional solution HX MS. The reproducibility of the measurements was high despite the requirement of generating a new monolayer for each deuterium labeling time. We validated that known conformational changes in the presence of a monolayer/membrane could be observed with the peptide melittin and the myristoylated protein Arf-1. Results in an accompanying paper show that the method can reveal details of conformational changes in a protein (HIV-1 Nef) which adopts a different conformation depending on if it can insert into the lipid layer. Overall, the HX MS Langmuir monolayer method provided new and meaningful conformational information for proteins that associate with lipid layers. The combination of HX MS results with neutron or X-ray reflection of the same proteins in Langmuir monolayers can be more informative than isolated use of either method. PMID:26134943

  3. Topological, Valleytronic, and Optical Properties of Monolayer PbS.

    PubMed

    Wan, Wenhui; Yao, Yugui; Sun, Liangfeng; Liu, Cheng-Cheng; Zhang, Fan

    2017-03-01

    A PbS monolayer is demonstrated to be a novel platform for topological, valleytronic, and optical phenomena. Compressive strain can turn the trivial monolayer into a topological insulator. Optical pumping can facilitate charge, spin, and valley Hall effects tunable by external strain and light ellipticity. Similar results apply to other IV-VI semiconductors.

  4. Methylene blue adsorption on a DMPA lipid langmuir monolayer.

    PubMed

    Giner Casares, Juan José; Camacho, Luis; Martín-Romero, Maria Teresa; López Cascales, José Javier

    2010-07-12

    Adsorption of methylene blue (MB) onto a dimyristoylphosphatidic acid (DMPA) Langmuir air/water monolayer is studied by molecular dynamics (MD) simulations, UV reflection spectroscopy and surface potential measurements. The free-energy profile associated with MB transfer from water to the lipid monolayer shows two minima of -66 and -60 kJ mol(-1) for its solid and gas phase, respectively, corresponding to a spontaneous thermodynamic process. From the position of the free-energy minima, it is possible to predict the precise location of MB in the interior of the DMPA monolayer. Thus, MB is accommodated in the phosphoryl or carbonyl region of the DMPA Langmuir air/water interface, depending on the isomorphic state (solid or gas phase, respectively). Reorientation of MB, measured from the bulk solution to the interior of the lipid monolayer, passes from a random orientation in bulk solution to an orientation parallel to the surface of the lipid monolayer when MB is absorbed.

  5. Monolayer-by-monolayer stacked pyramid-like MoS2 nanodots on monolayered MoS2 flakes with enhanced photoluminescence.

    PubMed

    Yuan, Cailei; Cao, Yingjie; Luo, Xingfang; Yu, Ting; Huang, Zhenping; Xu, Bo; Yang, Yong; Li, Qinliang; Gu, Gang; Lei, Wen

    2015-11-07

    The precise control of the morphology and crystal shape of MoS2 nanostructures is of particular importance for their application in nanoelectronic and optoelectronic devices. Here, we describe a single step route for the synthesis of monolayer-by-monolayer stacked pyramid-like MoS2 nanodots on monolayered MoS2 flakes using a chemical vapor deposition method. First-principles calculations demonstrated that the bandgap of the pyramid-like MoS2 nanodot is a direct bandgap. Enhanced local photoluminescence emission was observed in the pyramid-like MoS2 nanodot, in comparison with monolayered MoS2 flakes. The findings presented here provide new opportunities to tailor the physical properties of MoS2via morphology-controlled synthesis.

  6. Improved mechanical stability of acetoxypropyl cellulose upon blending with ultranarrow PbS nanowires in Langmuir monolayer matrix.

