Science.gov

Sample records for commercial microbial culture

  1. Commercial production of microbial enzymes

    SciTech Connect

    Munro, I.G.

    1985-01-01

    The advantages and uses of industrially produced microbial enzymes are described. The processes involved in the production of these enzymes, cultivation techniques, enzyme extraction, enzyme purification and immobilization are outlined. Both the history of enzyme technology and its future development are discussed.

  2. Microbial assessment of cabin air quality on commercial airliners

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Stuecker, Tara; Bearman, Gregory; Venkateswaran, Kasthuri

    2005-01-01

    The microbial burdens of 69 cabin air samples collected from commercial airliners were assessed via conventional culture-dependent, and molecular-based microbial enumeration assays. Cabin air samples from each of four separate flights aboard two different carriers were collected via air-impingement. Microbial enumeration techniques targeting DNA, ATP, and endotoxin were employed to estimate total microbial burden. The total viable microbial population ranged from 0 to 3.6 x10 4 cells per 100 liters of air, as assessed by the ATP-assay. When these same samples were plated on R2A minimal medium, anywhere from 2% to 80% of these viable populations were cultivable. Five of the 29 samples examined exhibited higher cultivable counts than ATP derived viable counts, perhaps a consequence of the dormant nature (and thus lower concentration of intracellular ATP) of cells inhabiting these air cabin samples. Ribosomal RNA gene sequence analysis showed these samples to consist of a moderately diverse group of bacteria, including human pathogens. Enumeration of ribosomal genes via quantitative-PCR indicated that population densities ranged from 5 x 10 1 ' to IO 7 cells per 100 liters of air. Each of the aforementioned strategies for assessing overall microbial burden has its strengths and weaknesses; this publication serves as a testament to the power of their use in concert.

  3. The DOE Subsurface Microbial Culture Collection (SMCC)

    SciTech Connect

    Balkwill, David L.

    2006-05-23

    The primary activities associated with maintenance of the Subsurface Microbial Culture Collection (SMCC) were designed to ensure that the collection served as a valuable resource to DOE-funded and other scientists, especially DOE-funded scientists associated with the NABIR Program. These activities were carried out throughout the period covered by this report and in-cluded: (1) assistance in the selection of cultures for research, (2) distribution of cultures and/or data on request, (3) incorporation of newly isolated microbial strains, (4) preservation of newly isolated strains, (5) partial characterization of newly isolated strains, (6) development and main-tenance of representative subsets of cultures, (6) screening of SMCC strains for specific charac-teristics, (7) phylogenetic characterization of SMCC strains, (8) development and maintenance of a SMCC website, (9) maintenance of the SMCC databases, (10) archiving of SMCC records, and (11) quality assurance/quality control (QA/QC) activities. We describe in the Final Technical Report our accomplishments related to these activities during the period covered by this report.

  4. Film forming microbial biopolymers for commercial applications--a review.

    PubMed

    Vijayendra, S V N; Shamala, T R

    2014-12-01

    Microorganisms synthesize intracellular, structural and extracellular polymers also referred to as biopolymers for their function and survival. These biopolymers play specific roles as energy reserve materials, protective agents, aid in cell functioning, the establishment of symbiosis, osmotic adaptation and support the microbial genera to function, adapt, multiply and survive efficiently under changing environmental conditions. Viscosifying, gelling and film forming properties of these have been exploited for specific significant applications in food and allied industries. Intensive research activities and recent achievements in relevant and important research fields of global interest regarding film forming microbial biopolymers is the subject of this review. Microbial polymers such as pullulan, kefiran, bacterial cellulose (BC), gellan and levan are placed under the category of exopolysaccharides (EPS) and have several other functional properties including film formation, which can be used for various applications in food and allied industries. In addition to EPS, innumerable bacterial genera are found to synthesis carbon energy reserves in their cells known as polyhydroxyalkanoates (PHAs), microbial polyesters, which can be extruded into films with excellent moisture and oxygen barrier properties. Blow moldable biopolymers like PHA along with polylactic acid (PLA) synthesized chemically in vitro using lactic acid (LA), which is produced by LA bacteria through fermentation, are projected as biodegradable polymers of the future for packaging applications. Designing and creating of new property based on requirements through controlled synthesis can lead to improvement in properties of existing polysaccharides and create novel biopolymers of great commercial interest and value for wider applications. Incorporation of antimicrobials such as bacteriocins or silver and copper nanoparticles can enhance the functionality of polymer films especially in food packaging

  5. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell.

    PubMed

    Miceli, Joseph F; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I; Krajmalnik-Brown, Rosa

    2014-10-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (∼ 11A/m(2)) and Coulombic efficiency (∼ 70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ∼ 80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed microbial cultures containing complementing biochemical pathways.

  6. Unpasteurised commercial boza as a source of microbial diversity.

    PubMed

    Osimani, Andrea; Garofalo, Cristiana; Aquilanti, Lucia; Milanović, Vesna; Clementi, Francesca

    2015-02-02

    Boza is a cereal-based fermented beverage widely consumed in many countries of the Balkans. The aim of this study was to investigate the microbiota of three Bulgarian boza samples through a combination of culture-dependent and -independent methods with the long-term objective of formulating a multi-strain starter culture specifically destined for the manufacture of new cereal-based drinks. The isolation campaign for lactic acid bacteria (LAB) allowed the identification of Lactobacillus parabuchneri, Lactobacillus fermentum, Lactobacillus coryniformis, Lactobacillus buchneri, Pediococcus parvulus and members of the Lactobacillus casei group. Concerning yeasts, the following isolates were identified: Pichia fermentans, Pichia norvegensis, Pichia guilliermondii (synonym Meyerozyma guilliermondii) and Torulaspora spp. A high intra-species diversity was revealed by Randomly Amplified Polymorphic DNA (RAPD) analysis. In parallel, microbial DNA was directly extracted from the three boza samples, and portions of the rrn operons were analysed through Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE). The molecular fingerprinting partially confirmed the results of culturing. Among LAB, the species Weissella confusa, Weissella oryzae, Leuconostoc citreum, Lactococcus lactis, Pediococcus parvulus and Pediococcus ethanolidurans were detected together with members of the Lb. casei group. Among the yeasts, the species P. fermentans, M. guilliermondii, Galactomyces geotrichum and Geotrichum fragrans were found. The overall results confirmed boza as having a rich and heterogeneous biodiversity both in terms of species and genetically diverse strains, thus encouraging its exploitation for the isolation and future technological characterisation of cultures to be selected for the manufacture of innovative cereal-based drinks.

  7. Over-pressurized bioreactors: application to microbial cell cultures.

    PubMed

    Lopes, Marlene; Belo, Isabel; Mota, Manuel

    2014-01-01

    In industrial biotechnology, microbial cultures are exposed to different local pressures inside bioreactors. Depending on the microbial species and strains, the increased pressure may have detrimental or beneficial effects on cellular growth and product formation. In this review, the effects of increased air pressure on various microbial cultures growing in bioreactors under moderate total pressure conditions (maximum, 15 bar) will be discussed. Recent data illustrating the diversity of increased air pressure effects at different levels in microbial cells cultivation will be presented, with particular attention to the effects of oxygen and carbon dioxide partial pressures on cellular growth and product formation, and the concomitant effect of oxygen pressure on antioxidant cellular defense mechanisms.

  8. Microbial production of surfactants and their commercial potential.

    PubMed Central

    Desai, J D; Banat, I M

    1997-01-01

    Many microorganisms, especially bacteria, produce biosurfactants when grown on water-immiscible substrates. Biosurfactants are more effective, selective, environmentally friendly, and stable than many synthetic surfactants. Most common biosurfactants are glycolipids in which carbohydrates are attached to a long-chain aliphatic acid, while others, like lipopeptides, lipoproteins, and heteropolysaccharides, are more complex. Rapid and reliable methods for screening and selection of biosurfactant-producing microorganisms and evaluation of their activity have been developed. Genes involved in rhamnolipid synthesis (rhlAB) and regulation (rhlI and rhlR) in Pseudomonas aeruginosa are characterized, and expression of rhlAB in heterologous hosts is discussed. Genes for surfactin production (sfp, srfA, and comA) in Bacillus spp. are also characterized. Fermentative production of biosurfactants depends primarily on the microbial strain, source of carbon and nitrogen, pH, temperature, and concentration of oxygen and metal ions. Addition of water-immiscible substrates to media and nitrogen and iron limitations in the media result in an overproduction of some biosurfactants. Other important advances are the use of water-soluble substrates and agroindustrial wastes for production, development of continuous recovery processes, and production through biotransformation. Commercialization of biosurfactants in the cosmetic, food, health care, pulp- and paper-processing, coal, ceramic, and metal industries has been proposed. However, the most promising applications are cleaning of oil-contaminated tankers, oil spill management, transportation of heavy crude oil, enhanced oil recovery, recovery of crude oil from sludge, and bioremediation of sites contaminated with hydrocarbons, heavy metals, and other pollutants. Perspectives for future research and applications are also discussed. PMID:9106364

  9. Recent advances towards development and commercialization of plant cell culture processes for synthesis of biomolecules

    PubMed Central

    Wilson, Sarah A.; Roberts, Susan C.

    2011-01-01

    (1) Summary Plant cell culture systems were initially explored for use in commercial synthesis of several high value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation strategies, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field grown crops is significant and therefore processes must be optimized with regards to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes. PMID:22059985

  10. The United States Culture Collection Network (USCCN): Enhancing Microbial Genomics Research through Living Microbe Culture Collections

    PubMed Central

    Boundy-Mills, Kyria; Hess, Matthias; Bennett, A. Rick; Ryan, Matthew; Kang, Seogchan; Nobles, David; Eisen, Jonathan A.; Inderbitzin, Patrik; Sitepu, Irnayuli R.; Torok, Tamas; Brown, Daniel R.; Cho, Juliana; Wertz, John E.; Mukherjee, Supratim; Cady, Sherry L.

    2015-01-01

    The mission of the United States Culture Collection Network (USCCN; http://usccn.org) is “to facilitate the safe and responsible utilization of microbial resources for research, education, industry, medicine, and agriculture for the betterment of human kind.” Microbial culture collections are a key component of life science research, biotechnology, and emerging global biobased economies. Representatives and users of several microbial culture collections from the United States and Europe gathered at the University of California, Davis, to discuss how collections of microorganisms can better serve users and stakeholders and to showcase existing resources available in public culture collections. PMID:26092453

  11. The United States Culture Collection Network (USCCN): Enhancing Microbial Genomics Research through Living Microbe Culture Collections

    SciTech Connect

    Boundy-Mills, K.; Hess, Matthias; Bennett, A. R.; Ryan, Matthew; Kang, Seogchan; Nobles, David; Eisen, Jonathan A.; Inderbitzin, Patrik; Sitepu, Irnayuli R.; Torok, Tamas; Brown, Daniel R; Cho, Juliana; Wertz, John E.; Mukherjee, Supratim; Cady, Sherry L.; McCluskey, Kevin

    2015-09-01

    The mission of the United States Culture Collection Network (USCCN; http://usccn.org) is "to facilitate the safe and responsible utilization of microbial resources for research, education, industry, medicine, and agriculture for the betterment of human kind." Microbial culture collections are a key component of life science research, biotechnology, and emerging global biobased economies. Representatives and users of several microbial culture collections from the United States and Europe gathered at the University of California, Davis, to discuss how collections of microorganisms can better serve users and stakeholders and to showcase existing resources available in public culture collections.

  12. The United States Culture Collection Network (USCCN): Enhancing Microbial Genomics Research through Living Microbe Culture Collections.

    PubMed

    Boundy-Mills, Kyria; Hess, Matthias; Bennett, A Rick; Ryan, Matthew; Kang, Seogchan; Nobles, David; Eisen, Jonathan A; Inderbitzin, Patrik; Sitepu, Irnayuli R; Torok, Tamas; Brown, Daniel R; Cho, Juliana; Wertz, John E; Mukherjee, Supratim; Cady, Sherry L; McCluskey, Kevin

    2015-09-01

    The mission of the United States Culture Collection Network (USCCN; http://usccn.org) is "to facilitate the safe and responsible utilization of microbial resources for research, education, industry, medicine, and agriculture for the betterment of human kind." Microbial culture collections are a key component of life science research, biotechnology, and emerging global biobased economies. Representatives and users of several microbial culture collections from the United States and Europe gathered at the University of California, Davis, to discuss how collections of microorganisms can better serve users and stakeholders and to showcase existing resources available in public culture collections.

  13. Effects of inoculation of commercial starter cultures on the quality and histamine accumulation in fermented sausages.

    PubMed

    Wang, Xinhui; Ren, Hongyang; Wang, Wei; Zhang, Yin; Bai, Ting; Li, Junxia; Zhu, Wenyou

    2015-02-01

    To meet the requirements of high-quality safe products, starter cultures are used to produce fermented sausages. The effects of 3 commercial starter cultures, namely SM-194, T-SPX, and SM-181, on histamine accumulation and quality parameters including microbial quality, pH, water activity, and total volatile base nitrogen, as well as the color and texture properties, were evaluated during the fermentation and ripening of fermented sausages. Although initial counts of Escherichia coli, Enterobacteriaceae, and Pseudomonas were similar in the 4 batches, the growth of these microorganisms was significantly inhibited (P < 0.05) in batches SM-194, T-SPX, and SM-181 throughout the fermentation and ripening period. The counts of E. coli, Enterobacteriaceae, and Pseudomonas increased to maximum levels of 3.89, 4.41, and 5.15 log10 colony forming units/g in the control sausages, respectively. At the end of ripening, the levels of histamine were 8.85, 0.32, 7.82, and 3.18 mg/kg for batches C, SM-194, T-SPX, and SM-181, respectively. The results revealed that commercial starter cultures, particularly starter cultures SM-194 and SM-181, made a great contribution to histamine reduction. In addition, batches inoculated with starter cultures showed a stronger acidification and lower level of total volatile base nitrogen than the control sample during production (P < 0.05). In conclusion, it seems that the inoculation of commercial starter cultures, particularly starter cultures SM-194 and SM-181, contributes to improving microbial quality, hygienic quality and food safety of fermented sausages.

  14. Microbial population dynamics during fed-batch operation of commercially available garbage composters.

    PubMed

    Narihiro, T; Abe, T; Yamanaka, Y; Hiraishi, A

    2004-09-01

    Microbial populations in terms of quantity, quality, and activity were monitored during 2 months of start-up operation of commercially available composters for fed-batch treatment of household biowaste. All the reactors, operated at a waste-loading rate of 0.7 kg day(-1) (wet wt), showed a mass reduction efficiency of 88-93%. The core temperature in the reactors fluctuated between 31 degrees C and 58 degrees C due to self-heating. The pH declined during the early stage of operation and steadied at pH 7.4-9.3 during the fully acclimated stage. The moisture content was 48-63% early in the process and 30-40% at the steady state. Both direct total counts and plate counts of bacteria increased via two phases (designated phases I, II) and reached an order of magnitude of 10(11) cells g(-1) (dry wt) at the steady state. Microbial community changes during the start-up period were studied by culture-independent quinone profiling and denatured gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA. In all the reactors, ubiquinones predominated during phase I, whereas partially saturated menaquinones became predominant during phase II. This suggested that there was a drastic population shift from ubiquinone-containing Proteobacteria to Actinobacteria during the start-up period. The DGGE analysis of the bacterial community in one of the reactors also demonstrated a drastic population shift during phase I and the predominance of members of the phyla Proteobacteria and Bacteroidetes during the overall period. But this molecular analysis failed to detect actinobacterial clones from the reactor at any stage.

  15. Culture Independent Geochemical Tools for Adressing Microbial Activity

    NASA Astrophysics Data System (ADS)

    Lomstein, B. A.; Langerhuus, A. T.; Jørgensen, B. B.; Alperin, M. J.

    2014-12-01

    Decades of ocean drilling have demonstrated wide-spread microbial life in deep sub-seafloor sediment, and surprisingly high numbers of microbial cells and endospores. Despite the ubiquity of life in the deep biosphere, the large community sizes are not yet understood given the extremely low energy fluxes. We have developed and applied new approaches to the deep sub-seafloor to quantify distributions and turnover times of living microbial biomass, endospores and microbial necromass. The approach combines sensitive analyses of unique bacterial marker molecules (muramic acid and d-amino acids) and the bacterial endospore marker (dipicolinic acid) with a series of models that link microscopic (e.g., racemization dynamics of stereo-isomeric amino acids) and macroscopic (e.g., porewater geochemistry) properties. Model output includes production rates and turnover times of microbial biomass and necromass, concentration profiles of reactive organic carbon, and rates of organic carbon decomposition. In combination, these results allow us to assess the role of microbial activity in the sub-seafloor carbon budget. One key result is that the turnover time of biomass is far longer than turnover times found in cultures and active surface sediments.

  16. Microbial dynamics of commercial makgeolli depending on the storage temperature.

    PubMed

    Kim, Hye-Ryun; Lee, Ae Ran; Kim, Jae-Ho; Ahn, Byung-Hak

    2012-08-01

    Market fresh makgeolli was stored at different temperatures of 4°C and 25°C to assess the change of the microbial diversity according to the storage temperature and period. Yeast counts increased until day 3 of storage and decreased thereafter. General and lactic acid bacterial counts continuously increased during storage. The data indicated that the control of growth of microorganisms, particularly general bacteria and lactic acid bacteria (LAB), is essential. Total acid levels started to decrease in the makgeolli stored at 4°C, and increased from day 6 of storage in the makgeolli stored at 25°C. The increase of total acid in the non-refrigerated condition greatly affected the quality of makgeolli. In both the fresh makgeolli samples stored at 4°C and 25°C, yeast (Saccharomyces cerevisiae) and molds (Aspergillus tubingensis, Candida glaebosa, and Aspergillus niger) were noted. Denaturing gradient gel electrophoresis (DGGE) band patterns were almost constant regardless of the storage period. As for bacteria, Lactobacillus crustorum, L. brevis, and Microlaena stipoides were found in the makgeolli stored at 4°C, and L. crustorum, Lactobacillus sp., L. plantarum, L. brevis, L. rhamnosus, and L. similis were found in the makgeolli stored at 25°C. In particular, in the makgeolli stored at 25°C, L. crustorum and L. plantarum presented dark bands and were identified as the primary microorganisms that affected spoilage of fresh makgeolli.

  17. Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques.

    PubMed

    Auld, Ryan R; Myre, Maxine; Mykytczuk, Nadia C S; Leduc, Leo G; Merritt, Thomas J S

    2013-05-01

    We characterized the bacterial community from an AMD tailings pond using both classical culturing and modern direct sequencing techniques and compared the two methods. Acid mine drainage (AMD) is produced by the environmental and microbial oxidation of minerals dissolved from mining waste. Surprisingly, we know little about the microbial communities associated with AMD, despite the fundamental ecological roles of these organisms and large-scale economic impact of these waste sites. AMD microbial communities have classically been characterized by laboratory culturing-based techniques and more recently by direct sequencing of marker gene sequences, primarily the 16S rRNA gene. In our comparison of the techniques, we find that their results are complementary, overall indicating very similar community structure with similar dominant species, but with each method identifying some species that were missed by the other. We were able to culture the majority of species that our direct sequencing results indicated were present, primarily species within the Acidithiobacillus and Acidiphilium genera, although estimates of relative species abundance were only obtained from direct sequencing. Interestingly, our culture-based methods recovered four species that had been overlooked from our sequencing results because of the rarity of the marker gene sequences, likely members of the rare biosphere. Further, direct sequencing indicated that a single genus, completely missed in our culture-based study, Legionella, was a dominant member of the microbial community. Our results suggest that while either method does a reasonable job of identifying the dominant members of the AMD microbial community, together the methods combine to give a more complete picture of the true diversity of this environment.

  18. Enhanced microbial coalbed methane generation: A review of research, commercial activity, and remaining challenges

    USGS Publications Warehouse

    Ritter, Daniel J.; Vinson, David S.; Barnhart, Elliott P.; Akob, Denise M.; Fields, Matthew W.; Cunningham, Al B.; Orem, William H.; McIntosh, Jennifer C.

    2015-01-01

    Coalbed methane (CBM) makes up a significant portion of the world’s natural gas resources. The discovery that approximately 20% of natural gas is microbial in origin has led to interest in microbially enhanced CBM (MECoM), which involves stimulating microorganisms to produce additional CBM from existing production wells. This paper reviews current laboratory and field research on understanding processes and reservoir conditions which are essential for microbial CBM generation, the progress of efforts to stimulate microbial methane generation in coal beds, and key remaining knowledge gaps. Research has been primarily focused on identifying microbial communities present in areas of CBM generation and attempting to determine their function, in-situ reservoir conditions that are most favorable for microbial CBM generation, and geochemical indicators of metabolic pathways of methanogenesis (i.e., acetoclastic or hydrogenotrophic methanogenesis). Meanwhile, researchers at universities, government agencies, and companies have focused on four primary MECoM strategies: 1) microbial stimulation (i.e., addition of nutrients to stimulate native microbes); 2) microbial augmentation (i.e., addition of microbes not native to or abundant in the reservoir of interest); 3) physically increasing microbial access to coal and distribution of amendments; and 4) chemically increasing the bioavailability of coal organics. Most companies interested in MECoM have pursued microbial stimulation: Luca Technologies, Inc., successfully completed a pilot scale field test of their stimulation strategy, while two others, Ciris Energy and Next Fuel, Inc., have undertaken smaller scale field tests. Several key knowledge gaps remain that need to be addressed before MECoM strategies can be implemented commercially. Little is known about the bacterial community responsible for coal biodegradation and how these microorganisms may be stimulated to enhance microbial methanogenesis. In addition, research

  19. 7 CFR 504.2 - Fees for deposit and requisition of microbial cultures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Fees for deposit and requisition of microbial cultures... cultures. (a) Depositors of microbial cultures must pay a one-time $500 user fee for each culture deposited on or after November 1, 1983. (b) For cultures deposited on or after November 1, 1983,...

  20. 7 CFR 504.2 - Fees for deposit and requisition of microbial cultures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Fees for deposit and requisition of microbial cultures... cultures. (a) Depositors of microbial cultures must pay a one-time $500 user fee for each culture deposited on or after November 1, 1983. (b) For cultures deposited on or after November 1, 1983,...

  1. 7 CFR 504.2 - Fees for deposit and requisition of microbial cultures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Fees for deposit and requisition of microbial cultures... cultures. (a) Depositors of microbial cultures must pay a one-time $500 user fee for each culture deposited on or after November 1, 1983. (b) For cultures deposited on or after November 1, 1983,...

  2. 7 CFR 504.2 - Fees for deposit and requisition of microbial cultures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Fees for deposit and requisition of microbial cultures... cultures. (a) Depositors of microbial cultures must pay a one-time $500 user fee for each culture deposited on or after November 1, 1983. (b) For cultures deposited on or after November 1, 1983,...

  3. 7 CFR 504.2 - Fees for deposit and requisition of microbial cultures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Fees for deposit and requisition of microbial cultures... cultures. (a) Depositors of microbial cultures must pay a one-time $500 user fee for each culture deposited on or after November 1, 1983. (b) For cultures deposited on or after November 1, 1983,...

  4. Monitoring microbial populations on wide-body commercial passenger aircraft.

    PubMed

    McKernan, Lauralynn Taylor; Wallingford, Kenneth M; Hein, Misty J; Burge, Harriet; Rogers, Christine A; Herrick, Robert

    2008-03-01

    Although exposure to bacteria has been assessed in cabin air previously, minimal numbers of samples have been collected in-flight. The purpose of this research was to comprehensively characterize bacterial concentrations in the aircraft cabin. Twelve randomly selected flights were sampled on Boeing-767 aircraft, each with a flight duration between 4.5 and 6.5 h. N-6 impactors were used to collect sequential, triplicate air samples in the front and rear of coach class during six sampling intervals throughout each flight: boarding, mid-climb, early cruise, mid-cruise, late cruise and deplaning. Comparison air samples were also collected inside and outside the airport terminals at the origin and destination cities. The MIXED procedure in SAS was used to model the mean and the covariance matrix of the natural log-transformed bacterial concentrations. A total of 513 airborne culturable bacterial samples were collected. During flight (mid-climb and cruise intervals), a model-adjusted geometric mean (GM) of 136 total colony-forming units per cubic meter of air sampled (CFU x m(-3)) and geometric standard deviation of 2.1 were observed. Bacterial concentrations were highest during the boarding (GM 290 CFU x m(-3)) and deplaning (GM 549 CFU x m(-3)) processes. Total bacterial concentrations observed during flight were significantly lower than GMs for boarding and deplaning (P values <0.0001-0.021) in the modeled results. Our findings highlight the fact that aerobiological concentrations can be dynamic and underscore the importance of appropriate sample size and design. The genera analysis indicates that passenger activity and high occupant density contribute to airborne bacterial generation. Overall, our research demonstrates that the bacteria recovered on observed flights were either common skin-surface organisms (primarily gram-positive cocci) or organisms common in dust and outdoor air.

  5. Petroleum storage tank cleaning using commercial microbial culture products

    SciTech Connect

    Schneider, D.R.; Entzeroth, L.C.; Timmis, A.; Whiteside, A.; Hoskins, B.C.

    1995-12-31

    The removal of paraffinic bottom accumulations from refinery storage tanks represents an increasingly costly area of petroleum storage management. Microorganisms can be used to reduce paraffinic bottoms by increasing the solubility of bottom material and by increasing the wax-carrying capacity of carrier oil used in the cleaning process. The economic savings of such treatments are considerable. The process is also intrinsically safer than alternative methods, as it reduces and even eliminates the need for personnel to enter the tank during the cleaning process. Both laboratory and field sample analyses can be used to document changes in tank material during the treatment process. These changes include increases in volatile content and changes in wax distribution. Several case histories illustrating these physical and chemical changes are presented along with the economics of treatment.

  6. Application of good laboratory practice (GLP) to culture collections of microbial and cell cultures.

    PubMed

    Stevenson, R E; Jong, S C

    1992-05-01

    Although the principles and the necessity for good laboratory practice (GLP) guidelines to confirm the credibility, integrity, and quality of non-clinical laboratory studies have been known for more than a decade, culture collection activities are not subject to them. Because of recent advances in biotechnology, culture collections face increased demands not only for quality cultures but also current information. When applied in culture collections, GLP guidelines prove to be an excellent management tool as well as a cost-effective system of providing authentic and reliable microbial and cell cultures and associated data.

  7. Absence of microbial mineralization of lignin in anaerobic enrichment cultures.

    PubMed Central

    Odier, E; Monties, B

    1983-01-01

    The existence of anaerobic biodegradation of lignin was examined in mixed microflora. Egyptian soil samples, in which rapid mineralization of organic matter takes place in the presence of an important anaerobic microflora, were used to obtain the anaerobic enrichment cultures for this study. Specifically, 14CO2 or [14C]lignin wood was used to investigate the release of labeled gaseous or soluble degradation products of lignin in microbial cultures. No conversion of 14C-labeled lignin to 14CO2 or 14CH4 was observed after 6 months of incubation at 30 degrees C in anaerobic conditions with or without NO3-. A small increase in soluble radioactivity was observed in certain cultures, but it could not be related to the release of catabolic products during the anaerobic biodegradation of lignin. PMID:6639020

  8. Controlled clinical comparison of three commercial blood culture systems.

    PubMed

    Frank, U; Malkotsis, D; Mlangeni, D; Daschner, F D

    1999-04-01

    In a controlled clinical comparison, three commercial blood culture systems--the standard aerobic BacT/Alert bottle (STD), the aerobic BacT/Alert FAN bottle (FAN) and the Isolator system (ISO; Wampole Laboratories, USA) were compared for their ability to detect aerobic and facultatively anaerobic microorganisms. A total of 945 BacT/Alert (STD and FAN) blood culture sets were compared. Of these, 110 blood culture sets (11.6%) yielded growth of 116 clinically significant bacterial and fungal isolates. Microorganisms were recovered from 10.7% (101/945) of the FAN bottles compared to 8.9% (84/945) of the STD bottles. Of the significant isolates, 78 (67.2%) were recovered by both bottles, 29 (25%) by the FAN bottle only and nine (7.8%) by the STD bottle only (P<0.01). Along with 56.1% (530/945) of BacT/Alert blood culture sets, a concomitant ISO tube was obtained. Of the triple (STD + FAN + ISO) blood culture sets, 54 (10.2%) yielded growth of 59 clinically relevant isolates. Microorganisms were detected in 9.1% (48/530) of the FAN bottles, 8.3% (44/530) of the STD bottles and 4% (21/530) of the ISO tubes (P<0.001). Overall, the BacT/Alert system detected more clinically significant microorganisms than the ISO tube; the STD and the FAN bottle each recovered significantly more staphylococci (P<0.01 and P<0.001, respectively) and gram-negative rods (P<0.01, both). In conclusion, the BacT/Alert FAN bottle performed better than the BacT/Alert STD bottle; both BacT/Alert bottles, however, were superior to the ISO tube in terms of recovery of clinically significant microorganisms, including gram-positive and gram-negative bacteria.

  9. Culturability as an indicator of succession in microbial communities

    NASA Technical Reports Server (NTRS)

    Garland, J. L.; Cook, K. L.; Adams, J. L.; Kerkhof, L.

    2001-01-01

    Successional theory predicts that opportunistic species with high investment of energy in reproduction and wide niche width will be replaced by equilibrium species with relatively higher investment of energy in maintenance and narrower niche width as communities develop. Since the ability to rapidly grow into a detectable colony on nonselective agar medium could be considered as characteristic of opportunistic types of bacteria, the percentage of culturable cells may be an indicator of successional state in microbial communities. The ratios of culturable cells (colony forming units on R2A agar) to total cells (acridine orange direct microscopic counts) and culturable cells to active cells (reduction of 5-cyano-2,3-ditolyl tetrazolium chloride) were measured over time in two types of laboratory microcosms (the rhizosphere of hydroponically grown wheat and aerobic, continuously stirred tank reactors containing plant biomass) to determine the effectiveness of culturabilty as an index of successional state. The culturable cell:total cell ratio in the rhizosphere decreased from approximately 0.25 to less than 0.05 during the first 30-50 days of plant growth, and from 0.65 to 0.14 during the first 7 days of operation of the bioreactor. The culturable cell:active cell ratio followed similar trends, but the values were consistently greater than the culturable cell:total cell ratio, and even exceeded I in early samples. Follow-up studies used a cultivation-independent method, terminal restriction fragment length polymorphisms (TRFLP) from whole community DNA, to assess community structure. The number of TRFLP peaks increased with time, while the number of culturable types did not, indicating that the general decrease in culturability is associated with a shift in community structure. The ratio of respired to assimilated C-14-labeled amino acids increased with the age of rhizosphere communities, supporting the hypothesis that a shift in resource allocation from growth to

  10. Microbial profiles of commercial, vacuum-packaged, fresh pork of normal or short storage life.

    PubMed

    Holley, Richard A; Peirson, Michael D; Lam, Jocelyn; Tan, Kit Bee

    2004-12-01

    The microbial ecology of fresh vacuum-packed pork cuts during storage at -1.5 degrees C for up to 45 days was examined to characterize rates of microbial growth and pH changes in commercially prepared products of normal storage quality. Pork loins in commercial distribution with odour defects were also studied to determine a possible cause of the defects and avoid future problems. In addition, microbial profiles of pork cuts from two plants were compared, after storage for 25 days at -1.5 degrees C, to identify possible reasons for differences in the storage life of product from the plants. The effects of a change in sanitation procedures on the microbial populations of products stored for 25 days were also studied. With normal product, microbial growth in different packages progressed at different rates, reflecting differences in initial levels of bacterial contamination. All samples in the study reached 8 weeks without apparent organoleptic change and samples carried 5.8+/-1.2 log bacteria cm(-2) (mean+/-S.D.). The flora of loins with the odour defect were predominately lactic acid bacteria (LAB) and carnobacteria, but they contained large fractions of Enterobacteriaceae <35 days after packaging. Aeromonas spp. and Shewanella spp. were likely responsible for the sulfide-putrid smell of these spoiled products, but species of Enterobacteriaceae and lactic acid bacteria could have contributed to spoilage. Comparison of microbial groups present in 16 other cuts, half from each of two commercial plants, which were stored for 25 days at -1.5 degrees C, showed that larger fractions of Enterobacteriaceae were present in samples from the plant having difficulty achieving the desired storage life. Additional bacterial samples from 12 cuts supplied by the latter plant obtained after adoption of an acid sanitizer step in the plant cleaning regimen, and also stored for 25 days at -1.5 degrees C, yielded few Enterobacteriaceae, Aeromonas or Shewanella. Use of an acid sanitizer

  11. Culture-independent methods for identifying microbial communities in cheese.

    PubMed

    Jany, Jean-Luc; Barbier, Georges

    2008-10-01

    This review focuses on the culture-independent methods available for the description of both bacterial and fungal communities in cheese. Important steps of the culture-independent strategy, which relies on bulk DNA extraction from cheese and polymerase chain reaction (PCR) amplification of selected sequences, are discussed. We critically evaluate the identification techniques already used for monitoring microbial communities in cheese, including PCR-denaturing gradient gel electrophoresis (PCR-DGGE), PCR-temporal temperature gradient gel electrophoresis (PCR-TTGE) or single-strand conformation polymorphism-PCR (SSCP-PCR) as well as some other techniques that remain to be adapted to the study of cheese communities. Further, our analysis draws attention to the lack of data available on suitable DNA sequences for identifying fungal communities in cheese and proposes some potential DNA targets.

  12. Soluble microbial products and their implications in mixed culture biotechnology.

    PubMed

    Ni, Bing-Jie; Rittmann, Bruce E; Yu, Han-Qing

    2011-09-01

    Soluble microbial products (SMP) are soluble organic compounds released during normal biomass metabolism in mixed culture biotechnology. In this review, we give the up-to-date status on several essential SMP issues: mechanisms of SMP formation, differentiation between utilization-associated products (UAP) and biomass-associated products (BAP), biodegradability of the SMP components, how formation of SMP by autotrophs controls effluent quality and supports a substantial population of heterotrophs, mathematical modeling that includes SMP, and improving effluent quality by controlling SMP. We also present two timely examples that highlight our current understanding and give an indication of how SMP affects the performance of modern mixed culture biotechnology: membrane fouling of membrane bioreactors (MBRs) and the dynamics of SMP in anaerobic systems.

  13. Bioaugmentation treatment of PV wafer manufacturing wastewater by microbial culture.

    PubMed

    Zhu, Xiaohua; Chen, Maoxia; He, Xin; Xiao, Zili; Zhou, Houzhen; Tan, Zhouliang

    2015-01-01

    The wastewater of silicon photovoltaic (PV) battery manufacturing contained polyethylene glycol (PEG) and detergents, which possessed the characteristics of high content of organics and low bioavailability, and then resulted in high treatment costs. To address the difficulties of existing treatment facilities in stably meeting discharge standards, eight tons of microbial culture (consisting of Bacillus sp. and Rhodococcus sp.) were added into the aerobic treatment unit. Subsequently, the effectiveness of the microbial culture in small-scale biological wastewater treatment was evaluated, and the operating conditions for engineering applications were optimized. The application study showed that the average chemical oxygen demand (COD) removal efficiency reached 95.0% when the pH value was 7, the gas-water ratio was 28:1, the reflux ratio was 50%, which indicated an increase of 51.2% contrasting with the situation without bioaugmentation. The volume load of the treatment facilities after augmentation increased by 127.9% and could tolerate the COD shock load reached 2,340 mg·L(-1). At last, the effluence met the class I standard of the Integrated Wastewater Discharge Standard (GB8978-1996).

  14. Microbial Diversity of a Camembert-Type Cheese Using Freeze-Dried Tibetan Kefir Coculture as Starter Culture by Culture-Dependent and Culture-Independent Methods

    PubMed Central

    Mei, Jun; Guo, Qizhen; Wu, Yan; Li, Yunfei

    2014-01-01

    The biochemical changes occurring during cheese ripening are directly and indirectly dependent on the microbial associations of starter cultures. Freeze-dried Tibetan kefir coculture was used as a starter culture in the Camembert-type cheese production for the first time. Therefore, it's necessary to elucidate the stability, organization and identification of the dominant microbiota presented in the cheese. Bacteria and yeasts were subjected to culture-dependent on selective media and culture-independent polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) analysis and sequencing of dominant bands to assess the microbial structure and dynamics through ripening. In further studies, kefir grains were observed using scanning electron microscopy (SEM) methods. A total of 147 bacteria and 129 yeasts were obtained from the cheese during ripening. Lactobacillus paracasei represents the most commonly identified lactic acid bacteria isolates, with 59 of a total of 147 isolates, followed by Lactococcus lactis (29 isolates). Meanwhile, Kazachstania servazzii (51 isolates) represented the mainly identified yeast isolate, followed by Saccharomyces cerevisiae (40 isolates). However, some lactic acid bacteria detected by sequence analysis of DGGE bands were not recovered by plating. The yeast S. cerevisiae and K. servazzii are described for the first time with kefir starter culture. SEM showed that the microbiota were dominated by a variety of lactobacilli (long and curved) cells growing in close association with a few yeasts in the inner portion of the grain and the short lactobacilli were observed along with yeast cells on the exterior portion. Results indicated that conventional culture method and PCR-DGGE should be combined to describe in maximal detail the microbiological composition in the cheese during ripening. The data could help in the selection of appropriate commercial starters for Camembert-type cheese. PMID:25360757

  15. Microbial diversity of a Camembert-type cheese using freeze-dried Tibetan kefir coculture as starter culture by culture-dependent and culture-independent methods.

    PubMed

    Mei, Jun; Guo, Qizhen; Wu, Yan; Li, Yunfei

    2014-01-01

    The biochemical changes occurring during cheese ripening are directly and indirectly dependent on the microbial associations of starter cultures. Freeze-dried Tibetan kefir coculture was used as a starter culture in the Camembert-type cheese production for the first time. Therefore, it's necessary to elucidate the stability, organization and identification of the dominant microbiota presented in the cheese. Bacteria and yeasts were subjected to culture-dependent on selective media and culture-independent polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) analysis and sequencing of dominant bands to assess the microbial structure and dynamics through ripening. In further studies, kefir grains were observed using scanning electron microscopy (SEM) methods. A total of 147 bacteria and 129 yeasts were obtained from the cheese during ripening. Lactobacillus paracasei represents the most commonly identified lactic acid bacteria isolates, with 59 of a total of 147 isolates, followed by Lactococcus lactis (29 isolates). Meanwhile, Kazachstania servazzii (51 isolates) represented the mainly identified yeast isolate, followed by Saccharomyces cerevisiae (40 isolates). However, some lactic acid bacteria detected by sequence analysis of DGGE bands were not recovered by plating. The yeast S. cerevisiae and K. servazzii are described for the first time with kefir starter culture. SEM showed that the microbiota were dominated by a variety of lactobacilli (long and curved) cells growing in close association with a few yeasts in the inner portion of the grain and the short lactobacilli were observed along with yeast cells on the exterior portion. Results indicated that conventional culture method and PCR-DGGE should be combined to describe in maximal detail the microbiological composition in the cheese during ripening. The data could help in the selection of appropriate commercial starters for Camembert-type cheese.

  16. Phenotypic plasticity in heterotrophic marine microbial communities in continuous cultures

    PubMed Central

    Beier, Sara; Rivers, Adam R; Moran, Mary Ann; Obernosterer, Ingrid

    2015-01-01

    Phenotypic plasticity (PP) is the development of alternate phenotypes of a given taxon as an adaptation to environmental conditions. Methodological limitations have restricted the quantification of PP to the measurement of a few traits in single organisms. We used metatranscriptomic libraries to overcome these challenges and estimate PP using the expressed genes of multiple heterotrophic organisms as a proxy for traits in a microbial community. The metatranscriptomes captured the expression response of natural marine bacterial communities grown on differing carbon resource regimes in continuous cultures. We found that taxa with different magnitudes of PP coexisted in the same cultures, and that members of the order Rhodobacterales had the highest levels of PP. In agreement with previous studies, our results suggest that continuous culturing may have specifically selected for taxa featuring a rather high range of PP. On average, PP and abundance changes within a taxon contributed equally to the organism's change in functional gene abundance, implying that both PP and abundance mediated observed differences in community function. However, not all functional changes due to PP were directly reflected in the bulk community functional response: gene expression changes in individual taxa due to PP were partly masked by counterbalanced expression of the same gene in other taxa. This observation demonstrates that PP had a stabilizing effect on a community's functional response to environmental change. PMID:25397947

  17. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy

    PubMed Central

    Mlynáriková, Katarína; Samek, Ota; Bernatová, Silvie; Růžička, Filip; Ježek, Jan; Hároniková, Andrea; Šiler, Martin; Zemánek, Pavel; Holá, Veronika

    2015-01-01

    Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar. PMID:26610516

  18. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy.

    PubMed

    Mlynáriková, Katarína; Samek, Ota; Bernatová, Silvie; Růžička, Filip; Ježek, Jan; Hároniková, Andrea; Šiler, Martin; Zemánek, Pavel; Holá, Veronika

    2015-11-24

    Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.

  19. Altered biologic activities of commercial polychlorinated biphenyl mixtures after microbial reductive dechlorination.

    PubMed Central

    Mousa, M A; Ganey, P E; Quensen, J F; Madhukar, B V; Chou, K; Giesy, J P; Fischer, L J; Boyd, S A

    1998-01-01

    The reductive dechlorination of polychlorinated biphenyls (PCBs) by anaerobic bacteria has recently been established as an important environmental fate of these compounds. This process removes chlorines directly from the biphenyl ring with replacement by hydrogen, resulting in a product mixture in which the average number of chlorines per biphenyl is reduced. In this study, dechlorination of commercial PCB mixtures (Aroclors 1242 and 1254) by microorganisms eluted from PCB-contaminated sediments of the River Raisin (Michigan) and Silver Lake (Massachusetts) caused a depletion in the proportion of highly chlorinated PCB congeners and an accumulation of lesser-chlorinated congeners. Dechlorination occurred primarily at the meta and, to a much lesser extent, para positions of biphenyl. The concentrations of the coplanar congeners including 3,3',4,4',5-pentachlorobiphenyl, the most potent dioxinlike congener, were significantly lowered by reductive dechlorination. Microbial reductive dechlorination of commercial PCB mixtures caused a substantial reduction in biologic activities in several instances. It significantly lowered or eliminated the inhibitory effects of Aroclors on fertilization of mouse gametes in vitro. Similarly, the dechlorinated product mixtures had substantially lower ethoxyresorufin-O-deethylase induction potencies and showed less ability to induce activating protein 1 transcription factor activity as compared to the unaltered Aroclors. In other assays the same dechlorinated product mixtures demonstrated biologic activities similar to the nondechlorinated Aroclors, including the ability of PCB mixtures to stimulate insulin secretion and cause neutrophil activation. The data presented here establish that the biologic activities of commercial PCB mixtures are altered by microbial reductive dechlorination and that an assessment of their toxic potential requires an array of tests that include the different mechanisms associated with PCBs. Images Figure 2

  20. The Commercial Revitalization of Southern Appalachian Culture: Some Implications.

    ERIC Educational Resources Information Center

    Vossler, Kathryn B.

    The paper examines the varied cultures of Appalachia in terms of the cultural images currently being projected by tourist and land development advertisers in the area. Because these industries have not clearly defined the culture they are trying to sell, they promote conflicting public images and thereby violate the ethnic and cultural heritage of…

  1. Microbial Diversity within Early-Stage Cultured Panulirus ornatus Phyllosomas▿

    PubMed Central

    Payne, Matthew S.; Hall, Mike R.; Sly, Lindsay; Bourne, David G.

    2007-01-01

    A thorough understanding of the microorganisms and pathogens associated with the larval stage of the tropical ornate rock lobster, Panulirus ornatus, is required to overcome disease outbreaks that currently block aquaculture attempts. This study used microscopy in addition to culture and molecularly based microbiological techniques to characterize the bacterial community associated with cultured, developmental stage PI to PII P. ornatus phyllosomas. Scanning electron microscopy demonstrated colonization of phyllosomas by filamentous, rod-shaped, and coccus-shaped bacteria. A clone library constructed from dead phyllosomas sampled from the larval rearing tank on day 10 was dominated by Thiothrix-affiliated sequences (56% of clones). A comparable library from live phyllosomas also contained Thiothrix-affiliated sequences, though these only represented 19% of clones within the library. Fluorescent in situ hybridization (FISH) confirmed identification of the filamentous bacteria as Thiothrix sp., being present on dead phyllosomas. FISH also identified Leucothrix sp. and Vibrio sp., as well as a range of other rod- and coccus-shaped bacteria, colonizing both live and dead phyllosomas. The development of the microbial community associated with phyllosomas was monitored through a standard larval rearing run using denaturing gradient gel electrophoresis (DGGE). Vibrio sp.-affiliated bands dominated the profiles of live animals through the rearing period and dead phyllosomas sampled on selected days. The population of Vibrio sp. associated with phyllosomas was monitored with culture-based analysis on selective media and demonstrated to increase significantly on day 7, coinciding with the beginning of the larval molt. An isolated Vibrio harveyi strain demonstrated an identical 16S rRNA sequence with retrieved DGGE and clone library sequences. Colonization of phyllosomas with filamentous bacterial species potentially hinders the ability of the animals to molt and, combined

  2. Yeasts and hygienic-sanitary microbial indicators in water buffalo mozzarella produced and commercialized in Minas Gerais, Brazil

    PubMed Central

    Facchin, Susanne; Barbosa, Anne C.; Carmo, Luiz S.; Silva, Maria Crisolita C.; Oliveira, Afonso L.; Morais, Paula B.; Rosa, Carlos A.

    2013-01-01

    The aim of this work was to study the yeast populations and the main hygienic-sanitary microbial indicators in water buffalo mozzarella produced and commercialized in Minas Gerais, Brazil. Forty-two water buffalo mozzarella samples were purchased from retail outlets in Belo Horizonte. In addition, five samples of consecutive starter cultures, curd before acidification, acidified curd and mozzarella were collected at an industry in the city of Oliveira. Only three of the five water samples analyzed were suitable for consumption according to Brazilian sanitary standards. Four milk samples were highly contaminated with fecal coliforms, and did not meet the minimal hygienic-sanitary standards according to Brazilian regulations. Only one sample of buffalo muzzarela purchased from retail outlets exceeded the limit for coagulase-positive Staphylococcus. Eleven samples showed counts of thermotolerant coliforms higher than 5 × 103 CFU.g−1, but still lower than the maximum permitted by the Brazilian laws. Salmonella spp. and Listeria monocytogenes were not isolated. Debaryomyces hansenii, Candida lusitaniae and C. parapsilosis were the prevalent yeast species isolated from cheese. Among samples from the production stages, the acidified curd presented the highest numbers of yeasts, with C. catenulata being the most frequent species isolated. Some opportunistic yeast species such as C. guilliermondii, C. tropicalis, C. parapsilosis, C. lusitaniae, C. catenulata, C. rugosa and C. krusei occurred in the mozzarella cheese samples analyzed. The mozzarella cheese presented a low microbial load as compared to other cheese already studied, and the yeast biota included species typical of cheese and also opportunistic pathogens. PMID:24516436

  3. Commercial materials as cathode for hydrogen production in microbial electrolysis cell.

    PubMed

    Farhangi, Sara; Ebrahimi, Sirous; Niasar, Mojtaba Shariati

    2014-10-01

    The use of commercial electrodes as cathodes in a single-chamber microbial electrolysis cell has been investigated. The cell was operated in sequencing batch mode and the performance of the electrodes was compared with carbon cloth containing 0.5 mg Pt cm(-2). Overall H2 recovery [Formula: see text] was 66.7 ± 1.4, 58.7 ± 1.1 and 55.5 ± 1.5 % for Pt/CC, Ni and Ti mesh electrodes, respectively. Columbic efficiencies of the three cathodes were in the same range (74.8 ± 1.5, 77.6 ± 1.7 and 75.7 ± 1.2 % for Pt/CC, Ni and Ti mesh electrodes, respectively). A similar performance for the three cathodes under near-neutral pH and ambient temperature was obtained. The commercial electrodes are much cheaper than carbon cloth containing Pt. Low cost and good performance of these electrodes suggest they are suitable cathode materials for large scale application.

  4. Reconstituted yogurt from yogurt cultured milk powder mix has better overall characteristics than reconstituted yogurt from commercial yogurt powder.

    PubMed

    Song, Lijie; Aryana, Kayanush J

    2014-10-01

    For manufacture of commercial yogurt powder, yogurt has to go through a drying process, which substantially lowers the yogurt culture counts, so the potential health benefits of the yogurt culture bacteria are reduced. Also, upon reconstitution, commercial yogurt powder does not taste like yogurt and has an off-flavor. The objective was to study the microbial, physicochemical, and sensory characteristics of reconstituted yogurt from yogurt cultured milk powder (YCMP) mix and reconstituted yogurt from commercial yogurt powder (CYP). The CYP reconstituted yogurt was the control and YCMP mix reconstituted yogurt was the treatment. Microbial and physicochemical characteristics of the CYP reconstituted yogurt and YCMP mix reconstituted yogurt were analyzed daily for the first week and then weekly for a period of 8 wk. Sensory consumer testing of CYP reconstituted yogurt and YCMP mix reconstituted yogurt was conducted with 100 consumers. At 56 d, YCMP mix reconstituted yogurt had 5 log cfu/mL higher counts of Streptococcus thermophilus than the control (CYP reconstituted yogurt). Also, Lactobacillus bulgaricus counts of YCMP mix reconstituted yogurt were 6.55 log cfu/mL at 28 d and were 5.35 log cfu/mL at 56 d, whereas the CYP reconstituted yogurt from 28 d onwards had a count of <10 cfu/mL. The YCMP mix reconstituted yogurt also had significantly higher apparent viscosity and sensory scores for appearance, color, aroma, taste, thickness, overall liking, consumer acceptability, and purchase intent than CYP reconstituted yogurt. Overall, YCMP mix reconstituted yogurt had more desirable characteristics than CYP reconstituted yogurt.

  5. Short communication: Microbial quality of raw milk following commercial long-distance hauling.

    PubMed

    Darchuk, Emily M; Meunier-Goddik, Lisbeth; Waite-Cusic, Joy

    2015-12-01

    Hauling is a critical part of the commercial milk supply chain, yet very few studies have aimed to understand its effect on raw milk quality. This study focused on the effect of extended-duration tanker use during hauling on raw milk quality at a commercial facility. Standard tanker use [cleaned-in-place (CIP) once per 24h] served as a control and an incremental between-load water rinse with sanitizer treatment (RS) was evaluated to mitigate any effect from extended duration hauling. During this study, 1 commercial truck with 2 trailers was monitored for 10d. The truck collected milk at a large dairy farm, transported the milk to a manufacturing facility, and then returned to the same farm for a second load. Each round-trip journey took between 10 and 12h, allowing for 2 loads per 24-h use period. Following the second delivery, the truck was cleaned by CIP treatment starting a new treatment day. Producer samples were collected from the raw milk bulk tank on the farm before loading milk into the tanker. The same milk was sampled directly out of the tanker truck before unloading at the manufacturer. Effect on individual bacteria count, thermophilic spore count, and preliminary incubation count was quantified through common industry tests. Surface sponge swabs were also used to monitor tanker sanitation and the efficacy of cleaning treatments. Results did not identify a negative effect on raw milk quality due to extended duration hauling. Whereas the addition of RS did not provide any measurable quality benefits for the microbial milk quality, swab results demonstrated that the RS treatment was able to reduce surface bacteria in the tanker, although not to the same level as the full CIP treatment. Based on this study, current CIP practices for long distance milk hauling appear to be effective in mitigating any measurable effect on raw milk quality.

  6. Turning Russian specialized microbial culture collections into resource centers for biotechnology.

    PubMed

    Ivshina, Irena B; Kuyukina, Maria S

    2013-11-01

    Specialized nonmedical microbial culture collections contain unique bioresources that could be useful for biotechnology companies. Cooperation between collections and companies has suffered from shortcomings in infrastructure and legislation, hindering access to holdings. These challenges may be overcome by the transformation of collections into national bioresource centers and integration into international microbial resource networks.

  7. Assessment of the microbial diversity at the surface of Livarot cheese using culture-dependent and independent approaches.

    PubMed

    Mounier, J; Monnet, C; Jacques, N; Antoinette, A; Irlinger, F

    2009-07-31

    The microbial diversity of the surface of a commercial red-smear cheese, Livarot cheese, sold on the retail market was studied using culture-dependent and independent approaches. Forty yeasts and 40 bacteria from the cheese surface were collected, dereplicated using single-strand conformation polymorphism (SSCP) analysis and identified using rRNA gene sequencing for the culture-dependent approach. The culture-independent approach involved cloning and sequencing of the 16S rRNA gene and SSCP analysis from total DNA extracted from the cheese. The most dominant bacteria were Microbacterium gubbeenense, Leucobacter komagatae and Gram-negative bacteria from the Gamma-Proteobacteria class. Fluorescence in situ hybridization (FISH) analysis was also used to study the cheese microbial diversity with class-level and specific rRNA-targeted probes for bacteria and yeasts, respectively. FISH analysis confirmed that Gamma-Proteobacteria were important microorganisms in this cheese. Four specific FISH probes targeting the dominant yeasts present in the cheese, Candida catenulata, Candida intermedia, Geotrichum spp. and Yarrowia lipolytica, were also designed and evaluated. These probes allowed the detection of these yeasts directly in cheese. The use of the rRNA gene-based approach combined with FISH analysis was useful to investigate the diversity of a surface microbial consortium from cheese.

  8. Biodeterioration of epoxy resin: a microbial survey through culture-independent and culture-dependent approaches.

    PubMed

    Pangallo, Domenico; Bučková, Maria; Kraková, Lucia; Puškárová, Andrea; Šaková, Nikoleta; Grivalský, Tomaš; Chovanová, Katarina; Zemánková, Milina

    2015-02-01

    During the 20th century, synthetic polymers were greatly used in the field of art. In particular, the epoxy resins were used for both conservation and for creating sculptures. The biodeterioration of these polymers has not been adequately studied. The aim of this investigation was to examine the microflora responsible for the deterioration of an epoxy statue exposed to outdoor conditions. Fungal and bacterial microflora were isolated from the art object, clustered by fluorescence-ITS (internal transcribed spacer), identified by ITS and 16S rRNA sequencing and tested for their lipolytic abilities by three agar assays. Different algal, bacterial, cyanobacterial and fungal clone libraries were constructed. The surrounding airborne microflora was analyzed using culture-dependent and culture-independent approaches. The results indicated the presence, on the statue surface, of an interesting and differentiate microbial community composed of rock-inhabiting members, algal photobionts (Trebouxia spp., Chloroidium ellipsoideum and Chlorella angustoellipsoidea), Cyanobacteria (Leptolyngbya sp., Phormidium sp., Cylindrospermum stagnale, Hassallia byssoidea and Geitlerinema sp.), black yeasts related to the species Friedmanniomyces endolithicus, Pseudotaeniolina globosa, Phaeococcomyces catenatus and Catenulostroma germanicum and several plant-associated fungi. This investigation provides new information on the potential microfloral inhabitants of epoxy resin discovering a new ecological niche, occupied mainly by several members of rock-colonizing microbial species.

  9. Culture-Independent Metagenomic Surveillance of Commercially Available Probiotics with High-Throughput Next-Generation Sequencing

    PubMed Central

    Patro, Jennifer N.; Ramachandran, Padmini; Barnaba, Tammy; Mammel, Mark K.; Lewis, Jada L.

    2016-01-01

    ABSTRACT Millions of people consume dietary supplements either following a doctor’s recommendation or at their own discretion to improve their overall health and well-being. This is a rapidly growing trend, with an associated and expanding manufacturing industry to meet the demand for new health-related products. In this study, we examined the contents and microbial viability of several popular probiotic products on the United States market. Culture-independent methods are proving ideal for fast and efficient analysis of foodborne pathogens and their associated microbial communities but may also be relevant for analyzing probiotics containing mixed microbial constituents. These products were subjected to next-generation whole-genome sequencing and analyzed by a custom in-house-developed k-mer counting method to validate manufacturer label information. In addition, the batch variability of respective products was examined to determine if any changes in their formulations and/or the manufacturing process occurred. Overall, the products we tested adhered to the ingredient claims and lot-to-lot differences were minimal. However, there were a few discrepancies in the naming of closely related Lactobacillus and Bifidobacterium species, whereas one product contained an apparent Enterococcus contaminant in two of its three lots. With the microbial contents of the products identified, we used traditional PCR and colony counting methods to comparatively assess our results and verify the viability of the microbes in these products with regard to the labeling claims. Of all the supplements examined, only one was found to be inaccurate in viability. Our use of next-generation sequencing as an analytical tool clearly demonstrated its utility for quickly analyzing commercially available products containing multiple microbes to ensure consumer safety. IMPORTANCE The rapidly growing supplement industry operates without a formal premarket approval process. Consumers rely on

  10. Culture-Independent Metagenomic Surveillance of Commercially Available Probiotics with High-Throughput Next-Generation Sequencing.

    PubMed

    Patro, Jennifer N; Ramachandran, Padmini; Barnaba, Tammy; Mammel, Mark K; Lewis, Jada L; Elkins, Christopher A

    2016-01-01

    Millions of people consume dietary supplements either following a doctor's recommendation or at their own discretion to improve their overall health and well-being. This is a rapidly growing trend, with an associated and expanding manufacturing industry to meet the demand for new health-related products. In this study, we examined the contents and microbial viability of several popular probiotic products on the United States market. Culture-independent methods are proving ideal for fast and efficient analysis of foodborne pathogens and their associated microbial communities but may also be relevant for analyzing probiotics containing mixed microbial constituents. These products were subjected to next-generation whole-genome sequencing and analyzed by a custom in-house-developed k-mer counting method to validate manufacturer label information. In addition, the batch variability of respective products was examined to determine if any changes in their formulations and/or the manufacturing process occurred. Overall, the products we tested adhered to the ingredient claims and lot-to-lot differences were minimal. However, there were a few discrepancies in the naming of closely related Lactobacillus and Bifidobacterium species, whereas one product contained an apparent Enterococcus contaminant in two of its three lots. With the microbial contents of the products identified, we used traditional PCR and colony counting methods to comparatively assess our results and verify the viability of the microbes in these products with regard to the labeling claims. Of all the supplements examined, only one was found to be inaccurate in viability. Our use of next-generation sequencing as an analytical tool clearly demonstrated its utility for quickly analyzing commercially available products containing multiple microbes to ensure consumer safety. IMPORTANCE The rapidly growing supplement industry operates without a formal premarket approval process. Consumers rely on product labels to

  11. Beyond Commercialization: Science, Higher Education and the Culture of Neoliberalism

    ERIC Educational Resources Information Center

    Kleinman, Daniel Lee; Feinstein, Noah Weeth; Downey, Greg

    2013-01-01

    Since the 1980s, scholars and others have been engaged in a lively debate about the virtues and dangers of mingling commerce with university science. In this paper, we contend that the commercialization of academic science, and higher education more broadly, are best understood as pieces of a larger story. We use two cases of institutional change…

  12. Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a South german red smear cheese.

    PubMed

    Goerges, Stefanie; Mounier, Jérôme; Rea, Mary C; Gelsomino, Roberto; Heise, Valeska; Beduhn, Rüdiger; Cogan, Timothy M; Vancanneyt, Marc; Scherer, Siegfried

    2008-04-01

    Production of smear-ripened cheese critically depends on the surface growth of multispecies microbial consortia comprising bacteria and yeasts. These microorganisms often originate from the cheese-making facility and, over many years, have developed into rather stable, dairy-specific associations. While commercial smear starters are frequently used, it is unclear to what degree these are able to establish successfully within the resident microbial consortia. Thus, the fate of the smear starters of a German Limburger cheese subjected to the "old-young" smearing technique was investigated during ripening. The cheese milk was supplemented with a commercial smear starter culture containing Debaryomyces hansenii, Galactomyces geotrichum, Arthrobacter arilaitensis, and Brevibacterium aurantiacum. Additionally, the cheese surface was inoculated with an extremely stable in-house microbial consortium. A total of 1,114 yeast and 1,201 bacterial isolates were identified and differentiated by Fourier transform infrared spectroscopy. Furthermore, mitochondrial DNA restriction fragment length polymorphism, random amplified polymorphic DNA, repetitive PCR, and pulsed field gel electrophoresis analyses were used to type selected isolates below the species level. The D. hansenii starter strain was primarily found early in the ripening process. The G. geotrichum starter strain in particular established itself after relocation to a new ripening room. Otherwise, it occurred at low frequencies. The bacterial smear starters could not be reisolated from the cheese surface at all. It is concluded that none of the smear starter strains were able to compete significantly and in a stable fashion against the resident microbial consortia, a result which might have been linked to the method of application. This finding raises the issue of whether addition of starter microorganisms during production of this type of cheese is actually necessary.

  13. Temporal and spatial assessment of microbial communities in commercial silages from bunker silos.

    PubMed

    Kraut-Cohen, J; Tripathi, V; Chen, Y; Gatica, J; Volchinski, V; Sela, S; Weinberg, Z; Cytryn, E

    2016-08-01

    Ensiling is a feed preservation method of moist forage crops that generally depends on naturally developing lactic acid bacteria to convert water-soluble carbohydrates into organic acids. While bacterial community dynamics have been previously assessed in bench-scale and pilot ensiling facilities, almost no studies have assessed the microbiomes of large-scale silage facilities. This study analyzed bacterial community composition in mature silage from bunker silos in three commercial production centers as related to pH, organic matter, volatile fatty acid composition, and spatial distribution within the ensiling bunker. It revealed significant physicochemical differences between "preserved" regions situated in the center and along the walls of the silage bunkers that were characterized by high concentrations of lactic acid and other volatiles and pH values below 5, and "spoiled" regions in the corners (shoulders) of the bunkers that had low lactic acid concentrations and high pH values. Preserved silage was dominated (>90 %) by lactic acid bacteria and characterized by high similarity and low taxonomic diversity, whereas spoiled silage had highly diverse microbiomes with low abundances of lactic acid bacteria (<5 %) that were sometimes characterized by high levels of Enterobacteriaceae. Spatial position had a much stronger impact on the microbial community composition than feedstock type, sampling date, or production center location supporting previous studies demonstrating that ecology and not geography is a major driver of environmental microbiomes.

  14. Evaluation of selected direct-fed microbial candidates on live performance and Salmonella reduction in commercial turkey brooding houses.

    PubMed

    Wolfenden, R E; Pumford, N R; Morgan, M J; Shivaramaiah, S; Wolfenden, A D; Pixley, C M; Green, J; Tellez, G; Hargis, B M

    2011-11-01

    As effective probiotic Bacillus isolates that can increase BW gain (BWG) are identified, they may offer advantages in terms of stability, cost, and feed application over probiotics limited to drinking water application. Additionally, an effective direct-fed microbial (DFM) may offer an effective alternative to antibiotic growth promoters. Previously, 4 Bacillus isolates were identified and evaluated in our laboratory as potential DFM candidates. These isolates were shown to significantly increase BWG as well as reduce recovery of Salmonella after experimental infection. In the first experiment, isolates PHL-MM65 (a Bacillus laterosporus) and PHL-NP122 (a Bacillus subtilis) were evaluated using poults raised under commercial conditions. After 7 d of conventional brooding, poults were tagged, weighed, and placed in 1 of 4 replicate pens for each treatment group [negative control, 0.019% nitarsone, PHL-MM65 (10(6) spores/g of feed), or PHL-NP122 (10(6) spores/g of feed)] within the commercial turkey barn. At 23 d, poults were weighed and BW was calculated. Treatment with PHL-NP122 (853 g) or nitarsone (852 g) increased BW (P ≤ 0.05) compared with control (784 g), whereas treatment with PHL-MM65 (794 g) did not significantly improve BW. Also on d 23 of the trial, ceca were aseptically removed from 10 poults per pen and cultured for recovery of Salmonella. Both Bacillus isolates PHL-NP122 and PHL-MM65 resulted in a significant reduction (P ≤ 0.05) in the frequency of Salmonella by more than 25% compared with the controls. In a second experiment on a different farm, isolates PHL-NP122, PHL-RW33 (a B. subtilis), and PHL-B1 (a Bacillus licheniformis) were evaluated. None of the candidate Bacillus DFM or the group fed nitarsone had significantly different BW or BWG than untreated control. These data suggest that isolate PHL-NP122, when added as a DFM to turkey diets, may increase BW gain as well as nitarsone during the brooding phase of commercial turkey production.

  15. Role of continuous renal replacement therapy ultrafiltrate cultures in the microbial diagnosis of sepsis.

    PubMed

    Michaud, Jennine M; Zitter, Jessica N; Kaplan, Joshua; Dever, Lisa L

    2014-08-01

    In a cohort of 23 critically ill patients receiving continuous renal replacement therapy, we investigated the role of ultrafiltrate fluid cultures as an adjunct to blood cultures in identifying the microbial etiology of sepsis. We found they provided no additional benefit and may yield false positives due to contamination.

  16. Application of polydimethylsiloxane-based optical system for measuring optical density of microbial culture.

    PubMed

    Takahashi, Yurika

    2016-12-01

    The performance of recently developed polydimethylsiloxane (PDMS)-based optical system was tested for measuring optical density of microbial culture. The data showed that PDMS-based spectrometer is superior to "one drop" spectrometers in the accuracy, and has an advantage over conventional spectrometers in measuring dense culture without dilution.

  17. Prediction of microbial growth in mixed culture with a competition model.

    PubMed

    Fujikawa, Hiroshi; Sakha, Mohammad Z

    2014-01-01

    Prediction of microbial growth in mixed culture was studied with a competition model that we had developed recently. The model, which is composed of the new logistic model and the Lotka-Volterra model, is shown to successfully describe the microbial growth of two species in mixed culture using Staphylococcus aureus, Escherichia coli, and Salmonella. With the parameter values of the model obtained from the experimental data on monoculture and mixed culture with two species, it then succeeded in predicting the simultaneous growth of the three species in mixed culture inoculated with various cell concentrations. To our knowledge, it is the first time for a prediction model for multiple (three) microbial species to be reported. The model, which is not built on any premise for specific microorganisms, may become a basic competition model for microorganisms in food and food materials.

  18. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures.

    PubMed

    Vázquez-Nion, D; Rodríguez-Castro, J; López-Rodríguez, M C; Fernández-Silva, I; Prieto, B

    2016-07-01

    Microbial communities of natural subaerial biofilms developed on granitic historic buildings of a World Heritage Site (Santiago de Compostela, NW Spain) were characterized and cultured in liquid BG11 medium. Environmental barcoding through next-generation sequencing (Pacific Biosciences) revealed that the biofilms were mainly composed of species of Chlorophyta (green algae) and Ascomycota (fungi) commonly associated with rock substrata. Richness and diversity were higher for the fungal than for the algal assemblages and fungi showed higher heterogeneity among samples. Cultures derived from natural biofilms showed the establishment of stable microbial communities mainly composed of Chlorophyta and Cyanobacteria. Although most taxa found in these cultures were not common in the original biofilms, they are likely common pioneer colonizers of building stone surfaces, including granite. Stable phototrophic multi-species cultures of known microbial diversity were thus obtained and their reliability to emulate natural colonization on granite should be confirmed in further experiments.

  19. Xanthan gum: an economical partial substitute for agar in microbial culture media.

    PubMed

    Babbar, Shashi B; Jain, Ruchi

    2006-04-01

    Xanthan gum, microbial desiccation-resistant polysaccharide prepared commercially by aerobic submerged fermentation from Xanthomonas campestris, has been successfully used alone and in combination with agar for microbial culture media. As illustrative examples, eight bacteria and eight fungi were grown on media solidified with either agar (A, 1.5%), xanthan gum (X, 1%), or combinations of both (0.9% X + 0.1% A, 0.8% X + 0.2% A, 0.7% X + 0.3% A, 0.6% X + 0.4% A). All fungi and bacteria exhibited normal growth and differentiation in all these treatments. Rather, growth of most of the fungi was better on xanthan (alone) and xanthan + agar media than agar medium. As the media gelled with xanthan gum alone flow, it was not possible to incubate Petri plates in inverted position. Moreover, because of the softness, streaking of bacteria was difficult on such media. However, these problems could be overcome by partially replacing xanthan gum with 0.3% agar. Bacterial enumeration studies carried out for Serratia sp. and Pseudomonas sp. by serial dilution and pour-plate method on agar (1.5%), 0.7%/0.6% X + 0.3%/0.4% A yielded similar counts. Selective media, succinate medium for Pseudomonas sp., and MacConkey broth medium for Escherichia coli gelled with 0.7%/0.6% X + 0.3%/0.4% A did not support growth of other bacteria when inoculated along with the above-mentioned bacteria. Likewise, differential medium, CRMA (Congo red mannitol agar) gelled with xanthan-agar combination could differentiate between Agrobacterium tumefaciens and Rhizobium sp.

  20. Beyond Commercialization: Science, Higher Education and the Culture of Neoliberalism

    NASA Astrophysics Data System (ADS)

    Kleinman, Daniel Lee; Feinstein, Noah Weeth; Downey, Greg

    2013-10-01

    Since the 1980s, scholars and others have been engaged in a lively debate about the virtues and dangers of mingling commerce with university science. In this paper, we contend that the commercialization of academic science, and higher education more broadly, are best understood as pieces of a larger story. We use two cases of institutional change at the University of Wisconsin-Madison to shed light on the implications of neoliberalism for public research universities in the United States. We conclude that instead of neoliberalization being a timely strategy for the specific fiscal and other problems facing public universities today, it has become an omnibus solution available to be employed when any opportunity arises and, in fact, helps to define the "problems" of the university in the first place.

  1. On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect

    PubMed Central

    Xu, Jianfeng; Zhang, Ningning

    2014-01-01

    Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world’s first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher’s disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable. PMID:25621170

  2. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation.

    PubMed

    Jung, Ji Young; Lee, Se Hee; Lee, Hyo Jung; Seo, Hye-Young; Park, Wan-Soo; Jeon, Che Ok

    2012-02-15

    Kimchi fermentation usually relies upon the growth of naturally-occurring various heterofermentative lactic acid bacteria (LAB). This sometimes makes it difficult to produce kimchi with uniform quality. The use of Leuconostoc mesenteroides as a starter has been considered to produce commercial fermented kimchi with uniform and good quality in Korea. In this study, a combination of a barcoded pyrosequencing strategy and a (1)H NMR technique was used to investigate the effects of Leu. mesenteroides strain B1 as a starter culture for kimchi fermentation. Baechu (Chinese cabbage) and Chonggak (radish) kimchi with and without Leu. mesenteroides inoculation were prepared, respectively and their characteristics that included pH, cell number, bacterial community, and metabolites were monitored periodically for 40 days. Barcoded pyrosequencing analysis showed that the numbers of bacterial operational taxonomic units (OTU) in starter kimchi decreased more quickly than that in non-starter kimchi. Members of the genera Leuconostoc, Lactobacillus, and Weissella were dominant LAB regardless of the kimchi type or starter inoculation. Among the three genera, Leuconostoc was the most abundant, followed by Lactobacillus and Weissella. The use of Leu. mesenteroides as a starter increased the Leuconostoc proportions and decreased the Lactobacillus proportions in both type of kimchi during kimchi fermentation. However, interestingly, the use of the kimchi starter more highly maintained the Weissella proportions of starter kimchi compared to that in the non-starter kimchi until fermentation was complete. Metabolite analysis using the (1)H NMR technique showed that both Baechu and Chonggak kimchi with the starter culture began to consume free sugars earlier and produced a little greater amounts of lactic and acetic acids and mannitol. Metabolite analysis demonstrated that kimchi fermentation using Leu. mesenteroides as a starter was completed earlier with more production of kimchi

  3. Competition, not cooperation, dominates interactions among culturable microbial species.

    PubMed

    Foster, Kevin R; Bell, Thomas

    2012-10-09

    Microbial cells secrete numerous enzymes, scavenging molecules, and signals that can promote the growth and survival of other cells around them [1-4]. This observation is consistent with the evolution of cooperation within species [5], and there is now an increasing emphasis on the importance of cooperation between different microbial species [4, 6]. We lack, however, a systematic test of the importance of mutually positive interactions between different species, which is vital for assessing the commonness and importance of cooperative evolution in natural communities. Here, we study the extent of mutually positive interaction among bacterial strains isolated from a common aquatic environment. Using data collected from two independent experiments evaluating community productivity across diversity gradients, we show that (1) in pairwise species combinations, the great majority of interactions are net negative and (2) there is no evidence that strong higher-order positive effects arise when more than two species are mixed together. Our data do not exclude the possibility of positive effects in one direction where one species gains at the expense of another, i.e., predator-prey-like interactions. However, these do not constitute cooperation and our analysis suggests that the typical result of adaptation to other microbial species will be competitive, rather than cooperative, phenotypes.

  4. Inflight Microbial Monitoring-An Alternative Method to Culture Based Detection Currently Used on International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Roman, Monsi; Hummerick, Mary E.; Smith, David J.; Wheeler, Raymond M.

    2015-01-01

    Previous research has shown that microorganisms and potential human pathogens have been detected on the International Space Station (ISS). The potential to introduce new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Previous research has shown that microorganisms introduced to the ISS are readily transferred between crew and subsystems and back (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and a 48-hour incubation time. This increases the microbial load while detecting a limited number of microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification, To identify and enumerate ISS samples requires that samples to be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganism at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  5. Inflight Microbial Monitoring- An Alternative Method to Culture Based Detection Currently Used on the International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Roman, Monsi; Hummerick, Mary E.; Smith, David J.; Wheeler, Raymond M.

    2015-01-01

    Previous research has shown that potentially destructive microorganisms and human pathogens have been detected on the International Space Station (ISS). The likelihood of introducing new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Microorganisms introduced to the ISS are readily transferred between crew and subsystems (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and at least a 48-hour incubation time. This increases the microbial load while detecting only a limited number of the total microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification. To identify and enumerate ISS microbes requires that samples be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganisms at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  6. Regulation mechanisms in mixed and pure culture microbial fermentation.

    PubMed

    Hoelzle, Robert D; Virdis, Bernardino; Batstone, Damien J

    2014-11-01

    Mixed-culture fermentation is a key central process to enable next generation biofuels and biocommodity production due to economic and process advantages over application of pure cultures. However, a key limitation to the application of mixed-culture fermentation is predicting culture product response, related to metabolic regulation mechanisms. This is also a limitation in pure culture bacterial fermentation. This review evaluates recent literature in both pure and mixed culture studies with a focus on understanding how regulation and signaling mechanisms interact with metabolic routes and activity. In particular, we focus on how microorganisms balance electron sinking while maximizing catabolic energy generation. Analysis of these mechanisms and their effect on metabolism dynamics is absent in current models of mixed-culture fermentation. This limits process prediction and control, which in turn limits industrial application of mixed-culture fermentation. A key mechanism appears to be the role of internal electron mediating cofactors, and related regulatory signaling. This may determine direction of electrons towards either hydrogen or reduced organics as end-products and may form the basis for future mechanistic models.

  7. Assessment of microbial populations dynamics in a blue cheese by culturing and denaturing gradient gel electrophoresis.

    PubMed

    Alegría, Angel; González, Renata; Díaz, Mario; Mayo, Baltasar

    2011-03-01

    The composition and development of microbial population during the manufacture and ripening of two batches of a blue-veined cheese was examined by culturing and polymerase chain reaction (PCR) denaturing gradient gel electrophoresis (DGGE) (PCR-DGGE). Nine selective and/or differential media were used to track the cultivable populations of total and indicator microbial groups. For PCR-DGGE, the V3 hyper variable region of the bacterial 16S rRNA gene and the eukaryotic D1 domain of 28S rDNA were amplified with universal primers, specific for prokaryotes and eukaryotes, respectively. Similarities and differences between the results obtained by the culturing and the molecular method were recorded for some populations. Culturing analysis allows minority microbial groups (coliforms, staphylococci) to be monitored, although in this study PCR-DGGE identified a population of Streptococcus thermophilus that went undetected by culturing. These results show that the characterization of the microbial populations interacting and evolving during the cheese-making process is improved by combining culturing and molecular methods.

  8. [Seasonal variation of functional diversity of aquatic microbial community in Apostichopus japonicus cultural pond].

    PubMed

    Yan, Fa-Jun; Tian, Xiang-Li; Dong, Shuang-Lin; Yang, Gang

    2014-05-01

    The functional diversity of aquatic microbial communities in sea cucumber (Apostichopus japonicus) cultural ponds was examined in this paper. The Biolog plate technique and redundancy analysis (RDA) method were used to evaluate seasonal changes and their relationships with environmental factors. The results showed that both total amount and types of carbon sources utilized by microbes in the sea cucumber cultural ponds varied seasonally, and were the highest in summer and lowest in winter, with polymers being the main type of carbon sources. Principal component analysis revealed that the carbon utilization diversity of the microbial communities varied significantly over the seasonal courses. A total of 10 categories of carbon sources were significantly related to the principal component 1, among which were polymers, carbohydrates, carboxylic acids, amino acids, and amines. Significant seasonal changes were detected for all carbon utilization diversity indices of the microbial communities, including Shannon, McIntosh, Simpson, and S-E. However, seasonal variations were different among the microbial diversity indices. RDA analysis revealed that TP, NO(3-)-N, TN, and PO4(3-)-P were the critical environmental factors influencing the seasonal changes in functional diversity of aquatic microbial community in sea cucumber cultural ponds.

  9. Degradation of polychlorinated biphenyls by mixed microbial cultures.

    PubMed Central

    Clark, R R; Chian, E S; Griffin, R A

    1979-01-01

    Three different enriched mixed cultures capable of degrading polychlorinated biphenylas were isolated from two soil samples and a river sediment, respectively. The predominant organisms found in all three mixed cultures were Alcaligenes odorans, Alcaligenes dentrificans, and an unidentified bacterium. The polychlorinated biphenyl isomers that were more water soluble and had lower chlorination were not only degraded at a faster rate than those that were less water soluble and had higher chlorination, but were also more completely utilized by these mixed cultures. This resulted in the presence in the environment of polychlorinated biphenyl residues consisting mainly of higher-chlorinated isomers. A form of cometabolism of polychlorinated biphenyls was also found with these cultures in the presence of acetate as the cosubstrate. PMID:110265

  10. Determining the safety of microbial cultures for consumption by humans and animals.

    PubMed

    Pariza, Michael W; Gillies, Kevin O; Kraak-Ripple, Sarah F; Leyer, Gregory; Smith, Amy B

    2015-10-01

    Fermented foods and feeds have been consumed for millennia, and microorganisms isolated from traditional fermentations have been used as probiotics. There is interest in developing new microbial cultures for these uses, but to date safety evaluation procedures have only been discussed in general terms. We propose a comprehensive approach for determining the safety of microbial cultures that lack an established history of safe use for their intended new applications. Three scenarios are considered: (1) substantially increased exposure to a culture that has an established record of safety in a more limited application; (2) a new strain without a history of safe use that was isolated from a food or feed that has a history of safe use; and (3) a new strain isolated from a non-food or non-feed source. Our safety evaluation process is based on scientific procedures and is in the form of a decision tree composed of 13 questions. Our decision tree for determining the safety of microbial cultures for consumption by humans or animals is modeled on previous decision trees that are used worldwide to evaluate the safety of microbial enzymes for use in human food or animal feed.

  11. Individually Addressable Arrays of Replica Microbial Cultures Enabled by Splitting SlipChips

    PubMed Central

    Ma, Liang; Datta, Sujit S.; Karymov, Mikhail A; Pan, Qichao; Begolo, Stefano; Ismagilov, Rustem F.

    2014-01-01

    Isolating microbes carrying genes of interest from environmental samples is important for applications in biology and medicine. However, this involves the use of genetic assays that often require lysis of microbial cells, which is not compatible with the goal of obtaining live cells for isolation and culture. This paper describes the design, fabrication, biological validation, and underlying physics of a microfluidic SlipChip device that addresses this challenge. The device is composed of two conjoined plates containing 1,000 microcompartments, each comprising two juxtaposed wells, one on each opposing plate. Single microbial cells are stochastically confined and subsequently cultured within the microcompartments. Then, we split each microcompartment into two replica droplets, both containing microbial culture, and then controllably separate the two plates while retaining each droplet within each well. We experimentally describe the droplet retention as a function of capillary pressure, viscous pressure, and viscosity of the aqueous phase. Within each pair of replicas, one can be used for genetic analysis, and the other preserves live cells for growth. This microfluidic approach provides a facile way to cultivate anaerobes from complex communities. We validate this method by targeting, isolating, and culturing Bacteroides vulgatus, a core gut anaerobe, from a clinical sample. To date, this methodology has enabled isolation of a novel microbial taxon, representing a new genus. This approach could also be extended to the study of other microorganisms and even mammalian systems, and may enable targeted retrieval of solutions in applications including digital PCR, sequencing, single cell analysis, and protein crystallization. PMID:24953827

  12. Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips.

    PubMed

    Ma, Liang; Datta, Sujit S; Karymov, Mikhail A; Pan, Qichao; Begolo, Stefano; Ismagilov, Rustem F

    2014-08-01

    Isolating microbes carrying genes of interest from environmental samples is important for applications in biology and medicine. However, this involves the use of genetic assays that often require lysis of microbial cells, which is not compatible with the goal of obtaining live cells for isolation and culture. This paper describes the design, fabrication, biological validation, and underlying physics of a microfluidic SlipChip device that addresses this challenge. The device is composed of two conjoined plates containing 1000 microcompartments, each comprising two juxtaposed wells, one on each opposing plate. Single microbial cells are stochastically confined and subsequently cultured within the microcompartments. Then, we split each microcompartment into two replica droplets, both containing microbial culture, and then controllably separate the two plates while retaining each droplet within each well. We experimentally describe the droplet retention as a function of capillary pressure, viscous pressure, and viscosity of the aqueous phase. Within each pair of replicas, one can be used for genetic analysis, and the other preserves live cells for growth. This microfluidic approach provides a facile way to cultivate anaerobes from complex communities. We validate this method by targeting, isolating, and culturing Bacteroides vulgatus, a core gut anaerobe, from a clinical sample. To date, this methodology has enabled isolation of a novel microbial taxon, representing a new genus. This approach could also be extended to the study of other microorganisms and even mammalian systems, and may enable targeted retrieval of solutions in applications including digital PCR, sequencing, single cell analysis, and protein crystallization.

  13. Milk kefir: composition, microbial cultures, biological activities, and related products

    PubMed Central

    Prado, Maria R.; Blandón, Lina Marcela; Vandenberghe, Luciana P. S.; Rodrigues, Cristine; Castro, Guillermo R.; Thomaz-Soccol, Vanete; Soccol, Carlos R.

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir’s exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir’s microflora and the importance of kefiran as a beneficial health substance. PMID:26579086

  14. Phenolic profiles of cultivated, in vitro cultured and commercial samples of Melissa officinalis L. infusions.

    PubMed

    Barros, Lillian; Dueñas, Montserrat; Dias, Maria Inês; Sousa, Maria João; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2013-01-01

    Melissa officinalis L. (lemon balm) is normally consumed as an infusion and presents therapeutic properties, such as sedative, carminative and antispasmodic, also being included in some pharmaceutical preparations. The phenolic profiles of different samples of lemon balm, prepared as infusions, were evaluated by HPLC-DAD-ESI/MS. The profiles were compared in order to understand the differences between cultivated, in vitro cultured and commercial (bags and granulated) samples. All the samples showed a similar phenolic profile, presenting differences only in the quantities found of each compound. Rosmarinic acid was the most abundant compound, being higher in commercial samples, especially in tea bag sample (55.68mg/g of infusion) and lower in in vitro cultured sample (15.46mg/g). Moreover, dimers, trimers and tetramers of caffeic acid were identified and quantified for the first time in lemon balm. Only one flavonoid, luteolin-3'-O-glucuronide was found in all the samples, ranging from 8.43mg/g in commercial granulate sample to 1.22mg/g in in vitro cultured sample. Overall, cultivated and in vitro cultured samples presented the lowest amounts of phenolic compounds (59.59 and 30.21mg/g, respectively); otherwise, commercial samples showed the highest contents (109.24mg/g for tea bag and 101.03mg/g for granulate sample). The present study shows that infusion of lemon balm can be a source of phenolic compounds, known for their bioactive effects.

  15. The DOE subsurface microbial culture collection at Florida State University. Final technical report, January 16, 1996--February 15, 1997

    SciTech Connect

    Balkwill, D.L.

    1998-05-25

    This report describes the research that supports the Subsurface Science Program by maintaining a culture collection of microorganisms isolated from deep terrestrial subsurface environments (the Subsurface Microbial Culture Collection, or SMCC). The general distribution of cultures and data was identified as an important function of the SMCC. The accomplishments related to this function of the culture collection are described.

  16. Volatile compounds originating from mixed microbial cultures on building materials under various humidity conditions.

    PubMed

    Korpi, A; Pasanen, A L; Pasanen, P

    1998-08-01

    We examined growth of mixed microbial cultures (13 fungal species and one actinomycete species) and production of volatile compounds (VOCs) in typical building materials in outside walls, separating walls, and bathroom floors at various relative humidities (RHs) of air. Air samples from incubation chambers were adsorbed on Tenax TA and dinitrophenylhydrazine cartridges and were analyzed by thermal desorption-gas chromatography and high-performance liquid chromatography, respectively. Metabolic activity was measured by determining CO2 production, and microbial concentrations were determined by a dilution plate method. At 80 to 82% RH, CO2 production did not indicate that microbial activity occurred, and only 10% of the spores germinated, while slight increases in the concentrations of some VOCs were detected. All of the parameters showed that microbial activity occurred at 90 to 99% RH. The microbiological analyses revealed weak microbial growth even under drying conditions (32 to 33% RH). The main VOCs produced on the building materials studied were 3-methyl-1-butanol, 1-pentanol, 1-hexanol, and 1-octen-3-ol. In some cases fungal growth decreased aldehyde emissions. We found that various VOCs accompany microbial activity but that no single VOC is a reliable indicator of biocontamination in building materials.

  17. Comparison of Yacon (Smallanthus sonchifolius) Tuber with Commercialized Fructo-oligosaccharides (FOS) in Terms of Physiology, Fermentation Products and Intestinal Microbial Communities in Rats

    PubMed Central

    UTAMI, Ni Wayan Arya; SONE, Teruo; TANAKA, Michiko; NAKATSU, Cindy H; SAITO, Akihiko; ASANO, Kozo

    2013-01-01

    The yacon (Smallanthus sonchifolius) tuber was examined with regard to its prebiotic effects compared with commercialized fructo-oligosaccharides (FOS). A feed containing 10% yacon tuber, which is equivalent to 5% commercialized FOS in terms of the amount of fructo-oligosaccharides (GF2, GF3 and GF4), was administrated to rats for 28 days. The yacon diet changed the intestinal microbial communities beginning in the first week, resulting in a twofold greater concentration of cecal short-chain fatty acids (SCFAs). The SCFA composition differed, but the cecal pH in rats fed yacon tuber was equal to that in rats fed FOS. Serum triglycerides were lower in rats fed yacon compared with rats fed FOS and the control diet. Cecal size was greater with the yacon tuber diet compared with the control diet. The abundant fermentation in the intestines created a selective environment for the intestinal microbiota, which included Lactobacillus acidophilus, Bifidobacterium pseudolongum, Bifidobacterium animalis and Barnesiella spp. according to identification with culture-independent analysis, 16S rRNA gene PCR-DGGE combined with cloning and sequencing. Barnesiella spp. and B. pseudolongum were only found in the rats fed the yacon diet, while L. acidophilus and B. animalis were found in abundance in rats fed both the yacon and FOS diets. The genus Barnesiella has not previously been reported to be associated with yacon or FOS fermentation. We concluded that the physiological and microbiological effects of the yacon tuber were different from those of FOS. Differences in cecal size, blood triglycerides and microbial community profiles including their metabolites (SCFAs) between the yacon tuber and FOS were shown to be more greatly affected by the yacon tuber rather than FOS. PMID:24936376

  18. Comparison of Yacon (Smallanthus sonchifolius) Tuber with Commercialized Fructo-oligosaccharides (FOS) in Terms of Physiology, Fermentation Products and Intestinal Microbial Communities in Rats.

    PubMed

    Utami, Ni Wayan Arya; Sone, Teruo; Tanaka, Michiko; Nakatsu, Cindy H; Saito, Akihiko; Asano, Kozo

    2013-01-01

    The yacon (Smallanthus sonchifolius) tuber was examined with regard to its prebiotic effects compared with commercialized fructo-oligosaccharides (FOS). A feed containing 10% yacon tuber, which is equivalent to 5% commercialized FOS in terms of the amount of fructo-oligosaccharides (GF2, GF3 and GF4), was administrated to rats for 28 days. The yacon diet changed the intestinal microbial communities beginning in the first week, resulting in a twofold greater concentration of cecal short-chain fatty acids (SCFAs). The SCFA composition differed, but the cecal pH in rats fed yacon tuber was equal to that in rats fed FOS. Serum triglycerides were lower in rats fed yacon compared with rats fed FOS and the control diet. Cecal size was greater with the yacon tuber diet compared with the control diet. The abundant fermentation in the intestines created a selective environment for the intestinal microbiota, which included Lactobacillus acidophilus, Bifidobacterium pseudolongum, Bifidobacterium animalis and Barnesiella spp. according to identification with culture-independent analysis, 16S rRNA gene PCR-DGGE combined with cloning and sequencing. Barnesiella spp. and B. pseudolongum were only found in the rats fed the yacon diet, while L. acidophilus and B. animalis were found in abundance in rats fed both the yacon and FOS diets. The genus Barnesiella has not previously been reported to be associated with yacon or FOS fermentation. We concluded that the physiological and microbiological effects of the yacon tuber were different from those of FOS. Differences in cecal size, blood triglycerides and microbial community profiles including their metabolites (SCFAs) between the yacon tuber and FOS were shown to be more greatly affected by the yacon tuber rather than FOS.

  19. Formation of industrial mixed culture biofilm in chlorophenol cultivated medium of microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Hassan, Huzairy; Jin, Bo; Dai, Sheng; Ngau, Cornelius

    2016-11-01

    The formation of microbial biofilm while maintaining the electricity output is a challenging topic in microbial fuel cell (MFC) studies. This MFC critical factor becomes more significant when handling with industrial wastewater which normally contains refractory and toxic compounds. This study explores the formation of industrial mixed culture biofilm in chlorophenol cultivated medium through observing and characterizing microscopically its establishment on MFC anode surface. The mixed culture was found to develop its biofilm on the anode surface in the chlorophenol environment and established its maturity and dispersal stages with concurrent electricity generation and phenolic degradation. The mixed culture biofilm engaged the electron transfer roles in MFC by generating current density of 1.4 mA/m2 and removing 53 % of 2,4-dichlorophenol. The results support further research especially on hazardous wastewater treatment using a benign and sustainable method.

  20. Immune modulation by Bacillus subtilus-based direct-fed microbials in commercial broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Direct-fed microbials (DFMs), also known as probiotics, have been successfully used to improve the balance of gut microbiota. Spores of Bacillus subtilis, have been used as DFMs for food animals and humans and our previous studies showed that dietary supplementation of broiler chickens with a B. su...

  1. Influence of combined pollution of antimony and arsenic on culturable soil microbial populations and enzyme activities.

    PubMed

    Wang, Qiongshan; He, Mengchang; Wang, Ying

    2011-01-01

    The effects of both combined and single pollution of antimony (Sb) and arsenic (As) in different concentrations on culturable soil microbial populations and enzyme activities were studied under laboratory conditions. Joint effects of both Sb and As were different from that of Sb or As alone. The inhibition rate of culturable soil microbial populations under Sb and As pollution followed the order: bacterial > fungi > actinomycetes. There existed antagonistic inhibiting effect on urease and acid phophatase and synergistic inhibiting effect on protease under the combined pollution of Sb (III) and As (III). Only urease appeared to be the most sensitive indicator under Sb (V) and As (V) pollution, and there existed antagonistic inhibiting effect on acid phophatase and synergistic inhibiting effect on urease and protease under Sb (V) and As (V) combined pollution at most time. In this study, we also confirmed that the trivalent states of Sb and As were more toxic to all the microbes tested and more inhibitory on microbial enzyme activities then their pentavalent counterparts. The results also suggest that not only the application rate of the two metalloids but also the chemical form of metalloids should be considered while assessing the effect of metalloid on culturable microbial populations and enzyme activities. Urease and acid phosphatase can be used as potential biomarkers to evaluate the intensity of Sb (III) and As (III) stress.

  2. Synergetic effects of microbial binary cultures on microbial fuel cell performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A binary culture of Lactococcus lactis and Shewanella oneidensis was studied for an efficient conversion of glucose into electricity in a continuously-operated chemostatic electrochemical reactor. The homolactic fermentation bacterium L. lactis fermented glucose almost exclusively to lactate – the ...

  3. Discrimination among iron sulfide species formed in microbial cultures.

    PubMed

    Popa, R; Kinkle, B K

    2000-10-01

    A quantitative method for the study of iron sulfides precipitated in liquid cultures of bacteria is described. This method can be used to quantify and discriminate among amorphous iron sulfide (FeS(amorph)), iron monosulfide minerals such as mackinawite or greigite (FeS(min)), and iron disulfide minerals such as pyrite or marcasite (FeS(2min)) formed in liquid cultures. Degradation of iron sulfides is performed using a modified Cr(2+) reduction method with reflux distillation. The basic steps of the method are: first, separation of FeS(amorph); second, elimination of interfering species of S such as colloidal sulfur (S(c) degrees ), thiosulphate (S(2)O(3)(2-)) and polysulfides (S(x)(2-)); third, separation of FeS(min); and fourth, separation of FeS(2min). The final product is H(2)S which is determined after trapping. The efficiency of recovery is 96-99% for FeS(amorph), 76-88% for FeS(min), and >97% for FeS(2min). This method has a high reproducibility if the experimental conditions are rigorously applied and only glass conduits are used. A well ventilated fume hood must be used because of the toxicity and volatility of several reagents and products. The advantage relative to previously described methods are better resolution for iron sulfide species and use of the same bottles for both incubation of cultures and acid degradation. The method can also be used for Fe/S stoichiometry with sub-sampling and Fe analysis.

  4. Quantitative colorimetric measurement of cellulose degradation under microbial culture conditions.

    PubMed

    Haft, Rembrandt J F; Gardner, Jeffrey G; Keating, David H

    2012-04-01

    We have developed a simple, rapid, quantitative colorimetric assay to measure cellulose degradation based on the absorbance shift of Congo red dye bound to soluble cellulose. We term this assay "Congo Red Analysis of Cellulose Concentration," or "CRACC." CRACC can be performed directly in culture media, including rich and defined media containing monosaccharides or disaccharides (such as glucose and cellobiose). We show example experiments from our laboratory that demonstrate the utility of CRACC in probing enzyme kinetics, quantifying cellulase secretion, and assessing the physiology of cellulolytic organisms. CRACC complements existing methods to assay cellulose degradation, and we discuss its utility for a variety of applications.

  5. Quantitative Polymerase Chain Reaction for Microbial Growth Kinetics of Mixed Culture System.

    PubMed

    Cotto, Ada; Looper, Jessica K; Mota, Linda C; Son, Ahjeong

    2015-11-01

    Microbial growth kinetics is often used to optimize environmental processes owing to its relation to the breakdown of substrate (contaminants). However, the quantification of bacterial populations in the environment is difficult owing to the challenges of monitoring a specific bacterial population within a diverse microbial community. Conventional methods are unable to detect and quantify the growth of individual strains separately in the mixed culture reactor. This work describes a novel quantitative PCR (qPCR)-based genomic approach to quantify each species in mixed culture and interpret its growth kinetics in the mixed system. Batch experiments were performed for both single and dual cultures of Pseudomonas putida and Escherichia coli K12 to obtain Monod kinetic parameters (μmax and Ks). The growth curves and kinetics obtained by conventional methods (i.e., dry weight measurement and absorbance reading) were compared with that obtained by qPCR assay. We anticipate that the adoption of this qPCR-based genomic assay can contribute significantly to traditional microbial kinetics, modeling practice, and the operation of bioreactors, where handling of complex mixed cultures is required.

  6. A three-dimensional culture system recapitulates placental syncytiotrophoblast development and microbial resistance

    PubMed Central

    McConkey, Cameron A.; Delorme-Axford, Elizabeth; Nickerson, Cheryl A.; Kim, Kwang Sik; Sadovsky, Yoel; Boyle, Jon P.; Coyne, Carolyn B.

    2016-01-01

    In eutherians, the placenta acts as a barrier and conduit at the maternal-fetal interface. Syncytiotrophoblasts, the multinucleated cells that cover the placental villous tree surfaces of the human placenta, are directly bathed in maternal blood and are formed by the fusion of progenitor cytotrophoblasts that underlie them. Despite their crucial role in fetal protection, many of the events that govern trophoblast fusion and protection from microbial infection are unknown. We describe a three-dimensional (3D)–based culture model using human JEG-3 trophoblast cells that develop syncytiotrophoblast phenotypes when cocultured with human microvascular endothelial cells. JEG-3 cells cultured in this system exhibit enhanced fusogenic activity and morphological and secretory activities strikingly similar to those of primary human syncytiotrophoblasts. RNASeq analyses extend the observed functional similarities to the transcriptome, where we observed significant overlap between syncytiotrophoblast-specific genes and 3D JEG-3 cultures. Furthermore, JEG-3 cells cultured in 3D are resistant to infection by viruses and Toxoplasma gondii, which mimics the high resistance of syncytiotrophoblasts to microbial infections in vivo. Given that this system is genetically manipulatable, it provides a new platform to dissect the mechanisms involved in syncytiotrophoblast development and microbial resistance. PMID:26973875

  7. Microbial transformation and sorption of anthracene in liquid culture.

    PubMed

    Hadibarata, Tony; Zubir, Meor Mohd Fikri Ahmad; Rubiyatno; Chuang, Teh Zee

    2013-09-01

    Armillaria sp. F022, a white-rot fungus isolated from decayed wood in tropical rain forest was used to biodegrade anthracene in cultured medium. The percentage of anthracene removal by Armillaria sp. F022 reached 13 % after 7 days and at the end of the experiment, anthracene removal level was at 87 %. The anthracene removal through sorption and transformation was investigated. 69 % of eliminated anthracene was transformed by Armillaria sp. F022 to form other organic structure, while only 18 % was absorbed in the mycelia. In the kinetic experiment, anthracene dissipation will not stop even though the biomass had stopped growing. Anthracene removal by Armillaria sp. F022 was correlated with protein concentration (whole biomass) in the culture. The production of enzyme was affected by biomass production. Anthracene was transformed to two stable metabolic products. The metabolites were extracted in ethyl-acetate, isolated by column chromatography, and then identified using gas chromatography-mass spectrometry (GC-MS).

  8. Enhanced power production from microbial fuel cells with high cell density culture.

    PubMed

    Zhai, Dan-Dan; Li, Bing; Sun, Jian-Zhong; Sun, De-Zhen; Si, Rong-Wei; Yong, Yang-Chun

    2016-01-01

    Improvement of power production in a microbial fuel cell (MFC) with a high cell density culture strategy was developed. By using high cell density culture, the voltage output and power density output of the MFC were enhanced about 0.6 and 1.6 times compared to the control, respectively. Further analysis showed that riboflavin concentration in the MFC was dramatically increased from 0.1 mg/L to 1.2 mg/L by high cell density culture. Moreover, the biofilm formation on the anode surface was significantly enhanced by this new strategy. The increased accumulation of electron shuttle (riboflavin) as well as enhanced biofilm formation contributed to the improvement in anodic electrochemical activity and these factors were the underlying mechanism for MFC performance improvement by high cell density culture. This work demonstrated that high cell density culture would be a simple and practical strategy for MFC manipulation.

  9. Culture-Dependent and -Independent Methods Capture Different Microbial Community Fractions in Hydrocarbon-Contaminated Soils

    PubMed Central

    Stefani, Franck O. P.; Bell, Terrence H.; Marchand, Charlotte; de la Providencia, Ivan E.; El Yassimi, Abdel; St-Arnaud, Marc; Hijri, Mohamed

    2015-01-01

    Bioremediation is a cost-effective and sustainable approach for treating polluted soils, but our ability to improve on current bioremediation strategies depends on our ability to isolate microorganisms from these soils. Although culturing is widely used in bioremediation research and applications, it is unknown whether the composition of cultured isolates closely mirrors the indigenous microbial community from contaminated soils. To assess this, we paired culture-independent (454-pyrosequencing of total soil DNA) with culture-dependent (isolation using seven different growth media) techniques to analyse the bacterial and fungal communities from hydrocarbon-contaminated soils. Although bacterial and fungal rarefaction curves were saturated for both methods, only 2.4% and 8.2% of the bacterial and fungal OTUs, respectively, were shared between datasets. Isolated taxa increased the total recovered species richness by only 2% for bacteria and 5% for fungi. Interestingly, none of the bacteria that we isolated were representative of the major bacterial OTUs recovered by 454-pyrosequencing. Isolation of fungi was moderately more effective at capturing the dominant OTUs observed by culture-independent analysis, as 3 of 31 cultured fungal strains ranked among the 20 most abundant fungal OTUs in the 454-pyrosequencing dataset. This study is one of the most comprehensive comparisons of microbial communities from hydrocarbon-contaminated soils using both isolation and high-throughput sequencing methods. PMID:26053848

  10. Optimizing culture medium for meristem tissue culture of several Saccharum species and commercial hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The optimal range of medium nutrients and plant growth regulators (PGR) was investigated for in vitro culture of diverse sugarcane species and cultivars. Macro-nutrients, nitrogen (N), phosphorous (P) and potassium (K), were essential for growth of leaf primordia. Although the best concentration of ...

  11. Research on microbial lipid production from potato starch wastewater as culture medium by Lipomyces starkeyi.

    PubMed

    Liu, Jun-Xian; Yue, Qin-Yan; Gao, Bao-Yu; Wang, Yan; Li, Qian; Zhang, Pei-Dong

    2013-01-01

    In this paper, potato starch wastewater as culture medium was treated by the oleaginous yeast Lipomyces starkeyi to biosynthesize microbial lipid. The result indicated that carbon source types, carbon source concentration, nitrogen source types, nitrogen source concentration, inoculum size, and cultivation time all had a significant effect on cell growth and microbial lipid accumulation in batch cultures. A measure of 120 g/L of glucose concentration, 3.0 g/L of (NH4)2SO4 concentration, 10% inoculum size, and incubation time 96 h cultivated in a shaking flask at 30 °C were found to be the optimal conditions not only for cell growth but also for lipid synthesis. Under this condition, the cellular biomass and lipid content could reach 2.59 g/L and 8.88%, respectively. This work provides a new method for effective utilization of potato starch wastewater, which has particular social and economic benefits for yeast treatment technology.

  12. Colorimetric determination of catechol siderophores in microbial cultures.

    PubMed

    Rioux, C; Jordan, D C; Rattray, J B

    1983-08-01

    A highly sensitive spectrophotometric method for the selective detection of catechol compounds such as catechol siderophores (e.g., enterobactin) is described. The basis of the method involves the ability of the vicinal aromatic hydroxyl groups under acidic conditions to bring about a reduction of Fe3+ (from ferric ammonium citrate) to Fe2+. Detection of Fe2+ in the presence of Fe3+ is made with 1,10-phenanthroline under previously established conditions. The assay mixture is heated at 60 degrees C for 1 h to accelerate the development of color which is subsequently measured at 510 nm. The Beer-Lambert law is obeyed over the range of 0.16 to 60 microM 2,3-dihydroxybenzoic acid. Compared to the Arnow nitration method, the assay is more responsive, is approximately seven times more sensitive, and is effective with catechols substituted at positions 3 and 4. The method gives positive results with catechols such as DL-DOPA, L-dopamine, (+/-)-epinephrine, and DL-norepinephrine. Very rapid color development is obtained with ascorbic acid and p-diols, while m-diols are poorly detected. Low degrees of reactivity are shown by hydroxylamino and hydroxamate compounds. Phenolic, sulfydryl, indolyl, and quinonyl derivatives do not interfere with the reaction. The method has been adapted to determine catechol compounds in the culture medium of bacterial cells grown at different iron concentrations.

  13. Microbial pollution indicators and culturable heterotrophic bacteria in a Mediterranean area (Southern Adriatic Sea Italian coasts)

    NASA Astrophysics Data System (ADS)

    Stabili, L.; Cavallo, R. A.

    2011-05-01

    In the present study we evaluated the degree of microbial water pollution along the coast line between Brindisi and Santa Maria di Leuca (Southern Adriatic Sea) as well as the culturable heterotrophic bacteria abundances and biodiversity in relation to the microbiological quality of the water. A total of 3773 colonies were isolated, subcultured and identified by several morphological, cultural and biochemical methods including the standardized API 20 E and API 20 NE tests. Along the examined coastal tract the microbial pollution indicators were always below the tolerance limits for bathing waters defined by the CEE directive, suggesting a good sanitary quality. Concerning culturable heterotrophic bacteria, different temporal density trends were observed in the four sites in relation to their geographical position. A positive relationship between the bacterial abundances and the temperature was observed in S. Cataldo and Otranto. The culturable bacterial community was mainly composed of the genera Aeromonas, Pseudomonas, Photobacterium and Flavobacterium. The Enterobacteriaceae family represented a conspicuous component of the bacterial community too. Bacilli were predominant among the Gram-positive bacteria. Of interest is the isolation of yeasts (2% at the surface and 1% at the bottom) taking into account their capability of biodegradation of various materials. Because of the low level of microbial pollution recorded, our results are indicative of the natural variation and diversity of the culturable bacterial community in such an oligotrophic ecosystem and could represent a good point of comparison with other ecosystems as well as a baseline for long term studies aimed to evaluate the effects of environmental fluctuations and human impacts on this aspect of biodiversity in coastal areas.

  14. Microchemostat array with small-volume fraction replenishment for steady-state microbial culture.

    PubMed

    Park, Jaewon; Wu, Jianzhang; Polymenis, Michael; Han, Arum

    2013-11-07

    A chemostat is a bioreactor in which microorganisms can be cultured at steady-state by controlling the rate of culture medium inflow and waste outflow, thus maintaining media composition over time. Even though many microbial studies could greatly benefit from studying microbes in steady-state conditions, high instrument cost, complexity, and large reagent consumption hamper the routine use of chemostats. Microfluidic-based chemostats (i.e. microchemostats) can operate with significantly smaller reagent consumption while providing accurate chemostatic conditions at orders of magnitude lower cost compared to conventional chemostats. Also, microchemostats have the potential to significantly increase the throughput by integrating arrays of microchemostats. We present a microchemostat array with a unique two-depth culture chamber design that enables small-volume fraction replenishment of culture medium as low as 1% per replenishment cycle in a 250 nl volume. A system having an array of 8 microchemostats on a 40 × 60 mm(2) footprint could be automatically operated in parallel by a single controller unit as a demonstration for potential high throughput microbial studies. The model organism, Saccharomyces cerevisiae, successfully reached a stable steady-state of different cell densities as a demonstration of the chemostatic functionality by programming the dilution rates. Chemostatic functionality of the system was further confirmed by quantifying the budding index as a function of dilution rate, a strong indicator of growth-dependent cell division. In addition, the small-volume fraction replenishment feature minimized the cell density fluctuation during the culture. The developed system provides a robust, low-cost, and higher throughput solution to furthering studies in microbial physiology.

  15. Microbial Succession and Nitrogen Cycling in Cultured Biofilms as Affected by the Inorganic Nitrogen Availability.

    PubMed

    Li, Shuangshuang; Peng, Chengrong; Wang, Chun; Zheng, Jiaoli; Hu, Yao; Li, Dunhai

    2017-01-01

    Biofilms play important roles in nutrients and energy cycling in aquatic ecosystems. We hypothesized that as eutrophication could change phytoplankton community and decrease phytoplankton diversity, ambient inorganic nitrogen level will affect the microbial community and diversity of biofilms and the roles of biofilms in nutrient cycling. Biofilms were cultured using a flow incubator either with replete inorganic nitrogen (N-rep) or without exogenous inorganic nitrogen supply (N-def). The results showed that the biomass and nitrogen and phosphorous accumulation of biofilms were limited by N deficiency; however, as expected, the N-def biofilms had significantly higher microbial diversity than that of N-rep biofilms. The microbial community of biofilms shifted in composition and abundance in response to ambient inorganic nitrogen level. For example, as compared between the N-def and the N-rep biofilms, the former consisted of more diazotrophs, while the latter consisted of more denitrifying bacteria. As a result of the shift of the functional microbial community, the N concentration of N-rep medium kept decreasing, while that of N-def medium showed an increasing trend in the late stage. This indicates that biofilms can serve as the source or the sink of nitrogen in aquatic ecosystems, and it depends on the inorganic nitrogen availability.

  16. Evaluation of microbial diversity in sulfite-added and sulfite-free wine by culture-dependent and -independent methods.

    PubMed

    Takahashi, Masayuki; Ohta, Tami; Masaki, Kazuo; Mizuno, Akihiro; Goto-Yamamoto, Nami

    2014-05-01

    The difference in microbiota including non-lactic acid bacteria, non-acetic acid bacteria, and wild yeast during winemaking and in the end-products between sulfite-added and sulfite-free wine, was investigated using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and a culture-dependent method. There were differences between the microorganisms detected by PCR-DGGE and those detected by the culture-dependent method, probably because of the selectivity of culture medium and the characteristics of PCR-based method. In both the red wine and white wine, the microbial diversity of the sulfite-added wine was lower than that of the sulfite-free wine during fermentation. Tatumella terrea was detected from the fermenting must by PCR-DGGE and by the culture-dependent method, even though sulfite inhibited its growth to some extent. We confirmed that the addition of sulfite plays an important role in winemaking by inhibiting the growth of unexpected microorganisms, but on the other hand, it was revealed that some microorganisms can survive and grow in sulfite-added fermenting must. We also analyzed 15 samples of commercial wines by the PCR-DGGE method and detected various microorganisms. Among them, Sphingomonas sp., Pseudozyma sp., Ochromonas sp. and Methylophilus sp. were found for the first time in wine as far as we know. We did not identify a specific microorganism that was detected only from wines without sulfite addition. Thus, the microbiota of end-products seemed to be influenced by other factors, such as filtration before bottling, the production equipment and the storage environment.

  17. Commercial product exploitation from marine microbial biodiversity: some legal and IP issues.

    PubMed

    Tichet, Camille; Nguyen, Hong Khanh; Yaakoubi, Sefia El; Bloch, Jean-François

    2010-09-01

    The biodiversity found in the marine environment is remarkable and yet largely unknown compared with the terrestrial one. The associated genetic resource, also wide and unrevealed, has raised a strong interest from the scientific and industrial community. However, despite this growing interest, the discovery of new compounds extracted from marine organisms, more precisely from microorganisms, is ruled by a complex legislation. The access and transfer of genetic resource are ruled by the Convention on Biological Diversity. One of the three core objectives of this convention is to ensure the fair and equitable sharing of benefits generated by the use of genetic resources and to split these benefits between the different stakeholders. From the discovery of a microorganism to the commercialization of a product, three main stakeholders are involved: providers of microorganisms, e.g. academic institutes, the scientists who will perform R&D on biodiversity, and the industrial companies which will commercialize the final product arising from the R&D results. This article describes how difficult and complex it might be to ensure a fair distribution of benefits of this research between the parties.

  18. Commercial product exploitation from marine microbial biodiversity: some legal and IP issues

    PubMed Central

    Tichet, Camille; Nguyen, Hong Khanh; Yaakoubi, Sefia El; Bloch, Jean‐François

    2010-01-01

    Summary The biodiversity found in the marine environment is remarkable and yet largely unknown compared with the terrestrial one. The associated genetic resource, also wide and unrevealed, has raised a strong interest from the scientific and industrial community. However, despite this growing interest, the discovery of new compounds extracted from marine organisms, more precisely from microorganisms, is ruled by a complex legislation. The access and transfer of genetic resource are ruled by the Convention on Biological Diversity. One of the three core objectives of this convention is to ensure the fair and equitable sharing of benefits generated by the use of genetic resources and to split these benefits between the different stakeholders. From the discovery of a microorganism to the commercialization of a product, three main stakeholders are involved: providers of microorganisms, e.g. academic institutes, the scientists who will perform R&D on biodiversity, and the industrial companies which will commercialize the final product arising from the R&D results. This article describes how difficult and complex it might be to ensure a fair distribution of benefits of this research between the parties. PMID:21255350

  19. Starter Culture Selection for Making Chinese Sesame-Flavored Liquor Based on Microbial Metabolic Activity in Mixed-Culture Fermentation

    PubMed Central

    Wu, Qun; Ling, Jie

    2014-01-01

    Selection of a starter culture with excellent viability and metabolic activity is important for inoculated fermentation of traditional food. To obtain a suitable starter culture for making Chinese sesame-flavored liquor, the yeast and bacterium community structures were investigated during spontaneous and solid-state fermentations of this type of liquor. Five dominant species in spontaneous fermentation were identified: Saccharomyces cerevisiae, Pichia membranaefaciens, Issatchenkia orientalis, Bacillus licheniformis, and Bacillus amyloliquefaciens. The metabolic activity of each species in mixed and inoculated fermentations of liquor was investigated in 14 different cocultures that used different combinations of these species. The relationships between the microbial species and volatile metabolites were analyzed by partial least-squares (PLS) regression analysis. We found that S. cerevisiae was positively correlated to nonanal, and B. licheniformis was positively associated with 2,3-butanediol, isobutyric acid, guaiacol, and 4-vinyl guaiacol, while I. orientalis was positively correlated to butyric acid, isovaleric acid, hexanoic acid, and 2,3-butanediol. These three species are excellent flavor producers for Chinese liquor. Although P. membranaefaciens and B. amyloliquefaciens were not efficient flavor producers, the addition of them alleviated competition among the other three species and altered their growth rates and flavor production. As a result, the coculture of all five dominant species produced the largest amount of flavor compounds. The result indicates that flavor producers and microbial interaction regulators are important for inoculated fermentation of Chinese sesame-flavored liquor. PMID:24814798

  20. Estimating the frequency of high microbial counts in commercial food products using various distribution functions.

    PubMed

    Corradini, M G; Normand, M D; Nussinovitch, A; Horowitz, J; Peleg, M

    2001-05-01

    Industrial microbial count records usually form an irregular fluctuating time series. If the series is truly random or weakly autocorrelated, the fluctuations can be considered as the outcome of the interplay of numerous factors that promote or inhibit growth. These factors usually balance each other, although not perfectly, hence, the random fluctuations. If conditions are unchanged, then at least in principle the probability that they will produce a coherent effect, i.e., an unusually high (or low) count of a given magnitude, can be calculated from the count distribution. This theory was tested with miscellaneous industrial records (e.g., standard plate count, coliforms, yeasts) of various food products, including a dairy-based snack, frozen foods, and raw milk, using the normal, log normal, Laplace, log Laplace, Weibull, extreme value, beta, and log beta distribution functions. Comparing predicted frequencies of counts exceeding selected levels with those actually observed in fresh data assessed their efficacy. No single distribution was found to be inherently or consistently superior. It is, therefore, suggested that, when the probability of an excessive count is estimated, several distribution functions be used simultaneously and a conservative value be used as the measure of the risk.

  1. Experimental effect of ozone upon the microbial flora of commercially produced dairy fermented products.

    PubMed

    Alexopoulos, A; Plessas, S; Kourkoutas, Y; Stefanis, C; Vavias, S; Voidarou, C; Mantzourani, I; Bezirtzoglou, E

    2017-04-04

    Ozone was used to control spoilage microorganisms during the manufacturing of dairy products. Ozone stream was applied onto the surface of freshly filled yoghurt cups just before storage for curd development in order to prevent cross contamination from spoilage airborne microorganisms. Accordingly, brine solution was bubbled with ozone for various periods of time and used for ripening of white (feta type) cheese. Both products were subjected to a continuous monitoring of microbial load and also tested for their sensorial properties. In ozonated yoghurt samples there was a reduction in mould counts of approximately 0.6Logcfu/g (25.1%) by the end of the monitoring period in relation to the control samples. In white cheese ripened with ozonated brine (1.3mg/L O3, NaCl 5%) it seems that ozone treatment during the two months of observation reduced some of the mould load but without offering any advantages over the use of traditional brine (NaCl 7%). However, some sensorial alterations were observed, probably due to the organic load in the brine which deactivates ozone in early stages of application. It is concluded that, if the factors of time and concentration of ozone are configured properly, ozonation could be a promising approach safeguarding the production of some dairy products.

  2. Microbial assessment of an upward and downward dehiding technique in a commercial beef processing plant.

    PubMed

    Kennedy, Thomas G; Giotis, Efstathios S; McKevitt, Aideen I

    2014-08-01

    Preventing microbial contamination during dehiding is challenging, and skinning methods are of critical importance for the hygienic status of beef carcasses. Two skinning methods are usually employed: upward hide pulling (UHP) and downward hide pulling (DHP). This study has compared the microbiological contamination of carcasses using both systems in a beef processing plant in the process of changing its dehiding method from UHP to DHP. 100 cm(2) areas from eight carcass sites (ham, chuck, rump, bung, flank, brisket, shin and neck) were sampled on 36 skinned carcasses dehided by each technique. Total viable counts (TVCs) and Enterobacteriaceae counts for each site were determined. No significant differences were observed in total (pooled-samples) carcass contamination regardless of the method used. However, significant differences (p<0.05) in TVCs were observed at the flank, shin, brisket and neck. These differences can be attributed to possible deficiencies in the implementation of the HACCP pre-requisite programmes, and are not necessarily associated with the skinning method per se.

  3. Microbial diversity in sugarcane ethanol production in a Brazilian distillery using a culture-independent method.

    PubMed

    Costa, Ohana Yonara Assis; Souto, Betulia Morais; Tupinambá, Daiva Domenech; Bergmann, Jessica Carvalho; Kyaw, Cynthia Maria; Kruger, Ricardo Henrique; Barreto, Cristine Chaves; Quirino, Betania Ferraz

    2015-01-01

    Sugarcane ethanol production occurs in non-sterile conditions, and microbial contamination can decrease productivity. In this study, we assessed the microbial diversity of contaminants of ethanol production in an industrial facility in Brazil. Samples obtained at different stages were analyzed by pyrosequencing-based profiling of bacterial and archaeal 16S rRNA genes and the fungal internal transcribed spacer region. A total of 355 bacterial groups, 22 archaeal groups, and 203 fungal groups were identified, and community changes were related to temperature changes at certain stages. After fermentation, Lactobacillus and unclassified Lactobacillaceae accounted for nearly 100 % of the bacterial sequences. Predominant Fungi groups were "unclassified Fungi," Meyerozyma, and Candida. The predominant Archaea group was unclassified Thaumarchaeota. This is the first work to assess the diversity of Bacteria, and Archaea and Fungi associated with the industrial process of sugarcane-ethanol production using culture-independent techniques.

  4. Chemical, microbial and physical evaluation of commercial bottled waters in greater Houston area of Texas.

    PubMed

    Saleh, Mahmoud A; Abdel-Rahman, Fawzia H; Woodard, Brooke B; Clark, Shavon; Wallace, Cecil; Aboaba, Adetoun; Zhang, Wenluo; Nance, James H

    2008-03-01

    Due to the increased demand and consumption of bottled water in the United States, there has been a growing concern about the quality of this product. Retail outlets sell local as well as imported bottled water to consumers. Three bottles for each of 35 different brands of bottled water were randomly collected from local grocery stores in the greater Houston area. Out of the 35 different brands, 16 were designated as spring water, 11 were purified and/or fortified tap water, 5 were carbonated water and 3 were distilled water. Chemical, microbial and physical properties of all samples were evaluated including pH, conductivity, bacteria counts, anion concentration, trace metal concentration, heavy metal and volatile organics concentration were determined in all samples. Inductively coupled plasma/mass spectrometry (ICPMS) was used for elemental analysis, gas chromatography with electron capture detector (GCECD) as well as gas chromatography mass spectrometry (GCMS) were used for analysis of volatile organics, ion chromatography (IC) and selective ion electrodes were used for the analysis of anions. Bacterial identification was performed using the Biolog software (Biolog, Inc., Hayward, Ca, USA). The results obtained were compared with guidelines of drinking water recommended by the International Bottled Water Association (IBWA), United States Food and Drug Administration (FDA), United States Environmental Protection Agency (EPA) and the World Health Organization (WHO) drinking water standard. The majority of the analyzed chemicals were below their respective drinking water standards for maximum admissible concentrations (MAC). Volatile organic chemicals were found to be below detection limits. Four of the 35 brands of the bottled water samples analyzed were found to be contaminated with bacteria.

  5. Design and Implementation of an Automated Illuminating, Culturing, and Sampling System for Microbial Optogenetic Applications.

    PubMed

    Stewart, Cameron J; McClean, Megan N

    2017-02-19

    Optogenetic systems utilize genetically-encoded proteins that change conformation in response to specific wavelengths of light to alter cellular processes. There is a need for culturing and measuring systems that incorporate programmed illumination and stimulation of optogenetic systems. We present a protocol for building and using a continuous culturing apparatus to illuminate microbial cells with programmed doses of light, and automatically acquire and analyze images of cells in the effluent. The operation of this apparatus as a chemostat allows the growth rate and the cellular environment to be tightly controlled. The effluent of the continuous cell culture is regularly sampled and the cells are imaged by multi-channel microscopy. The culturing, sampling, imaging, and image analysis are fully automated so that dynamic responses in the fluorescence intensity and cellular morphology of cells sampled from the culture effluent are measured over multiple days without user input. We demonstrate the utility of this culturing apparatus by dynamically inducing protein production in a strain of Saccharomyces cerevisiae engineered with an optogenetic system that activates transcription.

  6. Assessment of Microbial Diversity in Biofilms Recovered from Endotracheal Tubes Using Culture Dependent and Independent Approaches

    PubMed Central

    Vandecandelaere, Ilse; Matthijs, Nele; Van Nieuwerburgh, Filip; Deforce, Dieter; Vosters, Peter; De Bus, Liesbet; Nelis, Hans J.; Depuydt, Pieter; Coenye, Tom

    2012-01-01

    Ventilator-associated pneumonia (VAP) is a common nosocomial infection in mechanically ventilated patients. Biofilm formation is one of the mechanisms through which the endotracheal tube (ET) facilitates bacterial contamination of the lower airways. In the present study, we analyzed the composition of the ET biofilm flora by means of culture dependent and culture independent (16 S rRNA gene clone libraries and pyrosequencing) approaches. Overall, the microbial diversity was high and members of different phylogenetic lineages were detected (Actinobacteria, beta-Proteobacteria, Candida spp., Clostridia, epsilon-Proteobacteria, Firmicutes, Fusobacteria and gamma-Proteobacteria). Culture dependent analysis, based on the use of selective growth media and conventional microbiological tests, resulted in the identification of typical aerobic nosocomial pathogens which are known to play a role in the development of VAP, e.g. Staphylococcus aureus and Pseudomonas aeruginosa. Other opportunistic pathogens were also identified, including Staphylococcus epidermidis and Kocuria varians. In general, there was little correlation between the results obtained by sequencing 16 S rRNA gene clone libraries and by cultivation. Pyrosequencing of PCR amplified 16 S rRNA genes of four selected samples resulted in the identification of a much wider variety of bacteria. The results from the pyrosequencing analysis suggest that these four samples were dominated by members of the normal oral flora such as Prevotella spp., Peptostreptococcus spp. and lactic acid bacteria. A combination of methods is recommended to obtain a complete picture of the microbial diversity of the ET biofilm. PMID:22693635

  7. Growth of nutritionally variant streptococci on common laboratory and 10 commercial blood culture media.

    PubMed Central

    Reimer, L G; Reller, L B

    1981-01-01

    Nutritionally variant streptococci fail to grow on routine sheep blood agar plates. Moreover, these strains are a recognized cause of culture-negative endocarditis. We tested the ability of chocolate and brucella blood agars, sheep blood agar with a staphylococcal streak, sheep blood agar with 0.001% pyridoxal, and 10 commercial blood culture media from two manufactures to grow these bacteria. Of the original 25 strains tested, 16 were recovered on chocolate agar, 21 were recovered on brucella blood agar and 21 were recovered on sheep blood agar with a staphylococcal streak. Sheep blood agar with pyridoxal grew all 22 strains tested. Supplemented peptone, thioglycolate, and thiol broths grew all strains, but brain heart infusion and three tryptic soy broths supported five or fewer strains. The addition of 5 ml of human blood improved recovery to 100% in all media except tryptic soy broths. Unless supplemented wih pyridoxal, common laboratory agars were inadequate for recovering all strains of variant streptococci upon subculture of blood culture bottles. As used clinically, the blood culture media that we studied other than tryptic soy broths should reliably grow these bacteria. PMID:7287889

  8. Long-term dinoflagellate culture performance in a commercial photobioreactor: Amphidinium carterae case.

    PubMed

    Fuentes-Grünewald, C; Bayliss, C; Fonlut, F; Chapuli, E

    2016-10-01

    The aim of this work was to study the culture performance of a dinoflagellate in a commercial photobioreactor. The results obtained during this long-term experiment allow to confirm that Amphidinium carterae is a promising dinoflagellate that can be exploited successfully in closed systems, in semi-continuous mode in indoor and outdoor environments. The average results in an indoor 5cm light-path 320L photobioreactor were, in terms of specific growth rate (0.29d(-1)), duplication time (3.1d(-1)) and dry biomass productivity (78mgL(-1)d(-1)). Specific compounds production was found including ω3 and ω6 fatty acids and, pigments (Peridinin, β-carotene). These promising results, besides unique characteristics found during the exploitation period such as resistance to mechanical stress, self-control of contaminant organisms, and quick cells aggregation when the culture is not in turbulence conditions, makes A. carterae one of the new target species suitable for commercially exploitation on an industrial scale.

  9. Modeling microbial ethanol production by E. coli under aerobic/anaerobic conditions: applicability to real postmortem cases and to postmortem blood derived microbial cultures.

    PubMed

    Boumba, Vassiliki A; Kourkoumelis, Nikolaos; Gousia, Panagiota; Economou, Vangelis; Papadopoulou, Chrissanthy; Vougiouklakis, Theodore

    2013-10-10

    The mathematical modeling of the microbial ethanol production under strict anaerobic experimental conditions for some bacterial species has been proposed by our research group as the first approximation to the quantification of the microbial ethanol production in cases where other alcohols were produced simultaneously with ethanol. The present study aims to: (i) study the microbial ethanol production by Escherichia coli under controlled aerobic/anaerobic conditions; (ii) model the correlation between the microbial produced ethanol and the other higher alcohols; and (iii) test their applicability in: (a) real postmortem cases that had positive BACs (>0.10 g/L) and co-detection of higher alcohols and 1-butanol during the original ethanol analysis and (b) postmortem blood derived microbial cultures under aerobic/anaerobic controlled experimental conditions. The statistical evaluation of the results revealed that the formulated models were presumably correlated to 1-propanol and 1-butanol which were recognized as the most significant descriptors of the modeling process. The significance of 1-propanol and 1-butanol as descriptors was so powerful that they could be used as the only independent variables to create a simple and satisfactory model. The current models showed a potential for application to estimate microbial ethanol - within an acceptable standard error - in various tested cases where ethanol and other alcohols have been produced from different microbes.

  10. Microbial diversity of wild bird feathers revealed through culture-based and culture-independent techniques.

    PubMed

    Shawkey, Matthew D; Mills, Kimberly L; Dale, Colin; Hill, Geoffrey E

    2005-07-01

    Despite recent interest in the interactions between birds and environmental microbes, the identities of the bacteria that inhabit the feathers of wild birds remain largely unknown. We used culture-based and culture-independent surveys of the feathers of eastern bluebirds (Sialis sialis) to examine bacterial flora. When used to analyze feathers taken from the same birds, the two survey techniques produced different results. Species of the poorly defined genus Pseudomonas were most common in the molecular survey, whereas species of the genus Bacillus were predominant in the culture-based survey. This difference may have been caused by biases in both the culture and polymerase chain reaction techniques that we used. The pooled results from both techniques indicate that the overall community is diverse and composed largely of members of the Firmicutes and beta- and gamma- subdivisions of the Proteobacteria. For the most part, bacterial sequences isolated from birds were closely related to sequences of soil-borne and water-borne bacteria in the GenBank database, suggesting that birds may have acquired many of these bacteria from the environment. However, the metabolic properties and optimal growth requirements of several isolates suggest that some of the bacteria may have a specialized association with feathers.

  11. Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli.

    PubMed

    Zhang, Haoran; Stephanopoulos, Gregory

    2016-07-01

    3-amino-benzoic acid (3AB) is an important building block molecule for production of a wide range of important compounds such as natural products with various biological activities. In the present study, we established a microbial biosynthetic system for de novo 3AB production from the simple substrate glucose. First, the active 3AB biosynthetic pathway was reconstituted in the bacterium Escherichia coli, which resulted in the production of 1.5 mg/L 3AB. In an effort to improve the production, an E. coli-E. coli co-culture system was engineered to modularize the biosynthetic pathway between an upstream strain and an downstream strain. Specifically, the upstream biosynthetic module was contained in a fixed E. coli strain, whereas a series of E. coli strains were engineered to accommodate the downstream biosynthetic module and screened for optimal production performance. The best co-culture system was found to improve 3AB production by 15 fold, compared to the mono-culture approach. Further engineering of the co-culture system resulted in biosynthesis of 48 mg/L 3AB. Our results demonstrate co-culture engineering can be a powerful new approach in the broad field of metabolic engineering.

  12. Microbial culture collections as pillars for promoting fungal diversity, conservation and exploitation.

    PubMed

    Sette, Lara Durães; Pagnocca, Fernando Carlos; Rodrigues, André

    2013-11-01

    Fungi are a diverse group of organisms with an overall global number of 1.5M up to 3.3M species on Earth. Besides their ecological roles as decomposers, fungi are important in several aspects of applied research. Here, we review how culture collections may promote the knowledge on diversity, conservation and biotechnological exploitation of fungi. The impact of fungi diversity on biotechnological studies is discussed. We point out the major roles of microbial repositories, including fungal preservation, prospecting, identification, authentication and supply. A survey on the World Data Center for Microorganisms (WDCM) powered by the World Federation for Culture Collections and on the Genetic Heritage Management Council (CGEN) database revealed that 46 Brazilian culture collections registered in these databases are dedicate to preserving fungi. Most of these culture collections are located in the Southeast of Brazil. This scenario also demonstrates that Brazil has many collections focused on fungal strains, but the lack of up-to-date information in WDCM as well as of a solid national platform for culture collections registration do not allow accurate assessment of fungal preservation.

  13. A moderately thermophilic mixed microbial culture for bioleaching of chalcopyrite concentrate at high pulp density.

    PubMed

    Wang, Yuguang; Zeng, Weimin; Qiu, Guanzhou; Chen, Xinhua; Zhou, Hongbo

    2014-01-01

    Three kinds of samples (acid mine drainage, coal mine wastewater, and thermal spring) derived from different sites were collected in China. Thereafter, these samples were combined and then inoculated into a basal salts solution in which different substrates (ferrous sulfate, elemental sulfur, and chalcopyrite) served as energy sources. After that, the mixed cultures growing on different substrates were pooled equally, resulting in a final mixed culture. After being adapted to gradually increasing pulp densities of chalcopyrite concentrate by serial subculturing for more than 2 years, the final culture was able to efficiently leach the chalcopyrite at a pulp density of 20% (wt/vol). At that pulp density, the culture extracted 60.4% of copper from the chalcopyrite in 25 days. The bacterial and archaeal diversities during adaptation were analyzed by denaturing gradient gel electrophoresis and constructing clone libraries of the 16S rRNA gene. The results show that the culture consisted mainly of four species, including Leptospirillum ferriphilum, Acidithiobacillus caldus, Sulfobacillus acidophilus, and Ferroplasma thermophilum, before adapting to a pulp density of 4%. However, L. ferriphilum could not be detected when the pulp density was greater than 4%. Real-time quantitative PCR was employed to monitor the microbial dynamics during bioleaching at a pulp density of 20%. The results show that A. caldus was the predominant species in the initial stage, while S. acidophilus rather than A. caldus became the predominant species in the middle stage. F. thermophilum accounted for the greatest proportion in the final stage.

  14. A Moderately Thermophilic Mixed Microbial Culture for Bioleaching of Chalcopyrite Concentrate at High Pulp Density

    PubMed Central

    Wang, Yuguang; Zeng, Weimin; Qiu, Guanzhou; Chen, Xinhua

    2014-01-01

    Three kinds of samples (acid mine drainage, coal mine wastewater, and thermal spring) derived from different sites were collected in China. Thereafter, these samples were combined and then inoculated into a basal salts solution in which different substrates (ferrous sulfate, elemental sulfur, and chalcopyrite) served as energy sources. After that, the mixed cultures growing on different substrates were pooled equally, resulting in a final mixed culture. After being adapted to gradually increasing pulp densities of chalcopyrite concentrate by serial subculturing for more than 2 years, the final culture was able to efficiently leach the chalcopyrite at a pulp density of 20% (wt/vol). At that pulp density, the culture extracted 60.4% of copper from the chalcopyrite in 25 days. The bacterial and archaeal diversities during adaptation were analyzed by denaturing gradient gel electrophoresis and constructing clone libraries of the 16S rRNA gene. The results show that the culture consisted mainly of four species, including Leptospirillum ferriphilum, Acidithiobacillus caldus, Sulfobacillus acidophilus, and Ferroplasma thermophilum, before adapting to a pulp density of 4%. However, L. ferriphilum could not be detected when the pulp density was greater than 4%. Real-time quantitative PCR was employed to monitor the microbial dynamics during bioleaching at a pulp density of 20%. The results show that A. caldus was the predominant species in the initial stage, while S. acidophilus rather than A. caldus became the predominant species in the middle stage. F. thermophilum accounted for the greatest proportion in the final stage. PMID:24242252

  15. Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases.

    PubMed

    Ryder, Kate; Bekhit, Alaa El-Din; McConnell, Michelle; Carne, Alan

    2016-10-01

    Five commercially available food-grade microbial protease preparations were evaluated for their ability to hydrolyse meat myofibrillar and connective tissue protein extracts to produce bioactive peptides. A bacterial-derived protease (HT) extensively hydrolysed both meat protein extracts, producing peptide hydrolysates with significant in vitro antioxidant and ACE inhibitor activities. The hydrolysates retained bioactivity after simulated gastrointestinal hydrolysis challenge. Gel permeation chromatography sub-fractionation of the crude protein hydrolysates showed that the smaller peptide fractions exhibited the highest antioxidant and ACE inhibitor activities. OFFGEL electrophoresis of the small peptides of both hydrolysates showed that low isoelectric point peptides had antioxidant activity; however, no consistent relationship was observed between isoelectric point and ACE inhibition. Cell-based assays indicated that the hydrolysates present no significant cytotoxicity towards Vero cells. The results indicate that HT protease hydrolysis of meat myofibrillar and connective tissue protein extracts produces bioactive peptides that are non-cytotoxic, should be stable in the gastrointestinal tract and may contain novel bioactive peptide sequences.

  16. Microbial culture dynamics and chromium (VI) removal in packed-column microcosm reactors.

    PubMed

    Molokwane, Pulane E; Nkhalambayausi-Chirwa, Evans M

    2009-01-01

    Microbial Cr(VI) reduction in groundwater aquifer media was investigated in microcosm reactors extracted from Cr(VI) contaminated sites in South Africa. The reactors were operated under an influent Cr(VI) concentration of 40 mg/L to simulate the current Cr(VI) level at the contaminated site. Near complete Cr(VI) removal was observed in microcosm reactors inoculated with Cr(VI) reducing bacteria from dried activated sludge collected from a treatment plant receiving periodic loadings of Cr(VI). The best performance was observed under low hydraulic loading (flow rate, Q=0.310 cm(3)/hr). Microbial culture characterisation results showed a change in culture composition after 17 days of reactor operation, indicating Bacillus and Lysinibacillus species as the most dominant organisms in reactors that reduced Cr(VI). The predominance of Bacillus and Lysinibacillus species was either due to resilience against toxicity or adaptation to the changing conditions in the reactor. This research was the initial step towards the development of an in situ bioremediation process to contain the spread of a Cr(VI) plume in a groundwater aquifer at contaminated site in Brits, South Africa. South Africa holds about 72% percent of the world's chromium resources, the majority of which is mined in the North Eastern region of the country formally known as Transvaal.

  17. Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail

    PubMed Central

    2012-01-01

    Background A complete saccharification of plant polymers is the critical step in the efficient production of bio-alcohols. Beta-glucosidases acting in the degradation of intermediate gluco-oligosaccharides produced by cellulases limit the yield of the final product. Results In the present work, we have identified and then successfully cloned, expressed, purified and characterised 4 highly active beta-glucosidases from fibre-adherent microbial community from the cow rumen. The enzymes were most active at temperatures 45–55°C and pH 4.0-7.0 and exhibited high affinity and activity towards synthetic substrates such as p-nitrophenyl-beta-D-glucopyranoside (pNPbetaG) and pNP-beta-cellobiose, as well as to natural cello-oligosaccharides ranging from cellobiose to cellopentaose. The apparent capability of the most active beta-glucosidase, herein named LAB25g2, was tested for its ability to improve, at low dosage (31.25 units g-1 dry biomass, using pNPbetaG as substrate), the hydrolysis of pre-treated corn stover (dry matter content of 20%; 350 g glucan kg-1 dry biomass) in combination with a beta-glucosidase-deficient commercial Trichoderma reseei cellulase cocktail (5 units g-1 dry biomass in the basis of pNPbetaG). LAB25g2 increased the final hydrolysis yield by a factor of 20% (44.5 ± 1.7% vs. 34.5 ± 1.5% in control conditions) after 96–120 h as compared to control reactions in its absence or in the presence of other commercial beta-glucosidase preparations. The high stability (half-life higher than 5 days at 50°C and pH 5.2) and 2–38000 fold higher (as compared with reported beta-glucosidases) activity towards cello-oligosaccharides may account for its performance in supplementation assays. Conclusions The results suggest that beta-glucosidases from yet uncultured bacteria from animal digestomes may be of a potential interest for biotechnological processes related to the effective bio-ethanol production in combination with low dosage of commercial cellulases

  18. Microbial ecology studies of spontaneous fermentation: starter culture selection for prickly pear wine production.

    PubMed

    Rodríguez-Lerma, G K; Gutiérrez-Moreno, K; Cárdenas-Manríquez, M; Botello-Álvarez, E; Jiménez-Islas, H; Rico-Martínez, R; Navarrete-Bolaños, J L

    2011-08-01

    A procedure for designing starter cultures for fermentation is illustrated for prickly pear wine production. The illustration includes kinetic studies on inoculated and spontaneous fermentation, microorganism identification studies based on molecular biology tools, and microbial ecology studies, which led to the selection of strains that are capable of synthesizing alcohol and desirable volatile compounds. Results show that a mixed starter inoculum containing Pichia fermentans and Saccharomyces cerevisiae leads to a fermented product that contains 8.37% alcohol (v/v). The gas chromatography and mass spectrometry (GC-MS) analysis shows the presence of 9 major volatile compounds (Isobutanol, Isopentanol, Ethyl acetate, Isoamyl acetate, Ethyl octanoate, Ethyl decanoate, Ethyl 9-decanoate, β-Phenylethyl acetate, and Phenylethyl alcohol) that have ethereal, fruity, aromatic notes that are considered to be essential for a fine wine flavor. These compounds harmonically synergize with the alcohol to produce a fermented product with a unique flavor and taste. Several assays using the mixed culture show that the process is stable, predictable, controllable, and reproducible. Moreover, the results show that a mixed culture leads to a broader range of aromatic products than that produced by a single, pure culture. Therefore, we conclude that combinations of Saccharomyces strains and non-Saccharomyces strains can be used to obtain high-quality fermented beverages from prickly pear juice.