    PubMed

    Maji, Subrata; Kundu, Sudarshan; Pinto, L F V; Godinho, M H; Khan, Ali Hossain; Acharya, Somobrata

    2013-12-10

    Cellulose and cellulose derivatives have long been used as membrane fabrication. Langmuir monolayer behavior, which naturally mimics membranes, of acetoxypropyl cellulose (APC) and lead sulfide (PbS) nanowire mixtures at different volume ratios is reported. Surface pressure (π)-area (A) isotherms of APC and PbS nanowires mixtures at different volume ratios show a gradual decrease in the monolayer area with increasing volume fraction of PbS nanowires. Change of surface potential with monolayer area at different volume ratios also reveals a gradual increase in the surface potential indicating incorporation of PbS nanowires within APC matrix. The compressibility and elastic constants measurements reveal an enhancement of the elasticity upon incorporation of PbS nanowires up to certain volume fractions. An enhancement in stability of the blend is observed upon PbS nanowire incorporation to the APC matrix. Rheological measurements also support the robustness of the mixture of APC and PbS nanowires in 3D bulk phase. Such robust ultrathin films of cellulose based-nanowire blend obtained by means of the Langmuir technique may lead to novel routes for designing cellulosic-based thin films and membranes.

  7. Charge transfer in crystalline germanium/monolayer MoS2 heterostructures prepared by chemical vapor deposition.

    PubMed

    Lin, Yung-Chen; Bilgin, Ismail; Ahmed, Towfiq; Chen, Renjie; Pete, Doug; Kar, Swastik; Zhu, Jian-Xin; Gupta, Gautam; Mohite, Aditya; Yoo, Jinkyoung

    2016-11-10

    Heterostructuring provides novel opportunities for exploring emergent phenomena and applications by developing designed properties beyond those of homogeneous materials. Advances in nanoscience enable the preparation of heterostructures formed incommensurate materials. Two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, are of particular interest due to their distinct physical characteristics. Recently, 2D/2D heterostructures have opened up new research areas. However, other heterostructures such as 2D/three-dimensional (3D) materials have not been thoroughly studied yet although the growth of 3D materials on 2D materials creating 2D/3D heterostructures with exceptional carrier transport properties has been reported. Here we report a novel heterostructure composed of Ge and monolayer MoS2, prepared by chemical vapor deposition. A single crystalline Ge (110) thin film was grown on monolayer MoS2. The electrical characteristics of Ge and MoS2 in the Ge/MoS2 heterostructure were remarkably different from those of isolated Ge and MoS2. The field-effect conductivity type of the monolayer MoS2 is converted from n-type to p-type by growth of the Ge thin film on top of it. Undoped Ge on MoS2 is highly conducting. The observations can be explained by charge transfer in the heterostructure as opposed to chemical doping via the incorporation of impurities, based on our first-principles calculations.

  8. Electron states and the spin density wave phase diagram in Cr(1 1 0) films

    NASA Astrophysics Data System (ADS)

    Rotenberg, Eli; Freelon, B. K.; Koh, H.; Bostwick, A.; Rossnagel, K.; Schmid, Andreas; Kevan, S. D.

    2005-04-01

    Chromium films offer an excellent system to study the impact of dimensional confinement on physical properties associated with the spin-density-wave (SDW) ground state observed in bulk materials. These properties are also of some technological importance since chromium is a common component of thin film magnetic structures. We prepared chromium (1 1 0) films of high crystalline quality on a W(1 1 0) substrate with a wedge-shaped thickness profile so that the impact of confinement can be systematically studied. We have characterized these films using a combination of low-energy electron diffraction and microscopy as well as high-resolution angle-resolved photoemission spectroscopy. We have probed the Fermi surface and the nesting vectors therein that are relevant to the SDW ground state. We find these to predict accurately the observed bulk SDW periodicity. We have also characterized the SDW periodicity in the film directly by measuring the splitting between backfolded bands, and we find that this periodicity deviates markedly from the bulk periodicity for thinner films at higher temperatures. We have systematically mapped the SDW incommensurability and phase diagram as a function of both film thickness and temperature. We find commensurate and incommensurate phases that are separated by nearly continuous transitions. Our results suggest a simple model to explain the delicate interplay between commensurate and incommensurate phases that involves a balance between SDW stabilization energy and surface and interface energetics.