  19. Development of a competition model for microbial growth in mixed culture.

    PubMed

    Fujikawa, Hiroshi; Munakata, Kanako; Sakha, Mohammad Z

    2014-01-01

    A novel competition model for describing bacterial growth in mixed culture was developed in this study. Several model candidates were made with our logistic growth model that precisely describes the growth of a monoculture of bacteria. These candidates were then evaluated for the usefulness in describing growth of two competing species in mixed culture using Staphylococcus aureus, Escherichia coli, and Salmonella. Bacterial cells of two species grew at initial doses of 10(3), 10(4), and 10(5) CFU/g at 28ºC. Among the candidates, a model where the Lotka-Volterra model, a general competition model in ecology, was incorporated as a new term in our growth model was the best for describing all types of growth of two competitors in mixed culture. Moreover, the values for the competition coefficient in the model were stable at various combinations of the initial populations of the species. The Baranyi model could also successfully describe the above types of growth in mixed culture when it was coupled with the Gimenez and Dalgaard model. However, the values for the competition coefficients in the competition model varied with the conditions. The present study suggested that our model could be a basic model for describing microbial competition.

  20. Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures.

    PubMed

    Kucharzyk, Katarzyna H; Deshusses, Marc A; Porter, Kaitlyn A; Hsu-Kim, Heileen

    2015-09-01

    Monomethylmercury (MeHg) is produced in many aquatic environments by anaerobic microorganisms that take up and methylate inorganic forms of Hg(II). Net methylation of Hg(II) appears to be correlated with factors that affect the activity of the anaerobic microbial community and factors that increase the bioavailability of Hg(II) to these organisms. However, the relative importance of one versus the other is difficult to elucidate even though this information can greatly assist remediation efforts and risk assessments. Here, we investigated the effects of Hg speciation (dissolved Hg and nanoparticulate HgS) and microbial activity on the net production of MeHg using two mixed microbial cultures that were enriched from marine sediments under sulfate reducing conditions. The cultures were amended with dissolved Hg (added as a dissolved nitrate salt) and nanoparticulate HgS, and grown under different carbon substrate concentrations. The results indicated that net mercury methylation was the highest for cultures incubated in the greatest carbon substrate concentration (60 mM) compared to incubations with less carbon (0.6 and 6 mM), regardless of the form of mercury amended. Net MeHg production in cultures exposed to HgS nanoparticles was significantly slower than in cultures exposed to dissolved Hg; however, the difference diminished with slower growing cultures with low carbon addition (0.6 mM). The net Hg methylation rate was found to correlate with sulfate reduction rate in cultures exposed to dissolved Hg, while methylation rate was roughly constant for cultures exposed to nanoparticulate HgS. These results indicated a potential threshold of microbial productivity: below this point net MeHg production was limited by microbial activity, regardless of Hg bioavailability. Above this threshold of productivity, Hg speciation became a contributing factor towards net MeHg production.

  1. Resistance to alternative management in fisheries: economic and cultural considerations of North Carolina's commercial fishers.

    PubMed

    Crosson, Scott

    2011-01-01

    Research in recent decades has shown that although conventional fisheries management strategies such as fishing seasons, size limits, or gear restrictions can provide sufficient biological protection to fisheries stocks, they do not necessarily lead to satisfactory social or economic outcomes. In their stead, the merits and shortcomings of a variety of alternate management systems, including individual transferable quotas, have been proposed, implemented, and analyzed. Few investigations, however, have examined actual fishers' preferences for different management systems. Integrating results from a mail survey of North Carolina commercial fishers with their individual harvest histories and sociodemographic profiles shows that economic and cultural variables both play a significant role in management system preference. The analysis introduces the use of the Herfindahl-Hirschman Index (HHI), a measure of investment diversity, as a measure of diversity in fisheries harvests and demonstrates an association with management preferences. Social and family factors are also notable indicators.

  2. Biodegradation Of Thiocyanate Using Microbial Consortia Cultured From Gold Mine Tailings

    NASA Astrophysics Data System (ADS)

    Moreau, J. W.; Watts, M. P.; Spurr, L. P.; Vu, H. P.

    2015-12-01

    Some bacteria possess the capability to degrade SCN-; therefore, harnessing this metabolic trait offers a biotechnological remediation strategy for SCN- produced in gold ore processing. A tailings storage facility (TSF) at a gold mine in Victoria, Australia holds large quantities of thiocyanate (SCN-) contaminated mine waste. The surface water in the TSF typically contains SCN- concentrations of >800 mg L-1, and seepage from the facility has contaminated the groundwater at the site. This study aimed to culture SCN-degrading microbes from the TSF, characterize the microbial consortia and test its operational parameters for use in a thiocyanate-degrading bioreactor. Surface samples were obtained from several locations around the TSF facility and used to inoculate medium reflective of the moderately saline and alkaline tailings water at the TSF, in the absence of organic carbon but subject to additions of phosphate and trace metals. Four microbial consortia capable of rapid SCN- degradation were successfully cultured. Sequencing of 16S rRNA genes found that the consortia were dominated by Thiobacillus species, a genus of known SCN- degraders. Lower abundances of other SCN- degraders; Sphingopyxis and Rhodobacter, were also identified. The impact of a number of geochemical conditions, including pH, temperature and SCN- concentration, upon the growth and SCN- degrading capacity of these consortia was determined. These results informed the optimization of a lab-scale thiocyanate degrading bioreactor. In summary, the cultured bacterial consortia proved effective towards SCN- degradation at the prevailing geochemical conditions of the TSF, requiring minimal nutrient additions. These consortia were dominated by genera of known autotrophic SCN- degraders. The comprehensive characterisation of these SCN- degrading consortia will provide the fundamental operational parameters required for deployment of this technique at the field scale.

  3. Microbial dynamics and biodiversity in table olive fermentation: culture-dependent and -independent approaches

    PubMed Central

    Botta, Cristian; Cocolin, Luca

    2012-01-01

    The microbial ecology of the table olive fermentation process is a complex set of dynamics in which the roles of the lactic acid bacteria (LAB) and yeast populations are closely related, and this synergism is of fundamental importance to obtain high quality products. Several studies on the ecology of table olives, both in spontaneous fermentations and in inoculated ones, have focused on the identification and characterization of yeasts, as they play a key role in the definition of the final organoleptic profiles through the production of volatile compounds. Moreover, these are able to promote the growth of LAB, which is responsible for the stabilization of the final product through the acidification activity and the inhibition of the growth of pathogenic bacteria. The current empirical production process of table olives could be improved through the development of mixed starter cultures. These can only be developed after a deep study of the population dynamics of yeasts and LAB by means of molecular methods. Until now, most studies have exploited culture-dependent approaches to define the natural microbiota of brine and olives. These approaches have identified two main species of LAB, namely Lactobacillus plantarum and L. pentosus, while, as far as yeasts are concerned, the most frequently isolated genera are Candida, Pichia, and Saccharomyces. However, there are a few studies in literature in which a culture-independent approach has been employed. This review summarizes the state of the art of the microbial ecology of table olive fermentations and it focuses on the different approaches and molecular methods that have been applied. PMID:22783248

  4. Microbial oxidation of elemental selenium in soil slurries and bacterial cultures

    USGS Publications Warehouse

    Dowdle, P.R.; Oremland, R.S.

    1998-01-01

    The microbial oxidation of elemental selenium [Se(O)] was studied by employing 75Se(O) as a tracer. Live, oxic soil slurries demonstrated a linear production of mostly Se(IV), with the formation of smaller quantities of Se(VI). Production of both Se(IV) and Se(VI) was inhibited by autoclaving, formalin, antibiotics, azide, and 2,4-dinitrophenol, thereby indicating the involvement of microbes. Oxidation of Se(O) in slurries was enhanced by addition of acetate, glucose, or sulfide, which implied involvement of chemoheterotrophs as well as chemoautotrophic thiobacilli. Cultures of Thiobacillus ASN-1, Leptothrix MnB1, and a heterotrophic soil enrichment all oxidized Se(O) with Se(VI) observed as the major product rather than Se(IV). This indicated that microbial oxidation in soils is partly constrained by the adsorption of Se(IV) onto soil surfaces. Rate constants for unamended soil slurry Se(O) oxidation ranged from 0.0009 to 0.0117 day-1 which were 3-4 orders of magnitude lower than those reported for dissimilatory Se(VI) reduction in organic-rich, anoxic sediments.The microbial oxidation of elemental selenium [Se(0)] was studied by employing 75Se(0) as a tracer. Live, oxic soil slurries demonstrated a linear production of mostly Se(IV), with the formation of smaller quantities of Se(VI). Production of both Se(IV) and Se(VI) was inhibited by autoclaving, formalin, antibiotics, azide, and 2,4-dinitrophenol, thereby indicating the involvement of microbes. Oxidation of Se(O) in slurries was enhanced by addition of acetate, glucose, or sulfide, which implied involvement of chemoheterotrophs as well as chemoautotrophic thiobacilli. Cultures of Thiobacillus ASN-1, Leptothrix MnB1, and a heterotrophic soil enrichment all oxidized Se(O) with Se(VI) observed as the major product rather than Se(IV). This indicated that microbial oxidation in soils is partly constrained by the adsorption of Se(IV) onto soil surfaces. Rate constants for unamended soil slurry Se(O) oxidation

  5. Analysis of microbial community variation during the mixed culture fermentation of agricultural peel wastes to produce lactic acid.

    PubMed

    Liang, Shaobo; Gliniewicz, Karol; Gerritsen, Alida T; McDonald, Armando G

    2016-05-01

    Mixed cultures fermentation can be used to convert organic wastes into various chemicals and fuels. This study examined the fermentation performance of four batch reactors fed with different agricultural (orange, banana, and potato (mechanical and steam)) peel wastes using mixed cultures, and monitored the interval variation of reactor microbial communities with 16S rRNA genes using Illumina sequencing. All four reactors produced similar chemical profile with lactic acid (LA) as dominant compound. Acetic acid and ethanol were also observed with small fractions. The Illumina sequencing results revealed the diversity of microbial community decreased during fermentation and a community of largely lactic acid producing bacteria dominated by species of Lactobacillus developed.

  6. Use of the isolator 1.5 microbial tube for culture of synovial fluid from patients with septic arthritis.

    PubMed

    Yagupsky, P; Press, J

    1997-09-01

    Synovial fluid specimens obtained from patients with arthritis were plated onto solid media (conventional cultures) or inoculated into an Isolator 1.5 microbial tube (Isolator cultures), and the yield and time to detection of organisms were compared. Overall, 144 specimens obtained from 137 patients were processed, and 31 (21.5%) cultures obtained from 29 patients were positive by at least one method. Staphylococcus aureus was isolated from 12 patients, Streptococcus pneumoniae and Kingella kingae were isolated from 4 patients each, group G streptococci were isolated from 3 patients, Staphylococcus epidermidis and members of the family Enterobacteriaceae were isolated from 2 patients each, and Streptococcus mitis and Peptostreptococcus prevotii were isolated from 1 patient each. Overall, the causative organism was detected in 31 of 31 (100.0%) Isolator cultures and 24 of 31 (77.4%) conventional cultures (P < 0.02). Twenty-nine of 31 (93.5%) positive Isolator cultures and 20 of 24 (83.3%) conventional cultures were positive by the second day of incubation. Among the 24 cultures positive by both methods, higher numbers of CFU per milliliter were detected with the Isolator system in 13 cultures and with conventional cultures in 2 cultures (P < 0.002). Inoculation of synovial fluid into an Isolator 1.5 microbial tube improves the recovery of organisms causing septic arthritis.

  7. Effect of the commercial ripening stage and postharvest storage on microbial and aroma changes of 'Ambrunés' sweet cherries.

    PubMed

    Serradilla, Manuel Joaquín; Martín, Alberto; Hernandez, Alejandro; López-Corrales, Margarita; Lozano, Mercedes; Córdoba, María de Guía

    2010-08-25

    The purpose of this work was to investigate the effect of the commercial ripening stage and postharvest storage on microbial and aroma changes of 'Ambrunés' sweet cherries. The microbial counts and volatile profile of sweet cherry batches automatically sanitized and classified in three commercial ripening stages were studied for five postharvest storages. The batches were also evaluated sensorially, and the correlations between volatile compounds and aroma quality were determined. The microbial counts provided evidence that 21 days of cold storage is near the maximum extension of 'Ambrunés' sweet cherry storage in maintaining the minimal microbial quality during their shelf-life period. Relevant changes associated with longer cold storages were found in different aroma constituents with a negative impact on flavor. These changes were more evident in less ripened sweet cherries, including a decrease of (E)-2-hexenal and 1-hexanol and an increase of 2-methyl-propanal and 2-methyl-butanal. These compounds could constitute a good tool to predict flavor quality in 'Ambrunés' sweet cherries during the cold-storage process.

  8. Metagenomics analysis of microbial communities associated with a traditional rice wine starter culture (Xaj-pitha) of Assam, India.

    PubMed

    Bora, Sudipta Sankar; Keot, Jyotshna; Das, Saurav; Sarma, Kishore; Barooah, Madhumita

    2016-12-01

    This is the first report on the microbial diversity of xaj-pitha, a rice wine fermentation starter culture through a metagenomics approach involving Illumine-based whole genome shotgun (WGS) sequencing method. Metagenomic DNA was extracted from rice wine starter culture concocted by Ahom community of Assam and analyzed using a MiSeq(®) System. A total of 2,78,231 contigs, with an average read length of 640.13 bp, were obtained. Data obtained from the use of several taxonomic profiling tools were compared with previously reported microbial diversity studies through the culture-dependent and culture-independent method. The microbial community revealed the existence of amylase producers, such as Rhizopus delemar, Mucor circinelloides, and Aspergillus sp. Ethanol producers viz., Meyerozyma guilliermondii, Wickerhamomyces ciferrii, Saccharomyces cerevisiae, Candida glabrata, Debaryomyces hansenii, Ogataea parapolymorpha, and Dekkera bruxellensis, were found associated with the starter culture along with a diverse range of opportunistic contaminants. The bacterial microflora was dominated by lactic acid bacteria (LAB). The most frequent occurring LAB was Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc lactis, Weissella cibaria, Lactococcus lactis, Weissella para mesenteroides, Leuconostoc pseudomesenteroides, etc. Our study provided a comprehensive picture of microbial diversity associated with rice wine fermentation starter and indicated the superiority of metagenomic sequencing over previously used techniques.

  9. How commercial and ``violent'' video games can promote culturally sensitive science learning: some questions and challenges

    NASA Astrophysics Data System (ADS)

    Kwah, Helen

    2012-12-01

    In their paper, Muñoz and El-Hani propose to bring video games into science classrooms to promote culturally sensitive ethics and citizenship education. Instead of bringing "educational" games, Muñoz and El-Hani take a more creative route and include games such as Fallout 3® precisely because they are popular and they reproduce ideological and violent representations of gender, race, class, nationality, science and technology. However, there are many questions that arise in bringing these commercial video games into science classrooms, including the questions of how students' capacities for critical reflection can be facilitated, whether traditional science teachers can take on the role of using such games in their classrooms, and which video games would be most appropriate to use. In this response, I raise these questions and consider some of the challenges in order to further the possibility of implementing Muñoz and El-Hani's creative proposal for generating culturally sensitive science classrooms.

  10. A commercially available cell culture device modified for dentin barrier tests.

    PubMed

    Schmalz, G; Garhammer, P; Schweiki, H

    1996-05-01

    The suitability of a dentin barrier test based on a commercially available cell culture chamber was evaluated by testing the cytotoxicity of dental cements. The two chambers of the culture device as produced are separated by a membrane. This was replaced by a bovine dentin disk (500 micrometers thick). Mouse fibroblasts were grown on the "pulpal" side of the dentin for 24 h; test materials were then placed into the "cavity" side of the upper chamber. The number of viable cells was determined after 24 h. After exposure to zinc phosphate cement at a powder/liquid ratio of 2:1, approximately 100% of cells survived. A ratio of 1:1 yielded 81% survival. Only 24% and 28% of the cells survived after exposure to Ketac Fil and Ketac Silver, respectively. The light-curing glass ionomer cement (vitrebond) and zinc oxide-eugenol killed all cells. These results agree with those obtained from a previous study, wherein the dentin barrier test device was constructed in our laboratory.

  11. Effects of carbohydrates from citrus pulp and hominy feed on microbial fermentation in continuous culture.

    PubMed

    Ariza, P; Bach, A; Stern, M D; Hall, M B

    2001-10-01

    Eight dual-flow continuous-culture fermenters were used to evaluate the effect of neutral detergent-soluble carbohydrates (NDSC) on fermentation by ruminal microorganisms. Citrus pulp and hominy feed were added to a basal diet as sources of NDSC, with citrus pulp providing neutral detergent-soluble fiber (NDSF) in the form of pectic substances and with hominy feed in the form of starch. The basal diet contained 26.7% corn silage, 6.0% alfalfa hay and 3.8% cottonseed hulls on a DM basis. The dried citrus pulp diet contained on a DM basis 17.2% CP, 34.7% NDF, 33.7% NDSC, and 14.4% NDSF, whereas the hominy feed diet contained 17.9% CP, 33.2% NDF, 35.9% NDSC, and 8.8% NDSF. Organic matter, DM, and NDF and ADF digestion were not affected by source of carbohydrate. Ammonia N concentration was greater (P < 0.05) for the hominy feed diet (14.2 mg/100 mL) than for the dried citrus pulp diet (9.3 mg/100 mL). Total N, nonammonia N, microbial N, and dietary N flows were not affected by treatments; however, the efficiency of microbial protein synthesis was greater (P = 0.055) for the dried citrus pulp diet than for the hominy feed diet (30.6 vs 27.8 g of bacterial N/kg of OM truly digested). Results from this experiment indicate that NDSF from citrus pulp can provide similar sources of energy compared with starch from hominy feed to support ruminal microbial growth.

  12. A defined co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell.

    PubMed

    Bourdakos, Nicholas; Marsili, Enrico; Mahadevan, Radhakrishnan

    2014-04-01

    Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater-fed MFCs because of their complex microbial communities. Defined co-culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory-scale membrane-less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co-culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co-culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m(-2) , compared to 63 mW m(-2) from the co-culture MFCs. Analysis of metabolites shows that succinate production in co-culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co-culture MFCs. Interestingly, pH adjustment is not required for co-culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co-culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity.

  13. A Continuous Culture System for Assessing Microbial Activities in the Piezosphere

    PubMed Central

    Pérez-Rodríguez, Ileana

    2015-01-01

    Continuous culture under elevated pressures is an important technique for expanding the exploration of microbial growth and survival in extreme environments associated with the deep biosphere. Here we present a benchtop stirred continuous culture bioreactor capable of withstanding temperatures ranging from 25 to 120°C and pressures as high as 69 MPa. The system is configured to allow the employment of media enriched in dissolved gases, under oxic or anoxic conditions, while permitting periodic sampling of the incubated organisms with minimal physical/chemical disturbance inside the reactor. In a pilot experiment, the fermentative growth of the thermopiezophilic bacterium Marinitoga piezophila was investigated continuously for 382 h at 65°C and at pressures ranging from 0.1 to 40 MPa while the medium flow rate was varied from 2 to 0.025 ml/min. The enhanced growth observed at 30 and 40 MPa and 0.025 ml/min supports the pressure preferences of M. piezophila when grown fermentatively. This assay successfully demonstrates the capabilities of the bioreactor for continuous culturing at a variety of dilution rates, pressures, and temperatures. We anticipate that this technology will accelerate our understanding of the physiological and metabolic status of microorganisms under temperature, pressure, and energy regimes resembling those of the Earth's piezosphere. PMID:26209666

  14. Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture.

    PubMed

    Rahimnejad, Mostafa; Najafpour, Ghasem Darzi; Ghoreyshi, Ali Asghar; Talebnia, Farid; Premier, Giuliano C; Bakeri, Gholamreza; Kim, Jung Rae; Oh, Sang-Eun

    2012-08-01

    Microbial fuel cells (MFCs) have been shown to be capable of clean energy production through the oxidation of biodegradable organic waste using various bacterial species as biocatalysts. In this study we found Saccharomyces cerevisiae, previously known electrochemcially inactive or less active species, can be acclimated with an electron mediator thionine for electrogenic biofilm formation in MFC, and electricity production is improved with facilitation of electron transfer. Power generation of MFC was also significantly increased by thionine with both aerated and non-aerated cathode. With electrochemically active biofilm enriched with swine wastewater, MFC power increased more significantly by addition of thionine. The optimum mediator concentration was 500 mM of thionine with S. cerevisae in MFC with the maximum voltage and current generation in the microbial fuel cell were 420 mV and 700 mA/m(2), respectively. Cyclic voltametry shows that thionine improves oxidizing and reducing capability in both pure culture and acclimated biofilm as compared to non-mediated cell. The results obtained indicated that thionine has great potential to enhance power generation from unmediated yeast or electrochemically active biofilm in MFC.

  15. Culture-Dependent and -Independent Methods To Investigate the Microbial Ecology of Italian Fermented Sausages

    PubMed Central

    Rantsiou, Kalliopi; Urso, Rosalinda; Iacumin, Lucilla; Cantoni, Carlo; Cattaneo, Patrizia; Comi, Giuseppe; Cocolin, Luca

    2005-01-01

    In this study, the microbial ecology of three naturally fermented sausages produced in northeast Italy was studied by culture-dependent and -independent methods. By plating analysis, the predominance of lactic acid bacteria populations was pointed out, as well as the importance of coagulase-negative cocci. Also in the case of one fermentation, the fecal enterocci reached significant counts, highlighting their contribution to the particular transformation process. Yeast counts were higher than the detection limit (>100 CFU/g) in only one fermented sausage. Analysis of the denaturing gradient gel electrophoresis (DGGE) patterns and sequencing of the bands allowed profiling of the microbial populations present in the sausages during fermentation. The bacterial ecology was mainly characterized by the stable presence of Lactobacillus curvatus and Lactobacillus sakei, but Lactobacillus paracasei was also repeatedly detected. An important piece of evidence was the presence of Lactococcus garvieae, which clearly contributed in two fermentations. Several species of Staphylococcus were also detected. Regarding other bacterial groups, Bacillus sp., Ruminococcus sp., and Macrococcus caseolyticus were also identified at the beginning of the transformations. In addition, yeast species belonging to Debaryomyces hansenii, several Candida species, and Willopsis saturnus were observed in the DGGE gels. Finally, cluster analysis of the bacterial and yeast DGGE profiles highlighted the uniqueness of the fermentation processes studied. PMID:15812029

  16. Microbial alginate dressings show improved binding capacity for pathophysiological factors in chronic wounds compared to commercial alginate dressings of marine origin.

    PubMed

    Fischer, Melissa; Gebhard, Florian; Hammer, Timo; Zurek, Christian; Meurer, Guido; Marquardt, Christoph; Hoefer, Dirk

    2017-01-01

    Marine alginates are well established in wound management. Compared with different modern wound dressings, marine alginates cannot prove superior effects on wound healing. Alginates from bacteria have never been studied for medical applications so far, although the microbial polymer raises expectations for improved binding of wound factors because of its unique O-acetylation. Due to its possible positive effects on wound healing, alginates from bacteria might be a superior future medical product for clinical use. To prove the binding capacity of microbial alginates to pathophysiological factors in chronic wounds, we processed microbial alginate fibres, produced from fermentation of the soil bacterium Azotobacter vinelandii ATCC 9046, into needle web dressings and compared them with commercial dressings made of marine alginate. Four dressings were assessed: Marine alginate dressings containing either ionic silver or zinc/manganese/calcium, and microbial alginate dressings with and without nanosilver. All dressings were tested in an in vitro approach for influence on chronic wound parameters such as elastase, matrix metalloproteases-2, tumour necrosis factor-α, interleukin-8, and free radical formation. Despite the alginate origin or addition of antimicrobials, all dressings were able to reduce the concentration of the proinflammatory cytokines TNF-α and IL-8. However, microbial alginate was found to bind considerable larger amounts of elastase and matrix metalloproteases-2 in contrast to the marine alginate dressings. The incorporation of zinc, silver or nanosilver into alginate fibres did not improve their binding capacity for proteases or cytokines. The addition of nanosilver slightly enhanced the antioxidant capacity of microbial alginate dressings, whereas the marine alginate dressing containing zinc/manganese/calcium was unable to inhibit the formation of free radicals. The enhanced binding affinity by microbial alginate of Azotobacter vinelandii to

  17. Homogeneous Matrix Deposition on Dried Agar for MALDI Imaging Mass Spectrometry of Microbial Cultures

    NASA Astrophysics Data System (ADS)

    Hoffmann, Thomas; Dorrestein, Pieter C.

    2015-11-01

    Matrix deposition on agar-based microbial colonies for MALDI imaging mass spectrometry is often complicated by the complex media on which microbes are grown. This Application Note demonstrates how consecutive short spray pulses of a matrix solution can form an evenly closed matrix layer on dried agar. Compared with sieving dry matrix onto wet agar, this method supports analyte cocrystallization, which results in significantly more signals, higher signal-to-noise ratios, and improved ionization efficiency. The even matrix layer improves spot-to-spot precision of measured m/z values when using TOF mass spectrometers. With this technique, we established reproducible imaging mass spectrometry of myxobacterial cultures on nutrient-rich cultivation media, which was not possible with the sieving technique.

  18. Pentachlorophenol degradation: a pure bacterial culture and an epilithic microbial consortium.

    PubMed Central

    Brown, E J; Pignatello, J J; Martinson, M M; Crawford, R L

    1986-01-01

    The steady-state growth of a Flavobacterium strain known to utilize pentachlorophenol (PCP) was examined when cellobiose and PCP simultaneously limited its growth rate in continuous culture. A concentration of 600 mg of PCP per liter in influent medium could be continuously degraded without affecting steady-state growth. We measured specific rates of PCP carbon degradation as high as 0.15 +/- 0.01 g (dry weight) of C per h at a growth rate of 0.045 h-1. Comparable specific rates of PCP degradation were obtained and maintained by PCP-adapted, natural consortia of epilithic microorganisms. The consortium results suggest that a fixed-film bioreactor containing a PCP-adapted natural microbial population could be used to treat PCP-contaminated water. PMID:3729408

  19. Kinetic analysis of high-concentration isopropanol biodegradation by a solvent-tolerant mixed microbial culture.

    PubMed

    Bustard, Mark T; Meeyoo, Vissanu; Wright, Phillip C

    2002-06-20

    The ability of a previously enriched microbial population to utilize isopropanol (IPA) as the sole carbon source within a minimal salts medium is studied. The advantage of prior enrichment procedures for the improvement of IPA biodegradation performance is demonstrated for an IPA concentration of up to 24 g L(-1). Results showing the interrelationship between temperature and substrate utilization and inhibition levels at temperatures of between 2 degrees C and 45 degrees C are examined. Models of inhibition based on enzyme kinetics are assessed via nonlinear analysis, in order to accurately represent the growth kinetics of this solvent-tolerant mixed culture. The model that best describes the data is the Levenspiel substrate inhibition model, which can predict the maximum substrate level above which growth is completely limited. This is the first report of IPA treatment of up to 24 g L(-1) by an aerobic solvent-tolerant population.

  20. Pentachlorophenol degradation: a pure bacterial culture and an epilithic microbial consortium

    SciTech Connect

    Brown, E.J.; Pignatello, J.J.; Martinson, M.M.; Crawford, R.L.

    1986-07-01

    The steady-state growth of a Flavobacterium strain known to utilize pentachlorophenol (PCP) was examined when cellobiose and PCP simultaneously limited its growth rate in continuous culture. A concentration of 600 mg of PCP per liter in influent medium could be continuously degraded without affecting steady-state growth. We measured specific rates of PCP carbon degradation as high as 0.15 +/- 0.01 g (dry weight) of C per h at a growth rate of 0.045 h-1. Comparable specific rates of PCP degradation were obtained and maintained by PCP-adapted, natural consortia of epilithic microorganisms. The consortium results suggest that a fixed-film bioreactor containing a PCP-adapted natural microbial population could be used to treat PCP-contaminated water.

  1. Effects of commercial marinade seasoning and a natural blend of cultured sugar and vinegar on Campylobacter jejuni and Salmonella Typhimurium and the texture of chicken breasts.

    PubMed

    Park, Na Yoon; Hong, Soo Hyeon; Yoon, Ki Sun

    2014-03-01

    Marination using various ingredients has been widely used to improve microbial safety and quality of chicken products at retail markets. The objective of this study was to investigate the effects of commercial marinade seasoning and cultured sugar/vinegar blend on Campylobacter jejuni and Salmonella Typhimurium populations during refrigerated storage. In addition, their effects on the texture of precooked chicken breasts during frozen and refrigerated storage was investigated. Chicken breasts inoculated with 4.5 to 5.0 log cfu/g of C. jejuni and Salmonella Typhimurium were treated with 3% cultured sugar/vinegar blend with and without 0.6% polish rub seasoning containing 32% herb content. Breasts were then vacuum-packaged and stored at 4 and 10°C. Survival and growth curves were fitted to the Baranyi equation to determine survival and growth kinetics of C. jejuni and Salmonella Typhimurium. In addition, the vacuum-packaged precooked chicken breasts with different marination treatments were subjected to 3 freeze-thaw cycles and shear force was measured. At 4°C, the populations of C. jejuni and Salmonella Typhimurium decreased, regardless of treatment group during storage. The greatest survival for C. jejuni was observed in untreated chicken breasts. At 10°C, the growth of Salmonella Typhimurium was completely prevented in precooked chicken breasts treated with 3% cultured sugar/vinegar blend, regardless of the presence of 0.6% seasoning. The 3% cultured sugar/vinegar blend also improved the tenderness of frozen chicken breasts and refrigerated, ready-to-eat chicken breast. Therefore, a natural blend of cultured sugar and vinegar can be used as antimicrobial and texture-modifying agents for poultry meat and poultry products.

  2. Systematic comparison of nutraceuticals and antioxidant potential of cultivated, in vitro cultured and commercial Melissa officinalis samples.

    PubMed

    Dias, Maria Inês; Barros, Lillian; Sousa, Maria João; Ferreira, Isabel C F R

    2012-06-01

    Melissa officinalis (lemon balm) infusions are used worldwide for digestive, analgesic and other pharmaceutical applications. Herein, the nutraceuticals production and antioxidant potential in garden cultivated, in vitro cultured and two commercial samples (bags and granulated) of lemon balm was compared. The profile of in vitro cultured lemon balm is closer of garden cultivated sample than of both commercial samples (bag or granulate). It presented the highest levels of proteins and ash, and the lowest energetic value. The most favorable n6/n3 ration, as also the highest PUFA (mostly α-linolenic acid), tocopherols (including α-, γ- and δ-isoforms) and ascorbic acid contents were also observed in this sample. Nevertheless, it was the commercial bag lemon balm that gave the highest antioxidant activity and the highest levels of phenolics and flavonoids. As far as we kwon, this is the first comparison of nutraceuticals and antioxidant potential of cultivated, in vitro cultured and commercial lemon balm samples. Moreover, it proved that in vitro culture might be used to stimulate vitamins production.

  3. Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon.

    PubMed

    Beese-Vasbender, Pascal F; Grote, Jan-Philipp; Garrelfs, Julia; Stratmann, Martin; Mayrhofer, Karl J J

    2015-04-01

    Reduction of carbon dioxide to methane by microorganisms attached to electrodes is a promising process in terms of renewable energy storage strategies. However the efficient and specific electrosynthesis of methane by methanogenic archaea on cathodes needs fundamental investigations of the electron transfer mechanisms at the microbe-electrode interface without the addition of artificial electron mediators. Using well-defined electrochemical techniques directly coupled to gas chromatography and surface analysis by scanning electron microscopy, it is shown that a pure culture of the marine lithoautotrophic Methanobacterium-like archaeon strain IM1 is capable to utilize electrons from graphite cathodes for a highly selective production of methane, without hydrogen serving as a cathode-generated electron carrier. Microbial electrosynthesis of methane with cultures of strain IM1 is achieved at a set potential of -0.4V vs. SHE and is characterized by a coulomb efficiency of 80%, with rates reaching 350 nmol d(-1) cm(-2) after 23 days of incubation. Moreover, potential step measurements reveal a biologically catalyzed hydrogen production at potentials more positive than abiotic hydrogen evolution on graphite, indicating that an excessive supply of electrons to strain IM1 results in proton reduction rather than in a further increase of methane production.

  4. Performance of the FilmArray® blood culture identification panel utilized by non-expert staff compared with conventional microbial identification and antimicrobial resistance gene detection from positive blood cultures.

    PubMed

    McCoy, Morgan H; Relich, Ryan F; Davis, Thomas E; Schmitt, Bryan H

    2016-07-01

    Utilization of commercially available rapid platforms for microbial identification from positive blood cultures is useful during periods of, or in laboratories with, limited expert staffing. We compared the results of the FilmArray® BCID Panel performed by non-expert technologists to those of conventional methods for organism identification performed by skilled microbiologists. Within 8 h of signalling positive by a continuous monitoring blood culture system, positive bottles were analysed by the FilmArray BCID Panel. Data from these analyses were compared to standard-of-care testing, which included conventional and automated methods. To gauge the ease of use of the BCID Panel by non-expert staff, technologists unfamiliar with diagnostic bacteriology performed the testing without prior knowledge of the Gram stain results, or even whether organisms were detected. Identifications of 172/200 (86 %) positive blood cultures using the BCID Panel were consistent with identifications provided by standard-of-care methods. Standard-of-care testing identified organisms in 20 positive blood cultures, which were not represented on the BCID Panel. Seven (3.5 %) blood cultures demonstrated a discrepancy between the methods, which could not be attributed to either a lack of representation on the panel or unclear separate detection of organisms in a mixed blood culture of a shared genus or grouping of organisms, e.g. Staphylococcus or Enterobacteriaceae . One (0.5 %) blood culture yielded invalid results on two separate panels, so it was eliminated from the study. The easy-to-use FilmArray® technology shows good correlation with blood culture identification and antibiotic resistance detection performed by conventional methods. This technology may be particularly useful in laboratories with limited staffing or limited technical expertise.

  5. Cross-cultural perception of six commercial olive oils: A study with Spanish and US consumers.

    PubMed

    Vázquez-Araújo, L; Adhikari, K; Chambers, E; Chambers, D H; Carbonell-Barrachina, A A

    2015-09-01

    A cross-cultural study was conducted with Spanish and US consumers to gain an insight into the preferred characteristics of olive oils in both countries. Six commercial olive oils (four samples from Spain and two samples from the US) were analyzed by a highly trained panel (descriptive analysis) and also by two consumers' groups (100 consumers from Spain and 100 from the US). Demographic, acceptability, and Just-About-Right data were collected to study the preferences of both groups, and the relationships with descriptive data were explored to determine the drivers of like/dislike. The Spanish extra virgin olive oils and the imported US extra virgin olive oil were characterized by having bitter, pungent, and more green notes, and were preferred by the Spanish consumers. The US consumers liked the bland Spanish refined olive oil, and the Californian olive oil that was characterized by fruity, floral, and sweet notes. The results showed that the Spanish consumers were more aware about olive oil quality in general than their US counterparts, maybe because of a higher usage of the product in Spain. The present study provides essential data which might help producers in designing and promoting olive oils matching US consumers' requirements, an emerging market for this Mediterranean product.

  6. Identification and Characterization of Lactic Acid Bacteria in a Commercial Probiotic Culture

    PubMed Central

    MENCONI, Anita; KALLAPURA, Gopala; LATORRE, Juan D.; MORGAN, Marion J.; PUMFORD, Neil R.; HARGIS, Billy M.; TELLEZ, Guillermo

    2014-01-01

    The aim of the present study was to describe the identification and characterization (physiological properties) of two strains of lactic acid bacteria (LAB 18 and 48) present in a commercial probiotic culture, FloraMax®-B11. Isolates were characterized morphologically, and identified biochemically. In addition, the MIDI System ID, the Biolog ID System, and 16S rRNA sequence analyses for identification of LAB 18 and LAB 48 strains were used to compare the identification results. Tolerance and resistance to acidic pH, high osmotic concentration of NaCl, and bile salts were tested in broth medium. In vitro assessment of antimicrobial activity against enteropathogenic bacteria and susceptibility to antibiotics were also tested. The results obtained in this study showed tolerance of LAB 18 and LAB 48 to pH 3.0, 6.5% NaCl and a high bile salt concentration (0.6%). Both strains evaluated showed in vitro antibacterial activity against Salmonella enterica serovar Enteritidis, Escherichia coli (O157:H7), and Campylobacter jejuni. These are important characteristics of lactic acid bacteria that should be evaluated when selecting strains to be used as probiotics. Antimicrobial activity of these effective isolates may contribute to efficacy, possibly by direct antimicrobial activity in vivo. PMID:24936379

  7. Skew-laplace and cell-size distribution in microbial axenic cultures: statistical assessment and biological interpretation.

    PubMed

    Julià, Olga; Vidal-Mas, Jaume; Panikov, Nicolai S; Vives-Rego, Josep

    2010-01-01

    We report a skew-Laplace statistical analysis of both flow cytometry scatters and cell size from microbial strains primarily grown in batch cultures, others in chemostat cultures and bacterial aquatic populations. Cytometry scatters best fit the skew-Laplace distribution while cell size as assessed by an electronic particle analyzer exhibited a moderate fitting. Unlike the cultures, the aquatic bacterial communities clearly do not fit to a skew-Laplace distribution. Due to its versatile nature, the skew-Laplace distribution approach offers an easy, efficient, and powerful tool for distribution of frequency analysis in tandem with the flow cytometric cell sorting.

  8. Skew-Laplace and Cell-Size Distribution in Microbial Axenic Cultures: Statistical Assessment and Biological Interpretation

    PubMed Central

    Julià, Olga; Vidal-Mas, Jaume; Panikov, Nicolai S.; Vives-Rego, Josep

    2010-01-01

    We report a skew-Laplace statistical analysis of both flow cytometry scatters and cell size from microbial strains primarily grown in batch cultures, others in chemostat cultures and bacterial aquatic populations. Cytometry scatters best fit the skew-Laplace distribution while cell size as assessed by an electronic particle analyzer exhibited a moderate fitting. Unlike the cultures, the aquatic bacterial communities clearly do not fit to a skew-Laplace distribution. Due to its versatile nature, the skew-Laplace distribution approach offers an easy, efficient, and powerful tool for distribution of frequency analysis in tandem with the flow cytometric cell sorting. PMID:20592754

  9. Design of serum-free medium for suspension culture of CHO cells on the basis of general commercial media.

    PubMed

    Miki, Hideo; Takagi, Mutsumi

    2015-08-01

    The design of serum-free media for suspension culture of genetically engineered Chinese hamster ovary (CHO) cells using general commercial media as a basis was investigated. Subcultivation using a commercial serum-free medium containing insulin-like growth factor (IGF)-1 with or without FCS necessitated additives other than IGF-1 to compensate for the lack of FCS and improve cell growth. Suspension culture with media containing several combinations of growth factors suggested the effectiveness of addition of both IGF-1 and the lipid signaling molecule lysophosphatidic acid (LPA) for promoting cell growth. Subcultivation of CHO cells in suspension culture using the commercial serum-free medium EX-CELL™302, which contained an IGF-1 analog, supplemented with LPA resulted in gradually increasing specific growth rate comparable to the serum-containing medium and in almost the same high antibody production regardless of the number of generations. The culture with EX-CELL™302 supplemented with LPA in a jar fermentor with pH control at 6.9 showed an apparently higher cell growth rate than the cultures without pH control and with pH control at 6.8. The cell growth in the medium supplemented with aurintricarboxylic acid (ATA), which was much cheaper than IGF-1, in combination with LPA was synergistically promoted similarly to that in the medium supplemented with IGF-1 and LPA. In conclusion, the serum-free medium designed on the basis of general commercial media could support the growth of CHO cells and antibody production comparable to serum-containing medium in suspension culture. Moreover, the possibility of cost reduction by the substitution of IGF-1 with ATA was also shown.

  10. Yeast culture supplement during nursing and transport affects immunity and intestinal microbial ecology of weanling pigs.

    PubMed

    Weedman, S M; Rostagno, M H; Patterson, J A; Yoon, I; Fitzner, G; Eicher, S D

    2011-06-01

    The objectives of this study were to determine the influence of a Saccharomyces cerevisiae fermentation product on innate immunity and intestinal microbial ecology after weaning and transport stress. In a randomized complete block design, before weaning and in a split-plot analysis of a 2 × 2 factorial arrangement of yeast culture (YY) and transport (TT) after weaning, 3-d-old pigs (n = 108) were randomly assigned within litter (block) to either a control (NY, milk only) or yeast culture diet (YY; delivered in milk to provide 0.1 g of yeast culture product/kg of BW) from d 4 to 21. At weaning (d 21), randomly, one-half of the NY and YY pigs were assigned to a 6-h transport (NY-TT and YY-TT) before being moved to nursery housing, and the other one-half were moved directly to nursery housing (NY-NT and YY-NT, where NT is no transport). The yeast treatment was a 0.2% S. cerevisiae fermentation product and the control treatment was a 0.2% grain blank in feed for 2 wk. On d 1 before transport and on d 1, 4, 7, and 14 after transport, blood was collected for leukocyte assays, and mesenteric lymph node, jejunal, and ileal tissue, and jejunal, ileal, and cecal contents were collected for Toll-like receptor expression (TLR); enumeration of Escherichia coli, total coliforms, and lactobacilli; detection of Salmonella; and microbial analysis. After weaning, a yeast × transport interaction for ADG was seen (P = 0.05). Transport affected (P = 0.09) ADFI after weaning. Yeast treatment decreased hematocrit (P = 0.04). A yeast × transport interaction was found for counts of white blood cells (P = 0.01) and neutrophils (P = 0.02) and for the neutrophil-to-lymphocyte ratio (P = 0.02). Monocyte counts revealed a transport (P = 0.01) effect. Interactions of yeast × transport (P = 0.001) and yeast × transport × day (P = 0.09) for TLR2 and yeast × transport (P = 0.08) for TLR4 expression in the mesenteric lymph node were detected. Day affected lactobacilli, total coliform, and E

  11. Studying Microbial Mat Functioning Amidst "Unexpected Diversity": Methodological Approaches and Initial Results from Metatranscriptomes of Mats Over Diel cycles, iTags from Long Term Manipulations, and Biogeochemical Cycling in Simplified Microbial Mats Constructed from Cultures

    NASA Astrophysics Data System (ADS)

    Bebout, B.; Bebout, L. E.; Detweiler, A. M.; Everroad, R. C.; Lee, J.; Pett-Ridge, J.; Weber, P. K.

    2014-12-01

    Microbial mats are famously amongst the most diverse microbial ecosystems on Earth, inhabiting some of the most inclement environments known, including hypersaline, dry, hot, cold, nutrient poor, and high UV environments. The high microbial diversity of microbial mats makes studies of microbial ecology notably difficult. To address this challenge, we have been using a combination of metagenomics, metatranscriptomics, iTags and culture-based simplified microbial mats to study biogeochemical cycling (H2 production, N2 fixation, and fermentation) in microbial mats collected from Elkhorn Slough, Monterey Bay, California. Metatranscriptomes of microbial mats incubated over a diel cycle have revealed that a number of gene systems activate only during the day in Cyanobacteria, while the remaining appear to be constitutive. The dominant cyanobacterium in the mat (Microcoleus chthonoplastes) expresses several pathways for nitrogen scavenging undocumented in cultured strains, as well as the expression of two starch storage and utilization cycles. Community composition shifts in response to long term manipulations of mats were assessed using iTags. Changes in community diversity were observed as hydrogen fluxes increased in response to a lowering of sulfate concentrations. To produce simplified microbial mats, we have isolated members of 13 of the 15 top taxa from our iTag libraries into culture. Simplified microbial mats and simple co-cultures and consortia constructed from these isolates reproduce many of the natural patterns of biogeochemical cycling in the parent natural microbial mats, but against a background of far lower overall diversity, simplifying studies of changes in gene expression (over the short term), interactions between community members, and community composition changes (over the longer term), in response to environmental forcing.

  12. Polyhydroxyalkanoates production with mixed microbial cultures: from culture selection to polymer recovery in a high-rate continuous process.

    PubMed

    Villano, Marianna; Valentino, Francesco; Barbetta, Andrea; Martino, Lucrezia; Scandola, Mariastella; Majone, Mauro

    2014-06-25

    Polyhydroxyalkanoates (PHA) production with mixed microbial cultures (MMC) has been investigated by means of a sequential process involving three different stages, consisting of a lab-scale sequencing batch reactor for MMC selection, a PHA accumulation reactor and a polymer extraction reactor. All stages were performed under continuous operation for at least 4 months to check the overall process robustness as well as the related variability of polymer composition and properties. By operating both biological stages at high organic loads (8.5 and 29.1 gCOD/Ld, respectively) with a synthetic mixture of acetic and propionic acid, it was possible to continuously produce PHA at 1.43 g/Ld with stable performance (overall, the storage yield was 0.18 COD/COD). To identify the optimal operating conditions of the extraction reactor, two digestion solutions have been tested, NaOH (1m) and NaClO (5% active Cl2). The latter resulted in the best performance both in terms of yield of polymer recovery (around 100%, w/w) and purity (more than 90% of PHA content in the residual solids, on a weight basis). In spite of the stable operating conditions and performance, a large variation was observed for the HV content, ranging between 4 and 20 (%, w/w) for daily samples after accumulation and between 9 and 13 (%, w/w) for weekly average samples after extraction and lyophilization. The molecular weight of the produced polymer ranged between 3.4 × 10(5) and 5.4 × 10(5)g/mol with a large polydispersity index. By contrast, TGA and DSC analysis showed that the thermal polymer behavior did not substantially change over time, although it was strongly affected by the extraction agent used (NaClO or NaOH).

  13. Culture dependent and independent genomic identification of Alicyclobacillus species in contaminated commercial fruit juices.

    PubMed

    Osopale, Babasola Adewunmi; Witthuhn, Cornelia Regina; Albertyn, Jacobus; Oguntoyinbo, Folarin Anthony

    2016-06-01

    Alicyclobacillus is a genus of thermo-acidophilic, endospore-forming, bacteria species which occasionally cause spoilage of heat-processed fruit juices by producing guaiacol taint. In this study, Alicyclobacillus contamination of commercial fruit juices in West Africa was investigated using culture-dependent and -independent approaches. Firstly, a total of 225 fruit juice products from Ghana (n = 39) and Nigeria (n = 186) were enriched with yeast-starch-glucose (YSG) broth (pH 3.7) following heat shock at 80 °C for 10 min. Alicyclobacillus was detected in 11.6% (26) of samples. Isolates were identified to the genus taxonomic level by genus-specific PCR which targeted the squalene-hopene-cyclase (shc) gene followed by analysis of the almost-complete 16S ribosomal RNA (rRNA) gene sequences that identified 16 Alicyclobacillus acidoterrestris, 7 Alicyclobacillus acidocaldarius and 3 Alicyclobacillus genomic species 1 (Alicyclobacillus sp. 1). Whole-genome fingerprinting using PCR-RAPD primers Ba-10, F-61 and F-64 grouped the 16 A. acidoterrestris isolates into two genetic clusters. Furthermore, high performance liquid chromatographic (HPLC) analyses revealed the activity of vanillic-acid decarboxylase (vdc) in all A. acidoterrestris isolates due to guaiacol production from vanillic-acid. Lastly, species-specific PCR-DGGE targeting the 16S rRNA gene clearly discriminated between the guaiacol-producing A. acidoterrestris and the non-spoilage A. acidocaldarius group. Information provided by this study is fundamental to the development of effective strategies for the improvement of quality and shelf-life of processed tropical fruit juices in W. Africa.

  14. Temperature effects on microbial respiration assessed with CO2-exchange and continuous culture techniques

    NASA Astrophysics Data System (ADS)

    Lehmeier, C.; Min, K.; Song, C.; Ballantyne, F.; Billings, S. A.

    2012-12-01

    Recent work attempts to incorporate requirements of soil microorganisms for carbon and other resources, and how these requirements may respond to temperature, into theoretical concepts of soil organic matter decomposition and climate change. Because of the difficulties of measuring resource fluxes in natural soils, empirical data to guide these concepts remain scarce. Here, we present an experimental system that combines continuous culture techniques with CO2 measurements to study carbon fluxes through microbes in a reductionist, controlled environment amenable to experimental manipulation. In this pilot study, we quantified mass specific respiration rates (MSR) and δ13C of respired CO2 of Pseudomonas fluorescens, a Gram-negative bacterium common to soils, grown at 15°C and 25°C with otherwise identical environmental conditions. The microbes were grown in a 1.9 L bioreactor, in 0.9 L of nutrient medium with C:N:P atomic ratios of 100:10:3, and with 10 mM cellobiose as the carbon source. A peristaltic pump continuously supplied the bioreactor with sterile medium, and removed medium from the bioreactor, at a rate of 63 mL h-1. Both vessels were contained within a temperature incubator, and stir bars provided continuously well mixed volumes. CO2-free air was continuously bubbled through the reactor medium so to provide the microbes with O2; a cavity ring down spectrometer withdrew reactor headspace air and measured concentration and δ13C of the CO2. Air supply was regulated with a pressure/mass flow controller to approx. 27 mL min-1. In both temperature regimes, the pH of the bioreactor as well as concentration and δ13C of the CO2 in the head space air were constant over the course of 1 d, such that any imbalances in the CO2-H2CO3 equilibrium were considered negligible in the assessment of microbial respiration rates and the δ13C of respired CO2. After this time period, reactor medium was passed through a 0.22 μm filter and the filtrate dried for 24 h to obtain

  15. Characterization and performance of anodic mixed culture biofilms in submersed microbial fuel cells.

    PubMed

    Saba, Beenish; Christy, Ann D; Yu, Zhongtang; Co, Anne C; Islam, Rafiq; Tuovinen, Olli H

    2017-02-01

    Microbial fuel cells (MFCs) were designed for laboratory scale experiments to study electroactive biofilms in anodic chambers. Anodic biofilms and current generation during biofilm growth were examined using single chambered MFCs submersed in algal catholyte. A culture of the marine green alga Nanochloropsis salina was used as a biocatholyte, and a rumen fluid microbiota was the anodic chamber inoculum. Electrical impedance spectroscopy was performed under varying external resistance once a week to identify mass transport limitations at the biofilm-electrolyte interface during the four-week experiment. The power generation increased from 249 to 461mWm(-2) during the time course. Confocal laser scanning microscopy imaging showed that the depth of the bacterial biofilm on the anode was about 65μm. There were more viable bacteria on the biofilm surface and near the biofilm-electrolyte interface as compared to those close to the anode surface. The results suggest that biofilm growth on the anode creates a conductive layer, which can help overcome mass transport limitations in MFCs.

  16. Characterization of polyhydroxyalkanoates synthesized from microbial mixed cultures and of their nanobiocomposites with bacterial cellulose nanowhiskers.

    PubMed

    Martínez-Sanz, Marta; Villano, Marianna; Oliveira, Catarina; Albuquerque, Maria G E; Majone, Mauro; Reis, Maria; Lopez-Rubio, Amparo; Lagaron, Jose M

    2014-06-25

    The present work reports on the production and characterization of polyhydroxyalkanoates (PHAs) with different valerate contents, which were synthesized from microbial mixed cultures, and the subsequent development of nanocomposites incorporating bacterial cellulose nanowhiskers (BCNW) via solution casting processing. The characterization of the pure biopolyesters showed that the properties of PHAs may be strongly modified by varying the valerate ratio in the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) copolymer, as expected. Increasing the valerate content was seen to greatly decrease the melting temperature and enthalpy of the material, as well as its rigidity and stiffness, resulting in a more ductile behaviour. Additionally, the higher valerate PHA displayed higher permeability to water and oxygen and higher moisture sensitivity. Subsequently, BCNW were incorporated into both PHA grades, achieving a high level of dispersion for a 1 wt.-% loading, whereas some agglomeration took place for 3 wt.-% BCNW. As evidenced by DSC analyses, BCNW presented a nucleating effect on the PHA matrices. BCNW also increased the thermal stability of the polymeric matrices when properly dispersed due to strong matrix-filler interactions. Barrier properties were seen to depend on relative humidity and improved at low nanofiller loadings and low relative humidity.

  17. Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture.

    PubMed

    Colombo, Bianca; Pepè Sciarria, Tommy; Reis, Maria; Scaglia, Barbara; Adani, Fabrizio

    2016-10-01

    Two fermented cheese wheys (FCW), FCW1 composed of lactic, acetic and butyric acids in the proportion of 58/16/26 (% CODOrganic Acid (OA)) and FCW2 composed of acetic, propionic, butyric, lactic and valeric acids in the proportion of 58/19/13/6/4 (% CODOA) were used to produce polyhydroxyalkanoates (PHAs) by using a pre-selected mixed microbial culture (MMC). PHA accumulation gave for fermented FCW1 a PHA yield (Ytot) of 0.24±0.02mgCODPHAmgCODSolubleSubstrate(SS)(-1) and a total PHA production, referred to the substrate used, of 60gPHAkgcheesewheyTotalSolids(TS)(-1). For fermented FCW2 results were: PHA yield (Ytot) of 0.42±0.03mgCODPHAmgCODSS(-1) and PHA from a substrate of 70gPHAkgcheesewheyTS(-1). Qualitatively, PHAs from FCW1 was made up exclusively of 3-hydroxybutyrate (HB), while those obtained from FCW2 were composed of 40% of 3-hydroxyvalerate (HV) and 60% of HB.

  18. [Investigation and culture of microbial contaminants of Caulerpa lentillifera (Sea Grape)].

    PubMed

    Kudaka, Jun; Itokazu, Kiyomasa; Taira, Katsuya; Nidaira, Minoru; Okano, Sho; Nakamura, Masaji; Iwanaga, Setsuko; Tominaga, Masaya; Ohno, Atsushi

    2008-02-01

    Caulerpa lentillifera is a kind of edible seaweed, known as 'sea grape' or 'green caviar'. It is used in fresh salads. However, it is sensitive to low temperature and osmotic pressure, and is easily spoilt by storage in a refrigerator or washing with tap water. That is the reason why it is difficult to prevent food poisoning, especially due to Vibrio parahaemolyticus. In this study we investigated of marine bacteria and V. parahaemolyticus in C. lentillifera and cultured them in order to develop effective control of bacteria in commercial farms. The sixteen farms in the Okinawa Islands were investigated from August to September in 2006. A total of 176 samples were collected from eleven points during the cultivation processes and from the products. About 10(3) cfu/mL of marine bacteria were detected in the seawater used in the tank culture, but after cultivation of C. lentillifera the number had increased to about 10(6) cfu/mL. The number of marine bacteria in C. lentillifera did not change significantly through the process of planting to the final product (about 10(7) cfu/g). V. parahaemolyticus was detected in seawater from all processes and C. lentillifera was isolated from 56% of seawater, 25% of seed-stocks, and 18.8% of product samples, though but thermostable direct hemolysin gene was not detected from enrichment cultures or isolated V. parahaemolyticus strains. These results indicate that for prevention of food poisoning by V. parahaemolyticus in C. lentillifera, it is important to establish a suitable sterilization procedure for each process.

  19. Measurement of Microbial DNA Polymerase Activity Enables Detection and Growth Monitoring of Microbes from Clinical Blood Cultures

    PubMed Central

    Zweitzig, Daniel R.; Riccardello, Nichol M.; Morrison, John; Rubino, Jason; Axelband, Jennifer; Jeanmonod, Rebecca; Sodowich, Bruce I.; Kopnitsky, Mark J.; O’Hara, S. Mark

    2013-01-01

    Surveillance of bloodstream infections (BSI) is a high priority within the hospital setting. Broth-based blood cultures are the current gold standard for detecting BSI, however they can require lengthy incubation periods prior to detection of positive samples. We set out to demonstrate the feasibility of using enzymatic template generation and amplification (ETGA)-mediated measurement of DNA polymerase activity to detect microbes from clinical blood cultures. In addition to routine-collected hospital blood cultures, one parallel aerobic blood culture was collected and immediately refrigerated until being transported for ETGA analysis. After refrigeration holding and transport, parallel-collected cultures were placed into a BACTEC incubator and ETGA time-course analysis was performed. Of the 308 clinical blood cultures received, 22 were BACTEC positive, and thus were initially selected for ETGA time course analysis. The ETGA assay detected microbial growth in all 22 parallel-positive blood cultures in less time than a BACTEC incubator and also yielded genomic DNA for qPCR-based organism identification. In summary, feasibility of detecting microbes from clinical blood culture samples using the ETGA blood culture assay was demonstrated. Additional studies are being considered towards development of clinically beneficial versions of this methodology. PMID:24155986

  20. Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures.

    PubMed

    Silva, Fernando; Campanari, Sabrina; Matteo, Stefania; Valentino, Francesco; Majone, Mauro; Villano, Marianna

    2017-07-25

    A sequencing batch reactor (SBR) is typically used for selecting mixed microbial cultures (MMC) for polyhydroxyalkanoate (PHA) production. Since many waste streams suitable as process feedstock for PHA production are nitrogen-deficient, a nutrient supply in the SBR is typically required to allow for efficient microbial growth. The scope of this study was to devise a nitrogen feeding strategy which allows controlling the nitrogen levels during the feast and famine regime of a lab-scale SBR, thereby selecting for PHA-storing microorganisms. At the beginning of the cycle the reactor was fed with a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5gCODL(-1)d(-1) (i.e. 260CmmolL(-1)d(-1)), whereas nitrogen (in the form of ammonium sulphate) was added either simultaneously to the carbon feed (coupled feeding strategy) or after the end of the feast phase (uncoupled feeding strategy). As a main result, PHA production was more than doubled (up to about 1300±64mgCODL(-1)) when carbon and nitrogen were separately fed and the higher PHA production also corresponded to an 82% increase in the polymer HV content (up to 20±1%, wtwt(-1)). Three SBR runs were performed with the uncoupled carbon and nitrogen feeding at different carbon to nitrogen (C/N) ratios (of 14.3, 17.9, and 22.3CmolNmol(-1), respectively) which were varied by progressively reducing the concentration of the nitrogen feeding. In spite of a comparable PHA storage yield at 14.3 and 17.9CmolNmol(-1) (0.41±0.05 gCODPHA gCODVFA(-1) and 0.38±0.05 gCODPHA gCODVFA(-1), respectively), the storage response of the selected MMC significantly decreased when the C/N ratio was set at the highest investigated value. Notably, an increase in this parameter also resulted in a change in the HV content in the polymer regardless the composition of the organic acids solution.

  1. Teaching the Microbial Growth Curve Concept Using Microalgal Cultures and Flow Cytometry

    ERIC Educational Resources Information Center

    Forget, Nathalie; Belzile, Claude; Rioux, Pierre; Nozais, Christian

    2010-01-01

    The microbial growth curve is widely studied within microbiology classes and bacteria are usually the microbial model used. Here, we describe a novel laboratory protocol involving flow cytometry to assess the growth dynamics of the unicellular microalgae "Isochrysis galbana." The algal model represents an appropriate alternative to…

  2. Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N), Revealed by Culture-Independent Approaches.

    PubMed

    García-Moyano, Antonio; Austnes, Andreas Erling; Lanzén, Anders; González-Toril, Elena; Aguilera, Ángeles; Øvreås, Lise

    2015-10-13

    Svalbard, situated in the high Arctic, is an important past and present coal mining area. Dozens of abandoned waste rock piles can be found in the proximity of Longyearbyen. This environment offers a unique opportunity for studying the biological control over the weathering of sulphide rocks at low temperatures. Although the extension and impact of acid mine drainage (AMD) in this area is known, the native microbial communities involved in this process are still scarcely studied and uncharacterized. Several abandoned mining areas were explored in the search for active AMD and a culture-independent approach was applied with samples from two different runoffs for the identification and quantification of the native microbial communities. The results obtained revealed two distinct microbial communities. One of the runoffs was more extreme with regards to pH and higher concentration of soluble iron and heavy metals. These conditions favored the development of algal-dominated microbial mats. Typical AMD microorganisms related to known iron-oxidizing bacteria (Acidithiobacillus ferrivorans, Acidobacteria and Actinobacteria) dominated the bacterial community although some unexpected populations related to Chloroflexi were also significant. No microbial mats were found in the second area. The geochemistry here showed less extreme drainage, most likely in direct contact with the ore under the waste pile. Large deposits of secondary minerals were found and the presence of iron stalks was revealed by microscopy analysis. Although typical AMD microorganisms were also detected here, the microbial community was dominated by other populations, some of them new to this type of system (Saccharibacteria, Gallionellaceae). These were absent or lowered in numbers the farther from the spring source and they could represent native populations involved in the oxidation of sulphide rocks within the waste rock pile. This environment appears thus as a highly interesting field of potential

  3. Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N), Revealed by Culture-Independent Approaches

    PubMed Central

    García-Moyano, Antonio; Austnes, Andreas Erling; Lanzén, Anders; González-Toril, Elena; Aguilera, Ángeles; Øvreås, Lise

    2015-01-01

    Svalbard, situated in the high Arctic, is an important past and present coal mining area. Dozens of abandoned waste rock piles can be found in the proximity of Longyearbyen. This environment offers a unique opportunity for studying the biological control over the weathering of sulphide rocks at low temperatures. Although the extension and impact of acid mine drainage (AMD) in this area is known, the native microbial communities involved in this process are still scarcely studied and uncharacterized. Several abandoned mining areas were explored in the search for active AMD and a culture-independent approach was applied with samples from two different runoffs for the identification and quantification of the native microbial communities. The results obtained revealed two distinct microbial communities. One of the runoffs was more extreme with regards to pH and higher concentration of soluble iron and heavy metals. These conditions favored the development of algal-dominated microbial mats. Typical AMD microorganisms related to known iron-oxidizing bacteria (Acidithiobacillus ferrivorans, Acidobacteria and Actinobacteria) dominated the bacterial community although some unexpected populations related to Chloroflexi were also significant. No microbial mats were found in the second area. The geochemistry here showed less extreme drainage, most likely in direct contact with the ore under the waste pile. Large deposits of secondary minerals were found and the presence of iron stalks was revealed by microscopy analysis. Although typical AMD microorganisms were also detected here, the microbial community was dominated by other populations, some of them new to this type of system (Saccharibacteria, Gallionellaceae). These were absent or lowered in numbers the farther from the spring source and they could represent native populations involved in the oxidation of sulphide rocks within the waste rock pile. This environment appears thus as a highly interesting field of potential

  4. Effects of type of carbohydrate supplementation to lush pasture on microbial fermentation in continuous culture.

    PubMed

    Bach, A; Yoon, I K; Stern, M D; Jung, H G; Chester-Jones, H

    1999-01-01

    Eight single-flow continuous culture fermenters were used to study the effects of the type of energy source on ruminal N utilization from high quality pasture. The four dietary treatments included high quality grass and legume pasture alone (50:50; wt/wt), pasture plus soybean hulls, pasture plus beet pulp, and pasture plus corn. Diets supplemented with additional sources of energy (soybean hulls, beet pulp, and corn) were isocaloric but differed in the type and rate of carbohydrate fermentation. Energy supplements constituted 45% of the total dietary dry matter and were fed twice daily at 12-h intervals in place of pasture, which is characteristic of grain feeding at milking when animals are in a grazing situation. Energy supplementation reduced pH, NH3 N flow, and NH3 N concentration and increased bacterial N flow (as a percentage of N intake). The supplementation of corn and soybean hulls resulted in the highest microbial N flow (as a percentage of N intake). Corn had a tendency to reduce fiber digestion because of excessively low NH3 N concentrations. Beet pulp was similar to corn in that it decreased NH3 N concentrations. Supplementation of soybean hulls resulted in a more synchronized fermentation, greater volatile fatty acid production, and greater fiber digestion. Nitrogen utilization by microbes was maximized by supplementation with soybean hulls or corn twice a day. With diets based on pasture, it may be more important to improve bacterial N flow and bacterial utilization of N than to maximize the efficiency of bacterial protein synthesis because better utilization of N by ruminal microorganisms results in higher bacterial N flow and higher fiber digestion.

  5. Rapid culture-independent microbial analysis aboard the International Space Station (ISS).

    PubMed

    Maule, Jake; Wainwright, Norm; Steele, Andrew; Monaco, Lisa; Morris, Heather; Gunter, Daniel; Damon, Michael; Wells, Mark

    2009-10-01

    A new culture-independent system for microbial monitoring, called the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was operated aboard the International Space Station (ISS). LOCAD-PTS was launched to the ISS aboard Space Shuttle STS-116 on December 9, 2006, and has since been used by ISS crews to monitor endotoxin on cabin surfaces. Quantitative analysis was performed within 15 minutes, and sample return to Earth was not required. Endotoxin (a marker of Gram-negative bacteria) was distributed throughout the ISS, despite previous indications that mostbacteria on ISS surfaces were Gram-positive [corrected].Endotoxin was detected at 24 out of 42 surface areas tested and at every surface site where colony-forming units (cfu) were observed, even at levels of 4-120 bacterial cfu per 100 cm(2), which is below NASA in-flight requirements (<10,000 bacterial cfu per 100 cm(2)). Absent to low levels of endotoxin (<0.24 to 1.0 EU per 100 cm(2); defined in endotoxin units, or EU) were found on 31 surface areas, including on most panels in Node 1 and the US Lab. High to moderate levels (1.01 to 14.7 EU per 100 cm(2)) were found on 11 surface areas, including at exercise, hygiene, sleeping, and dining facilities. Endotoxin was absent from airlock surfaces, except the Extravehicular Hatch Handle (>3.78 EU per 100 cm(2)). Based upon data collected from the ISS so far, new culture-independent requirements (defined in EU) are suggested, which are verifiable in flight with LOCAD-PTS yet high enough to avoid false alarms. The suggested requirements are intended to supplement current ISS requirements (defined in cfu) and would serve a dual purpose of safeguarding crew health (internal spacecraft surfaces <20 EU per 100 cm(2)) and monitoring forward contamination during Constellation missions (surfaces periodically exposed to the external environment, including the airlock and space suits, <0.24 EU per 100 cm(2)).

  6. Rapid Culture-Independent Microbial Analysis Aboard the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Maule, Jake; Wainwright, Norm; Steele, Andrew; Monaco, Lisa; Morris, Heather; Gunter, Daniel; Damon, Michael; Wells, Mark

    2009-10-01

    A new culture-independent system for microbial monitoring, called the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was operated aboard the International Space Station (ISS). LOCAD-PTS was launched to the ISS aboard Space Shuttle STS-116 on December 9, 2006, and has since been used by ISS crews to monitor endotoxin on cabin surfaces. Quantitative analysis was performed within 15 minutes, and sample return to Earth was not required. Endotoxin (a marker of Gram-negative bacteria and fungi) was distributed throughout the ISS, despite previous indications that most bacteria on ISS surfaces were Gram-positive. Endotoxin was detected at 24 out of 42 surface areas tested and at every surface site where colony-forming units (cfu) were observed, even at levels of 4-120 bacterial cfu per 100 cm2, which is below NASA in-flight requirements (<10,000 bacterial cfu per 100 cm2). Absent to low levels of endotoxin (<0.24 to 1.0 EU per 100 cm2; defined in endotoxin units, or EU) were found on 31 surface areas, including on most panels in Node 1 and the US Lab. High to moderate levels (1.01 to 14.7 EU per 100 cm2) were found on 11 surface areas, including at exercise, hygiene, sleeping, and dining facilities. Endotoxin was absent from airlock surfaces, except the Extravehicular Hatch Handle (>3.78 EU per 100 cm2). Based upon data collected from the ISS so far, new culture-independent requirements (defined in EU) are suggested, which are verifiable in flight with LOCAD-PTS yet high enough to avoid false alarms. The suggested requirements are intended to supplement current ISS requirements (defined in cfu) and would serve a dual purpose of safeguarding crew health (internal spacecraft surfaces <20 EU per 100 cm2) and monitoring forward contamination during Constellation missions (surfaces periodically exposed to the external environment, including the airlock and space suits, <0.24 EU per 100 cm2).

  7. Microbial Diversity Analysis of Fermented Mung Beans (Lu-Doh-Huang) by Using Pyrosequencing and Culture Methods

    PubMed Central

    Chao, Shiou-Huei; Huang, Hui-Yu; Chang, Chuan-Hsiung; Yang, Chih-Hsien; Cheng, Wei-Shen; Kang, Ya-Huei; Watanabe, Koichi; Tsai, Ying-Chieh

    2013-01-01

    In Taiwanese alternative medicine Lu-doh-huang (also called Pracparatum mungo), mung beans are mixed with various herbal medicines and undergo a 4-stage process of anaerobic fermentation. Here we used high-throughput sequencing of the 16S rRNA gene to profile the bacterial community structure of Lu-doh-huang samples. Pyrosequencing of samples obtained at 7 points during fermentation revealed 9 phyla, 264 genera, and 586 species of bacteria. While mung beans were inside bamboo sections (stages 1 and 2 of the fermentation process), family Lactobacillaceae and genus Lactobacillus emerged in highest abundance; Lactobacillus plantarum was broadly distributed among these samples. During stage 3, the bacterial distribution shifted to family Porphyromonadaceae, and Butyricimonas virosa became the predominant microbial component. Thereafter, bacterial counts decreased dramatically, and organisms were too few to be detected during stage 4. In addition, the microbial compositions of the liquids used for soaking bamboo sections were dramatically different: Exiguobacterium mexicanum predominated in the fermented soybean solution whereas B. virosa was predominant in running spring water. Furthermore, our results from pyrosequencing paralleled those we obtained by using the traditional culture method, which targets lactic acid bacteria. In conclusion, the microbial communities during Lu-doh-huang fermentation were markedly diverse, and pyrosequencing revealed a complete picture of the microbial consortium. PMID:23700436

  8. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Eder, Wolfgang; Huber, Robert; Hinrichs, Kai-Uwe; Hayes, John M.; Cady, Sherry L.; DesMarais, David J.; Hope, Janet M.; Summons, Roger E.