  9. Valley depolarization in monolayer WSe2

    PubMed Central

    Yan, Tengfei; Qiao, Xiaofen; Tan, Pingheng; Zhang, Xinhui

    2015-01-01

    We have systematically examined the circular polarization of monolayer WSe2 at different temperature, excitation energy and exciton density. The valley depolarization in WSe2 is experimentally confirmed to be governed by the intervalley electron-hole exchange interaction. More importantly, a non-monotonic dependence of valley circular polarization on the excitation power density has been observed, providing the experimental evidence for the non-monotonic dependence of exciton intervalley scattering rate on the excited exciton density. The physical origination of our experimental observations has been proposed to be in analogy to the D′yakonov-Perel′ mechanism that is operative in conventional GaAs quantum well systems. Our experimental results are fundamentally important for well understanding the valley pseudospin relaxation in atomically thin transition metal dichalcogenides. PMID:26490157

  10. Ultrafast response of monolayer molybdenum disulfide photodetectors

    PubMed Central

    Wang, Haining; Zhang, Changjian; Chan, Weimin; Tiwari, Sandip; Rana, Farhan

    2015-01-01

    The strong light emission and absorption exhibited by single atomic layer transitional metal dichalcogenides in the visible to near-infrared wavelength range make them attractive for optoelectronic applications. In this work, using two-pulse photovoltage correlation technique, we show that monolayer molybdenum disulfide photodetector can have intrinsic response times as short as 3 ps implying photodetection bandwidths as wide as 300 GHz. The fast photodetector response is a result of the short electron–hole and exciton lifetimes in this material. Recombination of photoexcited carriers in most two-dimensional metal dichalcogenides is dominated by nonradiative processes, most notable among which is Auger scattering. The fast response time, and the ease of fabrication of these devices, make them interesting for low-cost ultrafast optical communication links. PMID:26572726

  11. Film Reviews.

    ERIC Educational Resources Information Center

    Lance, Larry M.; Atwater, Lynn

    1987-01-01

    Reviews four Human Sexuality films and videos. These are: "Personal Decisions" (Planned Parenthood Federation of America, 1985); "The Touch Film" (Sterling Production, 1986); "Rethinking Rape" (Film Distribution Center, 1985); "Not A Love Story" (National Film Board of Canada, 1981). (AEM)

  12. Monolayer semiconductor nanocavity lasers with ultralow thresholds.

    PubMed

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R; Feng, Liefeng; Yan, Jiaqiang; Mandrus, David G; Hatami, Fariba; Yao, Wang; Vučković, Jelena; Majumdar, Arka; Xu, Xiaodong

    2015-04-02

    Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor--that is, a tungsten diselenide monolayer--is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence the ability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.

  13. Anomalous thermal conductivity of monolayer boron nitride

    NASA Astrophysics Data System (ADS)

    Tabarraei, Alireza; Wang, Xiaonan

    2016-05-01

    In this paper, we use nonequilibrium molecular dynamics modeling to investigate the thermal properties of monolayer hexagonal boron nitride nanoribbons under uniaxial strain along their longitudinal axis. Our simulations predict that hexagonal boron nitride shows an anomalous thermal response to the applied uniaxial strain. Contrary to three dimensional materials, under uniaxial stretching, the thermal conductivity of boron nitride nanoribbons first increases rather than decreasing until it reaches its peak value and then starts decreasing. Under compressive strain, the thermal conductivity of monolayer boron nitride ribbons monolithically reduces rather than increasing. We use phonon spectrum and dispersion curves to investigate the mechanism responsible for the unexpected behavior. Our molecular dynamics modeling and density functional theory results show that application of longitudinal tensile strain leads to the reduction of the group velocities of longitudinal and transverse acoustic modes. Such a phonon softening mechanism acts to reduce the thermal conductivity of the nanoribbons. On the other hand, a significant increase in the group velocity (stiffening) of the flexural acoustic modes is observed, which counteracts the phonon softening effects of the longitudinal and transverse modes. The total thermal conductivity of the ribbons is a result of competition between these two mechanisms. At low tensile strain, the stiffening mechanism overcomes the softening mechanism which leads to an increase in the thermal conductivity. At higher tensile strain, the softening mechanism supersedes the stiffening and the thermal conductivity slightly reduces. Our simulations show that the decrease in the thermal conductivity under compressive strain is attributed to the formation of buckling defects which reduces the phonon mean free path.