    2001-01-01

    Extremely thermophilic microbial communities associated with the siliceous vent walls and outflow channel of Octopus Spring, Yellowstone National Park, have been examined for lipid biomarker and carbon isotopic signatures. These data were compared with that obtained from representatives of three Aquificales genera. Thermocrinis ruber, Thermocrinis sp. HI, Hydrogenobacter thermophilus, Aquifex pyrophilus and Aquifex aeolicus all contained phospholipids composed not only of the usual ester-linked fatty acids, but also ether-linked alkyl moieties. The fatty acids of all cultured organisms were dominated by very distinct pattern of n-C-20:1 and cy-C-21 compounds. The alkyl glycerol ethers were present primarily as C-18:0 monoethers with the exception of the Aquifex spp. in which dialkyl glycerol ethers with a boarder carbon-number distribution were also present. These Aquificales biomarker lipids were the major constituents in the lipid extracts of the Octopus Spring microbial samples. Two natural samples, a microbial biofilm growing in association with deposition of amorphous silica on the vent walls at 92 C, and the well-known "pink-streamer community" (PSC), siliceous filaments of a microbial consortia growing in the outflow channel at 87 C were analyzed. Both the biofilm and PSC samples contained mono- and dialkyl glycerol ethers with a prevalence of C-18 and C-20 alkyls. Phospholipid fatty acids were comprised of both the characteristic. Additional information is contained in the original extended abstract.

  9. Batch growth kinetics of an indigenous mixed microbial culture utilizing m-cresol as the sole carbon source.

    PubMed

    Saravanan, Pichiah; Pakshirajan, K; Saha, Prabirkumar

    2009-02-15

    An indigenous mixed microbial culture, isolated from a sewage treatment plant located in Guwahati was used to study biodegradation of m-cresol in batch shake flasks. m-Cresol concentration in the growth media was varied from 100mg/L to 900mg/L. The degradation kinetics was found to follow a three-half-order model at all initial m-cresol concentrations with regression values greater than 0.97. A maximum observed specific degradation rate of 0.585h(-1) was observed at 200mg/L m-cresol concentration in the medium. In the range of m-cresol concentrations used in the study, specific growth rate of the culture and specific degradation rates were observed to follow substrate inhibition kinetics. These two rates were fitted to kinetic models of Edward, Haldane, Luong, Han-Levenspiel, and Yano-Koga that are used to explain substrate inhibition on growth of microbial culture. Out of these models Luong and Han-Levenspiel models fitted the experimental data best with lowest root mean square error values. Biokinetic constants estimated from these two models showed good potential of the indigenous mixed culture in degrading m-cresol in wastewaters.

  10. Characterization by culture and molecular analysis of the microbial diversity of a deep subsurface gas storage aquifer.

    PubMed

    Basso, Odile; Lascourreges, Jean-François; Le Borgne, François; Le Goff, Cyril; Magot, Michel

    2009-03-01

    The bacterial diversity of a subsurface water sample collected from a gas storage aquifer in an Upper Jurassic calcareous formation was investigated by culture of microorganisms and construction of a 16S rRNA gene library. Both culture and molecular techniques showed that members of the phyla Firmicutes and class delta-proteobacteria dominated the bacterial community. The presence of hydrogen-utilizing autotrophic bacteria including sulfate reducers (e.g. Desulfovibrio aespoeensis) and homoacetogens (e.g. Acetobacterium carbinolicum) suggested that CO(2) and H(2) are the main carbon and energy sources sustaining a nutrient-limited subsurface lithoautotrophic microbial ecosystem (SLiME). Gram-positive SRB belonging to the genus Desulfotomaculum, frequently observed in subsurface environments, represented 25% of the clone library and 4 distinct phylotypes. No Archaea were detected by both experimental approaches. Water samples were collected in an area of the rauracian geological formation located outside the maximum seasonal extension of underground gas storage. Considering the observed microbial diversity, there is no evidence of any influence on the microbial ecology of the aquifer in the surroundings of maximum extension reached by the gas bubble of the underground storage, which should have resulted from the introduction of exogenous carbon and energy sources in a nutrient-limited ecosystem.

  11. Impact of lactate on growth of cultures of cecal bacteria from commercial broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultures of beneficial bacteria used in probiotics produce and utilize organic acids that may play a role in the ability of the cultures to inhibit colonization of poultry by enteropathogens. Cecal contents of adult poultry contain many of these beneficial bacteria, and earlier experiments showed th...

  12. Reductions in Natural Microbial Flora, Nonpathogenic Escherichia coli , and Pathogenic Salmonella on Jalapeno Peppers Processed in a Commercial Antimicrobial Cabinet: A Pilot Plant Trial.

    PubMed

    Adler, Jeremy M; Cain-Helfrich, Erin D; Shen, Cangliang

    2016-11-01

    This experiment aimed to validate the use of antimicrobial solutions in a spray cabinet to inactivate natural microbial flora, nonpathogenic Escherichia coli , and Salmonella on jalapeno peppers. Jalapeno peppers, uninoculated or inoculated with a five-strain mixture of rifampin-resistant E. coli (3.9 log CFU/g) or novobiocin- and nalidixic acid-resistant Salmonella (4.2 log CFU/g), were passed through a commercial antimicrobial cabinet containing both a top and bottom bar spraying (1.38 bar and 2 liters/min) water, sodium hypochlorite (50 ppm), sodium hypochlorite with pH adjusted to 6.7, peroxyacetic acid (PAA; 80 ppm), PAA with pH adjusted to 6.7, lactic with citric acid (1%), lactic with citric acid with sodium lauryl sulfate (1,200 ppm), or chlorine dioxide (5 ppm). Bacteria were recovered in 0.1% buffered peptone water plus 0.1% sodium thiosulfate, which was followed by spread plating onto tryptic soy agar (TSA), TSA plus rifampin (100 μg/ml), and TSA plus novobiocin (25 μg/ml) and nalidixic acid (20 μg/ml). There were no significant differences (P ≥ 0.05) in recovered natural microbial flora, E. coli , and Salmonella populations between untreated peppers (3.5 to 4.2 log CFU/g) and peppers treated with water (3.4 to 3.8 log CFU/g). Significantly fewer (P < 0.05) natural microbial flora, E. coli , and Salmonella populations were recovered on the peppers after they were treated with a majority of the antimicrobials applied in the commercial antimicrobial cabinet. The largest population reduction was observed on peppers sprayed with PAA. Interestingly, the pH adjustment did not make a difference (P ≥ 0.05) in the recovered bacterial populations. These results validate the use of a commercial antimicrobial spray cabinet, and they are useful for developing application protocols for antimicrobials to control Salmonella during the postharvest processing of jalapeno peppers.

  13. Heat treatment of colostrum on commercial dairy farms decreases colostrum microbial counts while maintaining colostrum immunoglobulin G concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted on six commercial dairy farms in Minnesota and Wisconsin to describe the effect of heat-treatment of colostrum, at 60o58 C for 60 minutes, on colostrum bacteria counts and immunoglobulin G concentrations. First milking colostrum was collected each day, pooled, divided into t...

  14. Microbial succession in response to pollutants in batch-enrichment culture.

    PubMed

    Jiao, Shuo; Chen, Weimin; Wang, Entao; Wang, Junman; Liu, Zhenshan; Li, Yining; Wei, Gehong

    2016-02-24

    As a global problem, environmental pollution is an important factor to shape the microbial communities. The elucidation of the succession of microbial communities in response to pollutants is essential for developing bioremediation procedures. In the present study, ten batches of soil-enrichment subcultures were subjected to four treatments: phenanthrene, n-octadecane, phenanthrene + n-octadecane, or phenanthrene + n-octadecane + CdCl2. Forty pollutant-degrading consortia, corresponding to each batch of the four treatments were obtained. High-throughput sequencing of the 16S rRNA gene revealed that the diversity, richness and evenness of the consortia decreased throughout the subculturing procedure. The well-known hydrocarbon degraders Acinetobacter, Gordonia, Sphingobium, Sphingopyxis, and Castellaniella and several other genera, including Niabella and Naxibacter, were detected in the enriched consortia. The predominant microbes varied and the microbial community in the consortia gradually changed during the successive subculturing depending on the treatment, indicating that the pollutants influenced the microbial successions. Comparison of the networks in the treatments indicated that organic pollutants and CdCl2 affected the co-occurrence patterns in enriched consortia. In conclusion, single environmental factors, such as the addition of nutrients or selection pressure, can shape microbial communities and partially explain the extensive differences in microbial community structures among diverse environments.

  15. Microbial succession in response to pollutants in batch-enrichment culture

    PubMed Central

    Jiao, Shuo; Chen, Weimin; Wang, Entao; Wang, Junman; Liu, Zhenshan; Li, Yining; Wei, Gehong

    2016-01-01

    As a global problem, environmental pollution is an important factor to shape the microbial communities. The elucidation of the succession of microbial communities in response to pollutants is essential for developing bioremediation procedures. In the present study, ten batches of soil-enrichment subcultures were subjected to four treatments: phenanthrene, n-octadecane, phenanthrene + n-octadecane, or phenanthrene + n-octadecane + CdCl2. Forty pollutant-degrading consortia, corresponding to each batch of the four treatments were obtained. High-throughput sequencing of the 16S rRNA gene revealed that the diversity, richness and evenness of the consortia decreased throughout the subculturing procedure. The well-known hydrocarbon degraders Acinetobacter, Gordonia, Sphingobium, Sphingopyxis, and Castellaniella and several other genera, including Niabella and Naxibacter, were detected in the enriched consortia. The predominant microbes varied and the microbial community in the consortia gradually changed during the successive subculturing depending on the treatment, indicating that the pollutants influenced the microbial successions. Comparison of the networks in the treatments indicated that organic pollutants and CdCl2 affected the co-occurrence patterns in enriched consortia. In conclusion, single environmental factors, such as the addition of nutrients or selection pressure, can shape microbial communities and partially explain the extensive differences in microbial community structures among diverse environments. PMID:26905741

  16. Characteristics of miniature Cheddar-type cheese made by microbial rennet from Bacillus amyloliquefaciens: a comparison with commercial calf rennet.

    PubMed

    An, Zhigang; He, Xiaoling; Gao, Weidong; Zhao, Wei; Zhang, Weibing

    2014-02-01

    Miniature Cheddar-type cheeses were produced using microbial rennet from Bacillus amyloliquefaciens (milk-clotting enzyme [MCE]) or calf rennet (CAR). With the exception of pH, there were no significant differences in gross composition between MCE-cheese (MCE-C) and CAR-cheese (CAR-C). The pH value of CAR-C was significantly higher than that of MCE-C at 40 and 60 d of ripening. The total nitrogen content of the pH 4.6-soluble fraction obtained from MCE-C was higher than that obtained from CAR-C. However, nitrogen content of the 12% TCA-soluble fraction was similar between CAR-C and MCE-C. The extent of α(s1)-casein and β-casein hydrolysis, measured by urea-PAGE, was similar in both cheese samples. The hydrolysis of β-casein was lower than that of α(s1)-casein. Different reverse phase-high-performance liquid chromatography peptide profiles of ethanol-soluble and ethanol-insoluble fractions were obtained from CAR-C and MCE-C. The peptide content in the 2 cheese samples increased throughout ripening; the ratio of hydrophobic to hydrophilic peptides was lower in MCE-C than in CAR-C. Compared with CAR-C, MCE-C was softer as a result of higher protein hydrolysis. Microbial rennet from B. amyloliquefaciens contributed to higher proteolytic rates, which reduced ripening time.

  17. The microbial spectrum of neonatal sepsis in Uganda: recovery of culturable bacteria in mother-infant pairs.

    PubMed

    Kiwanuka, Julius; Bazira, Joel; Mwanga, Juliet; Tumusiime, Dickson; Nyesigire, Eunice; Lwanga, Nkangi; Warf, Benjamin C; Kapur, Vivek; Poss, Mary; Schiff, Steven J

    2013-01-01

    Neonatal sepsis in the developing world is incompletely characterized. We seek to characterize the microbial spectrum involved in sepsis and determine the role of maternal transmission by comparing organisms that can be cultured from septic newborn infants and their mothers. From 80 consecutive mother-infant pairs meeting clinical criteria for neonatal sepsis, we collected infant blood and spinal fluid, and maternal blood and vaginal specimens. Identifiable bacteria were recovered from the blood in 32.5% of infants, and from 2.5% of cerebrospinal fluid cultures, for a total of 35% recoverable putative causative agents. Bacteria recovered from vaginal specimens were not concordant with those recovered from infants. Similarly there was no concordance of bacteria recovered from blood and cerebrospinal fluid. We conclude that relying on traditional bacterial culture techniques does not adequately delineate the role of maternal versus environmental sources of neonatal sepsis in this setting. More sensitive molecular approaches will be needed to properly characterize the maternal and environmental microbial community involved in neonatal sepsis in such developing countries.

  18. [Contribution to the early diagnosis of bacteremia: microbial growth detection in liquid culture media by ultrasound].

    PubMed

    Maestre, J R; Montero de Espinosa, F R

    2001-04-01

    Nosocomial infection is an important problem because the number of patients daily affected in big hospitals. A big effort exists to develop techniques able to early detect the micro-organisms which cause the infection. The ultrasound is a mechanical radiology technique widely used in Medicine for diagnosis and therapy. It is also well known that this radiation can be used to control relative changes of several physico-chemical parameters in liquids. As an example, the velocity an attenuation of acoustic waves coming through a liquid can be accurately measured. The developed technique consists of an ultrasonic chamber immersed into a thermostatized water bath with two transducers operating in through-transmission. Different culture bottles were placed in between the transducers to live the ultrasound to come across the sample. Several micro-organisms with controlled concentrations, chosen between the most common in sepsis clinical, were used to inoculate each bottle. In the case of aerobic metabolism, the carbon dioxide gas produced by bacteria introduce elastic changes into the liquid which modify both the propagation velocity and the attenuation of the ultrasound. The continuous monitoring of the time-of-flight and the amplitude of an ultrasonic pulse coming through the sample give us a clear indication of the metabolism process. The signatures observed permits the identification of algorithms to early define the positive cases. The developed technique is faster than other commercial systems. The intrinsically non-invasive characteristic of the ultrasound and the relative cheapness of the technique open new attractive possibilities in microbiological diagnosis.

  19. Comparison of two commercially available rapid detection methods and a conventional culture method to detect naturally occurring salmonellae on broiler carcasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many different screening devices and sampling methods have been used to detect the presence of naturally occurring Salmonella on commercially processed broiler carcasses. The objective of this study was to compare two commercial screening systems (BAX® and Roka®) to a standard cultural procedure use...

  20. A novel approach to recycle bacterial culture waste for fermentation reuse via a microbial fuel cell-membrane bioreactor system.

    PubMed

    Li, Jian; Zhu, Yuan; Zhuang, Liangpeng; Otsuka, Yuichiro; Nakamura, Masaya; Goodell, Barry; Sonoki, Tomonori; He, Zhen

    2015-09-01

    Biochemical production processes require water and nutrient resources for culture media preparation, but aqueous waste is generated after the target products are extracted. In this study, culture waste (including cells) produced from a lab-scale fermenter was fed into a microbial fuel cell-membrane bioreactor (MFC-MBR) system. Electrical energy was generated via the interaction between the microbial consortia and the solid electrode in the MFC. The treated wastewater was reclaimed in this process which was reused as a solvent and a nutrient source in subsequent fermentation. Polarization testing showed that the MFC produced a maximum current density of 37.53 A m(-3) with a maximum power density of 5.49 W m(-3). The MFC was able to generate 0.04 kWh of energy per cubic meter of culture waste treated. The lab-scale fermenters containing pure cultures of an engineered Pseudomonas spp. were used to generate 2-pyrone-4,6-dicarboxylic acid (PDC), a high value platform chemical. When the MFC-MBR-treated wastewater was used for the fermenter culture medium, a specific bacterial growth rate of 1.00 ± 0.05 h(-1) was obtained with a PDC production rate of 708.11 ± 64.70 mg PDC L(-1) h(-1). Comparable values for controls using pure water were 0.95 ± 0.06 h(-1) and 621.01 ± 22.09 mg PDC L(-1) h(-1) (P > 0.05), respectively. The results provide insight on a new approach for more sustainable bio-material production while at the same time generating energy, and suggest that the treated wastewater can be used as a solvent and a nutrient source for the fermentation production of high value platform chemicals.

  1. Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell.

    PubMed

    Hassan, Sedky H A; Kim, Yong Seong; Oh, Sang-Eun

    2012-10-10

    Microbial fuel cells (MFCs) have been used to generate electricity from various organic compounds such as acetate, glucose, and lactate. We demonstrate here that electricity can be produced in an MFC using cellulose as the electron donor source. Tests were conducted using two-chambered MFCs, the anode medium was inoculated with mixed or pure culture of cellulose-degrading bacteria Nocardiopsis sp. KNU (S strain) or Streptomyces enissocaesilis KNU (K strain), and the catholyte in the cathode compartment was 50mM ferricyanide as catholyte. The power density for the mixed culture was 0.188 mW (188 mW/m(2)) at a current of 0.5mA when 1g/L cellulose was used. However, the power density decreased as the cellulose concentration in the anode compartment decreased. The columbic efficiencies (CEs) ranged from 41.5 to 33.4%, corresponding to an initial cellulose concentration of 0.1-1.0 g/L. For the pure culture, cellobioase enzyme was added to increase the conversion of cellulose to simple sugars, since electricity production is very low. The power densities for S and K strain pure cultures with cellobioase were 162 mW/m(2) and 145 mW/m(2), respectively. Cyclic voltammetry (CV) experiments showed the presence of peaks at 380, 500, and 720 mV vs. Ag/AgCl for the mixed bacterial culture, indicating its electrochemical activity without an external mediator. Furthermore, this MFC system employs a unique microbial ecology in which both the electron donor (cellulose) and the electron acceptor (carbon paper) are insoluble.

  2. When Is a Microbial Culture “Pure”? Persistent Cryptic Contaminant Escapes Detection Even with Deep Genome Sequencing

    PubMed Central

    Shrestha, Pravin Malla; Nevin, Kelly P.; Shrestha, Minita; Lovley, Derek R.

    2013-01-01

    ABSTRACT Geobacter sulfurreducens strain KN400 was recovered in previous studies in which a culture of the DL1 strain of G. sulfurreducens served as the inoculum in investigations of microbial current production at low anode potentials (−400 mV versus Ag/AgCl). Differences in the genome sequences of KN400 and DL1 were too great to have arisen from adaptive evolution during growth on the anode. Previous deep sequencing (80-fold coverage) of the DL1 culture failed to detect sequences specific to KN400, suggesting that KN400 was an external contaminant inadvertently introduced into the anode culturing system. In order to evaluate this further, a portion of the gene for OmcS, a c-type cytochrome that both KN400 and DL1 possess, was amplified from the DL1 culture. HiSeq-2000 Illumina sequencing of the PCR product detected the KN400 sequence, which differs from the DL1 sequence at 14 bp, at a frequency of ca. 1 in 105 copies of the DL1 sequence. A similar low frequency of KN400 was detected with quantitative PCR of a KN400-specific gene. KN400 persisted at this frequency after intensive restreaking of isolated colonies from the DL1 culture. However, a culture in which KN400 could no longer be detected was obtained by serial dilution to extinction in liquid medium. The KN400-free culture could not grow on an anode poised at −400 mV. Thus, KN400 cryptically persisted in the culture dominated by DL1 for more than a decade, undetected by even deep whole-genome sequencing, and was only fortuitously uncovered by the unnatural selection pressure of growth on a low-potential electrode. PMID:23481604

  3. Microbial communities in the garbage composting with rice hull as an amendment revealed by culture-dependent and -independent approaches.

    PubMed

    Takaku, Hiroaki; Kodaira, Shoko; Kimoto, Ayumi; Nashimoto, Masayuki; Takagi, Masamichi

    2006-01-01

    The diversity and succession of microbial communities during the garbage composting with rice hull as an amendment were studied by denaturing gradient gel electrophoresis (DGGE) and clone library analysis of PCR-amplified 16S ribosomal DNA (rDNA) with universal primers. Based on temperature changes, the composting process could be divided into thermophilic, cooling-down, and maturing stages. The DGGE profiles and clone library analysis revealed that the microbial community drastically changed during the composting process from the thermophilic to the maturing stages. The dominant bacterial group changed from the phylum Firmicutes in the thermophilic stage to the phylum Bacteroidetes in the maturing stage. This change in microbial communities may be significant for the composting process. The diversity of cultivated bacteria isolated from samples taken at various stages of the composting process was low. A total of 87 isolates were classified as belonging to only four different groups. These groups were also detected in the DGGE profiles and by the clone library analysis. Our study indicated that a combination of culture-dependent and -independent approaches could be very useful for monitoring both bacterial diversity and the succession of communities during the composting process. This study would be beneficial for assessing the ecological consequences of disposal of organic waste.

  4. Compound-specific Isotope Analysis of Cyanobacterial Pure cultures and Microbial Mats: Effects of Photorespiration?

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Summons, R. E.

    2006-01-01

    Microbial mats are considered modern homologs of Precambrian stromatolites. The carbon isotopic compositions of organic matter and biomarker lipids provide clues to the depositional environments of ancient mat ecosystems. As the source of primary carbon fixation for over two billion years, an understanding of cyanobacterial lipid biosynthesis, associated isotopic discriminations, and the influence of physiological factors on growth and isotope expression is essential to help us compare modern microbial ecosystems to their ancient counterparts. Here, we report on the effects of photorespiration (PR) on the isotopic composition of cyanobacteria and biomarker lipids, and on potential PR effects associated with the composition of various microbial mats. The high light, high O2 and limiting CO2 conditions often present at the surface of microbial mats are known to support PR in cyanobacteria. The oxygenase function of ribulose bisphosphate carboxylase/oxygenase can result in photoexcretion of glycolate and subsequent degration by heterotrophic bacteria. We have found evidence which supports an isotopic depletion (increased apparent E) scaled to O2 level associated with growth of Phormidium luridum at low CO2 concentrations (less than 0.04%). Similar to previous studies, isotopic differences between biomass and lipid biomarkers, and between lipid classes were positively correlated with overall fractionation, and should provide a means of estimating the influence of PR on overall isotopic composition of microbial mats. Several examples of microbial mats growing in the hydrothermal waters of Yellowstone National Park and the hypersaline marine evaporation ponds at Guerrero Negro, Baja Sur Mexico will be compared with a view to PR as a possible explanation of the relatively heavy C-isotope composition of hypersaline mats.

  5. TV Commercials as Authentic Materials to Teach Communication, Culture and Critical Thinking

    ERIC Educational Resources Information Center

    Erkaya, Odilea Rocha

    2005-01-01

    This article discusses the importance of using authentic materials to teach foreign students to communicate in English in a natural way, teach them about the target culture, and help them to engage in critical thinking. Since authentic materials have been defined in various ways, this researcher has chosen for this article two definitions which…

  6. How Commercial and "Violent" Video Games Can Promote Culturally Sensitive Science Learning: Some Questions and Challenges

    ERIC Educational Resources Information Center

    Kwah, Helen

    2012-01-01

    In their paper, Munoz and El-Hani propose to bring video games into science classrooms to promote culturally sensitive ethics and citizenship education. Instead of bringing "educational" games, Munoz and El-Hani take a more creative route and include games such as Fallout 3[R] precisely because they are popular and they reproduce ideological and…

  7. Evaluating standard operating procedures to mitigate off-flavor from Atlantic salmon Salmo salar cultured in a semi-commercial scale recirculating aquaculture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fish cultured within water recirculating aquaculture systems (RAS) can acquire “earthy” or “musty” off-flavors due to bioaccumulation of the compounds geosmin and 2-methylisoborneol (MIB), respectively, which are produced by certain bacterial species present in RAS biosolids and microbial biofilms. ...

  8. A surface swab method for culturing Foley catheters assays the pericatheter (urethral) but not the urine (luminal) microbial population.

    PubMed

    Johnson, J R; Dykstra, D; Brown, J J; Kringstad, B; Pryor, J L

    1997-07-01

    Assessment of the urethral flora in patients with indwelling bladder catheters is problematic in the presence of urinary tract infection (UTI). A new surface swab method that samples the external catheter surface without interference from contaminated luminal contents is described. In vitro, recovery of adherent bacteria from the external catheter surface by the surface swab method was proportional to the bacterial density as measured by a comparison scrape method. In a prospective longitudinal assessment of three chronically catheterized subjects with polymicrobial catheter-associated UTI, a conventional roll plate catheter culture method suggested substantial overlap between the urethral and urine microbial populations, possibly a result of contamination of catheter cultures by infected urine. In contrast, the surface swab method revealed little overlap between these floras, evidence suggesting a predominantly luminal (rather than meatal) route of UTI acquisition. The new surface swab method should prove useful in future studies of the pathogenesis and prevention of catheter-associated UTI.

  9. Acute impact of erythromycin and tetracycline on the kinetics of nitrification and organic carbon removal in mixed microbial culture.

    PubMed

    Katipoglu-Yazan, Tugce; Pala-Ozkok, Ilke; Ubay-Cokgor, Emine; Orhon, Derin

    2013-09-01

    The study evaluated acute impact of erythromycin and tetracycline on nitrification and organic carbon removal kinetics in mixed microbial culture. Acclimated biomass was obtained from a fill and draw reactor fed with peptone mixture selected as synthetic substrate and operated at a sludge age of 10 days. Acute inhibition was tested in batch reactors involving a control unit started solely with substrate and the others with additional doses of each antibiotic. Modeling indicated that both steps of nitrification were totally blocked by erythromycin. Tetracycline inhibited and retarded nitrification kinetics at 50 mg/L and stopped nitrite oxidation at 200 mg/L, leading to nitrite accumulation. Both antibiotics also affected organic carbon removal by inducing partial inactivation of the heterotrophic community in the culture, increased substrate storage and accelerated endogenous respiration, with a relatively slight impact on heterotrophic growth. Major inhibitory effect was on process stoichiometry, leading to partial utilization of organic substrate.

  10. Microbial characterization of anode-respiring bacteria within biofilms developed from cultures previously enriched in dissimilatory metal-reducing bacteria.

    PubMed

    Pierra, Mélanie; Carmona-Martínez, Alessandro A; Trably, Eric; Godon, Jean-Jacques; Bernet, Nicolas

    2015-11-01

    This work evaluated the use of a culture enriched in DMRB as a strategy to enrich ARB on anodes. DMRB were enriched with Fe(III) as final electron acceptor and then transferred to a potentiostatically-controlled system with an anode as sole final electron acceptor. Three successive iron-enrichment cultures were carried out. The first step of enrichment revealed a successful selection of the high current-producing ARB Geoalkalibacter subterraneus. After few successive enrichment steps, the microbial community analysis in electroactive biofilms showed a significant divergence with an impact on the biofilm electroactivity. Enrichment of ARB in electroactive biofilms through the pre-selection of DMRB should therefore be carefully considered.

  11. Sequence homologies between Mycoplasma and Chlamydia spp. lead to false-positive results in chlamydial cell cultures tested for mycoplasma contamination with a commercial PCR assay.

    PubMed

    Maass, Viola; Kern, Jan Marco; Poeckl, Matthias; Maass, Matthias

    2011-10-01

    Mycoplasma contamination is a frequent problem in chlamydial cell culture. After obtaining contradictory contamination results, we compared three commercial PCR kits for mycoplasma detection. One kit signaled contamination in mycoplasma-free Chlamydia pneumoniae cultures. Sequencing of cloned PCR products revealed primer homology with the chlamydial genome as the basis of this false-positive result.

  12. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Edger, Wolfgang; Huber, Robert; Hinrichs, Kai-Uwe; Hayes, John M.; DesMarais, David J.; Cady, Sherry; Hope, Janet M.; Summons, Roger E.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Extremely thermophilic microbial communities associated with the siliceous vent walls and outflow channel of Octopus Spring, Yellowstone National Park, have been examined for lipid biomarkers and carbon isotopic signatures. These data were compared with that obtained from representatives of three Aquificales genera. Thermocrinis ruber. "Thermocrinis sp. HI", Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus and Aquifex aeolicus all contained phospholipids composed not only of the usual ester-linked fatty acids, but also ether-linked alkyls. The fatty acids of all cultured organisms were dominated by a very distinct pattern of n-C-20:1 and cy-C-21 compounds. The alkyl glycerol ethers were present primarily as CIS() monoethers with the expection of the Aquifex spp. in which dialkyl glycerol ethers with a boarder carbon-number distribution were also present. These Aquificales biomarker lipids were the major constituents in the lipid extracts of the Octopus Spring microbial samples. Two natural samples, a microbial biofilm growing in association with deposition of amorphous silica on the vent walls at 92 C, and the well-known 'pink-streamers community' (PSC), siliceous filaments of a microbial consortia growing in the upper outflow channel at 87 C were analyzed. Both the biofilm and PSC samples contained mono and dialkyl glycerol ethers with a prevalence of C-18 and C-20 alkyls. Phospholipid fatty acids were comprised of both the characteristic Aquificales n-C-20:1 and cy-C-21, and in addition, a series of iso-branched fatty acids from i-C-15:0 to i-C-21:0, With i-C-17:0 dominant in the PSC and i-C-19:0 in the biofilm, suggesting the presence of two major bacterial groups. Bacteriohopanepolyols were absent and the minute quantities of archaeol detected showed that Archaea were only minor constituents. Carbon isotopic compositions of the PSC yielded information about community structure and likely physiology. Biomass was C-13-depleted (10.9%) relative to available

  13. Yeast culture supplement during nursing and transport affects immunity and intestinal microbial ecology of weanling pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weaning and transport stress can have a negative impact on the piglet's immune system and intestinal microbiota. The objective of this study was to determine the influence of a yeast product on innate immunity and microbial ecology of the gastrointestinal tract following stress of weaning and trans...

  14. mRNA differential display in a microbial enrichment culture: simultaneous identification of three cyclohexanone monooxygenases from three species.

    PubMed

    Brzostowicz, Patricia C; Walters, Dana M; Thomas, Stuart M; Nagarajan, Vasantha; Rouvière, Pierre E

    2003-01-01

    mRNA differential display has been used to identify cyclohexanone oxidation genes in a mixed microbial community derived from a wastewater bioreactor. Thirteen DNA fragments randomly amplified from the total RNA of an enrichment subculture exposed to cyclohexanone corresponded to genes predicted to be involved in the degradation of cyclohexanone. Nine of these DNA fragments are part of genes encoding three distinct Baeyer-Villiger cyclohexanone monooxygenases from three different bacterial species present in the enrichment culture. In Arthrobacter sp. strain BP2 and Rhodococcus sp. strain Phi2, the monooxygenase is part of a gene cluster that includes all the genes required for the degradation of cyclohexanone, while in Rhodococcus sp. strain Phi1 the genes surrounding the monooxygenase are not predicted to be involved in this degradation pathway but rather seem to belong to a biosynthetic pathway. Furthermore, in the case of Arthrobacter strain BP2, three other genes flanking the monooxygenase were identified by differential display, demonstrating that the repeated sampling of bacterial operons shown earlier for a pure culture (D. M. Walters, R. Russ, H. Knackmuss, and P. E. Rouvière, Gene 273:305-315, 2001) is also possible for microbial communities. The activity of the three cyclohexanone monooxygenases was confirmed and characterized following their expression in Escherichia coli.

  15. Automated analysis of food-borne pathogens using a novel microbial cell culture, sensing and classification system.

    PubMed

    Xiang, Kun; Li, Yinglei; Ford, William; Land, Walker; Schaffer, J David; Congdon, Robert; Zhang, Jing; Sadik, Omowunmi

    2016-02-21

    We hereby report the design and implementation of an Autonomous Microbial Cell Culture and Classification (AMC(3)) system for rapid detection of food pathogens. Traditional food testing methods require multistep procedures and long incubation period, and are thus prone to human error. AMC(3) introduces a "one click approach" to the detection and classification of pathogenic bacteria. Once the cultured materials are prepared, all operations are automatic. AMC(3) is an integrated sensor array platform in a microbial fuel cell system composed of a multi-potentiostat, an automated data collection system (Python program, Yocto Maxi-coupler electromechanical relay module) and a powerful classification program. The classification scheme consists of Probabilistic Neural Network (PNN), Support Vector Machines (SVM) and General Regression Neural Network (GRNN) oracle-based system. Differential Pulse Voltammetry (DPV) is performed on standard samples or unknown samples. Then, using preset feature extractions and quality control, accepted data are analyzed by the intelligent classification system. In a typical use, thirty-two extracted features were analyzed to correctly classify the following pathogens: Escherichia coli ATCC#25922, Escherichia coli ATCC#11775, and Staphylococcus epidermidis ATCC#12228. 85.4% accuracy range was recorded for unknown samples, and within a shorter time period than the industry standard of 24 hours.

  16. Utilizing a Robotic Sprayer for High Lateral and Mass Resolution MALDI FT-ICR MSI of Microbial Cultures

    SciTech Connect

    Anderton, Christopher R.; Chu, Rosalie K.; Tolic, Nikola; Creissen, Alain V.; Pasa-Tolic, Ljiljana

    2016-01-07

    The ability to visualize biochemical interactions between microbial communities using MALDI MSI has provided tremendous insights into a variety of biological fields. Matrix application using a sieve proved to be incredibly useful, but it had many limitations that include uneven matrix coverage and limitation in the types of matrices one could employ in their studies. Recently, there has been a concerted effort to improve matrix application for studying agar plated microbial cultures, many of which utilized automated matrix sprayers. Here, we describe the usefulness of using a robotic sprayer for matrix application. The robotic sprayer has two-dimensional control over where matrix is applied and a heated capillary that allows for rapid drying of the applied matrix. This method provided a significant increase in MALDI sensitivity over the sieve method, as demonstrated by FT-ICR MS analysis, facilitating the ability to gain higher lateral resolution MS images of Bacillus Subtilis than previously reported. This method also allowed for the use of different matrices to be applied to the culture surfaces.

  17. Utilizing a Robotic Sprayer for High Lateral and Mass Resolution MALDI FT-ICR MSI of Microbial Cultures

    NASA Astrophysics Data System (ADS)

    Anderton, Christopher R.; Chu, Rosalie K.; Tolić, Nikola; Creissen, Alain; Paša-Tolić, Ljiljana

    2016-03-01

    The ability to visualize biochemical interactions between microbial communities using MALDI MSI has provided tremendous insights into a variety of biological fields. Matrix application using a sieve proved to be incredibly useful, but it has many limitations that include uneven matrix coverage and limitation in the types of matrices that could be employed in studies. Recently, there has been a concerted effort to improve matrix application for studying agar plated microbial cultures, many of which utilized automated matrix sprayers. Here, we describe the usefulness of using a robotic sprayer for matrix application. The robotic sprayer has two-dimensional control over where matrix is applied, and a heated capillary that allows for rapid drying of the applied matrix. This method provided a significant increase in MALDI sensitivity over the sieve method, as demonstrated by FT-ICR MS analysis, facilitating the ability to gain higher lateral resolution MS images of Bacillus subtilis than previously reported. This method also allowed for the use of different matrices to be applied to the culture surfaces.

  18. Microbial ecophysiology of whey biomethanation: comparison of carbon transformation parameters, species composition, and starter culture performance in continuous culture.

    PubMed

    Chartrain, M; Bhatnagar, L; Zeikus, J G

    1987-05-01

    Changes in lactose concentration and feed rate altered bacterial growth and population levels in a whey-processing chemostat. The bacterial population and methane production levels increased in relation to increased lactose concentrations comparable to those in raw whey (6%) and converted over 96% of the substrate to methane, carbon dioxide, and cells. Sequential increases in the chemostat dilution rate demonstrated excellent biomethanation performance at retention times as low as 25 h. Retention times shorter than 25 h caused prevalent bacterial populations and methane production to decrease, and intermediary carbon metabolites accumulated in the following order: acetate, butyrate, propionate, lactate, ethanol, and lactose. Bacterial species dominated in the chemostat as a function of their enhanced substrate uptake and growth kinetic properties. The substrate uptake kinetic properties displayed by the mixed chemostat population were equivalent to those of individual species measured in pure culture, whereas the growth kinetic properties of species in mixed culture were better than those measured in pure culture. A designed starter culture consisting of Leuconostoc mesenteroides, Desulfovibrio vulgaris, Methanosarcina barkeri, and Methanobacterium formicicum displayed biomethanation performance, which was similar to that of a diverse adapted mixed-culture inoculum, in a continuous contact digestor system to which 10 g of dry whey per liter was added. Preserved starter cultures were developed and used as inocula for the start-up of a continuous anaerobic digestion process that was effective for biomethanation of raw whey at a retention time of 100 h.

  19. Aeroponics for the culture of organisms, tissues and cells.

    PubMed

    Weathers, P J; Zobel, R W

    1992-01-01

    Characteristics of aeroponics are discussed. Contrast is made, where appropriate, with hydroponics and aero-hydroponics as applies to research and commercial applications of nutrient mist technology. Topics include whole plants, plant tissue cultures, cell and microbial cultures, and animal tissue cultures with regard to operational considerations (moisture, temperature, minerals, gaseous atmosphere) and design of apparati.

  20. Contribution of oocyte source and culture conditions to phenotypic and transcriptomic variation in commercially produced bovine blastocysts.

    PubMed

    Plourde, Dany; Vigneault, Christian; Lemay, Alexandra; Breton, Lévéke; Gagné, Dominic; Laflamme, Isabelle; Blondin, Patrick; Robert, Claude

    2012-07-01

    Bovine embryo production is practiced worldwide for commercial purposes. A major concern of embryo suppliers is the impact of in vitro production systems on embryo quality. In the present study, we compared Buffalo Rat Liver cell coculture with semidefined, medium-based culture, oocytes recovered postmortem with those obtained from live animals, and in vitro with in vivo embryo development. Gene expression levels in expanded blastocysts were measured using microarray and quantitative RT-PCR. The systems were similar in terms of blastocyst yield and rate of development, whereas embryo productivity was greater for immature oocytes collected in vivo. Although immature oocytes collected in vivo had greater developmental competence, they yielded blastocysts that were indistinguishable (in terms of level of gene expression) from embryos derived from immature oocytes recovered postmortem. Culture conditions had a significant impact on gene expression, particularly among genes involved in lipid metabolism. Numerous uncharacterized novel transcript regions were also influenced by in vitro treatments. In conclusion, ovum pick-up combined with in vitro culture in semidefined medium provided a high blastocyst yield, without the deleterious effects associated with coculture.

  1. Microbial Populations in Naked Neck Chicken Ceca Raised on Pasture Flock Fed with Commercial Yeast Cell Wall Prebiotics via an Illumina MiSeq Platform

    PubMed Central

    Park, Si Hong; Lee, Sang In; Ricke, Steven C.

    2016-01-01

    Prebiotics are non-digestible carbohydrate dietary supplements that selectively stimulate the growth of one or more beneficial bacteria in the gastrointestinal tract of the host. These bacteria can inhibit colonization of pathogenic bacteria by producing antimicrobial substances such as short chain fatty acids (SCFAs) and competing for niches with pathogens within the gut. Pasture flock chickens are generally raised outdoors with fresh grass, sunlight and air, which represents different environmental growth conditions compared to conventionally raised chickens. The purpose of this study was to evaluate the difference in microbial populations from naked neck chicken ceca fed with commercial prebiotics derived from brewer’s yeast cell wall via an Illumina MiSeq platform. A total of 147 day-of-hatch naked neck chickens were distributed into 3 groups consisted of 1) C: control (no prebiotic), 2) T1: Biolex® MB40 with 0.2%, and 3) T2: Leiber® ExCel with 0.2%, consistently supplemented prebiotics during the experimental period. At 8 weeks, a total of 15 birds from each group were randomly selected and ceca removed for DNA extraction. The Illumina Miseq platform based on V4 region of 16S rRNA gene was applied for microbiome analysis. Both treatments exhibited limited impact on the microbial populations at the phylum level, with no significant differences in the OTU number of Bacteroidetes among groups and an increase of Proteobacteria OTUs for the T1 (Biolex® MB40) group. In addition there was a significant increase of genus Faecalibacterium OTU, phylum Firmicutes. According to the development of next generation sequencing (NGS), microbiome analysis based on 16S rRNA gene proved to be informative on the prebiotic impact on poultry gut microbiota in pasture-raised naked neck birds. PMID:26992104

  2. Microbial Populations in Naked Neck Chicken Ceca Raised on Pasture Flock Fed with Commercial Yeast Cell Wall Prebiotics via an Illumina MiSeq Platform.

    PubMed

    Park, Si Hong; Lee, Sang In; Ricke, Steven C

    2016-01-01

    Prebiotics are non-digestible carbohydrate dietary supplements that selectively stimulate the growth of one or more beneficial bacteria in the gastrointestinal tract of the host. These bacteria can inhibit colonization of pathogenic bacteria by producing antimicrobial substances such as short chain fatty acids (SCFAs) and competing for niches with pathogens within the gut. Pasture flock chickens are generally raised outdoors with fresh grass, sunlight and air, which represents different environmental growth conditions compared to conventionally raised chickens. The purpose of this study was to evaluate the difference in microbial populations from naked neck chicken ceca fed with commercial prebiotics derived from brewer's yeast cell wall via an Illumina MiSeq platform. A total of 147 day-of-hatch naked neck chickens were distributed into 3 groups consisted of 1) C: control (no prebiotic), 2) T1: Biolex® MB40 with 0.2%, and 3) T2: Leiber® ExCel with 0.2%, consistently supplemented prebiotics during the experimental period. At 8 weeks, a total of 15 birds from each group were randomly selected and ceca removed for DNA extraction. The Illumina Miseq platform based on V4 region of 16S rRNA gene was applied for microbiome analysis. Both treatments exhibited limited impact on the microbial populations at the phylum level, with no significant differences in the OTU number of Bacteroidetes among groups and an increase of Proteobacteria OTUs for the T1 (Biolex® MB40) group. In addition there was a significant increase of genus Faecalibacterium OTU, phylum Firmicutes. According to the development of next generation sequencing (NGS), microbiome analysis based on 16S rRNA gene proved to be informative on the prebiotic impact on poultry gut microbiota in pasture-raised naked neck birds.

  3. Conversion of methane-derived carbon and microbial community in enrichment cultures in response to O2 availability.

    PubMed

    Wei, Xiao-Meng; He, Ruo; Chen, Min; Su, Yao; Ma, Ruo-Chan

    2016-04-01

    Methanotrophs not only play an important role in mitigating CH4 emissions from the environment, but also provide a large quantity of CH4-derived carbon to their habitats. In this study, the distribution of CH4-derived carbon and microbial community was investigated in a consortium enriched at three O2 tensions, i.e., the initial O2 concentrations of 2.5 % (LO-2), 5 % (LO-1), and 21 % (v/v) (HO). The results showed that compared with the O2-limiting environments (2.5 and 5 %), more CH4-derived carbon was converted into CO2 and biomass under the O2 sufficient condition (21 %). Besides biomass and CO2, a high conversion efficiency of CH4-derived carbon to dissolved organic carbon was detected in the cultures, especially in LO-2. Quantitative PCR and Miseq sequencing both showed that the abundance of methanotroph increased with the increasing O2 concentrations. Type II methanotroph Methylocystis dominated in the enrichment cultures, accounting for 54.8, 48.1, and 36.9 % of the total bacterial 16S rRNA gene sequencing reads in HO, LO-1, and LO-2, respectively. Methylotrophs, mainly including Methylophilus, Methylovorus, Hyphomicrobium, and Methylobacillus, were also abundant in the cultures. Compared with the O2 sufficient condition (21 %), higher microbial biodiversity (i.e., higher Simpson and lower Shannon indexes) was detected in LO-2 enriched at the initial O2 concentration of 2.5 %. These findings indicated that compared with the O2 sufficient condition, more CH4-derived carbon was exuded into the environments and promoted the growth of non-methanotrophic microbes in O2-limiting environments.

  4. Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation

    PubMed Central

    Sutton, Nora B.; Atashgahi, Siavash; Saccenti, Edoardo; Grotenhuis, Tim; Smidt, Hauke; Rijnaarts, Huub H. M.

    2015-01-01

    While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2–4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose

  5. Effects of added chelated trace minerals, organic selenium, yeast culture, direct-fed microbials, and Yucca schidigera extract in horses. Part I: Blood nutrient concentration and digestibility.

    PubMed

    Gordon, M E; Edwards, M S; Sweeney, C R; Jerina, M L

    2013-08-01

    The objective of this study was to test the hypothesis that feed additives such as chelated minerals, organic Se, yeast culture, direct-fed microbials, and Yucca schidigera extract would improve nutrient digestibility when included in an equine diet. Horses (Quarter Horse geldings 4.5 to 16 yr of age; mean BW 522 kg ± 46 kg) were acclimated to 100% pelleted diets formulated with (ADD) and without (CTRL) commercially available sources of the aforementioned additives followed by a 14-d collection period of feces and urine. Chelated sources of Cu, Zn, Mn and Co were utilized versus sulfated forms, at a 100% replacement rate. No significant differences among apparent the digestibility of DM, ADF, or NDF (P= 0.665, P = 0.866, P = 0.747, respectively) were detected between dietary treatments. Likewise, no differences in apparent digestibility of Cu (P = 0.724), Zn (P = 0.256), Mn (P = 0.888), Co (P = 0.71), or Se (P = 0.588) were observed. No differences were observed in serum Cu, Mn, or Co concentrations between ADD and CTRL at acclimation or collection time points (P > 0.05). While no difference in serum Zn concentrations were observed between ADD and CTRL groups at acclimation (P > 0.05), they were statistically higher at the collection time period for horses consuming CTRL (P < 0.0001). Whole blood Se concentration was greater in the CTRL group versus the ADD group both at acclimation (P = 0.041) and collection (P = 0.005) time periods. In reference to time, serum Cu concentrations increased (P = 0.012) for animals consuming CTRL, but not ADD (P > 0.05). Serum Zn concentrations of horses consuming both ADD (P = 0.021) and CTRL (P < 0.0001) increased over time from acclimation to collection time points. No time differences (P > 0.05) were observed in serum Mn concentrations. Serum Co concentrations increased over time in horses consuming both ADD (P = 0.001) and CTRL (P = 0.021). From acclimation to collection, whole blood Se concentration increased for horses

  6. Impact of Organic and Conventional Systems of Coffee Farming on Soil Properties and Culturable Microbial Diversity

    PubMed Central

    2016-01-01

    A study was undertaken with an objective of evaluating the long-term impacts of organic (ORG) and conventional (CON) methods of coffee farming on soil physical, chemical, biological, and microbial diversity. Electrical conductivity and bulk density were found to increase by 34% and 21%, respectively, in CON compared to ORG system, while water holding capacity was found decreased in both the systems. Significant increase in organic carbon was observed in ORG system. Major nutrients, nitrogen and potassium, levels showed inclination in both ORG and CON system, but the trend was much more pronounced in CON system. Phosphorus was found to increase in both ORG and CON system, but its availability was found to be more with CON system. In biological attributes, higher soil respiration and fluorescein diacetate activity were recorded in ORG system compared to CON system. Higher soil urease activity was observed in CON system, while dehydrogenase activity does not show significant differences between ORG and CON systems. ORG system was found to have higher macrofauna (31.4%), microbial population (34%), and microbial diversity indices compared to CON system. From the present study, it is accomplished that coffee soil under long-term ORG system has better soil properties compared to CON system. PMID:27042378

  7. Impact of Organic and Conventional Systems of Coffee Farming on Soil Properties and Culturable Microbial Diversity.

    PubMed

    Velmourougane, Kulandaivelu

    2016-01-01

    A study was undertaken with an objective of evaluating the long-term impacts of organic (ORG) and conventional (CON) methods of coffee farming on soil physical, chemical, biological, and microbial diversity. Electrical conductivity and bulk density were found to increase by 34% and 21%, respectively, in CON compared to ORG system, while water holding capacity was found decreased in both the systems. Significant increase in organic carbon was observed in ORG system. Major nutrients, nitrogen and potassium, levels showed inclination in both ORG and CON system, but the trend was much more pronounced in CON system. Phosphorus was found to increase in both ORG and CON system, but its availability was found to be more with CON system. In biological attributes, higher soil respiration and fluorescein diacetate activity were recorded in ORG system compared to CON system. Higher soil urease activity was observed in CON system, while dehydrogenase activity does not show significant differences between ORG and CON systems. ORG system was found to have higher macrofauna (31.4%), microbial population (34%), and microbial diversity indices compared to CON system. From the present study, it is accomplished that coffee soil under long-term ORG system has better soil properties compared to CON system.

  8. Changing the academic culture: Valuing patents and commercialization toward tenure and career advancement

    PubMed Central

    Sanberg, Paul R.; Gharib, Morteza; Harker, Patrick T.; Kaler, Eric W.; Marchase, Richard B.; Sands, Timothy D.; Arshadi, Nasser; Sarkar, Sudeep

    2014-01-01

    There is national and international recognition of the importance of innovation, technology transfer, and entrepreneurship for sustained economic revival. With the decline of industrial research laboratories in the United States, research universities are being asked to play a central role in our knowledge-centered economy by the technology transfer of their discoveries, innovations, and inventions. In response to this challenge, innovation ecologies at and around universities are starting to change. However, the change has been slow and limited. The authors believe this can be attributed partially to a lack of change in incentives for the central stakeholder, the faculty member. The authors have taken the position that universities should expand their criteria to treat patents, licensing, and commercialization activity by faculty as an important consideration for merit, tenure, and career advancement, along with publishing, teaching, and service. This position is placed in a historical context with a look at the history of tenure in the United States, patents, and licensing at universities, the current status of university tenure and career advancement processes, and models for the future. PMID:24778248

  9. Changing the academic culture: valuing patents and commercialization toward tenure and career advancement.

    PubMed

    Sanberg, Paul R; Gharib, Morteza; Harker, Patrick T; Kaler, Eric W; Marchase, Richard B; Sands, Timothy D; Arshadi, Nasser; Sarkar, Sudeep

    2014-05-06

    There is national and international recognition of the importance of innovation, technology transfer, and entrepreneurship for sustained economic revival. With the decline of industrial research laboratories in the United States, research universities are being asked to play a central role in our knowledge-centered economy by the technology transfer of their discoveries, innovations, and inventions. In response to this challenge, innovation ecologies at and around universities are starting to change. However, the change has been slow and limited. The authors believe this can be attributed partially to a lack of change in incentives for the central stakeholder, the faculty member. The authors have taken the position that universities should expand their criteria to treat patents, licensing, and commercialization activity by faculty as an important consideration for merit, tenure, and career advancement, along with publishing, teaching, and service. This position is placed in a historical context with a look at the history of tenure in the United States, patents, and licensing at universities, the current status of university tenure and career advancement processes, and models for the future.

  10. Validation of ground-and-formed beef jerky processes using commercial lactic acid bacteria starter cultures as pathogen surrogates.

    PubMed

    Borowski, Alena G; Ingham, Steven C; Ingham, Barbara H

    2009-06-01

    Beef jerky has been linked to multiple outbreaks of salmonellosis and Escherichia coli O157:H7 infection over the past 40 years. With increasing government scrutiny of jerky-making process lethality, a simple method by which processors can easily validate the lethality of their ground-and-formed beef jerky process against Salmonella' and E. coli O157:H7 is greatly needed. Previous research with whole-muscle beef jerky indicated that commercial lactic acid bacteria (LAB) may be more heat resistant than Salmonella and E. coli O157:H7, suggesting the potential use of LAB as pathogen surrogates. Of six commercial LAB-containing cultures evaluated for heat resistance in ground-and-formed beef jerky, Saga 200 (Pediococcus spp.) and Biosource (Pediococcus acidilactici) were identified as consistently more heat resistant than Salmonella and E. coli O157:H7. Six representative ground-and-formed beef jerky commercial processes, differing widely in lethality, were used to identify an appropriate level of LAB reduction that would consistently indicate a process sufficiently lethal (> or = 5.0-log reduction) for Salmonella and E. coli O157:H7. Both Saga 200 and Biosource consistently predicted adequate process lethality with a criterion of > or = 5.0-1og reduction of LAB. When either LAB decreased by > or = 5.0 log CFU, processes were sufficiently lethal against Salmonella and E. coli O157:H7 in 100% of samples (n=39 and 40, respectively). Use of LAB as pathogen surrogates for ground-and-formed beef jerky process validation was fieldtested by three small meat processors, who found this technique easy to use for process validation.

  11. Evaluating a commercial PCR assay against bacterial culture for diagnosing Streptococcus uberis and Staphylococcus aureus throughout lactation.

    PubMed

    Steele, N M; Williamson, J H; Thresher, R; Laven, R A; Hillerton, J E

    2017-02-22

    The performance of a commercial, real-time PCR assay was compared with traditional bacterial culture for the identification of Streptococcus uberis and Staphylococcus aureus in bovine milk collected at different stages of lactation. Initial validation tests using fresh and frozen quarter milk samples identified factors that affected the success of the PCR. Therefore, the standard protocol was adjusted for samples collected at the first milking postpartum (colostrum) and from clinical mastitis cases. The adjustment involved PCR testing both undiluted and diluted (1 in 10 with sterile water) DNA extracts. The performance comparison between culture and the PCR assay used milk samples collected aseptically from individual quarters of mixed-age spring-calving dairy cows, during early, mid, and late lactation. Bacterial culture results were used to select a subset of samples for PCR testing (n = 315) that represented quarters with a current or prior Strep. uberis or Staph. aureus infection. Compared with culture, PCR had a sensitivity of 86.8% and specificity of 87.7% for detecting Strep. uberis (kappa = 0.74) and 96.4% and 99.7%, respectively, for detecting Staph. aureus (kappa = 0.96). The dilution of DNA extracts for colostrum and clinical samples increased the relative sensitivity from 79.2% to 86.8% for Strep. uberis detection and from 92.9% to 96.4% for Staph. aureus, presumably through diluting unidentified PCR inhibitors. The sensitivity for detecting Strep. uberis using PCR, relative to culture, was similar throughout lactation (85-89%), whereas relative specificity was lowest immediately postcalving (64%) but improved in mid and late lactation (98%). Specificity estimates for samples collected in early lactation can be optimized by reducing the cutoff cycle threshold (Ct) value from the recommended value of 37 to 34. Although using this value improved specificity (77%), it reduced test sensitivity (77%). The PCR assay lacked agreement with culture in early

  12. Microbial identification and automated antibiotic susceptibility testing directly from positive blood cultures using MALDI-TOF MS and VITEK 2.

    PubMed

    Wattal, C; Oberoi, J K

    2016-01-01

    The study addresses the utility of Matrix Assisted Laser Desorption/Ionisation Time-Of-Flight mass spectrometry (MALDI-TOF MS) using VITEK MS and the VITEK 2 antimicrobial susceptibility testing (AST) system for direct identification (ID) and timely AST from positive blood culture bottles using a lysis-filtration method (LFM). Between July and December 2014, a total of 140 non-duplicate mono-microbial blood cultures were processed. An aliquot of positive blood culture broth was incubated with lysis buffer before the bacteria were filtered and washed. Micro-organisms recovered from the filter were first identified using VITEK MS and its suspension was used for direct AST by VITEK 2 once the ID was known. Direct ID and AST results were compared with classical methods using solid growth. Out of the 140 bottles tested, VITEK MS resulted in 70.7 % correct identification to the genus and/ or species level. For the 103 bottles where identification was possible, there was agreement in 97 samples (94.17 %) with classical culture. Compared to the routine method, the direct AST resulted in category agreement in 860 (96.5 %) of 891 bacteria-antimicrobial agent combinations tested. The results of direct ID and AST were available 16.1 hours before those of the standard approach on average. The combined use of VITEK MS and VITEK 2 directly on samples from positive blood culture bottles using a LFM technique can result in rapid and reliable ID and AST results in blood stream infections to result in early institution of targeted treatment. The combination of LFM and AST using VITEK 2 was found to expedite AST more reliably.

  13. Enterotoxin production by Vibrio cholerae and Vibrio mimicus grown in continuous culture with microbial cell recycle.

    PubMed Central

    Spira, W M; Fedorka-Cray, P J

    1983-01-01

    We have examined the effect of complete cell recycle on the production of cholera toxin (CT) by Vibrio cholerae and CT-like toxin by Vibrio mimicus in continuous culture fermentations. Complete cell recycle was obtained by filtering culture fluids through Amicon hollow fibers with an exclusion limit of 100,000 daltons (H1P100-20) and returning the concentrated cell slurry to the fermentor. A single 1-liter laboratory fermentor system modified with this recycle loop was capable of producing over 20 liters of cell-free culture filtrate per day. Toxin production in this system was compared with yields obtained in traditional continuous cultures and in shake flask cultures. Yields of CT from V. cholerae 569B in the recycle fermentor were highest at the highest dilution rate employed (1.0 vol/vol per h). The use of complete cell recycle dramatically increased yields over those obtained in continuous culture and equaled those obtained in shake flasks. The concentration of CT in the filtrate was slightly less than half of that measured in culture fluids sampled at the same time. Similarly, V. mimicus 61892 grown in the presence of 50 micrograms of lincomycin per ml produced 280 ng of CT per ml in the recycle fermentor, compared with 210 ng/ml in shake flasks under optimal conditions. The sterile filtrate from this fermentation contained 110 ng/ml. PMID:6357081

  14. Development of a mixed mode adsorption process for the direct product sequestration of an extracellular protease from microbial batch cultures.

    PubMed

    Hamilton, G E; Luechau, F; Burton, S C; Lyddiatt, A

    2000-04-28

    Direct product sequestration of extracellular proteins from microbial batch cultures can be achieved by continuous or intermittent broth recycle through an external extractive loop. Here, we describe the development of a fluidisable, mixed mode adsorbent, designed to tolerate increasing ionic strength (synonymous with extended productive batch cultures). This facilitated operations for the integrated recovery of an extracellular acid protease from cultures of Yarrowia lipolytica. Mixed mode adsorbents were prepared using chemistries containing hydrophobic and ionic groups. Matrix hydrophobicity and titration ranges were matched to the requirements of integrated protease adsorption. A single expanded bed was able to service the productive phase of growth without recourse to the pH adjustment of the broth previously required for ion exchange adsorption. This resulted in increased yields of product, accompanied by further increases in enzyme specific activity. A step change from pH 4.5 to 2.6, across the isoelectric point of the protease, enabled high resolution fixed bed elution induced by electrostatic repulsion. The generic application of mixed mode chemistries, which combine the physical robustness of ion-exchange ligands in sanitisation and sterilisation procedures with a selectivity, which approaches that of affinity interactions, is discussed.

  15. Methods for Facilitating Microbial Growth on Pulp Mill Waste Streams and Characterization of the Biodegradation Potential of Cultured Microbes

    PubMed Central

    Mathews, Stephanie L.; Ayoub, Ali S.; Pawlak, Joel; Grunden, Amy M.

    2013-01-01

    The kraft process is applied to wood chips for separation of lignin from the polysaccharides within lignocellulose for pulp that will produce a high quality paper. Black liquor is a pulping waste generated by the kraft process that has potential for downstream bioconversion. However, the recalcitrant nature of the lignocellulose resources, its chemical derivatives that constitute the majority of available organic carbon within black liquor, and its basic pH present challenges to microbial biodegradation of this waste material. Methods for the collection and modification of black liquor for microbial growth are aimed at utilization of this pulp waste to convert the lignin, organic acids, and polysaccharide degradation byproducts into valuable chemicals. The lignocellulose extraction techniques presented provide a reproducible method for preparation of lignocellulose growth substrates for understanding metabolic capacities of cultured microorganisms. Use of gas chromatography-mass spectrometry enables the identification and quantification of the fermentation products resulting from the growth of microorganisms on pulping waste. These methods when used together can facilitate the determination of the metabolic activity of microorganisms with potential to produce fermentation products that would provide greater value to the pulping system and reduce effluent waste, thereby increasing potential paper milling profits and offering additional uses for black liquor. PMID:24378616

  16. Methods for facilitating microbial growth on pulp mill waste streams and characterization of the biodegradation potential of cultured microbes.

    PubMed

    Mathews, Stephanie L; Ayoub, Ali S; Pawlak, Joel; Grunden, Amy M

    2013-12-12

    The kraft process is applied to wood chips for separation of lignin from the polysaccharides within lignocellulose for pulp that will produce a high quality paper. Black liquor is a pulping waste generated by the kraft process that has potential for downstream bioconversion. However, the recalcitrant nature of the lignocellulose resources, its chemical derivatives that constitute the majority of available organic carbon within black liquor, and its basic pH present challenges to microbial biodegradation of this waste material. Methods for the collection and modification of black liquor for microbial growth are aimed at utilization of this pulp waste to convert the lignin, organic acids, and polysaccharide degradation byproducts into valuable chemicals. The lignocellulose extraction techniques presented provide a reproducible method for preparation of lignocellulose growth substrates for understanding metabolic capacities of cultured microorganisms. Use of gas chromatography-mass spectrometry enables the identification and quantification of the fermentation products resulting from the growth of microorganisms on pulping waste. These methods when used together can facilitate the determination of the metabolic activity of microorganisms with potential to produce fermentation products that would provide greater value to the pulping system and reduce effluent waste, thereby increasing potential paper milling profits and offering additional uses for black liquor.

  17. High-Throughput Sequencing and Metagenomics: Moving Forward in the Culture-Independent Analysis of Food Microbial Ecology

    PubMed Central

    2013-01-01

    Following recent trends in environmental microbiology, food microbiology has benefited from the advances in molecular biology and adopted novel strategies to detect, identify, and monitor microbes in food. An in-depth study of the microbial diversity in food can now be achieved by using high-throughput sequencing (HTS) approaches after direct nucleic acid extraction from the sample to be studied. In this review, the workflow of applying culture-independent HTS to food matrices is described. The current scenario and future perspectives of HTS uses to study food microbiota are presented, and the decision-making process leading to the best choice of working conditions to fulfill the specific needs of food research is described. PMID:23475615

  18. Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms.

    PubMed

    Morris, C E; Monier, J; Jacques, M

    1997-04-01

    Epifluorescence microscopy, scanning electron microscopy, and confocal laser scanning microscopy were used to observe microbial biofilms directly on leaf surfaces. Biofilms were observed on leaves of all species sampled (spinach, lettuce, Chinese cabbage, celery, leeks, basil, parsley, and broad-leaved endive), although the epifluorescent images were clearest when pale green tissue or cuticle pieces were used. With these techniques, biofilms were observed that were about 20 (mu)m in depth and up to 1 mm in length and that contained copious exopolymeric matrices, diverse morphotypes of microorganisms, and debris. The epifluorescence techniques described here can be used to rapidly determine the abundance and localization of biofilms on leaves. An additional technique was developed to recover individual biofilms or portions of single biofilms from leaves and to disintegrate them for isolation of the culturable microorganisms they contained. Nineteen biofilms from broad-leaved endive, spinach, parsley, and olive leaves were thus isolated and characterized to illustrate the applications of this technique.

  19. Kinetics of nitrate and sulfate removal using a mixed microbial culture with or without limited-oxygen fed.

    PubMed

    Xu, Xi-Jun; Chen, Chuan; Wang, Ai-Jie; Guo, Hong-Liang; Yuan, Ye; Lee, Duu-Jong; Ren, Nan-Qi

    2014-07-01

    The biological degradation of nitrate and sulfate was investigated using a mixed microbial culture and lactate as the carbon source, with or without limited-oxygen fed. It was found that sulfate reduction was slightly inhibited by nitrate, since after nitrate depletion the sulfate reduction rate increased from 0.37 mg SO4 (2-)/mg VSS d to 0.71 mg SO4 (2-)/mg VSS d, and the maximum rate of sulfate reduction in the presence of nitrate corresponded to 56 % of the non-inhibited sulfate reduction rate determined after nitrate depleted. However, simultaneous but not sequential reduction of both oxy-anions was observed in this study, unlike some literature reports in which sulfate reduction starts only after depletion of nitrate, and this case might be due to the fact that lactate was always kept above the limiting conditions. At limited oxygen, the inhibited effect on sulfate reduction by nitrate was relieved, and the sulfate reduction rate seemed relatively higher than that obtained without limited-oxygen fed, whereas kept almost constant (0.86-0.89 mg SO4 (2-)/mg VSS d) cross the six ROS states. In contrast, nitrate reduction rates decreased substantially with the increase in the initial limited-oxygen fed, showing an inhibited effect on nitrate reduction by oxygen. Kinetic parameters determined for the mixed microbial culture showed that the maximum specific sulfate utilization rate obtained (0.098 ± 0.022 mg SO4 (2-)/(mg VSS h)) was similar to the reported typical value (0.1 mg SO4 (2-)/(mg VSS h)), also indicating a moderate inhibited effect by nitrate.

  20. Egypt's Red Sea coast: phylogenetic analysis of cultured microbial consortia in industrialized sites

    PubMed Central

    Mustafa, Ghada A.; Abd-Elgawad, Amr; Abdel-Haleem, Alyaa M.; Siam, Rania

    2014-01-01

    The Red Sea possesses a unique geography, and its shores are rich in mangrove, macro-algal and coral reef ecosystems. Various sources of pollution affect Red Sea biota, including microbial life. We assessed the effects of industrialization on microbes along the Egyptian Red Sea coast at eight coastal sites and two lakes. The bacterial communities of sediment samples were analyzed using bacterial 16S rDNA pyrosequencing of V6-V4 hypervariable regions. The taxonomic assignment of 131,402 significant reads to major bacterial taxa revealed five main bacterial phyla dominating the sampled sites: Proteobacteria (68%), Firmicutes (13%), Fusobacteria (12%), Bacteriodetes (6%), and Spirochetes (0.03%). Further analysis revealed distinct bacterial consortia that primarily included (1) marine Vibrio spp.—suggesting a “marine Vibrio phenomenon”; (2) potential human pathogens; and (3) oil-degrading bacteria. We discuss two divergent microbial consortia that were sampled from Solar Lake West near Taba/Eilat and Saline Lake in Ras Muhammad; these consortia contained the highest abundance of human pathogens and no pathogens, respectively. Our results draw attention to the effects of industrialization on the Red Sea and suggest the need for further analysis to overcome the hazardous effects observed at the impacted sites. PMID:25157243

  1. Microbial Prevalence, Diversity and Abundance in Amniotic Fluid During Preterm Labor: A Molecular and Culture-Based Investigation

    PubMed Central

    DiGiulio, Daniel B.; Romero, Roberto; Amogan, Harold P.; Kusanovic, Juan Pedro; Bik, Elisabeth M.; Gotsch, Francesca; Kim, Chong Jai; Erez, Offer; Edwin, Sam; Relman, David A.

    2008-01-01

    Background Preterm delivery causes substantial neonatal mortality and morbidity. Unrecognized intra-amniotic infections caused by cultivation-resistant microbes may play a role. Molecular methods can detect, characterize and quantify microbes independently of traditional culture techniques. However, molecular studies that define the diversity and abundance of microbes invading the amniotic cavity, and evaluate their clinical significance within a causal framework, are lacking. Methods and Findings In parallel with culture, we used broad-range end-point and real-time PCR assays to amplify, identify and quantify ribosomal DNA (rDNA) of bacteria, fungi and archaea from amniotic fluid of 166 women in preterm labor with intact membranes. We sequenced up to 24 rRNA clones per positive specimen and assigned taxonomic designations to approximately the species level. Microbial prevalence, diversity and abundance were correlated with host inflammation and with gestational and neonatal outcomes. Study subjects who delivered at term served as controls. The combined use of molecular and culture methods revealed a greater prevalence (15% of subjects) and diversity (18 taxa) of microbes in amniotic fluid than did culture alone (9.6% of subjects; 11 taxa). The taxa detected only by PCR included a related group of fastidious bacteria, comprised of Sneathia sanguinegens, Leptotrichia amnionii and an unassigned, uncultivated, and previously-uncharacterized bacterium; one or more members of this group were detected in 25% of positive specimens. A positive PCR was associated with histologic chorioamnionitis (adjusted odds ratio [OR] 20; 95% CI, 2.4 to 172), and funisitis (adjusted OR 18; 95% CI, 3.1 to 99). The positive predictive value of PCR for preterm delivery was 100 percent. A temporal association between a positive PCR and delivery was supported by a shortened amniocentesis-to-delivery interval (adjusted hazard ratio 4.6; 95% CI, 2.2 to 9.5). A dose-response association was

  2. Survival of microbial cultures on mineral while passing dense layers of the atmosphere

    NASA Astrophysics Data System (ADS)

    Viacheslav, Ilyin; Novikova, Nataliya; Deshevaya, Elena; Polikarpov, Nikolay; Slobodkin, Alexander; Gavrilov, Sergey; Ionov, Viktor; Morozova, Julia

    The purpose of the experiment is to study the possibility of extremophilic microorganisms survival in meteorite-like mineral while passing through the dense layers of the atmosphere. For this purpose cultures of bacteria were placed into the holes made in basalt pieces fixed to the outer wall of the spacecraft Bion M1. Control: similar materials placed in the outer container, prevented from overheating in the dense layers of the atmosphere by lid. In the flight experiment five strains of thermophilic bacteria and 2 strains of hyperthermophilic archaea from the collection of the Institute of Microbiology, RAS were used. In addition, microorganisms were selected from the collection of the Institute of Biomedical Problems, isolated from the environment objects of ISS: 10 fungal cultures and a culture of bacteria Bacillus pumilus. For thermophiles and hyperthermophiles the ability to redox interactions with minerals is considered as a priority physiological property. Ability of thermophiles to anaerobic growth also meets the conditions of the experiment - testing cell survival of microorganisms in the conditions of extraterrestrial space and ancient anaerobic atmosphere of the Earth. After 30-days flight in orbit control all spore-forming microorganisms have been successfully survived. Hyperthermophilic archaea growth in all control was significantly less intensive. Meanwhile, in one experimental samples there was obtained signs of survival of spore forming bacteria culture Carboxydocella ferrireducens. However, the maximum concentration of cells was 2 orders of magnitude below the values characteristic of an actively growing culture of the microorganism. Due to damage of holes in the stone, this result was obtained only in one replicate and for final prove of survival of C. ferrireducens when returning through the dense layers of the atmosphere it is necessary to repeat the experiment It should be noted that an important indicator of the possibility of survival of C

  3. Prediction of competitive microbial growth in mixed culture at dynamic temperature patterns.

    PubMed

    Fujikawa, Hiroshi; Sakha, Mohammad Z

    2014-01-01

    A novel competition model developed with the new logistic model and the Lotka-Volterra model successfully predicted the growth of bacteria in mixed culture using the mesophiles Staphylococcus aureus, Escherichia coli, and Salmonella at a constant temperature in our previous studies. In this study, we further studied the prediction of the growth of those bacteria in mixed culture at dynamic temperatures with various initial populations with the competition model. First, we studied the growth kinetics of the species in a monoculture at various constant temperatures ranging from 16℃ to 32℃. With the analyzed data in the monoculture, we then examined the prediction of bacterial growth in mixed culture with two and three species. The growth of the bacteria in the mixed culture at dynamic temperatures was successfully predicted with the model. The residuals between the observed and predicted populations at the data points were <0.5 log at most points, being 83.3% and 84.2% for the two-species mixture and the three-species mixture, respectively. The present study showed that the model could be applied to the competitive growth in mixed culture at dynamic temperature patterns.

  4. Culture-Dependent and Culture-Independent Characterization of Microbial Assemblages Associated with High-Temperature Petroleum Reservoirs

    PubMed Central

    Orphan, V. J.; Taylor, L. T.; Hafenbradl, D.; Delong, E. F.

    2000-01-01

    Recent investigations of oil reservoirs in a variety of locales have indicated that these habitats may harbor active thermophilic prokaryotic assemblages. In this study, we used both molecular and culture-based methods to characterize prokaryotic consortia associated with high-temperature, sulfur-rich oil reservoirs in California. Enrichment cultures designed for anaerobic thermophiles, both autotrophic and heterotrophic, were successful at temperatures ranging from 60 to 90°C. Heterotrophic enrichments from all sites yielded sheathed rods (Thermotogales), pleomorphic rods resembling Thermoanaerobacter, and Thermococcus-like isolates. The predominant autotrophic microorganisms recovered from inorganic enrichments using H2, acetate, and CO2 as energy and carbon sources were methanogens, including isolates closely related to Methanobacterium, Methanococcus, and Methanoculleus species. Two 16S rRNA gene (rDNA) libraries were generated from total community DNA collected from production wellheads, using either archaeal or universal oligonucleotide primer sets. Sequence analysis of the universal library indicated that a large percentage of clones were highly similar to known bacterial and archaeal isolates recovered from similar habitats. Represented genera in rDNA clone libraries included Thermoanaerobacter, Thermococcus, Desulfothiovibrio, Aminobacterium, Acidaminococcus, Pseudomonas, Halomonas, Acinetobacter, Sphingomonas, Methylobacterium, and Desulfomicrobium. The archaeal library was dominated by methanogen-like rDNAs, with a lower percentage of clones belonging to the Thermococcales. Our results strongly support the hypothesis that sulfur-utilizing and methane-producing thermophilic microorganisms have a widespread distribution in oil reservoirs and the potential to actively participate in the biogeochemical transformation of carbon, hydrogen, and sulfur in situ. PMID:10653739

  5. Effect of the fungal protease EPg222 on the sensory characteristics of dry fermented sausage "salchichón" ripened with commercial starter cultures.

    PubMed

    Benito, María J; Rodríguez, Mar; Martín, Alberto; Aranda, Emilio; Córdoba, Juan J

    2004-07-01

    The effect of the addition of the fungal protease EPg222 on the sensory characteristics of dry fermented sausage "salchichón" ripened with commercial starter cultures was investigated. Sausages were prepared with purified EPg222 and Staphylococcus carnosus, Staphylococcus xylosus, and Lactobacillus sakei as starter cultures, ripened for 145 days and compared with a control batch only inoculated with the starter cultures. Dry fermented sausages ripened with EPg222 and starter cultures showed higher amount of NPN and volatile compounds derived from amino acid catabolism, than control ripened only with starter cultures. Several branched aldehydes, acids and alcohols such as 2- and 3-methylbutanoic acid and 2-methylpropanol were detected only in enzyme treated samples. Sensory analysis reflected higher values for aroma intensity of sausages treated with EPg222 and lower values of hardness than control. The effect of EPg222 may be of great interest to improve sensory characteristics of dry fermented sausages ripened with starter cultures.

  6. A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks.

    PubMed

    Hill, Eric A; Chrisler, William B; Beliaev, Alex S; Bernstein, Hans C

    2017-03-01

    A new co-cultivation technology is presented that converts greenhouse gasses, CH4 and CO2, into microbial biomass. The methanotrophic bacterium, Methylomicrobium alcaliphilum 20z, was coupled to a cyanobacterium, Synechococcus PCC 7002 via oxygenic photosynthesis. The system exhibited robust growth on diverse gas mixtures ranging from biogas to those representative of a natural gas feedstock. A continuous processes was developed on a synthetic natural gas feed that achieved steady-state by imposing coupled light and O2 limitations on the cyanobacterium and methanotroph, respectively. Continuous co-cultivation resulted in an O2 depleted reactor and does not require CH4/O2 mixtures to be fed into the system, thereby enhancing process safety considerations over traditional methanotroph mono-culture platforms. This co-culture technology is scalable with respect to its ability to utilize different gas streams and its biological components constructed from model bacteria that can be metabolically customized to produce a range of biofuels and bioproducts.

  7. A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks

    DOE PAGES

    Hill, Eric A.; Chrisler, William B.; Beliaev, Alex S.; ...

    2017-01-03

    A new co-cultivation technology is presented that converts greenhouse gasses, CH4 and CO2, into microbial biomass. The methanotrophic bacterium, Methylomicrobium alcaliphilum 20z, was coupled to a cyanobacterium, Synechococcus PCC 7002 via oxygenic photosynthesis. The system exhibited robust growth on diverse gas mixtures ranging from biogas to those representative of a natural gas feedstock. A continuous processes was developed on a synthetic natural gas feed that achieved steady-state by imposing coupled light and O2 limitations on the cyanobacterium and methanotroph, respectively. Continuous co-cultivation resulted in an O2 depleted reactor and does not require CH4/O2 mixtures to be fed into the system,more » thereby enhancing process safety considerations over traditional methanotroph mono-culture platforms. This co-culture technology is scalable with respect to its ability to utilize different gas streams and its biological components constructed from model bacteria that can be metabolically customized to produce a range of biofuels and bioproducts.« less

  8. Differences in culturable microbial communities in bird nestboxes according to orientation and influences on offspring quality in great tits (Parus major).

    PubMed

    Goodenough, Anne E; Stallwood, Bethan

    2012-05-01

    Although bird-microbial interactions have become a topic of increasing research, the influence of nest-site characteristics, such as cavity orientation, on nest microbial communities in free-living passerines has not, to our knowledge, been investigated. This is despite the possibility of microbial differences explaining non-random patterns in nest-site selection and offspring quality, such as those exhibited by great tits (Parus major). We swabbed great tit nestboxes that faced either south-southwest (180-269°) or north-northeast (0-89°). Overall, 28 bacterial species and 11 fungal species were isolated, but the culturable microbial community differed substantially between different orientations-indeed nestboxes could be classified to their orientation group with high accuracy using microbial data. Nestboxes facing south-southwest had a significantly higher fungal load (typically double) than those facing north-northeast due to a higher abundance of two species, Epicoccum purpurascens and Cladosporium cladosporioides. There was no relationship between total bacterial load and orientation, although the abundance of one species, Pseudomonas veronii, was significantly lower in south-southwest boxes. The abundance of the allergen E. purpurascens explained almost 20% of the variation in offspring quality, being significantly and inversely related to chick size (high loads associated with small, poor quality, chicks). Our results provide empirical evidence for a correlation between nestbox orientation and culturable microbial load and a further correlation between abundance of one species, E. purpurascens, and offspring quality. Thus, microbial load, which is itself influenced by nest cavity parameters, could be the proximate factor that influences nest-site choice through its effect on offspring quality (and thus, overall fecundity).

  9. The effect of a commercial starter culture addition on the ripening of an artisanal goat's cheese (Cameros cheese).

    PubMed

    Olarte, C; Sanz, S; Gonzalez-Fandos, E; Torre, P

    2000-03-01

    The evolution of physicochemical parameters, and the most important microbial groups, were determined for the following three batches of 'Cameros' goat's milk cheese during ripening: Batch R elaborated with raw milk, Batch RS elaborated with raw milk and with the addition of a starter culture, and Batch PS elaborated with pasteurized milk and with the addition of the same culture. No differences in total solids (TS) or in the content of NaCl, fat and total nitrogen (expressed as percentages of TS) were found during the ripening. The pH, fat acidity and non-protein nitrogen (NPN, expressed as a percentage of TN) showed significant differences between the batches. The inoculated batches showed the fastest drop in pH at the beginning of the ripening period, but the cheeses of Batch R showed a higher degree of lipolysis and proteolysis. The addition of a starter influenced the microbiological quality of the cheeses. Differences in the counts of Enterobacteriaceae and faecal coliforms were found between Batches R and RS after 15 days. Staphylococcus aureus increased in number during the early period of ripening and attained a population above 6 log cfu g-1 in Batch R in the period from 5 to 10 days. However, enterotoxins were not detected in this Batch. Batch R showed lower values of lactic acid bacteria at the beginning of the ripening period, but no significant differences were found between batches in the period from 5 to 15 days of ripening. At the beginning of the ripening, Lactococcus was the main lactic acid bacteria, with L. lactis lactis being predominant. After 15 days, the lactic acid bacteria counts decreased in the three batches, especially in the cheeses of Batch PS (only 2.2 log cfu g-1 was found at 60 days), as lactococci (the only lactic acid bacteria present in Batch PS) are incapable of growing under the conditions found in cheeses at the end of their ripening period. At this time, Lactobacillus was the predominant genus in Batches R and RS, with L

  10. A study of deep-sea natural microbial populations and barophilic pure cultures using a high-pressure chemostat.

    PubMed

    Wirsen, C O; Molyneaux, S J

    1999-12-01

    Continuous cultures in which a high-pressure chemostat was used were employed to study the growth responses of (i) deep-sea microbial populations with the naturally occurring carbon available in seawater and with limiting concentrations of supplemental organic substrates and (ii) pure cultures of copiotrophic barophilic and barotolerant deep-sea isolates in the presence of limiting carbon concentrations at various pressures, dilution rates, and temperatures. We found that the growth rates of natural populations could not be measured or were extremely low (e.g., a doubling time of 629 h), as determined from the difference between the dilution rate and the washout rate. A low concentration of supplemental carbon (0.33 mg/liter) resulted in positive growth responses in the natural population, which resulted in an increase in the number of cells and eventually a steady population of cells. We found that the growth responses to imposed growth pressure by barophilic and barotolerant pure-culture isolates that were previously isolated and characterized under high-nutrient-concentration conditions were maintained under the low-nutrient-concentration limiting conditions (0.33 to 3.33 mg of C per liter) characteristic of the deep-sea environment. Our results indicate that deep-sea microbes can respond to small changes in substrate availability. Also, barophilic microbes that are copiotrophic as determined by their isolation in the presence of high carbon concentrations and their preference for high carbon concentrations are versatile and are able to compete and grow as barophiles in the low-carbon-concentration oligotrophic deep-sea environment in which they normally exist.

  11. Microbial deterioration of cultural heritage and works of art--tilting at windmills?

    PubMed

    Sterflinger, Katja; Piñar, Guadalupe

    2013-11-01

    Microorganisms (bacteria, archaea and fungi), in addition to lichens and insect pests, cause problems in the conservation of cultural heritage because of their biodeteriorative potential. This holds true for all types of historic artefacts, and even for art made of modern materials, in public buildings, museums and private art collections. The variety of biodeterioration phenomena observed on materials of cultural heritage is determined by several factors, such as the chemical composition and nature of the material itself, the climate and exposure of the object, in addition to the manner and frequency of surface cleaning and housekeeping in museums. This study offers a review of a variety of well-known biodeterioration phenomena observed on different materials, such as stone and building materials, objects exhibited in museums and libraries, as well as human remains and burial-related materials. The decontamination of infected artefacts, exhibition rooms and depots incurs high expenditure for museums. Nevertheless, the question has to be raised: whether the process of biodeterioration of cultural heritage can or should be stopped under all circumstances, or whether we have to accept it as a natural and an implicit consecution of its creation. This study also highlights critically the pros and cons of biocide treatments and gives some prominent examples of successful and unsuccessful conservation treatments. Furthermore, an outlook on the future research needs and developments in this highly interesting field is given.

  12. Microbial film formation: dental plaque deposition on acrylic tiles using continuous culture techniques.

    PubMed

    Keevil, C W; Bradshaw, D J; Dowsett, A B; Feary, T W

    1987-02-01

    A chemostat system has been developed to model the attachment of oral bacteria, and the subsequent development of plaque film, to acrylic surfaces immersed in steady state cultures. Plaque was removed from the teeth and gingival margin of volunteers who refrained from oral hygiene for at least 72 h. Samples were pooled and inoculated into a complex growth medium maintained at 37 degrees C. Glucose-limited continuous culture was established at a dilution rate of 0.05/h and at pH 7.0. Microbiological analysis of the culture indicated that a complex community of oral bacteria was established, typical of that found in dental plaque. Acrylic tiles were immersed in the fermenter through a modified fermenter head and incubated therein for up to 21 d. Scanning electron microscopy showed that either side of the tiles contained a rough and a smooth surface and these initially favoured the attachment of fusiform bacteria, particularly on the rough surface. Cocci attached to those surfaces which were not heavily colonized by the fusiforms and eventually grew into and on the colonial sheets of the fusiforms.

  13. Persistence of pentolite (PETN and TNT) in soil microcosms and microbial enrichment cultures.

    PubMed

    Arbeli, Ziv; Garcia-Bonilla, Erika; Pardo, Cindy; Hidalgo, Kelly; Velásquez, Trigal; Peña, Luis; C, Eliana Ramos; Avila-Arias, Helena; Molano-Gonzalez, Nicolás; Brandão, Pedro F B; Roldan, Fabio

    2016-05-01

    Pentolite is a mixture (1:1) of 2,4,6-trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN), and little is known about its fate in the environment. This study was aimed to determine the dissipation of pentolite in soils under laboratory conditions. Microcosm experiments conducted with two soils demonstrated that dissipation rate of PETN was significantly slower than that of TNT. Interestingly, the dissipation of PETN was enhanced by the presence of TNT, while PETN did not enhanced the dissipation of TNT. Pentolite dissipation rate was significantly faster under biostimulation treatment (addition of carbon source) in soil from the artificial wetland, while no such stimulation was observed in soil from detonation field. In addition, the dissipation rate of TNT and PETN in soil from artificial wetland under biostimulation was significantly faster than the equivalent abiotic control, although it seems that non-biological processes might also be important for the dissipation of TNT and PETN. Transformation of PETN was also slower during establishment of enrichment culture using pentolite as the sole nitrogen source. In addition, transformation of these explosives was gradually reduced and practically stopped after the forth cultures transfer (80 days). DGGE analysis of bacterial communities from these cultures indicates that all consortia were dominated by bacteria from the order Burkholderiales and Rhodanobacter. In conclusion, our results suggest that PETN might be more persistent than TNT.

  14. Microbial reduction and precipitation of vanadium (V) in groundwater by immobilized mixed anaerobic culture.

    PubMed

    Zhang, Baogang; Hao, Liting; Tian, Caixing; Yuan, Songhu; Feng, Chuanping; Ni, Jinren; Borthwick, Alistair G L

    2015-09-01

    Vanadium is an important contaminant impacted by natural and industrial activities. Vanadium (V) reduction efficiency as high as 87.0% was achieved by employing immobilized mixed anaerobic sludge as inoculated seed within 12h operation, while V(IV) was the main reduction product which precipitated instantly. Increasing initial V(V) concentration resulted in the decrease of V(V) removal efficiency, while this index increased first and then decreased with the increase of initial COD concentration, pH and conductivity. High-throughput 16S rRNA gene pyrosequencing analysis indicated the decreased microbial diversity. V(V) reduction was realized through dissimilatory reduction process by significantly enhanced Lactococcus and Enterobacter with oxidation of lactic and acetic acids from fermentative microorganisms such as the enriched Paludibacter and the newly appeared Acetobacterium, Oscillibacter. This study is helpful to detect new functional species for V(V) reduction and constitutes a step ahead in developing in situ bioremediations of vanadium contamination.

  15. Rapid and multiplexed transcript analysis of microbial cultures using capillary electophoresis-detectable oligonucleotide probe pools.

    PubMed

    Rautio, Jari J; Kataja, Kari; Satokari, Reetta; Penttilä, Merja; Söderlund, Hans; Saloheimo, Markku

    2006-06-01

    A rapid assay for multiplex transcript analysis based on solution hybridization with pools of oligonucleotide probes was developed. In this assay called TRAC (transcript analysis with aid of affinity capture) the mRNAs to be studied are hybridized with gene-specific detection probe pools and biotinylated oligo(dT) and captured on streptavidin-coated magnetic particles. Unbound sample material and nonspecifically bound detection probes are removed and the target-specific probes are eluted and detected by capillary electrophoresis. Simultaneous treatment of 96 samples was automated using a magnetic bead particle processor. The assay enabled detection of in vitro transcribed RNA at the level of 30 amol (20 pg) and over a 300-fold linear range. Besides extracted RNA, crude cell lysates were directly used as samples. The assay was used for transcriptional analysis of selected mRNAs in the filamentous fungus Trichoderma reesei in two experimental conditions. TRAC analysis was highly reproducible, providing expression results that were consistent with conventional Northern blot analysis. The whole procedure starting from sample collecting can be carried out in 2 h, making this assay suitable for high-throughput analysis of a limited set of mRNAs e.g. in gene expression monitoring of production organism in microbial bioprocesses.

  16. Assessment of Culturable Tea Rhizobacteria Isolated from Tea Estates of Assam, India for Growth Promotion in Commercial Tea Cultivars

    PubMed Central

    Dutta, Jintu; Handique, Pratap J.; Thakur, Debajit

    2015-01-01

    In the present study, 217 rhizobacterial isolates were obtained from six different tea estates of Assam, India and subjected to preliminary in vitro plant growth promotion (PGP) screening for indole acetic acid (IAA) production, phosphate solubilization, siderophore production and ammonia production. Fifty isolates showed all the PGP traits and five isolates did not exhibit any PGP traits. These 50 potential isolates were further analyzed for quantitative estimation of the PGP traits along with the aminocyclopropane-1-carboxylate (ACC) deaminase, protease and cellulose production. After several rounds of screening, four rhizobacteria were selected based on their maximum ability to produce in vitro PGP traits and their partial 16S rRNA gene sequence analysis revealed that they belong to Enterobacter lignolyticus strain TG1, Burkholderia sp. stain TT6, Bacillus pseudomycoides strain SN29 and Pseudomonas aeruginosa strain KH45. To evaluate the efficacy of these four rhizobacteria as plant growth promoters, three different commercially important tea clones TV1, TV19, and TV20 plants were inoculated with these rhizobacteria in greenhouse condition and compared to the uninoculated control plants. Though, all the rhizobacterial treatments showed an increase in plant growth compared to control but the multivariate PCA analysis confirmed more growth promotion by TG1 and SN29 strains than the other treatments in all three clones. To validate this result, the fold change analysis was performed and it revealed that the tea clone TV19 plants inoculated with the E. lignolyticus strain TG1 showed maximum root biomass production with an increase in 4.3-fold, shoot biomass with increase in 3.1-fold, root length by 2.2-fold and shoot length by 1.6-fold. Moreover, two way ANOVA analysis also revealed that rhizobacterial treatment in different tea clones showed the significant increase (P < 0.05) in growth promotion compared to the control. Thus, this study indicates that the

  17. Etiological agents of infectious diarrhea: implications for requests for microbial culture.

    PubMed Central

    Rohner, P; Pittet, D; Pepey, B; Nije-Kinge, T; Auckenthaler, R

    1997-01-01

    Gastrointestinal infections remain a frequent disease worldwide. In order to increase our knowledge of the epidemiology for our patient population, we retrospectively analyzed the results obtained for stool samples received at the clinical microbiology laboratory of the University Hospital of Geneva during a 4-year period. A total of 13,965 specimens from 7,124 patients (1.96 specimens per patient) were cultured, yielding 369 (2.6%) Salmonella spp., 408 (2.9%) Campylobacter spp., and 79 (0.6%) Shigella spp. The cumulative positivity rate of 6.1% decreased to 2.7% when patients received antimicrobial agents (P < 0.001). The positivity rate for 5,912 specimens obtained from patients hospitalized for < or = 3 days was 12.6%, whereas it dropped to 1.4% for patients hospitalized for > 3 days (P < 0.001). Of 3,837 stool samples originating from pediatric patients, 8.8% were positive, and 5.1% of 10,128 samples from adults were positive (P < 0.001). The cytotoxin of Clostridium difficile was detected in 379 of 3,723 samples analyzed (10.2%), and rotaviruses were detected in 190 of 1,601 samples (11.9%). We recommend that the use of cultures for enteric bacterial pathogens be restricted to patients hospitalized for < or = 3 days, with the exceptions of follow-up samples, specimens from immunocompromised patients, and patients whose first sample was culture negative or in the rare event of nosocomial food-borne outbreaks. For patients under antimicrobial therapy, testing for cytotoxin of C. difficile should primarily be requested; this analysis should also be accepted for samples from patients not receiving antimicrobial agents at the time of specimen collection. By applying these restrictions, we could have saved at least $5,000 annually. PMID:9163457

  18. Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures

    NASA Technical Reports Server (NTRS)

    Ward, D. M.; Santegoeds, C. M.; Nold, S. C.; Ramsing, N. B.; Ferris, M. J.; Bateson, M. M.

    1997-01-01

    We have begun to examine the basis for incongruence between hot spring microbial mat populations detected by cultivation or by 16S rRNA methods. We used denaturing gradient gel electrophoresis (DGGE) to monitor enrichments and isolates plated therefrom. At near extincting inoculum dilutions we observed Chloroflexus-like and cyanobacterial populations whose 16S rRNA sequences have been detected in the 'New Pit' Spring Chloroflexus mat and the Octopus Spring cyanobacterial mat. Cyanobacterial populations enriched from 44 to 54 degrees C and 56 to 63 degrees C samples at near habitat temperatures were similar to those previously detected in mat samples of comparable temperatures. However, a lower temperature enrichment from the higher temperature sample selected for the populations found in the lower temperature sample. Three Thermus populations detected by both DGGE and isolation exemplify even more how enrichment may bias our view of community structure. The most abundant population was adapted to the habitat temperature (50 degrees C), while populations adapted to 65 degrees C and 70 degrees C were 10(2)- and 10(4)-fold less abundant, respectively. However, enrichment at 70 degrees C favored the least abundant strain. Inoculum dilution and incubation at the habitat temperature favored the more numerically relevant populations. We enriched many other aerobic chemoorganotrophic populations at various inoculum dilutions and substrate concentrations, most of whose 16S rRNA sequences have not been detected in mats. A common feature of numerically relevant cyanobacterial, Chloroflexus-like and aerobic chemorganotrophic populations, is that they grow poorly and resist cultivation on solidified medium, suggesting plating bias, and that the medium composition and incubation conditions may not reflect the natural microenvironments these populations inhabit.

  19. Family fun or cultural free-for-all? A critique of the 2015 National Football League Super Bowl commercials

    PubMed Central

    Basch, Corey H.; Kernan, William D; Reeves, Rachel

    2016-01-01

    Background: The purpose of this cross-sectional study was to enumerate and describe violent and risky behaviors as well as other general health behaviors exhibited in the advertisements during the National Football League (NFL) Super Bowl 2015. Methods: Commercials during the NFL Super Bowl 2015 were assessed for violent and risky behaviors. Additional health behaviors were indicated such as the advertisement of unhealthy food, promotion of physical activity, and sexual content. Results: A total of 110 commercials were documented, accounting for 64 minutes of broadcast time. Commercials promoting automobiles, television shows, food, and movies were the most prevalent, representing just over half (53.7%) of all of the advertisements featured. Depictions of unsafe driving were found in 10.9% (n = 12) of the commercials. All 12 commercials contained some sort of risky or wild driving behavior, and speeding was observed in 11 of the 12 commercials. A total of 32 (29.1%) of the commercials were coded as including violent content.Physical activity behavior was present in 3 (2.7%) of the commercials. Conversely, substance use was observed in 3 (2.7%) of the commercials, none of which included health promotion messaging. Of the 110 commercials aired during the 2015 Super Bowl, 12.7% (n = 14) included sexual content. Conclusion: Parents should consider the possibility that their children may observe acts of violence or conflicting safety messages during commercial breaks. PMID:27123435

  20. Molecular and Culture-Based Assessment of the Microbial Diversity of Diabetic Chronic Foot Wounds and Contralateral Skin Sites

    PubMed Central

    Oates, Angela; Bowling, Frank L.; Boulton, Andrew J. M.

    2012-01-01

    Wound debridement samples and contralateral (healthy) skin swabs acquired from 26 patients attending a specialist foot clinic were analyzed by differential isolation and eubacterium-specific PCR-denaturing gradient gel electrophoresis (DGGE) in conjunction with DNA sequencing. Thirteen of 26 wounds harbored pathogens according to culture analyses, with Staphylococcus aureus being the most common (13/13). Candida (1/13), pseudomonas (1/13), and streptococcus (7/13) were less prevalent. Contralateral skin was associated with comparatively low densities of bacteria, and overt pathogens were not detected. According to DGGE analyses, all wounds contained significantly greater eubacterial diversity than contralateral skin (P < 0.05), although no significant difference in total eubacterial diversity was detected between wounds from which known pathogens had been isolated and those that were putatively uninfected. DGGE amplicons with homology to Staphylococcus sp. (8/13) and S. aureus (2/13) were detected in putatively infected wound samples, while Staphylococcus sp. amplicons were detected in 11/13 noninfected wounds; S. aureus was not detected in these samples. While a majority of skin-derived DGGE consortial fingerprints could be differentiated from wound profiles through principal component analysis (PCA), a large minority could not. Furthermore, wounds from which pathogens had been isolated could not be distinguished from putatively uninfected wounds on this basis. In conclusion, while chronic wounds generally harbored greater eubacterial diversity than healthy skin, the isolation of known pathogens was not associated with qualitatively distinct consortial profiles or otherwise altered diversity. The data generated support the utility of both culture and DGGE for the microbial characterization of chronic wounds. PMID:22553231

  1. Impact of dilution on microbial community structure and functional potential: comparison of numerical simulations and batch culture experiments

    NASA Technical Reports Server (NTRS)

    Franklin, R. B.; Garland, J. L.; Bolster, C. H.; Mills, A. L.

    2001-01-01

    A series of microcosm experiments was performed using serial dilutions of a sewage microbial community to inoculate a set of batch cultures in sterile sewage. After inoculation, the dilution-defined communities were allowed to regrow for several days and a number of community attributes were measured in the regrown assemblages. Based upon a set of numerical simulations, community structure was expected to differ along the dilution gradient; the greatest differences in structure were anticipated between the undiluted-low-dilution communities and the communities regrown from the very dilute (more than 10(-4)) inocula. Furthermore, some differences were expected among the lower-dilution treatments (e.g., between undiluted and 10(-1)) depending upon the evenness of the original community. In general, each of the procedures used to examine the experimental community structures separated the communities into at least two, often three, distinct groups. The groupings were consistent with the simulated dilution of a mixture of organisms with a very uneven distribution. Significant differences in community structure were detected with genetic (amplified fragment length polymorphism and terminal restriction fragment length polymorphism), physiological (community level physiological profiling), and culture-based (colony morphology on R2A agar) measurements. Along with differences in community structure, differences in community size (acridine orange direct counting), composition (ratio of sewage medium counts to R2A counts, monitoring of each colony morphology across the treatments), and metabolic redundancy (i.e., generalist versus specialist) were also observed, suggesting that the differences in structure and diversity of communities maintained in the same environment can be manifested as differences in community organization and function.

  2. A Culture-Independent Approach to Unravel Uncultured Bacteria and Functional Genes in a Complex Microbial Community

    PubMed Central

    Wang, Yun; Chen, Yin; Zhou, Qian; Huang, Shi; Ning, Kang; Xu, Jian; Kalin, Robert M.; Rolfe, Stephen; Huang, Wei E.

    2012-01-01

    Most microorganisms in nature are uncultured with unknown functionality. Sequence-based metagenomics alone answers ‘who/what are there?’ but not ‘what are they doing and who is doing it and how?’. Function-based metagenomics reveals gene function but is usually limited by the specificity and sensitivity of screening strategies, especially the identification of clones whose functional gene expression has no distinguishable activity or phenotypes. A ‘biosensor-based genetic transducer’ (BGT) technique, which employs a whole-cell biosensor to quantitatively detect expression of inserted genes encoding designated functions, is able to screen for functionality of unknown genes from uncultured microorganisms. In this study, BGT was integrated with Stable isotope probing (SIP)-enabled Metagenomics to form a culture-independent SMB toolbox. The utility of this approach was demonstrated in the discovery of a novel functional gene cluster in naphthalene contaminated groundwater. Specifically, metagenomic sequencing of the 13C-DNA fraction obtained by SIP indicated that an uncultured Acidovorax sp. was the dominant key naphthalene degrader in-situ, although three culturable Pseudomonas sp. degraders were also present in the same groundwater. BGT verified the functionality of a new nag2 operon which co-existed with two other nag and two nah operons for naphthalene biodegradation in the same microbial community. Pyrosequencing analysis showed that the nag2 operon was the key functional operon in naphthalene degradation in-situ, and shared homology with both nag operons in Ralstonia sp. U2 and Polaromonas naphthalenivorans CJ2. The SMB toolbox will be useful in providing deep insights into uncultured microorganisms and unravelling their ecological roles in natural environments. PMID:23082176

  3. Commercially-cultured oysters (Crassostrea gigas) exert top-down control on intertidal pelagic resources in Willapa Bay, Washington, USA

    NASA Astrophysics Data System (ADS)

    Wheat, Elizabeth; Ruesink, Jennifer L.

    2013-08-01

    The capacity of filter feeders to reduce seston and phytoplankton concentrations in the water column has important implications for restoration and management of coastal ecosystems. We directly measured changes in chlorophyll a concentration on commercially stocked intertidal oyster beds (Crassostrea gigas) in Willapa Bay, Washington, USA by recording water properties near small drifters as they tracked parcels of water across tide flats. Chlorophyll declined 9.6% per half hour in water passing on-bottom adult oysters and 41% for longline adult oysters, whereas chlorophyll concentrations increased as water flowed across tide flats without adult oysters. Field filtration rates, which were fit to exponential declines in chlorophyll and accounted for oyster density and water depth, averaged 0.35 L g- 1 h- 1 (shucked dry weight) for on-bottom aquaculture and 0.73 L g- 1 h- 1 for longline culture, compared to values of 2.5-12 L g- 1 h- 1 reported from laboratory studies of C. gigas. Field filtration rates may be lower than laboratory rates due to unfavorable field conditions (e.g., low initial chlorophyll concentrations) or masked by resuspension of benthic microalgae. In addition to distinctions among on-bottom, longline, and no-oyster habitats, Akaike's Information Criterion analysis showed temperature, initial chlorophyll concentration, and depth related to chlorophyll decline. This research corroborates mathematical models suggesting that benthic suspension feeders are exerting top-down control of pelagic production in this estuary, with strong patterns in chlorophyll emerging across extensive tideflats populated by C. gigas despite low field filtration rates.

  4. Bioconversion of lutein using a microbial mixture--maximizing the production of tobacco aroma compounds by manipulation of culture medium.

    PubMed

    Rodríguez-Bustamante, Eduardo; Maldonado-Robledo, Gabriela; Ortiz, Marco Antonio; Díaz-Avalos, Carlos; Sanchez, Sergio

    2005-08-01

    The generation of aroma compounds by carotenoid cleavage in the 9-10 position was studied, due to the importance of these compounds in the flavor and fragrance industry. The bioconversion of the carotenoid lutein to C(13) norisoprenoids utilizing a microbial mixture composed of Trichosporon asahii and Paenibacillus amylolyticus was carried out by a fermentation process. Applying an experimental design methodology, the effects of nutritional factors on the production of aroma compounds present in the tobacco profile were studied. After an assessment of the significance of each nutritional factor, the levels of the variables yielding the maximum response were calculated. Glucose, tryptone, and yeast extract exerted a strong negative effect over the objective function, with glucose being the strongest. Lutein possessed a positive effect over the tobacco aroma production, while sodium chloride and trace elements showed no influence over the process. The yield attained after culture medium manipulation was almost ten-fold higher, compared with the base medium; and the aroma mixture was characterized as: 7,8-dihydro-beta-ionol (95.2%), 7,8-dihydro-beta-ionone (3.7%), and beta-ionone (1.1%).

  5. Co-culture microorganisms with different initial proportions reveal the mechanism of chalcopyrite bioleaching coupling with microbial community succession.

    PubMed

    Ma, Liyuan; Wang, Xingjie; Feng, Xue; Liang, Yili; Xiao, Yunhua; Hao, Xiaodong; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan

    2017-01-01

    The effect of co-culture microorganisms with different initial proportions on chalcopyrite bioleaching was investigated. Communities were rebuilt by six typical strains isolated from the same habitat. The results indicated, by community with more sulfur oxidizers at both 30 and 40°C, the final copper extraction rate was 19.8% and 6.5% higher, respectively, than that with more ferrous oxidizers. The variations of pH, redox potential, ferrous and copper ions in leachate also provided evidences that community with more sulfur oxidizers was more efficient. Community succession of free and attached cells revealed that initial proportions played decisive roles on community dynamics at 30°C, while communities shared similar structures, not relevant to initial proportions at 40°C. X-ray diffraction analysis confirmed different microbial functions on mineral surface. A mechanism model for chalcopyrite bioleaching was established coupling with community succession. This will provide theoretical basis for reconstructing an efficient community in industrial application.

  6. Comparative metabolomic-based metabolic mechanism hypothesis for microbial mixed cultures utilizing cane molasses wastewater for higher 2-phenylethanol production.

    PubMed

    Pan, Xinrong; Qi, Haishan; Mu, Li; Wen, Jianping; Jia, Xiaoqiang

    2014-10-08

    The mixed microbes coculture method in cane molasses wastewater (CMW) was adopted to produce 2-phenylethanol (2-PE). Comparative metabolomics combined with multivariate statistical analysis was performed to profile the differences of overall intracellular metabolites concentration for the mixed microbes cocultured under two different fermentation conditions with low and high 2-PE production. In total 102 intracellular metabolites were identified, and 17 of them involved in six pathways were responsible for 2-PE biosynthesis. After further analysis of metabolites and verification by feeding experiment, an overall metabolic mechanism hypothesis for the microbial mixed cultures (MMC) utilizing CMW for higher 2-PE production was presented. The results demonstrated that the branches of intracellular pyruvate metabolic flux, as well as the flux of phenylalanine, tyrosine, tryptophan, glutamate, proline, leucine, threonine, and oleic acid, were closely related to 2-PE production and cell growth, which provided theoretical guidance for domestication and selection of species as well as medium optimization for MMC metabolizing CMW to enhance 2-PE yield.

  7. Microbial production of low molecular weight hyaluronic acid by adding hydrogen peroxide and ascorbate in batch culture of Streptococcus zooepidemicus.

    PubMed

    Liu, Long; Du, Guocheng; Chen, Jian; Zhu, Yang; Wang, Miao; Sun, Jun

    2009-01-01

    Microbial production of low molecular weight hyaluronic acid (HA) by the addition of hydrogen peroxide and ascorbate during the batch culture of Streptococcus zooepidemicus was investigated. Hydrogen peroxide (1.0 mmol/g HA) and ascorbate (0.5 mmol/g HA) were added at 8h and 12h to degrade HA. With the redox depolymerization of HA, the HA molecular weight decreased from 1,300 kDa for the control to 80 kDa, and the average broth viscosity during 8-16 h decreased from 360 mPa s for the control to 290 mPa s. The average oxygen mass transfer coefficient K(L)a increased from 10h(-1) for the control to 35 h(-1) and the average dissolved oxygen level increased from 1% of air saturation in the control to 10%. HA production increased from 5.0 g/L for the control to 6.5 g/L, and contributed to the increased redox potential and energy charge. This novel process not only significantly enhanced production of low molecular weight HA, but also improved purification efficiency due to a decreased broth viscosity. Low molecular weight HA finds applications in biomedical and healthcare fields.

  8. Numerical Modeling Analysis of Hydrodynamic and Microbial Controls on DNAPL Pool Dissolution and Detoxification: Dehalorespirers in Co-culture

    SciTech Connect

    Wesseldyke, Eric S.; Becker, Jennifer G.; Seagren, Eric A.; Mayer, Alex S.; Zhang, Changyong

    2015-04-01

    Dissolution of dense non-aqueous phase liquid (DNAPL) contaminants like tetrachloroethene (PCE) can be “bioenhanced” via biodegradation, which increases the concentration gradient at the DNAPL–water interface. Model simulations were used to evaluate the impact of ecological interactions between different dehalorespiring strains and hydrodynamics on the bioenhancement effect and the extent of PCE dechlorination. Simulations were performed using a two-dimensional coupled flow-transport model, with a DNAPL pool source and two microbial species, Dehalococcoides mccartyi 195 and Desulfuromonas michiganensis, which compete for electron acceptors (e.g., PCE), but not for their electron donors. Under biostimulation, low vx conditions, D. michiganensis alone significantly enhanced dissolution by rapidly utilizing aqueous-phase PCE. In co-culture under these conditions, D. mccartyi 195 increased this bioenhancement modestly and greatly increased the extent of PCE transformation. Although D. michiganensis was the dominant population under low velocity conditions, D. mccartyi 195 dominated under high velocity conditions due to bioclogging effects.

  9. Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and the implications for fish culture.

    PubMed

    Azim, M E; Little, D C; Bron, J E

    2008-06-01

    The present experiment investigated the possibility of microbial protein production in 250 l indoor tanks by manipulating C:N ratio in fish feed applied. Two different levels of protein feed (35% and 22% CP) resulting in C:N ratio of 8.4 and 11.6, respectively, were applied at 25 g daily in each tank. Tanks were aerated and agitated continuously using a dome diffuser. The experiment was carried out for eight weeks. The biofloc development in terms of VSS and BOD5 was better in the low protein fed tanks than in the high protein fed tanks. An estimated biofloc productivity ranged 3-5 g Cm(-3)day(-1). A 3-D image stained with DAPI indicates that the biofloc is comprised of hundreds of bacterial nuclei, size being ranged from 100 to 200 microm. Biofloc quality was independent of the quality of feed applied and contained more than 50% crude protein, 2.5% crude lipid, 4% fibre, 7% ash and 22 kJ g(-1) energy on dry matter basis. The dietary composition and size of biofloc can be considered as appropriate for all omnivorous fish species. The underlying ecological processes are explained through factor analysis. The potential of using biofloc in fish culture is also discussed.

  10. Methods for Observing Microbial Biofilms Directly on Leaf Surfaces and Recovering Them for Isolation of Culturable Microorganisms

    PubMed Central

    Morris, C. E.; Monier, J.; Jacques, M.

    1997-01-01

    Epifluorescence microscopy, scanning electron microscopy, and confocal laser scanning microscopy were used to observe microbial biofilms directly on leaf surfaces. Biofilms were observed on leaves of all species sampled (spinach, lettuce, Chinese cabbage, celery, leeks, basil, parsley, and broad-leaved endive), although the epifluorescent images were clearest when pale green tissue or cuticle pieces were used. With these techniques, biofilms were observed that were about 20 (mu)m in depth and up to 1 mm in length and that contained copious exopolymeric matrices, diverse morphotypes of microorganisms, and debris. The epifluorescence techniques described here can be used to rapidly determine the abundance and localization of biofilms on leaves. An additional technique was developed to recover individual biofilms or portions of single biofilms from leaves and to disintegrate them for isolation of the culturable microorganisms they contained. Nineteen biofilms from broad-leaved endive, spinach, parsley, and olive leaves were thus isolated and characterized to illustrate the applications of this technique. PMID:16535579

  11. Bioelectricity production from microbial fuel cell using mixed bacterial culture isolated from distillery wastewater.

    PubMed

    Samsudeen, N; Radhakrishnan, T K; Matheswaran, Manickam

    2015-11-01

    The effect of various system parameters such as wastewater Chemical Oxygen Demand (COD) concentration, pH, conductivity, membrane size and thickness on efficient energy production using mixed isolated culture from the distillery wastewater in the MFC was studied. The power density increased with increase in the anolyte pH from 6 to 8. The peak power density and COD removal efficiency was observed as 63.8±0.65 mW/m(2) and 63.5±1.5% at pH 8, respectively. The MFC performance increased with increasing COD concentration (800-3200 mg/l), conductivity (1.1-9.7 mS/cm) and membrane area (8-24 cm(2)). The MFC operating with wastewater COD concentration of 3200 mg/l and its conductivity of 9.7 mS/cm produced the highest power density of 202±6 mW/m(2) with a corresponding current density of 412±12 mA/m(2). The results showed that the efficient electricity generation and simultaneous treatment of distillery wastewater can be attained in the MFC.

  12. Optimal control for nonlinear dynamical system of microbial fed-batch culture

    NASA Astrophysics Data System (ADS)

    Liu, Chongyang

    2009-10-01

    In fed-batch culture of glycerol bio-dissimilation to 1, 3-propanediol (1, 3-PD), the aim of adding glycerol is to obtain as much 1, 3-PD as possible. So a proper feeding rate is required during the process. Taking the concentration of 1, 3-PD at the terminal time as the performance index and the feeding rate of glycerol as the control function, we propose an optimal control model subject to a nonlinear dynamical system and constraints of continuous state and non-stationary control. A computational approach is constructed to seek the solution of the above model in two aspects. On the one hand we transcribe the optimal control model into an unconstrained one based on the penalty functions and an extension of the state space; on the other hand, by approximating the control function with simple functions, we transform the unconstrained optimal control problem into a sequence of nonlinear programming problems, which can be solved using gradient-based optimization techniques. The convergence analysis of this approximation is also investigated. Numerical results show that, by employing the optimal control policy, the concentration of 1, 3-PD at the terminal time can be increased considerably.

  13. Inflight Microbial Monitoring - An Alternative Method to Culture Based Detection Currently Used on the International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Hummerick, Mary E.; Roman, Monsi; Smith, David J.

    2015-01-01

    Microorganisms including potential human pathogens have been detected on the International Space Station (ISS). The potential to introduce new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Current microbial monitoring methods require enrichment of microorganisms and a 48-hour incubation time resulting in an increase in microbial load, detecting a limited number of unidentified microorganisms. An expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted.

  14. Culture-independent method for identification of microbial enzyme-encoding genes by activity-based single-cell sequencing using a water-in-oil microdroplet platform.

    PubMed

    Nakamura, Kazuki; Iizuka, Ryo; Nishi, Shinro; Yoshida, Takao; Hatada, Yuji; Takaki, Yoshihiro; Iguchi, Ayaka; Yoon, Dong Hyun; Sekiguchi, Tetsushi; Shoji, Shuichi; Funatsu, Takashi

    2016-02-26

    Environmental microbes are a great source of industrially valuable enzymes with potent and unique catalytic activities. Unfortunately, the majority of microbes remain unculturable and thus are not accessible by culture-based methods. Recently, culture-independent metagenomic approaches have been successfully applied, opening access to untapped genetic resources. Here we present a methodological approach for the identification of genes that encode metabolically active enzymes in environmental microbes in a culture-independent manner. Our method is based on activity-based single-cell sequencing, which focuses on microbial cells showing specific enzymatic activities. First, at the single-cell level, environmental microbes were encapsulated in water-in-oil microdroplets with a fluorogenic substrate for the target enzyme to screen for microdroplets that contain microbially active cells. Second, the microbial cells were recovered and subjected to whole genome amplification. Finally, the amplified genomes were sequenced to identify the genes encoding target enzymes. Employing this method, we successfully identified 14 novel β-glucosidase genes from uncultured bacterial cells in marine samples. Our method contributes to the screening and identification of genes encoding industrially valuable enzymes.

  15. Culture-independent method for identification of microbial enzyme-encoding genes by activity-based single-cell sequencing using a water-in-oil microdroplet platform

    PubMed Central

    Nakamura, Kazuki; Iizuka, Ryo; Nishi, Shinro; Yoshida, Takao; Hatada, Yuji; Takaki, Yoshihiro; Iguchi, Ayaka; Yoon, Dong Hyun; Sekiguchi, Tetsushi; Shoji, Shuichi; Funatsu, Takashi

    2016-01-01

    Environmental microbes are a great source of industrially valuable enzymes with potent and unique catalytic activities. Unfortunately, the majority of microbes remain unculturable and thus are not accessible by culture-based methods. Recently, culture-independent metagenomic approaches have been successfully applied, opening access to untapped genetic resources. Here we present a methodological approach for the identification of genes that encode metabolically active enzymes in environmental microbes in a culture-independent manner. Our method is based on activity-based single-cell sequencing, which focuses on microbial cells showing specific enzymatic activities. First, at the single-cell level, environmental microbes were encapsulated in water-in-oil microdroplets with a fluorogenic substrate for the target enzyme to screen for microdroplets that contain microbially active cells. Second, the microbial cells were recovered and subjected to whole genome amplification. Finally, the amplified genomes were sequenced to identify the genes encoding target enzymes. Employing this method, we successfully identified 14 novel β-glucosidase genes from uncultured bacterial cells in marine samples. Our method contributes to the screening and identification of genes encoding industrially valuable enzymes. PMID:26915788

  16. Culturable microbial diversity and the impact of tourism in Kartchner Caverns, Arizona.

    PubMed

    Ikner, Luisa A; Toomey, Rickard S; Nolan, Ginger; Neilson, Julia W; Pryor, Barry M; Maier, Raina M

    2007-01-01

    Kartchner Caverns in Benson, AZ, was opened for tourism in 1999 after a careful development protocol that was designed to maintain predevelopment conditions. As a part of an ongoing effort to determine the impact of humans on this limestone cave, samples were collected from cave rock surfaces along the cave trail traveled daily by tour groups (200,000 visitors year-1) and compared to samples taken from areas designated as having medium (30-40 visitors year-1) and low (2-3 visitors year-1) levels of human exposure. Samples were also taken from fiberglass moldings installed during cave development. Culturable bacteria were recovered from these samples and 90 unique isolates were identified by using 16S rRNA polymerase chain reaction and sequencing. Diversity generally decreased as human impact increased leading to the isolation of 32, 27, and 22 strains from the low, medium, and high impact areas, respectively. The degree of human impact was also reflected in the phylogeny of the isolates recovered. Although most isolates fell into one of three phyla: Actinobacteria, Firmicutes, or Proteobacteria, the Proteobacteria were most abundant along the cave trail (77% of the isolates), while Firmicutes predominated in the low (66%) and medium (52%) impact areas. Although the abundance of Proteobacteria along the cave trail seems to include microbes of environmental rather than of anthropogenic origin, it is likely that their presence is a consequence of increased organic matter availability due to lint and other organics brought in by cave visitors. Monitoring of the cave is still in progress to determine whether these bacterial community changes may impact the future development of cave formations.

  17. Establishment of microbial eukaryotic enrichment cultures from a chemically stratified antarctic lake and assessment of carbon fixation potential.

    PubMed

    Dolhi, Jenna M; Ketchum, Nicholas; Morgan-Kiss, Rachael M

    2012-04-20

    Lake Bonney is one of numerous permanently ice-covered lakes located in the McMurdo Dry Valleys, Antarctica. The perennial ice cover maintains a chemically stratified water column and unlike other inland bodies of water, largely prevents external input of carbon and nutrients from streams. Biota are exposed to numerous environmental stresses, including year-round severe nutrient deficiency, low temperatures, extreme shade, hypersalinity, and 24-hour darkness during the winter (1). These extreme environmental conditions limit the biota in Lake Bonney almost exclusively to microorganisms (2). Single-celled microbial eukaryotes (called "protists") are important players in global biogeochemical cycling (3) and play important ecological roles in the cycling of carbon in the dry valley lakes, occupying both primary and tertiary roles in the aquatic food web. In the dry valley aquatic food web, protists that fix inorganic carbon (autotrophy) are the major producers of organic carbon for organotrophic organisms (4, 2). Phagotrophic or heterotrophic protists capable of ingesting bacteria and smaller protists act as the top predators in the food web (5). Last, an unknown proportion of the protist population is capable of combined mixotrophic metabolism (6, 7). Mixotrophy in protists involves the ability to combine photosynthetic capability with phagotrophic ingestion of prey microorganisms. This form of mixotrophy differs from mixotrophic metabolism in bacterial species, which generally involves uptake dissolved carbon molecules. There are currently very few protist isolates from permanently ice-capped polar lakes, and studies of protist diversity and ecology in this extreme environment have been limited (8, 4, 9, 10, 5). A better understanding of protist metabolic versatility in the simple dry valley lake food web will aid in the development of models for the role of protists in the global carbon cycle. We employed an enrichment culture approach to isolate potentially

  18. Enrichment of a mixed microbial culture for polyhydroxyalkanoates production: Effect of pH and N and P concentrations.

    PubMed

    Montiel-Jarillo, Gabriela; Carrera, Julián; Suárez-Ojeda, María Eugenia

    2017-04-01

    Polyhydroxyalkanoates (PHA) are biopolymers that can be an alternative against conventional plastics. The study reported herein evaluated the enrichment of a mixed microbial culture (MMC) operated under feast/famine regime and different pHs in a sequencing batch reactor (SBR) using acetate as sole carbon source to produce polyhydroxyalkanoates (PHAs). The enrichment step was evaluated at controlled pH of 7.5 and also without pH control (averaged value of 9.0). The acetate uptake rate (-qS) of both enrichments at the end of the experimental period exhibited similar behaviour being about 0.18CmolAcCmolX(-1)h(-1) and 0.19CmolAcCmolX(-1)h(-1) for SBR-A and SBR-B, respectively. However, the PHA-storing capacity of the biomass enriched without pH control was better, exhibiting a maximum PHA content of 36% (gPHAg(-1) VSS) with a PHA production rate (qPHA) of 0.16CmolPHACmolX(-1)h(-1). Batch experiments were performed to evaluate PHA-storing capacity of the enriched culture at different pHs and nutrients concentrations. In the pH experiments (without nutrient limitation), it was found that in the absence of controlled pH, the enriched biomass exhibited a PHA content of 44% gPHAg(-1) VSS with -qS and PHA to substrate yield (YPHA/Ac) of 0.57CmolAcCmolX(-1)h(-1) and 0.33CmolPHACmolAc(-1), respectively. Regarding the experiments at variable nutrients concentration (pH ranging 8.8 to 9.2), the results indicate that the PHA content in the enriched biomass is significantly higher being around 51% gPHAg(-1) VSS under nitrogen limitation. This work demonstrated the feasibility of the enrichment of a MMC with PHA storage ability without pH control. Results also suggest that better PHAs contents and substrate uptake rates are obtained without controlling the pH in the accumulation step. Finally, this work also highlights the importance of understanding the role of nutrients concentration during the accumulation step.

  19. Integrated ‘omics analysis for studying the microbial community response to a pH perturbation of a cellulose-degrading bioreactor culture

    SciTech Connect

    Boaro, Amy A.; Kim, Young-Mo; Konopka, Allan; Callister, Stephen J.; Ahring, Birgitte K.

    2014-12-01

    Integrated ‘omics have been used on pure cultures and co-cultures, yet they have not been applied to complex microbial communities to examine questions of perturbation response. In this study, we used integrated ‘omics to measure the perturbation response of a cellulose-degrading bioreactor community fed with microcrystalline cellulose (Avicel). We predicted that a pH decrease by addition of a pulse of acid would reduce microbial community diversity and temporarily reduce reactor function such as cellulose degradation. However, 16S rDNA pyrosequencing results revealed increased alpha diversity in the microbial community after the perturbation, and a persistence of the dominant community members over the duration of the experiment. Proteomics results showed a decrease in activity of proteins associated with Fibrobacter succinogenes two days after the perturbation followed by increased protein abundances six days after the perturbation. The decrease in cellulolytic activity suggested by the proteomics was confirmed by the accumulation of Avicel in the reactor. Metabolomics showed a pattern similar to that of the proteome, with amino acid production decreasing two days after the perturbation and increasing after six days. This study demonstrated that community ‘omics data provides valuable information about the interactions and function of anaerobic cellulolytic community members after a perturbation.

  20. Integrated 'omics analysis for studying the microbial community response to a pH perturbation of a cellulose-degrading bioreactor culture.

    PubMed

    Boaro, Amy A; Kim, Young-Mo; Konopka, Allan E; Callister, Stephen J; Ahring, Birgitte K

    2014-12-01

    Integrated 'omics have been used on pure cultures and co-cultures, yet they have not been applied to complex microbial communities to examine questions of perturbation response. In this study, we used integrated 'omics to measure the perturbation response of a cellulose-degrading bioreactor community fed with microcrystalline cellulose (Avicel). We predicted that a pH decrease by addition of a pulse of acid would reduce microbial community diversity and temporarily reduce reactor function in terms of cellulose degradation. However, 16S rDNA gene pyrosequencing results revealed increased alpha diversity in the microbial community after the perturbation, and a persistence of the dominant community members over the duration of the experiment. Proteomics results showed a decrease in activity of proteins associated with Fibrobacter succinogenes 2 days after the perturbation followed by increased protein abundances 6 days after the perturbation. The decrease in cellulolytic activity suggested by the proteomics was confirmed by the accumulation of Avicel in the reactor. Metabolomics showed a pattern similar to that of the proteome, with amino acid production decreasing 2 days after the perturbation and increasing after 6 days. This study demonstrated that community 'omics data provide valuable information about the interactions and function of anaerobic cellulolytic community members after a perturbation.

  1. Type Culture Collections and Their Databases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial culture collections, also known as Biological Resource Centers, are primary suppliers of microbial cultures (germplasm) for medical, agricultural and biotechnological research and development. Many countries have one or more culture collections, which may specialize in certain microbial g...

  2. From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin

    PubMed Central

    Gómez, Patricia I.; Inostroza, Ingrid; Pizarro, Mario; Pérez, Jorge

    2013-01-01

    Astaxanthin is a red ketocarotenoid, widely used as a natural red colourant in marine fish aquaculture and poultry and, recently, as an antioxidant supplement for humans and animals. The green microalga Haematococcus pluvialis is one of the richest natural sources of this pigment. However, its slow growth rate and complex life cycle make mass culture difficult for commercial purposes. The aims of this research were (i) to standardize and apply a genetic improvement programme to a Chilean strain of H. pluvialis in order to improve its carotenogenic capacity and (ii) to evaluate the performance of a selected mutant strain in commercial-sized (125 000 L) open ponds in the north of Chile. Haematococcus pluvialis strain 114 was mutated by ethyl methanesulfonate. The level of mutagen dose (exposure time and concentration) was one that induced at least 90 % mortality. Surviving colonies were screened for resistance to the carotenoid biosynthesis inhibitor diphenylamine (25 µM). Resistant mutants were grown in a 30-mL volume for 30 days, after which the total carotenoid content was determined by spectrophotometry. Tens of mutants with improved carotenogenic capacity compared with the wild-type strain were isolated by the application of these standardized protocols. Some mutants exhibited curious morphological features such as spontaneous release of astaxanthin and loss of flagella. One of the mutants was grown outdoors in commercial-sized open ponds of 125 000 L in the north of Chile. Grown under similar conditions, the mutant strain accumulated 30 % more astaxanthin than the wild-type strain on a per dry weight basis and 72 % more on a per culture volume basis. We show that random mutagenesis/selection is an effective strategy for genetically improving strains of H. pluvialis and that improved carotenogenic capacity is maintained when the volume of the cultures is scaled up to a commercial size. PMID:23789055

  3. From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin.

    PubMed

    Gómez, Patricia I; Inostroza, Ingrid; Pizarro, Mario; Pérez, Jorge

    2013-01-01

    Astaxanthin is a red ketocarotenoid, widely used as a natural red colourant in marine fish aquaculture and poultry and, recently, as an antioxidant supplement for humans and animals. The green microalga Haematococcus pluvialis is one of the richest natural sources of this pigment. However, its slow growth rate and complex life cycle make mass culture difficult for commercial purposes. The aims of this research were (i) to standardize and apply a genetic improvement programme to a Chilean strain of H. pluvialis in order to improve its carotenogenic capacity and (ii) to evaluate the performance of a selected mutant strain in commercial-sized (125 000 L) open ponds in the north of Chile. Haematococcus pluvialis strain 114 was mutated by ethyl methanesulfonate. The level of mutagen dose (exposure time and concentration) was one that induced at least 90 % mortality. Surviving colonies were screened for resistance to the carotenoid biosynthesis inhibitor diphenylamine (25 µM). Resistant mutants were grown in a 30-mL volume for 30 days, after which the total carotenoid content was determined by spectrophotometry. Tens of mutants with improved carotenogenic capacity compared with the wild-type strain were isolated by the application of these standardized protocols. Some mutants exhibited curious morphological features such as spontaneous release of astaxanthin and loss of flagella. One of the mutants was grown outdoors in commercial-sized open ponds of 125 000 L in the north of Chile. Grown under similar conditions, the mutant strain accumulated 30 % more astaxanthin than the wild-type strain on a per dry weight basis and 72 % more on a per culture volume basis. We show that random mutagenesis/selection is an effective strategy for genetically improving strains of H. pluvialis and that improved carotenogenic capacity is maintained when the volume of the cultures is scaled up to a commercial size.

  4. In-Flight Microbial Monitor

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Mullenix, Pamela; Wheeler, Raymond M.; Ruby, Anna Maria

    2015-01-01

    Previous research has shown that potential human pathogens have been detected on the International Space Station (ISS). New microorganisms are introduced with every exchange of crew and cargo. Microorganisms introduced to the ISS are readily transferred between crew and subsystems (i.e., ECLSS, environmental control and life support systems). Current microbial characterization methods require a culture-based enrichment of microorganisms and at least a 48-hour incubation time. This increases the microbial load while detecting only a limited number of microorganisms. The culture-based method detects approximately 1-10% of the total organisms present and provides no identification. To identify and enumerate ISS samples requires that the microbes be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, inflight method of microbial detection, identification, and enumeration is needed. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganisms at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  5. A short-term preservation of human cultured periosteal sheets, osteogenic grafting materials, using a commercial preservation solution containing epigallocatechin-3-gallate (Theliokeep(®)) under hypothermic conditions.

    PubMed

    Kamiya, Mana; Kawase, Tomoyuki; Kobayashi, Mito; Sekine, Yu; Okuda, Kazuhiro; Nagata, Masaki; Fuse, Ichiro; Nakata, Koh; Wolff, Larry F; Yoshie, Hiromasa

    2012-06-01

    In the past decade, it has increasingly been reported that epigallocatechin-3-gallate (EGCG), a major catechin derivative extracted from Green tea, has various bioactivities, including a cell-protective action on mammalian cells and tissues. In this study, we have tested a commercial preservation solution containing EGCG (Theliokeep(®)) in both two- and three-dimensional cultures of human periosteal sheets, which have been used as an osteogenic grafting material for periodontal regenerative therapy. When periosteal sheets were 3D-cultured on collagen mesh, cell viability was maintained for 2 days using the hypothermic EGCG preservation solution. Replenishment of EGCG solution with 2-day intervals prevented the time-dependent decline in cell viability at 3 days and later. As observed in nonpreserved control cultures, most cells were positive for proliferating cell-nuclear antigen (PCNA) in the cultures preserved at 4°C in the EGCG solution, whereas PCNA-negative cells were increased in the cultures preserved at 4°C in the MesenPRO medium. In periosteal sheets 2D-cultured in plastic dishes, the EGCG solution occasionally was associated with vacuole formation in the cytoplasm, but cells could again expand in the culture medium at 37°C. As observed in the nonpreserved periosteal sheets control, the osteogenic induction upregulated alkaline phosphatase in those cells and tissues preserved in the EGCG solution. The EGCG solution protected cells from the cold shock-induced membrane phospholipid peroxidation. Our data suggest that the EGCG solution acts as an antioxidant to protect periosteal cells from cold shock and preserves cells under chilled conditions. The limited period of preservation time could be expanded by repeating replenishment of the EGCG solution or by optimizing the formula to be more favorable for human periosteal sheets without sacrificing cell viability. This methodology of preserving human cultured periosteal sheets with EGCG would be expected to

  6. Changes in Microbial Communities, Including both Uncultured and Culturable Bacteria, with Mid-Ocean Ballast-Water Exchange during a Voyage from Japan to Australia

    PubMed Central

    Tomaru, Akiko; Kawachi, Masanobu; Demura, Mikihide; Fukuyo, Yasuwo

    2014-01-01

    We assessed changes in the microbial communities in ballast water during a trans-Pacific voyage from Japan to Australia that included a mid-ocean ballast-water exchange. Uncultured (i.e., total) and culturable bacteria were counted and were characterized by using denaturing gradient gel electrophoresis (DGGE). There was a clear decrease over time in numbers of uncultured microorganisms, except for heterotrophic nanoflagellates, whereas the abundance of culturable bacteria initially decreased after the ballast-water exchange but then increased. The increase, however, was only up to 5.34% of the total number of uncultured bacteria. Cluster analysis showed that the DGGE profiles of uncultured bacteria clearly changed after the exchange. In contrast, there was no clear change in the DGGE profiles of culturable bacteria after the exchange. Multidimensional scaling analysis showed changes in microbial communities over the course of the voyage. Although indicator microbes as defined by the International Convention for the Control and Management of Ships' Ballast Water and Sediments were occasionally detected, no coliform bacteria were detected after the exchange. PMID:24817212

  7. Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Choi, Seokheun

    2017-04-01

    Among many energy harvesting techniques with great potential, microbial fuel cell (MFC) technology is arguably the most underdeveloped. Even so, excitement is building, as microorganisms can harvest electrical power from any biodegradable organic source (e.g. wastewater) that is readily available in resource-limited settings. Nevertheless, the requirement for endless introduction of organic matter imposes a limiting factor to this technology, demanding an active feeding system and additional power. Here, we demonstrated self-sustaining bioelectricity generation from a microliter-scale microbial fuel cell (MFC) by using the syntrophic interaction between heterotrophic exoelectrogenic bacteria and phototrophs. The MFC continuously generated light-responsive electricity from the heterotrophic bacterial metabolic respiration with the organic substrates produced by photosynthetic bacteria. Without additional organic fuel, the mixed culture in a 90-μL-chamber MFC generated self-sustained current for more than 13 days, while the heterotrophic culture produced current that decreased dramatically within a few hours. The current from the mixed culture was about 70 times greater than that of the device with only photosynthetic bacteria. The miniaturization provided a short start-up time, a well-controlled environment, and small internal resistance. Those advantages will become the general design platform for micropower generation.

  8. Cultural and chemical pest control methods alter habitat suitability for biological control agents: An example from Wisconsin commercial cranberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An integrated pest control program requires an in-depth understanding of the compatibility of all control strategies used. In Wisconsin commercial cranberry production, early-season control strategies may include either a broad-spectrum insecticide application or a corresponding spring flood, along ...

  9. Comparison of two DNA extractions and nested PCR, real-time PCR, a new commercial PCR assay, and bacterial culture for detection of Mycobacterium avium subsp. paratuberculosis in bovine feces.

    PubMed

    Christopher-Hennings, Jane; Dammen, Matthew A; Weeks, Shelleen R; Epperson, William B; Singh, Shri N; Steinlicht, Gina L; Fang, Ying; Skaare, Jessica L; Larsen, Jill L; Payeur, Janet B; Nelson, Eric A

    2003-03-01

    In this study, 5 combinations of 2 DNA extractions and 3 polymerase chain reaction (PCR) techniques were compared with culture for the detection of Mycobacterium paratuberculosis directly from bovine feces. These combinations included a new commercial extraction technique combined with a commercial PCR/Southern blot technique, nested PCR (nPCR), or real-time PCR, and a university-developed extraction combined with nPCR or real-time PCR. Four of the 5 combinations had statistically similar sensitivities between 93% and 100% and specificity between 95% and 100%, when compared with culture results from 63 bovine fecal samples. These results indicated that using a commercial extraction with a commercial PCR/Southern blot, nPCR, or real-time PCR, or a university-developed extraction with real-time PCR would result in similar sensitivities to culture for the identification of M. paratuberculosis from bovine feces and are valid alternatives to culture.

  10. Ruminal fermentation, microbial growth and amino acid flow in single-flow continuous culture fermenters fed a diet containing olive leaves.

    PubMed

    Molina-Alcaide, E; Martín-García, A I; Moumen, A; Carro, M D

    2010-04-01

    Six single-flow continuous culture fermenters were used to determine fermentation profile, microbial growth and amino acid (AA) flow promoted by olive leaves supplemented with barley grains and faba beans (OLSUP), and alfalfa hay (AH). Two incubation runs were carried out with three fermenters inoculated with ruminal fluid from wethers and three from goats. The inoculum source did not affect (p = 0.059 to 0.980) any of the parameters. Daily volatile fatty acid (VFA) production and carbohydrate digestibility were greater (p = 0.009 and 0.024, respectively) for AH, therefore the pH values were lower (p = 0.015) than for OLSUP. Acetate was greater (p < 0.001) and isobutyrate, isovalerate and caproate lower (p < 0.001 to 0.006) for AH with greater acetate/propionate (p = 0.014) and 'VFA/digested carbohydrate' (p = 0.026) ratios. Daily microbial N flow and efficiency were greater (p = 0.016 and p = 0.041) for diet AH. Individual AA flows were greater (p < 0.001 to 0.016) for AH, but microbial essential AA proportion was greater for OLSUP (p = 0.015). The results indicate that OLSUP promoted lower bacterial growth and AA flow than AH, which could have been partially due to a limitation of N availability to ruminal microbes.

  11. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    PubMed Central

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-01-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types. PMID:27485896

  12. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    NASA Astrophysics Data System (ADS)

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-08-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.

  13. RELATIONSHIPS BETWEEN CULTURABLE SOIL MICROBIAL POPULATIONS AND GROSS NITROGEN TRANSFORMATION PROCESSES IN A CLAY LOAM SOIL ACROSS ECOSYSTEMS

    EPA Science Inventory

    The size and quality of soil organic matter (SOM) pool can vary between ecosystems and can affect many soil properties. The objective of this study was to examine the relationship between gross N transformation rates and microbial populations and to investigate the role that SOM...

  14. Production of polyol oils from soybean oil by bioprocess: results of microbial screening and identification of positive cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently we reported methods for microbial screening and production of polyol oils from soybean oil through bioprocessing (Hou and Lin, 2013). Soy-polyol oils (oxygenated acylglycerols) are important starting materials for the manufacture of polymers such as polyurethane. Currently, they are produce...

  15. Integrated ‘omics analysis for studying the microbial community response to a pH perturbation of a cellulose-degrading bioreactor culture

    SciTech Connect

    Boaro, Amy A.; Kim, Young-Mo; Konopka, Allan E.; Callister, Stephen J.; Ahring, Birgitte K.

    2015-01-05

    Propionate accumulation is a common indicator of process imbalances in anaerobic bioreactor systems. The accumulation of propionate can occur due to low retention rates, hydrogen accumulation, or mechanical changes affecting the proximity between propionate oxidizers and partner species, thereby preventing necessary electron transfer. Few studies, however, have observed the changes in microbial community structure during propionate accumulation. We used 454 pyrosequencing of 16S rDNA to evaluate the community membership during propionate accumulations in replicate bioreactors with rumen based cultures. Half of the culture volume from a parent reactor was transferred to a sterile “daughter” reactor, and both systems were run identically. Both reactors experienced a propionate accumulation after roughly 10 days, with the propionate accumulation being less pronounced in the parent reactor as compared to the daughter reactor. Non-metric multidimensional scaling (NMDS) was used to determine clustering patterns of the samples, and correlative methods were used to determine which OTUs were significantly associated with the movements of samples along the NMDS axes. The presence of Saccharofermentans characterized the position of early samples, whereas the presence of Ruminococcus and Succiniclasticum were more indicative of the positions of later samples. Hydrogen accumulation and low sequence counts indicated low methanogen activity. Although both reactor systems were closed to microbial inputs due to the sterilization of influent media, we recorded significant increases in reactor diversity over time. This suggests that changes in the abundances of dominant community members may affect the sequencing of rare taxa within samples.

  16. Adulteration and Contamination of Commercial Sap of Hymenaea Species.

    PubMed

    Farias, Katyuce de Souza; Auharek, Sarah Alves; Cunha-Laura, Andréa Luiza; de Souza, Jeana Mara Escher; Damasceno-Junior, Geraldo Alves; Toffoli-Kadri, Mônica Cristina; de Oliveira Filiú, Wander Fernando; Dos Santos, Edson Dos Anjos; Chang, Marilene Rodrigues; Carollo, Carlos Alexandre

    2017-01-01

    The Hymenaea stigonocarpa and Hymenaea martiana species, commonly known as "jatobá," produce a sap which is extracted by perforation of the trunk and is commonly used in folk medicine as a tonic. For this study, the authenticity of commercial samples of jatobá was verified by the identification of the main compounds and multivariate analysis and contamination by microbial presence analysis. The acute toxicity of the authentic jatobá sap was also evaluated. The metabolites composition and multivariate analysis revealed that none of the commercial samples were authentic. In the microbiological contamination analysis, five of the six commercial samples showed positive cultures within the range of 1,700-100,000 CFU/mL and the authentic sap produced no signs of toxicity, and from a histological point of view, there was the maintenance of tissue integrity. In brief, the commercial samples were deemed inappropriate for consumption and represent a danger to the population.