  14. Monolayer semiconductor nanocavity lasers with ultralow thresholds

    SciTech Connect

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.; Feng, Liefeng; Yan, Jiaqiang; Mandrus, David G.; Hatami, Fariba; Yao, Wang; Vučković, Jelena; Majumdar, Arka; Xu, Xiaodong

    2015-03-16

    Engineering the electromagnetic environment of a nanoscale light emitter by a photonic cavity can significantly enhance its spontaneous emission rate through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter1–5, providing the ultimate low-threshold laser system with small footprint, low power consumption and ultrafast modulation. A state-of-the-art ultra-low threshold nanolaser has been successfully developed though embedding quantum dots into photonic crystal cavity (PhCC)6–8. However, several core challenges impede the practical applications of this architecture, including the random positions and compositional fluctuations of the dots7, extreme difficulty in current injection8, and lack of compatibility with electronic circuits7,8. Here, we report a new strategy to lase, where atomically thin crystalline semiconductor, i.e., a tungsten-diselenide (WSe2) monolayer, is nondestructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PhCC. A new type of continuous-wave nanolaser operating in the visible regime is achieved with an optical pumping threshold as low as 27 nW at 130 K, similar to the value achieved in quantum dot PhCC lasers7. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within 1 nm of the PhCC surface. The surface-gain geometry allows unprecedented accessibilities to multi-functionalize the gain, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.

  15. Monolayer semiconductor nanocavity lasers with ultralow thresholds

    DOE PAGES

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.; ...

    2015-03-16

    Engineering the electromagnetic environment of a nanoscale light emitter by a photonic cavity can significantly enhance its spontaneous emission rate through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter1–5, providing the ultimate low-threshold laser system with small footprint, low power consumption and ultrafast modulation. A state-of-the-art ultra-low threshold nanolaser has been successfully developed though embedding quantum dots into photonic crystal cavity (PhCC)6–8. However, several core challenges impede the practical applications of this architecture, including the random positions and compositional fluctuations of the dots7, extreme difficulty in current injection8, and lackmore » of compatibility with electronic circuits7,8. Here, we report a new strategy to lase, where atomically thin crystalline semiconductor, i.e., a tungsten-diselenide (WSe2) monolayer, is nondestructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PhCC. A new type of continuous-wave nanolaser operating in the visible regime is achieved with an optical pumping threshold as low as 27 nW at 130 K, similar to the value achieved in quantum dot PhCC lasers7. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within 1 nm of the PhCC surface. The surface-gain geometry allows unprecedented accessibilities to multi-functionalize the gain, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.« less

  16. Electronic correlations in monolayer VS2

    NASA Astrophysics Data System (ADS)

    Isaacs, Eric B.; Marianetti, Chris A.