  17. Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures.

    PubMed

    Takishita, Kiyotaka; Yubuki, Naoji; Kakizoe, Natsuki; Inagaki, Yuji; Maruyama, Tadashi

    2007-07-01

    Recent culture-independent surveys of eukaryotic small-subunit ribosomal DNA (SSU rDNA) from many environments have unveiled unexpectedly high diversity of microbial eukaryotes (microeukaryotes) at various taxonomic levels. However, such surveys were most probably biased by various technical difficulties, resulting in underestimation of microeukaryotic diversity. In the present study on oxygen-depleted sediment from a deep-sea methane cold seep of Sagami Bay, Japan, we surveyed the diversity of eukaryotic rDNA in raw sediment samples and in two enrichment cultures. More than half of all clones recovered from the raw sediment samples were of the basidiomycetous fungus Cryptococcus curvatus. Among other clones, phylotypes of eukaryotic parasites, such as Apicomplexa, Ichthyosporea, and Phytomyxea, were identified. On the other hand, we observed a marked difference in phylotype composition in the enrichment samples. Several phylotypes belonging to heterotrophic stramenopiles were frequently found in one enrichment culture, while a phylotype of Excavata previously detected at a deep-sea hydrothermal vent dominated the other. We successfully established a clonal culture of this excavate flagellate. Since these phylotypes were not identified in the raw sediment samples, the approach incorporating a cultivation step successfully found at least a fraction of the "hidden" microeukaryotic diversity in the environment examined.

  18. Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis.

    PubMed

    Bajracharya, Suman; Yuliasni, Rustiana; Vanbroekhoven, Karolien; Buisman, Cees J N; Strik, David P B T B; Pant, Deepak

    2017-02-01

    In microbial electrosynthesis (MES), CO2 can be reduced preferably to multi-carbon chemicals by a biocathode-based process which uses electrochemically active bacteria as catalysts. A mixed anaerobic consortium from biological origin typically produces methane from CO2 reduction which circumvents production of multi-carbon compounds. This study aimed to develop a stable and robust CO2 reducing biocathode from a mixed culture inoculum avoiding the methane generation. An effective approach was demonstrated based on (i) an enrichment procedure involving inoculum pre-treatment and several culture transfers in H2:CO2 media, (ii) a transfer from heterotrophic to autotrophic growth and (iii) a sequential batch operation. Biomass growth and gradual acclimation to CO2 electro-reduction accomplished a maximum acetate production rate of 400mgLcatholyte(-1)d(-1) at -1V (vs. Ag/AgCl). Methane was never detected in more than 300days of operation. Accumulation of acetate up to 7-10gL(-1) was repeatedly attained by supplying (80:20) CO2:N2 mixture at -0.9 to -1V (vs. Ag/AgCl). In addition, ethanol and butyrate were also produced from CO2 reduction. Thus, a robust CO2 reducing biocathode can be developed from a mixed culture avoiding methane generation by adopting the specific culture enrichment and operation procedures without the direct addition of chemical inhibitor.

  19. Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance.

    PubMed

    Patil, Sunil A; Harnisch, Falk; Kapadnis, Balasaheb; Schröder, Uwe

    2010-10-15

    In this paper we investigate the temperature dependence and temperature limits of waste water derived anodic microbial biofilms. We demonstrate that these biofilms are active in a temperature range between 5°C and 45°C. Elevated temperatures during initial biofilm growth not only accelerate the biofilm formation process, they also influence the bioelectrocatalytic performance of these biofilms when measured at identical operation temperatures. For example, the time required for biofilm formation decreases from above 40 days at 15°C to 3.5 days at 35°C. Biofilms grown at elevated temperatures are more electrochemically active at these temperatures than those grown at lower incubation temperature. Thus, at 30°C current densities of 520 μA cm(-2) and 881 μA cm(-2) are achieved by biofilms grown at 22°C and 35°C, respectively. Vice versa, and of great practical relevance for waste water treatment plants in areas of moderate climate, at low operation temperatures, biofilms grown at lower temperatures outperform those grown at higher temperatures. We further demonstrate that all biofilms possess similar lower (0°C) and upper (50°C) temperature limits--defining the operational limits of a respective microbial fuel cell or microbial biosensor--as well as similar electrochemical electron transfer characteristics.

  20. Microbial diversity in methanogenic hydrocarbon-degrading enrichment cultures isolated from a water-flooded oil reservoir (Dagang oil field, China)

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans H.; Krüger, Martin

    2015-04-01

    Microbial transformation of oil to methane is one of the main degradation processes taking place in oil reservoirs, and it has important consequences as it negatively affects the quality and economic value of the oil. Nevertheless, methane could constitute a recovery method of carbon from exhausted reservoirs. Previous studies combining geochemical and isotopic analysis with molecular methods showed evidence for in situ methanogenic oil degradation in the Dagang oil field, China (Jiménez et al., 2012). However, the main key microbial players and the underlying mechanisms are still relatively unknown. In order to better characterize these processes and identify the main microorganisms involved, laboratory biodegradation experiments under methanogenic conditions were performed. Microcosms were inoculated with production and injection waters from the reservoir, and oil or 13C-labelled single hydrocarbons (e.g. n-hexadecane or 2-methylnaphthalene) were added as sole substrates. Indigenous microbiota were able to extensively degrade oil within months, depleting most of the n-alkanes in 200 days, and producing methane at a rate of 76 ± 6 µmol day-1 g-1 oil added. They could also produce heavy methane from 13C-labeled 2-methylnaphthalene, suggesting that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. Microbial communities from oil and 2-methyl-naphthalene enrichment cultures were slightly different. Although, in both cases Deltaproteobacteria, mainly belonging to Syntrophobacterales (e.g. Syntrophobacter, Smithella or Syntrophus) and Clostridia, mostly Clostridiales, were among the most represented taxa, Gammaproteobacteria could be only identified in oil-degrading cultures. The proportion of Chloroflexi, exclusively belonging to Anaerolineales (e.g. Leptolinea, Bellilinea) was considerably higher in 2-methyl-naphthalene degrading cultures. Archaeal communities consisted almost exclusively of representatives of

  1. Identification of blood culture isolates directly from positive blood cultures by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and a commercial extraction system: analysis of performance, cost, and turnaround time.

    PubMed

    Lagacé-Wiens, Philippe R S; Adam, Heather J; Karlowsky, James A; Nichol, Kimberly A; Pang, Paulette F; Guenther, Jodi; Webb, Amanda A; Miller, Crystal; Alfa, Michelle J

    2012-10-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry represents a revolution in the rapid identification of bacterial and fungal pathogens in the clinical microbiology laboratory. Recently, MALDI-TOF has been applied directly to positive blood culture bottles for the rapid identification of pathogens, leading to reductions in turnaround time and potentially beneficial patient impacts. The development of a commercially available extraction kit (Bruker Sepsityper) for use with the Bruker MALDI BioTyper has facilitated the processing required for identification of pathogens directly from positive from blood cultures. We report the results of an evaluation of the accuracy, cost, and turnaround time of this method for 61 positive monomicrobial and 2 polymicrobial cultures representing 26 species. The Bruker MALDI BioTyper with the Sepsityper gave a valid (score, >1.7) identification for 85.2% of positive blood cultures with no misidentifications. The mean reduction in turnaround time to identification was 34.3 h (P < 0.0001) in the ideal situation where MALDI-TOF was used for all blood cultures and 26.5 h in a more practical setting where conventional identification or identification from subcultures was required for isolates that could not be directly identified by MALDI-TOF. Implementation of a MALDI-TOF-based identification system for direct identification of pathogens from blood cultures is expected to be associated with a marginal increase in operating costs for most laboratories. However, the use of MALDI-TOF for direct identification is accurate and should result in reduced turnaround time to identification.

  2. Selection of aroma compounds for the differentiation of wines obtained by fermenting musts with starter cultures of commercial yeast strains.

    PubMed

    Vararu, Florin; Moreno-García, Jaime; Zamfir, Cătălin-Ioan; Cotea, Valeriu V; Moreno, Juan

    2016-04-15

    Nine wines obtained by fermenting Aligoté musts with individual starter cultures of eight Saccharomyces cerevisiae yeast strains and with the indigenous microbiota were compared in terms of their composition in minor volatile aroma compounds. An easy handle methodology Stir-Bar-Sorptive-Adsorption, Gas Chromatography-Mass Spectrometry based, permits the identification of 49 aroma compounds. The rearrangement of these aroma compounds in six chemical families permits the establishment of a finger printing for each wine. Eighteen aroma compounds that exhibit a high differentiation power (p⩽0.05) were selected for chemometric analysis. The Principal Component Analysis carried out with these aroma compounds reveal that the first two principal components explain 53.8% and 17.2% of the total variance, respectively, allowing the establishment of nine different groups, in accordance with the wine types obtained. These results reveal analytical differences among the wines that are not recognized by sensorial analysis.

  3. Selection of an actinobacteria mixed culture for chlordane remediation. Pesticide effects on microbial morphology and bioemulsifier production.

    PubMed

    Fuentes, María S; Colin, Verónica L; Amoroso, María J; Benimeli, Claudia S

    2016-02-01

    Chlordane bioremediation using actinobacteria mixed culture is an attractive clean-up technique. Their ability to produce bioemulsifiers could increase the bioavailability of this pesticide. In order to select a defined actinobacteria mixed culture for chlordane remediation, compatibility assays were performed among six Streptomyces strains. The strains did not show growth inhibition, and they were assayed for chlordane removal, either as pure or as mixed cultures. In pure cultures, all of the strains showed specific dechlorination activity (1.42-24.20 EU mg(-1)) and chlordane removal abilities (91.3-95.5%). The specific dechlorination activity was mainly improved with cultures of three or four microorganisms. The mixed culture consisting of Streptomyces sp. A2-A5-A13 was selected. Their ability to produce bioemulsifiers in the presence of glucose or chlordane was tested, but no significant differences were observed (p > 0.05). However, the stability of the emulsions formed was linked to the carbon source used. Only in chlordane presence the emulsions retained 100% of their initial height. Finally, the selected consortium showed a high degree of sporulation in the pesticide presence. This is the first study on the effects that chlordane exerts on microbe morphology and emulsifier production for a defined mixed culture of Streptomyces with ability to remediate the pesticide.

  4. Effects of L- and iso-ascorbic acid on meat protein hydrolyzing activity of four commercial plant and three microbial protease preparations.

    PubMed

    Ha, Minh; Bekhit, Alaa El-Din; Carne, Alan

    2014-04-15

    The present study investigated the effects of both l- and iso-ascorbic acid (AA) on the activity of four plant proteases (papain, bromelain, actinidin and zingibain) and three microbial proteases (Bacterial Protease G, Fungal 31,000 and Fungal 60,000) preparations using fluorescent-labelled casein, meat myofibrillar and connective tissue extracts to explore their effects on meat structure components upon treatment with individual proteases. While l-AA in the range 0.8-3.2mM inhibited the activity of papain, bromelain and zingibain, iso-AA acted as an inhibitor of papain but as an activator of zingibain and had no significant effect on bromelain. Both AA isoforms acted as an activator of the actinidin protease and the concentration of AA isoforms appeared to affect the level of activation of the protease. The effect of the two AA isoforms on collagen and myofibrillar protein hydrolyzing activity varied depending on the concentration of the two AA isoforms. The results indicate the ability to up and down regulate the activity of the investigated proteases by using an appropriate concentration of the AA isoform.

  5. The effect of storage conditions on microbial community composition and biomethane potential in a biogas starter culture.

    PubMed

    Hagen, Live Heldal; Vivekanand, Vivekanand; Pope, Phillip B; Eijsink, Vincent G H; Horn, Svein J

    2015-07-01

    A new biogas process is initiated by adding a microbial community, typically in the form of a sample collected from a functional biogas plant. This inoculum has considerable impact on the initial performance of a biogas reactor, affecting parameters such as stability, biogas production yields and the overall efficiency of the anaerobic digestion process. In this study, we have analyzed changes in the microbial composition and performance of an inoculum during storage using barcoded pyrosequencing of bacterial and archaeal 16S ribosomal RNA (rRNA) genes, and determination of the biomethane potential, respectively. The inoculum was stored at room temperature, 4 and -20 °C for up to 11 months and cellulose was used as a standard substrate to test the biomethane potential. Storage up to 1 month resulted in similar final methane yields, but the rate of methane production was reduced by storage at -20 °C. Longer storage times resulted in reduced methane yields and slower production kinetics for all storage conditions, with room temperature and frozen samples consistently giving the best and worst performance, respectively. Both storage time and temperature affected the microbial community composition and methanogenic activity. In particular, fluctuations in the relative abundance of Bacteroidetes were observed. Interestingly, a shift from hydrogenotrophic methanogens to methanogens with the capacity to perform acetoclastic methanogensis was observed upon prolonged storage. In conclusion, this study suggests that biogas inocula may be stored up to 1 month with low loss of methanogenic activity, and identifies bacterial and archaeal species that are affected by the storage.

  6. Comparison of Different Strategies for Selection/Adaptation of Mixed Microbial Cultures Able to Ferment Crude Glycerol Derived from Second-Generation Biodiesel

    PubMed Central

    Varrone, C.; Heggeset, T. M. B.; Le, S. B.; Haugen, T.; Markussen, S.; Skiadas, I. V.; Gavala, H. N.

    2015-01-01

    Objective of this study was the selection and adaptation of mixed microbial cultures (MMCs), able to ferment crude glycerol generated from animal fat-based biodiesel and produce building-blocks and green chemicals. Various adaptation strategies have been investigated for the enrichment of suitable and stable MMC, trying to overcome inhibition problems and enhance substrate degradation efficiency, as well as generation of soluble fermentation products. Repeated transfers in small batches and fed-batch conditions have been applied, comparing the use of different inoculum, growth media, and Kinetic Control. The adaptation of activated sludge inoculum was performed successfully and continued unhindered for several months. The best results showed a substrate degradation efficiency of almost 100% (about 10 g/L glycerol in 21 h) and different dominant metabolic products were obtained, depending on the selection strategy (mainly 1,3-propanediol, ethanol, or butyrate). On the other hand, anaerobic sludge exhibited inactivation after a few transfers. To circumvent this problem, fed-batch mode was used as an alternative adaptation strategy, which led to effective substrate degradation and high 1,3-propanediol and butyrate production. Changes in microbial composition were monitored by means of Next Generation Sequencing, revealing a dominance of glycerol consuming species, such as Clostridium, Klebsiella, and Escherichia. PMID:26509171

  7. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures.

    PubMed

    Sekar, Ramanan; Taillefert, Martial; DiChristina, Thomas J

    2016-11-01

    Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies.

  8. Fate of β-hexachlorocyclohexane in the mixed microbial cultures (MMCs) three-stage polyhydroxyalkanoates (PHA) production process from cheese whey.

    PubMed

    Valentino, Francesco; Riccardi, Carmela; Campanari, Sabrina; Pomata, Donatella; Majone, Mauro

    2015-09-01

    This work aimed to study the fate and effect of β-hexachlorocyclohexane (β-HCH) during several steps of PHA production and purification, by using an artificially contaminated cheese whey (CW) as the feedstock. Most of β-HCH (around 90%) was adsorbed on CW solids and it was removed after the acidogenic fermentation step, when residual CW solids are separated along with anaerobic biomass from the liquid-phase. Purification steps also contributed strongly to the removal of residual β-HCH; overall, the PHA production process removed about 99.9% of initial β-HCH content. Moreover, it has been shown that β-HCH has neither detrimental effect on acidogenic fermentation nor on PHA accumulation, that were performed by using unacclimated mixed microbial cultures.

  9. Electron Microscopy Studies, Surface Analysis and Microbial Culturing Experiments on a Depth Profile Through Martian Meteorite Nakhla

    NASA Technical Reports Server (NTRS)

    Toporski, J. K. W.; Steele, A.; Westall, F.; Griffin, C.; Whitby, C.; Avci, R.; McKay, D. S.

    2000-01-01

    Combined electron microscopy studies and culturing experiments have shown that Nakhla became contaminated with recent terrestrial microorganisms. Additional surface analysis detected an as yet unknown organic species which may represent a biomarker.

  10. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Eder, W.; Huber, Robert; Hinrichs, K-U.; Hayes, J. M.; DesMarais, D. J.; Cady, S. L.; Hope, J. M.; Summons, R. E.

    2001-01-01

    This paper describes a study of lipid biomarker composition and carbon isotopic fractionation in cultured Aquificales and natural analogues from Yellowstone National Park. Additional information is contained in the original extended abstract.

  11. Effects of Phytoecdysteroids (PEDS) Extracted from Cyanotis arachnoidea on Rumen Fermentation, Enzyme Activity and Microbial Efficiency in a Continuous-Culture System

    PubMed Central

    Li, Deyong; Zhang, Yawei; Cui, Zhenliang; He, Liwen; Chen, Wanbao; Meng, Qingxiang; Ren, Liping

    2016-01-01

    The objective of this study was to evaluate the effects of supplementation of phytoecdysteroids (PEDS) extracted from Cyanotis arachnoidea on rumen fermentation, enzymes activity and microbial efficiency in a dual flow continuous-culture system. A single-factor experimental design was used with twelve fermenters in 4 groups with 3 replicates each. Fermenters were incubated for a total of 7 days that included first 4 days for adaptation and last 3 days for sampling. PEDS was added at levels of zero (as control), 5, 10, and 15 mg/g of the substrate (DM). The results showed that increasing supplementation levels of PEDS resulted in incremental digestibility of dry matter (DMD) (quadratic, P = 0.001) and organic matter (OMD) (quadratic, P = 0.031), but unchanged digestibility of neutral detergent fiber (NDFD), crude protein (CPD) and acid detergent acid (ADFD). As supplementation levels of PEDS increased, there were decreased response in the concentration of ammonia nitrogen (NH3-N) (linear, P = 0.015) and increased response in molar proportions of butyrate (linear, P = 0.004), but unchanged response in total volatile fatty acid (TVFA) and the molar proportion of acetate and propionate, respectively. Increasing PEDS supplementation levels decreased the ratio of acetate to propionate (linear, P = 0.038), suggesting an alteration of rumen fermentation pattern occurring due to PEDS supplementation in the diet. Supplementation of PEDS significantly increased activities of glutamate dehydrogenase (quadratic, P = 0.001), alanine dehydrogenase (quadratic, P = 0.004), glutamate synthase (linear, P = 0.038), glutamine synthetase (quadratic, P = 0.011), respectively. There were no discernible differences in the activity of carboxymethyl cellulose (CMCase), xylanase and protease regardless of the treatments. The daily production of microbial nitrogen (linear, P = 0.002) and microbial efficiency (MOEEF) (linear, P = 0.001) increased linearly as supplementation levels of PEDS

  12. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities.

    PubMed

    Oliveira, Catarina S S; Silva, Carlos E; Carvalho, Gilda; Reis, Maria A

    2017-07-25

    Production of polyhydroxyalkanoates (PHAs) by open mixed microbial cultures (MMCs) has been attracting increasing interest as an alternative technology to PHA production by pure cultures, due to the potential for lower costs associated with the use of open systems (eliminating the requirement for sterile conditions) and the utilisation of cheap feedstock (industrial and agricultural wastes). Such technology relies on the efficient selection of an MMC enriched in PHA-accumulating organisms. Fermented cheese whey, a protein-rich complex feedstock, has been used previously to produce PHA using the feast and famine regime for selection of PHA accumulating cultures. While this selection strategy was found efficient when operated at relatively low organic loading rate (OLR, 2g-CODL(-1)d(-1)), great instability and low selection efficiency of PHA accumulating organisms were observed when higher OLR (ca. 6g-CODL(-1)d(-1)) was applied. High organic loading is desirable as a means to enhance PHA productivity. In the present study, a new selection strategy was tested with the aim of improving selection for high OLR. It was based on uncoupling carbon and nitrogen supply and was implemented and compared with the conventional feast and famine strategy. For this, two selection reactors were fed with fermented cheese whey applying an OLR of ca. 8.5g-CODL(-1) (with 3.8g-CODL(-1) resulting from organic acids and ethanol), and operated in parallel under similar conditions, except for the timing of nitrogen supplementation. Whereas in the conventional strategy nitrogen and carbon substrates were added simultaneously at the beginning of the cycle, in the uncoupled substrates strategy, nitrogen addition was delayed to the end of the feast phase (i.e. after exogenous carbon was exhausted). The two different strategies selected different PHA-storing microbial communities, dominated by Corynebacterium and a Xantomonadaceae, respectively with the conventional and the new approaches. The new

  13. Loop-Mediated Isothermal Amplification (LAMP) for Rapid Detection and Quantification of Dehalococcoides Biomarker Genes in Commercial Reductive Dechlorinating Cultures KB-1 and SDC-9

    PubMed Central

    Kanitkar, Yogendra H.; Stedtfeld, Robert D.; Steffan, Robert J.; Hashsham, Syed A.

    2016-01-01

    Real-time quantitative PCR (qPCR) protocols specific to the reductive dehalogenase (RDase) genes vcrA, bvcA, and tceA are commonly used to quantify Dehalococcoides spp. in groundwater from chlorinated solvent-contaminated sites. In this study, loop-mediated isothermal amplification (LAMP) was developed as an alternative approach for the quantification of these genes. LAMP does not require a real-time thermal cycler (i.e., amplification is isothermal), allowing the method to be performed using less-expensive and potentially field-deployable detection devices. Six LAMP primers were designed for each of three RDase genes (vcrA, bvcA, and tceA) using Primer Explorer V4. The LAMP assays were compared to conventional qPCR approaches using plasmid standards, two commercially available bioaugmentation cultures, KB-1 and SDC-9 (both contain Dehalococcoides species). DNA was extracted over a growth cycle from KB-1 and SDC-9 cultures amended with trichloroethene and vinyl chloride, respectively. All three genes were quantified for KB-1, whereas only vcrA was quantified for SDC-9. A comparison of LAMP and qPCR using standard plasmids indicated that quantification results were similar over a large range of gene concentrations. In addition, the quantitative increase in gene concentrations over one growth cycle of KB-1 and SDC-9 using LAMP was comparable to that of qPCR. The developed LAMP assays for vcrA and tceA genes were validated by comparing quantification on the Gene-Z handheld platform and a real-time thermal cycler using DNA isolated from eight groundwater samples obtained from an SDC-9-bioaugmented site (Tulsa, OK). These assays will be particularly useful at sites subject to bioaugmentation with these two commonly used Dehalococcoides species-containing cultures. PMID:26746711

  14. Loop-Mediated Isothermal Amplification (LAMP) for Rapid Detection and Quantification of Dehalococcoides Biomarker Genes in Commercial Reductive Dechlorinating Cultures KB-1 and SDC-9.

    PubMed

    Kanitkar, Yogendra H; Stedtfeld, Robert D; Steffan, Robert J; Hashsham, Syed A; Cupples, Alison M

    2016-01-08

    Real-time quantitative PCR (qPCR) protocols specific to the reductive dehalogenase (RDase) genes vcrA, bvcA, and tceA are commonly used to quantify Dehalococcoides spp. in groundwater from chlorinated solvent-contaminated sites. In this study, loop-mediated isothermal amplification (LAMP) was developed as an alternative approach for the quantification of these genes. LAMP does not require a real-time thermal cycler (i.e., amplification is isothermal), allowing the method to be performed using less-expensive and potentially field-deployable detection devices. Six LAMP primers were designed for each of three RDase genes (vcrA, bvcA, and tceA) using Primer Explorer V4. The LAMP assays were compared to conventional qPCR approaches using plasmid standards, two commercially available bioaugmentation cultures, KB-1 and SDC-9 (both contain Dehalococcoides species). DNA was extracted over a growth cycle from KB-1 and SDC-9 cultures amended with trichloroethene and vinyl chloride, respectively. All three genes were quantified for KB-1, whereas only vcrA was quantified for SDC-9. A comparison of LAMP and qPCR using standard plasmids indicated that quantification results were similar over a large range of gene concentrations. In addition, the quantitative increase in gene concentrations over one growth cycle of KB-1 and SDC-9 using LAMP was comparable to that of qPCR. The developed LAMP assays for vcrA and tceA genes were validated by comparing quantification on the Gene-Z handheld platform and a real-time thermal cycler using DNA isolated from eight groundwater samples obtained from an SDC-9-bioaugmented site (Tulsa, OK). These assays will be particularly useful at sites subject to bioaugmentation with these two commonly used Dehalococcoides species-containing cultures.

  15. Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: Model validation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Abriola, Linda M.; Amos, Benjamin K.; Suchomel, Eric J.; Pennell, Kurt D.; Löffler, Frank E.; Christ, John A.

    2013-08-01

    Reductive dechlorination catalyzed by organohalide-respiring bacteria is often considered for remediation of non-aqueous phase liquid (NAPL) source zones due to cost savings, ease of implementation, regulatory acceptance, and sustainability. Despite knowledge of the key dechlorinators, an understanding of the processes and factors that control NAPL dissolution rates and detoxification (i.e., ethene formation) is lacking. A recent column study demonstrated a 5-fold cumulative enhancement in tetrachloroethene (PCE) dissolution and ethene formation (Amos et al., 2009). Spatial and temporal monitoring of key geochemical and microbial (i.e., Geobacter lovleyi and Dehalococcoides mccartyi strains) parameters in the column generated a data set used herein as the basis for refinement and testing of a multiphase, compositional transport model. The refined model is capable of simulating the reactive transport of multiple chemical constituents produced and consumed by organohalide-respiring bacteria and accounts for substrate limitations and competitive inhibition. Parameter estimation techniques were used to optimize the values of sensitive microbial kinetic parameters, including maximum utilization rates, biomass yield coefficients, and endogenous decay rates. Comparison and calibration of model simulations with the experimental data demonstrate that the model is able to accurately reproduce measured effluent concentrations, while delineating trends in dechlorinator growth and reductive dechlorination kinetics along the column. Sensitivity analyses performed on the optimized model parameters indicate that the rates of PCE and cis-1,2-dichloroethene (cis-DCE) transformation and Dehalococcoides growth govern bioenhanced dissolution, as long as electron donor (i.e., hydrogen flux) is not limiting. Dissolution enhancements were shown to be independent of cis-DCE accumulation; however, accumulation of cis-DCE, as well as column length and flow rate (i.e., column residence time

  16. Evaluation of a plastic nonvented aerobic blood culture bottle for use with the BacT/ALERT microbial detection system.

    PubMed

    Snyder, J W; Munier, G K; Bostic, G D; Bozigar, P S; Hanna, R

    2002-12-01

    The current BacT/ALERT SA (BTA SA) aerobic blood culture bottle is made from glass, does not require venting, and contains a liquid emulsion sensor (LES). Its performance has been shown to be equivalent to that of the vented standard aerobic culture bottle. A further-improved version of the BTA SA bottle, designated the BacT/ALERT plastic SA (BTA PSA) culture bottle, is made from clear plastic to prevent breakage, does not require venting, and contains a modified LES (LES 2) to reduce the possibility of false positives. The BTA PSA provides a practical alternative to the current glass version of this bottle. The plastic bottle is also comparable to the current glass bottle in transparency and growth performance and additionally minimizes the exposure to infectious agents due to glass bottle breakage.

  17. Investment into the future of microbial resources: culture collection funding models and BRC business plans for biological resource centres.

    PubMed

    Smith, David; McCluskey, Kevin; Stackebrandt, Erko

    2014-01-01

    Through their long history of public service, diverse microbial Biological Resource Centres (mBRCs) have made myriad contributions to society and science. They have enabled the maintenance of specimens isolated before antibiotics, made available strains showing the development and change of pathogenicity toward animals, humans and plants, and have maintained and provided reference strains to ensure quality and reproducibility of science. However, this has not been achieved without considerable financial commitment. Different collections have unique histories and their support is often tied to their origins. However many collections have grown to serve large constituencies and need to develop novel funding mechanisms. Moreover, several international initiatives have described mBRCs as a factor in economic development and have led to the increased professionalism among mBRCs.

  18. Mixed culture models for predicting intestinal microbial interactions between Escherichia coli and Lactobacillus in the presence of probiotic Bacillus subtilis.

    PubMed

    Yang, J J; Niu, C C; Guo, X H

    2015-01-01

    Bacillus has been proposed as a probiotic due to its in vivo effectiveness in the gastrointestinal tract through antimicrobial activities. The present study investigates the effects of Lactobacillus alone or in the presence of Bacillus subtilis MA139 on the inhibition of pathogenic Escherichia coli K88. Mixed cultures were used to predict the possible interactions among these bacteria within the intestinal tract of animals. B. subtilis MA139 was first assayed for its inhibition against E. coli K88 both under shaking and static culture conditions. A co-culture assay was employed under static conditions to test the inhibitory effects of Lactobacillus reuteri on E. coli K88, with or without addition of B. subtilis MA139. The results showed that B. subtilis MA139 had marked inhibition against E. coli K88 under shaking conditions and weak inhibition under static conditions. Lactobacillus alone as well as in combination with B. subtilis MA139 spores exerted strong inhibition against E. coli K88 under static conditions. However, the inhibition by Lactobacillus in combination with B. subilis spores was much higher than that by Lactobacillus alone (P<0.01). B. subtilis MA139 significantly decreased the pH and oxidation-reduction potential values of the co-culture broth compared to that of Lactobacillus alone (P<0.05). The viability of Lactobacillus increased when co-cultured with B. subtilis MA139 because of significantly higher Lactobacillus counts and lower pH values in the broth (P<0.05). The role of Bacillus in the mixed culture models suggests that Bacillus may produce beneficial effects by increasing the viability of lactobacilli and subsequently inhibiting the growth of pathogenic E. coli. Therefore, the combination of Bacillus and Lactobacillus species as a probiotic is recommended.

  19. Fetal Tissues Tested for Microbial Sterility by Culture- and PCR-Based Methods Can be Safely Used in Clinics.

    PubMed

    Vitrenko, Yakov; Kostenko, Iryna; Kulebyakina, Kateryna; Duda, Alla; Klunnyk, Mariya; Sorochynska, Khrystyna

    2017-02-16

    Cell preparations to be used in clinical practice must be free of infectious agents. Safety concerns are especially elevated upon the use of human fetal tissues, which are otherwise highly advantageous in cell therapy. We demonstrate that treating fetal samples with antibiotic, extensive washing, and homogenization prior to cryoconservation efficiently removes microbes in general. Screening a large collection by an automatic culture system showed that 89.2% fetal tissue samples were sterile, while contamination was detected in 10.8% samples. Liver and chorion were contaminated more than the brain, kidney, lung, and soft tissues. Broad-range PCR from the bacterial 16s rRNA gene was adopted as a confirmatory assay; however, the concordance between the culture-based and PCR assays was weak. Taxonomic identification was done for contaminated samples by bacteriological methods and sequencing 16s rRNA PCR products. The two approaches revealed different spectra of taxonomic groups sharing only Lactobacillus, the most frequently found genus. In addition, other representatives of vaginal microbiota were detected by culture-based identification, while PCR product sequencing has also revealed a subset of nosocomial microorganisms. Importantly, species known to cause sepsis were identified by both techniques, arguing for their indispensability and mutual complementarity. We suggest that most contaminations are taken up during collection of fetal material rather than originating from an in utero infection. In conclusion, a rigorous microbiological control by culture and PCR is a prerequisite for safe clinical use of fetal tissue suspensions.

  20. MICROBIAL REDUCTIVE DECHLORINATION OF HEXACHLORO-1,3-BUTADIENE IN A METHANOGENIC ENRICHMENT CULTURE. (R825513C007)

    EPA Science Inventory

    Sequential reductive dechlorination of hexachloro-1,3-butadiene (HCBD) was achieved by a mixed, methanogenic culture enriched from a contaminated estuarine sediment. Both methanol and lactate served as carbon and electron sources. Methanol was stoichiometrically converted to m...

  1. Bioelectricity generation in microbial fuel cell using natural microflora and isolated pure culture bacteria from anaerobic palm oil mill effluent sludge.

    PubMed

    Nor, Muhamad Hanif Md; Mubarak, Mohd Fahmi Muhammad; Elmi, Hassan Sh Abdirahman; Ibrahim, Norahim; Wahab, Mohd Firdaus Abdul; Ibrahim, Zaharah

    2015-08-01

    A double-chambered membrane microbial fuel cell (MFC) was constructed to investigate the potential use of natural microflora anaerobic palm oil mill effluent (POME) sludge and pure culture bacteria isolated from anaerobic POME sludge as inoculum for electricity generation. Sterilized final discharge POME was used as the substrate with no addition of nutrients. MFC operation using natural microflora anaerobic POME sludge showed a maximum power density and current density of 85.11mW/m(2) and 91.12mA/m(2) respectively. Bacterial identification using 16S rRNA analysis of the pure culture isolated from the biofilm on the anode MFC was identified as Pseudomonas aeruginosa strain ZH1. The electricity generated in MFC using P. aeruginosa strain ZH1 showed maximum power density and current density of 451.26mW/m(2) and 654.90mA/m(2) respectively which were five times higher in power density and seven times higher in current density compared to that of MFC using anaerobic POME sludge.

  2. A Critical Assessment of Marine Aquarist Biodiversity Data and Commercial Aquaculture: Identifying Gaps in Culture Initiatives to Inform Local Fisheries Managers

    PubMed Central

    Murray, Joanna M.; Watson, Gordon J.

    2014-01-01

    It is widely accepted that if well managed, the marine aquarium trade could provide socio-economic stability to local communities while incentivising the maintenance of coral reefs. However, the trade has also been implicated as having potentially widespread environmental impacts that has in part driven developments in aquaculture to relieve wild collection pressures. This study investigates the biodiversity in hobbyist aquaria (using an online survey) and those species currently available from an aquaculture source (commercial data and hobbyist initiatives) in the context of a traffic light system to highlight gaps in aquaculture effort and identify groups that require fisheries assessments. Two hundred and sixty nine species including clown fish, damsels, dotty backs, angelfish, gobies, sea horses and blennies, have reported breeding successes by hobbyists, a pattern mirrored by the European and US commercial organisations. However, there is a mismatch (high demand and low/non-existent aquaculture) for a number of groups including tangs, starfish, anemones and hermit crabs, which we recommend are priority candidates for local stock assessments. Hobbyist perception towards the concept of a sustainable aquarium trade is also explored with results demonstrating that only 40% of respondents were in agreement with industry and scientists who believe the trade could be an exemplar of a sustainable use of coral reefs. We believe that a more transparent evidence base, including the publication of the species collected and cultured, will go some way to align the concept of a sustainable trade across industry stakeholders and better inform the hobbyist when purchasing their aquaria stock. We conclude by proposing that a certification scheme established with government support is the most effective way to move towards a self-regulating industry. It would prevent industry “greenwashing” from multiple certification schemes, alleviate conservation concerns, and, ultimately

  3. A critical assessment of marine aquarist biodiversity data and commercial aquaculture: identifying gaps in culture initiatives to inform local fisheries managers.

    PubMed

    Murray, Joanna M; Watson, Gordon J

    2014-01-01

    It is widely accepted that if well managed, the marine aquarium trade could provide socio-economic stability to local communities while incentivising the maintenance of coral reefs. However, the trade has also been implicated as having potentially widespread environmental impacts that has in part driven developments in aquaculture to relieve wild collection pressures. This study investigates the biodiversity in hobbyist aquaria (using an online survey) and those species currently available from an aquaculture source (commercial data and hobbyist initiatives) in the context of a traffic light system to highlight gaps in aquaculture effort and identify groups that require fisheries assessments. Two hundred and sixty nine species including clown fish, damsels, dotty backs, angelfish, gobies, sea horses and blennies, have reported breeding successes by hobbyists, a pattern mirrored by the European and US commercial organisations. However, there is a mismatch (high demand and low/non-existent aquaculture) for a number of groups including tangs, starfish, anemones and hermit crabs, which we recommend are priority candidates for local stock assessments. Hobbyist perception towards the concept of a sustainable aquarium trade is also explored with results demonstrating that only 40% of respondents were in agreement with industry and scientists who believe the trade could be an exemplar of a sustainable use of coral reefs. We believe that a more transparent evidence base, including the publication of the species collected and cultured, will go some way to align the concept of a sustainable trade across industry stakeholders and better inform the hobbyist when purchasing their aquaria stock. We conclude by proposing that a certification scheme established with government support is the most effective way to move towards a self-regulating industry. It would prevent industry "greenwashing" from multiple certification schemes, alleviate conservation concerns, and, ultimately

  4. Evaluation of the Punch-it™ NA-Sample kit for detecting microbial DNA in blood culture bottles using PCR-reverse blot hybridization assay.

    PubMed

    Kim, Jungho; Wang, Hye-Young; Kim, Seoyong; Park, Soon Deok; Yu, Kwangmin; Kim, Hyo Youl; Uh, Young; Lee, Hyeyoung

    2016-09-01

    DNA extraction efficiency affects the success of PCR-based method applications. The Punch-it™ NA-Sample kit for extracting DNA by using paper chromatography is technically easy to use and requires just two reagents and only 10min to complete. The Punch-it™ NA-Sample kit could be offered as a rapid, accurate, and convenient method for extracting bacterial and fungal DNA from blood culture bottles. We compared the efficiencies of the commercial kit (Punch-it™ NA-Sample kit) and an in-house conventional boiling method with Chelex-100 resin for DNA extraction from blood culture bottles. The efficiency of the two DNA extraction methods was assessed by PCR-reverse blot hybridization assay (PCR-REBA, REBA Sepsis-ID) for detecting Gram positive (GP) bacteria, Gram negative (GN) bacteria, and Candida species with 196 positive and 200 negative blood culture bottles. The detection limits of the two DNA extraction methods were 10(3)CFU/mL for GP bacteria, 10(3)CFU/mL for GN bacteria, and 10(4)CFU/mL for Candida. The sensitivity and specificity of the Punch-it™ NA-Sample kit by REBA Sepsis-ID were 95.4% (187/196) and 100% (200/200), respectively. The overall agreement of the two DNA extraction methods was 98.9% (392/396). Three of four samples showing discrepant results between the two extraction methods were more accurately matched up with the Punch-it™ NA-Sample kit based on conventional culture methods. The results indicated that the Punch-it™ NA-Sample kit extracted bacterial and fungal DNA in blood culture bottles and allowed extracted DNA to be used in molecular assay.

  5. Production Methods for Microbial Biocontrol Agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A critical constraint to the commercial use of microbial biopesticides is the development of an economic production process. The production process must be cost-effective and yield a microbial propagule that is stable and efficacious under field conditions. Currently, the commercial production of ...

  6. Culture.

    ERIC Educational Resources Information Center

    1997

    Twelve conference papers on cultural aspects of second language instruction include: "Towards True Multiculturalism: Ideas for Teachers" (Brian McVeigh); Comparing Cultures Through Critical Thinking: Development and Interpretations of Meaningful Observations" (Laurel D. Kamada); "Authority and Individualism in Japan and the…

  7. Evaluation of the 3D BacT/ALERT automated culture system for the detection of microbial contamination of platelet concentrates.

    PubMed

    McDonald, C P; Rogers, A; Cox, M; Smith, R; Roy, A; Robbins, S; Hartley, S; Barbara, J A J; Rothenberg, S; Stutzman, L; Widders, G

    2002-10-01

    Bacterial transmission remains the major component of morbidity and mortality associated with transfusion-transmitted infections. Platelet concentrates are the most common cause of bacterial transmission. The BacT/ALERT 3D automated blood culture system has the potential to screen platelet concentrates for the presence of bacteria. Evaluation of this system was performed by spiking day 2 apheresis platelet units with individual bacterial isolates at final concentrations of 10 and 100 colony-forming units (cfu) mL-1. Fifteen organisms were used which had been cited in platelet transmission and monitoring studies. BacT/ALERT times to detection were compared with thioglycollate broth cultures, and the performance of five types of BacT/ALERT culture bottles was evaluated. Sampling was performed immediately after the inoculation of the units, and 10 replicates were performed per organism concentration for each of the five types of BacT/ALERT bottles. The mean times for the detection of these 15 organisms by BacT/ALERT, with the exception of Propionibacterium acnes, ranged from 9.1 to 48.1 h (all 10 replicates were positive). In comparison, the time range found using thioglycollate was 12.0-32.3 h (all 10 replicates were positive). P. acnes' BacT/ALERT mean detection times ranged from 89.0 to 177.6 h compared with 75.6-86.4 h for the thioglycollate broth. BacT/ALERT, with the exception of P. acnes, which has dubious clinical significance, gave equivalent or shorter detection times when compared with the thioglycollate broth system. The BacT/ALERT system detected a range of organisms at levels of 10 and 100 cfu mL-1. This study validates the BacT/ALERT microbial detection system for screening platelets. Currently, the system is the only practically viable option available for routinely screening platelet concentrates to prevent bacterial transmission.

  8. Selection of bacteria capable of dissimilatory reduction of Fe(III) from a long-term continuous culture on molasses and their use in a microbial fuel cell.

    PubMed

    Sikora, Anna; Wójtowicz-Sieńko, Justyna; Piela, Piotr; Zielenkiewicz, Urszula; Tomczyk-Zak, Karolina; Chojnacka, Aleksandra; Sikora, Radosław; Kowalczyk, Paweł; Grzesiuk, Elzbieta; Błaszczyk, Mieczysław

    2011-03-01

    Ferric ion-respiring microorganisms (FRMs) are a group of prokaryotes that use Fe(III) as well as other metals as terminal electron acceptors in the process of anaerobic respiration. Special attention is paid to a biotechnological significance of FRMs because of their potential role in electricity production in microbial fuel cells (MFCs) where the terminal acceptor of the electrons during anaerobic respiration is not a ferric ion but the anode. One of the best known FRMs is the Shewanellaceae family. Most of the Shewanella species have been isolated from marine environments. In this report, sugar beet molasses and ferric oxide were successfully used in the selection of a bacterial consortium capable of dissimilatory Fe(III) reduction in a long-term continuous culture. The inoculum was a sample of eutrophic lake bottom sediment. Among the bacteria present in this culture were representatives of the Enterobacteriaceae, and the genera Pseudomonas, Arcobacter, and Shewanella. Two non-marine Fe(III)-reducing Shewanella-related clones named POL1 and POL2 were isolated. The abilities of the POL1 and POL2 isolates to metabolize a panel of 190 carbon sources were examined using a BIOLOG assay. The results confirmed the abilities of the shewanellas to utilize a broad range of carbon substrates. The utility of the POL1 and POL2 isolates in H-type MFCs operating on pyruvate or molasses was demonstrated. The operation of the MFC with shewanellas cultured on molasses was shown for the first time. A two-stage character of the fuel cell polarization curves, not previously noted in Shewanella MFC studies, was observed.

  9. Biohydrogen production based on the evaluation of kinetic parameters of a mixed microbial culture using glucose and fruit-vegetable waste as feedstocks.

    PubMed

    Garcia-Peña, E I; Canul-Chan, M; Chairez, I; Salgado-Manjarez, E; Aranda-Barradas, J

    2013-09-01

    Hydrogen (H2) production from the organic fraction of solid waste such as fruit and vegetable waste (FVW) is a novel and feasible energy technology. Continuous application of this process would allow for the simultaneous treatment of organic residues and energy production. In this study, batch experiments were conducted using glucose as substrate, and data of H2 production obtained were successfully adjusted by a logistic model. The kinetic parameters (μ max = 0.101 h(-1), K s = 2.56 g/L) of an H2-producing microbial culture determined by the Monod and Haldane-Andrews growth models were used to establish the continuous culture conditions. This strategy led to a productive steady state in continuous culture. Once the steady state was reached in the continuous reactor, a maximum H2 production of 700 mL was attained. The feasibility of producing H2 from the FVW obtained from a local market in Mexico City was also evaluated using batch conditions. The effect of the initial FVW concentration on the H2 production and waste organic material degradation was determined. The highest H2 production rate (1.7 mmol/day), the highest cumulative H2 volume (310 mL), and 25 % chemical oxygen demand (COD) removal were obtained with an initial substrate (FVW) concentration of 37 g COD/L. The lowest H2 production rates were obtained with relatively low initial substrate concentrations of 5 and 11 g COD/L. The H2 production rates with FVW were also characterized by the logistic model. Similar cumulative H2 production was obtained when glucose and FVW were used as substrates.

  10. Inhibition of microbial trichloroethylene dechlorination [corrected] by Fe (III) reduction depends on Fe mineralogy: a batch study using the bioaugmentation culture KB-1.

    PubMed

    Paul, Laiby; Herrmann, Steffi; Koch, Christian Bender; Philips, Jo; Smolders, Erik

    2013-05-01

    Microbial reductive dechlorination of trichloroethylene (TCE) in groundwater can be stimulated by adding of electron donors. However, side reactions such as Fe (III) reduction competes with this reaction. This study was set-up to relate the inhibition of microbial TCE dechlorination to the quantity and quality (mineralogy) of Fe (III) in the substrate and to calibrate a substrate extraction procedure for testing bioavailable Fe (III) in sediments. Batch experiments were set-up with identical inoculum (KB-1 culture) and liquid medium composition, and adding either 1) variable amounts of ferrihydrite or 2) 14 different Fe (III) minerals coated onto or mixed in with quartz sand (at constant total Fe) at a stoichiometric excess Fe (III) over electron donor. Increasing amounts of ferrihydrite significantly increased the time for complete TCE degradation from 8 days (control sand) to 28 days (excess Fe). Acid extractable Fe (II) increased and magnetite formed during incubation, confirming Fe (III) reduction. At constant total Fe in the sand, TCE dechlorination time varied with Fe mineralogy between 8 days (no Fe added) to >120 days (Fe-containing bentonite). In general, poorly crystalline Fe (III) minerals inhibited TCE dechlorination whereas crystalline Fe (III) minerals such as goethite or hematite had no effect. The TCE inhibition time was positively correlated to the Fe (II) determined after 122 days and to the surface area of the Fe (III) minerals. Only a fraction of total Fe (III) is reduced, likely because of solubility constraints and/or coating of Fe (III) minerals by Fe (II) minerals. Iron extraction tests based on Fe (III) reduction using NH2OH(.)HCl predict the competitive inhibition of TCE degradation in these model systems. This study shows that Fe mineralogy rather that total Fe content determines the competitive inhibition of TCE dechlorination.

  11. Performance Equivalence and Validation of the Soleris Automated System for Quantitative Microbial Content Testing Using Pure Suspension Cultures.

    PubMed

    Limberg, Brian J; Johnstone, Kevin; Filloon, Thomas; Catrenich, Carl

    2016-09-01

    Using United States Pharmacopeia-National Formulary (USP-NF) general method <1223> guidance, the Soleris(®) automated system and reagents (Nonfermenting Total Viable Count for bacteria and Direct Yeast and Mold for yeast and mold) were validated, using a performance equivalence approach, as an alternative to plate counting for total microbial content analysis using five representative microbes: Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus brasiliensis. Detection times (DTs) in the alternative automated system were linearly correlated to CFU/sample (R(2) = 0.94-0.97) with ≥70% accuracy per USP General Chapter <1223> guidance. The LOD and LOQ of the automated system were statistically similar to the traditional plate count method. This system was significantly more precise than plate counting (RSD 1.2-2.9% for DT, 7.8-40.6% for plate counts), was statistically comparable to plate counting with respect to variations in analyst, vial lots, and instruments, and was robust when variations in the operating detection thresholds (dTs; ±2 units) were used. The automated system produced accurate results, was more precise and less labor-intensive, and met or exceeded criteria for a valid alternative quantitative method, consistent with USP-NF general method <1223> guidance.

  12. Comparison of agglutinating and neutralizing antibodies to serovar hardjo in sows immunized with two commercial whole culture polivalent anti-leptospira bacterins

    PubMed Central

    Soto, Francisco Rafael Martins; Pinheiro, Sônia Regina; Morais, Zenaide Maria; Gonçales, Amane Paldês; de Azevedo, Sérgio Santos; Bernardi, Fernanda; Camargo, Sebastião Rodrigues; Vasconcellos, Silvio Arruda

    2008-01-01

    It was performed the comparison of the intensity and duration of agglutinating and neutralizing antibodies to serovar Hardjo in swines vaccinated with two commercial anti-leptospira bacterins. Sows no reactive to 24 Leptospira sp serovars in the microscopic agglutination test (MAT) were divided in three groups: Group A (n=08): received two vaccine A doses with 30 days interval, Group B (n=08) two vaccine B doses with 30 days interval and Group C (n=08): control no vaccinated against leptospirosis.Blood samples were collected each 30 days during six months following the first vaccination. The sera were tested by MAT and growth inhibition test (GIT) to serovar Hardjo in order to evaluate respectively agglutinating and neutralizing antibodies. It was found that neutralizing antibodies persisted for a longer time than the agglutinating ones and that the absence of agglutinating antibodies does not means in the absence of the neutralizing. The peaks of agglutinating antibodies was obtained at least 30 days earlier than that produced by neutralizing. The duration of both kinds of antibodies measured differed between the two bacterines tested. The period for inducing neutralizing antibodies against serovar Hardjo indicated that gilts must be immunized with two doses of whole culture anti-leptospira bacterines applied 30 days each other at least 90 days before the first mating. For the maintenance of hight levels of neutralizing antibodies the revaccinations must be performed every six months after the first vaccination. PMID:24031250

  13. Isolation and screening of probiotic candidates from marron, Cherax cainii (Austin, 2002) gastrointestinal tract (GIT) and commercial probiotic products for the use in marron culture.

    PubMed

    Ambas, I; Buller, N; Fotedar, R

    2015-05-01

    Six strains of bacteria including Bacillus mycoides (A10) and Shewanella species (A12) isolated from healthy marron intestine, Bacillus species (PM1), Bacillus subtilis (PM3), Bacillus sp. (PM4) and Bacillus sp. (AQ) from commercial probiotic products were investigated for probiotic potential in marron culture. Antibiotic susceptibility tests indicated PM3 and PM4 were susceptible to all nine antibiotics evaluated. A10, A12 and AQ were resistant to class penicillins, whereas PM1 was resistant to class penicillin and macrolides. All strains were non-pathogenic for marron. Strong inhibition against Vibrio mimicus and Vibrio cholerae non-01 was exhibited by PM4 and PM3. A10 inhibited V. mimicus at 72 h of growth, but not V. cholerae non-01, whereas A12 inhibited V. cholerae non-01 but not V. mimicus, and AQ showed no inhibition activity. A wide range of enzymes were produced by A10 and AQ using the API ZYM test. Protease enzymes were produced by PM3, PM4, AQ and PM1. In order of effectiveness, the following bacteria have probiotic potential: B. subtilis (PM3), Bacillus sp. (PM4) and B. mycoides (A10). Further study is required to determine the bacterium or any combination that gives a multibeneficial effect on marron.

  14. Using Pure Cultures to Define the Site Preference of Nitrous Oxide Produced by Microbial Nitrification and Denitrification

    NASA Astrophysics Data System (ADS)

    Sutka, R. L.; Breznak, J. A.; Ostrom, N. E.; Ostrom, P. H.; Gandhi, H.

    2004-12-01

    Defining the site preference of nitrous oxide (N2O) produced in pure culture studies is crucial to interpreting field data. We have previously demonstrated that the intramolecular distribution of nitrogen isotopes (isotopomers) can be used to differentiate N2O produced by nitrifier denitrification and nitrification in cultures of Nitrosomonas europaea. Here, we have expanded on our initial results and evaluated the isotopomeric composition of N2O produced during nitrification and nitrifier denitrification with cultures of Nitrosospira multiformis. In addition, we have analyzed N2O produced during methanotrophic nitrification, denitrification, and fungal denitrification. To evaluate N2O production during nitrification and nitrifier denitrification, we compared the site preference of N2O formed as a result of nitrite reduction and hydroxylamine oxidation with Nitrosomonas europaea and Nitrosospira multiformis. The average site preference of N2O produced by hydroxylamine oxidation was similar for Nitrosomonas europaea (33.0 ± 3.5 ‰ ) and Nitrosospira multiformis (33.1 ± 4.2 ‰ ). Nitrous oxide produced by nitrifier-denitrification by Nitrosomonas europaea and Nitrosospira multiformis had a similar site preference of - 1.4 ± 4.4 ‰ and - 1.1 ± 2.6 ‰ respectively. The results indicate that it is possible to differentiate between N2O produced by nitrite reduction and hydroxylamine oxidation by ammonia oxidizing bacteria. Methanotrophic nitrification was evaluated by analyzing the N2O produced during hydroxylamine oxidation in concentrated cell suspensions of two methane oxidizing bacteria. The site preference of N2O produced by the two methane oxidizers, Methylococcus capsulatus Bath and Methylosinus trichosporium was 31.8 ± 4.7 ‰ and 33.0 ± 4.5 ‰ respectively. The results indicate that a site preference of 33 ‰ is applicable for nitrification regardless of whether a methane oxidizer or ammonia oxidizer is involved in the reaction. To determine the site

  15. The U.S. Culture Collection Network Lays the Foundation for Progress in Preservation of Valuable Microbial Resources.

    PubMed

    McCluskey, Kevin; Alvarez, Anne; Bennett, Rick; Bokati, Deepak; Boundy-Mills, Kyria; Brown, Daniel; Bull, Carolee T; Coffey, Michael; Dreaden, Tyler; Duke, Clifford; Dye, Greg; Ehmke, Erin; Eversole, Kellye; Fenstermacher, Kristi; Geiser, David; Glaeser, Jessie A; Greene, Stephanie; Gribble, Lisa; Griffith, M Patrick; Hanser, Kathryn; Humber, Richard; Johnson, Barbara W; Kermode, Anthony; Krichevsky, Micah; Laudon, Matt; Leach, Jan; Leslie, John; May, Meghan; Melcher, Ulrich; Nobles, David; Fonseca, Natalia Risso; Robinson, Sara; Ryan, Matthew; Scott, James; Silflow, Carolyn; Vidaver, Anne; Webb, Kimberly M; Wertz, John E; Yentsch, Sara; Zehr, Sarah

    2016-06-01

    The U.S. Culture Collection Network was formed in 2012 by a group of culture collection scientists and stakeholders in order to continue the progress established previously through efforts of an ad hoc group. The network is supported by a Research Coordination Network grant from the U.S. National Science Foundation (NSF) and has the goals of promoting interaction among collections, encouraging the adoption of best practices, and protecting endangered or orphaned collections. After prior meetings to discuss best practices, shared data, and synergy with genome programs, the network held a meeting at the U.S. Department of Agriculture (USDA)-Agricultural Research Service (ARS) National Center for Genetic Resources Preservation (NCGRP) in Fort Collins, Colorado in October 2015 specifically to discuss collections that are vulnerable because of changes in funding programs, or are at risk of loss because of retirement or lack of funding. The meeting allowed collection curators who had already backed up their resources at the USDA NCGRP to visit the site, and brought collection owners, managers, and stakeholders together. Eight formal collections have established off-site backups with the USDA-ARS, ensuring that key material will be preserved for future research. All of the collections with backup at the NCGRP are public distributing collections including U.S. NSF-supported genetic stock centers, USDA-ARS collections, and university-supported collections. Facing the retirement of several pioneering researchers, the community discussed the value of preserving personal research collections and agreed that a mechanism to preserve these valuable collections was essential to any future national culture collection system. Additional input from curators of plant and animal collections emphasized that collections of every kind face similar challenges in developing long-range plans for sustainability.

  16. Microbial diversity of culturable heterotrophs in the rhizosphere of salt marsh grass, Porteresia coarctata (Tateoka) in a mangrove ecosystem.

    PubMed

    Bharathkumar, Srinivasan; Paul, Diby; Nair, Sudha

    2008-02-01

    A study was conducted to understand the complexity of bacterial diversity of rhizosphere of Porteresia coarctata based on culture dependent method. A large number of bacteria were isolated on nutrient agar medium supplemented with 1% NaCl and the dominant ones were further analyzed with PCR-RFLP method. The sequence analyses of the dominant strains revealed that most of the sequences belonged to members of gamma proteobacteria, firmicutes, bacteroidetes and uncultured bacteria. The phylogenetic analysis of 16S rRNA gene sequences revealed close relationships to a wide range of clones or bacterial species of various divisions. These results afford an understanding of the role of rhizobacteria in alleviating salt stress in Porteresia coarctata expected to contribute towards long-term goal of improving plant-microbe interactions for salinity affected fields.

  17. Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation.

    PubMed

    Zhang, Yang; Lv, Tao; Carvalho, Pedro N; Arias, Carlos A; Chen, Zhanghe; Brix, Hans

    2016-02-01

    We aimed at assessing the effects of four wetland plant species commonly used in constructed wetland systems: Typha, Phragmites, Iris and Juncus for removing ibuprofen (IBU) and iohexol (IOH) from spiked culture solution and exploring the mechanisms responsible for the removal. IBU was nearly completely removed by all plant species during the 24-day experiment, whereas the IOH removal varied between 13 and 80 %. Typha and Phragmites were the most efficient in removing IBU and IOH, respectively, with first-order removal rate constants of 0.38 and 0.06 day(-1), respectively. The pharmaceuticals were taken up by the roots and translocated to the aerial tissues. However, at the end of the experiment, plant accumulation constituted only up to 1.1 and 5.7 % of the amount of IBU and IOH spiked initially. The data suggest that the plants mainly function by facilitating pharmaceutical degradation in the rhizosphere through release of root exudates.

  18. Effect of Feeding a Mixed Microbial Culture Fortified with Trace Minerals on the Performance and Carcass Characteristics of Late-fattening Hanwoo Steers: A Field Study.

    PubMed

    Kwak, W S; Kim, Y I; Lee, S M; Lee, Y H; Choi, D Y

    2015-11-01

    This study was conducted to determine the effects of feeding a trace minerals-fortified microbial culture (TMC) on the performance and carcass characteristics of late-fattening Hanwoo steers. A mixture of microbes (0.6% [v/w] of Enterobacter sp., Bacillus sp., Lactobacillus sp., and Saccharomyces sp.) was cultured with 99% feedstuff for ensiling and 0.4% trace minerals (zinc, selenium, copper, and cobalt). Sixteen late-fattening steers (mean age, 21.8 months) were allocated to two diets: a control diet (concentrate mix and rice straw) and a treated diet (control diet+3.3% TMC). At a mean age of 31.1 months, all the steers were slaughtered. The addition of TMC to the diet did not affect the average daily weight gain of the late fattening steers, compared with that of control steers. Moreover, consuming the TMC-supplemented diet did not affect cold carcass weight, yield traits such as back fat thickness, longissimus muscle area, yield index or yield grade, or quality traits such as meat color, fat color, texture, maturity, marbling score, or quality grade. However, consumption of a TMC-supplemented diet increased the concentrations of zinc, selenium, and sulfur (p<0.05) in the longissimus muscle. With respect to amino acids, animals consuming TMC showed increased (p<0.05) concentrations of lysine, leucine, and valine among essential amino acids and a decreased (p<0.05) concentration of proline among non-essential amino acids. In conclusion, the consumption of a TMC-supplemented diet during the late-fattening period elevated the concentrations of certain trace minerals and essential amino acids in the longissimus muscle, without any deleterious effects on performance and other carcass characteristics of Hanwoo steers.

  19. Effect of Feeding a Mixed Microbial Culture Fortified with Trace Minerals on the Performance and Carcass Characteristics of Late-fattening Hanwoo Steers: A Field Study

    PubMed Central

    Kwak, W. S.; Kim, Y. I.; Lee, S. M.; Lee, Y. H.; Choi, D. Y.

    2015-01-01

    This study was conducted to determine the effects of feeding a trace minerals-fortified microbial culture (TMC) on the performance and carcass characteristics of late-fattening Hanwoo steers. A mixture of microbes (0.6% [v/w] of Enterobacter sp., Bacillus sp., Lactobacillus sp., and Saccharomyces sp.) was cultured with 99% feedstuff for ensiling and 0.4% trace minerals (zinc, selenium, copper, and cobalt). Sixteen late-fattening steers (mean age, 21.8 months) were allocated to two diets: a control diet (concentrate mix and rice straw) and a treated diet (control diet+3.3% TMC). At a mean age of 31.1 months, all the steers were slaughtered. The addition of TMC to the diet did not affect the average daily weight gain of the late fattening steers, compared with that of control steers. Moreover, consuming the TMC-supplemented diet did not affect cold carcass weight, yield traits such as back fat thickness, longissimus muscle area, yield index or yield grade, or quality traits such as meat color, fat color, texture, maturity, marbling score, or quality grade. However, consumption of a TMC-supplemented diet increased the concentrations of zinc, selenium, and sulfur (p<0.05) in the longissimus muscle. With respect to amino acids, animals consuming TMC showed increased (p<0.05) concentrations of lysine, leucine, and valine among essential amino acids and a decreased (p<0.05) concentration of proline among non-essential amino acids. In conclusion, the consumption of a TMC-supplemented diet during the late-fattening period elevated the concentrations of certain trace minerals and essential amino acids in the longissimus muscle, without any deleterious effects on performance and other carcass characteristics of Hanwoo steers. PMID:26580283

  20. Effects of Adaptation of In vitro Rumen Culture to Garlic Oil, Nitrate, and Saponin and Their Combinations on Methanogenesis, Fermentation, and Abundances and Diversity of Microbial Populations

    PubMed Central

    Patra, Amlan K.; Yu, Zhongtang

    2015-01-01

    This study investigated the effects of garlic oil (0.25 g/L), nitrate (5 mM), and quillaja saponin (0.6 g/L), alone and in binary or ternary combinations, on methanogenesis, rumen fermentation, and abundances of select microbial populations using in vitro rumen cultures. Potential adaptation to these compounds was also examined by repeated transfers of the cultures on alternate days until day 18. All treatments except saponin alone significantly decreased methanogenesis. Ternary combinations of garlic oil, nitrate, and saponin additively/synergistically suppressed methane production by 65% at day 2 and by 40% at day 18. Feed digestion was not adversely affected by any of the treatments at day 2, but was decreased by the combinations (binary and ternary) of garlic oil with the other inhibitors at days 10 and 18. Saponin, alone or in combinations, and garlic oil alone lowered ammonia concentration at day 2, while nitrate increased ammonia concentration at days 10 and 18. Total volatile fatty acid concentration was decreased by garlic oil alone or garlic oil-saponin combination. Molar proportions of acetate and propionate were affected to different extents by the different treatments. The abundances of methanogens were similar among treatments at day 2; however, garlic oil and its combination with saponin and/or nitrate at day 10 and all treatments except saponin at day 18 significantly decreased the abundances of methanogens. All the inhibitors, either alone or in combinations, did not adversely affect the abundances of total bacteria or Ruminococcus flavefaciens. However, at day 18 the abundances of Fibrobacter succinogenes and Ruminococcus albus were lowered in the presence of garlic oil and saponin, respectively. The results suggest that garlic oil-nitrate-saponin combination (at the doses used in this study) can effectively decreases methanogenesis in the rumen, but its efficacy may decrease while inhibition to feed digestion can increase over time. PMID:26733975

  1. Effect of starter culture and fermentation temperature on water mobility and distribution in fermented sausages and correlation to microbial safety studied by nuclear magnetic resonance relaxometry.

    PubMed

    Møller, Sandie M; Gunvig, Annemarie; Bertram, Hanne Christine

    2010-10-01

    Water mobility and distribution in fermented sausages produced with differences in pH development as a result of the use of three different starter cultures (T-SPX, F-1, or F-SC-111) and two fermentation temperatures (24 degrees C, or 32 degrees C) were studied using low-field proton NMR relaxometry. Changes in the distribution and mobility of water in fermented sausages upon fermentation and drying were detectable by NMR T(2) relaxation, and the progress in the drying process could be followed as a shift towards faster relaxation times. In addition, the distribution of water in the sausages was significantly affected by the pH decline. The sausages were spiked with Listeria monocytogenes, Salmonella, and Escherichia coli VTEC, and partial least squares regressions revealed that 90% of the variation in reduction of Salmonella and VTEC could be explained by the NMR T(2) relaxation decay. Consequently, the study demonstrated that NMR relaxometry is a promising technique for elucidating process parameters and microbial safety in the production of fermented meat products.

  2. Detection and phylogenetic analysis of the membrane-bound nitrate reductase (Nar) in pure cultures and microbial communities from deep-sea hydrothermal vents.

    PubMed

    Pérez-Rodríguez, Ileana; Bohnert, Kenneth A; Cuebas, Mariola; Keddis, Ramaydalis; Vetriani, Costantino

    2013-11-01

    Over the past few years the relevance of nitrate respiration in microorganisms from deep-sea hydrothermal vents has become evident. In this study, we surveyed the membrane-bound nitrate reductase (Nar) encoding gene in three different deep-sea vent microbial communities from the East Pacific Rise and the Mid-Atlantic Ridge. Additionally, we tested pure cultures of vent strains for their ability to reduce nitrate and for the presence of the NarG-encoding gene in their genomes. By using the narG gene as a diagnostic marker for nitrate-reducing bacteria, we showed that nitrate reductases related to Gammaproteobacteria of the genus Marinobacter were numerically prevalent in the clone libraries derived from a black smoker and a diffuse flow vent. In contrast, NarG sequences retrieved from a community of filamentous bacteria located about 50 cm above a diffuse flow vent revealed the presence of a yet to be identified group of enzymes. 16S rRNA gene-inferred community compositions, in accordance with previous studies, showed a shift from Alpha- and Gammaproteobacteria to Epsilonproteobacteria as the vent fluids become warmer and more reducing. Based on these findings, we argue that Nar-catalyzed nitrate reduction is likely relevant in temperate and less reducing environments where Alpha- and Gammaproteobacteria are more abundant and where nitrate concentrations reflect that of background deep seawater.

  3. Evaluating the efficiency of a mixed culture biofilm for the treatment of black liquor and molasses in a mediator-less microbial fuel cell.

    PubMed

    Ali, Naeem; Yousaf, Sameen; Anam, Maira; Bangash, Zain; Maleeha, Sehrish

    2016-11-01

    A microbial fuel cell (MFC) is an emerging environment-friendly technology to recover the useful energy available in waste by using microorganisms as catalyst. In this study, double chamber mediator-less MFCs separated by proton exchange membrane (PEM; Nafion) were constructed to determine the efficiency of mixed culture in using complex substrates (molasses and black liquor). It was found that activated sludge can serve as efficient source of electricigens for biofilm development on an anode. Power density of 2.425 W/m² was generated from molasses with chemical oxygen demand (COD) removal efficiency of 67% as compared to power density of 3.55 W/m² produced from black liquor along with COD removal efficiency of 78%. Moreover, it was demonstrated that surface area of PEM has a significant effect on power generation. An almost 5- to 8-fold increase in voltage was observed as the size of PEM was increased from 6.5 to 25 cm².

  4. Microbial and physicochemical succession in fermented sausages produced with bacteriocinogenic culture of Lactobacillus sakei and semi-purified bacteriocin mesenterocin Y.

    PubMed

    Zdolec, Nevijo; Hadžiosmanović, Mirza; Kozačinski, Lidija; Cvrtila, Zeljka; Filipović, Ivana; Skrivanko, Mario; Leskovar, Kristina

    2008-10-01

    The influence of the bacteriocinogenic culture Lactobacillus sakei (10(5)/g) and semi-purified bacteriocin mesenterocin Y (2560AU/kg) on the safety and quality of traditional Croatian fermented sausages was investigated. The addition of Lb. sakei and/or mesenterocin Y reduced microbial counts (P<0.05) in the final products. After 28 days of ripening, coagulase-negative cocci decreased 1.5-2.0log, yeasts 1.2-1.4log and enterococci 1.7-2.7log. In the case of the addition of Lb. sakei, the lactic acid bacteria count was significantly (P<0.05) higher at day 7 of ripening, and was accompanied by a lower pH and a higher amount of lactic acid (P<0.05). In the final product the amount of acetic acid was significantly lower. More intensive proteolysis and an increase in ammonia content were found at the beginning of fermentation, and in the second phase of ripening in the control samples, respectively. The free fatty acid concentration was significantly lower during the entire ripening process compared to the control (P<0.05). Semi-purified mesenterocin Y did not affect the sensory properties of the sausages, whilst the addition of Lb. sakei enhanced them.

  5. Current production in a microbial fuel cell using a pure culture of Cupriavidus basilensis growing in acetate or phenol as a carbon source

    PubMed Central

    Friman, Hen; Schechter, Alex; Ioffe, Yulia; Nitzan, Yeshayahu; Cahan, Rivka

    2013-01-01

    Summary A microbial fuel cell (MFC) was operated with a pure culture of Cupriavidus basilensis bacterial cells growing in the anode compartment in a defined medium containing acetate or phenol. Operating this mediator-less MFC under a constant external resistor of 1 kΩ with acetate or phenol led to current generation of 902 and 310 mA m−2 respectively. In the MFC which was operated using acetate or phenol, the current density measured from the plankton bacterial cells with a fresh electrode was 125 and 109 mA m−2, respectively, whereas the current obtained with biofilm-covered electrodes in sterile medium was 541 and 228 mA m−2 respectively. After 72 h in the MFC, 86% of the initial phenol concentration was removed, while only 64% was removed after the same time in the control MFC which was held at an open circuit potential (OCP). Furthermore, SEM and confocal microscopy analyses demonstrated a developed biofilm with a live C. basilensis population. In conclusion, in this study we demonstrated, for the first time, use of C. basilensis facultative aerobe bacterial cells in a MFC using acetate or phenol as the sole carbon source which led to electricity generation. PMID:23302470

  6. Microbial community analysis of a coastal hot spring in Kagoshima, Japan, using molecular- and culture-based approaches.