    2016-07-01

    The layered transition metal dichalcogenide vanadium disulfide (VS2), which nominally has one electron in the 3 d shell, is potent for strong-correlation physics and is possibly another realization of an effective one-band model beyond the cuprates. Here monolayer VS2 in both the trigonal prismatic and the octahedral phases is investigated using density functional theory plus Hubbard U (DFT +U ) calculations. Trigonal prismatic VS2 has an isolated low-energy band that emerges from a confluence of crystal-field splitting and direct V-V hopping. Within spin density functional theory, ferromagnetism splits the isolated band of the trigonal prismatic structure, leading to a low-band-gap, S =1/2 , ferromagnetic Stoner insulator; the octahedral phase is higher in energy. Including the on-site interaction U increases the band gap, leads to Mott insulating behavior, and, for sufficiently high values, stabilizes the ferromagnetic octahedral phase. The validity of DFT and DFT +U for these two-dimensional materials with potential for strong electronic correlations is discussed. A clear benchmark is given by examining the experimentally observed charge density wave in octahedral VS2, for which DFT grossly overestimates the bond length differences compared to known experiments; the presence of charge density waves is also probed for the trigonal prismatic phase. Finally, we investigate why only the octahedral phase has been observed in experiments and discuss the possibility of realizing the trigonal prismatic phase. Our work suggests that trigonal prismatic VS2 is a promising candidate for strongly correlated electron physics that, if realized, could be experimentally probed in an unprecedented fashion due to its monolayer nature.

  17. Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints

    PubMed Central

    Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin

    2016-01-01

    In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections. PMID:27045012

  18. Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints

    NASA Astrophysics Data System (ADS)

    Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin

    2016-04-01

    In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections.

  19. Self-assembled monolayer modified MoO3/Au/MoO3 multilayer anodes for high performance OLEDs

    NASA Astrophysics Data System (ADS)

    Jeong, Daekyun; Lim, Chefwi; Kim, Myeonggi; Jeong, Kyunghoon; Kim, Jae-Hun; Kim, Jiyoung; Park, Jin-Goo; Min, Kyeong-Sik; Lee, Jaegab

    2017-01-01

    We control the work function and the surface energy of the MoO3/Au/MoO3 (MAM) anode of OLEDs by modifying the top MoO3 layer via vapor phase deposition. The performance and stability of the device are significantly altered depending on the dipole direction of the selfassembled monolayer (SAM) with permanent dipole moment inserted between N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine (NPB) film and a MAM anode as well as on the interfacial wetting between the SAM and NPB layer. A CF3-terminated monolayer on a MAM electrode improved the performance and stability of the OLEDs relative to a reference device with only a MAM electrode, demonstrating that coating with SAMs via vapor phase deposition is an effective method to engineer the interface of MAM electrode optoelectronic devices. [Figure not available: see fulltext.

  20. Molecular beam epitaxy of large-area SnSe2 with monolayer thickness fluctuation

    NASA Astrophysics Data System (ADS)

    Park, Young Woon; Jerng, Sahng-Kyoon; Jeon, Jae Ho; Roy, Sanjib Baran; Akbar, Kamran; Kim, Jeong; Sim, Yumin; Seong, Maeng-Je; Kim, Jung Hwa; Lee, Zonghoon; Kim, Minju; Yi, Yeonjin; Kim, Jinwoo; Noh, Do Young; Chun, Seung-Hyun

    2017-03-01

    The interest in layered materials is largely based on the expectation that they will be beneficial for a variety of applications, from low-power-consuming, wearable electronics to energy harvesting. However, the properties of layered materials are highly dependent on thickness, and the difficulty of controlling thickness over a large area has been a bottleneck for commercial applications. Here, we report layer-by-layer growth of SnSe2, a layered semiconducting material, via van der Waals epitaxy. The films were fabricated on insulating mica substrates with substrate temperatures in the range of 210 °C-370 °C. The surface consists of a mixture of N and (N ± 1) layers, showing that the thickness of the film can be defined with monolayer accuracy (±0.6 nm). High-resolution transmission electron microscopy reveals a polycrystalline film with a grain size of ˜100 nm and clear Moiré patterns from overlapped grains with similar thickness. We also report field effect mobility values of 3.7 cm2 V-1 s-1 and 6.7 cm2 V-1 s-1 for 11 and 22 nm thick SnSe2, respectively. SnSe2 films with customizable thickness can provide valuable platforms for industry and academic researchers to fully exploit the potential of layered materials.