    PubMed

    Nishiyama, Minako; Yamamoto, Shuichi; Kurosawa, Norio

    2013-08-01

    Ibusuki hot spring is located on the coastline of Kagoshima Bay, Japan. The hot spring water is characterized by high salinity, high temperature, and neutral pH. The hot spring is covered by the sea during high tide, which leads to severe fluctuations in several environmental variables. A combination of molecular- and culture-based techniques was used to determine the bacterial and archaeal diversity of the hot spring. A total of 48 thermophilic bacterial strains were isolated from two sites (Site 1: 55.6°C; Site 2: 83.1°C) and they were categorized into six groups based on their 16S rRNA gene sequence similarity. Two groups (including 32 isolates) demonstrated low sequence similarity with published species, suggesting that they might represent novel taxa. The 148 clones from the Site 1 bacterial library included 76 operational taxonomy units (OTUs; 97% threshold), while 132 clones from the Site 2 bacterial library included 31 OTUs. Proteobacteria, Bacteroidetes, and Firmicutes were frequently detected in both clone libraries. The clones were related to thermophilic, mesophilic and psychrophilic bacteria. Approximately half of the sequences in bacterial clone libraries shared <92% sequence similarity with their closest sequences in a public database, suggesting that the Ibusuki hot spring may harbor a unique and novel bacterial community. By contrast, 77 clones from the Site 2 archaeal library contained only three OTUs, most of which were affiliated with Thaumarchaeota.

  7. Differential ultraviolet-visible absorbance spectra for characterizing metal ions binding onto extracellular polymeric substances in different mixed microbial cultures.

    PubMed

    Yin, Cuiqin; Meng, Fangang; Meng, Yabing; Chen, Guang-Hao

    2016-09-01

    Ultraviolet-visible (UV-vis) absorbance spectra was adopted to quantify the binding of major metal ions (e.g., Na(I), Ca((II)), Fe(III), Cu(II), and Pb(II)) on extracellular polymeric substances (EPSs) extracted from different mixed cultures. The results showed that the differential absorbance spectra (DAS) provided discernible features for revealing the changes in optical properties of EPSs induced by metals, i.e., the intensity of DAS increased largely with incrementally increased metal concentrations (Fe(III), Cu(II), and Pb(II)). It can be assumed attributable to the changes in the conformations and inter-chromophores of the EPS biomolecules. In addition, the changes in spectral parameters of DSlope325-375 (spectral slope in the range of wavelengths 325-375 nm) and DA300 (differential absorbance at 300 nm) were found to be closely related to the amounts of metals bound onto all extracted EPSs, particularly for Fe(III) and Cu(II). The decreased SR (the ratio of slope275-295 to slope350-400) of the EPS solutions after dosage of metals suggested increased molecular weight or size of the EPS biomolecules. Deconvolution of the DAS yielded six Gaussian bands, which were present in all of the EPS samples with various metals. Moreover, the relative contributions of different Gaussian bands in the DAS were determined by the nature of EPS-metal ions interactions good correlated with the covalent-bonding index. This study concluded that DAS and selected spectral parameters (DA300, DSlope325-375 and SR) can be used to successfully characterize the binding of metals onto EPS at environmentally relevant concentrations.

  8. Indirect microbial detection

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.

    1980-01-01

    Indirect method for detection of microbial growth utilizes flow of charged particles across barrier that physically separated growing cells from electrodes and measures resulting difference in potential between two platinum electrodes. Technique allows simplified noncontact monitoring of all growth in highly infectious cultures or in critical biochemical studies.

  9. Indirect microbial detection

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R. (Inventor)

    1981-01-01

    The growth of microorganisms in a sample is detected and monitored by culturing microorganisms in a growth medium and detecting a change in potential between two electrodes, separated from the microbial growth by a barrier which is permeable to charged paticles but microorganism impermeable.

  10. Effect of varying the salt and fat content in Cheddar cheese on aspects of the performance of a commercial starter culture preparation during ripening.

    PubMed

    Yanachkina, Palina; McCarthy, Catherine; Guinee, Tim; Wilkinson, Martin

    2016-05-02

    Production of healthier reduced-fat and reduced-salt cheeses requires careful selection of starter bacteria, as any substantial alterations to cheese composition may prompt changes in the overall performance of starters during cheese ripening. Therefore, it is important to assess the effect of compositional alterations on the individual strain response during cheese ripening for each optimised cheese matrix. In the current study, the effect of varying fat and salt levels in Cheddar cheese on the performance of a commercial Lactococcus lactis culture preparation, containing one L. lactis subsp. lactis strain and one L. lactis subsp. cremoris strain was investigated. Compositional variations in fat or salt levels did not affect overall starter viability, yet reduction of fat by 50% significantly delayed non-starter lactic acid bacteria (NSLAB) populations at the initial ripening period. In comparison to starter viability, starter autolysis, as measured by release of intracellular lactate dehydrogenase (LDH) or post-proline dipeptidyl aminopeptidase (Pep X) into cheese juices, decreased significantly with lower salt addition levels in full-fat Cheddar. Conversely, reducing fat content of cheese resulted in a significantly higher release of intracellular Pep X, and to a lesser extent intracellular LDH, into juices over ripening. Flow cytometry (FCM) indicated that the permeabilised and dead cell sub-populations were generally lower in juices from cheeses with reduced salt content, however no significant differences were observed between different salt and fat treatments. Interestingly, fat reductions by 30 and 50% in cheeses with reduced or half added salt contents appeared to balance out the effect of salt, and enhanced cell permeabilisation, cell death, and also cell autolysis in these variants. Overall, this study has highlighted that alterations in both salt and fat levels in cheese influence certain aspects of starter performance during ripening, including

  11. [Effects of snow pack removal on soil microbial biomass carbon and nitrogen and the number of soil culturable microorganisms during wintertime in alpine Abies faxoniana forest of western Sichuan, Southwest China].

    PubMed

    Yang, Yu-Lian; Wu, Fu-Zhong; He, Zhen-Hua; Xu, Zhen-Feng; Liu, Yang; Yang, Wan-Qin; Tan, Bo

    2012-07-01

    To understand the effects of the lack of snow pack under global warming on the characteristics of soil microorganisms during wintertime, a snow-shading experiment was conducted in a primary fir (Abies faxoniana) forest after snow pack removal, with the soil microbial biomass carbon (MBC) and nitrogen (MBN) and soil culturable microorganisms (bacteria and fungi) at the stages of snow forming, snow covering, and snow melting investigated. Snow pack removal had significant effects on the soil MBC and MBN and the number of soil culturable bacteria and fungi, but the responses of the culturable microorganisms differed with the stages of snow-shading. Under the condition of snow pack removal, the MBC and MBN in soil organic layer decreased significantly at the early stages of snow forming and snow melting but increased significantly at snow covering stage and at the later stage of snow melting, and the number of culturable bacteria decreased significantly from the early stage of snow forming to the stage of snow covering while that of culturable fungi had a significant increase from the early stage of snow forming to the stage of snow melting. After snow melting, the MBC and the number of culturable fungi in soil organic layer had a significant decrease, the number of cultural bacteria was in adverse, but the MBN had less change. The MBC and MBN and the number of culturable microorganisms in soil mineral layer had the similar variation trends as those in soil organic layer, but the fluctuations were smaller. It was suggested that snow pack removal changed the ratio of culturable bacteria to culturable fungi, showing positive effects on the number of soil culturable fungi during wintertime in alpine Abies faxoniana forest of western Sichuan.

  12. Nanoporous microscale microbial incubators.

    PubMed

    Ge, Zhifei; Girguis, Peter R; Buie, Cullen R

    2016-02-07

    Reconstruction of phylogenetic trees based on 16S rRNA gene sequencing reveals abundant microbial diversity that has not been cultured in the laboratory. Many attribute this so-called 'great plate count anomaly' to traditional microbial cultivation techniques, which largely facilitate the growth of a single species. Yet, it is widely recognized that bacteria in nature exist in complex communities. One technique to increase the pool of cultivated bacterial species is to co-culture multiple species in a simulated natural environment. Here, we present nanoporous microscale microbial incubators (NMMI) that enable high-throughput screening and real-time observation of multi-species co-culture. The key innovation in NMMI is that they facilitate inter-species communication while maintaining physical isolation between species, which is ideal for genomic analysis. Co-culture of a quorum sensing pair demonstrates that the NMMI can be used to culture multiple species in chemical communication while monitoring the growth dynamics of individual species.

  13. 21 CFR 131.112 - Cultured milk.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... pasteurized or ultra-pasteurized prior to the addition to the microbial culture, and when applicable, the...-producing microbial culture. (8) Salt. (9) Citric acid, in a maximum amount of 0.15 percent by weight of...

  14. Bayesian Integrated Microbial Forensics

    SciTech Connect

    Jarman, Kristin H.; Kreuzer-Martin, Helen W.; Wunschel, David S.; Valentine, Nancy B.; Cliff, John B.; Petersen, Catherine E.; Colburn, Heather A.; Wahl, Karen L.

    2008-06-01

    In the aftermath of the 2001 anthrax letters, researchers have been exploring ways to predict the production environment of unknown source microorganisms. Different mass spectral techniques are being developed to characterize components of a microbe’s culture medium including water, carbon and nitrogen sources, metal ions added, and the presence of agar. Individually, each technique has the potential to identify one or two ingredients in a culture medium recipe. However, by integrating data from multiple mass spectral techniques, a more complete characterization is possible. We present a Bayesian statistical approach to integrated microbial forensics and illustrate its application on spores grown in different culture media.

  15. Commercial Crew

    NASA Video Gallery

    Phil McAlister delivers a presentation by the Commercial Crew (CC) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of this workshop was to...

  16. Space Commercialization

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2011-01-01

    A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.

  17. Culture dependent and independent analyses of 16S rRNA and ATP citrate lyase genes: a comparison of microbial communities from different black smoker chimneys on the Mid-Atlantic Ridge.

    PubMed

    Voordeckers, James W; Do, My H; Hügler, Michael; Ko, Vivian; Sievert, Stefan M; Vetriani, Costantino

    2008-09-01

    The bacterial and archaeal communities of three deep-sea hydrothermal vent systems located on the Mid-Atlantic Ridge (MAR; Rainbow, Logatchev and Broken Spur) were investigated using an integrated culture-dependent and independent approach. Comparative molecular phylogenetic analyses, using the 16S rRNA gene and the deduced amino acid sequences of the alpha and beta subunits of the ATP citrate lyase encoding genes were carried out on natural microbial communities, on an enrichment culture obtained from the Broken Spur chimney, and on novel chemolithoautotrophic bacteria and reference strains originally isolated from several different deep-sea vents. Our data showed that the three MAR hydrothermal vent chimneys investigated in this study host very different microbial assemblages. The microbial community of the Rainbow chimney was dominated by thermophilic, autotrophic, hydrogen-oxidizing, sulfur- and nitrate-reducing Epsilonproteobacteria related to the genus Caminibacter. The detection of sequences related to sulfur-reducing bacteria and archaea (Archaeoglobus) indicated that thermophilic sulfate reduction might also be occurring at this site. The Logatchev bacterial community included several sequences related to mesophilic sulfur-oxidizing bacteria, while the archaeal component of this chimney was dominated by sequences related to the ANME-2 lineage, suggesting that anaerobic oxidation of methane may be occurring at this site. Comparative analyses of the ATP citrate lyase encoding genes from natural microbial communities suggested that Epsilonproteobacteria were the dominant primary producers using the reverse TCA cycle (rTCA) at Rainbow, while Aquificales of the genera Desulfurobacterium and Persephonella were prevalent in the Broken Spur chimney.

  18. Microbial enhanced oil recovery research. [Peptides

    SciTech Connect

    Sharma, M.M.; Georgiou, G. )

    1992-01-01

    The surface active lipopeptide produced by Bacillus licheniformis JF-2 was isolated to near apparent homogeneity. NMR experiments revealed that this compound consists of a heptapeptide with an amino acid sequence similar to surfactin and a heterogeneous fatty acid consisting of the normal-, anteiso-, and iso- branched isomers. The surface activity of the B. licheniformis JF-2 surfactant was shown to depend on the presence of fermentation products and is strongly affected by the pH. Under conditions of optimal salinity and pH the interfacial tension against decane was 6 [times] 10[sup 3] mN/m which is one of the lowest values ever obtained with a microbial surfactant. Microbial compounds which exhibit particularly high surface activity are classified as biosurfactants. Microbial biosurfactants include a wide variety of surface and interfacially active compounds, such as glycolipids, lipopeptides polysaccharideprotein complexes, phospholipids, fatty acids and neutral lipids. Biosurfactants are easily biodegradable and thus are particularly suited for environmental applications such as bioremediation and the dispersion of oil spills. Bacillus licheniformis strain JF-2 has been shown to be able to grow and produce a very effective biosurfactant under both aerobic and anaerobic conditions and in the presence of high salt concentrations. The production of biosurfactants in anaerobic, high salt environments is potentially important for a variety of in situ applications such as microbial enhanced oil recovery. As a first step towards evaluating the commercial utility of the B. licheniformis JF-2 surfactant, we isolated t-he active. compound from the culture supernatant, characterized its chemical structure and investigated its phase behavior. We found that the surface activity of the surfactant is strongly dependent on the pH of the aqueous. phase. This may be important for the biological function of the surfactant and is of interest for several applications in surfactancy.

  19. Effects of added chelated trace minerals, organic selenium, yeast culture, direct-fed microbials, and Yucca schidigera extract in horses: II. Nutrient excretion and potential environmental impact.

    PubMed

    Gordon, M E; Edwards, M S; Sweeney, C R; Jerina, M L

    2013-08-01

    The objective of this study was to test the hypothesis that an equine diet formulated with chelated trace minerals, organic selenium, yeast culture, direct-fed microbials (DFM) and Yucca schidigera extract would decrease excretion of nutrients that have potential for environmental impact. Horses were acclimated to 100% pelleted diets formulated with (ADD) and without (CTRL) the aforementioned additives. Chelated sources of Cu, Zn, Mn, and Co were included in the ADD diet at a 100% replacement rate of sulfate forms used in the CTRL diet. Additionally, the ADD diet included organic selenium yeast, DFM, and Yucca schidigera extract. Ten horses were fed the 2 experimental diets during two 42-d periods in a crossover design. Total fecal and urine collection occurred during the last 14 d of each period. Results indicate no significant differences between Cu, Zn, Mn, and Co concentrations excreted via urine (P > 0.05) due to dietary treatment. There was no difference between fecal Cu and Mn concentrations (P > 0.05) based on diet consumed. Mean fecal Zn and Co concentrations excreted by horses consuming ADD were greater than CTRL (P < 0.003). Differences due to diet were found for selenium fecal (P < 0.0001) and urine (P < 0.0001) excretions, with decreased concentrations found for horses consuming organic selenium yeast (ADD). In contrast, fecal K (%) was greater (P = 0.0421) for horses consuming ADD, whereas concentrations of fecal solids, total N, ammonia N, P, total ammonia, and fecal output did not differ between dietary treatments (P > 0.05). In feces stockpiled to simulate a crude composting method, no differences (P > 0.05) due to diet were detected for particle size, temperature, moisture, OM, total N, P, phosphate, K, moisture, potash, or ammonia N (P > 0.05). Although no difference (P = 0.2737) in feces stockpile temperature due to diet was found, temperature differences over time were documented (P < 0.0001). In conclusion, the addition of certain chelated

  20. Method Analysis of Microbial Resistant Gypsum Products

    EPA Science Inventory

    Abstract: Several commercially available gypsum products are marketed as microbial-resistant. During previous test method research on a microbial resistant gypsum wallboard study, a common theme from both stakeholders and product vendors was the need for a unified and accepted m...

  1. Commercial Fishing.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Vocational Education.

    This document is a curriculum framework for a program in commercial fishing to be taught in Florida secondary and postsecondary institutions. This outline covers the major concepts/content of the program, which is designed to prepare students for employment in occupations with titles such as net fishers, pot fishers, line fishers, shrimp boat…

  2. Automated Microbial Metabolism Laboratory

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Development of the automated microbial metabolism laboratory (AMML) concept is reported. The focus of effort of AMML was on the advanced labeled release experiment. Labeled substrates, inhibitors, and temperatures were investigated to establish a comparative biochemical profile. Profiles at three time intervals on soil and pure cultures of bacteria isolated from soil were prepared to establish a complete library. The development of a strategy for the return of a soil sample from Mars is also reported.

  3. Adulteration and Contamination of Commercial Sap of Hymenaea Species

    PubMed Central

    Farias, Katyuce de Souza; Auharek, Sarah Alves; Cunha-Laura, Andréa Luiza; de Souza, Jeana Mara Escher; Damasceno-Junior, Geraldo Alves; Toffoli-Kadri, Mônica Cristina; de Oliveira Filiú, Wander Fernando; dos Santos, Edson dos Anjos; Chang, Marilene Rodrigues

    2017-01-01

    The Hymenaea stigonocarpa and Hymenaea martiana species, commonly known as “jatobá,” produce a sap which is extracted by perforation of the trunk and is commonly used in folk medicine as a tonic. For this study, the authenticity of commercial samples of jatobá was verified by the identification of the main compounds and multivariate analysis and contamination by microbial presence analysis. The acute toxicity of the authentic jatobá sap was also evaluated. The metabolites composition and multivariate analysis revealed that none of the commercial samples were authentic. In the microbiological contamination analysis, five of the six commercial samples showed positive cultures within the range of 1,700–100,000 CFU/mL and the authentic sap produced no signs of toxicity, and from a histological point of view, there was the maintenance of tissue integrity. In brief, the commercial samples were deemed inappropriate for consumption and represent a danger to the population. PMID:28303155

  4. Hydrogen production from microbial strains

    DOEpatents

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  5. Microbial source tracking of private well water samples across at-risk regions in southern Ontario and analysis of traditional fecal indicator bacteria assays including culture and qPCR.

    PubMed

    Krolik, Julia; Maier, Allison; Thompson, Shawna; Majury, Anna

    2016-12-01

    Many people living in rural areas rely on privately owned wells as their primary source of drinking water. These water sources are at risk for fecal contamination of human, wildlife, and livestock origin. While traditional bacteriological testing involves culture-based methods, microbial source tracking (MST) assays present an opportunity to additionally determine the source of fecal contamination. This study investigated the main host sources of contamination in private well water samples with high levels of Escherichia coli (E. coli), using MST with human and multi-species specific markers. Fecal contamination of human origin was detected in approximately 50% of samples, indicating that current contamination prevention strategies require reconsideration. The relationship between cattle density and fecal contamination of bovine origin was investigated using a Bovine Bacteroidales specific MST assay. Regional variations of microbial sources were examined, and may inform local primary prevention strategies. Additionally, in order to assess MST and E. coli quantitative real time polymerase chain reaction (qPCR) assays as indicators of fecal contamination, these were compared to E. coli culture methods. Variation in results was observed across all assay methods investigated, suggesting the most appropriate routine bacteriological testing methodology cannot be determined without comparison to a method that directly detects the presence of fecal contamination.

  6. Culture-Independent Identification of Manganese-Oxidizing Genes from Deep-Sea Hydrothermal Vent Chemoautotrophic Ferromanganese Microbial Communities Using a Metagenomic Approach

    NASA Astrophysics Data System (ADS)

    Davis, R.; Tebo, B. M.

    2013-12-01

    Microbial activity has long been recognized as being important to the fate of manganese (Mn) in hydrothermal systems, yet we know very little about the organisms that catalyze Mn oxidation, the mechanisms by which Mn is oxidized or the physiological function that Mn oxidation serves in these hydrothermal systems. Hydrothermal vents with thick ferromanganese microbial mats and Mn oxide-coated rocks observed throughout the Pacific Ring of Fire are ideal models to study the mechanisms of microbial Mn oxidation, as well as primary productivity in these metal-cycling ecosystems. We sampled ferromanganese microbial mats from Vai Lili Vent Field (Tmax=43°C) located on the Eastern Lau Spreading Center and Mn oxide-encrusted rhyolytic pumice (4°C) from Niua South Seamount on the Tonga Volcanic Arc. Metagenomic libraries were constructed and assembled from these samples and key genes known to be involved in Mn oxidation and carbon fixation pathways were identified in the reconstructed genomes. The Vai Lili metagenome assembled to form 121,157 contiguous sequences (contigs) greater than 1000bp in length, with an N50 of 8,261bp and a total metagenome size of 593 Mbp. Contigs were binned using an emergent self-organizing map of tetranucleotide frequencies. Putative homologs of the multicopper Mn-oxidase MnxG were found in the metagenome that were related to both the Pseudomonas-like and Bacillus-like forms of the enzyme. The bins containing the Pseudomonas-like mnxG genes are most closely related to uncultured Deltaproteobacteria and Chloroflexi. The Deltaproteobacteria bin appears to be an obligate anaerobe with possible chemoautotrophic metabolisms, while the Chloroflexi appears to be a heterotrophic organism. The metagenome from the Mn-stained pumice was assembled into 122,092 contigs greater than 1000bp in length with an N50 of 7635 and a metagenome size of 385 Mbp. Both forms of mnxG genes are present in this metagenome as well as the genes encoding the putative Mn

  7. Commercial Capaciflector

    NASA Astrophysics Data System (ADS)

    Vranish, John M.

    1991-12-01

    A capacitive proximity/tactile sensor with unique performance capabilities ('capaciflector' or capacitive reflector) is being developed by NASA/Goddard Space Flight Center (GSFC) for use on robots and payloads in space in the interests of safety, efficiency, and ease of operation. Specifically, this sensor will permit robots and their attached payloads to avoid collisions in space with humans and other objects and to dock these payloads in a cluttered environment. The sensor is simple, robust, and inexpensive to manufacture with obvious and recognized commercial possibilities. Accordingly, NASA/GSFC, in conjunction with industry, is embarking on an effort to 'spin' this technology off into the private sector. This effort includes prototypes aimed at commercial applications. The principles of operation of these prototypes are described along with hardware, software, modelling, and test results. The hardware description includes both the physical sensor in terms of a flexible printed circuit board and the electronic circuitry. The software description will include filtering and detection techniques. The modelling will involve finite element electric field analysis and will underline techniques used for design optimization.

  8. Commercial Capaciflector

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1991-01-01

    A capacitive proximity/tactile sensor with unique performance capabilities ('capaciflector' or capacitive reflector) is being developed by NASA/Goddard Space Flight Center (GSFC) for use on robots and payloads in space in the interests of safety, efficiency, and ease of operation. Specifically, this sensor will permit robots and their attached payloads to avoid collisions in space with humans and other objects and to dock these payloads in a cluttered environment. The sensor is simple, robust, and inexpensive to manufacture with obvious and recognized commercial possibilities. Accordingly, NASA/GSFC, in conjunction with industry, is embarking on an effort to 'spin' this technology off into the private sector. This effort includes prototypes aimed at commercial applications. The principles of operation of these prototypes are described along with hardware, software, modelling, and test results. The hardware description includes both the physical sensor in terms of a flexible printed circuit board and the electronic circuitry. The software description will include filtering and detection techniques. The modelling will involve finite element electric field analysis and will underline techniques used for design optimization.

  9. Comparative molecular analysis of endoevaporitic microbial communities.

    PubMed

    Sahl, Jason W; Pace, Norman R; Spear, John R

    2008-10-01

    A phylogenetic comparison of microbial communities in hypersaline evaporites was conducted on crusts from Guerrero Negro, Mexico, and Lindsey Lake, New Mexico, using culture-independent rRNA gene sequence analysis. Many sequences were shared between evaporites, which suggests that similar environments select for specific microbial lineages from a global metacommunity.

  10. Prediction of Competitive Microbial Growth.

    PubMed

    Fujikawa, Hiroshi

    2016-01-01

     Prediction of competitive microbial growth is becoming important for microbial food safety. There would be two approaches to predict competitive microbial growth with mathematical models. The first approach is the development of a growth model for competitive microbes. Among several candidates for the competition model considered, the combination of the primary growth model of the new logistic (NL) model and the competition model of the Lotka-Vorttera (LV) model showed the best performance in predicting microbial competitive growth in the mixed culture of two species. This system further successfully predicted the growth of three competitive species in mixed culture. The second approach is the application of the secondary model especially for the parameter of the maximum cell population in the primary growth model. The combination of the NL model and a polynomial model for the maximum population successfully predicted Salmonella growth in raw ground beef. This system further successfully predicted Salmonella growth in beef at various initial concentrations and temperatures. The first approach requires microbial growth data in monoculture for analysis. The second approach to the prediction of competitive growth from the viewpoint of microbial food safety would be more suitable for practical application.

  11. Breathing clean air is Są’áh Naagháí Bik'eh Hózhóó (SNBH): a culturally centred approach to understanding commercial smoke-free policy among the Diné (Navajo People)

    PubMed Central

    Chief, Carmenlita; Sabo, Samantha; Clark, Hershel; Nez Henderson, Patricia; Yazzie, Alfred; Nahee, Jacqueline; Leischow, Scott J

    2016-01-01

    Introduction Indigenous worldviews and research approaches are fundamental to make meaning of complex health issues and increase the likelihood of identifying existing cultural protective factors that have contributed to the resilience and survival of Indigenous people worldwide. Objective We describe the process for applying the Diné (Navajo) paradigm of Są’áh Naagháí Bik'eh Hózhóó (SNBH), a belief system that guides harmonious living, and demonstrate how the application of SNBH enhances understanding of Navajo principles for well-being. Specifically, we juxtapose this analysis with a conventional qualitative analysis to illuminate and interpret Diné perspectives on the health and economic impact of commercial secondhand smoke and smoke-free policy. Methods Focus groups were conducted throughout Navajo Nation to assess the appeal and impact of several evidence-based messages regarding the health and economic impact of smoke-free policy. Results Diné perspectives have shifted away from family and cultural teachings considered protective of a smoke-free life, and struggle to balance the ethical and economics of respect for individual and collective rights to live and work in smoke-free environments. Conclusions Indigenous-centred approaches to public health research and policy analysis contribute to understanding the cultural knowledge, practices and beliefs that are protective of the health and well-being of Indigenous people. PMID:27697944

  12. Comparison of manual and automated cultures of bone marrow stromal cells for bone tissue engineering.

    PubMed

    Akiyama, Hirokazu; Kobayashi, Asako; Ichimura, Masaki; Tone, Hiroshi; Nakatani, Masaru; Inoue, Minoru; Tojo, Arinobu; Kagami, Hideaki

    2015-11-01

    The development of an automated cell culture system would allow stable and economical cell processing for wider clinical applications in the field of regenerative medicine. However, it is crucial to determine whether the cells obtained by automated culture are comparable to those generated by manual culture. In the present study, we focused on the primary culture process of bone marrow stromal cells (BMSCs) for bone tissue engineering and investigated the feasibility of its automation using a commercially available automated cell culture system in a clinical setting. A comparison of the harvested BMSCs from manual and automated cultures using clinically acceptable protocols showed no differences in cell yields, viabilities, surface marker expression profiles, and in vivo osteogenic abilities. Cells cultured with this system also did not show malignant transformation and the automated process was revealed to be safe in terms of microbial contamination. Taken together, the automated procedure described in this report provides an approach to clinical bone tissue engineering.

  13. NMR bioreactor development for live in-situ microbial functional analysis

    SciTech Connect

    Majors, Paul D.; Mclean, Jeffrey S.; Scholten, Johannes C.

    2008-05-01

    A live in-situ metabolomics capability was developed for prokaryotic cultures under controlled-growth conditions. Toward this goal, a radiofrequency-transparent bioreactor was developed and integrated with a commercial wide-bore nuclear magnetic resonance (NMR) imaging spectrometer and a commercial bioreactor controller. Water suppressed 1H NMR spectroscopy was used to monitor glucose and fructose utilization and byproduct excretion by Eubacterium aggregans (an anaerobic bacterial species relevant for biofuels production) under controlled batch and continuous culture conditions. The resulting metabolite profiles (short chain organic acids and ethanol) and trends are consistent with existing knowledge of its metabolism. However, our study showed the Eubacterium aggregans produces lactate end product in significant concentrations – a result not previously reported. The advantages of live in-situ microbial metabolomics analysis and its complementariness with functional genomics / systems biology methods are discussed.

  14. NMR bioreactor development for live in-situ microbial functional analysis

    NASA Astrophysics Data System (ADS)

    Majors, Paul D.; McLean, Jeffrey S.; Scholten, Johannes C. M.

    2008-05-01

    A live, in-situ metabolomics capability was developed for prokaryotic cultures under controlled growth conditions. Toward this goal, a radiofrequency-transparent bioreactor was developed and integrated with a commercial wide-bore nuclear magnetic resonance (NMR) imaging spectrometer and a commercial bioreactor controller. Water suppressed 1H NMR spectroscopy was used to monitor glucose and fructose utilization and byproduct excretion by Eubacterium aggregans (an anaerobic bacterial species relevant for biofuel production) under controlled batch and continuous culture conditions. The resulting metabolite profiles (short chain organic acids and ethanol) and trends are consistent with existing knowledge of its metabolism. However, our study also showed that E. aggregans produces lactate end product in significant concentrations—a result not previously reported. The advantages of live in-situ microbial metabolomics analysis and its complementariness with functional genomics/systems biology methods are discussed.

  15. Microbial populations in contaminant plumes

    USGS Publications Warehouse

    Haack, S.K.; Bekins, B.A.

    2000-01-01

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation.

  16. Antibiotics in microbial coculture.

    PubMed

    Ueda, Kenji; Beppu, Teruhiko

    2017-04-01

    Today, the frequency of discovery of new antibiotics in microbial culture is significantly decreasing. The evidence from whole-genome surveys suggests that many genes involved in the synthesis of unknown metabolites do exist but are not expressed under conventional cultivation conditions. Therefore, it is urgently necessary to study the conditions that make otherwise silent genes active in microbes. Here we overview the knowledge on the antibiotic production promoted by cocultivation of multiple microbial strains. Accumulating evidence indicates that cocultivation can be an effective way to stimulate the production of substances that are not formed during pure cultivation. Characterization of the promotive factors produced by stimulator strains is expected to give clues to the development of effective cultivation conditions for drug discovery.

  17. A case study for assessment of microbial community dynamics in genetically modified Bt cotton crop fields.

    PubMed

    Kapur, Manisha; Bhatia, Ranjana; Pandey, Gunjan; Pandey, Janmejay; Paul, Debarati; Jain, Rakesh K

    2010-08-01

    Bt cotton was the first genetically modified crop approved for use in India. However, only a few studies have been conducted to assess the feasibility of its commercial application. Bt cotton is genetically modified to express a proteinaceous endotoxin (Cry) encoded by cry gene of Bacillus thuringiensis that has specific insecticidal activity against bollworms. Therefore, the amount of pesticides used for growing Bt cotton is postulated to be considerably low as compared to their non-Bt counterparts. Alternatively, it is also speculated that application of a genetically modified crop may alter the bio-geochemical balance of the agriculture field(s). Microbial community composition and dynamics is an important descriptor for assessment of such alterations. In the present study, we have assessed the culturable and non-culturable microbial diversities in Bt cotton and non-Bt cotton soils to determine the ecological consequences of application of Bt cotton. The analyses of microbial community structures indicated that cropping of Bt cotton did not adversely affect the diversity of the microbial communities.

  18. Microbial Activation of Wooden Vats Used for Traditional Cheese Production and Evolution of Neoformed Biofilms.

    PubMed

    Gaglio, Raimondo; Cruciata, Margherita; Di Gerlando, Rosalia; Scatassa, Maria Luisa; Cardamone, Cinzia; Mancuso, Isabella; Sardina, Maria Teresa; Moschetti, Giancarlo; Portolano, Baldassare; Settanni, Luca

    2015-11-06

    Three Lactococcus lactis subsp. cremoris strains were used to develop ad hoc biofilms on the surfaces of virgin wooden vats used for cheese production. Two vats (TZ) were tested under controlled conditions (pilot plant), and two vats (TA) were tested under uncontrolled conditions (industrial plant). In each plant, one vat (TA1 and TZ1) was used for the control, traditional production of PDO Vastedda della Valle del Belìce (Vastedda) cheese, and one (TA2 and TZ2) was used for experimental production performed after lactococcal biofilm activation and the daily addition of a natural whey starter culture (NWSC). Microbiological and scanning electron microscopy analyses showed differences in terms of microbial levels and composition of the neoformed biofilms. The levels of the microbial groups investigated during cheese production showed significant differences between the control trials and between the control and experimental trials, but the differences were not particularly marked between the TA2 and TZ2 productions, which showed the largest numbers of mesophilic lactic acid bacterium (LAB) cocci. LAB populations were characterized phenotypically and genotypically, and 44 dominant strains belonging to 10 species were identified. Direct comparison of the polymorphic profiles of the LAB collected during cheese making showed that the addition of the NWSC reduced their biodiversity. Sensory evaluation showed that the microbial activation of the wooden vats with the multistrain Lactococcus culture generated cheeses with sensory attributes comparable to those of commercial cheese. Thus, neoformed biofilms enable a reduction of microbial variability and stabilize the sensorial attributes of Vastedda cheese.

  19. Microbial Communities Associated with Holothurians: Presence of Unique Bacteria in the Coelomic Fluid

    PubMed Central

    Enomoto, Masaki; Nakagawa, Satoshi; Sawabe, Tomoo

    2012-01-01

    Marine invertebrates interact with various microorganisms ranging from pathogens to symbionts. One-to-one symbiosis between a single microbial species and a single host animal has served as a model for the study of host-microbe interactions. In addition, increasing attention has recently been focused on the complex symbiotic associations, e.g., associations between sponges and their symbionts, due to their biotechnological potential; however, relatively little is known about the microbial diversity associated with members of the phylum Echinodermata. Here, for the first time, we investigated microbial communities associated with a commercially important holothurian species, Apostichopus japonicus, using culture-dependent and -independent methods. Diverse and abundant heterotrophs, mostly Gammaproteobacteria members, were cultured semi-quantitatively. Using the cloning and sequencing technique, different microbial communities were found in different holothurian tissues. In the holothurian coelomic fluid, potentially metabolically active and phylogenetically unique members of Epsilonproteobacteria and Rickettsiales were discovered. This study suggests that coelomic fluids of marine invertebrates, at least those inhabiting intertidal areas where physical and chemical conditions fluctuate, provide microbes with unique and stable habitats. PMID:22446312

  20. Functional Stability Of A Mixed Microbial Consortia Producing PHA From Waste Carbon Sources

    SciTech Connect

    David N. Thompson; Erik R. Coats; William A. Smith; Frank J. Loge; Michael P. Wolcott

    2006-04-01

    Polyhydroxyalkanoates (PHAs), naturally-occurring biological polyesters that are microbially synthesized from a myriad of carbon sources, can be utilized as biodegradable substitutes for petroleum-derived thermoplastics. However, current PHA commercialization schemes are limited by high feedstock costs, the requirement for aseptic reactors, and high separation and purification costs. Bacteria indigenous to municipal waste streams can accumulate large quantities of PHA under environmentally controlled conditions; hence, a potentially more environmentally-effective method of production would utilize these consortia to produce PHAs from inexpensive waste carbon sources. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing mixed microbial consortia from municipal activated sludge as inoculum, in cultures grown on real wastewaters. PHA production averaged 85%, 53%, and 10% of the cell dry weight from methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. The PHA-producing microbial consortia were examined to explore the microbial community changes that occurred during reactor operations, employing denaturing gradient gel electrophoresis (DGGE) of 16S-rDNA from PCR-amplified DNA extracts. Distinctly different communities were observed both between and within wastewaters following enrichment. More importantly, stable functions were maintained despite the differing and contrasting microbial populations.

  1. Culture-independent analysis of the microbial composition of the African traditional fermented foods poto poto and dégué by using three different DNA extraction methods.

    PubMed

    Abriouel, Hikmate; Ben Omar, Nabil; López, Rosario Lucas; Martínez-Cañamero, Madgalena; Keleke, Simon; Gálvez, Antonio

    2006-10-01

    The microbial composition of the traditional fermented foods poto poto (a maize dough from the Rep. of Congo) and dégué (a millet dough from Burkina Faso) was studied by a culture-independent approach using TTGE to separate the amplified target V3 region of the 16S rRNA gene from total microbial community, followed by DNA sequencing and homology search. Three different extraction methods were used. Guanidium thiocyanate-based DNA extraction provided better performance regarding purity and DNA yield, allowing the detection of a higher number of DNA bands by TTGE in poto poto. By contrast, all three methods yielded similar results for dégué samples, indicating that the performance of the DNA extraction method largely depends on the food composition. Sequencing of DNA bands from TTGE gels corresponding to poto poto samples revealed the presence of Lactobacillus gasseri, Enterococcus sp., Escherichia coli, Lactobacillus plantarum/paraplantarum, Lactobacillus acidophilus, Lactobacillus delbrueckii, Bacillus sp., Lactobacillus reuteri and Lactobacillus casei. The following bacteria were identified in dégué: L. gasseri, Enterococcus sp., E. coli, Lactobacillus fermentum, Lactobacillus brevis, and L. casei.

  2. Characterization of the Bacterial Community Naturally Present on Commercially Grown Basil Leaves: Evaluation of Sample Preparation Prior to Culture-Independent Techniques

    PubMed Central

    Ceuppens, Siele; Delbeke, Stefanie; De Coninck, Dieter; Boussemaere, Jolien; Boon, Nico; Uyttendaele, Mieke

    2015-01-01

    Fresh herbs such as basil constitute an important food commodity worldwide. Basil provides considerable culinary and health benefits, but has also been implicated in foodborne illnesses. The naturally occurring bacterial community on basil leaves is currently unknown, so the epiphytic bacterial community was investigated using the culture-independent techniques denaturing gradient gel electrophoresis (DGGE) and next-generation sequencing (NGS). Sample preparation had a major influence on the results from DGGE and NGS: Novosphingobium was the dominant genus for three different basil batches obtained by maceration of basil leaves, while washing of the leaves yielded lower numbers but more variable dominant bacterial genera including Klebsiella, Pantoea, Flavobacterium, Sphingobacterium and Pseudomonas. During storage of basil, bacterial growth and shifts in the bacterial community were observed with DGGE and NGS. Spoilage was not associated with specific bacterial groups and presumably caused by physiological tissue deterioration and visual defects, rather than by bacterial growth. PMID:26308033

  3. Characterization of the Bacterial Community Naturally Present on Commercially Grown Basil Leaves: Evaluation of Sample Preparation Prior to Culture-Independent Techniques.

    PubMed

    Ceuppens, Siele; Delbeke, Stefanie; De Coninck, Dieter; Boussemaere, Jolien; Boon, Nico; Uyttendaele, Mieke

    2015-08-21

    Fresh herbs such as basil constitute an important food commodity worldwide. Basil provides considerable culinary and health benefits, but has also been implicated in foodborne illnesses. The naturally occurring bacterial community on basil leaves is currently unknown, so the epiphytic bacterial community was investigated using the culture-independent techniques denaturing gradient gel electrophoresis (DGGE) and next-generation sequencing (NGS). Sample preparation had a major influence on the results from DGGE and NGS: Novosphingobium was the dominant genus for three different basil batches obtained by maceration of basil leaves, while washing of the leaves yielded lower numbers but more variable dominant bacterial genera including Klebsiella, Pantoea, Flavobacterium, Sphingobacterium and Pseudomonas. During storage of basil, bacterial growth and shifts in the bacterial community were observed with DGGE and NGS. Spoilage was not associated with specific bacterial groups and presumably caused by physiological tissue deterioration and visual defects, rather than by bacterial growth.

  4. Lactococcus lactis and Lactobacillus sakei as bio-protective culture to eliminate Leuconostoc mesenteroides spoilage and improve the shelf life and sensorial characteristics of commercial cooked bacon.

    PubMed

    Comi, Giuseppe; Andyanto, Debbie; Manzano, Marisa; Iacumin, Lucilla

    2016-09-01

    Cooked bacon is a typical Italian meat product. After production, cooked bacon is stored at 4 ± 2 °C. During storage, the microorganisms that survived pasteurisation can grow and produce spoilage. For the first time, we studied the cause of the deterioration in spoiled cooked bacon compared to unspoiled samples. Moreover, the use of bio-protective cultures to improve the quality of the product and eliminate the risk of spoilage was tested. The results show that Leuconostoc mesenteroides is responsible for spoilage and produces a greening colour of the meat, slime and various compounds that result from the fermentation of sugars and the degradation of nitrogen compounds. Finally, Lactococcus lactis spp. lactis and Lactobacillus sakei were able to reduce the risk of Leuconostoc mesenteroides spoilage.

  5. Stable isotope ratios as a tool in microbial forensics--part 3. Effect of culturing on agar-containing growth media.

    PubMed

    Kreuzer-Martin, Helen W; Chesson, Lesley A; Lott, Michael J; Ehleringer, James R

    2005-11-01

    Stable isotope ratios of hydrogen and oxygen in microbes have been shown to be functions of the corresponding isotope ratios of the water with which the culture medium was prepared, and thus to contain a potential geographic signal. Water can evaporate from agar (solid) media during culturing, changing its isotope ratios. Here we describe the effect of drying on the isotope ratios of water extracted from agar media and the H and O stable isotope ratios ratios of Bacillus subtilis spores cultured on agar. The delta2H vs delta18O relationship of water in Petri dish agar was surprisingly constant during evaporation regardless of the ambient relative humidity, making it possible to calculate the approximate isotope ratios of the original water, even in significantly evaporated agar. The H stable isotope ratios of spores cultured on agar remained relatively unchanged as the agar dried, but the O ratio became significantly enriched.

  6. [Comparative study with 2 new and 8 known nutrient media for cultivation of fastidious and nonfastidious microbial agents from cerebrospinal fluid and other body fluids].

    PubMed

    Abdou, M A; Stöckel, H

    1982-05-01

    Rapid physical, biochemical and immunological methods may be useful in the detection of microbial agents in cerebrospinal fluid and in other body fluids. However, these methods are no substitution for the cultivation of the microbial agents. Microorganisms which are most frequently responsible for meningitis are fastidious in their growth requirements. Their detection with the help of conventional blood culture media which are not supplemented with blood or its components, leads to a high quota of false-negative results. Taking this problem into consideration, the authors developed the following two new media: "MOPS Electrolyte Broth A" for culturing obligate aerobic and facultative anerobic microorganisms, and "MOPS Electrolyte Broth AN" for culturing facultative anaerobic and obligate anaerobic bacteria. Performance tests have been carried out with the two above mentioned media and eight commercially manufactured blood culture media in original bottles. Twenty representative test strains including the most important and fastidious microbial agents of meningitis have been considered in this study. The inoculum size was about 10(2) CFU per culture bottle. The two new media, which were not supplemented with blood or body fluids, proved to be more effective than the conventional blood culture media supplemented with 10% fresh human blood for culturing the considered spectrum of microorganisms.

  7. Microbial antibiotic production aboard the International Space Station.

    PubMed

    Benoit, M R; Li, W; Stodieck, L S; Lam, K S; Winther, C L; Roane, T M; Klaus, D M

    2006-04-01

    Previous studies examining metabolic characteristics of bacterial cultures have mostly suggested that reduced gravity is advantageous for microbial growth. As a consequence, the question of whether space flight would similarly enhance secondary metabolite production was raised. Results from three prior space shuttle experiments indicated that antibiotic production was stimulated in space for two different microbial systems, albeit under suboptimal growth conditions. The goal of this latest experiment was to determine whether the enhanced productivity would also occur with better growth conditions and over longer durations of weightlessness. Microbial antibiotic production was examined onboard the International Space Station during the 72-day 8A increment. Findings of increased productivity of actinomycin D by Streptomyces plicatus in space corroborated with previous findings for the early sample points (days 8 and 12); however, the flight production levels were lower than the matched ground control samples for the remainder of the mission. The overall goal of this research program is to elucidate the specific mechanisms responsible for the initial stimulation of productivity in space and translate this knowledge into methods for improving efficiency of commercial production facilities on Earth.

  8. Ecology, Microbial

    SciTech Connect

    Konopka, Allan

    2009-03-19

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  9. Ecology, Microbial

    SciTech Connect

    Konopka, Allan

    2009-05-15

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  10. Microbial contamination and disinfection methods of pacifiers

    PubMed Central

    NELSON, Paulo; LOUVAIN, Márcia Costa; MACARI, Soraia; LUCISANO, Marília Pacífico; da SILVA, Raquel Assed Bezerra; de QUEIROZ, Alexandra Mussolino; GATON-HERNÁNDEZ, Patrícia; da SILVA, Léa Assed Bezerra

    2015-01-01

    Objectives To evaluate the microbial contamination of pacifiers by Mutans Streptococci (MS) and the efficacy of different methods for their disinfection. Methods Twenty-eight children were assigned to a 4-stage changeover system with a 1-week interval. In each stage, children received a new pacifier and the parents were instructed to maintain their normal habits for 1 week. After this time, the pacifiers were subjected to the following 4 disinfection methods: spraying with 0.12% chlorhexidine solution, Brushtox® or sterile tap water, and immersion in boiling tap water for 15 minutes. Microbiological culture for MS and Scanning Electron Microscopy (SEM) were performed. The results were analyzed statistically by Friedman’s non-parametric test (a=0.05). Results The 0.12% chlorhexidine spray was statistically similar to the boiling water (p>0.05) and more effective than the Brushtox® spray and control (p<0.05). The analysis of SEM showed the formation of a cariogenic biofilm in all groups with positive culture. Conclusions Pacifiers become contaminated by MS after their use by children and should be disinfected routinely. Spraying with a 0.12% chlorhexidine solution and immersion in boiling water promoted better disinfection of the pacifiers compared with a commercial antiseptic toothbrush cleanser (Brushtox®). PMID:26537723

  11. Commercial applications

    NASA Astrophysics Data System (ADS)

    The near term (one to five year) needs of domestic and foreign commercial suppliers of radiochemicals and radiopharmaceuticals for electromagnetically separated stable isotopes are assessed. Only isotopes purchased to make products for sale and profit are considered. Radiopharmaceuticals produced from enriched stable isotopes supplied by the Calutron facility at ORNL are used in about 600,000 medical procedures each year in the United States. A temporary or permanent disruption of the supply of stable isotopes to the domestic radiopharmaceutical industry could curtail, if not eliminate, the use of such diagnostic procedures as the thallium heart scan, the gallium cancer scan, the gallium abscess scan, and the low radiation dose thyroid scan. An alternative source of enriched stable isotopes exist in the USSR. Alternative starting materials could, in theory, eventually be developed for both the thallium and gallium scans. The development of a new technology for these purposes, however, would take at least five years and would be expensive. Hence, any disruption of the supply of enriched isotopes from ORNL and the resulting unavailability of critical nuclear medicine procedures would have a dramatic negative effect on the level of health care in the United States.

  12. Microbial stability and safety of traditional Greek Graviera cheese: characterization of the lactic acid bacterial flora and culture-independent detection of bacteriocin genes in the ripened cheeses and their microbial consortia.

    PubMed

    Samelis, John; Kakouri, Athanasia; Pappa, Eleni C; Matijasić, Bojana Bogovic; Georgalaki, Marina D; Tsakalidou, Effie; Rogelj, Andirena

    2010-07-01

    The microflora of four batches of traditional Greek Graviera cheese was studied at 5 weeks of ripening, and 200 lactic acid bacteria (LAB) isolates were phenotypically characterized and screened for antilisterial bacteriocins. The cheeses were also analyzed for organic acids by high-performance liquid chromatography and for the potential presence of 25 known LAB bacteriocin genes directly in cheese and their microbial consortia by PCR. All batches were safe according to the European Union regulatory criteria for Listeria monocytogenes, Salmonella, enterobacteria, and coagulase-positive staphylococci. The cheese flora was dominated by nonstarter Lactobacillus casei/paracasei (67.5%) and Lactobacillus plantarum (16.3%) strains, whereas few Streptococcus thermophilus (3.8%), Lactococcus lactis subsp. lactis (0.6%), and Leuconostoc (1.9%) organisms were present. Enterococcus faecium (9.4%) and Enterococcus durans (0.6%) were isolated among the dominant LAB from two batches; however, enterococci were present in all batches at 10- to 100-fold lower populations than mesophilic lactobacilli. Sixteen E. faecium isolates produced antilisterial enterocins. In accordance, enterocin B gene was detectable in all cheeses and enterocin P gene was present in one cheese, whereas the consortia of all cheeses contained at least two of the enterocin A, B, P, 31, L50A, and L50B genes. Plantaricin A gene was also amplified from all cheeses. Mean concentrations of lactic, acetic, citric, and propionic acids in the ripened cheeses exceeded 1.5% in total, of which approximately 0.9% was lactate. Thus, organic acid contents constitute an important hurdle factor for inhibiting growth of pathogens in traditional Graviera cheese products, with LAB bacteriocins, mainly enterocins, potentially contributing to increased cheese safety.

  13. Levels of Se, Zn, Mg and Ca in commercial goat and cow milk fermented products: Relationship with their chemical composition and probiotic starter culture.

    PubMed

    Navarro-Alarcón, Miguel; Cabrera-Vique, Carmen; Ruiz-López, Ma Dolores; Olalla, Manuel; Artacho, Reyes; Giménez, Rafael; Quintana, Verónica; Bergillos, Triana

    2011-12-01

    We determined Se, Zn, Mg and Ca levels in 42 samples of goat and cow fermented milks which are widely consumed in Spain were determined. Atomic absorption spectrometry (hydride generation for Se and flame atomisation for remaining elements) was used as an analytical technique. Reliability of the procedure was checked. Only Mg levels in goat fermented milks were significantly higher to those found in cow fermented milks (p<0.022). Important similarities in concentrations and behaviours for Mg and Ca have been observed. Mg contents were significantly correlated with Zn (r=0.590; p<0.001) and Ca (r=0.344; p<0.028) concentrations, Zn, Mg and Ca levels with protein content (r=0.554, r=0.479, r=0.388, respectively), Mg levels with fats (r=0.403; p=0.011) and Se levels with carbohydrates (r=-0.379; p=0.031). Mineral and macronutrient levels in yogurts with traditional probiotic starter cultures were not significantly different to those found in fermented milks with additional probiotic microorganisms (p>0.05). It was concluded that goat fermented milks are a better source for Mg than cow samples.

  14. Investigation of Associations of Yarrowia lipolytica, Staphylococcus xylosus, and Lactococcus lactis in Culture as a First Step in Microbial Interaction Analysis▿ †

    PubMed Central

    Mansour, S.; Bailly, J.; Landaud, S.; Monnet, C.; Sarthou, A. S.; Cocaign-Bousquet, M.; Leroy, S.; Irlinger, F.; Bonnarme, P.

    2009-01-01

    The interactions that may occur between microorganisms in different ecosystems have not been adequately studied yet. We investigated yeast-bacterium interactions in a synthetic medium using different culture associations involving the yeast Yarrowia lipolytica 1E07 and two bacteria, Staphylococcus xylosus C2a and Lactococcus lactis LD61. The growth and biochemical characteristics of each microorganism in the different culture associations were studied. The expression of genes related to glucose, lactate, and amino acid catabolism was analyzed by reverse transcription followed by quantitative PCR. Our results show that the growth of Y. lipolytica 1E07 is dramatically reduced by the presence of S. xylosus C2a. As a result of a low amino acid concentration in the medium, the expression of Y. lipolytica genes involved in amino acid catabolism was downregulated in the presence of S. xylosus C2a, even when L. lactis was present in the culture. Furthermore, the production of lactate by both bacteria had an impact on the lactate dehydrogenase gene expression of the yeast, which increased up to 30-fold in the three-species culture compared to the Y. lipolytica 1E07 pure culture. S. xylosus C2a growth dramatically decreased in the presence of Y. lipolytica 1E07. The growth of lactic acid bacteria was not affected by the presence of S. xylosus C2a or Y. lipolytica 1E07, although the study of gene expression showed significant variations. PMID:19684166

  15. Microbial Diversity Associated with Odor Modification for Production of Fertilizers from Chicken Litter†

    PubMed Central

    Enticknap, Julie J.; Nonogaki, Hirofumi; Place, Allen R.; Hill, Russell T.

    2006-01-01

    Litter from the chicken industry can present several environmental challenges, including offensive odors and runoff into waterways leading to eutrophication. An economically viable solution to the disposal of waste from chicken houses is treatment to produce a natural, granulated fertilizer that can be commercially marketed for garden and commercial use. Odor of the final product is important in consumer acceptance, and an earthy odor is desirable. By understanding and manipulating the microbial processes occurring during this process, it may be possible to modify the odors produced. Geosmin and related volatiles produced by soil actinomycetes are responsible for earthy odors, and actinomycetes are likely to be present in the composting manure. Bacterial communities at each stage of the process were analyzed by culturing studies and denaturing gradient gel electrophoresis (DGGE). The processing steps changed the culturable bacterial community, but the total community was shown by DGGE to be stable throughout the process. A local agricultural soil was analyzed in parallel as a potential source of geosmin-producing actinomycetes. This agricultural soil had higher microbial diversity than the compost at both the culturable and the molecular levels. Actinomycete bacteria were isolated and analyzed by AromaTrax, a gas chromatography-olfactometry system. This system enables the odor production of individual isolates to be monitored, allowing for rational selection of strains for augmentation experiments to improve the odor of the final fertilizer product. PMID:16751521

  16. The impact of yeast starter cultures on the microbial communities and volatile compounds in cocoa fermentation and the resulting sensory attributes of chocolate.

    PubMed

    Batista, Nádia Nara; Ramos, Cíntia Lacerda; Dias, Disney Ribeiro; Pinheiro, Ana Carla Marques; Schwan, Rosane Freitas

    2016-02-01

    Theobroma cacao seeds are the main raw material for chocolate production. During their fermentation, a succession of microorganisms are responsible for the physicochemical changes occurring in the pulp and inside the beans. The aim of this study was to investigate the effects of yeast inoculation (Saccharomyces cerevisiae UFLA CA11, Pichia kluivery CCMA0237, and Hanseniaspora uvarum CCMA0236) on the profile of the volatile compounds and microbial communities in cocoa fermentation. The resulting chocolate was also evaluated by temporal dominance of sensations (TDS) analyses. The dominant microorganisms during spontaneous fermentation were S. cerevisiae, H. uvarum, H. guilliermondii, Lactobacillus fermentum, Pediococcus sp., and Acetobacter pasteurianus. Similarly, S. cerevisiae, P. kluyveri, Candida sp., Pediococcus sp., and A. pasteurianus were the predominant microorganisms assessed by Denaturing Gradient Gel Electrophoresis (DGGE) in inoculated fermentation. Sixty-seven volatile compounds were detected and quantified by gas chromatography/mass spectrometry (GC/MS) at the end of fermentation and chocolates. The main group of volatile compound found after the inoculated and spontaneous fermentations was esters (41 and 39 %, respectively). In the chocolates, the main group was acids (73 and 44 % from the inoculated and spontaneous fermentations, respectively). The TDS analyses showed a dominance of bitter and cocoa attributes in both chocolates. However, in the inoculated chocolate, lingering fruity notes were more intense, while the chocolate produced by spontaneous fermentation was more astringent. Thus, the inoculation of yeast influenced the microbial profile, which likely affected the volatile compounds that affect sensory characteristics, resulting in chocolate with dominant bitter, cocoa, and fruity attributes.

  17. Synthetic microbial ecosystems for biotechnology.

    PubMed

    Pandhal, Jagroop; Noirel, Josselin

    2014-06-01

    Most highly controlled and specific applications of microorganisms in biotechnology involve pure cultures. Maintaining single strain cultures is important for industry as contaminants can reduce productivity and lead to longer "down-times" during sterilisation. However, microbes working together provide distinct advantages over pure cultures. They can undertake more metabolically complex tasks, improve efficiency and even expand applications to open systems. By combining rapidly advancing technologies with ecological theory, the use of microbial ecosystems in biotechnology will inevitably increase. This review provides insight into the use of synthetic microbial communities in biotechnology by applying the engineering paradigm of measure, model, manipulate and manufacture, and illustrate the emerging wider potential of the synthetic ecology field. Systems to improve biofuel production using microalgae are also discussed.

  18. Towards a Microbial Thermoelectric Cell

    PubMed Central

    Rodríguez-Barreiro, Raúl; Abendroth, Christian; Vilanova, Cristina; Moya, Andrés; Porcar, Manuel

    2013-01-01

    Microbial growth is an exothermic process. Biotechnological industries produce large amounts of heat, usually considered an undesirable by-product. In this work, we report the construction and characterization of the first microbial thermoelectric cell (MTC), in which the metabolic heat produced by a thermally insulated microbial culture is partially converted into electricity through a thermoelectric device optimized for low ΔT values. A temperature of 41°C and net electric voltage of around 250–600 mV was achieved with 1.7 L baker’s yeast culture. This is the first time microbial metabolic energy has been converted into electricity with an ad hoc thermoelectric device. These results might contribute towards developing a novel strategy to harvest excess heat in the biotechnology industry, in processes such as ethanol fermentation, auto thermal aerobic digestion (ATAD) or bioremediation, which could be coupled with MTCs in a single unit to produce electricity as a valuable by-product of the primary biotechnological product. Additionally, we propose that small portable MTCs could be conceived and inoculated with suitable thermophilic of hyperthermophilic starter cultures and used for powering small electric devices. PMID:23468862

  19. Optimized Use of the MALDI BioTyper System and the FilmArray BCID Panel for Direct Identification of Microbial Pathogens from Positive Blood Cultures.

    PubMed

    Fiori, B; D'Inzeo, T; Giaquinto, A; Menchinelli, G; Liotti, F M; de Maio, F; De Angelis, G; Quaranta, G; Nagel, D; Tumbarello, M; Posteraro, B; Sanguinetti, M; Spanu, T

    2016-03-01

    Despite the current reliance on blood cultures (BCs), the diagnosis of bloodstream infections (BSIs) can be sped up using new technologies performed directly on positive BC bottles. Two methods (the MALDI BioTyper system and FilmArray blood culture identification [BCID] panel) are potentially applicable. In this study, we performed a large-scale clinical evaluation (1,585 microorganisms from 1,394 BSI episodes) on the combined use of the MALDI BioTyper and FilmArray BCID panel compared to a reference (culture-based) method. As a result, the causative organisms of 97.7% (1,362/1,394) of the BSIs were correctly identified by our MALDI BioTyper and FilmArray BCID-based algorithm. Specifically, 65 (5.3%) out of 1,223 monomicrobial BCs that provided incorrect or invalid identifications with the MALDI BioTyper were accurately detected by the FilmArray BCID panel; additionally, 153 (89.5%) out of 171 polymicrobial BCs achieved complete identification with the FilmArray BCID panel. Conversely, full use of the MALDI BioTyper would have resulted in the identification of only 1 causative organism in 97/171 (56.7%) of the polymicrobial cultures. By applying our diagnostic algorithm, the median time to identification was shortened (19.5 h versus 41.7 h with the reference method; P < 0.001), and the minimized use of the FilmArray BCID panel led to a significant cost savings. Twenty-six out of 31 microorganisms that could not be identified were species/genera not designed to be detected with the FilmArray BCID panel, indicating that subculture was not dispensable for a few of our BSI episodes. In summary, the fast and effective testing of BC bottles is realistically adoptable in the clinical microbiology laboratory workflow, although the usefulness of this testing for the management of BSIs remains to be established.

  20. Microbial monitoring of spacecraft and associated environments

    NASA Technical Reports Server (NTRS)

    La Duc, M. T.; Kern, R.; Venkateswaran, K.

    2004-01-01

    Rapid microbial monitoring technologies are invaluable in assessing contamination of spacecraft and associated environments. Universal and widespread elements of microbial structure and chemistry are logical targets for assessing microbial burden. Several biomarkers such as ATP, LPS, and DNA (ribosomal or spore-specific), were targeted to quantify either total bioburden or specific types of microbial contamination. The findings of these assays were compared with conventional, culture-dependent methods. This review evaluates the applicability and efficacy of some of these methods in monitoring the microbial burden of spacecraft and associated environments. Samples were collected from the surfaces of spacecraft, from surfaces of assembly facilities, and from drinking water reservoirs aboard the International Space Station (ISS). Culture-dependent techniques found species of Bacillus to be dominant on these surfaces. In contrast, rapid, culture-independent techniques revealed the presence of many Gram-positive and Gram-negative microorganisms, as well as actinomycetes and fungi. These included both cultivable and noncultivable microbes, findings further confirmed by DNA-based microbial detection techniques. Although the ISS drinking water was devoid of cultivable microbes, molecular-based techniques retrieved DNA sequences of numerous opportunistic pathogens. Each of the methods tested in this study has its advantages, and by coupling two or more of these techniques even more reliable information as to microbial burden is rapidly obtained. Copyright 2004 Springer-Verlag.

  1. Microbial monitoring of spacecraft and associated environments.

    PubMed

    La Duc, M T; Kern, R; Venkateswaran, K

    2004-02-01

    Rapid microbial monitoring technologies are invaluable in assessing contamination of spacecraft and associated environments. Universal and widespread elements of microbial structure and chemistry are logical targets for assessing microbial burden. Several biomarkers such as ATP, LPS, and DNA (ribosomal or spore-specific), were targeted to quantify either total bioburden or specific types of microbial contamination. The findings of these assays were compared with conventional, culture-dependent methods. This review evaluates the applicability and efficacy of some of these methods in monitoring the microbial burden of spacecraft and associated environments. Samples were collected from the surfaces of spacecraft, from surfaces of assembly facilities, and from drinking water reservoirs aboard the International Space Station (ISS). Culture-dependent techniques found species of Bacillus to be dominant on these surfaces. In contrast, rapid, culture-independent techniques revealed the presence of many Gram-positive and Gram-negative microorganisms, as well as actinomycetes and fungi. These included both cultivable and noncultivable microbes, findings further confirmed by DNA-based microbial detection techniques. Although the ISS drinking water was devoid of cultivable microbes, molecular-based techniques retrieved DNA sequences of numerous opportunistic pathogens. Each of the methods tested in this study has its advantages, and by coupling two or more of these techniques even more reliable information as to microbial burden is rapidly obtained.

  2. Television Commercials: Symbols, Myths and Metaphors.

    ERIC Educational Resources Information Center

    Feasley, Florence G.

    Television commercials convey to the audience through symbols, metaphors, and myths the feelings and emotions deeply rooted in our culture. While commercials on one level are concerned with a representation of the product or service, they are on another level a symbol of a larger meaning: love, family, romance, motherhood, or hero worship. A can…

  3. Microbial Metalloproteomics

    PubMed Central

    Hagedoorn, Peter-Leon

    2015-01-01

    Metalloproteomics is a rapidly developing field of science that involves the comprehensive analysis of all metal-containing or metal-binding proteins in a biological sample. The purpose of this review is to offer a comprehensive overview of the research involving approaches that can be categorized as inductively coupled plasma (ICP)-MS based methods, X-ray absorption/fluorescence, radionuclide based methods and bioinformatics. Important discoveries in microbial proteomics will be reviewed, as well as the outlook to new emerging approaches and research areas. PMID:28248278

  4. Microbial Metabolomics

    PubMed Central

    Tang, Jane

    2011-01-01

    Microbial metabolomics constitutes an integrated component of systems biology. By studying the complete set of metabolites within a microorganism and monitoring the global outcome of interactions between its development processes and the environment, metabolomics can potentially provide a more accurate snap shot of the actual physiological state of the cell. Recent advancement of technologies and post-genomic developments enable the study and analysis of metabolome. This unique contribution resulted in many scientific disciplines incorporating metabolomics as one of their “omics” platforms. This review focuses on metabolomics in microorganisms and utilizes selected topics to illustrate its impact on the understanding of systems microbiology. PMID:22379393

  5. A Comprehensive Assessment of Biologicals Contained Within Commercial Airliner Cabin Air

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Osman, Shariff; Dekas, Anne; Stuecker, Tara; Newcombe, Dave; Piceno, Yvette; Fuhrman, J.; Andersen, Gary; Venkateswaran, Kasthuri; Bearman, Greg

    2006-01-01

    Both culture-based and culture-independent, biomarker-targeted microbial enumeration and identification technologies were employed to estimate total microbial and viral burden and diversity within the cabin air of commercial airliners. Samples from each of twenty flights spanning three commercial carriers were collected via air-impingement. When the total viable microbial population was estimated by assaying relative concentrations of the universal energy carrier ATP, values ranged from below detection limits (BDL) to 4.1 x 106 cells/cubic m of air. The total viable microbial population was extremely low in both of Airline A (approximately 10% samples) and C (approximately 18% samples) compared to the samples collected aboard flights on Airline A and B (approximately 70% samples). When samples were collected as a function of time over the course of flights, a gradual accumulation of microbes was observed from the time of passenger boarding through mid-flight, followed by a sharp decline in microbial abundance and viability from the initiation of descent through landing. It is concluded in this study that only 10% of the viable microbes of the cabin air were cultivable and suggested a need to employ state-of-the art molecular assay that measures both cultivable and viable-but-non-cultivable microbes. Among the cultivable bacteria, colonies of Acinetobacter sp. were by far the most profuse in Phase I, and Gram-positive bacteria of the genera Staphylococcus and Bacillus were the most abundant during Phase II. The isolation of the human pathogens Acinetobacter johnsonii, A. calcoaceticus, Janibacter melonis, Microbacterium trichotecenolyticum, Massilia timonae, Staphylococcus saprophyticus, Corynebacterium lipophiloflavum is concerning, as these bacteria can cause meningitis, septicemia, and a handful of sometimes fatal diseases and infections. Molecular microbial community analyses exhibited presence of the alpha-, beta-, gamma-, and delta- proteobacteria, as well as

  6. Optimized Use of the MALDI BioTyper System and the FilmArray BCID Panel for Direct Identification of Microbial Pathogens from Positive Blood Cultures

    PubMed Central

    Fiori, B.; D'Inzeo, T.; Giaquinto, A.; Menchinelli, G.; Liotti, F. M.; de Maio, F.; De Angelis, G.; Quaranta, G.; Nagel, D.; Tumbarello, M.; Sanguinetti, M.

    2015-01-01

    Despite the current reliance on blood cultures (BCs), the diagnosis of bloodstream infections (BSIs) can be sped up using new technologies performed directly on positive BC bottles. Two methods (the MALDI BioTyper system and FilmArray blood culture identification [BCID] panel) are potentially applicable. In this study, we performed a large-scale clinical evaluation (1,585 microorganisms from 1,394 BSI episodes) on the combined use of the MALDI BioTyper and FilmArray BCID panel compared to a reference (culture-based) method. As a result, the causative organisms of 97.7% (1,362/1,394) of the BSIs were correctly identified by our MALDI BioTyper and FilmArray BCID-based algorithm. Specifically, 65 (5.3%) out of 1,223 monomicrobial BCs that provided incorrect or invalid identifications with the MALDI BioTyper were accurately detected by the FilmArray BCID panel; additionally, 153 (89.5%) out of 171 polymicrobial BCs achieved complete identification with the FilmArray BCID panel. Conversely, full use of the MALDI BioTyper would have resulted in the identification of only 1 causative organism in 97/171 (56.7%) of the polymicrobial cultures. By applying our diagnostic algorithm, the median time to identification was shortened (19.5 h versus 41.7 h with the reference method; P < 0.001), and the minimized use of the FilmArray BCID panel led to a significant cost savings. Twenty-six out of 31 microorganisms that could not be identified were species/genera not designed to be detected with the FilmArray BCID panel, indicating that subculture was not dispensable for a few of our BSI episodes. In summary, the fast and effective testing of BC bottles is realistically adoptable in the clinical microbiology laboratory workflow, although the usefulness of this testing for the management of BSIs remains to be established. PMID:26677254

  7. In-vitro microbial production of conjugated linoleic acid by probiotic L. plantarum strains: Utilization as a functional starter culture in sucuk fermentation.

    PubMed

    Özer, Cem O; Kılıç, Birol; Kılıç, Gülden Başyiğit

    2016-04-01

    Twenty-three probiotic Lactobacillus plantarum strains were screened in-vitro to determine their ability to produce conjugated linoleic acid (CLA). L. plantarum AA1-2 and L. plantarum AB20-961 were identified as potential strains for CLA production. Optimum conditions for these strains to produce high levels of CLA were determined by evaluating the amount of added hydrolyzed sunflower oil (HSO) and initial pH levels in a nutrient medium. The highest CLA production was obtained in medium with pH6.0 and 2% HSO (P<0.05). Those strains were then used as starter culture in sucuk fermentation. Five sucuk treatments included a control (no starter culture), two sucuk groups with L. plantarum AA1-2 at the initial pH of 5.8 or 6.0 and two sucuk groups with L. plantarum AB20-961 at the initial pH of 5.8 or 6.0. Results indicate that L. plantarum AB20-961 produced higher amount of CLA in sucuk at initial pH of 5.8 and 6.0 levels during first 24h of fermentation compared with other groups. CLA isomer concentration decreased in all sucuk groups during the rest of the fermentation period (P<0.05) and remained quite stable during the storage. This study demonstrated that probiotic L. plantarum AB20-961 can be used in sucuk manufacturing without posing any quality problems.

  8. Culturable endophytic microbial communities in the circumpolar grass, Deschampsia flexuosa in a sub-Arctic inland primary succession are habitat and growth stage specific.

    PubMed

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2015-02-01

    Little is known about endophytic microbes in cold climate plants and how their communities are formed.We compared culturable putative endophytic bacteria and fungi in the ecologically important circumpolargrass, Deschampsia flexuosa growing in two successional stages of subarctic sand dune (68°29′N).Sequence analyses of partial 16S rRNA and internal transcribed spacer (ITS) sequences of culturable endophytes showed that diverse bacteria and fungi inhabit different tissues of D. flexuosa. A total of 178 bacterial isolates representing seven taxonomic divisions, Alpha, Beta and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Acidobacteria, and 30 fungal isolates representing the phylum Ascomycota were identified. Several endophytes were affiliated with specific plant tissues or successional stages. This first report of bacterial endophytes in D. flexuosa revealed that the genus Pseudomonas is tightly associated with D. flexuosa, and encompassed 39% of the bacterial isolates, and 58% of seed isolates. Based on 16S rRNA and ITS sequence data, most of the D. flexuosa endophytes were closely related to microbes from other cold environments. The majority of seed endophytic bacterial isolates were able to solubilize organic form of phosphate suggesting that these endophytes could play a role in resource mobilization in germinating seeds in nutrient-poor habitat.

  9. Comparing the temporal colonization and microbial diversity of showerhead biofilms in Hawai'i and Colorado.

    PubMed

    Abe, Jonathan; Alop-Mabuti, Aleena; Burger, Peyton; Button, Jackson; Ellsberry, Madeline; Hitzeman, Jaycinth; Morgenstern, David; Nunies, Kasey; Strother, Mara; Darling-Munson, Jared; Chan, Yvonne L; Cassady, Robert; Vasconcellos, Sarah Maile K; Iseman, Michael D; Chan, Edward D; Honda, Jennifer R

    2016-02-01

    The household is a potential source of opportunistic pathogens to humans, a particularly critical issue for immunodeficient individuals. An important human-microbe interface is the biofilm that develops on showerhead surfaces. Once microbe-laden biofilms become aerosolized, they can potentially be inhaled into the lungs. Understanding how quickly a new showerhead becomes colonized would provide useful information to minimize exposure to potentially pathogenic environmental microbes. High school scientists sampled the inner surfaces of pre-existing and newly fitted showerheads monthly over a nine-month period and applied standard microbiologic culture techniques to qualitatively assess microbial growth. Water chemistry was also monitored using commercial test strips. Sampling was performed in households on Oahu, Hawai'i and Denver, Colorado, representing warm/humid and cold/arid environments, respectively. Pre-existing showerheads in Hawai'i showed more diverse microbial growth and significantly greater microbial numbers than a comparable showerhead from Colorado. New, chrome-plated or plastic showerheads in Hawai'i showed diverse and abundant growth one month after installment compared to new showerheads from Colorado. The pH, total chlorine and water hardness levels varied significantly between the Hawai'i and Colorado samples. Enthusiastic student and teacher participation allowed us to answer long-standing questions regarding the temporal colonization of microbial biofilms on pre-existing and new showerhead surfaces.

  10. The effect of microbial starter composition on cassava chips fermentation for the production of fermented cassava flour

    NASA Astrophysics Data System (ADS)

    Kresnowati, M. T. A. P.; Listianingrum, Zaenudin, Ahmad; Trihatmoko, Kharisrama

    2015-12-01

    The processing of cassava into fermented cassava flour (fercaf) or the widely known as modified cassava flour (mocaf) presents an alternative solution to improve the competitiveness of local foods and to support national food security. However, the mass production of fercaf is being limited by several problems, among which is the availability of starter cultures. This paper presents the mapping of the effect of microbial starter compositions on the nutritional content of fercaf in order to obtain the suitable nutritional composition. Based on their enzymatic activities, the combination of Lactobacillus plantarum, Bacillus subtilis, and Aspergillus oryzae were tested during the study. In addition, commercial starter was also tested. During the fermentation, the dynamics in microbial population were measured as well as changes in cyanogenic glucoside content. The microbial starter composition was observed to affect the dynamics in microbial populationcynaogenic glucoside content of the produced fercaf. In general, steady state microbial population was reached within 12 hours of fermentation. Cyanogenic glucoside was observed to decrease along the fermentation.

  11. Molecular bacterial diversity and bioburden of commercial airliner cabin air.

    PubMed

    La Duc, Myron T; Stuecker, Tara; Venkateswaran, Kasthuri

    2007-11-01

    Culture-independent, biomarker-targeted bacterial enumeration and identification strategies were employed to estimate total bacterial burden and diversity within the cabin air of commercial airliners. Samples from each of 4 flights on 2 commercial carriers were collected via air-impingement. The total viable microbial population ranged from below detection limits to 4.1 x 10(6) cells/m(3) of air, as assessed by the ATP assay. A gradual accumulation of microbes was observed from the time of passenger boarding through mid-flight, followed by a sharp decline in bacterial abundance and viability from the initiation of descent through landing. Representatives of the alpha-, beta-, and gamma-Proteobacteria, as well as Gram-positive bacteria, were isolated in varying abundance. Neisseria meningitidis rRNA gene sequences were retrieved in great abundance from Airline A followed by Streptococcus oralis/mitis sequences. Pseudomonas synxantha sequences dominated Airline B clone libraries, followed by those of N. meningitidis and S. oralis/mitis. The cabin air samples examined herein housed low bacterial diversity and were often dominated by a particular subset of bacteria: opportunistic pathogenic inhabitants of the human respiratory tract and oral cavity.

  12. An electron-flow model can predict complex redox reactions in mixed-culture fermentative bioH2: microbial ecology evidence.

    PubMed

    Lee, Hyung-Sool; Krajmalinik-Brown, Rosa; Zhang, Husen; Rittmann, Bruce E

    2009-11-01

    We developed the first model for predicting community structure in mixed-culture fermentative biohydrogen production using electron flows and NADH2 balances. A key assumption of the model is that H2 is produced only via the pyruvate decarboxylation-ferredoxin-hydrogenase pathway, which is commonly the case for fermentation by Clostridium and Ethanoligenens species. We experimentally tested the model using clone libraries to gauge community structures with mixed cultures in which we did not pre-select for specific bacterial groups, such as spore-formers. For experiments having final pHs 3.5 and 4.0, where H2 yield and soluble end-product distribution were distinctly different, we established stoichiometric reactions for each condition by using experimentally determined electron equivalent balances. The error in electron balancing was only 3% at final pH 3.5, in which butyrate and acetate were dominant organic products and the H2 yield was 2.1 mol H2/mol glucose. Clone-library analysis showed that clones affiliated with Clostridium sp. BL-22 and Clostridium sp. HPB-16 were dominant at final pH 3.5. For final pH 4.0, the H2 yield was 0.9 mol H2/mol glucose, ethanol, and acetate were the dominant organic products, and the electron balance error was 13%. The significant error indicates that a second pathway for H2 generation was active. The most abundant clones were affiliated with Klebsiella pneumoniae, which uses the formate-cleavage pathway for H2 production. Thus, the clone-library analyses confirmed that the model predictions for when the pyruvate decarboxylation-ferredoxin-hydrogenase pathway was (final pH 3.5) or was not (final pH 4.0) dominant. With the electron-flow model, we can easily assess the main mechanisms for H2 formation and the dominant H2-producing bacteria in mixed-culture fermentative bioH2.

  13. Bio-Augmentation of Cupriavidus sp. CY-1 into 2,4-D Contaminated Soil: Microbial Community Analysis by Culture Dependent and Independent Techniques.

    PubMed

    Chang, Young-Cheol; Reddy, M Venkateswar; Umemoto, Honoka; Sato, Yuki; Kang, Mi-Hye; Yajima, Yuka; Kikuchi, Shintaro

    2015-01-01

    In the present study, a 2,4-dichlorophenoxyacetic acid (2,4-D) degrading bacterial strain CY-1 was isolated from the forest soil. Based on physiological, biochemical and 16S rRNA gene sequence analysis it was identified as Cupriavidus sp. CY-1. Further 2,4-D degradation experiments at different concentrations (200 to 800 mg l(-1)) were carried out using CY-1. Effect of NaCl and KNO3 on 2,4-D degradation was also evaluated. Degradation of 2,4-D and the metabolites produced during degradation process were analyzed using high pressure liquid chromatography (HPLC) and GC-MS respectively. The amount of chloride ions produced during the 2,4-D degradation were analyzed by Ion chromatography (IC) and it is stoichiometric with 2,4-D dechlorination. Furthermore two different types of soils collected from two different sources were used for 2,4-D degradation studies. The isolated strain CY-1 was bio-augmented into 2,4-D contaminated soils to analyze its degradation ability. Culture independent methods like denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP), and culture dependent methods like colony forming units (CFU) and most probable number (MPN) were used to analyze the survivability of strain CY-1 in contaminated soil. Results of T-RFLP were coincident with the DGGE analysis. From the DGGE, T-RFLP, MPN and HPLC results it was concluded that strain CY-1 effectively degraded 2,4-D without disturbing the ecosystem of soil indigenous microorganisms.

  14. Use of Silicate Minerals for pH Control during Reductive Dechlorination of Chloroethenes in Batch Cultures of Different Microbial Consortia

    PubMed Central

    Lacroix, Elsa; Brovelli, Alessandro; Barry, D. A.

    2014-01-01

    In chloroethene-contaminated sites undergoing in situ bioremediation, groundwater acidification is a frequent problem in the source zone, and buffering strategies have to be implemented to maintain the pH in the neutral range. An alternative to conventional soluble buffers is silicate mineral particles as a long-term source of alkalinity. In previous studies, the buffering potentials of these minerals have been evaluated based on abiotic dissolution tests and geochemical modeling. In the present study, the buffering potentials of four silicate minerals (andradite, diopside, fayalite, and forsterite) were tested in batch cultures amended with tetrachloroethene (PCE) and inoculated with different organohalide-respiring consortia. Another objective of this study was to determine the influence of pH on the different steps of PCE dechlorination. The consortia showed significant differences in sensitivities toward acidic pH for the different dechlorination steps. Molecular analysis indicated that Dehalococcoides spp. that were present in all consortia were the most pH-sensitive organohalide-respiring guild members compared to Sulfurospirillum spp. and Dehalobacter spp. In batch cultures with silicate mineral particles as pH-buffering agents, all four minerals tested were able to maintain the pH in the appropriate range for reductive dechlorination of chloroethenes. However, complete dechlorination to ethene was observed only with forsterite, diopside, and fayalite. Dissolution of andradite increased the redox potential and did not allow dechlorination. With forsterite, diopside, and fayalite, dechlorination to ethene was observed but at much lower rates for the last two dechlorination steps than with the positive control. This indicated an inhibition effect of silicate minerals and/or their dissolution products on reductive dechlorination of cis-dichloroethene and vinyl chloride. Hence, despite the proven pH-buffering potential of silicate minerals, compatibility with

  15. Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system.

    PubMed

    Ntaikou, I; Valencia Peroni, C; Kourmentza, C; Ilieva, V I; Morelli, A; Chiellini, E; Lyberatos, G

    2014-10-20

    The operational efficiency of a two stage pilot scale system for polyhydroxyalkanoates (PHAs) production from three phase olive oil mill wastewater (OMW) was investigated in this study. A mixed anaerobic, acidogenic culture derived from a municipal wastewater treatment plant, was used in the first stage, aiming to the acidification of OMW. The effluent of the first bioreactor that was operated in continuous mode, was collected in a sedimentation tank in which partial removal of the suspended solids was taking place, and was then forwarded to an aerobic reactor, operated in sequential batch mode under nutrient limitation. In the second stage an enriched culture of Pseudomonas sp. was used as initial inoculum for the production of PHAs from the acidified waste. Clarification of the acidified waste, using aluminium sulphate which causes flocculation and precipitation of solids, was also performed, and its effect on the composition of the acidified waste as well as on the yields and properties of PHAs was investigated. It was shown that clarification had no significant qualitative or quantitative effect on the primary carbon sources, i.e. short chain fatty acids and residual sugars, but only on the values of total suspended solids and total chemical oxygen demand of the acidified waste. The type and thermal characteristics of the produced PHAs were also similar for both types of feed. However the clarification of the waste seemed to have a positive impact on final PHAs yield, measured as gPHAs/100g of VSS, which reached up to 25%. Analysis of the final products via nuclear magnetic resonance spectroscopy revealed the existence of 3-hydroxybutyrate (3HB) and 3-hydroxyoctanoate (HO) units, leading to the conclusion that the polymer could be either a blend of P3HB and P3HO homopolymers or/and the 3HB-co-3HO co-polymer, an unusual polymer occurring in nature with advanced properties.

  16. Microbial production of scleroglucan and downstream processing.

    PubMed

    Castillo, Natalia A; Valdez, Alejandra L; Fariña, Julia I

    2015-01-01

    Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a β-1,3-β-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined.

  17. Microbial production of scleroglucan and downstream processing

    PubMed Central

    Castillo, Natalia A.; Valdez, Alejandra L.; Fariña, Julia I.

    2015-01-01

    Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a β-1,3-β-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined. PMID:26528259

  18. Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Xuan; Wang, Xu; Liu, Junxin

    2016-06-01

    Extracellular polymeric substances (EPS) appear to play a critical role in the formation of bioaggregates, such as sludge flocs, in activated sludge processes. Here, we systematically investigated the composition and chemical structure of various EPS fractions excreted from an activated sludge culture using multi-analysis techniques to examine the ability of the sludge to aggregate. Chemical analysis was used with a three-dimensional excitation emission matrix and Fourier transform infrared spectroscopy, applying inter-particle forces theory. The combined findings revealed that hydrophobic groups, especially protein-related N–H, were present in a greater proportion in tightly bound EPS (TB-EPS). This result, which explained the specificity of TB-EPS in the chemical structure, was consistent with data indicating that TB-EPS contained a large amount of protein-like substances (86.7 mg/g of mixed liquor volatile suspended solids, 39.7% of the total EPS). Subsequently, a novel experimental procedure was developed to pinpoint key inter-particle forces in sludge aggregation. The result revealed that hydrogen bonds are the predominant triggers that promote sludge aggregation. This comprehensive analysis indicated that hydrophobic proteins in TB-EPS are responsible for the critical role played by hydrogen bonds in sludge formation. Our findings highlight the need to elucidate the mechanisms of TB-EPS-mediated flocculation in future efforts.

  19. Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation

    PubMed Central

    Guo, Xuan; Wang, Xu; Liu, Junxin

    2016-01-01

    Extracellular polymeric substances (EPS) appear to play a critical role in the formation of bioaggregates, such as sludge flocs, in activated sludge processes. Here, we systematically investigated the composition and chemical structure of various EPS fractions excreted from an activated sludge culture using multi-analysis techniques to examine the ability of the sludge to aggregate. Chemical analysis was used with a three-dimensional excitation emission matrix and Fourier transform infrared spectroscopy, applying inter-particle forces theory. The combined findings revealed that hydrophobic groups, especially protein-related N–H, were present in a greater proportion in tightly bound EPS (TB-EPS). This result, which explained the specificity of TB-EPS in the chemical structure, was consistent with data indicating that TB-EPS contained a large amount of protein-like substances (86.7 mg/g of mixed liquor volatile suspended solids, 39.7% of the total EPS). Subsequently, a novel experimental procedure was developed to pinpoint key inter-particle forces in sludge aggregation. The result revealed that hydrogen bonds are the predominant triggers that promote sludge aggregation. This comprehensive analysis indicated that hydrophobic proteins in TB-EPS are responsible for the critical role played by hydrogen bonds in sludge formation. Our findings highlight the need to elucidate the mechanisms of TB-EPS-mediated flocculation in future efforts. PMID:27311788

  20. Microbial Life Under Extreme Energy Limitation

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Jorgensen, Bo Barker

    2013-01-01

    A great number of the bacteria and archaea on Earth are found in subsurface environments in a physiological state that is poorly represented or explained by laboratory cultures. Microbial cells in these very stable and oligotrophic settings catabolize 104- to 106-fold more slowly than model organisms in nutrient-rich cultures, turn over biomass on timescales of centuries to millennia rather than hours to days, and subsist with energy fluxes that are 1,000-fold lower than the typical culture-based estimates of maintenance requirements. To reconcile this disparate state of being with our knowledge of microbial physiology will require a revised understanding of microbial energy requirements, including identifying the factors that comprise true basal maintenance and the adaptations that might serve to minimize these factors.

  1. Microbial activity at Yucca Mountain

    SciTech Connect

    Horn, J.M.; Meike, A.

    1995-09-25

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified.

  2. Simultaneous biodesulphurization and denitrification using an oil reservoir microbial culture: Effects of sulphide loading rate and sulphide to nitrate loading ratio.

    PubMed

    An, Shijie; Tang, Kimberley; Nemati, Mehdi

    2010-03-01

    Biooxidation of sulphide under denitrifying conditions is a key process in control of souring in oil reservoirs and in treatment of gas and liquids contaminated with sulphide and nitrate. In this work, biooxidation of sulphide was studied using a representative culture originated from an oil reservoir. Effects of sulphide concentration, sulphide to nitrate molar ratio, and loading rates of sulphide and nitrate on their removal rates and composition of the end products were investigated. In the batch system sulphide removal rate passed through a maximum as sulphide concentration was increased from 2.1 to 16.3mM, with the highest rate (2.06mMh(-1)) observed with 10.7mM sulphide. Nitrate removal was coupled to sulphide oxidation and the highest removal rate was 1.05mMh(-1). In the continuous bioreactors fed with 10 and 5, 15 and 7.5, and 20 and 10mM sulphide and nitrate, cell wash-out occurred as dilution rate was increased above 0.15, 0.13 and 0.08h(-1), respectively. Prior to cell wash-out linear increases in sulphide and nitrate removal rates were observed as loading rate was increased. The highest sulphide and nitrate removal rates of 2.0 and 0.92mMh(-1) were obtained in the bioreactor fed with 15mM sulphide and 7.5mM nitrate at loading rates of 2.1 and 0.93mMh(-1), respectively. Short residence times and high sulphide to nitrate ratios promoted the formation of sulphur, a desired end product for ex situ treatment of contaminated streams. Combination of long residence times and low sulphide to nitrate ratios, which favours formation of sulphate, is the suitable strategy for in situ removal of H(2)S from oil reservoirs.

  3. Bacterial and fungal DNA extraction from positive blood culture bottles: a manual and an automated protocol.

    PubMed

    Mäki, Minna

    2015-01-01

    When adapting a gene amplification-based method in a routine sepsis diagnostics using a blood culture sample as a specimen type, a prerequisite for a successful and sensitive downstream analysis is the efficient DNA extraction step. In recent years, a number of in-house and commercial DNA extraction solutions have become available. Careful evaluation in respect to cell wall disruption of various microbes and subsequent recovery of microbial DNA without putative gene amplification inhibitors should be conducted prior selecting the most feasible DNA extraction solution for the downstream analysis used. Since gene amplification technologies have been developed to be highly sensitive for a broad range of microbial species, it is also important to confirm that the used sample preparation reagents and materials are bioburden-free to avoid any risks for false-positive result reporting or interference of the diagnostic process. Here, one manual and one automated DNA extraction system feasible for blood culture samples are described.

  4. Combination of an Enzymatically Hydrolyzed Yeast and Yeast Culture with a Direct-fed Microbial in the Feeds of Broiler Chickens

    PubMed Central

    Gómez, S.; Angeles, M. L.; Mojica, M. C.; Jalukar, S.

    2012-01-01

    A balance trial experiment was carried out to evaluate the potential relationship between an enzymatically hydrolyzed yeast (EHY) and yeast culture combined with a live Bacillus subtilis (Bs) on the productive parameters, ileal digestibility, retention of nutrient and energy and villus morphology in broilers. Seventy two 28 d old, Ross B308 male broilers were assigned to a factorial combination of 2 levels of EHY (0 and 1 kg/ton of feed) and 2 levels of Bs (0 and 125 g/ton of feed). The experiment lasted 2 weeks. Several treatment interactions were observed. EHY-fed broilers showed the lowest feed intake and feed conversion ratio whereas Bs-fed broilers showed the highest feed intake and intermediate feed conversion ratio (EHY and BS interaction, p<0.05). Also, EHY-fed broilers had greater ileal digestibility of dry matter (EHY and BS interaction, p<0.01) and energy (EHY and BS interaction, p<0.05) but these responses were counterbalanced by the combination of EHY and Bs. The thickness of the mucosa was similar between the control and EHY-fed broilers, but was lowest when Bs was added alone (EHY and BS interaction, p<0.01). The thickness of the villus was greater in EHY plus Bs-fed broilers, intermediate for the control and lower for Bs or EHY-fed broilers (EHY and BS interaction, p<0.05). The area of the villus was greater in the control and EHY plus Bs-fed broilers (EHY and BS interaction, p<0.05). In addition, EHY-fed broilers showed greater breast yield and nitrogen retention (p<0.01) and ashes digestibility (p<0.05). On the other hand, Bs-fed broilers had greater carcass and breast weight, nitrogen retention, energy excretion and villus height (p<0.05). In summary, EHY and Bs enhanced some growth, carcass and nutrient retention responses, but did not show any synergic relationship in these responses. Opposite to this, the results suggest that the positive effect of EHY on the feed conversion and digestibility of nutrients were counterbalanced by the addition

  5. Understanding the Environment of the Commercializing University Researcher: Cases for Commercial Success

    ERIC Educational Resources Information Center

    Gann, James R.

    2012-01-01

    As the U.S. continues its transition from an economy based upon manufacturing to one based upon innovation, one must look at the environment of the person at the epicenter of this change: The commercializing university researcher. This investigation provides insight into the cultural and regulatory life of the commercializing researcher, with the…

  6. Prevalence of Yersinia Species in Traditional and Commercial Dairy Products in Isfahan Province, Iran

    PubMed Central

    Rahimi, Ebrahim; Sepehri, Sara; Safarpoor Dehkordi, Farhad; Shaygan, Shima; Momtaz, Hassan

    2014-01-01

    Background: Yersinia species, especially Yersinia enterocolitica, are considered as the most prevalent milk-borne pathogens. Several serological and molecular techniques have been developed for rapid and safe diagnosis of yersiniosis. Objectives: This study was carried out to assess the prevalence rate of Yersinia species, especially Y. enterocolitica, in milk and dairy products in Isfahan province, Iran. Materials and Methods: A total of 285 commercial and traditional dairy products as well as 267 pasteurized and raw milk samples were collected during one year. The samples were studied by culturing and the positive-culture samples were investigated using PCR techniques. Results: The results of culture showed that 52 (9.42%) and 28 (5.07%) of the total 552 milk and dairy samples were positive for presences of Yersinia species and Y. enterocolitica, respectively. Totally, 24 of 28 Y. enterocolitica isolates by culture were positive in PCR test (4.59%). Raw cow milk and traditional cheese had the highest prevalence of Yersinia species and Y. enterocolitica, respectively. There were no positive results for pasteurized cow milk, raw camel milk, commercial ice cream, commercial cheese, yoghurt, Doogh, butter and curd. Yersinia species and Y. enterocolitica had the highest prevalence in autumn (15.15% and 10.6%, respectively). Significant differences regarding P < 0.05 were observed between the presences of Yersinia species and Y. enterocolitica in various samples and seasons. Conclusions: Sanitation and pasteurization are the best ways to increase the microbial quality and particularly decrease the load of Yersinia species. The ability of Yersinia species to growth in Doogh, yoghurt, curd and butter is very low. PMID:25147698

  7. Methods of Presentation used in Clio-Winning Television Commercials.

    ERIC Educational Resources Information Center

    Reid, Leonard N.; And Others

    1985-01-01

    Concludes that (1) the message structure of highly creative television commercials tends to differ from that of television commercials from the general population of television advertising and (2) there is a difference in the message structure of highly creative commercials across cultures. (FL)

  8. Commercial Buildings Characteristics, 1992

    SciTech Connect

    Not Available

    1994-04-29

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  9. Microbial Monitoring of Common Opportunistic Pathogens by Comparing Multiple Real-Time PCR Platforms for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Oubre, Cherie M.; Birmele, Michele N.; Castro, Victoria A.; Venkateswaran, Kasthuri J.; Vaishampayan, Parag A.; Jones, Kathy U.; Singhal, Adesh; Johnston, Angela S.; Roman, Monserrate C.; Ozbolt, Tamra A.; Jett, Daniel X.; Roberts, Michael S.; Ott, C. Mark

    2013-01-01

    Because the International Space Station is a closed environment with rotations of astronauts and equipment that each introduce their own microbial flora, it is necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor- and time-intensive methods to enumerate total bacterial and fungal cells, with limited characterization, during in-flight testing. Although this culture-based method is sufficient for monitoring the International Space Station, on future long-duration missions more detailed characterization will need to be performed during flight, as sample return and ground characterization may not be available. At a workshop held in 2011 at NASA's Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these long-term exploration missions, molecular-based methodologies such as polymerase chain reaction (PCR) were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for space flight environmental monitoring. The goal was to evaluate quantitative or semi-quantitative PCR approaches for low-cost in-flight rapid identification of microorganisms that could affect crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity. This phase was followed by proof-of-concept testing of the highest qualifying candidates with a universally available challenge organism, Salmonella enterica. The analysis identified two technologies that were able to perform sample-to-answer testing with initial cell sample concentrations between 50 and 400 cells. In addition, the commercial systems were evaluated for initial flight safety and readiness.

  10. 21 CFR 173.150 - Milk-clotting enzymes, microbial.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Milk-clotting enzymes, microbial. 173.150 Section... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.150 Milk-clotting enzymes, microbial. Milk-clotting enzyme produced by pure-culture fermentation process may be safely used in the...

  11. 21 CFR 173.150 - Milk-clotting enzymes, microbial.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Milk-clotting enzymes, microbial. 173.150 Section... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.150 Milk-clotting enzymes, microbial. Milk-clotting enzyme produced by pure-culture fermentation process may be safely used in the...

  12. 21 CFR 173.150 - Milk-clotting enzymes, microbial.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Milk-clotting enzymes, microbial. 173.150 Section... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.150 Milk-clotting enzymes, microbial. Milk-clotting enzyme produced by pure-culture fermentation process may be safely used in the...

  13. Microbial Activation of Wooden Vats Used for Traditional Cheese Production and Evolution of Neoformed Biofilms

    PubMed Central

    Gaglio, Raimondo; Cruciata, Margherita; Di Gerlando, Rosalia; Scatassa, Maria Luisa; Cardamone, Cinzia; Mancuso, Isabella; Sardina, Maria Teresa; Moschetti, Giancarlo; Portolano, Baldassare

    2015-01-01

    Three Lactococcus lactis subsp. cremoris strains were used to develop ad hoc biofilms on the surfaces of virgin wooden vats used for cheese production. Two vats (TZ) were tested under controlled conditions (pilot plant), and two vats (TA) were tested under uncontrolled conditions (industrial plant). In each plant, one vat (TA1 and TZ1) was used for the control, traditional production of PDO Vastedda della Valle del Belìce (Vastedda) cheese, and one (TA2 and TZ2) was used for experimental production performed after lactococcal biofilm activation and the daily addition of a natural whey starter culture (NWSC). Microbiological and scanning electron microscopy analyses showed differences in terms of microbial levels and composition of the neoformed biofilms. The levels of the microbial groups investigated during cheese production showed significant differences between the control trials and between the control and experimental trials, but the differences were not particularly marked between the TA2 and TZ2 productions, which showed the largest numbers of mesophilic lactic acid bacterium (LAB) cocci. LAB populations were characterized phenotypically and genotypically, and 44 dominant strains belonging to 10 species were identified. Direct comparison of the polymorphic profiles of the LAB collected during cheese making showed that the addition of the NWSC reduced their biodiversity. Sensory evaluation showed that the microbial activation of the wooden vats with the multistrain Lactococcus culture generated cheeses with sensory attributes comparable to those of commercial cheese. Thus, neoformed biofilms enable a reduction of microbial variability and stabilize the sensorial attributes of Vastedda cheese. PMID:26546430

  14. Phylogenetic & Physiological Profiling of Microbial Communities of Contaminated Soils/Sediments: Identifying Microbial consortia...

    SciTech Connect

    Terence L. Marsh

    2004-05-26

    The goals of this study were: (1) survey the microbial community in soil samples from a site contaminated with heavy metals using new rapid molecular techniques that are culture-independent; (2) identify phylogenetic signatures of microbial populations that correlate with metal ion contamination; and (3) cultivate these diagnostic strains using traditional as well as novel cultivation techniques in order to identify organisms that may be of value in site evaluation/management or bioremediation.

  15. 21 CFR 173.150 - Milk-clotting enzymes, microbial.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Microorganisms § 173.150 Milk-clotting enzymes, microbial. Milk-clotting enzyme produced by pure-culture... conditions: (a) Milk-clotting enzyme is derived from one of the following organisms by a...

  16. NASA commercial programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An expanded role for the U.S. private sector in America's space future has emerged as a key national objective, and NASA's Office of Commercial Programs is providing a focus for action. The Office supports new high technology commercial space ventures, the commercial application of existing aeronautics and space technology, and expanded commercial access to available NASA capabilities and services. The progress NASA has made in carrying out its new assignment is highlighted.

  17. Microbial Flocculant for Nature Soda

    SciTech Connect

    Qin, Peiyong; Zhang, Tong; Chen, Cuixian

    2004-03-31

    Microbial flocculant for nature soda has been studied. Lactobacillus TRJ21, which was able to produce an excellent biopolymer flocculant for nature soda, was obtained in our lab. The microbial flocculant was mainly produced when the bacteria laid in stationary growth phase. Fructose or glucose, as carbon sources, were more favorable for the bacterial growth and flocculant production. The bacteria was able to use ammonium sulfate or Urea as nitrogen to produce flocculant, but was not able to use peptone effectively. High C/N ratio was more favorable to Lactobacillus TRJ21 growth and flocculant production than low C/N ratio. The biopolymer flocculant was mainly composed of polysaccharide and protein with a molecular weight 1.38x106 by gel permeation chromatography. It was able to be easily purified from the culture medium by acetone. Protein in the flocculant was tested for the flocculating activity ingredient by heating the flocculant.

  18. Commercial Banking Industry Survey.

    ERIC Educational Resources Information Center

    Bright Horizons Children's Centers, Cambridge, MA.

    Work and family programs are becoming increasingly important in the commercial banking industry. The objective of this survey was to collect information and prepare a commercial banking industry profile on work and family programs. Fifty-nine top American commercial banks from the Fortune 500 list were invited to participate. Twenty-two…

  19. Commercialization of Nanotechnology

    DTIC Science & Technology

    2007-03-01

    NATO LECTURES M. Meyyappan Commercialization of Nanotechnology Abstract Nanotechnology is an enabling technology and as such, will have an...years), medium term (10 years) and long term (> 15 years) prospects. In addition, the challenges currently being faced to commercialize nanotechnology...will be discussed in detail. A summary outlining efforts across the world in terms of commercialization , startup activities, participation of major

  20. Commercial Radio as Communication.

    ERIC Educational Resources Information Center

    Rothenbuhler, Eric W.

    1996-01-01

    Compares the day-to-day work routines of commercial radio with the principles of a theoretical communication model. Illuminates peculiarities of the conduct of communication by commercial radio. Discusses the application of theoretical models to the evaluation of practicing institutions. Offers assessments of commercial radio deriving from…

  1. COMMERCIAL FOODS, MATHEMATICS - I.

    ERIC Educational Resources Information Center

    DORNFIELD, BLANCHE E.

    THE UNDERSTANDING AND MASTERY OF FUNDAMENTAL MATHEMATICS IS A NECESSARY PART OF COMMERCIAL FOODS WORK. THIS STUDENT HANDBOOK WAS DESIGNED TO ACCOMPANY A COMMERCIAL FOODS COURSE AT THE HIGH SCHOOL LEVEL FOR STUDENTS WITH APPROPRIATE APTITUDES AND COMMERCIAL FOOD SERVICE GOALS. THE MATERIAL, TESTED IN VARIOUS INTERESTED CLASSROOMS, WAS PREPARED BY…

  2. MICROBIAL CHARACTERIZATION OF DRINKING WATER SYSTEMS RECEIVING GROUNDWATER AND SURFACE WATER AS THE PRIMARY SOURCES OF WATER

    EPA Science Inventory

    Earlier descriptions of water distribution systems (WDS) microbial communities have relied on culturing techniques. These techniques are known to be highly selective in nature, but more importantly, they tend to grossly underestimate the microbial diversity of most environments. ...

  3. Microbial Engineering for Aldehyde Synthesis

    PubMed Central

    Kunjapur, Aditya M.

    2015-01-01

    Aldehydes are a class of chemicals with many industrial uses. Several aldehydes are responsible for flavors and fragrances present in plants, but aldehydes are not known to accumulate in most natural microorganisms. In many cases, microbial production of aldehydes presents an attractive alternative to extraction from plants or chemical synthesis. During the past 2 decades, a variety of aldehyde biosynthetic enzymes have undergone detailed characterization. Although metabolic pathways that result in alcohol synthesis via aldehyde intermediates were long known, only recent investigations in model microbes such as Escherichia coli have succeeded in minimizing the rapid endogenous conversion of aldehydes into their corresponding alcohols. Such efforts have provided a foundation for microbial aldehyde synthesis and broader utilization of aldehydes as intermediates for other synthetically challenging biochemical classes. However, aldehyde toxicity imposes a practical limit on achievable aldehyde titers and remains an issue of academic and commercial interest. In this minireview, we summarize published efforts of microbial engineering for aldehyde synthesis, with an emphasis on de novo synthesis, engineered aldehyde accumulation in E. coli, and the challenge of aldehyde toxicity. PMID:25576610

  4. Microfluidics and microbial engineering.

    PubMed

    Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming

    2016-02-07

    The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.

  5. Interval scanning photomicrography of microbial cell populations.

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.

    1972-01-01

    A single reproducible area of the preparation in a fixed focal plane is photographically scanned at intervals during incubation. The procedure can be used for evaluating the aerobic or anaerobic growth of many microbial cells simultaneously within a population. In addition, the microscope is not restricted to the viewing of any one microculture preparation, since the slide cultures are incubated separately from the microscope.

  6. MICROBIAL SOURCE TRACKING: DIFFERENT USES AND APPROACHES

    EPA Science Inventory

    Microbial Source Tracking (MST) methods are used to determine the origin of fecal pollution impacting natural water systems. Several methods require the isolation of pure cultures in order to develop phenotypic or genotypic fingerprint libraries of both source and water bacterial...

  7. Microbial Monitoring of Pathogens by Comparing Multiple Real-Time PCR Platforms for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Birmele, Michele

    2012-01-01

    The International Space Station (ISS) is a closed environment wih rotations of crew and equipment each introducing their own microbial flora making it necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor and time intensive methods to enumerate total bacterial and fungal cells with limited characterization during in-flight testing. Although this culture-based method has been sufficient for monitoring the ISS, future long duration missions will need to perform more comprehensive characterization in-flight, since sample return and ground characterization may not be available. A workshop was held in 2011 at the Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these longterm exploration missions where molecular-based methodologies, such as polymerase chain reaction (PCR), were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for spaceflight environmental monitoring. The goal was to evaluate quantitative/semi-quantitative PCR approaches to space applications for low cost in-flight rapid identification of microorganisms affecting crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity followed by proof-of-concept testing on the highest qualifying candidates with a universally available test organism, Salmonella enterica. The platforms evaluated during proof-of-concept testing included the iCubate 2.0(TradeMark) (iCubate, Huntsville, AL), RAZOR EX (BioFire Diagnostics; Salt Lake City, Utah) and SmartCycler(TradeMark) (Cepheid; Sunnyvale, CA). The analysis identified two potential technologies (iCubate 2.0 and RAZOR EX) that were able to

  8. Biodegradation of oil tank bottom sludge using microbial consortia.

    PubMed

    Gallego, José Luis R; García-Martínez, María Jesús; Llamas, Juan F; Belloch, Carmen; Peláez, Ana I; Sánchez, Jesús

    2007-06-01

    We present a rationale for the selection of a microbial consortia specifically adapted to degrade toxic components of oil refinery tank bottom sludge (OTBS). Sources such as polluted soils, petrochemical waste, sludge from refinery-wastewater plants, and others were used to obtain a collection of eight microorganisms, which were individually tested and characterized to analyze their degradative capabilities on different hydrocarbon families. After initial experiments using mixtures of these strains, we developed a consortium consisting of four microorganisms (three bacteria and one yeast) selected in the basis of their cometabolic effects, emulsification properties, colonization of oil components, and degradative capabilities. Although the specific contribution each of the former parameters makes is not clearly understood, the activity of the four-member consortium had a strong impact not only on linear alkane degradation (100%), but also on the degradation of cycloalkanes (85%), branched alkanes (44%), and aromatic and sulphur-aromatic compounds (31-55%). The effectiveness of this consortium was significantly superior to that obtained by individual strains, commercial inocula or an undefined mixture of culturable and non-culturable microorganisms obtained from OTBS-polluted soil. However, results were similar when another consortium of four microorganisms, previously isolated in the same OTBS-polluted soil, was assayed.

  9. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    PubMed

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  10. Raman Spectroscopy of Microbial Pigments

    PubMed Central

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  11. Systems Biology of Microbial Exopolysaccharides Production

    PubMed Central

    Ates, Ozlem

    2015-01-01

    Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran. PMID:26734603

  12. Microalgae-microbial fuel cell: A mini review.

    PubMed

    Lee, Duu-Jong; Chang, Jo-Shu; Lai, Juin-Yih

    2015-12-01

    Microalgae-microbial fuel cells (mMFCs) are a device that can convert solar energy to electrical energy via biological pathways. This mini-review lists new research and development works on microalgae processes, microbial fuel cell (MFC) processes, and their combined version, mMFC. The substantial improvement and technological advancement are highlighted, with a discussion on the challenges and prospects for possible commercialization of mMFC technologies.

  13. Microbial hydrogen production

    SciTech Connect

    Weaver, P.F.; Maness, P.C.; Martin, S.

    1995-09-01

    Photosynthetic bacteria inhabit an anaerobic or microaerophilic world where H{sub 2} is produced and consumed as a shared intermediary metabolite. Within a given bacterial isolate there are as many as 4 to 6 distinct enzymes that function to evolve or consume H{sub 2}. Three of the H{sub 2}-evolving physiologies involving three different enzymes from photosynthetic bacteria have been examined in detail for commercial viability. Nitrogenase-mediated H{sub 2} production completely dissimilates many soluble organic compounds to H{sub 2} and CO{sub 2} at rates up to 131 {mu}mol H{sub 2}{sm_bullet}min{sup -1}{sm_bullet}g cdw{sup -1} and can remain active for up to 20 days. This metabolism is very energy intensive, however, which limits solar conversion efficiencies. Fermentative hydrogenase can produce H{sub 2} at rates of 440 {mu}mol{sm_bullet}min{sup -1}{sm_bullet}g cdw{sup -1} at low levels of irradiation over indefinite periods. The equilibrium for this activity is low (<0.15 atmospheres), thereby requiring gas sparging, vacuuming, or microbial scavenging to retain prolonged activity. Microbial H{sub 2} production from the CO component of synthesis or producer gases maximally reaches activities of 1.5 mmol{sm_bullet}min{sup -1}{sm_bullet}g cdw{sup -1}. Mass transport of gaseous CO into an aqueous bacterial suspension is the rate-limiting step. Increased gas pressure strongly accelerates these rates. Immobilized bacteria on solid supports at ambient pressures also show enhanced shift activity when the bulk water is drained away. Scaled-up bioreactors with 100-200 cc bed volume have been constructed and tested. The near-term goal of this portion of the project is to engineer and economically evaluate a prototype system for the biological production of H{sub 2} from biomass. The CO shift enables a positive selection technique for O{sub 2}-resistant, H{sub 2}-evolving bacterial enzymes from nature.

  14. Lunar Commercialization Workshop

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2008-01-01

    This slide presentation describes the goals and rules of the workshop on Lunar Commercialization. The goal of the workshop is to explore the viability of using public-private partnerships to open the new space frontier. The bulk of the workshop was a team competition to create a innovative business plan for the commercialization of the moon. The public private partnership concept is reviewed, and the open architecture as an infrastructure for potential external cooperation. Some possible lunar commercialization elements are reviewed.

  15. Regulating Commercial Telephone Solicitations,

    DTIC Science & Technology

    1978-03-01

    also proposed that telephone subscribers be given the right to indicate if they do not want to receive commercial advertising calls , whether from...federal government should prohibit all commercial advertising calls. Advertisers have rights to free speech , and some consumers, I am told , don ’t...of the same arguments against giving subscribers the right to refuse commercial advertising calls that they made in 1965. They have stated that placing

  16. Mining the Metabiome: Identifying Novel Natural Products from Microbial Communities

    PubMed Central

    Milshteyn, Aleksandr; Schneider, Jessica S.; Brady, Sean F.

    2014-01-01

    Summary Microbial-derived natural products provide the foundation for most of the chemotherapeutic arsenal available to contemporary medicine. In the face of a dwindling pipeline of new lead structures identified by traditional culturing techniques and an increasing need for new therapeutics, surveys of microbial biosynthetic diversity across environmental metabiomes have revealed enormous reservoirs of as yet untapped natural products chemistry. In this review we touch on the historical context of microbial natural product discovery and discuss innovations and technological advances that are facilitating culture-dependent and culture-independent access to new chemistry from environmental microbiomes with the goal of re-invigorating the small molecule therapeutics discovery pipeline. We highlight the successful strategies that have emerged and some of the challenges that must be overcome to enable the development of high-throughput methods for natural product discovery from complex microbial communities. PMID:25237864

  17. Microbial Communities in Pre-Columbian Coprolites

    PubMed Central

    Santiago-Rodriguez, Tasha M.; Narganes-Storde, Yvonne M.; Chanlatte, Luis; Crespo-Torres, Edwin; Toranzos, Gary A.; Jimenez-Flores, Rafael; Hamrick, Alice; Cano, Raul J.

    2013-01-01

    The study of coprolites from earlier cultures represents a great opportunity to study an “unaltered” composition of the intestinal microbiota. To test this, pre-Columbian coprolites from two cultures, the Huecoid and Saladoid, were evaluated for the presence of DNA, proteins and lipids by cytochemical staining, human and/or dog-specific Bacteroides spp. by PCR, as well as bacteria, fungi and archaea using Terminal Restriction Fragment analyses. DNA, proteins and lipids, and human-specific Bacteroides DNA were detected in all coprolites. Multidimensional scaling analyses resulted in spatial arrangements of microbial profiles by culture, further supported by cluster analysis and ANOSIM. Differences between the microbial communities were positively correlated with culture, and SIMPER analysis indicated 68.8% dissimilarity between the Huecoid and Saladoid. Proteobacteria, Bacteroidetes and methanogens were found in all coprolite samples. Propionebacteria, Shewanella and lactic acid bacteria dominated in the Huecoid samples, while Acidobacteria, and peptococci were dominant in Saladoid samples. Yeasts, including Candida albicans and Crypotococcus spp. were found in all samples. Basidiomycetes were the most notable fungi in Huecoid samples while Ascomycetes predominated in Saladoid samples, suggesting differences in dietary habits. Our study provides an approach for the study of the microbial communities of coprolite samples from various cultures. PMID:23755194

  18. Microbial Cellulose Utilization: Fundamentals and Biotechnology

    PubMed Central

    Lynd, Lee R.; Weimer, Paul J.; van Zyl, Willem H.; Pretorius, Isak S.

    2002-01-01

    Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for “consolidated bioprocessing” (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts. PMID:12209002

  19. Microbial cellulose utilization: fundamentals and biotechnology.

    PubMed

    Lynd, Lee R; Weimer, Paul J; van Zyl, Willem H; Pretorius, Isak S

    2002-09-01

    Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for "consolidated bioprocessing" (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.

  20. Cheese Microbial Risk Assessments — A Review

    PubMed Central

    Choi, Kyoung-Hee; Lee, Heeyoung; Lee, Soomin; Kim, Sejeong; Yoon, Yohan

    2016-01-01

    Cheese is generally considered a safe and nutritious food, but foodborne illnesses linked to cheese consumption have occurred in many countries. Several microbial risk assessments related to Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli infections, causing cheese-related foodborne illnesses, have been conducted. Although the assessments of microbial risk in soft and low moisture cheeses such as semi-hard and hard cheeses have been accomplished, it has been more focused on the correlations between pathogenic bacteria and soft cheese, because cheese-associated foodborne illnesses have been attributed to the consumption of soft cheeses. As a part of this microbial risk assessment, predictive models have been developed to describe the relationship between several factors (pH, Aw, starter culture, and time) and the fates of foodborne pathogens in cheese. Predictions from these studies have been used for microbial risk assessment as a part of exposure assessment. These microbial risk assessments have identified that risk increased in cheese with high moisture content, especially for raw milk cheese, but the risk can be reduced by preharvest and postharvest preventions. For accurate quantitative microbial risk assessment, more data including interventions such as curd cooking conditions (temperature and time) and ripening period should be available for predictive models developed with cheese, cheese consumption amounts and cheese intake frequency data as well as more dose-response models. PMID:26950859

  1. Induction of resistance in tomato plants against tomato mosaic tobamovirus using beneficial microbial isolates.

    PubMed

    Megahed, A A; El-Dougdoug, Kh A; Othman, B A; Lashin, S M; Ibrahim, M A; Sofy, A R

    2013-04-15

    The possibility of making use of the phenome non of Systemic Acquired Resistance (SAR) to control viruses achieved by the soaking treatment of tomato seeds cv. Castl Rock with three growth forms to Bacillus circulans, Pseudomonas fluorescens 2 and Trichoderma harzianum against Tomato mosaic tobamovirus (ToMV) infection. All the application forms of beneficial biotic inducers were reduced the mean number of ToMV local lesions on Datura metel. P. fluorescens 2 was found to be the best treatment in three forms on reduction of local lesion number 42.2, 32.7 and 38.1 of microbial liquid culture, microbial cells or spores and microbial culture filtrate forms, respectively, while the highest mean numbers of local lesions were 51.5, 61.7 and 73.5 of microbial liquid culture, microbial cells or spores and microbial culture filtrate, respectively for T. harzianum. The microbial culture filtrate form was more effective than other microbial forms to reduce mean number of ToMV local lesions to B. circulans, P. fluorescens 2 and T. harzianum isolates, 40.7, 32.1 and 51.5, respectively. The individual microbial isolates on all three microbial forms able to vary ToMV local lesions similarity (homologous or heterologous) and morphology (size center and surrounded with halo or without halo) compared with TMV mother strain.

  2. Microbial enhanced oil recovery research

    SciTech Connect

    Sharma, M.M.; Georgiou, G.

    1990-01-01

    The objective of this work is to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. Specific goals include: (1) investigation of the mechanisms of microbially induced oil mobilization; (2) the production, isolation, chemical characterization and study of the physical properties of microbially produced surfactants; (3) model studies in sandstone cores for the characterization of the interactions between growing microbially cultures and oil reservoirs; (4) development of simulators for MEOR; and (5) design of operational strategies for the sequential injection of microorganisms and nutrient in reservoirs are: (1) systematic discussion of the mechanisms important in MEOR processes; (2) Measurement of the growth characteristics of Bacillus Licheniformis under various conditions of pH, temperature and salt concentration for both aerobic and anaerobic growth.; (3) measurement of interfacial tension reducing ability of the biosurfactant under different conditions of pH and salt concentration; (4) development of some preliminary methods to concentrate and characterize the biosurfactant; (5) development of a compositional numerical simulator for MEOR processes; and (6) Measurement of the lowest interfacial tension (IFT) value reported for biosurfactants to date. Demonstration of the fact that the low IFT values required for oil recovery can be attained with biosurfactants.

  3. Short communication: The effects of frozen storage on the survival of probiotic microorganisms found in traditionally and commercially manufactured kefir.

    PubMed

    O'Brien, K V; Aryana, K J; Prinyawiwatkul, W; Ordonez, K M Carabante; Boeneke, C A

    2016-09-01

    Kefir is a fermented milk traditionally made from a unique starter culture, which consists of numerous bacteria and yeast species bound together in an exopolysaccharide matrix produced by certain lactic acid bacteria. Many health benefits are associated with traditionally produced kefir; however, bulging and leaking packaging, caused by secondary yeast fermentation during storage, has limited large-scale manufacture. Commercial kefir products have been designed to reduce these effects by using a pure starter culture consisting of a mixture of bacteria and yeast species that give a flavor similar to traditional kefir, but some health benefits may be lost in commercial production due to reduced microbial diversity and lack of beneficial exopolysaccharides. In this study, traditional and commercial kefir was frozen to study the effects of frozen storage on the viability of probiotic bacteria over time. Traditional kefir was prepared by inoculating 1L of pasteurized whole goat milk with approximately 30g of kefir grains. Commercial kefir was prepared by inoculating 1L of full-fat, pasteurized goat milk with a commercial kefir starter. The milk was allowed to ferment at room temperature (24-28°C) until pH 4.6 was reached. Samples were frozen (-8 to -14°C) immediately following the completion of fermentation and were thawed and plated for lactobacilli, lactococci, and yeasts on d 0, 7, 14, and 30 of frozen storage. Lactobacilli, lactococci, and yeasts were significantly reduced in number during frozen storage; however, the traditionally produced kefir was shown to have significantly higher counts of bacteria and yeast at each sampling. We concluded that frozen storage and the development of frozen kefir products could eliminate most packaging concerns associated with the large-scale manufacture of traditionally produced kefir, resulting in increased production and marketability of this healthful product.

  4. [Biomass energy utilization in microbial fuel cells: potentials and challenges].

    PubMed

    Huang, Liping; Cheng, Shaoan

    2010-07-01

    Microbial fuel cells (MFCs) that can harvest biomass energy from organic wastes through microbial catalysis have garnered more and more attention within the past decade due to its potential benefits to ecological environment. In this article, the updated progress in MFCs is reviewed, with a focus on frontier technologies such as chamber configurations, feedstock varieties and the integration of MFCs with microbial electrolysis cells for hydrogen production. And on the other hand, the challenges like development of cost-effective electrode materials, improvement of biomass energy recovery and power output, design and optimization of commercial MFC devices are presented.

  5. Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives.

    PubMed

    Rosenbaum, Miriam A; Franks, Ashley E

    2014-01-01

    Over the past decade, microbial electrochemical technologies, originally developed from an interesting physiological phenomenon, have evolved from a rush of initiatives for sustainable bioelectricity generation to a multitude of specialized applications in very different areas. Genetic engineering of microbial biocatalysts for target bioelectrochemical applications like biosensing or bioremediation, as well as the discovery of entirely new bioelectrochemical processes such as microbial electrosynthesis of commodity chemicals, open up completely new possibilities. Where stands this technology today? And what are the general and specific challenges it faces not only scientifically but also for transition into commercial applications? This review intends to summarize the recent advances and provides a perspective on future developments.

  6. Conditioning biomass for microbial growth

    DOEpatents

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  7. Microbial Cell Imaging

    SciTech Connect

    Doktycz, Mitchel John; Sullivan, Claretta; Mortensen, Ninell P; Allison, David P

    2011-01-01

    the maximum scan size (roughly 100 x 100 {mu}m) and the restricted movement of the cantilever in the Z (or height) direction. In most commercial AFMs, the Z range is restricted to roughly 10 {mu}m such that the height of cells to be imaged must be seriously considered. Nevertheless, AFM can provide structural-functional information at nanometer resolution and do so in physiologically relevant environments. Further, instrumentation for scanning probe microscopy continues to advance. Systems for high-speed imaging are becoming available, and techniques for looking inside the cells are being demonstrated. The ability to combine AFM with other imaging modalities is likely to have an even greater impact on microbiological studies. AFM studies of intact microbial cells started to appear in the literature in the 1990s. For example, AFM studies of Saccharomyces cerevisiae examined buddings cars after cell division and detailed changes related to cell growth processes. Also, the first AFM studies of bacterial biofilms appeared. In the late 1990s, AFM studies of intact fungal spores described clear changes in spore surfaces upon germination, and studies of individual bacterial cells were also described. These early bacterial imaging studies examined changes in bacterial morphology due to antimicrobial peptides exposure and bacterial adhesion properties. The majority of these early studies were carried out on dried samples and took advantage of the resolving power of AFM. The lack of cell mounting procedures presented an impediment for cell imaging studies. Subsequently, several approaches to mounting microbial cells have been developed, and these techniques are described later. Also highlighted are general considerations for microbial imaging and a description of some of the various applications of AFM to microbiology.

  8. Lunar Commercialization Workshop

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2009-01-01

    This slide presentation outlines a competition that has as its goal to explores the viability of using public-private partnerships to open space frontier for commercial uses. The teams have the objective of designing a business plan to open the space frontier to commercial interests.

  9. Commercial Crew Launch America

    NASA Technical Reports Server (NTRS)

    Thon, Jeffrey S.

    2016-01-01

    This presentation is intended to discuss NASA's long term human exploration goals of our solar system. The emphasis will be on how our CCP (Commercial Crew Program) supports our space bound human exploration goals by encouraging commercial entities to perform missions to LEO (Low Earth Orbit), thus allowing NASA to focus on beyond LEO human exploration missions.

  10. Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures.

    PubMed

    Xu, Jianfeng; Ge, Xumeng; Dolan, Maureen C

    2011-01-01

    "Molecular farming" in plants with significant advantages in cost and safety is touted as a promising platform for the production of complex pharmaceutical proteins. While whole-plant produced biopharmaceuticals account for a significant portion of the preclinical and clinical pipeline, plant cell suspension culture, which integrates the merits of whole-plant systems with those of microbial fermentation, is emerging as a more compliant alternative "factory". However, low protein productivity remains a major obstacle that limits extensive commercialization of plant cell bioproduction platform. This review highlights the advantages and recent progress in plant cell culture technology and outlines viable strategies at both the biological and process engineering levels for advancing the economic feasibility of plant cell-based protein production. Approaches to overcome and solve the associated challenges of this culture system that include non-mammalian glycosylation and genetic instability will also be discussed.

  11. Technology Transfer and Commercialization

    NASA Technical Reports Server (NTRS)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  12. Microbial Properties Database Editor Tutorial

    EPA Science Inventory

    A Microbial Properties Database Editor (MPDBE) has been developed to help consolidate microbial-relevant data to populate a microbial database and support a database editor by which an authorized user can modify physico-microbial properties related to microbial indicators and pat...

  13. Why Microbial Communities?

    ScienceCinema

    Fredrickson, Jim (PNNL)

    2016-07-12

    The Microbial Communities Initiative is a 5-year investment by Pacific Northwest National Laboratory that integrates biological/ecological experimentation, analytical chemistry, and simulation modeling. The objective is to create transforming technologies, elucidate mechanistic forces, and develop theoretical frameworks for the analysis and predictive understanding of microbial communities. Dr. Fredrickson introduces the symposium by defining microbial communities and describing their scientific relevance as they relate to solving problems in energy, climate, and sustainability.

  14. Microbial enhanced oil recovery research. Annex 5, Summary annual report, 1991--1992

    SciTech Connect

    Sharma, M.M.; Georgiou, G.

    1992-12-31

    The surface active lipopeptide produced by Bacillus licheniformis JF-2 was isolated to near apparent homogeneity. NMR experiments revealed that this compound consists of a heptapeptide with an amino acid sequence similar to surfactin and a heterogeneous fatty acid consisting of the normal-, anteiso-, and iso- branched isomers. The surface activity of the B. licheniformis JF-2 surfactant was shown to depend on the presence of fermentation products and is strongly affected by the pH. Under conditions of optimal salinity and pH the interfacial tension against decane was 6 {times} 10{sup 3} mN/m which is one of the lowest values ever obtained with a microbial surfactant. Microbial compounds which exhibit particularly high surface activity are classified as biosurfactants. Microbial biosurfactants include a wide variety of surface and interfacially active compounds, such as glycolipids, lipopeptides polysaccharideprotein complexes, phospholipids, fatty acids and neutral lipids. Biosurfactants are easily biodegradable and thus are particularly suited for environmental applications such as bioremediation and the dispersion of oil spills. Bacillus licheniformis strain JF-2 has been shown to be able to grow and produce a very effective biosurfactant under both aerobic and anaerobic conditions and in the presence of high salt concentrations. The production of biosurfactants in anaerobic, high salt environments is potentially important for a variety of in situ applications such as microbial enhanced oil recovery. As a first step towards evaluating the commercial utility of the B. licheniformis JF-2 surfactant, we isolated t-he active. compound from the culture supernatant, characterized its chemical structure and investigated its phase behavior. We found that the surface activity of the surfactant is strongly dependent on the pH of the aqueous. phase. This may be important for the biological function of the surfactant and is of interest for several applications in surfactancy.

  15. Microbial DNA extraction from intestinal biopsies is improved by avoiding mechanical cell disruption

    PubMed Central

    Carbonero, Franck; Nava, Gerardo M.; Benefiel, Ann C.; Greenberg, Eugene; Gaskins, H. Rex

    2011-01-01

    Currently, standard protocols for microbial DNA extraction from intestinal tissues do not exist. We assessed the efficiency of a commercial kit with and without mechanical disruption. Better quality DNA was obtained without mechanical disruption. Thus, it appears that bead-beating is not required for efficient microbial DNA extraction from intestinal biopsies. PMID:21820015

  16. Commercial Biomedical Experiments Payload

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. The biomedical experiments CIBX-2 payload is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the stars program. Here, Astronaut Story Musgrave activates the CMIX-5 (Commercial MDA ITA experiment) payload in the Space Shuttle mid deck during the STS-80 mission in 1996 which is similar to CIBX-2. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  17. Commercial considerations for immunoproteomics.

    PubMed

    Ferguson, Scott M

    2013-01-01

    The underlying drivers of scientific processes have been rapidly evolving, but the ever-present need for research funding is typically foremost amongst these. Successful laboratories are embracing this reality by making certain that their projects have commercial value right from the beginning of the project conception. Which factors to be considered for commercial success need to be well thought out and incorporated into a project plan with similar levels of detail as would be the technical elements. Specific examples of commercial outcomes in the field of Immunoproteomics are exemplified in this discussion.

  18. Microbial production of fatty alcohols.

    PubMed

    Fillet, Sandy; Adrio, José L

    2016-09-01

    Fatty alcohols have numerous commercial applications, including their use as lubricants, surfactants, solvents, emulsifiers, plasticizers, emollients, thickeners, and even fuels. Fatty alcohols are currently produced by catalytic hydrogenation of fatty acids from plant oils or animal fats. Microbial production of fatty alcohols may be a more direct and environmentally-friendly strategy since production is carried out by heterologous enzymes, called fatty acyl-CoA reductases, able to reduce different acyl-CoA molecules to their corresponding primary alcohols. Successful examples of metabolic engineering have been reported in Saccharomyces cerevisiae and Escherichia coli in which the production of fatty alcohols ranged from 1.2 to 1.9 g/L, respectively. Due to their metabolic advantages, oleaginous yeasts are considered the best hosts for production of fatty acid-derived chemicals. Some of these species can naturally produce, under specific growth conditions, lipids at high titers (>50 g/L) and therefore provide large amounts of fatty acyl-CoAs or fatty acids as precursors. Very recently, taking advantage of such features, over 8 g/L of C16-C18 fatty alcohols have been produced in Rhodosporidium toruloides. In this review we summarize the different metabolic engineering strategies, hosts and cultivation conditions used to date. We also point out some future trends and challenges for the microbial production of fatty alcohols.

  19. 7 CFR 58.433 - Cheese cultures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Cheese cultures. 58.433 Section 58.433 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.433 Cheese cultures. Harmless microbial cultures used in the development of acid and...

  20. 7 CFR 58.433 - Cheese cultures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cheese cultures. 58.433 Section 58.433 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.433 Cheese cultures. Harmless microbial cultures used in the development of acid and...

  1. 7 CFR 58.433 - Cheese cultures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Cheese cultures. 58.433 Section 58.433 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.433 Cheese cultures. Harmless microbial cultures used in the development of acid and...

  2. 7 CFR 58.433 - Cheese cultures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese cultures. 58.433 Section 58.433 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.433 Cheese cultures. Harmless microbial cultures used in the development of acid and...

  3. 7 CFR 58.433 - Cheese cultures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cheese cultures. 58.433 Section 58.433 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.433 Cheese cultures. Harmless microbial cultures used in the development of acid and...

  4. The Commercialization of Youth: Channel One in Context.

    ERIC Educational Resources Information Center

    Wartella, Ellen

    1995-01-01

    Places Channel One controversy in broader context of commercialization of youth culture during past 20 years. Changes in child-oriented TV market since mid-1970s include rise of independent stations and cable networks, introduction of program-length commercials, and proliferation of new products aimed at children. Targeting marketing to child…

  5. Successive DNA extractions improve characterization of soil microbial communities

    PubMed Central

    de Hollander, Mattias; Smidt, Hauke; van Veen, Johannes A.

    2017-01-01

    Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies describing and comparing soil microbial communities are based on a single DNA extraction, which may not lead to a representative recovery of DNA from all organisms present in the soil. The use of successive DNA extractions might improve soil microbial characterization, but the benefit of this approach has only been limitedly studied. To determine whether successive DNA extractions of the same soil sample would lead to different observations in terms of microbial abundance and community composition, we performed three successive extractions, with two widely used commercial kits, on a range of clay and sandy soils. Successive extractions increased DNA yield considerably (1–374%), as well as total bacterial and fungal abundances in most of the soil samples. Analysis of the 16S and 18S ribosomal RNA genes using 454-pyrosequencing, revealed that microbial community composition (taxonomic groups) observed in the successive DNA extractions were similar. However, successive DNA extractions did reveal several additional microbial groups. For some soil samples, shifts in microbial community composition were observed, mainly due to shifts in relative abundance of a number of microbial groups. Our results highlight that performing successive DNA extractions optimize DNA yield, and can lead to a better picture of overall community composition. PMID:28168105

  6. NASA commercial programs

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Highlights of NASA-sponsored and assisted commercial space activities of 1989 are presented. Industrial R and D in space, centers for the commercial development of space, and new cooperative agreements are addressed in the U.S. private sector in space section. In the building U.S. competitiveness through technology section, the following topics are presented: (1) technology utilization as a national priority; (2) an exploration of benefits; and (3) honoring Apollo-Era spinoffs. International and domestic R and D trends, and the space sector are discussed in the section on selected economic indicators. Other subjects included in this report are: (1) small business innovation; (2) budget highlights and trends; (3) commercial programs management; and (4) the commercial programs advisory committee.

  7. Comparing Commercial WWW Browsers.

    ERIC Educational Resources Information Center

    Notess, Greg R.

    1995-01-01

    Four commercial World Wide Web browsers are evaluated for features such as handling of WWW protocols and different URLs: FTP, Telnet, Gopher and WAIS, and e-mail and news; bookmark capabilities; navigation features; file management; and security support. (JKP)

  8. Biofilms: A microbial home

    PubMed Central

    Chandki, Rita; Banthia, Priyank; Banthia, Ruchi

    2011-01-01

    Microbial biofilms are mainly implicated in etiopathogenesis of caries and periodontal disease. Owing to its properties, these pose great challenges. Continuous and regular disruption of these biofilms is imperative for prevention and management of oral diseases. This essay provides a detailed insight into properties, mechanisms of etiopathogenesis, detection and removal of these microbial biofilms. PMID:21976832

  9. Inflight microbial analysis technology

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Brown, Harlan D.

    1987-01-01

    This paper provides an assessment of functional characteristics needed in the microbial water analysis system being developed for Space Station. Available technology is reviewed with respect to performing microbial monitoring, isolation, or identification functions. An integrated system composed of three different technologies is presented.

  10. Technology Commercialization Program 1991

    SciTech Connect

    Not Available

    1991-11-01

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  11. Microbial Formation of Manganese Oxides

    PubMed Central

    Greene, Anthony C.; Madgwick, John C.

    1991-01-01

    Microbial manganese oxidation was demonstrated at high Mn2+ concentrations (5 g/liter) in bacterial cultures in the presence of a microalga. The structure of the oxide produced varied depending on the bacterial strain and mode of culture. A nonaxenic, acid-tolerant microalga, a Chlamydomonas sp., was found to mediate formation of manganite (γ-MnOOH). Bacteria isolated from associations with crude cultures of this alga grown in aerated bioreactors formed disordered γ-MnO2 from Mn2+ at concentrations of 5 g/liter over 1 month, yielding 3.3 g of a semipure oxide per liter. All algal-bacterial cultures removed Mn2+ from solution, but only those with the highest removal rates formed an insoluble oxide. While the alga was an essential component of the reaction, a Pseudomonas sp. was found to be primarily responsible for the formation of a manganese precipitate. Medium components—algal biomass and urea—showed optima at 5.7 and 10 g/liters, respectively. The scaled-up culture (50 times) gave a yield of 22.3 g (53 mg/liter/day from a 15-liter culture) of semipure disordered γ-MnO2, identified by X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy, and had a manganese oxide O/Mn ratio of 1.92. The Mn(IV) content in the oxide was low (30.5%) compared with that of mined or chemically formed γ-MnO2 (ca. 50%). The shortfall in the bacterial oxide manganese content was due to biological and inorganic contaminants. FTIR spectroscopy, transmission electron microscopy, and electron diffraction studies have identified manganite as a likely intermediate product in the formation of disordered γ-MnO2. PMID:16348459

  12. ERC commercialization activities

    SciTech Connect

    1995-08-01

    The ERC family of companies is anticipating market entry of their first commercial product, a 2.8-MW power plant, in the second quarter of 1999. The present Cooperative Agreement provides for: (1) Commercialization planning and organizational development, (2) Completion of the pre-commercial DFC technology development, (3) Systems and plant design, (4) Manufacturing processes` scale-up to full-sized stack components and assemblies, (5) Upgrades to ERC`s test facility for full-sized stack testing, (6) Sub-scale testing of a DFC Stack and BOP fueled with landfill gas. This paper discusses the first item, that of preparing for commercialization. ERC`s formal commercialization program began in 1990 with the selection of the 2-MW Direct Fuel Cell power plant by the American Public Power Association (APPA) for promotion to the over 2000 municipal utilities comprising APPA`s segment of the utility sector. Since that beginning, the APPA core group expanded to become the Fuel Cell Commercialization Group (FCCG) which includes representation from all markets - utilities and other power generation equipment buyers.

  13. ERC commercialization activities

    SciTech Connect

    Maru, H.C.

    1995-12-01

    The ERC family of companies is anticipating market entry of their first commercial product, a 2.8-MR power plant, in the second quarter of 1999. The present Cooperative Agreement provides for: (1) Commercialization planning and organizational development, (2) Completion of the pre-commercial DFC technology development, (3) Systems and plant design, (4) Manufacturing processes` scale-up to full- sized stack components and assemblies, (5) Upgrades to ERC`s test facility for full-sized stack testing, and (6) Sub-scale testing of a DFC Stack and BOP fueled with landfill gas. This paper discusses the first item, that of preparing for commercialization. ERC`s formal commercialization program began in 1990 with the selection of the 2-MR Direct Fuel Cell power plant by the American Public Power Association (APPA) for promotion to the over 2000 municipal utilities comprising APPA`s segment of the utility sector. Since that beginning, the APPA core group expanded to become the Fuel Cell Commercialization Group (FCCG) which includes representation from all markets - utilities and other power generation equipment buyers.

  14. Microbial Diversity of Impact-Generated Habitats.

    PubMed

    Pontefract, Alexandra; Osinski, Gordon R; Cockell, Charles S; Southam, Gordon; McCausland, Phil J A; Umoh, Joseph; Holdsworth, David W

    2016-10-01

    Impact-generated lithologies have recently been identified as viable and important microbial habitats, especially within cold and arid regions such as the polar deserts on Earth. These unique habitats provide protection from environmental stressors, such as freeze-thaw events, desiccation, and UV radiation, and act to trap aerially deposited detritus within the fissures and pore spaces, providing necessary nutrients for endoliths. This study provides the first culture-independent analysis of the microbial community structure within impact-generated lithologies in a Mars analog environment, involving the analysis of 44,534 16S rRNA sequences from an assemblage of 21 rock samples that comprises three shock metamorphism categories. We find that species diversity increases (H = 2.4-4.6) with exposure to higher shock pressures, which leads to the development of three distinct populations. In each population, Actinobacteria were the most abundant (41%, 65%, and 59%), and the dominant phototrophic taxa came from the Chloroflexi. Calculated porosity (a function of shock metamorphism) for these samples correlates (R(2) = 0.62) with inverse Simpson indices, accounting for overlap in populations in the higher shock levels. The results of our study show that microbial diversity is tied to the amount of porosity in the target substrate (as a function of shock metamorphism), resulting in the formation of distinct microbial populations. Key Words: Microbial diversity-Endoliths-Impact melt-rocks-Mars-Astrobiology. Astrobiology 16, 775-786.

  15. Biogeochemistry of microbial coal-bed methane

    USGS Publications Warehouse

    Strc, D.; Mastalerz, Maria; Dawson, K.; MacAlady, J.; Callaghan, A.V.; Wawrik, B.; Turich, C.; Ashby, M.

    2011-01-01

    Microbial methane accumulations have been discovered in multiple coal-bearing basins over the past two decades. Such discoveries were originally based on unique biogenic signatures in the stable isotopic composition of methane and carbon dioxide. Basins with microbial methane contain either low-maturity coals with predominantly microbial methane gas or uplifted coals containing older, thermogenic gas mixed with more recently produced microbial methane. Recent advances in genomics have allowed further evaluation of the source of microbial methane, through the use of high-throughput phylogenetic sequencing and fluorescent in situ hybridization, to describe the diversity and abundance of bacteria and methanogenic archaea in these subsurface formations. However, the anaerobic metabolism of the bacteria breaking coal down to methanogenic substrates, the likely rate-limiting step in biogenic gas production, is not fully understood. Coal molecules are more recalcitrant to biodegradation with increasing thermal maturity, and progress has been made in identifying some of the enzymes involved in the anaerobic degradation of these recalcitrant organic molecules using metagenomic studies and culture enrichments. In recent years, researchers have attempted lab and subsurface stimulation of the naturally slow process of methanogenic degradation of coal. Copyright ?? 2011 by Annual Reviews. All rights reserved.

  16. Microbial syntrophy: interaction for the common good.

    PubMed

    Morris, Brandon E L; Henneberger, Ruth; Huber, Harald; Moissl-Eichinger, Christine

    2013-05-01

    Classical definitions of syntrophy focus on a process, performed through metabolic interaction between dependent microbial partners, such as the degradation of complex organic compounds under anoxic conditions. However, examples from past and current scientific discoveries suggest that a new, simple but wider definition is necessary to cover all aspects of microbial syntrophy. We suggest the term 'obligately mutualistic metabolism', which still focuses on microbial metabolic cooperation but also includes an ecological aspect: the benefit for both partners. By the combined metabolic activity of microorganisms, endergonic reactions can become exergonic through the efficient removal of products and therefore enable a microbial community to survive with minimal energy resources. Here, we explain the principles of classical and non-classical syntrophy and illustrate the concepts with various examples. We present biochemical fundamentals that allow microorganism to survive under a range of environmental conditions and to drive important biogeochemical processes. Novel technologies have contributed to the understanding of syntrophic relationships in cultured and uncultured systems. Recent research highlights that obligately mutualistic metabolism is not limited to certain metabolic pathways nor to certain environments or microorganisms. This beneficial microbial interaction is